

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road

Bengaluru - 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

COMPUTER SCIENCE & ENGINEERING

Department Vision

To achieve leadership in the field of Computer Science & Engineering by strengthening fundamentals and facilitating interdisciplinary sustainable research to meet the evergrowing needs of the society.

Department Mission

- To evolve continually as a centre of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Develop Graduates capable of applying the principles of mathematics, science, core engineering and Computer Science to solve real-world problems in interdisciplinary domains. **PEO2:** To develop the ability among graduates to analyze and understand current pedagogical techniques, industry accepted computing practices and state-of-art technology. **PEO3:** To develop graduates who will exhibit cultural awareness, teamwork with professional ethics, effective communication skills and appropriately apply knowledge of societal impacts of computing technology.

PEO4: To prepare graduates with a capability to successfully get employed in the right role and achieve higher career goals or take up higher education in pursuit of lifelong learning.

	r kookam si Een ie oo ieomes (1505)									
PSO	Description									
PSO1	System Analysis and Design - The student will: 1. Recognize and understand the dynamic nature of developments in compute architecture, data organization and analytical methods									
	2. Learn the applicability of various systems software elements for solving real									
	world design problems.									
	3. Identify the various analysis & design methodologies for facilitating development of high quality system software products with focus of									
	performance optimization.									
	4. Display good team participation, communication, project management and									
	document skills.									
PSO2	Product Development - The student will:									
	1. Demonstrate knowledge of the ability to write programs and integrate them									
	resulting in state of art hardware/software products in the domains of									
	embedded systems, databases /data analytics, network/web systems and mobile									
	products.									
	2. Participate in teams for planning and implementing solutions to cater to									
	business specific requirements displaying good team dynamics and professional									
	ethics.									
	3. Employ state of art methodologies for product development and testing /									
	validation with focus on optimization and quality related aspects.									

PROGRAM SPECIFIC OUTCOMES (PSOs)

Lead Society: Institute of Electrical and Electronics Engineers

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

COMPUTER SCIENCE & ENGINEERING

SL. NO.	ABBREVIATION	MEANING
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	CHY	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	PHY	Engineering Physics
13.	SEE	Semester End Examination
14.	MAT	Engineering Mathematics
15.	PCE	Professional Core Elective
16.	GE	Global Elective

ABBREVIATIONS

INDEX

			V Semester							
Sl. No.										
	Code									
1.	16HSI51	Intellectual Pr	ntellectual Property Rights and Entrepreneurship							
2.	16CS52	Database Des		4						
3.	16CS53		er & Embedded Systems	7						
4.	16CS54	Software Eng		11						
5.	16CS55		mmunication & Networks	14						
		GROUP A: PI	ROFESSIONAL CORE ELECTIVES							
1.	16CS5A1	Artificial Neu	ral Networks	16						
2.	16CS5A2	Probability, S	tatistics and Queuing Theory	18						
3.	16CS5A3	Artificial Inte	lligence	20						
4.	16CS5A4	Advanced Alg	gorithms	22						
5.	16CS5A5	Natural Langu	Natural Language Processing							
		GROU	JP B: GLOBAL ELECTIVES							
Sl. No.	Host Dept	Course	Course Title	Page No.						
		Code								
1.	BT	16G5B01	Bioinformatics	26						
2.	CH	16G5B02	Fuel Cell Technology	28						
3.	CV	16G5B03	Geoinformatics	30						
4.	CSE	16G5B04	Graph Theory	32						
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning	34						
6.	EEE	16G5B06	Hybrid Electric Vehicles	36						
7.	IEM	16G5B07	Optimization Techniques	38						
8.	E&I	16G5B08	Sensors & Applications	40						
9.	ISE	16G5B09	Introduction To Management Information Systems	42						
10.	ME	16G5B10	Industrial Automation	44						
11.	TCE	16G5B11	Telecommunication Systems	46						
12.	MAT	16G5B12	Computational Advanced Numerical Methods	48						
13.	AE	16G5B13	Basics of Aerospace Engineering	50						

			VI Semester					
Sl. No.	Course Code		Course Title					
1.	16HEM61	Foundations	of Management & Economics	52				
2.	16CS62	Compiler D	Compiler Design					
3.	16CS63	Computer N	etworks	57				
4.	16CS64	Computer A	rchitecture	60				
5.	16CS68	Employabili Engineers	ty Skills and Professional Development of	107				
	(GROUP C: P	ROFESSIONAL CORE ELECTIVES					
1.	16CS6C1	Mobile Com	puting	62				
2.	16CS6C2	Web Program	mming	64				
3.	16CS6C3	Cloud Comp	puting	66				
4.	16CS6C4	Network Pro	ogramming	68				
	(GROUP D: P	ROFESSIONAL CORE ELECTIVES	•				
1.	16CS6D1	Fuzzy Logic	& Intelligent Information Systems	71				
2.	16CS6D2	Data Wareho	ousing & Data mining	73				
3.	16CS6D3	Object Orier	nted Analysis & Design	75				
4.	16CS6D4	Linux Intern	Linux Internals					
5.	16CS6D5	Introduction	to Optimization Techniques	79				
		GROU	JP E: GLOBAL ELECTIVES	•				
Sl. No.	Host Dept	Course	Course Title	Page				
		Code		No.				
1.	BT	16G6E01	Bioinspired Engineering	81				
2.	СН	16G6E02	Green Technology	83				
3.	CV	16G6E03	Solid Waste Management	85				
4.	CSE	16G6E04	Introduction to Web Programming	87				
5.	ECE	16G6E05	Automotive Electronics	89				
6.	EEE	16G6E06	Industrial Electronics	91				
7.	IEM	16G6E07	Project Management	93				
8.	E&I	16G6E08	Virtual Instrumentation	95				
9.	ISE	16G6E09	Introduction to Mobile Application Development	97				
10.	ME	16G6E10	Automotive Engineering	99				
11.	TCE	16G6E11	Mobile Network System and Standards	101				
12.	MAT	16G6E12	Applied Partial Differential Equations	103				
13.	AE	16G6E13	Aircraft Systems	105				

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME										
SI.	Course	Comment Title	DOG		Credit Allocation						
No.	Code	Course Title	BOS	L	Т	Р	S	Total Credits			
1.	16HSI51	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	0	3			
2.	16CS52	Database Design	CSE	3	0	1	1	5			
3.	16CS53	Microcontroller & Embedded Systems	CSE	3	0	1	1	5			
4.	16CS54	Software Engineering	CSE	3	0	1	0	4			
5.	16CS55	Computer Communication & Networks	CSE	3	1	0	0	4			
6.	16CS5AX	Elective A	CSE	3	0	0	1	4			
7.	. 16G5BXX Elective B		Resp. BoS	4	0	0	0	4			
	Tot	tal number of Credits					29				
	Total N	Number of Hours / Week	21	02	6	16**	-				

	SIXTH SEMESTER CREDIT SCHEME									
SI.	Course	Course Title	BOS		Credit Allocation					
No.	Code	Course Thie	DOD	L	Т	Р	S	Credits		
1.	16HEM61	Foundations of Management & Economics	HSS	2	0	0	0	2		
2.	16CS62	Compiler Design	CSE	3	0	1	1	5		
3.	16CS63	Computer Networks	CSE	3	0	1	1	5		
4.	16CS64	Computer Architecture	CSE	3	0	0	0	3		
5.	16CS6CX	Elective C	CSE	3	0	0	1	4		
6.	16CS6DX	Elective D	CSE	4	0	0	0	4		
7.	16G6EXX	Elective E	Resp. BoS	3	0	0	0	3		
8.	16HS68	Professional Practice-III (Employability Skills and Professional Development of Engineers)	HSS	0	0	1	0	1		
		otal number of Credits						27		
	Total	Number of Hours / Week		21	00	6	12**	-		

** Non-contact hours

	V Sem									
	GROUP A: PROFESSIONAL CORE ELECTIVES									
Sl. No.	Course Co	ode Course Title								
1.	16CS5A	1 Artificial N	leural Networks							
2.	16CS5A	2 Probability	, Statistics and Queuing Theory							
3.	16CS5A	3 Artificial Ir	ntelligence							
4.	16CS5A	4 Advanced A	Algorithms							
5.	16CS5A	5 Natural Lar	nguage Processing							
		GRO	OUP B: GLOBAL ELECTIVES							
Sl. No.	Host Dept	Course Code	Course Title	Credits						
1.	BT	16G5B01	Bioinformatics	4						
2.	СН	16G5B02	Fuel Cell Technology	4						
3.	CV	16G5B03	Geoinformatics	4						
4.	CSE	16G5B04	Graph Theory	4						
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning	4						
6.	EEE	16G5B06	Hybrid Electric Vehicles	4						
7.	IEM	16G5B07	Optimization Techniques	4						
8.	E&I	16G5B08	Sensors & Applications	4						
9.	ISE	16G5B09	Introduction To Management Information Systems	4						
10.	ME	16G5B10	¥¥							
11.	TCE	16G5B11	Telecommunication Systems	4						
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4						
13.	AE	16G5B13	Basics of Aerospace Engineering	4						

	VI Sem								
	GROUP C: PROFESSIONAL CORE ELECTIVES								
Sl. No.	Sl. No. Course Code Course Title								
1.	16CS6C1	Mobile Computing							
2.	16CS6C2	Web Programming							
3.	16CS6C3	Cloud Computing							
4.	16CS6C4	Network Programming							
		GROUP D: PROFESSIONAL CORE ELECTIVES							
1.	16CS6D1	Fuzzy Logic & Intelligent Information Systems							
2.	16CS6D2	Data Warehousing& Data mining							
3.	16CS6D3	Object Oriented Analysis & Design							
4.	16CS6D4	Linux Internals							
5.	16CS6D5	Introduction to Optimization Techniques							

	GROUP E: GLOBAL ELECTIVES									
Sl. No.										
1.	BT	16G6E01	Bioinspired Engineering	3						
2.	СН	16G6E02	Green Technology	3						
3.	CV	16G6E03	Solid Waste Management	3						
4.	CSE	16G6E04	Introduction to Web Programming	3						
5.	ECE	16G6E05	Automotive Electronics	3						
6.	EEE	16G6E06	Industrial Electronics	3						
7.	IEM	16G6E07	Project Management	3						
8.	E&I	16G6E08	Virtual Instrumentation	3						
9.	ISE	16G6E09	Introduction to Mobile Application Development	3						
10.	ME	16G6E10	Automotive Engineering	3						
11.	TCE	16G6E11	Mobile Network System and Standards	3						
12.	MAT	16G6E12	Applied Partial Differential Equations	3						
13.	AE	16G6E13	Aircraft Systems	3						

		Semester V							
		Y RIGHTS AND ENTREPRENEURSHIP							
		(Theory)							
(Common to AE, CSE, ECE, EEE, ISE, TE)									
Cou	rse Code: 16HSI51	CIE Marks: 100							
	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100							
	rs: 36L	SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The students								
1		ms of IPR and to build the perspectives on the	concepts						
•	and to develop the linkages in technolo								
2	2 To equip students on the need to protect their own intellectual works and develop ethic								
	standards governing ethical works.								
3		careers and build strong foundations skills t	o enable						
-	starting, building and growing a viable								
4		nd mind set along with critical skills and know	vledge to						
	manage risks associated with entrepren								
Ter 4-	advertisers Truess of Intelligences Dr.	UNIT-I	07.11						
	oduction: Types of Intellectual Property,	wIPO, wIO, TRIPS. tures of patent; patentable and non-patentable	07 Hrs						
		nsfer of Patent Rights; Biotechnology patents,							
	ection of traditional knowledge, Infringen								
-	le Secrets: Definition, Significance, Too	· ·							
1140	e Secrets: Definition, Significance, 100	UNIT-II							
Trad	le Marks: Concept function and di	ifferent kinds and forms of Trade marks,	04 Hrs						
		sistration of trade mark; Deceptive similarity;	04 1115						
		bel, Passing off; Offences and penalties.							
	ngement of trade mark with Case studies	in points on point point of							
		UNIT-III							
Indu	strial Design: Introduction, Protection	on of Industrial Designs, Protection and	09 Hrs						
		ocedure for obtaining Design Protection,							
Revo	ocation, Infringement and Remedies, Case	e studies							
		e, Rights conferred by copy right, Copy right							
		broad casting organizations and performer's							
	s, Case Studies.								
		mergence of cyber-crime; Grant in software							
pater	nt and Copyright in software; Software pi								
		UNIT-IV							
		how entrepreneurship has changed the world.	08 Hrs						
		er the true facts. Explore E-cells on Campus							
	6	ends Understand how ordinary people become							
		ys, their challenges, and their success stories.							
	erstand now ordinary people from the preneurs.	eir own countries have become successful							
		ur Understand the entrepreneurial journey and							
Characteristics of a Successful Entrepreneur Understand the entrepreneurial journey and learn the concept of different entrepreneurial styles. Identify your own entrepreneurship									
learn the concept of different entrepreneurial styles. Identify your own entrepreneurship style based on your personality traits, strengths, and weaknesses. Learn about the 5M									
		s in the model, and how they differ from each							
		low incorrect assumptions and limiting our							
opinions about people can negatively impact our communication. Identify the barriers which cause communication breakdown, such as miscommunication and poor listening, and									
whic									
	how to overcome them.								
	how to overcome them.								
learn Com	munication Best Practices. Understand	the importance of listening in communication body language cues such as eye contact and							

hand	Ishakes to strengthen communication. (Practical Application)	
nanc	UNIT-V	
solv	gn Thinking for Customer Delight: - Understand Design Thinking as a probleming process. Describe the principles of Design Thinking. Describe the Design Thinking	08 Hrs
and selli Mar Und App give Are pictu peop	s Skills to Become an Effective Entrepreneur: - Understand what is customer focus how all selling effort should be customer-centric. Use the skills/techniques of personal ng, Show and Tell, and Elevator Pitch to sell effectively. aging Risks and Learning from Failures: - Identify risk-taking and resilience traits. erstand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical lication) Appreciate the role of failure on the road to success, and understand when to up. Learn about some entrepreneurs/risk-takers. (Practical Application). You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real are of the benefits and challenges of being an entrepreneur. Identify the reasons why be want to become entrepreneurs. Help participants identify why they would want to	
	ome entrepreneurs.	
	rse Outcomes: After completing the course, the students will be able to	
COI	: Comprehend the applicable source, scope and limitations of Intellectual Property v purview of engineering domain.	within the
CO2	Intellectual Property Rights with the utility in engineering perspectives.	C
CO3	E: Enable the students to have a direct experience of venture creation through a plearning environment.	facilitated
CO4	entrepreneurs use to succeed in real life.	t
Refe	erence Books	
1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law LtdDelhi, ISBN: 9789350350300	
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 ^s 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.	^t Edition,
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K 8180380025, 9788180380020.	
4.	Entrepreneurship, Rajeev Roy, 1 st Edition, 2012, Oxford University Press, New Dell 9780198072638.	ni, ISBN:

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

Low-1 Medium-2 High-3

	Semester V									
	DATABASE DESIGN									
	(Theory and Practice)									
Course Code:16CS52 CIE Marks: 100+50										
Crec	Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50									
Hou	Hours: 36L SEE Duration: 3+3 Hrs									
Cou	rse Learning Objectives: The students	s will be able to								
1	Explain how to use the database systems evolved from programming with simple collections									
1	of data files.									
2	Describe the major components of rela	ational database, NoSQL database and Elastic Search.								
3	Describe the functionality provided by	languages such as SQL.								
4	Give examples of interactions with database systems that are relevant to Computer Science									
4	and Engineering.									

UNIT-I

UNIT-I							
Introduction to Database Systems -Databases and Database users: Introduction, An	8 Hrs						
example, Characteristics of Database Approach, Actors on the scene, Workers behind the							
scene. Database System-Concepts and Architecture: Data Models, Schemas and							
Instances, Three-schema Architecture and Data Independence, Database Languages and							
Interfaces, The Database System Environment.							
Data Modeling Using the Entity-Relationship Model-Using High-Level Conceptual							
Data Models for Database Design; A Sample Database Application; Entity Types, Entity							
Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural							
Constraints; Weak Entity Types;							
UNIT-II							
Refining the ER Design for the COMPANY Database; ER Diagrams, Naming	7 Hrs						
Conventions and Design Issues, Using ER- to-Relational Mapping.							
Relational Model and Relational Algebra-Relational Model Concepts; Relational							
Model Constraints and Relational Database Schemas; Update Operations and Dealing							
with Constraint Violations; Unary Relational Operations: SELECT and PROJECT;							
Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and							
DIVISION; Additional Relational Operations; Examples of Queries in Relational							
Algebra; Relational Database Design.							
UNIT-III							
SQL Schema Definition, Basic Constraints and Queries-SQL Data Definition,							
Specifying Constraints in SQL, Schema Change Statements in SQL; Basic Queries in							
been ying constraints in SQL, Schema Change Statements in SQL, Dasie Queries in							
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval							
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval							
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries.							
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on							
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd							
 SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, 							
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, Fourth Normal Form and Fifth Normal Form. UNIT-IV							
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, Fourth Normal Form and Fifth Normal Form. UNIT-IV NO SQL Database-Introduction to MongoDB: Built for the Internet, MongoDB's key	7 Hrs						
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, Fourth Normal Form and Fifth Normal Form. UNIT-IV NO SQL Database-Introduction to MongoDB: Built for the Internet, MongoDB's key features, Diving into MongoDB Shell. Document-oriented Data: Principles of Schema	7 Hrs						
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, Fourth Normal Form and Fifth Normal Form. <u>UNIT-IV</u> NO SQL Database-Introduction to MongoDB: Built for the Internet, MongoDB's key features, Diving into MongoDB Shell. Document-oriented Data: Principles of Schema Design, Designing an E-Commerce data model, Nuts and Bolts: on databases, collections	7 Hrs						
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, Fourth Normal Form and Fifth Normal Form. UNIT-IV NO SQL Database-Introduction to MongoDB: Built for the Internet, MongoDB's key features, Diving into MongoDB Shell. Document-oriented Data: Principles of Schema Design, Designing an E-Commerce data model, Nuts and Bolts: on databases, collections and documents, E-commerce queries, MongoDB's query language.	7 Hrs						
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, Fourth Normal Form and Fifth Normal Form. UNIT-IV NO SQL Database-Introduction to MongoDB: Built for the Internet, MongoDB's key features, Diving into MongoDB Shell. Document-oriented Data: Principles of Schema Design, Designing an E-Commerce data model, Nuts and Bolts: on databases, collections and documents, E-commerce queries, MongoDB's query language. Elastic Search:Talking to Elastic Search: Document Oriented, Finding your feet, Life	7 Hrs						
SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries. Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; MultivaluedDependencies, Fourth Normal Form and Fifth Normal Form. UNIT-IV NO SQL Database-Introduction to MongoDB: Built for the Internet, MongoDB's key features, Diving into MongoDB Shell. Document-oriented Data: Principles of Schema Design, Designing an E-Commerce data model, Nuts and Bolts: on databases, collections and documents, E-commerce queries, MongoDB's query language.	7 Hrs						

Г

UNIT-V	
Transaction Processing Concepts- Introduction to transaction processing, Transaction	7 Hrs
states and additional operations, Desirable properties of transaction, Schedules of	
transactions, Characterizing schedules based on Recoverability, Characterizing schedules	
based on Serializability: Serial, Nonserial and Conflict- Serializable schedules, Testing	
for Conflict serializability of schedule, Uses of serializability.	
Concurrency Control Techniques: Two phase locking techniques for concurrency	
control, types of locks and system lock tables, Guaranteeing serializability by two-phase	
locking, Dealing with Deadlock and starvation, Concurrency control based on timestamp	
ordering. Database Recovery Techniques: Recovery Concepts, Shadow Paging, The	
ARIES recovery algorithm.	

Laboratory Component

PART-A

Open Ended Mini Project should be implemented and shall be carried out in a batch of two students. The students will finalize a topic in consultation with the faculty. The mini project must be carried out in the college only.

The Mini Project tasks would involve:

- Understand the complete domain knowledge of application and derive the complete data requirement specification of the Mini Project
- Design of the project with Integrated database solution (SQL, NOSQL and Elastic Search)
- Normalization of the Relational design up to 3NF (Desirable 5NF).
- Appreciate the importance of security for database systems.
- Documentation and submission of report.

General Guidelines :

- Database management for the project- MySQL, DB2, Oracle, SQL Server, MongoDB server.
- Front End for the project Java , VC++, C#, Python , Web Interface (HTML, PHP)
- Use database Programming such as Embedded SQL,/Dynamic SQL/SQLJ, PL/SQL

Course	Course Outcomes: After completing the course, the students will be able to										
CO1.	Understand and explore the needs and concepts of relational database management, non-										
	relational database, transaction processing and related relational database facilities.										
CO2.	Apply the knowledge of logical database design principles to real time issues.										
CO3.	Analyse and design relational and document-based data model concepts.										
CO4.	Develop applications using relational database, NoSQL database and Elastic Search.										

Reference Books

1.	Fundamentals of Database Systems, Elmasri and Navathe, 6th Edition, 2011, Pearson
	Education, ISBN-13: 978-0136086208.
2.	MongoDB in Action, Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett, Tim Hawkins, 2 nd Edition, 2015, Manning, ISBN 1617291609, 9781617291609.
3.	Elasticsearch – The Definitive Guide, Clinton Gormley, Zachary Tong, 1 st edition, 2015. O'Reilly Media, Inc. ISBN: 978-1-449-35854-9.
4.	Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, 3 th Edition, 2003, McGraw-Hill, ISBN : 978-0072465631.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	1	1	-	-	-	-	-	-	1	1	-	2
CO2	-	1	1	1	1	-	1	-	1	2	-	2
CO3	2	2	2	2	2	-	1	-	2	3	1	1
CO4	2	2	3	2	3	-	-	2	3	3	2	1

Semester V								
MICROCONTROLLER & EMBEDDED SYSTEMS								
(Theory a	nd Practice)							
Course Code: 16CS53	CIE Marks: 100+50							
Credits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50							
Hours: 36 L	SEE Duration: 3+3 Hrs							

Cou	Course Learning Objectives: The students will be able to									
1	Provide the student with the basic understanding of microcontroller and embedded systems									
	design.									
2	Learn the addressing modes, instructions, and assembler directives and develop the flow									
2	chart, algorithms to solve problems.									
2	Use of subroutines, multi-segments, macros, interrupts, procedures, stacks programs in									
3	applications									
4	Develop embedded C programs for microcontrollers and run on the simulator, target board									
4	and various interfaced hardware devices									

UNIT-I						
Introduction to Microcontrollers & Architecture Intel 8051 Microcontroller						
Introduction, Microprocessor Versus Microcontroller, 8051 Block Diagram, Registers,						
Flags &PSW, Memory Organization: Program & Data Memory, Stack structure,						
Addressing Modes, Data transfer Instruction's, Structure of ALP, Working with Keil						
Software Tools to develop, simulate & debug ALP & embedded C programs						
,Assembler Directives.						
Case Study: Study the architecture of 8051 variant - NXPs 89V51RD2						
UNIT-II						
Intel 8051 Instruction Set & Assembly Language Programming	08 Hrs					
Study of Instruction set: Arithmetic, Logic, Jump, Loop & Call Instructions, Assembly						
Language Programming, Procedures, Working & Programming of Timers/Counters,						
Interrupts& ISR Programs, Writing Delay programs using Instructions & Timers.						
Case Study: Comparison of Applications built using: Programmed I/O &						
Interrupt I/O						
UNIT-III						
Intel 8051 Interfacing & Applications	07 Hrs					
Signal/Pin Descriptions, I/O Ports, Interfacing & Programming(using ALP/Embedded						
C) with LEDs, Switches, Seven segment displays, LCD, Matrix Keypad, Parallel						
ADC (ADC0804), DAC (DAC0800), Stepper motor, DC Motor, Programming serial						
port of 8051, Communication of 8051 with the PC using serial port.						
Case Study: Building PC based Embedded System Using 8051 kit & RS-232						
UNIT-IV						
Introduction to Embedded Systems & ARM Processor/Controller	07 Hrs					
Definition, Desirable Features & General Characteristics of embedded systems,						
Embedded Systems Vs General Computing Systems, Model of an Embedded System,						
Classification of Embedded Systems. History of the ARM Processor, ARM						
Architecture, Interrupt vector table, brief overview of ARM Instruction Set & Simple						
ALP Programs, Current Trends						
Case Study: Example of embedded system- RFID						
*						
UNIT-V						
ARM7 MCU LPC2148 – Architecture & Peripheral Programming using						
embedded C						
The internal architecture of LPC 2148 (a typical and popular ARM7 MCU) - Features						
of the LPC 214X Family, Peripherals and Programming : GPIO, Timers, PWM ,						

UART, SSP units, Case Study: Building Data Acquisition System using MCB 2140 compatible board.

Laboratory Component

1.

- a) 8051 ALP programs to perform block data transfer and searching operations
- b) 8051 ALP/Embedded C to Interface Logical Controller and perform:
 - i. Write an ALP to read the status of 8 inputs bits from 8bit switch and display 'FF' if it is even parity otherwise display 00. Also display number of 1's in the input data on the LED outputs, using interface module.
- ii. Write an ALP to read the status of two 8-bit inputs (X and Y) and display the result X*Y using the interface module
- iii. Write an ALP to implement BCD Up/Down counters
- 2.
- a) 8051 ALP programs to perform Arithmetic (addn/subn/mult/divn operations)
- b) 8051 ALP/Embedded C to Interface Seven Segment Display and perform:
- i. Write a C program to display messages "FIRE" & "HELP" on 4 digit seven segment display alternately with a suitable delay.
- ii. Write a C program to display the given number on the seven segment display using look up table

3.

- a) 8051 ALP programs to perform number conversions, binary to BCD, binary to ASCII
- b) 8051 ALP/Embedded C to Interface Stepper Motor Module and perform:
- i. Write an Embedded C program to rotate stepper motor in clockwise direction for "M" steps, anti-clock wise direction for "N" steps
- ii. Rotate the Stepper Motor, for the given RPM

4.

a) 8051 ALP programs to compute average & maximum/minimum values

- b) 8051 ALP/Embedded C to Interface DAC Module and perform:
 - i. Write an Embedded C program to generate without rectification / full rectified/ half rectified sine waveform using DAC module
- ii. Write the program to generate square waveform for the given frequency
- iii. Generate PWM wave on pin P0.1 to control speed of DC motor. Control the duty cycle by analog input.

5.

a) 8051 ALP programs to perform sorting operations

b) 8051 ALP/Embedded C to Interface Keyboard Module and perform:

- i. Write an Embedded C program to interface 4 X 4 matrix keyboard using lookup table and display the key pressed on the Terminal
- ii. Interface an LCD Module and display the temperature read from ADC Module.

6.

- a) To write and simulate ARM assembly language programs for data transfer, arithmetic and logical operations
- b)Interface Graphics LCD and I2C device to ARM Microcontroller LPC 2148 / 1768 and write the suitable embedded C program

Mini Projects :

- 1. Design & development of PC based Embedded system using 8051 Kit, incorporating application development on both PC & Microcontroller
- 2. Design & development of LPC 2148/1768 based data acquisition System

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1.	Acquire the knowledge of architecture of Microprocessors and Microcontrollers for the									
	different applications.									
CO2.	Develop skill in simple program writing for micro controllers for applications in									
	assembly level language and Embedded C.									
CO3.	Design system configuration for a given application.									
CO4.	Integrate, implement and test the design in applications.									

Reference Books

1.	The 8051 Microcontroller & Embedded Systems (Using Assembly & C), Muhammad Ali									
	Mazidi, Janice Gillispie Mazidi , Rolin D. McKinlay, 2014, Prentice Hall (Pearson),									
	ISBN-13-978-1-292-02657-2.									
2.	The 8051 Microcontroller Architecture, Programming & Applications, Kenneth J.									
	AyalaThomson Learning, 2 nd Edition, 2006. ISBN -0333-92394-4.									
3.	Embedded Systems – An integrated approach, Lyla B. Das, 1 st Impression 2013, Pearson									
	Education, ISBN- 978-81-317-8766-3.									
4.	ARM system developers guide, Andrew N Sloss, Dominic Symes and Chris Wright,									
	Elsevier, 2004. Morgan Kaufman publishers, ISBN-1558608745,9781558608740									
5.	Embedded Systems, Architecture, Programming and Design, Raj Kamal, 2 nd Edition-									
	Reprint 2011, Tata McGraw-Hill, ISBN-978-0-07-066764-8.									

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	1	3	2	3	1	1	-	3	2	2	2	
CO2	3	2	3	2	3	-	-	-	3	2	2	2	
CO3	2	2	3	2	3	1	1	-	3	2	2	2	
CO4	2	2	3	2	3	1	1	-	3	2	2	2	

Semester V							
SOFTWARE ENGINEERING							
(Theory)							
Course Code:16CS54	CIE Marks: 100+50						
Credits: L:T:P:S: 3:0:1:0	SEE Marks: 100+50						
Hours: 35L	SEE Duration: 3+3Hrs						

Course Learning Objectives: The students will be able to

	0
1	Understand software process, process models, activities, stages of software engineering
1	process.
n	Understand requirements engineering process and write the functional and non-function
	requirements using data flow diagrams, use case diagrams as part of SRS document.
3	Learn the use of appropriate CASE tool for software development
4	Estimate the software development cost and prepare software project plan.

5 Carry out software testing and formal verification and validation of software.

UNIT-I					
Software Processes: Models, process iteration, Process activities. The Rational	07 Hrs				
Unified Process. Computer Aided Software Engineering.					
Requirements Analysis & Project Planning: Requirements Analysis &					
Specification: Value of a Good SRS, Requirements Process, Requirements					
Specification, Functional Specification with Use Cases, Other Approaches for					
Analysis.					
UNIT-II					
The Software Problem & Processes: Cost, Schedule & Quality, Scale & Change,	07 Hrs				
Software Processes: Process & Project, Component Software Processes, Software					
Development Process Models, Project Management Process					
Planning a Software Project: Effort Estimation, Project Schedule & Staffing,					
Quality Planning, Risk Management Planning, Project Monitoring Plan.					
UNIT-III					
Design, Coding: Design: Design Concepts, Function-oriented Design, Object-	07 Hrs				
oriented Design, Detailed Design, Metrics.					
Coding: Programming Principles & Guidelines, Incrementally Developing Code,					
Managing Evolving Code.					
UNIT-IV					
Verification and Validation: Verification and Validation, Planning, Software	07 Hrs				
inspections, Automated static analysis, Verification and formal methods.					
Unit Testing and Testing: Unit Testing, Code Inspection, Metrics Testing					
Concepts, Testing Process, Black-box Testing, White-box Testing, Metrics.					
Critical Systems: A simple safety-critical system, System dependability.					
Availability and reliability.					
UNIT-V					
Agile methods. Extreme programming, Scrum.					
Software Engineering for new paradigms- Cloud					
Impact of Cloud computing on Software Development life cycle: Limitations and					
Challenges in Cloud-Based Applications Development- Introduction and					
Challenges. Impact of Cloud computing on Software Development life cycle.					

Software Engineering Lab

Instructions for Lab:

- Students will be grouped in to a batch of two at max.
- Each group will be provided with one case study topic which needs to follow SE principles.
- Students are required to do documentation using rapid tools at the end of each phase.
- Student will have to give report at the end of these phases-
 - 1. Project Planning and Requirement Specification (use Project Libre tool)
 - 2. Detailed Design and Architecture (Any design tools)
 - 3. Implementation (Use IDE recommended)
 - 4. Testing
- Students are encouraged to use rapid software development tools / CASE Tools for their laboratory question.
- The evaluation of each phase mentioned above will as per the rubrics and will be printed on lab manual.

Week	Activity	Tools	Deliverables			
1	Introduction	-	Problem definition and			
			enlisting various tools			
2	Requirements	Open Source Requirements	SRS			
	Engineering	Management Tool (OSRMT)				
3	Project Management	ProjectLibre/ Ganib/ SureTrack	Work Breakdown			
4	Scheduling Metrics		Structure, PERT chart,			
			Gantt chart			
5	Risk Management	SimpleRisk	Risk management plan			
6	Cost Estimation	Online tool	Effort required and			
	Metrics	http://csse.usc.edu/tools/COCO	Duration of the project			
		MOII.php				
7	Analysis & Design -1	StarUML	Structure chart and Data			
8	Analysis & Design -2		Flow Diagram			
9	Testing using (JUnit)	JUNIT	Error-free code			

Following deliverables is to be submitted every week and each carries 10 marks.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1.	Comprehend various software life cycle models and steps of software development process with an inclusive focus on professional ethics, engineering practices and code standards.							
CO2.	Apply concepts of Software Project Planning and software Design techniques.							
CO3.	Analyze capabilities of various tools to assist in the software development activities.							
CO4.	Develop correct and robust software design from requirement gathering to implementation with long software lifetime and that is useful to the society or market.							

Ref	erence Books
1.	A Concise Introduction to Software Engineering, Pankaj Jalote, Springer, 2008 (Chapters: 1-4, 6-8), ISBN – 13: 978-1-84882-2-108.
2.	Software Engineering, Ian Sommerville, 8 th Edition, 2013, Pearson Education, ISBN: 9788131762165.
3.	Software Engineering-A Practitioners Approach, Roger.S.Pressman, 7 th Edition, 2007, Tata McGraw Hill, ISBN: 9780071267823.
4.	SWEBOK Book on Software Engineering, IEEE Computer Society, 2014, ISBN-13: 978-0-7695-5166-1.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	-	2	-	-	-	2
CO2	2	1	2	-	1	-	-	-	-	-	2	2
CO3	-	2	1	-	2	-	-	-	-	-	-	2
CO4	1	2	2	1	1	2	2	-	2	2	-	2

	Se	emester V				
		NICATION AND NETWORKS				
	(Theory)				
~	~					
Course Code: 16CS55 CIE Marks: 100						
	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100					
Hours: 36L+24T SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students	will be able to				
1	Understand the functionalities of variou					
2	Summarize the roles of various layers in	n the operation of internet.				
3 Analyze the design issues involved in various types of communication channels used in computer networks.						
4	Illustrate the operation and formats of I	EEE LAN standards.				
		UNIT-I				
	oduction oduction to Data Communications, Com	ponents, Data representation, Data flow,	07 Hrs			
		Circuit switching and packet switching,				
	oduction to Networks, Topologies, Catego					
	work Models and Layered Architecture					
	ered tasks, The OSI model, Layers in the					
-		Connection-Oriented and Connectionless				
	vices, and Service Primitives.					
		UNIT-II				
Data	a and Signals		07Hrs			
	8	ignals, Digital signals, Transmission	071115			
	impairments, Data rate limits, Performance					
	sical Layer : Digital Transmission					
		ling, Scrambling, Analog - to - digital				
	conversion, Transmission modes.	ing, seruneing, rindiog to digital				
		JNIT-III				
Ana	log Transmission and Bandwidth Utiliz		08 Hrs			
		FDM, WDM, Synchronous TDM,	00 1110			
		Hopping Spread Spectrum (FHSS), Direct				
		nission Media: Guided media, Unguided				
med						
	a Link Layer : Error Detection and Co	rrection				
	oduction, Block coding, Cyclic codes, Che					
		JNIT-IV				
Data	a Link Laver : Data Link Control		07 Hrs			
	a Link Layer : Data Link Control ning, Flow and Error control, Protocol	s. Noiseless channels. Noisy channels.	07 Hrs			
Fran	ning, Flow and Error control, Protocol	ls, Noiseless channels, Noisy channels, noisi phases.	07 Hrs			
Fran HDI	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran		07 Hrs			
Fran HDI Med	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control	nsition phases.	07 Hrs			
Fran HDI Med Rand	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control dom access - CSMA, CSMA / CD, CSM	nsition phases. A / CA, Controlled access - Reservation,	07 Hrs			
Fran HDI Med Rand	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control dom access - CSMA, CSMA / CD, CSM ing, Token passing, Channelization - FDM	nsition phases. A / CA, Controlled access - Reservation, MA, TDMA, CDMA.	07 Hrs			
Fran HDI Med Rand Polli	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control dom access - CSMA, CSMA / CD, CSM ing, Token passing, Channelization - FDM	nsition phases. A / CA, Controlled access - Reservation,				
Fran HDI Med Rand Polli	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control dom access - CSMA, CSMA / CD, CSM ing, Token passing, Channelization - FDM al Area Networks	nsition phases. A / CA, Controlled access - Reservation, MA, TDMA, CDMA. UNIT-V	07 Hrs 07 Hrs			
Fran HDI Med Rand Polli Loca Ethe	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control dom access - CSMA, CSMA / CD, CSM ing, Token passing, Channelization - FDM al Area Networks ernet (802.3) MAC sub layer protocol,	nsition phases. A / CA, Controlled access - Reservation, MA, TDMA, CDMA. UNIT-V Binary exponential back off algorithm,				
Fran HDI Med Rand Polli Loca Ethe IEEI	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control dom access - CSMA, CSMA / CD, CSM ing, Token passing, Channelization - FDN al Area Networks ernet (802.3) MAC sub layer protocol, E 802.2 LLC, Wireless LANs, 802.11 sta	nsition phases. A / CA, Controlled access - Reservation, MA, TDMA, CDMA. UNIT-V Binary exponential back off algorithm, ack, 802.11 Physical layer, 802.11 MAC				
Fran HDI Med Rand Polli Loca Ethe IEEI sub	ning, Flow and Error control, Protocol LC, Point-to-point Protocol - framing, tran lium Access Control dom access - CSMA, CSMA / CD, CSM ing, Token passing, Channelization - FDN u al Area Networks ernet (802.3) MAC sub layer protocol, E 802.2 LLC, Wireless LANs, 802.11 sta layer protocol, 802.11 frame structure, C	nsition phases. A / CA, Controlled access - Reservation, MA, TDMA, CDMA. UNIT-V Binary exponential back off algorithm,				

Cours	e Outcomes: After completing the course, the students will be able to
CO1.	Understand and explore the basic concepts of computer communication and the switching
	techniques used in different types of networks.
CO2.	Explore the various types of transmissions through physical media and associated error
	handling mechanisms.
CO3.	Analyze the operation of network and solve problems relevant to performance of
	communication links.
CO4.	Investigate the relevance of basic communication protocols in the correct operation of
	network.

Reference Books

1. Data Communications and Networking, Behrouz A Forouzan, 5 th Edition; 20 McGraw-Hill; ISBN – 9781259064753.	13, Tata
McGraw-Hill: ISBN – 9781259064753.	
· · · · · · · · · · · · · · · · · · ·	
2. Communication Networks, Alberto Leon-Garcia and Indra Widjaja, 2 nd Edition; 20)11, Tata
McGraw-Hill, ISBN 13: 9780072423495.	
3. Computer Networks; Pearson Education, Andrew S Tanenbaum, 5 th Edition; 2014	, ISBN –
978-81-7758-165-2.	
4. Data and Computer Communications, William Stallings, 8 th Edition; 2009,	Pearson
Education; ISBN-13: 978-0131392052.	

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	-	-	-	-	-
CO2	3	2	-	2	-	2	2	-	-	-	-	-
CO3	2	2	3	-	2	2	1	-	2	-	1	2
CO4	2	2	2	2	1	-	-	-	-	-	1	-

Semester V							
ARTIFICIAL NEURAL NETWORKS							
(Group A : Professional Core Elective)							
Course Code:16CS5A1	CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hours: 36L	SEE Duration: 3Hrs						

Cou	Course Learning Objectives: The students will be able to							
1	Perceive the basic concepts of ANN, applications and learning techniques							
2	Explain the working of perceptron and multilayer perceptron and related learning algorithms							
3	Gain essential knowledge on convolutional neural networks and applications							
4	Explore structured probabilistic models for deep learning							

UNIT-I

ARTIFICIAL NEURAL NETWORKS INTRODUCTION AND LEARNING	07 Hrs				
PROCESSES-I: What is a Neural Network? Human Brain, Models of a Neuron, Neural					
Networks Viewed as DG, Feedback, Network Architectures, Error-correction learning,					
Memory-based learning, Hebbian Learning, Competitive learning, Boltzmann Learning					
UNIT-II					
LEARNING PROCESSES - II AND PERCEPTRON: Learning with a teacher,	08 Hrs				
Learning without a teacher, Learning tasks, Memory and adaptation. Statistical					
Learning Theory, VC dimension, Probably approximately correct model of learning,					
Single-Layer Perceptrons: Adaptive filtering problem, Unconstrained optimization					
techniques: Steepest Descent, Newton's, Gauss-Newton; Linear Least-Squares Filter,					
LMS algorithm, Learning curves, Learning rate annealing techniques, Perceptron and					
Convergence theorem.					
UNIT-III					
MULTILAYER PERCEPTRON AND GENERALIZATION: BP algorithm, Two					
passes of computation, Sequential and Batch Modes of training, Stopping Criteria, XOR					
problem, Heuristics for BP algorithm to perform better, Output representation and					
Decision rule, Generalization, Universal approximation theorem, Cross-validation					
UNIT-IV					
CONVOLUTIONAL NETWORKS:Convolution Operation, Motivation, Pooling,					
Convolution and Pooling as an Infinitely Strong Prior, Variants of the basic convolution	07 Hrs				
function, Structured Outputs, Data types, Efficient Convolution Algorithms, Random or					
Unsupervised features, The Neuroscientific basis for convolutional networks					
UNIT-V	1				
STRUCTURED PROBABILISTIC MODELS FOR DEEP LEARNING: The					
challenge of unstructured modelling, Using graphs to describe model structure:	07 Hrs				
Directed, Undirected, Partition function, Energy-based models, Factor graphs; Sampling					
from graphical models, Advantages of structured modelling, learning about					
dependencies, Inference and approximate inference, The deep learning approach to					
structured probabilistic models					
	<u>ı </u>				
Course Outcomes: After completing the course, the students will be able to					

CUL	in se Outcomes. After completing the course, the students will be able to
1	Describe basic concepts of neural network, its applications and various learning models
2	Analyze different Network Architectures, learning tasks, convolutional networks, and deep
	learning models
3	Investigate and apply neural networks model and learning techniques to solve problems
	related to society and industry

Reference Books
Neural Networks – A Comprehensive Foundation, Simon Haykin, 2 nd Edition, 2005. PHI,
(Units I to III)
Deep Learning (Adaptive Computation and Machine Learning Series), Ian Good fellow,
YoshuaBengio and Aaron Courville, (3 January 2017), MIT Press, ISBN-13: 978-
0262035613.
Introduction to Artificial Neural Networks, Gunjan Goswami, 2012 Edition, S.K. Kataria&
Sons; ISBN-13: 978-9350142967.
Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence
Algorithms, Nikhil Buduma, 2016 Edition, by O'Reilly Publications, ISBN-13: 978-
1491925614.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	2	-	3
CO2	-	2	2	-	-	-	-	-	-	-	-	3
CO3	2	3	3	2	-	-	-	1	2	-	-	-
CO4	2	2	3	3	-	-	-	-	3	2	2	-

Semester V					
PROBABILITY, STATISTICS AND QUEUING THEORY					
(Group A : Professional Core Elective)					
Course Code: 16CS5A2	CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hours: 36L SEE Duration: 3Hrs					

Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the basics of Probability, Statistics and Queuing theory.						
2	Evaluate probability bounds, basic statistical measures and demonstrate their significance.						
3	Design and perform hypothesis tests and other evaluative tests.						
4	Develop probability models for solving real world problems.						

UNIT-I			
Introduction of Probability and Random Variables: Axioms of probability,	08 Hrs		
Conditional probability, Baye's theorem, Discrete Random variable and Continuous			
Random variable,pmf, pdf of some well-known distributions, Moment Generating			
Functions, Two-dimensional Random variables, Joint pmf and Joint pdf and their			
properties, Conditional distributions and conditional expectations, Covariance.			
UNIT-II			
Probability bounds, Approximations, Poisson process and Hypothesis: Probability	07 Hrs		
inequalities - Markov's inequality, Chernoff bounds, Jensen's inequality, The second			
moment and the conditional expectation inequality, Chebyshev's inequality,			
Bienayme's inequality, Schwartz inequality, Cauchy-Schwartz inequality, Counting			
processes, Definition of Poisson process, Inter-arrival and waiting time distributions,			
Tests of Hypothesis.			
UNIT-III			
	07 Hrs		
Random Processes: Classification, Methods of description, Special classes, Average	U/ HIS		
values of Random Processes, Analytical representation of Random Process,			
Autocorrelation function, Cross-correlation function and their properties, Ergodicity,			
Poisson process, Markov Process, Markov chain.			
UNIT-IV			
Queuing Theory:Symbolic Representation of a Queuing Model, Poisson Queue	07 Hrs		
system, Little Law, Types of Stochastic Processes, Birth-Death Process, The M/M/1			
Queue, M/M/m Queue, M/M/m/B Queue with Finite Buffers.			
UNIT-V			
Random Number Generation: Desired Properties of a Good Generator, Linear-			
Congruential Generators, Tausworthe Generators, Extended Fibonacci Generators,			
Combined Generators, Testing Random Number Generators: Chi-Square Test,			
Kolmogorov-Smirnov.			

Cours	e Outcomes: After completing the course, the students will be able to
CO1.	Identify basic tools of Probability and queuingin the fields where uncertainty and imprecision are involved.
CO2.	Apply random process, sampling theory, stochastic process and queuing models to the field of computer science.
CO3.	Apply probability models using modern tools of probability for synthesizing information to use effectively.
CO4.	Analyze and design probability models for various real world problems involving randomness.

Ref	erence Books
1.	Probability & Statistics with Reliability, Queuing and Computer Applications, Kishor S
	Trivedi, 2 nd Edition, 2008, Eastern Economy Edition, Prentice Hall IndiaISBN: 81-203-
	0508-6.
2.	Probability, Statistics and Random Processes, T Veerarajan, 3rd Edition, 2008, Tata
	McGraw Hill Education Private Limited, ISBN:978-0-07-066925-3.
3.	The Art of Computer Systems Performance Analysis, Raj Jain, 1st Edition, 2009, Wiley
	India Private Limited, ISBN:978-81265-1905-7.
4.	Probability and statistics for Engineers, Miller and Freund's (Richard .A. Johnson, C. B.
	Gupta), Second impression 2007, Pearson Education, ISBN: 978-0-12-051051-1.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	2	-	1	1	2	1	1
CO2	3	3	2	2	2	2	-	1	1	2	1	2
CO3	2	3	2	2	3	2	-	1	1	2	1	2
CO4	3	2	2	2	3	2	-	1	1	2	1	2

Semester V						
ARTIFICIAL INTELLIGENCE						
(Group A : Professional Core Elective)						
Course Code: 16CS5A3	CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100						
Hours: 36L	SEE Duration: 3Hrs					

Cou	Course Learning Objectives: The students will be able to									
1	Know various AI search algorithms like uninformed, informed, heuristic and genetic									
1	algorithms.									
2	Understand the fundamentals of knowledge representation and different types of AI agents.									
2	Apply knowledge representation, reasoning, and machine learning techniques to real-world									
3	problems.									
4	Know how to build simple knowledge-based systems.									

UNIT-I	
Introduction to AI, Definition, History, and Intelligent Agents: How agent should Act,	07 Hrs
Structure of Agents, Environments.Problem-solving: Problem-solving agents; Example	
problems; Searching for solution; uninformed search strategies.	
UNIT-II	
Informed Search, Exploration, Constraint Satisfaction, Adversial Search: Informed	08 Hrs
search strategies; Heuristic functions; On-line search agents and unknown environment.	
Constraint satisfaction problems; Backtracking search for CSPs. Adversial search:	
Games; Optimal decisions in games; Alpha-Beta pruning.Best-first minimaxsearch.	
UNIT-III	
Logical Agents: Knowledge-based agents; Logic; propositional logic Reasoning	9 Hrs
patterns in propositional logic; Effective propositional inference; Agents based on	
propositional logic. First-Order Logic, Inference in First-Order Logic -1:	
Representation revisited; Syntax and semantics of first-order logic; Using first-order	
logic; Knowledge engineering in first-order logic. Propositional versus first-order	
inference; Unification and lifting. Inference in First-Order Logic - 2: Forward	
chaining; backward chaining; Resolution.	
UNIT-IV	
Learning AI: Present and Future: Learning: Forms of Learning; Inductive learning;	05 Hrs
Learning AI. Fresent and Future. Learning: Forms of Learning, inductive learning, Learning decision trees; Ensemble learning; Computational learning theory. ASHACL:	05 HIS
Alternative Shapes Constraint Language.	
UNIT-V	
Uncertainty, Probabilistic Reasoning: Uncertainty: Acting under certainty; Inference	07 Hrs
using full joint distributions; Independence; Bayes' rule and its use. Probabilistic	v/ ms
Reasoning: Representing knowledge in an uncertain domain; the semantics of Bayesian	
networks; efficient representation of conditional distributions; exact inference in	
Bayesian networks	
Daytsian introoms	

Cours	Course Outcomes: After completing the course, the students will be able to										
CO1.	Understand and Explore knowledge representation techniques and problem solving										
	strategies to common AI applications.										
CO2.	Analyze and find appropriate idealizations for converting real world problems into AI										
	search problems that are formulated using the appropriate search algorithm.										
CO3.	Design good evaluation functions for different problem solving strategies.										
CO4.	Apply knowledge representation techniques and problem solving strategies to common										
	AI applications.										

Ref	erence Books									
1.	Stuart Russel, Peter Norvig "AI – A Modern Approach", 2 nd Edition, Pearson.									
	2010,ISBN-13: 978-0137903955.									
2.	Elaine Rich, Kevin Knight: Artificial Intelligence, 3rdEdition, Tata McGraw Hill, 2009.									
	ISBN: 9780070087705.									
3.	"Hierarchical Adversarial Search Applied to Real-Time Strategy Games", by Marius									
	Stanescu and Nicolas A. Barriga and Michael Buro, Proceedings of the Tenth Annual									
	AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment									
	(AIIDE 2014).									
4.	The Neurophysiology of Language Processing Shapes the Evolution of Grammar:									
	Evidence from Case Marking by Balthasar Bickel, AlenaWitzlack-Makarevich, Kamal									
	K. Choudhary, Matthias Schlesewsky, Ina Bornkessel-Schlesewsky, Published: August									
	2015, http://dx.doi.org/10.1371/journal.pone.0132819									

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	
CO1	-	1	1	-	1	1	-	2	2	-	-	2
CO2	2	1	2	-	1	1	-	-	-	2	2	2
CO3	-	2	1	-	2	-	-	-	-	-	-	2
CO4	1	2	2	1	1	2	2	-	2	2	-	2

High-3 : Medium-2 : Low-1

Semester V								
ADVANCED ALGORITHMS								
(Group A : Profe	ssional Core Elective)							
Course Code: 16CS5A4	CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100							
Hours: 35L	SEE Duration: 3Hrs							

Cou	Course Learning Objectives: The students will be able to								
1	Design and implement `new' algorithms in the real world.								
2	Map practical problems to algorithmic problems.								
3	Read and understand algorithms published in journals.								
4	Develop writing skills to present own algorithms.								
5	Collaborate and work together with other people to design new algorithms.								

5	Collaborate and work together with other pe	eople to design new algorithms.
---	---	---------------------------------

UNIT-I	
Analysis techniques:	06 Hrs
Growth of functions: Asymptotic notation, Standard notations and common functions,	
Substitution method for solving recurrences, Recursion tree method for solving	
recurrences, Master theorem, Amortized analysis, Aggregate, Accounting, and	
Potential methods	
UNIT-II	
String Matching Algorithms:	08 Hrs
Naïve algorithm, Rabin-Karp algorithm, String matching with finite automata, Knuth-	
Morris-Pratt algorithm	
Graph Algorithms	
Bellman-Ford Algorithm, Shortest paths in a DAG, Johnson's Algorithm for sparse	
graphs.	
UNIT-III	
Advanced Data structures	08 Hrs
Red-Black tree, Fibonacci heaps, Splay trees, Binomial Queues, skip lists.	
Maximum Flow	
Flow networks, Ford Fulkerson method and Maximum Bipartite Matching.	
UNIT-IV	
Number Theoretic Algorithms	07 Hrs
Elementary notions, GCD, Modular arithmetic, solving modular linear equations, The	
Chinese remainder theorem, powers of an element, RSA cryptosystem, primality	
testing, Integer factorization	
UNIT-V	
Polynomials and the FFT	06 Hrs
Representation of polynomials; DFT and FFT; Efficient implementation of FFT.	
Recent Trends	
Approximation algorithms: A comprehensive survey: artificial bee colony (ABC)	
algorithm and applications	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the fundamentals of Asymptotic notation, Standard n amortized analysis and common functions for given algorithms.	otations,
anorazed anarysis and common functions for given algorithms.	

~ ~ *		
CO2	Analyse and solve practical	problems using different algorithmic techniques.
CO2.	I maryse and sorve practical	problems using unrefert argoritinine teeninques.

- CO3. Design robust algorithms using mathematical techniques.
- CO4. Implement advanced techniques for a given problem.

]	Refe	erence Books											
	1.	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest											
		and Clifford Stein, 3 rd Edition, 2009, MIT Press, ISBN-13: 978-0262033848.											
	2.	Data Structures and Algorithm Analysis in C++; Mark Allen Weiss, 4 th Revised Edition;											
		2013, Addison-Wesley; ISBN-13: 9780132847377.											
	3.	A comprehensive survey: artificial bee colony (ABC) algorithm and applications,											
		Karaboga, Dervis, 2014, et al. Artificial Intelligence Review 42.1, pp 21-57.											

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	
CO1	1	2	2	1	1	-	1	-	-	-	-	1
CO2	1	3	2	1	1	-	1	-	-	-	-	1
CO3	1	3	2	1	1	-	1	-	-	-	-	1
CO4	1	3	2	1	1	-	1	-	-	-	-	1

Semester V							
NATURAL LANGUAGE PROCESSING							
(Group A : Profession	nal Core Elective)						
Course Code:16CS5A5	CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hours: 35L	SEE Duration: 3Hrs						

Cou	Course Learning Objectives: The students will be able to							
1	Learn the algorithmic description of the main language levels: morphology, syntax,							
1	semantics and pragmatics, as well as the resources of natural language data – corpora.							
2	Understand knowledge representation, inference, and relations to artificial intelligence.							
3	Explore linguistic phenomena and linguistic features relevant to each NLP task.							
4	Apply the learnt methods to new NLP problems.							
5	Implement NLP tools like classifiers, translators, pos taggers, stemmers for Indian and							
3	other languages.							

UNIT-I	
Introduction: Knowledge in Speech and Language Processing, Ambiguity, Models	08 Hrs
and Algorithms; Language, Thought, and Understanding; The State of the Art and	
The NearTerm Future;	
Regular Expressions and Automata:Regular Expressions, Finite state automata,	
Regular languages and FSAs.	
Morphology and Finite-State Transducers:Lexicon-free FSTs: The Porter	
Stemmer, Human Morphological Processing.	
UNIT-II	
N-grams:Counting Words in Corpora, Smoothing, N-grams for Spelling and	08 Hrs
Pronunciation, Entropy;	
Word Classes and Part-of-Speech Tagging: Part-of-Speech Tagging , Rule-based	
Part-of-speech Tagging, Stochastic Part-of-speech Tagging, Transformation-Based	
Tagging;	
Context-Free Grammars for English: Constituency, Context-Free Rules and Trees,	
Sentence-Level Constructions, The Noun Phrase	
UNIT-III	
Parsing with Context-Free Grammars: Parsing as search, The Earley Algorithm;	06 Hrs
Features and Unification:Feature Structures, Unification of Feature Structures,	
Features Structures in the Grammar, Implementing Unification, Parsing with	
Unification Constraints;	
Lexicalized and Probabilistic Parsing: Probabilistic Context-Free Grammars,	
Problems with PCFGs.	
UNIT-IV	
Markov Models: Hidden Markov Models, The three fundamental questions for	06 Hrs
HMMs, HMMs: Implementation, Properties, and Variants	
Statistical Alignment and Machine Translation : Text Alignment, Word	
Alignment, Statistical Machine Translation	
UNIT-V	
Text Categorization :Decision Trees, Maximum Entropy Modeling, Perceptrons,	07 Hrs
k Nearest Neighbor Classification	
Recent Trends : Matrix factorization techniques for recommender systems.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and Explore the basics of any language representation and model t	hem
with formal grammars.	
CO2. Apply experimental methodology for training and evaluating empirical NLP sy	stems.

CO	3.	Analyze the linguistic phenomena and linguistic features to each NLP task.
CO	4.	Demonstrate the use of modern NLP techniques for processing of texts.

Ref	erence Books
1.	Speech and Language Processing: An introduction to Natural Language Processing,
	Computational Linguistics and Speech Recognition, Daniel Jurafsky and James H
	Martin, 2 nd Edition, 2013, Prentice Hall, ISBN: 978-9332518414
2.	Foundations of Statistical Natural Language Processing, Christopher D. Manning, 1st
	Edition, 1999, MIT Press; ISBN: 978-0262133609
3.	Natural language processing with Python, Bird, Steven, Ewan Klein, and Edward Loper.
	1 st Edition, 2009, O'Reilly Media, Inc., ISBN: 978-8184047486
4.	Matrix factorization techniques for recommender systems, Koren, Yehuda, 2009,
	Robert Bell, and Chris Volinsky. IEEE Computer, August, 42(8), pp 30-37.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	1	1	-	-	2	1	1	2
CO2	2	2	3	2	1	1	-	-	2	1	1	2
CO3	1	2	3	2	1	1	-	-	2	1	1	2
CO4	1	2	2	2	1	1	-	-	2	1	1	2

		Semester V	
		BIOINFORMATICS	
		(Group B: Global Elective)	
	rse Code: 16G5B01	CIE Marks: 100	
	lits :L:T:P:S: 4:0:0:0	SEE Marks: 100	
	rs:04	SEE Duration: 3Hrs	
	rse Learning Objectives:		
1		chnologies of Bioinformatics and Programming	
2		as behind the computational genomics and proteomic stru	ctural
		simulation of molecular systems.	
3		es that are exclusively designed as data analytics to invest	igate the
		ehind the high throughput biological data.	
4		come of tools and techniques employed in the processes of	of
	biological data preprocessing	and data mining.	
		Unit-I	1
Carb Gene Bioin datal	oohydrates, Lipids, Nucleic A es and Genomes. Bioinfor nformatics, Goals, Scope, App bases – Sequence, structure, Sp	Biomolecules. Structure, Types and Functions of cids and Proteins. Genetic code, Codon degeneracy, matics & Biological Databases: Introduction to lications in biological science and medicine. Biological ecial Databases and applications - Genome, Microarray, omain databases. Mapping databases – genome wide	09 Hrs
maps	s. Chromosome specific human	maps.	
		Unit – II	
Prog BLO Gene Intro	ressive global alignment). I DSSUM and PAM, Basic Loca eration Sequencing – Alig oduction, Terminology, Forms	orithms (Needleman & Wunch, Smith & Waterman and Database Similarity Searching- Scoring matrices – l Alignment Search Tool (BLAST), and FASTA. Next nment and Assembly. Molecular Phylogenetics: of Tree Representation. Phylogenetic Tree Construction cter-Based Methods and Phylogenetic Tree evaluation. Unit -III	
Pred	lictive methods: Predicting	secondary structure of RNA, Protein and Genes -	09 Hrs
algor struc Mod Mole - der	rithms to predict secondary structure of Protein, Protein iden leling and Drug Designing: ecular Modeling and Force Fiel	acture of RNA, Protein and Gene. Prediction of Tertiary ntity and Physical properties of protein. Molecular Introduction to Molecular Modeling. Methods of ds used in Molecular Modeling. Drug designing process for Mapping, Estimating Receptor-Ligand interactions	
		Unit –IV	
Spec (REC Subr call I Poly:	cial variables. Data Types – Sc GEX), Components of REC coutines – types of functions, d by value and call by reference.		09 Hrs
		Unit –V	
retrie acces BioP	eval from Database and subm ssing local databases, Transfor Perl and Sequence Analysis - H	BioPerl Modules, Applications of BioPerl – Sequence hission of sequence to online Database, Indexing and ming formats of database record, Sequence alignments Pair wise and Multiple sequence alignment, Restriction zyme sites, acid cleavage sites, searching for genes and	09 Hrs

other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the Architecture and Schema of online databases including structure of records						
	in these databases.						
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in Biology,						
	Chemical Engineering, and Medicine.						
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to process						
	simulation and process engineering in Biological system.						
CO4:	Use Bioinformatics tools and Next Generation Technologies to model and simulate						
	biological phenomenon.						

Refere	Reference Books						
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text processing and scripting, O'Reilly Media, Inc., 4 th edition, 2012, ISBN-13: 978-0596004927						
	processing and scripting, O'Reilly Media, Inc., 4 th edition, 2012, ISBN-13: 978-0596004927						
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach,						
4	new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624						
2	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and						
3	MySQL, Oxford University Press, 1st edition, 2009, ISBN						
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal						
4	Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

	Semester V									
	FUEL CELL TECHNOLOGY									
	(Group I	3: Global Elective)								
Cou	rse Code: 16G5B02	CIE Marks: 100								
Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100										
Hours: 45L SEE Duration: 3Hrs										
Cour	rse Learning Objectives: The students wil	l be able to								
1	Recall the concept of fuel cells									
2	2 Distinguish various types of fuel cells and their functionalities									
3	Know the applications of fuel cells in various domains									
4	Understand the characterization of fuel cells									

UNIT-I

0111-1	
Introduction: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their	
properties.	
UNIT-II	
Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each.	
UNIT-III	
Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation.	
UNIT-IV	
Fuel Cell Characterization: current – voltage curve, in-situ characterization, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy and ex-situ characterization techniques.	09Hrs
UNIT-V	
Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen production, storage, handling and safety issues.	09 Hrs

Course Outcomes: After completing the course, the students will be able to								
1	Understand the fundamentals and characteristics of fuel cells							
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems							
3	Analyze the performance of fuel cells using different characterization techniques							
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems							

Ref	Reference Books								
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287								
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579								
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439								
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152								

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

Semester V								
GEOINFORMATICS								
	(Group]	B: Global Elective)						
Course Code:16G5B03 CIE Marks: 100								
Hrs/	Hrs/Week: L:T:P:S: 4:0:0:0 SEE Marks: 100							
Cred	Credits: 48L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	To understand concept of using photogr	aphic data to determine relative positions of points						
2	To study the use of electromagnetic	energy for acquiring qualitative and quantitative land						
4	² information							
3	To analyze the data gathered from vario	ous sensors and interpret for various applications						
4	To understand the various applications of RS, GIS and GPS							

UNIT-I

01111-1					
Remote Sensing- Definition, types of remote sensing, components of remote sensing,	10 Hrs				
Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with					
earth surface features. spectral reflectance curve- physical basis for spectra reflectance					
curve, false color composite. Platforms and sensors. Sensor resolutions. Types of					
satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept					
of image interpretation and analysis - Principle of visual interpretation, recognition					
elements. Fundamentals of image rectification. Digital Image classification - supervised					
and unsupervised					
UNIT-II					
Photogrammetry: Introduction types of Photogrammetry, Advantages of	10 Hrs				
Photogrammetry, Introduction to digital Photogrammetry. Locating points from two					
phases determination of focal length.					
Aerial Photogrammetry: Advantages over ground survey methods - geometry of					
vertical phographs, scales of vertical photograph. Ground coordination- relief					
displacement, scale ground coordinates – flight planning					
UNIT-III					
Geographic Information System- Introduction, Functions and advantages, sources of					
data for GIS. Database – Types, advantages and disadvantages. Data Management –					
Transformation, Projection and Coordinate systems. Data input methods, Data Analysis					
overlay operations, network analysis, spatial analysis. Outputs and map generation					
Introduction to GPS- components and working principles					
UNIT-IV					
Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources	09 Hrs				
engineering and management (prioritization of river basins, water perspective zones and					
its mapping), Case studies on applications of GIS and RS in highway alignment,					
Optimization of routes, accident analysis, Environmental related studies. Case studies on					
applications of GIS and RS in Disaster Management (Case studies on post disaster					
management - Earthquake and tsunami and pre disaster management - Landslides and					
floods) Urban Planning & Management - mapping of zones, layouts and infrastructures.					

UNIT-V							
Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping.							
Case studies on infrastructure planning and management- Case studies on urban sprawl.							
Change detection studies – case studies on forests and urban area. Case studies on							
agriculture. Applications of geo-informatics in natural resources management: Geo							
Technical case Studies, site suitability analysis for various applications.							
Course Outcomes: After completing the course, the students will be able to							
1 Understand the principle of Remote Sensing (RS) and Geographical Information Systems (GIS)							

	data acquisition and its applications.
2	Apply RS and GIS technologies in various fields of engineering and social needs.
3	Analyze and evaluate the information obtained by applying RS and GIS technologies.
4	Create a feasible solution in the different fields of application of RS and GIS.

Reference Books

1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3rd Edition, Wiley India
	Pvt. Ltd. New Delhi, 2009.
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5th Edition, John
	Wiley Publishers, New Delhi, 2007.
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi,
	2009
C	

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

Semester V								
GRAPH THEORY								
(Group I	B : Global Elective)							
Course Code:16G5B04	CIE Marks: 100							
Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100								
Hours: 45L	SEE Duration: 3 Hrs							

Course Learning Objectives: The students will be able to								
1	Understand the basics of graph theory and their various properties.							
2	Model problems using graphs and to solve these problems algorithmically.							
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.							
4	Optimize the solutions to real problems like transport problems etc.,							

UNIT-I	
Introduction to graph theory	09 Hrs
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees	
and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	
in digraphs.	
UNIT-II	
Graph representations, Trees, Forests	09 Hrs
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	
properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes,	
Spanning trees and forests, Spanning trees of complete graphs, An application to	
electrical networks, Minimum cost spanning trees.	
UNIT-III	
Fundamental properties of graphs and digraphs	09 Hrs
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted	
graphs, Eulerian digraphs.	
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	
theorem, Dual of a planar graphs.	
UNIT-IV	
Matchings and Factors	09 Hrs
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite	
matching.	
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynomial	
of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs,	
Edge coloring of graphs	
UNIT-V	
Graph algorithms	09Hrs
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path	
algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms,	
Algorithm of Kruskal's and Prim's.	

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1.	CO1. Understand and explore the basics of graph theory.								
CO2.	Analyse the significance of graph theory in different engineering disciplines								
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.								
CO4.	Evaluate or synthesize any real world applications using graph theory.								

Reference Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010,PHI, ISBN:9780262033848

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

		Semester V							
	ARTIFICIA	L NEURAL NETWORKS & DEEP LEARNING							
		(Group B: Global Elective)							
Course Code: 16G5B05 CIE Marks: 100									
Cree	dits: L:T:P:S: 4:0:0:0	SEE Marks: 100							
Hou	rs: 46L	SEE Duration: 3Hrs							
Cou	rse Learning Objectives:	The students will be able to							
1	Define what is Neural N	etwork and model a Neuron and Express both Artificial Int	elligence						
1	and Neural Network								
2	Error correction learning, Memory-based learning, Hebbian	learning,							
4	Competitive learning and								
		Implement Simple perception, Perception learning algorithm, Modified Perception learning							
3	algorithm, and Adaptive linear combiner, Continuous perception, learning in continuous								
	perception.								
	•	f Single layer Perceptron and Develop MLP with 2 hidde	•						
4		ule of the output layer and Multilayer feed forward neural	network						
	with continuous perceptions,								
		UNIT-I							
Intr	oduction to Neural Netw	orks: Neural Network, Human Brain, Models of Neuron,	08 Hrs						
Neu	ral networks viewed as dire	ected graphs, Biological Neural Network, Artificial neuron.							

Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron, Artificial Neural Network architecture, ANN learning, analysis and applications, Historical								
notes.								
UNIT-II								
Lagrange Processes: Introduction Error correction logrange Mamory based logrange	10 Ung							

Learning Processes: Introduction, Error correction learning, Memory-based learning, Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem, learning with and without teacher, learning tasks, Memory and Adaptation.

UNIT-III

Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple
perception, Perception learning algorithm, Modified Perception learning algorithm,
Adaptive linear combiner, Continuous perception, Learning in continuous perception.10 HrsLimitation of Perception.10 Hrs

UNIT-IV

Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers, Simple layer
of a MLP, Delta learning rule of the output layer, Multilayer feed forward neural network
with continuous perceptions, Generalized delta learning rule, Back propagation algorithm10 HrsUNIT V

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks, Restricted Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and examples (Google, image/speech recognition) **08 Hrs**

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.									
CO2:	Perform Pattern Recognition, Linear classification.									
CO3:	Develop different single layer/multiple layer Perception learning algorithms									
CO4:	Design of another class of layered networks using deep learning principles.									

Refe	erence Books									
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson									
	Prentice Hall, ISBN-13: 978-0-13-147139-9									
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing									
	Company, ISBN: 9780534954604									
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-									
	262-11255-8									
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,									
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7									

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

		Semester V									
	HYBRID ELECTRIC VEHICLES										
	(Group B: Global Elective)										
Course Code : 16G5B06CIE Marks : 100											
Credits: L:T:P:S 4:0:0:0SEE Marks: 100											
Hou		SEE Duration : 3Hrs	5								
Cou	rse Learning Objectives: The studen										
1	Explain the basics of electric and hy fundamentals.	brid electric vehicles, their architecture, tec	hnologies and								
2	Explain plug – in hybrid electric ve power electronics devices used in hyl	chicle architecture, design and component sorid electric vehicles.	sizing and the								
3	Analyze various electric drives sui storage technologies used for hybrid	table for hybrid electric vehicles and Dif electric vehicles and their control.	ferent energy								
4	Demonstrate different configurations of electric vehicles and its components, hybrid vehicle										
		Unit-I									
Intro	oduction: Sustainable Transportation,	A Brief History of HEVs, Why EVs Eme	rged 07 Hrs								
and	Failed, Architectures of HEVs, Interd	isciplinary Nature of HEVs, State of the A	rt of								
HEV	s, Challenges and Key Technology of	HEVs.									
Hyb	ridization of the Automobile: Vehic	le Basics, Basics of the EV, Basics of the H	IEV,								
Basi	cs of Plug-In Hybrid Electric Vehicle (PHEV), Basics of Fuel Cell Vehicles (FCVs).								
		Unit-II									
Com Plug	ponent Sizing, Series Hybrid Vehicle, -in Hybrid Electric Vehicles: Ir	le Model, Vehicle Performance, EV Power Parallel Hybrid Vehicle, Wheel Slip Dynam troduction to PHEVs, PHEV Architect	ics. ures,								
Man	Equivalent Electric Range of Blended PHEVs, Fuel Economy of PHEVs, Power Management of PHEVs, Component Sizing of EREVs, Component Sizing of Blended										
PHE	Vs, Vehicle-to-Grid Technology.										
		Unit-III									
conv		ectronics including switching, AC-DC, DC ts used for control and distribution of ele er Electronics.									
Batt	eries, Ultracapacitors, Fuel Cells, ar	d Controls: Introduction, Different batterie	s for								

Batteries, Ultracapacitors, Fuel Cells, and Controls: Introduction, Different batteries for EV, Battery Characterization, Comparison of Different Energy Storage Technologies for HEVs, Battery Charging Control, Charge Management of Storage Devices, Flywheel Energy Storage System, Hydraulic Energy Storage System, Fuel Cells and Hybrid Fuel Cell Energy Storage System and Battery Management System.

Unit IV	
U) I I I I - I V	

 Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor
 10Hrs

 Drives, Permanent Magnet Motor Drives, Switched Reluctance Motors, Doubly Salient
 10Hrs

 Permanent Magnet Machines, Design and Sizing of Traction Motors, Thermal Analysis and
 10Hrs

 Modelling of Traction Motors. (only functional treatment to be given)
 Unit-V

Integration of Subsystems: Matching the electric machine and the internal combustion of Subsystems: Matching the electric machine and the internal combustion of 08Hrs engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Cou	rse Outcomes: After completing the course, the students will be able to								
1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and								
	fundamentals.								
2	Evaluate the performance of electrical machines and power electronics converters in HEVs.								
3	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies								
	and control and select appropriate technology								
4	Design and evaluate the sizing of subsystem components and Energy Management strategies in								
	HEVs.								
Ref	erence Books:								
1.	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris,								
	Masrur A.and Gao D.W. Wiley Publisher, 1st Edition, 2011, ISBN:0-824-77653-5								
2.	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E.								
	Gay Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.								
3.	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press,								
	2001, ISBN 0 19 850416 0.								
4.	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao,								
	Giorgio Rizzoni, ISBN: 978-1-4471-6779-2.								

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3 : Medium-2 : Low-1

	Semester V						
OP	TIMIZATION TECHNIQUES						
	(Group B: Global Elective)						
Course Code : 16G5B07 CIE Marks : 10							
Credits : L: T: P: S:4:0:0:0	SEE Marks	: 100					
Hours : 44L	SEE Durati	on : 03 Hrs					
Course Learning Objectives: The	e students will be able to						
1. To understand the concepts beh							
^	works for solving problems using optimization technology	niques.					
0 11	ation models for real life situations.						
4. To analyze solutions obtained u							
5. To compare models developed	using various techniques for optimization.						
	UNIT – I						
Introduction: OR Methodology, I	Definition of OR, Application of OR to Engineeri	ng 09 Hrs					
and Managerial problems, Features	of OR models, Limitations of OR.						
Linear Programming: Definition.	Mathematical Formulation, Standard Form, Soluti	on					
8 8	ible, Basic Feasible, Degenerate, Solution throu						
	n Product Mix, Blending, Marketing, Finand	0					
Agriculture and Personnel.							
-	plex Algorithm – Use of Artificial Variables.						
	UNIT – II	•					
Duality and Sensitivity Analysis	Graphical sensitivity analysis, Algebraic sensitive	ty 09 Hrs					
analysis - changes in RHS, Change	es in objectives, Primal-Dual relationships, Econom	nic					
interpretation of duality, Post or	otimal analysis - changes affecting feasibility a	nd					
optimality, Revised simplex method	d						
	UNIT – III						
Transportation Problem: Form	ulation of Transportation Model, Basic Feasil	ole 08 Hrs					
0	ner, Least Cost, Vogel's Approximation Metho						
	Transportation Problem, Degeneracy in Transportati	on					
Problems, Variants in Transportation							
-	on of the Assignment problem, solution method						
	fethod, Variants in assignment problem, Travelli	ng					
Salesman Problem (TSP).							
Outputing The second of the	UNIT – IV						
	em and their characteristics, The $M/M/I$ Queui	-					
	analyzing of $M/M/1$ queuing models. Introduction	10					
M/M/C and M/Ek/1 queuing model		0.6					
	o person Zero Sum game, Pure strategies, Gam	es					
without saddle point - Anthinetic I	nethod, Graphical Method, The rules of dominance						
	UNIT – V	09 Hrs					
Markov chains: Definition, Abso	lute and n-step transition probabilities, Classificati	on					
of the states, Steady state probabi	lities and mean return times of ergodic chains, Fi	rst					
passage times, Absorbing states.	Applications in weather prediction and inventor	ry					
management.							
Over view of OR software's used in	n practice.						

Cours	Course Outcomes: After going through this course the student will be able to								
CO1	Understand the various optimization models and their areas of application.								
CO2	Explain the process of formulating and solving problems using optimization methods.								
CO3	Develop models for real life problems using optimization techniques.								
CO4	Analyze solutions obtained through optimization techniques.								
CO5	Create designs for engineering systems using optimization approaches.								

Reference Books:

- 1. Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
- Principles of Operations Research Theory and Practice, Philips, Ravindran and Solberg, 2nd Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
- 3. Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw Hill, ISBN 13: 978-0-07-133346-7
- 4. Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

Low-1	Medium-2	High-3
-------	----------	--------

	Semester V					
	SENSORS & APPLICATIONS					
	(Group B: Global Elective)					
Cou	rse Code:16G5B08	CIE Marks: 100				
Cred	dits/Week: L:T:P:S:4:0:0:0	SEE Marks: 100				
Hou	Hours:44L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Impart the principles and working modes	of various types of Resistive, Inductive, Capacitive,				
	Piezoelectric and Special transducers.					
2	2 Give an idea about the applications of various transducers and selection criteria of a transducer					
	for a particular application.					
3	3 Give an insight into the static and dynamic characteristics of different orders of instruments.					
4	Describe different data conversion techniq	ues and their applications.				

UNIT-I	
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs
Advantages of Electrical transducers.	
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, Applications and Problems.	
UNIT-II	
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs
compensation, advantages and disadvantages of thermocouple.	
LVDT: Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	
between plates and change of dielectric constants, Applications of Capacitive Transducers	
and problems.	
UNIT-III	
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs
electric materials, equivalent circuit, loading effect, and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic	
of the design of sensor, applications.	
UNIT-IV	
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs
potential sensor.	
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled	
device.	
Tactile sensors: Construction and operation, types.	
UNIT-V	
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary	07 Hrs
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and	
Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain Amplifier.	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Remember and understand the basic principles of transducers and smart sensors.
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation systems.
CO3:	Analyze and evaluate the performance of different sensors for various applications.

CO4:	Design and create a system	using appropriate sense	ors for a particular application

Referen	nce Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

		Semester V		
	INTRODUCTION TO		FORMATION SYSTEMS	
Ca	ungo Codo: 16C5D00	(Group B: Global Elec		
	urse Code: 16G5B09 edits: L:T:P:S: 4:0:0:0		CIE Marks: 100 SEE Marks: 100	
Hours :45L SEE Duration: 3Hrs				
	urse Learning Objectives: The s	students will be able to	SEE Duration: SHIS	
1	To understand the basic principl		nation technology	
2	Describe the role of information			
3	To contrast and compare how processes.			t business
4	To give an overall perspective business administration.	*	application of internet techn	ologies ir
		UNIT I		
bus info Bus Sys	Formation Systems in Global B siness today, Perspectives on i formation systems, Hands-on MIS siness process and information stems for collaboration and team Case study on E business.	information systems, C S projects. Global E-Bu systems, Types of bu	Contemporary approaches to usiness and Collaboration : usiness information systems,	09 Hrs
AU	Lase study on E business.	UNIT II		
info Soc Info	tems, How information system ormation systems to gain compo- cial issues in Information System ormation Systems, Ethics in a ormation society. A Case study or	etitive advantage, mana ms: Understanding ethics in information society, in business planning.	gement issues, Ethical and al and Social issues related to	
		UNIT III		
con tren abu con	Infrastructure and Emerging nponents, Contemporary hardwar nds, Management issues. Security use, Business value of security a ntrol, Technology and tools for percrime.	re platform trends, Con ng Information System nd control, Establishing	network the state of the state	09 Hrs
ľ		UNIT IV		
Sup sys con	hieving Operational Excellence oply Chain Management (SCM) tems, Enterprise application. E nmerce and the internet, E-com tform and mobile E-commerce, H P.	ce and Customer Int systems, Customer relat C-commerce: Digital M merce-business and tec	tionship management (CRM) Markets Digital Goods: E- hnology, The mobile digital	09 Hrs
		UNIT V		
kno En l inte	maging Knowledge: The knowledge management system, hancing Decision Making : De elligence in the enterprise. Busine stems: Systems as planned organi	Knowledge work syste ecision making and inf	formation systems, Business encies. Building Information	09 Hrs

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand and apply the fundamental concepts of information systems.
CO2:	Develop the knowledge about management of information systems.
CO3:	Interpret and recommend the use information technology to solve business problems.
CO4:	Apply a framework and process for aligning organization's IT objectives with business
	strategy.
Referen	ice Books
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane
	P. Laudon, 14th Global Edition, 2016, Pearson Education, ISBN:9781292094007
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10th Edition,
	2011, Global McGraw Hill, ISBN: 978-0072823110
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson
	Education, ISBN:978-0130617736
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:
	9780070616349

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

		Semester V			
		Semester V			
		up B: Global Elective)			
Course Code: 16) CIE Marks: 100		
Credits: L:T:P:S			SEE Marks: 100		
Hours: 44L	: 4:0:0:0		SEE Marks: 100 SEE Duration: 3 Hrs		
	Objectives The stadents		SEE Duration: 5 Hrs		
	<u>Solutions</u> Constructions		advatuial automation		
	es of actuators, sensors and				
	eration and controls of Hydr fundamentals of CNC, PLC		stems		
	ching elements and sensors		on outomation system		
	ő		tion technologies for automatio	n	
			tion technologies for automatio	11	
	ors to automatically detect n				
	anual part programs for CNG				
8 Develop su	itable industrial automation	systems using all the ac	bove concepts		
		τινιτά τ			
Automatian in D	noduction Crustore	UNIT-I		ΛΟ ΤΤ-	
	roduction Systems:	n number los and atort	and Lougla of Automatica	08 Hrs	
	pport systems, Automation pts and Mathematical mode		egies, Levels of Automation,		
Automated Prod		is, numericals			
		storage Analysis with	storage huffer Numericals		
rundamentais, Ap	plications, Analysis with he		storage buffer, Numericals		
Cit ob i or the operation	and Industrial arritabing	UNIT-II		00 TT-	
	and Industrial switching			08 Hr	
•	•		switching algebra, Algebraic		
·	•	e 1 0	circuit design, problems.		
		c elements, Fluidic ele	ements, Timers, Comparisons		
	g elements, Numericals				
	tion Sensors and Actuators		matheda of detection Hall		
	-		- methods of detection, Hall		
			ty sensors, Pneumatic back		
		-	re switches and temperature		
	orking principles and appli	cations, Brushless DC	motors, Stepper motors and		
Servo motors					
	1 • •	UNIT-III		10.11	
Hydraulic Contr			1 Devilie Acting Calinder	10 Hrs	
· ·		6	d Double Acting Cylinder,		
		ading circuit, Double Pl	ump Hydraulic System, speed		
· · · · ·	ccumulator circuits				
Pneumatic Contr		non ICO 5500 I. J'	at control of double of		
			ect control of double acting		
cylinders, memory control circuit, cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits.					
circuit, and cyclic	operation of a cylinder, pre		id time delay valve circuits.		
Terdere J. 4° 4. 4		UNIT-IV		00.11	
Introduction to (-1		08 Hrs	
			ate systems, motion control		
v	lation, programming concep	ns			
Industrial Robot					
			rm tooling, robot precision of		
movement, progra	amming, justifying the use o		ricals		
	• • •	UNIT-V	Г	40	
0	ogic control systems	DL G		10 Hrs	
Difference betwe	en relay and PLC circuits,	PLC construction, prin	ciples of operation, latching,		

ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic.

Programming exercises on PLC with Allen Bradley controller

Programming exercises on motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Cou	rse Outcomes: After completing the course, the students will be able to
1	Illustrate applications of sensors actuators, switching elements and inspection technologies in industrial
	automation
2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its application
	areas
3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres
	interfaced with Robots
4	Develop suitable industrial automated system integrating all of the above advanced automation concepts

Ref	erence Books
1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls, Joji P, 1st Edition, Wiley India, ISBN – 978–81–265–1542–4
3.	Fluid Power with Applications, Anthony Esposito, 7th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

	Semester V									
	TELECOMMUNICATION SYSTEMS									
	(Group B: Global Elective)									
Cou	Course Code: 16G5B11 CIE Marks: 100									
Crea	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100								
Hou	Hours: 46L SEE Duration: 03Hrs									
Cou	rse Learning Objectives: The stu	idents will be able to								
1	Represent schematic of commun	ication system and identify its components.								
2	Classify satellite orbits and sub-s	systems for communication.								
3	Analyze different telecommunication	ation services, systems and principles.								
4										
5	Describe the features of wireless	technologies and standards.								

UNIT-I	
Introduction to Electronic Communication: The Significance of Human	09 Hrs
Communication, Communication Systems, Types of Electronic Communication,	
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of	
Communication Applications.	
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.	
UNIT-II	
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	10 Hrs
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.	
Wideband Modulation: Spread spectrum, FHSS, DSSS.	
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time	
division multiplexing	
Multiple Access: FDMA, TDMA, CDMA, Duplexing.	
UNIT-III	
Satellite Communication:	09 Hrs
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,	
Satellite Applications, Global Positioning System.	
UNIT-IV	
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-	09 Hrs
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division	
Multiplexing, Passive Optical Networks.	
UNIT-V	
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.	09 Hrs
Advanced Mobile Phone System (AMPS)	
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell	
Phones.	
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless	
Networks, WiMAX and Wireless Metropolitan-Area Networks.	
Course Outcomes: After completing the course, the students will be able to	
and be that it is the completing the course, the students will be able to	

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the basics of communication systems.									
CO2	Analyze the importance of modulation and multiple access schemes for communication									
	systems.									
CO3	Compare different telecommunication generations, wired and wireless communication.									
CO4	Justify the use of different components and sub-system in advanced communication systems.									

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1		1	1				1				
CO2	2	1		1	1				1				
CO3	2	1		1	1				2				
CO4	1	1		1	1	1			1				

	Semester V										
	COMPUTATIONAL ADVANCED NUMERICAL METHODS										
	(Group B: Global Elective)										
Cou	Course Code:16G5B12 CIE Marks: 100										
Cred	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100									
Hours: 44L SEE Duration: 3Hrs											
Cou	Course Learning Objectives:										
1	Adequate exposure to learn alternative me	ethods and analyze mathematical problems to									
	determine the suitable numerical techniques.										
2	Use the concepts of interpolation, eigen value	e problem techniques for mathematical problems									
	arising in various fields.										
3	Solve initial value and boundary value proble	ems which have great significance in engineering									
	practice using ordinary differential equations.										
4	Demonstrate elementary programming langua	age, implementation of algorithms and computer									
	programs to solve mathematical problems.										

Unit-I						
Algebraic and Transcendental equations:	08 Hrs					
Roots of equations in engineering practice, Polynomials and roots of equations, Fixed point						
iterative method, Aitken's process, Muller's method, Chebychev method.						
Unit – II						
Interpolation:	08 Hrs					
Introduction to finite differences, Finite differences of a polynomial, Divided differences						
and Newton's divided difference interpolation formula, Hermite interpolation, Spline						
interpolation-linear, quadratic and cubic spline interpolation.						
Unit -III						
Ordinary Differential Equations:	09 Hrs					
Solution of second order initial value problems-Runge-Kutta method, Milne's method,						
Boundary value problems (BVP's)-Shooting method, Finite difference method for linear						
and nonlinear problems, Rayleigh-Ritz method.						
Unit –IV						
Eigen value problems:	09 Hrs					
Eigen values and Eigen vectors, Power method, Inverse Power method, Bounds on Eigen						
values, Greschgorin circle theorem, Jacobi method for symmetric matrices, Givens method.						
Unit –V						
Computational Techniques:	10 Hrs					
Algorithms and Matlab programs for Fixed point iterative method, Aitken's-process,						
Muller's method, Chebychev method, Newton's divided difference method, Hermite						
interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta						
method, Milne's method, Shooting method, Rayleigh-Ritz method, Jacobi method and						
Givens method.						

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen
	value problems, Differential equations and corresponding computational techniques.
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and
	transcendental equations, Ordinary differential equations and eigen value problems.
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems
	numerically using computational techniques.
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value
	problems arising in engineering practice.

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-
	2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9th Edition,
4	2012, ISBN-13: 978-81-315-1654-6.
2	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
3	Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
4	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	1	-	-	-	-	-	-	-	2	
CO2	3	2	1	-	-	-	-	-	-	-	-	2	
CO3	2	3	2	2	-	-	-	-	-	-	-	1	
CO4	3	3	1	2	1	-	-	-	-	-	-	3	

High-3: Medium-2: Low-1

Semester V						
BASICS OF AEROSPACE ENGINEERING						
(Group B: Global Elective)						
Course Code: 16GE5B13	CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hours: 44L	SEE Duration: 3Hours					

Course Learning Objectives:

To enable the students to:

ſ

- 1 Understand the history and basic principles of aviation
- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I

Umt-1	
Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions, Introduction to Unconventional and Autonomous Air vehicles.	08 Hrs
Unit – II	
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.	08 Hrs
Unit -III	
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines, Introduction to ramjets and scramjets, Comparative merits and demerits of different types Engines.	07 Hrs

Unit -IV			
Introduction to Space Flight : History of space flight, Evolution of Indian Space Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories. Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets, Types of rockets.	08 Hrs		
Unit -V			
Aerospace Structures and Materials : Introduction, General types of construction,			
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage			
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum			
alloy, titanium, stainless steel and composite materials, Low temperature and high			
temperature materials.			

Cou	Course Outcomes:					
At t	At the end of this course the student will be able to :					
1	1 Appreciate and apply the basic principles of aviation					
2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and					
2	² aircraft materials during the development of an aircraft					
3	3 Comprehend the complexities involved during development of flight vehicles.					
4	Evaluate and criticize the design strategy involved in the development of airplanes					

1

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York, ISBN:1118174208, 9781118174203.
3	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

High-3: Medium-2: Low-1

	SEMESTER VI FOUNDATIONS OF MANAGEMENT AND ECONOMICS							
	(Theory)							
	(Common to AE, CSE, ECE, EEE, ISE, TE)							
Cour	urse Code: 16HEM61 CIE Marks: 50							
Cred	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50							
Hou	Hours: 23L SEE Duration: 02Hrs							
Cour	Course Learning Objectives: The students will be able to							
1	Understand the evolution of management thought.							
2	2 Acquire knowledge of the functions of Management.							
3	3 Gain basic knowledge of essentials of Micro economics and Macroeconomics.							
4	Understand the concepts of macroeconomics relevant to different organizational contexts.							

	UNIT-I						
	action to Management: Management Functions, Roles & Skills, Management	04 Hrs					
	- Classical Approach: Scientific Management & Administrative Theory,						
Quantit	Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies,						
Contem	Contemporary Approach: Systems & Contingency Theory.						
	UNIT-II						
Founda	tions of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	02 Hrs					
Strategic Management Process, Corporate & Competitive Strategies.							
Organi	zational Structure & Design: Overview of Designing Organizational Structure:	03 Hrs					
Work	Specialization, Departmentalization, Chain of Command, Span of Control,						
Central	zation & Decentralization, Formalization, Mechanistic & Organic Structures.						
	UNIT-III						
Motiva	ting Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	03 Hrs					
	McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary						
	s of Motivation: Adam's Equity & Vroom's Expectancy Theory.						
	ers as Leaders: Behavioural Theories: Ohio State & University of Michigan	03 Hrs					
0	Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey						
	chard's Situational Leadership, Contemporary Views of Leadership: Transactional &						
	rmational Leadership.						
	UNIT-IV						
Introduction to Economics: Concept of Economy and its working, basic problems of an 04 Hrs							
	Economy, Market mechanism to solve economic problems, Government and the economy,						
	als of Micro Economics: Concept and scope, tools of Microeconomics, themes of						
	conomics, Decisions: some central themes, Markets: Some central themes, Uses of						
	conomics.						
	UNIT-V						
Essenti	als of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic	04 Hrs					
	(GDP), components of GDP, the Labour Market, Money and banks, Interest rate,	•••					
	conomic models- an overview, Growth theory, The classical model, Keynesian cross						
	IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-						
	classical synthesis, Exchange rate determination and the Mundell-Fleming model						
	Course Outcomes: After completing the course, the students will be able to						
CO1:							
0010	organization.						
CO2:	Demonstrate the importance of key performance areas in strategic management a	nd design					
	appropriate organizational structures and possess an ability to conceive various orga						
	dynamics.						
CO3:	Select & Implement the right leadership practices in organizations that would enable	e systems					
000	orientation.	e systems					
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconom	ics					
0.04.	enderstand the basic concepts and principles of Where continues and Macroceonomi	100					

Γ

1

Refe	erence Books
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5 th Edition, 2009, TMH Pub. Co.
	Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, (www.bookboon.com), Peter Jochumzen, 1 st Edition. 2010, e-
	book. ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

Low-1 Medium-2 High-3

Semester VI					
COMPILER DESIGN					
(Theory& Practice)					
Course Code: 16CS62	CIE Marks: 100+50				
Credits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50				
Hours: 33 L	SEE Duration: 3+3Hrs				

Cou	Course Learning Objectives: The students will be able to					
1	Learn basic skill for constructing the compiler which gives the good insight into the					
1	algorithms, which have wider applications.					
2	Gain Knowledge of different forms of language translators and machine architecture that					
2	shapes compilers.					
3	Construct lexical analyser and the parsing methods that are typically used in compilers					
4	Know about the principle ideas in syntax directed definitions and translations to generate					
4	intermediate code for the typical programming languages.					
5	Understand about the run time environment, code generation and code optimization.					

UNIT-I	
Introduction to Compiling and Lexical Analysis	06 Hrs
Introduction, Language Processors, The structure of Compiler, Evolution of	
programming Languages, Application of compiler technology, Programming Language	
Basics, Lexical Analysis- The Role of Lexical Analyzer, Input Buffering,	
Specifications of Tokens, Recognition of Tokens	
UNIT-II	
Syntax Analysis	08 Hrs
Introduction, Context-free Grammars, Writing a Grammar, Top-down Parsing, Bottom-	
up Parsing, and Introduction to LR Parsing: Simple LR, Most powerful LR parsers	
(Excluding efficient construction and compaction of parsing tables), Using ambiguous	
grammars, Parser Generators.	
UNIT-III	
Syntax-Directed Translation	06 Hrs
Syntax-Directed Definitions, Evaluation orders for SDD, Application of Syntax	
Directed Translation, Syntax directed translation schemes.	
Run-time Environments: Storage Organization, Stack Allocation of Space, Access to	
Nonlocal data on the Stack, Heap Management, Introduction to Garbage Collection	
UNIT-IV	
Intermediate Code Generation	06 Hrs
Variants of Syntax trees, Three address code, Types and Declaration, Translation of	
Expression, Control flow, Back patching, Switch statements, Procedure calls, Type	
Checking.	
UNIT-V	
Code Generation & Machine Independent Optimization	07 Hrs
Issues in the design of Code Generator, The Target Language, Address in the target	
Code, Basic Blocks and Flow graphs, Optimization of Basic blocks, A Simple Code	
Generator, Peephole Optimization	

Laboratory Component

Student should be able to design compiler by incorporating following features:

- 1 Familiarity with compiled codes (assembly language) of RISC and CISC machines.
- 2 Writing a scanner, writing predictive parser for a small language.(A Source code will be given to the students to write the scanner and predictive parser).
- 3 Small experiment with scanner (lex/flex) and parser (yacc/byson) generator (such as translation of regular expression to NFA or the construction or parse tree),
- 4 Writing scanner-parse specification for a small language.(A source code will be given to students to write the scanner-parser specification.)
- 5 Translation of the language to an intermediate form (e.g. three-address code),
- 6 Generation of target code (in assembly language).
- 7 Code improvement.

Course Outcomes: After completing the course, the students will be able to

CO1.	Understand and explore the logic and fundamental concepts of compiler design using
	different data structures and techniques.

CO2. Apply various rules for designing and generating code for compiler design.

- CO3. Analyse different optimization methods on intermediate code to generate efficient compiler.
- CO4. Implement and demonstrate in-depth knowledge of various technologies related to principles, techniques and tools for designing compiler.

Reference Books

-	
1.	Compilers- Principles, Techniques and Tools, Alfred V Aho, Monica S.Lam, Ravi Sethi,
	Jeffrey D Ullman, 2 nd Edition, 2014, Pearson Education; ISBN – 10-1-292-02434-8, ISBN
	- 13- 978-1-292-02434-9.
2	Compiler Construction Principles & Practice Kenneth C Louden 1 st Edition 2000

- **2.** Compiler Construction Principles & Practice, Kenneth C Louden, 1st Edition 2009, Cengage Learning, ISBN 0534939724.
- **3.** Modern Compiler Implementation in C, Andrew W Apple, 1st Edition; 2004, Cambridge University, ISBN 10: 0521607655 ISBN 13: 9780521607650.
- **4.** Crafting a Compiler with C, Charles N. Fischer, Richard J. leBlanc, Jr., 1st Edition, United States (28 October 2009), Pearson Education, ISBN-13:978-0136067054 ISBN-10: 0136067050.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	2
CO2	-	2	-	1	-	-	1	-	1	2	-	2
CO3	1	1	2	-	-	-	1	-	2	3	1	1
CO4	2	2	2	2	2	-	-	2	3	3	2	1

High-3 : Medium-2 : Low-1

Semester VI	
COMPUTER NETWOR	KS
(Theory& Practice)	
Course Code: 16CS63	CIE Marks: 100+50
Credits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50
Hours: 33L	SEE Duration: 3+3Hrs

Course Learning Objectives: The students will be able to					
1	Understand the design aspects in computer networks.				
2	Gain the knowledge of routing, internetworking and congestion control.				
3	Explore networks layer, transport layer and application layer protocols.				
4	Comprehend the importance of network security.				

UNIT-I

Network layer - 1 Network layer design issues, Store and Forward packet Switching, Services Provided to the Transport Layer, Implementation of Connectionless Service, Implementation of Connection-Oriented Service, Comparison of Virtual Circuit and Datagram Subnets; Routing algorithms: Shortest Path Routing, Flooding, Distance Vector Routing, Link state Routing, Hierarchical Routing, Broadcast Routing, Multicast Routing; Congestion Control Algorithms, General Principles of Congestion Control, Congestion Prevention Policies, Congestion Control in Virtual-Circuit Subnets, Congestion Control in Datagram Subnets, Load Shedding, Jitter Control; Quality Of Service: Requirements, Techniques for Achieving Good Quality of Service; Integrated Services, Differentiated Services, *RSVP*

UNIT-II				
Network layer - 2 : Internetworking: How networks differ, How networks can be				
connected, Connectionless Internetworking, Tunnelling, Internetwork Routing,				
Fragmentation, The Network Layer in the Internet : The IP Protocol, IP Addresses,				
Internet Control Protocols, IPv6.				
UNIT-III				
Transport Layer : The Transport Service: Services provided to the Upper Layers,	07 Hrs			
Transport Service Primitives; Elements of Transport Protocols: Addressing,				
	1			

Connection Establishment, Connection Release, Flow Control and Buffering. The Internet Transport Protocols(UDP): Introduction to UDP; The Internet Transport Protocols(TCP): Introduction to TCP, The TCP Service Model, The TCP Protocol, The TCP Segment Header, TCP Connection Establishment, TCP Connection Release, TCP Transmission Policy, TCP Congestion Control. UNIT-IV

Application Layer – 1:Principles of Network Applications, The Web and HTTP, File06 HrsTransfer: FTP, Electronic Mail in Internet, DNS- The Internet's Directory Service,
Socket Programming: Creating Network Applications, Network Management: SNMP.06 HrsUNIT-V

UNIT-V Security in Network: What Is Network Security? Principles of Cryptography, Message Integrity and Digital Signatures, End-Point Authentication, Securing E-Mail, 06 Hrs Network-Layer Security. Introduction to Working of SDN: Fundamental Characteristics of SDN, SDN Operation, SDN Applications. Of SDN: Fundamental Characteristics of SDN, SDN

07 Hrs

Laboratory Component

PART - A: EXPERIMENTS

- 1. Implement a client and server communication using sockets programming.
- 2. Write a program to implement routing protocol for a simple topology of routers.
- 3. Write a program to implement error detection algorithm.
- 4. Write a program to illustrate error correction concept.
- 5. Write a program to implement congestion control algorithm.
- 6. Implement a simple multicast routing mechanism.
- 7. Write a program to encrypt and decrypt the data.
- 8. Write a program to demonstrate key exchange between sender and receiver.
- Note : The above experiments shall be conducted using C / C++ on Linux Operating System.

PART – B: SIMULATION Qualnet Experiments

- 1. Setup a simple PPP network with 3 nodes n1, n2 and n3. Provide a) half duplex b) full duplex communication between three nodes. Apply the FTP, Telnet applications between nodes. Vary the bandwidth, queue size and observe the packet drop probability.
- 2. Setup an IEEE 802.3 network with a) hub b) switch c) Hierarchy of switch. Apply the FTP, Telnet applications between nodes. Vary the number of nodes. Vary the bandwidth, queue size and observe the packet drop probability.
- 3. Setup a wireless sensor networks with atleast two device co-coordinators and nodes. Provide Constant Bit Rate (CBR), Variable Bit Rate (VBR) application between several nodes. Increase the number of co-coordinators and nodes in the same area and observe the performance at physical and MAC layers.
- 4. Setup an IEEE 802.11 network with atleast two access points. Apply the CBR, VBR applications between devices belonging to same access points and different access points. Provide roaming of any device. Vary the number of access points and devices. Find out the delay in MAC layer, packet drop probability.

Course Outcomes: After completing the course, the students will be able toCO1.Understand and explore the functionalities and services provided by layer 3 and above.CO2.Analyse different protocols used to implement internetworking.CO3.Design of efficient networking protocols.CO4.Implement routing, congestion control and applications layer protocols.

Reference Books

Ittl	creater books
1.	Computer Networks; Pearson Education, Andrew S Tanenbaum, 5th Edition, 2013, ISBN-
	13: 978-0-13-212695-3.
2.	Computer Networking, A Top-Down Approach, James Kurose and Keith Ross, 6th
	Edition, 2013, ISBN-13: 978-0-13-285620-1.
3.	Software Defined Networks A Comprehensive Approach, Paul Goransson, Chuck Black,
	Elsevier, 2014.
4.	Computer Networks - A Systems Approach, Larry L Peterson and Bruce S Davie,
	Elsevier; 5 th Edition; 2011, ISBN – 978-0123850591.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	1	1	1	-	-	-	-	-	-	1
CO2	-	2	2	2	2	-	-	-	1	1	-	2
CO3	2	2	2	2	2	1	-	1	1	1	-	2
CO4	2	2	2	2	2	1	1	1	1	1	-	2

High-3 : Medium-2 : Low-1

Semes	ster VI					
COMPUTER ARCHITECTURE						
(Theory)						
Course Code: 16CS64	CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hours: 33L	SEE Duration: 3Hrs					

Course Learning Objectives: The students will be able to					
1	Understand the design aspects in computer architecture.				
2	Explore the recent trends in computer architecture.				
3	Appreciate the importance of pipelining and Instruction level parallelism.				
4	Know the memory types, hierarchy, design and its performance.				
5	Understand shared memory architectures.				

UNIT-I

UNIT-I						
Fundamentals of computer design:Introduction, Trends in Technology; Trends in	07 Hrs					
power in Integrated Circuits; Trends in cost; Dependability, Measuring, reporting						
and summarizing Performance attributes; Quantitative Principles of computer						
design						
Pipelining: Introduction, pipeline hazards,pipeline implementation and its challenges.						
UNIT-II						
Review of memory hierarchy and Design: Introduction, Cache performance, Ten advanced Optimizations of cache performance,memory technology and optimizations, Protection: virtual memory and virtual machines. Memory hierarchies in the ARM Cortex-A8 and intel Core i7.	07 Hrs					
UNIT-III						
Instruction level parallelism: Concepts and challenges, basic compiler techniques for exposing ILP, reducing branch costs with prediction, overcoming data hazards with dynamic scheduling, hardware based speculation.						
UNIT-IV						
Exploiting Instruction level parallelism: Multiple issues and static scheduling.						
Exploring ILP using dynamic scheduling, multiple issue and speculation, Advanced						
techniques for instruction delivery and speculation-Increasing instruction fetch						
bandwidth; Implementation issues and extensions of speculation, studies of the						
imitations of ILP, Parallelism in ARM Cortex-A8 and intel Core i7.						
UNIT-V						
Thread Level Parallelism:Introduction, Centralized Shared-Memory architecture,	07 Hrs					
Performance of symmetric shared memory multiprocessors.						
Programming with OpenMP:Introduction Parallel programming, OpenMP						
directives, Parallel Control Structures, Communication and Data Environments,						
Synchronization, Parallelizing a Simple Loops, usage of work sharing constructs,						
Controlling Data Sharing.						
Course Outcomes: After completing the course, the students will be able to						
F						

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1.	Inderstand and explore the principles of computer design and its performance.								
CO2.	Identify and relate the performance aspects in computer architecture.								
CO3.	Analyze the design aspects of MIPs architecture with respect to memory and								
	Parallelism.								
CO4.	Compare and summarize the design aspects of different architectures.								

Ref	erence Books
1.	Computer Architecture: A Quantitative Approach, John L Hennessy, David A Patterson, Elsevier, 5 th Edition; 2011, ISBN:9780123838728.
2.	Parallel Programming with OpenMP, Rohit Chandra, 2001. ISBN 1-55860-671-8
3.	Advanced Computer Architecture Parallelism, Scalability, Programmability, Kai Hwang, Naresh Jotwani, 2 nd Edition, 2010, McGraw-Hill, ISBN 10: 0070702101 / ISBN 13: 9780070702103.
4.	Advanced Computer Architectures: A Design Space Approach, DezsoSima, Terence Fountain, Peter Karsuk, 2005, Pearson Education, ISBN-10: 0201422913, ISBN-13: 978-0201422917.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	2
CO2	-	1	1	1	-	-	-	-	-	-	-	2
CO3	-	2	2	1	-	-	-	-	-	-	-	2
CO4	1	1	2	2	-	-	-	-	-	1	-	2

High-3 : Medium-2 : Low-1

Semester VI					
MOBILE COMPUTING					
(Group C : Professional Core Elective)					
Course Code:16CS6C1	CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100					
Hours: 36L	SEE Duration: 3Hrs				

Cou	Course Learning Objectives: The students will be able to						
1	Learn the basic concept of mobile computing.						
2	Understand and explore the GSM and similar Architecture of mobile computing.						
3	Explore intricacies of GPRS and Voice over IP.						
4	Provide recent trends and development in mobile computing.						

UNIT-I

Mobile Computing: An Overview:	07 Hrs		
Mobile computing, Mobile computing function, Mobile computing architecture, Mobile System Networks ,Data dissemination, Mobility Management.			
UNIT-II			
GSM and Similar architecture:	07 Hrs		
GSM-services and system architecture, GSM entities, Call routing in GSM, Calling,			
Handover, CDMA: Introduction, CDMA Vs GSM.			
UNIT-III			
General Packet Radio Service(GPRS):	07 Hrs		
GPRS and Packet data network, GPRS network architecture, GPRS network operation,			
Data			
services in GPRS ,Application for GPRs, Limitation of GPRS, Enhanced data rates for			
GSM			
Evolution(EDGE).			
UNIT-IV			
Voice over Internet Protocol and Convergence:	08Hrs		
Voice over IP,H.32 framework for voice over IP, Session initiation protocol(SIP),			
Comparison between H.323 and SIP ,Convergence technologies, Call routing, Voice			
over IP application, Mobile VoIP.			
UNIT-V			
Emerging Technologies:	07 Hrs		
Bluetooth, Radio Frequency Identification (RFID), Wireless			
broadband(WIMAX), mobile IP, Internet protocol version 6(IPV6), 3G, 4G, LTE.			

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1.	Understand and explore the basic and fundamental principle of Mobile Computing.								
CO2.	Identify the significance of Voice over IP.								
CO3.	Analyze the design aspects of mobile architecture with respect to different technologies.								
CO4.	Synthesis the different emerging technologies of mobile computing.								

Reference Books

Computer Science & Engineering

1.	Mobile Computing, Ashok K Talukder, Hasan Ahmad, Roopa R Yavagal, 2 nd Edition;
	2014, McGraw Hill Education(India) private Limited, ISBN-13:978-07-014457-6/ISBN-
	10:0-07-14457-5.
2.	Mobile computing, Raj Kamal, 1st Edition, 2008, Oxford University Press, ISBN-13:978-
	19-568677-7/ISBN-10:0-19-568677-2 2001.

3.	Internet of Things (IoT) Security: Current Status, Challenges and Prospective Measures,
	Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, Imran Zualkernan, The 10th International
	Conference for Internet Technology and Secured Transactions (ICITST-2015).
4.	The Evolution to 4G Cellular Systems: Architecture and Key Features of LTE-Advanced
	Networks, Ghassan A. Abed, Mahamod Ismail, Kasmiran Jumari, IRACST – International
	Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-
	3501 Vol. 2, No. 1, 2012.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	2	1	1	1	1	1	1	2
CO2	2	3	2	3	2	2	1	1	1	1	1	2
CO3	3	3	3	3	2	2	2	1	1	1	1	2
CO4	3	2	3	2	3	2	2	2	2	2	2	2

High-3: Medium-2: Low-1

Semester VI					
WEB PROGRAMMING					
(Group C : Professional Core Elective)					
Course Code:16CS6C2	CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100					
Hours: 34L	SEE Duration: 3Hrs				

Cou	Course Learning Objectives: The students will be able to						
1	Understand the basic concepts used in web programming.						
2	Learn the definitions and syntax of different web technologies.						
3	Utilize the concepts of JavaScripts, PHP, XML, AngularJS to design web pages.						
4	Design and develop GUIs which are quick, easy and well-presented using different techniques such as CSS, JavaScripts, XML and AngularJS.						

UNIT-I			
Introduction to Web Concepts Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules, block-level elements, text-level elements. XHTML – 1: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox. XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links. XHTML (continued): Lists, Tables, Forms, Frames. UNIT-II	06 Hrs		
CSS (Cascading Style Sheets): Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution. The Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements;</div>	07Hrs		
UNIT-III			
JavaScript (continued):Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts;JavaScript and HTML Documents:The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object; DOM tree traversal and modification.			
UNIT-IV Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements. Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling; Files; Cookies; Session Tracking.	06Hrs		

UNIT-V					
XML:	08Hrs				
Introduction; Syntax; Document structure; Document Type definitions; Namespaces;					
XML schemas; Displaying raw XML documents; Displaying XML documents with					
CSS; XSLT style sheets; XML processors; Web services.					
AngularJS:					
Introducing AngularJS:MVC, AngularJS Benefits, Philosophy; Basic AngularJS					
Directives and Controllers: AngularJS Modules, Creating our first controller,					
Working with and Displaying Arrays, Working with ng-repeat.					

Course Outcomes: After completing the course, the students will be able to
--

CO1. Understand and explore internet related concepts that are vital for web development.

CO2. Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.

CO3. Utilize the concepts of JavaScripts, PHP, XML and AngularJS to design the web pages.

CO4. Develop web based applications using PHP, XML and AngularJS.

Reference Books

1.	Programming the World Wide Web - Robert W. Sebesta, 7th Edition, 2013, Pearson
	Education, ISBN-13:978-0132665810.
2	AngularIS Un & Running- Shyam Seshadri Brad Green 1 st Edition 2014 O'Reilly

- **2.** AngularJS Up & Running- Shyam Seshadri, Brad Green, 1st Edition, 2014, O'Reilly, ISBN:978-1491901946.
- **3.** Web Programming Building Internet Applications Chris Bates, 3rd Edition, 2006, Wiley India, ISBN : 978-81-265-1290-4.
- **4.** Internet & World Wide Web How to H program M. Deitel, P.J. Deitel, A. B. Goldberg, 3rd Edition, 2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
- **5.** The Complete Reference to HTML and XHTML- Thomas A Powell, 4th Edition, 2003, Tata McGraw Hill, ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

Low-1	Medium-2	High-3
-------	----------	--------

Semester VI			
CLOUD COMPUTING			
(Group C : Pro	ofessional Core Elective)		
Course Code: 16CS6C3	CIE Marks: 100		
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100		
Hours: 35L	SEE Duration: 3Hrs		

Cou	Course Learning Objectives: The students will be able to				
1	Explore cloud computing models and infrastructure for larger networks.				
2	Identify policies, mechanisms and scheduling for resource management, virtualization, and optimization of networks.				
3	Compare multiple approaches to cloud system design and solve real world problems.				
4	Illustrate storage concept and self-organizing capability for different cloud systems.				

UNIT-I	
	07 Hrs
Model, Characteristics and Benefits, Historical Developments, Building Cloud	
Computing Environments, Computing Platforms and Technologies, Eras of	
Computing, Parallel vs. Distributed Computing, Elements of Parallel Computing.	
UNIT-II	
	07Hrs
Environments, Taxonomy of Virtualization Techniques, Virtualization and Cloud	
Computing, Pros and Cons of Virtualization, Technology Examples, Xen, VMware,	
Microsoft Hyper-V, Cloud Reference Model and Architecture, Infrastructure as a	
Service, Platform as a Service, Software as a Service, Types of Clouds, Economics	
of the Cloud, Open Challenges in Clouds.	
UNIT-III	
	07 Hrs
intensive computations, Challenges ahead, Historical perspective, Technologies for	
data-intensive computing – Storage systems, Programming platforms - MapReduce.	
Public Cloud Infrastructures: Amazon Web Services - Compute, Storage, and	
Communication Services; Google AppEngine – Architecture, Application Life-	
Cycle, Cost Model; and Microsoft Azure.	
UNIT-IV	
Cloud Applications - ECG Data Analysis on Cloud, Protein Structure Prediction,	07 Hrs
Satellite Image Processing; Business and Consumer Applications – CRM, Social	
Networks, Media Applications, and Multiplayer Online Gaming. Advanced Topics	
in Cloud Computing, Energy efficiency in clouds, Energy-efficient and green cloud	
computing architecture, Market-based management of clouds, Market-oriented cloud	
computing, A reference model for MOCC,3 Technologies and initiatives supporting	
MOCC, Observations	
UNIT-V	
Cloud Security: Cloud security risks, Security: The top concern for cloud users,	07Hrs
Privacy and privacy impact assessment, Trust, Operating system security, Virtual	
machine Security, Security of virtualization, Security risks posed by shared images,	
Security risks posed by a management OS, A trusted virtual machine monitor.	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1.	Explore the basic concepts of cloud computing, cloud infrastructure, cloud models, cloud				
	services, distributed computing, and other related concepts.				
CO2.	Understand Virtualization, and working of some of industrially popular Virtualization				
	technologies.				
CO3.	Apply MapReduce programming model to solve some data-intensive computing				
	applications over public or private cloud platforms.				
CO4.	Analysing the security risks in cloud from different perspectives and study some of the				
	available solutions.				

 Mastering Cloud Computing, Rajkumar Buyya, Christian Vecchiola, and ThamaraiSelvi, 2013, McGraw Hill, New Delhi, India, ISBN-13: 978-1-25-902995-0. (Units 1 – 4) Cloud Computing Theory and Practice, Dan C Marinescu, 1st Edition, 2013, Elsev 	KCI	elence books
	1.	Mastering Cloud Computing, Rajkumar Buyya, Christian Vecchiola, and ThamaraiSelvi,
2. Cloud Computing Theory and Practice, Dan C Marinescu, 1 st Edition, 2013, Elsev		2013, McGraw Hill, New Delhi, India, ISBN-13: 978-1-25-902995-0. (Units 1 – 4)
	2.	Cloud Computing Theory and Practice, Dan C Marinescu, 1st Edition, 2013, Elsevier
(MK), ISBN: 9780124046276. (Unit – 5)		(MK), ISBN: 9780124046276. (Unit – 5)
3. Distributed Computing and Cloud Computing, from parallel processing to internet	3.	Distributed Computing and Cloud Computing, from parallel processing to internet of
		things, Kai Hwang, GeofferyC.Fox, Jack J Dongarra, 1st Edition, 2012, Elsevier(MK),
ISBN: 978-0-12-385880-1.		ISBN: 978-0-12-385880-1.
4. Cloud Computing Implementation, Management and Security, John W Rittinghouse, Jan	4.	Cloud Computing Implementation, Management and Security, John W Rittinghouse, James
F Ransome, 1 st Edition, 2013, CRC Press, ISBN: 978-1-4398-0680-7.		F Ransome, 1st Edition, 2013, CRC Press, ISBN: 978-1-4398-0680-7.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	2	-	1	-	-	-	-	-	2
CO2	-	2	-	2	-	1	-	-	1	-	-	2
CO3	1	2	2	-	-	-	1	1	1	-	-	2
CO4	-	-	3	-	2	-	2	1	2	2	1	2

High-3 : Medium-2 : Low-1

Semester VI				
NETWORK PROGRAMMING				
(Group C : Professional Core Elective)				
Course Code:16CS6C4	CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100			
Hours: 35L	SEE Duration: 3Hrs			

Cou	rse Learning Objectives: The students will be able to
1	Introduce students to programming fundamentals and TCP/IP socket programming.
2	The students will be able to develop simple client/server applications using TCP and UDP
	sockets.
3	The basic knowledge of DNS and daemon process are provided to utilize and develop
5	applications.
4	The knowledge of IPV4 & IPV6 interoperability with respect to network applications.
5	Broadcasting, Unix domain protocols are introduced to the students.
6	Signal and Thread concepts with echo server/client example with introduction to
	synchronization of threads.

UNIT-I	
The Transport Layer and Introduction to sockets	06 Hrs
Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP,	
SCTP, TCP connection establishment and termination, TIME_WAIT state, TCP port	
numbers and concurrent servers, Buffer sizes and limitation. Socket address structure,	
value-result arguments, byte ordering functions, byte manipulation functions,	
inet_aton, inet_addr and inet_ntoa functions, inet_pton and inet_ntop functions,	
UNIT-II	
TCP client/server	08 Hrs
socket function, connect function, bind, listen, accept, fork, exec functions, concurrent	
servers, close function, getsockname and getpeername functions, TCP Echo server -	
main - str_echo ,TCP Echo client - main - str_echo, Normal startup, normal	
termination.	
UDP client/server and Name server	
socket options introduction, getsockopt and setsockopt functions.	
recvfrom and sendto functions, UDP Echo server & UDP Echo client, lost datagrams,	
DNS, Gethostbyname function, gethostbyaddr function, getservbyname and	
getservbyport functions, getaddrinfo function, gai_strerror function, freeaddrinfo	
function, getaddrinfo function: example, host_serv function.	
UNIT-III	
IPV4 and IPV6 Interoperability, Daemon process	08 Hrs
Introduction to IPv4 and IPv6, IPv4 client- IPv6 server, IPv6 client - IPv4 server,	
IPv6address – Testing Macros, Source code portability. Introduction to daemon	
processes, syslogd Deamon, syslog function, daemon_init function, inetd Daemon,	
daemon_inetd function.	
Signal driven I/O	
Introduction, Signal-driven I/O for sockets, UDP Echo server using SIGIO.	
UNIT-IV	
Broadcasting	07 Hrs
Introduction to Broadcasting, Broadcast address, Unicast Vs Broadcast, dg_client	
function using broadcasting.	
Multicasting	
Multicast addresses, Multicasting versus broadcasting on a LAN, Multicasting on a	
WAN, Source-specific multicast.	

Г

UNIT-V	
Introduction to Pthreads and Synchronization Basic thread functions, str_cli	06 Hrs
function using threads, TCP Echo server using threads, Thread specific data. Mutexes:	
Mutual Exclusion, Condition variables.	
Recent Topics	
Frenetic: A network programming language.	

Practice programs:

- 1. Design and implement TCP concurrent chat server and client using multiplexing system call "select".
- 2. Design a TCP concurrent server to echo given set of sentences using poll functions.
- 3. Write C client/server program for signal handling and handling zombie processes.

Experiential Learning:

- 1. Design and implement a protocol following its RFC. (FTP, HTTP, SMTP etc.)
- 2. Design and implement a broadcast application. (DNS, DHCP, NTP etc.)
- 3. Design and develop a packet capturing tool using library like libpcap and display the statistics.

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1.	Understand and explore the TCP and UDP protocols in detail.				
CO2.	Apply socket APIs and concepts to realize client-server solutions to robust real-world				
	applications				
CO3.	Analyse Protocol interoperability and application				
CO4.	Design and Implement specific network programming modules using specific APIs and				
	structures				

Reference Books

1.	UNIX Network Programming – The sockets networking API Vol. 1, W.Richard Stevens,
	Bill Fenner, Andrew M. Rudoff, 3 rd edition, 2010, PHI, ISBN: 978-0131411555.
2.	, Internetworking with TCP/IP, Vol. I, Comer, StevensSixth Edition, 2015, PHI, ISBN:
	978-0136085300.
3.	Computer Networking: A Top-Down Approach, J. F. Kurose and K. W. Ross, 6th Edition,
	2013, Addison-Wesley Publishing, ISBN: 978-0132856201.
4.	Frenetic: A network programming language, Foster, Nate, et al. ACM Sigplan Notices.
	Vol. 46. No. 9. ACM, 2011.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	2	1	-	1	-	1	-	2	2
CO2	2	2	3	2	1	-	1	-	1	-	2	2
CO3	1	2	2	2	1	-	1	-	1	-	2	2
CO4	1	2	3	2	1	-	1	-	1	-	2	2

High-3 : Medium-2 : Low-1

Sem	ester VI
FUZZY LOGIC & INTELLIG	ENT INFORMATION SYSTEMS
(Group D : Profes	ssional Core Elective)
Course Code:16CS6D1	CIE Marks: 100
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100
Hours: 44L	SEE Duration: 3Hrs

Cou	Course Learning Objectives: The students will be able to				
1	Gain knowledge of fundamental concepts in Fuzzy Logic and Intelligent Systems.				
2	Illustrate fuzzy sets and fuzzy logic as mathematical models.				
3	Focus on problems related to various engineering, mathematics, and science disciplines.				
4	Use fuzzy logic based techniques for various applications.				

UNIT-I	
Introduction	09 Hrs
The case for Imprecision, The Utility and Limitations of Fuzzy Systems, Fuzzy sets	
and membership, Chance verses fuzziness, Sets as points in hyper cubes. Fuzzy Sets -	
Fuzzy set operations, Properties of Fuzzy Sets, Alternative fuzzy set operations,	
membership value assignments-intution, inference and rank ordering methods,	
Features of the Membership Function, transformations.	
Fuzzy Relations	
Fuzzy Cartesian product, Fuzzy Relations, Cardinality of Fuzzy Relations, Operations	
on Fuzzy Relations, Properties of Fuzzy Relations and Composition of fuzzy relation,	
Fuzzy Tolerance and equivalence Relations. Value Assignments - Cosine Amplitude,	
Max-min Method, Other Similarity methods.	
UNIT-II	
Fuzzification, and Defuzzification	08 Hrs
Fuzzification, defuzzification to crisp sets, Lambda-cuts for fuzzy relations,	
Defuzzification to Scalars.	
Intutionistic fuzzy sets and other forms	
Intuitionistic fuzzy sets, Intuitionistic fuzzy set operations, properties of Intuitionistic	
fuzzy sets, Intuitionistic fuzzy relations, Operations on Intuitionist Fuzzy Relations,	
Properties of IntuitionistFuzzy Relations, Interval valued fuzzy sets, Type-2 fuzzy sets.	
UNIT-III	00.11
Fuzzy Logic and Fuzzy Systems	08 Hrs
Deductive Inferences. Fuzzy Logic, approximate reasoning, other forms of the	
Implication Operation ,Fuzzy Systems: Fuzzy if-then rules, types, fuzzy rule based	
models for function approximation, Mamdani Model, TSK Model.	
Fuzzy Arithmetic and Extention Principle	
Extention principle, Crisp Function, Mapping and Relations, Function of fuzzy sets-	
Extentionprinciple, fuzzy transform, practical considerations, fuzzy arithmetic,	
internal analysis in arithmetic, Approximate of extension.	
UNIT-IV	
Fuzzy Classification and Pattern Recognition	09Hrs
Classification of Equivalence relations, Crisp Relationsand Fuzzy Relations, Cluster	
Analysis, Cluster Validity, c-means clustering, Hard c-means, Fuzzy c-means	
algorithm, cluster validity, Knowledge based pattern recognition, Hybrid pattern based	
recognition, applications in Medical Image Segmentation: case study of hybrid fuzzy	
system for MRI segmentation.	

UNIT-V	
Fuzzy Logic and Artificial Intelligence	10 Hrs
AI, Neural Network, genetic Algorithms, Fuzzy logic in frame based representation,	
FL in expert systems, Intelligent Agents, FL in Intelligent systems.	
Fuzzy Logic in Database and Information Systems.	
Fuzzy information, FL in database systems, fuzzy relation data models and its	
operations, Design theory for fuzzy relational databases.	

Cours	e Outcomes: After completing the course, the students will be able to
CO1.	Explore and Understand basic concepts of all types of fuzzy sets and relations, fuzzy
	logic extension principle in the field of computer science and Engineering.
CO2.	Analyse the tools of all types of fuzzy sets in different areas of intelligent information
	systems where uncertainty and imprecision are involved.
CO3.	Design fuzzy systems and solve complex problems using various fuzzy techniques.
CO4.	Create application by utilizing cloud platforms Apply fuzzy systems and solve complex
	problems using various fuzzy techniques.

Ittel	CI CHEC DOORD
1.	Timothy J. Ross, "Fuzzy logic with engineering applications" John Wiley; 2 nd Edition;
	2007, ISBN: 13 978-81-265-1337-6.
2.	John Yen, Reza Langari, "Fuzzy Logic Intelligence, Control and Information", 1st edition,
	9 th Impression, 2012, Pearson, ISBN: 978-81-317-0534-6.
3	George J. Klir, Bo Yuan "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice
	Hall; 1 st Edition; 2008, ISBN: 81-203-0695-3.
4	Research Papers on Intuitionistic Fuzzy Logic and Interval Valued Fuzzy Logic.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	2	2	1	-	1	-	-	-	2
CO2	1	3	-	2	2	1	-	1	1	2	2	2
CO3	2	1	-	1	1	1	-	1	1	2	1	2
CO4	2	2	2	1	1	1	-	1	1	2	-	2

High-3: Medium-2: Low-1

Semester VI				
DATA WAREHOUSING AND DATA MINING				
(Group D : Profess	sional Core Elective)			
Course Code: 16CS6D2	CIE Marks: 100			
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100			
Hours: 44 L	SEE Duration: 3Hrs			

Cou	rse Learning Objectives: The students will be able to								
1	Understand the functionality of the various data warehousing and data mining								
	components.								
2	Describe and utilize a range of techniques for designing data warehousing and data mining								
	systems for real -world applications.								
3	Provide comprehensive analysis of the organization, related to business, its requirements								
3	and any trends which requires access of historical data.								
4	Find the hidden interesting patterns in data.								
~	Analyze the historical data, identify the problems, and choose the relevant algorithms to								
3	apply.								

Data Warehouse : Introduction to Data Warehouse, Differences between Operational Database Systems and Data Warehouses , A Separate Data Warehouse, Data Warehousing : A Multitier Architecture Data Warehouse Modelling: Data Cube and OLAP; Data Cube : A Multidimensional Data Model, Stars, Snowflakes, and Fact Constellations: Schemas for0)9 Hrs
Warehousing : A Multitier Architecture Data Warehouse Modelling: Data Cube and OLAP; Data Cube : A Multidimensional	
Warehousing : A Multitier Architecture Data Warehouse Modelling: Data Cube and OLAP; Data Cube : A Multidimensional	
Data Warehouse Modelling: Data Cube and OLAP; Data Cube : A Multidimensional	
•	
multidimensional Data Models, Dimensions: The Role of Concept Hierarchies,	
Typical OLAP Operations	
Introduction to Data Mining	
Introduction to Data Mining, Importance of Data mining, kinds of data and patterns to	
be mined, technologies used, Data Objects and Attribute Types, Data Preprocessing:	
Data cleaning, Data Integration, Data Reduction, Data Transformation and	
discretization	
UNIT-II	
)9 Hrs
Basic concepts of classification, Decision Tree Induction, Bayesian Classification,	17 1115
Rule based Classification, Model Evaluation and selection, Techniques to improve	
classification accuracy	
UNIT-III	
)9 Hrs
	19 HIS
Bayesian Belief Network, Classification by Backpropagation, Support Vector	
Machines, Multi class classification, semi supervised classification.	
UNIT-IV	
)9 Hrs
Basic Concepts, Apriori algorithm, Generating association rules from frequent	
itemsets, improving the efficiency of Apriori, Pattern growth approach for Mining	
frequent itemsets, Mining Frequent itemsets using vertical data format, Mining closed	
and max itemsets.	
UNIT-V	
Data mining trends and research frontiers	08 Hrs
8	
Mining sequential data, time series, Symbolic sequences, Biological sequences,	
8	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1.	Understand and Explore Data Warehousing and Data Mining concepts and Techniques.					
CO2.	Exemplify the strengths and weakness of various Data Warehouse and data mining					
	techniques for pattern discovery.					
CO3.	Analyze the implementation of Data Mining Techniques using any a open source					
	analytical tools.					
CO4.	Identify and apply an efficient Data Mining Algorithm on historical data for knowledge					
	discovery.					

1.	Data Mining – Concepts and Techniques, Jiawei Han and Micheline Kamber, Jian Pei, 3rd
	Edition, 2012, Morgan Kaufmann, ISBN 978-0-12-381479-1.
2.	Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 2007,
	Pearson Education, ISBN 978-81-317-1472-0.
3.	Insight into Data Mining, Theory & Practice, K. P. Soman, Shyam Diwakar, V. Ajay, 2006,
	PHI, ISBN: 978-81-203-2897-6.
4.	* Hao Wang and Dit-Yan Yeung, Senior Member, IEEE, Towards Bayesian Deep Learning:
	A Framework and Some Existing Methods, IEEE TRANSACTIONS on Knowledge And
	Data Engineering, Vol. 28, No. 12, December 2016, pp3395-3408.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			2	2	2		2	2		3
CO2	2	2	2		3							
CO3			2									2
CO4	1	2		3	2	2			2			2

High-3: Medium-2: Low-1

Semester VI						
OBJECT ORIENTED ANALYSIS AND DESIGN						
(Group D: Professional Core Elective)						
Course Code: 16C6D3	CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hours: 44L	SEE Duration: 3Hrs					

Cou	Course Learning Objectives: The students will be able to							
1	Specify, Design, Build and Understand Complex systems.							
2	Acquire knowledge of notations and process of object-oriented analysis and design.							
3	Demonstrate design concepts through Unified Modeling Language (UML).							
4	Visualize, Specify, Construct and Document the artifacts of software-intensive system.							

UNIT-I	
Complexity	08 Hrs
The Structure of Complex Systems, The Inherent Complexity of Software, The Five	
Attributes of a Complex System, Organized and disorganized Complexity, Bringing	
Order to Chaos, On Designing Complex Systems.	
Classes and Objects	
The Nature of an Object, Relationships among Objects, The Nature of a Class,	
Relationships among Classes, The Interplay of Classes and Objects, On building	
quality classes and objects.	
UNIT-II	
Classification	10 Hrs
The Importance of Proper Classification, Identifying Classes and Objects.	
Notation	
The Unified Modelling Language, Package diagrams, Component Diagrams,	
Deployment Diagrams, Use Case Diagrams.	
UNIT-III	
Notation	10 Hrs
Activity Diagrams, Class Diagrams, Sequence Diagrams, Interaction Overview	
Diagrams, Composite Structure Diagrams, State Machine Diagrams, Timing	
Diagrams, Object Diagrams, Communication Diagrams.	
UNIT-IV	
Process	08 Hrs
First Principles-Traits of successful projects, Towards a Rational Development	
Process, The Macro Process: The Software Development Lifecycle, The Macro	
Process Content Dimension-Disciplines, The Micro Process: The Analysis and	
Design Process-overview, Levels of Abstraction, Activities, Products, The Micro	
Process and Levels of Abstarction.	
UNIT-V	
Pragmatics	08 Hrs
Management and Planning, Staffing, Release Management, Reuse.	
Case Study	
Control System: Traffic Management: Inception, Elaboration, Construction, Post-	
Transition.	
*Large scale object-oriented software-development in a banking environment, Open	
Issues in Object-Oriented Programming, Research on Improving the Quality of the	
Object Oriented System, Security for Object-Oriented Systems.	

г

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1.	Explore the concepts of object model.							
CO2.	Apply basic and advanced structural and behavioural UML modelling to solve software-							
	intensive problems.							
CO3.	Model the object oriented analysis and design aspect through Unified Modelling							
	Language (UML).							
CO4.	Analyze the requirements of the problem and design solutions to complex problems							
	using UML notations.							

Refe	erence Books
1.	Grady Booch, Robert A Maksimchuk, Michael W Engle, Bobbi J Young, Jim Conallen, KelliaHoustan, Object Oriented Analysis and Design with Applications, Addison Wesley, 3 rd Edition, 2013, ISBN 978-81-317-2287-93.
2.	Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User Guide, Addison Wesley Professional, 2 nd Edition, 2005, ISBN: 0-321-26797-4.
3.	Ali Bahrami, Object Oriented Systems Development using the Unified Modelling Language, McGraw Hill, Second Reprint 2008, ISBN:978-0-07-026512-7.
*	IEEE/ACM and other refereed journals, white papers, and manuals.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	-	-	-	1	1	1	-	1
CO2	2	2	2	2	1	-	-	1	1	1	-	1
CO3	3	2	3	2	1	1	1	1	2	2	1	1
CO4	3	2	3	3	1	1	1	1	2	2	1	1

High-3	:	Medium-2	:	Low-1
--------	---	----------	---	-------

Semester VI						
LINUX INTERNALS						
(Group D : Professi	onal Core Elective)					
Course Code: 16CS6D4	CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hours: 44L	SEE Duration: 3Hrs					

Course Learning Objectives: The students will be able to
--

- 1 Reinforce the kernel level features of Linux operating system.
- 2 Develop and implement the system calls.
- 3 Gain knowledge about memory management techniques of the Linux OS.
- 4 Present an adequate programming environment in Linux OS.

UNIT-I	
Introduction to the Linux Kernel	08 Hrs
History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating	
Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions,	
The Linux Kernel Development Community.	
Process Management	
The Process, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination.	
UNIT-II	
Process Scheduling	10 Hrs
Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls. System Calls	
Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context.	
UNIT-III	1
Interrupts and Interrupt Handlers	08 Hrs
Interrupts, Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use?, Locking Between the Bottom Halves, Disabling Bottom Halves.	
UNIT-IV	
Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface,Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems, VFS.	10 Hrs
UNIT-V	
An Introduction to Kernel Synchronization Critical Regions and Race Conditions, Locking, Deadlocks, Contention and Scalability.	08 Hrs
Kernel Synchronization Methods	
Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-	
Writer Semaphores, Mutexes, Completion Variables, BKL: The Big Kernel Lock.	
Recent Trends	
kvm: the Linux virtual machine monitor.	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1.	Understand and Explore the fundamental concepts of Unix, high-level structure and development environments.				
CO2.	Illustrate the use of data structures and system calls within the Linux kernel.				
CO3.	Integrate the operating system concepts with relevant design issues associated with Linux kernel.				
CO4.	Develop applications using Linux Processes and Interrupt handling techniques.				

1.	Robert Love; Linux Kernel Development; Pearson Education; 3 rd Edition; 2010, ISBN-
	8131758182.
2.	M. Beck et.al ; Linux Kernel Programming; Pearson Education; 3 rd Edition; 2002,
	ISBN-110-201-71975-4.
3.	Daniel Bovet ; Understanding the Linux Kernel, O'Reilly, 1 st Edition, 2000, ISBN-10:
	0596000022.
4.	Michael kerrish; Linux Programming Interface; 1st Edition, 2010, ISBN-10159327220
5	Kivity, Avi, et al. "kvm: the Linux virtual machine monitor." Proceedings of the Linux
	symposium. Vol. 1. 2007.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	2	1	-	-	-	1	-	1	1
CO2	2	2	3	2	1	-	-	-	2	_	1	1
CO3	1	2	3	2	1	-	-	-	2	_	1	1
CO4	1	3	3	2	1	2	1	1	2		1	1

High-3 : Medium-2 : Low-1

Semester VI					
INTRODUCTION TO OPTIMIZATION TECHNIQUES					
(Group D : Professional Core Elective)					
Course Code: 16CS6D5	CIE Marks: 100				
Credits: L:T:P:S: 4:0:0:0	SEE Marks:100				
Hours: 44L	SEE Duration: 3Hrs				

Cou	Course Learning Objectives: The students will be able to					
1	To understand the concepts of optimization techniques.					
2	To learn the modelling frameworks for solving problems using optimization techniques.					
3	To design and develop optimization models for real life situations.					
4	To analyze solutions obtained using optimization methods.					
5	To compare models developed using various techniques for optimization					

UNII-I			
Introduction: OR Methodology, Definition of OR, Application of OR to	09 Hrs		
Engineering and Managerial problems, Features of OR models, Limitations of OR.			
Linear Programming: Definition, Mathematical Formulation, Standard Form,			
Solution Space, Types of solution – Feasible, Basic Feasible, Degenerate, Solution			
through Graphical Method. Problems on Product Mix, Blending, Marketing, Finance,			
Agriculture and Personnel.			
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables.			
UNIT-II			
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes in RHS, Changes in objectives, Primal-Dual	09 Hrs		
relationships, Economic interpretation of duality, Post optimal analysis - changes			
affecting feasibility and optimality, Revised simplex method.			
UNIT-III			
Transportation Problem:Formulation of Transportation Model, Basic Feasible	08 Hrs		
Solution using North-West corner, Least Cost, Vogel's Approximation Method,			
Optimality Methods, Unbalanced Transportation Problem, Degeneracy in			
Transportation Problems, Variants in Transportation Problems.			
Assignment Problem: Formulation of the Assignment problem, solution method of			
assignment problem-Hungarian Method, Variants in assignment problem, Travelling			
Salesman Problem (TSP).			
UNIT-IV	1		
Project Management Using Network Analysis: Network construction,	09 Hrs		
determination of critical path and duration, floats. PERT- Estimation of project			
duration, variance. CPM - Elements of crashing, least cost project scheduling.			
UNIT-V			
Metaheuristics: The nature of Metaheuristics, Tabu Search, Simulated Annealing,	09 Hrs		
Genetic Algorithms. Nature-inspired metaheuristics : Research Papers on			
evolutionary algorithms, ant colony optimization and particle swarm optimization.			
	,		

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1.	Understand and explore the various optimization models and their areas of application.					
CO2.	Apply the process of formulating and solving problems using optimization methods.					
CO3.	Analyze models for real life problems using optimization techniques.					
CO4.	Develop solutions through optimization techniques.					

Ref	Reference Books						
1.	Taha H A, Operation Research an Introduction, PHI, 8th Edition, 2009, ISBN:						
	0130488089.						
2.	Philips, Ravindran and Solberg - Principles of Operations Research – Theory and Practice,						
	John Wiley & Sons (Asia) Pte Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0.						
3.	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9th						
	Edition, 2012, ISBN 13: 978-0-07-133346-7.						
4.	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4th						
	Edition, 2009, ISBN 13: 978-0-23-063885-3.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	1	-	1	-	2	1	1	1	2
CO2	2	1	2	1	1	-	-	-	2	-	2	1
CO3	-	2	1	-	2	-	-	-	1	-	-	1
CO4	1	2	2	1	1	2	2	-	2	2	1	2

High-3 : Medium-2 : Low-1

		Semester VI				
	В	IOINSPIRED ENGINEERING				
C		(Group E: Global Elective)				
Course Code: 16G6E01 CIE Marks: 100 Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Creatis: L:1:P:S: 5:0:0:0SEE Marks: 100Hours: 36LSEE Duration: 3Hrs						
Course Learning Objectives: 1 To familiarize engineering students with basic biological concepts						
2						
4	2 Utilize the similarities noted in nature for a particular problem to bring inspiration to designer.					
3	0	s smart structures, self-healing materials, and robotics	relative to			
5	their bio logical analogs	s smart structures, sen neuring materials, and roboties i				
4		hat the design principles from nature can be translated	into nove			
		an appreciation for how biological systems can be engi				
	human design					
		Unit-I	-			
		cules-Proteins, carbohydrates, lipids and Nucleic acids.	06 Hrs			
		mal.Organ system- Circulatory, digestive, respiratory,				
excre	etory and nervous system. Sens	se organs. Plant process- Photosynthesis.				
		Unit – II				
		O(111) = 11				
Intro	oduction to Biomimetics: W		08 Hrs			
		ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for	08 Hrs			
inno	vation: Mimicking and inspi	ealth of invention in nature as inspiration for human	08 Hrs			
inno struc Mate	wation: Mimicking and inspi eture and tools: Biological c erials and processes in biology	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. 	08 Hrs			
inno struc Mate fluor	wation: Mimicking and inspi- cture and tools: Biological c erials and processes in biology rescent materials in fire flies.	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as	08 Hrs			
inno struc Mate fluor	wation: Mimicking and inspi eture and tools: Biological c erials and processes in biology	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as oggies.	08 Hrs			
inno struc Mate fluor bene	wation: Mimicking and inspi eture and tools: Biological c erials and processes in biology rescent materials in fire flies. I ficiary for biomimetic technology	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as begies. Unit -III	08 Hrs			
inno struc Mate fluor bene Biole	wation: Mimicking and inspireture and tools: Biological certails and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology optical materials in Engine	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. 7- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III teering mechanisms: Introduction, Comparison of				
inno struc Mate fluor bene Biol o biolo	wation: Mimicking and inspire eture and tools: Biological c erials and processes in biology rescent materials in fire flies. I ficiary for biomimetic technology ogical materials in Engin ogical and synthetic materials	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. - Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders-				
inno struc Mate fluor bene Biole biole High	wation: Mimicking and inspireture and tools: Biological certails and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine Degical and synthetic materials in performance fibers from national systems.	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III teering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic				
inno struc Mate fluor bene Biolo Biolo High com	wation: Mimicking and inspireture and tools: Biological certails and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine particular and synthetic materials: a performance fibers from nature shark share sh	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- are, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via				
inno struc Mate fluor bene Biolo biolo High comp contr	wation: Mimicking and inspireture and tools: Biological of erials and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials in performance fibers from nature posites from nature. Shark shored of fluid dynamics, Musci	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III teering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic				
inno struc Mate fluor bene Biolo biolo High comp contr	wation: Mimicking and inspireture and tools: Biological certails and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine particular and synthetic materials: a performance fibers from nature shark share sh	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to				
inno struc Mate fluor bene Biolo biolo High comp contumech	wation: Mimicking and inspireture and tools: Biological of erials and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials in performance fibers from nature posites from nature. Shark shore of fluid dynamics, Musch hanical engineering.	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. - Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit -IV	08 Hrs			
inno struc Mate fluor bene Biolo High comp contr mech Biolo	wation: Mimicking and inspire ture and tools: Biological of erials and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials: a performance fibers from nature posites from nature. Shark share share share share share share share share and rol of fluid dynamics, Musch hanical engineering.	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. 	08 Hrs			
inno struc Mate fluor bene Biolo High comp contr mech Biolo Mate Mate	wation: Mimicking and inspire true and tools: Biological of erials and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials: a performance fibers from nature posites from nature. Shark shared of fluid dynamics, Musci- hanical engineering.	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III evering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV products: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super	08 Hrs			
inno struc Mate fluor bene Biolo High comp contr mech Biolo Mate Mate	wation: Mimicking and inspire true and tools: Biological of erials and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials: a performance fibers from nature posites from nature. Shark shared of fluid dynamics, Musci- hanical engineering.	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV products: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super fect. Bionic leaf and Photovoltaic cells.	08 Hrs			
inno struc Mate fluor bene Biole biolo High comp contr mech Biole medi hydr	wation: Mimicking and inspire eture and tools: Biological of erials and processes in biology rescent materials in fire flies. If ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials: a performance fibers from nature posites from nature. Shark shored of fluid dynamics, Musch hanical engineering.	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. - Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV products: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super fect. Bionic leaf and Photovoltaic cells. Unit –V	08 Hrs			
inno struc Mate fluor bene Biolo High comp contr mech Biolo medi hydr	wation: Mimicking and inspire true and tools: Biological of erials and processes in biology rescent materials in fire flies. In ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials: a performance fibers from nature posites from nature. Shark sh rol of fluid dynamics, Musci- hanical engineering. ogical inspired process and p ical devices. Biosensors. Plant ophobic surfaces- lotus leaf eff lants in Practice: Artificial S	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- are, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit -IV oroducts: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super fect. Bionic leaf and Photovoltaic cells. Unit -V upport and replacement of human organs-Introduction,	08 Hrs			
inno struc Mate fluor bene Biolo High comp contr mech Biolo Medi hydr	wation: Mimicking and inspirence of the second seco	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- are, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV products: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super fect. Bionic leaf and Photovoltaic cells. Unit –V upport and replacement of human organs-Introduction, ng, heart, skin and pancreas. Total joint replacements-	08 Hrs			
inno struc Mate fluor bene Biolo High comp contr mech Biolo medi hydr Imp Artif Visu	wation: Mimicking and inspirence of the second seco	ealth of invention in nature as inspiration for human ration of nature- synthetic life. Nature as a model for clock, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- are, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV oroducts: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super fect. Bionic leaf and Photovoltaic cells. Unit –V upport and replacement of human organs-Introduction, ng, heart, skin and pancreas. Total joint replacements- nse and sensors: Artificial tongue and nose, Biomimetic	08 Hrs			

Course	e Outcomes. After completing the course, the students will be able to								
CO1:	Remember and explain the fundamentals of Biology								
CO2:	Describe the basic principles of design in biological systems.								
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design								
	problems								
CO4:	Create engineered solutions to customer needs utilizing a variety of bio-inspiration								
	techniques.								

Refere	Reference Books				
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259				
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: 8123928726 /				
	ISBN 13: 9788123928722				
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press,				
	ISBN: 9780849331633				
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version.				
	Wiley John and Sons, 2012. ISBN: 1118092449.				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3 : Medium-2 : Low-1

Semester VI							
	GREEN TECHNOLOGY						
	(Group E: Glo	bal Elective)					
Course	e Code: 16G6E02	CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hours	: 36L	SEE Duration: 3Hrs					
Course	e Learning Objectives:						
1 I	Learn the tools of green technology						
2 F	Know various forms of renewable energy						
3 Study the environmental consequences of energy conversation							
4 Understand energy audits and residential energy audit							
5 Understand the application of green technology in various industries							
	Unit	-I					
of ener disadva technol econom Cleane	nt Practices and Future Sustainability: New rgy and its impact on society and the environ antages of renewable energy sources, energy logy, life cycle assessment, extended prod ny, tools of Green technology er Production: Promoting cleaner production	nment, the mechanics, advantages and conservation and audits, zero waste uct responsibility, concept of atom	07 Hrs				
produc	production, cleaner production technologies.						
	Unit -						
Solar	Radiation and Its Measurement: Solar co	onstant, solar radiation at the earth's	08 Hrs				

tashnology life evals assessment extended product responsibility concert of stom					
technology, life cycle assessment, extended product responsibility, concept of atom					
economy, tools of Green technology					
Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner					
production, cleaner production technologies.					
Unit – II					
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's	08 Hrs				
surface, solar radiation geometry, solar radiation measurements					
Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar					
heating of buildings), space cooling (or solar cooling of building), solar thermal electric					
conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar					
cooking					
Geothermal Energy: Resource identification and development, geothermal power					
generation systems, geothermal power plants case studies and environmental impact					
assessment.					
Unit -III Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet 0					
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet					
Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas					
plants (KVIC model & Janata model), selection of site for biogas plant					
Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal					
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification					
process, applications of the gasifiers.					
Unit –IV					
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion					
system), classification of WEC systems, types of wind machines (Wind Energy Collectors),					
horizontal-axial machines and vertical axis machines.					
Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC),					
methods of ocean thermal electric power generation, open cycle OTEC system, the closed					
or Anderson, OTEC cycle, Hybrid cycle					
Energy from Tides : Basic principles of tidal power, components of tidal power plants,					

Energy from Tides: Basic principles of tidal power, components of tidal power plants, operation methods of utilization of tidal energy, advantages and limitations of tidal power generation

Unit –V					
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles					
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for					
motor vehicle, safety and management, hydrogen technology development in India					
Application of Green Technology: Electronic waste management, bioprocesses, green					
composite materials, green construction technology					
Sustainability of industrial waste management: Case studies on cement industry, iron					
and steel industry, petroleum sectors, marble and granite industry, sugar industry					

Course Outcomes: After completing the course, the students will be able to

- **CO1:** Recall the fundamentals of various forms of energy
- **CO2:** Explain the principles of various forms of renewable energy
- **CO3:** Apply the concept of zero waste, atom economy for waste management
- **CO4:** Create a waste management plan incorporating tools of green technology in various industries

Reference Books

NULLI	chee books
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester VI							
	SOLID WASTE MANAGEMENT							
	(Group E: Global Elective)							
Course Code:16GE6E03 CIE Marks: 100								
Cree	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hou	Hours: 36L SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	Impart the knowledge of present methods of solid waste management system and to analyze							
1	drawbacks.							
2	2 Understand various waste management statutory rules.							
3	Analyze different elements of solid waste management, design and develop recycling options							
3	for biodegradable waste by composting.							
Identify hazardous waste, e-waste, plastic waste and bio medical waste and their manage								
+	systems.							

UNIT-I					
Introduction: Land Pollution. Scope and importance of solid waste management.	08 Hrs				
Present solid waste disposal methods. Merits and demerits of open dumping, feeding to					
hogs, incineration, pyrolysis, composting, sanitary landfill. Definition and functional					
elements of solid waste management.					
Sources: Sources of Solid waste, types of solid waste, composition of municipal solid					
waste, generation rate, Numerical Problems.					
Collection and transportation of municipal solid waste: Collection of solid waste-					
services and systems, Municipal Solid waste (Management and Handling) 2000 rules with					
2016 amendments. Site visit to collection system.					
UNIT-II					
Composting Aerobic and anaerobic composting - process description, process	08 Hrs				
microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.					
Sanitary land filling : Definition, advantages and disadvantages, site selection, methods,					
reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate					
movement, Site visit to landfill site. UNIT-III					
	06 Hrs				
Hazardous waste management : Definitions, Identification of hazardous waste, Classification of hazardous waste onsite storage collection transfer and transport					
Classification of bazardous wasta onsite storage collection transfer and transport					
Classification of hazardous waste, onsite storage, collection, transfer and transport,					
processing, disposal, hazardous waste (Management and handling) rules 2008 with					
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site					
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV					
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection,	06 Hrs				
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and					
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and					
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant.					
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V	06 Hrs				
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing					
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing electronic goods, Recycling and recovery integrated approach. E- waste (management and	06 Hrs				
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing electronic goods, Recycling and recovery integrated approach. E- waste (management and handling) rules 2011.Site visit to e- waste processing facility.	06 Hrs				
processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing electronic goods, Recycling and recovery integrated approach. E- waste (management and	06 Hrs				

Course Outcomes: After completing the course, the students will be able to

- 1 Understand the existing solid waste management system and to identify their drawbacks.
- 2 Analyze drawbacks in the present system and provide recycling and disposal options for each type of waste.

- 3 Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management system. Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal 4
- waste management as per the rules laid by Ministry of Environment & Forest.

Text Books 1. Integrated Solid Waste Management : Engineering principles and management issues George Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education. Indian edition 2014. ISBN - 13: 978- 9339205249, ISBN-10: 9339205243 2. Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous, Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263. 3. Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC Publication, 2009, ISBN 9780854041121

Reference Books

1.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
2.	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.
3.	Biomedical waste (Management & Handling) rules, 1998. Ministry of Environment and Forest
	Notification, New Delhi, 20thJuly 1998, and amendment.
4.	E- waste (management and handling) rules 2011. Ministry of Environment and Forest
	Notification, New Delhi, 12th May 2011.
5.	The Plastic Manufacture, Sale and usage Rules2009. Ministry of Environment and Forest
	Notification, New Delhi, amendment on February 4, 2011

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	3	1	2	2	2	-	-	-	2
CO2	2	3	1	2	1	2	2	2	1	-	-	2
CO3	2	1	-	2	1	1	2	2	-	-	-	-
CO4	3	-	1	1	-	2	2	2	-	-	-	1

CO-PO	Map	ping
		. 0

Semester VI						
INTRODUCTION TO WEB PROGRAMMING						
(Group E : Global Elective)						
Course Code:16G6E04	CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hours: 36L	SEE Duration: 3 Hrs					

Cou	Course Learning Objectives: The students will be able to									
1	Understand the basic concepts used in web programming.									
2	Learn the definitions and syntax of different web technologies.									
3	Utilize the concepts of JavaScripts, XML and PHP.									
4	Design and develop web pages which are quick, easy and well-presented using different techniques such as CSS,XML and JavaScripts.									

UNIT-I	
Introduction to Web Concepts	07 Hrs
Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and	07 1115
breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules,	
block-level elements, text-level elements.XHTML – 1: Internet, WWW, Web Browsers	
and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox.	
XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext	
Links.XHTML (continued): Lists, Tables, Forms, Frames.	
UNIT-II	
Cascading Style Sheets (CSS):	09 Hrs
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property	07 1115
value forms, Font properties, List properties, Color, Alignment of text, The box model,	
Background images, The and <div> tags, Conflict resolution.</div>	
The Basics of JavaScript:	
Overview of JavaScript; Object orientation and JavaScript; General syntactic	
characteristics; Primitives, operations, and expressions; Screen output and keyboard	
input; Control statements	
UNIT-III	
JavaScript (continued):	09 Hrs
Object creation and modification; Arrays; Functions; Constructor; Pattern matching using	07 1115
regular expressions; Errors in scripts.	
JavaScript and HTML Documents:	
The JavaScript execution environment; The Document Object Model; Element access in	
JavaScript; Events and event handling; Handling events from the Body elements, Button	
elements, Text box and Password elements; The DOM 2 event model; The navigator	
object; DOM tree traversal and modification.	
UNIT-IV	
Dynamic Documents with JavaScript:	06 Hrs
Introduction to dynamic documents; Positioning elements; Moving elements; Element	
visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging	
and dropping elements.	
Introduction to PHP:	
Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives,	
Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern	
Matching; Form Handling; Files; Cookies; Session Tracking.	

UNIT-V	
XML:	05 Hrs
Introduction; Syntax; Document structure; Document Type definitions; Namespaces;	
XML schemas; Displaying raw XML documents; Displaying XML documents with CSS;	
XSLT Style sheets; XML processors; Web services.	

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1.	Understand and explore internet related concepts that are vital for web development.									
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.									
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.									
CO4.	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.									

1.	Programming the World Wide Web - Robert W. Sebesta, 7th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications, Chris Bates, 3rd Edition, , 2006, Wiley India,
	ISBN : 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

	S	emester VI				
	AUTOMOT	IVE ELECTRONICS				
	(Group]	E: Global Elective)				
Cou	Course Code: 16G6E05 CIE Marks: 100					
Cre	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100					
Hou	Hours:36L SEE Duration: 3Hrs					
Cou	rse Learning Objectives: The students	will be able to				
1	Understand the application of principles of sensing technology in automotive field					
2	Apply control systems in the automotive domain					
3	Understand automotive specific commu	inication protocols / techniq	ues			
4	Analyze fault tolerant real time embedd	ed systems				

UNII-I							
Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol,	08 Hrs						
diesel and gas engines, electric motors and control systems. Basic Automotive System,							
System Components, Evolution of Electronics in Automotive. Alternators and charging,							
battery technology, Ignition systems. Working principles of various electronic components							
and accessories used in Automotive. Developments in existing engine forms and							
alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic							
Transmission systems.							
UNIT-II							
Sensor Technologies in Automotive: In-vehicle sensors: Working principles,							
Characteristics, limitations and use within the automotive context of the following:							
Temperature sensing e g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate.							
Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-							
Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic							
transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel							
injection. Interfacing principles: Operation, topologies and limitations of all sensors							
covered in the above to in-vehicle processing or communications nodes. Use of Actuators:							
Types, working principle, Characteristics, limitations and use within the automotive context							
of each type.							
UNIT-III							
Automotive Control Systems: Control system approach in Automotive: Analog and	07 Hrs						
Digital control methods, stability augmentation, control augmentation. Transmission							
control, System components and functions. Cruise control, traction control, actuator							
limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle							
braking fundamentals, Antilock systems. Variable assist steering and steering control.							
Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Anti-							
theft System, Emission Course-system control. Control techniques used in hybrid system.							
Electronic Engine control: Motion equations, modeling of linear and non-linear systems,							
numerical methods, system responses Objective of Electronic Engine control. Spark							
Ignition and Compression Ignition Engines and their electronic controls. Engine							
management testing: Engine management system strategies and implementation.							
Simulation and implementation methods. Methods of improving engine performance and							
efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and							
Architecture.							
UNIT-IV							
Automotive Communication Systems: Communication interface with ECU's: Interfacing	07 Hrs						

Automotive Communication Systems: Communication interface with ECU's: Interfacing techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in

Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS), for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

Course Outcomes: After completing the course, the students will be able to

CO1:	Acquire	the	knowledge	of	automotive	domain	fundamentals	and	need	of	electronics	in
	Automot	tive s	systems									

CO2: Apply various sensors and actuators for Automotive applications

CO3: Analyze different control systems and communication interfaces used in automotive systems.

CO4: Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial
	Information Technology Series, CRC press.
4.	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,
	Springer, 2 nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

	Semester VI						
	INDUSTRIAL ELECTRONICS						
	(Group E: Global Elective)						
Cour	se Code: 16G6E06		CIE Marks: 100				
Cred	its: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hour	s: 36L		SEE Duration: 3Hrs				
Cour	Course Learning Objectives: The students will be able to						
1	Explain the working of the devices used in power electronic circuits in industrial applications						
2	Analysing and designing power electronic circuits which handle the electrical energy efficiently and economically and Identify the typical practical problems with industrial exposure acquired						
3	3 Use basic concepts of design and working of electronic circuits for conversion and control of electrical energy.						
4	Apply the knowledge to work as part of teams on multidisciplinary projects and to discuss industrial problems with regard to application of Power Electronics.						

Unit-I	
Power semi-conductor Devices and static characteristics:	08 Hrs
Construction, working & characteristics of MOSFET, SCR, IGBT. Comparison of Power	
BJT, MOSFET, SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT.	
Design of R, R-C, and UJT (pulse train) Gate triggering methods of SCR.	
Unit-II	
Thyristor Dynamic characteristics, Specifications and Protection:	07 Hrs
Gate characteristics of SCR, Dynamic characteristics of SCR. Design of Snubber circuit	
for SCR, Line Commutation and Forced Commutation circuits with design, Gate	
protection & overvoltage protection of SCR.	
Unit-III	
Converters:	06 Hrs
Single Phase Controlled Convertor- Full wave Half and Fully controlled line commutated	
bridge converters, Derivation of average load voltage and current. Three phase converters -	
Six pulse converters- with R load- Active inputs to the convertors with and without	
Freewheeling diode, Derivation of average load voltage and current.	
Converter applications:	
Industrial Applications of Half and Fully controlled converters to DC drives (Control of DC	
drives)	
Unit-IV	
Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and	07 Hrs
Current limit control strategies –Derivation of load voltage and currents with R, RL of Step	
down, Step up Chopper, Step up/Down Chopper – load voltage expression.	
Application of choppers to subway cars, Industrial drives, battery operated vehicles.	
Unit-V	
Classification of Choppers and Applications:	08 Hrs
Type A, Type B, Type C, Type D, Type E choppers and their industrial Applications, AC	
Chopper –phase control type.	
Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter,	
bridge inverter(single phase) - Voltage control techniques for inverters Pulse width	
modulation techniques UPS-online, offline (Principle of operation only	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the comprehensive working of different devices and their applications.						
CO2:	Analyze the application of skills in controlling and conversion of electrical energy.						
CO3:	Evaluate and distinguish the performance of converters and inverters.						
CO4:	Ability to implement their knowledge and skills in design of applications.						

1.	"Power Electronics", M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
2.	"Power Electronics : Circuits, Devices and Applications", M. H. Rashid, Prentice Hall of India, 2 nd

	Edition, ISBN : 0131228153, 9780131228153, 2004								
3.	"Power Electronics", P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.								
4	"Power Electronics" PS Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th								
	Edition.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	2	1	1	2	-	1
CO2	3	2	2	3	3	-	1	-	-	-	2	1
CO3	3	2	2	3	2	2	-	1	-	-	1	2
CO4	3	3	3	3	2	3	2		1	-	-	1

High-3: Medium-2: Low-1

	Semester VI				
PR	OJECT MANAGEMENT				
	Group E: Global Elective)				
Course Code : 16G6E07 CIE Marks : 100					
Credits : L: T: P: S:3:0:0:0 SEE Marks : 100					
Hours : 33L	SEE Duration : 03 H	[rs			
Course Learning Objectives: Th					
	d components of project management.				
2. To appreciate the integrated app					
	aging project cost and project procurements.				
	Unit – I				
portfolio management, program organizational project manageme	hat is project management, relationships among n management, project management, and nt, relationship between project management, nizational strategy, business value, role of the	06 Hrs			
	UNIT – II				
project management, project state cycle. Project Integration Manageme	roject life cycle: Organizational influences on holders & governance, project team, project life nt: Develop project charter, develop project e project work, monitor & control project work, close project or phase. UNIT – III	08 Hrs			
Project Scone Managements Dr	oject scope management, collect requirements	07 Hrs			
define scope, create WBS, validate Project Time Management: P	e scope, control scope. Plan schedule management, define activities, tivity resources, estimate activity durations,	07 1113			
	UNIT – IV				
budget, control costs.	ect Cost management, estimate cost, determine Plan quality management, perform quality	06 Hrs			
	UNIT – V	06 11			
qualitative risk analysis, perform control risk.	an risk management, identify risks, perform quantitative risk analysis, plan risk resources, ent: Project Procurement Management, conduct ts, close procurement.	06 Hrs			
Course Outcomess After astro-4	mough this sources the student will be able to				
	nrough this course the student will be able to				
Understand the concepts, too	ols and techniques for managing large projects.				

CO2 Explain various sub processes in the project management frameworks.

CO3 Analyze and evaluate risks in large and complex project environments.

CO4 Develop project plans for various types of organizations.

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

	Semester VI						
	VIRTUAL INSTRUMENTATION						
	(Group E: Global Elective)						
Cours	se Code:16G6E08		CIE Marks: 100				
Credits/Week: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hours:35L SEE Duration: 3Hrs							
Cours	Course Learning Objectives: The students will be able to						
1	Understand the difference between conventional and graphical programming, basic data						
	acquisition concepts.						
2	Differentiate the real time and virtual instrument.						
3	3 Develop ability for programming in LabVIEW using various data structures and program						
	structures.						
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with						
	LabVIEW.		_				

UNIT-I	
Graphical Programming Environment:	06 Hrs
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction	
to LabVIEW, Components of LabVIEW and Labels.	
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code	
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch	
actions, String data types, enum, ring, Dynamics.	
UNIT-II	
Fundamentals of Virtual Instrumentation Programming:	09 Hrs
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.	
Timing function: Timing VI, elapsed time, wait function.	
Case structures, formula node, Sequence structures, Arrays and clusters, visual display	
types- graphs, charts, XY graph. Local and Global variables.	
UNIT-III	
Error Handling- error and warning, default error node, error node cluster, automatic and	08 Hrs
manual error handling.	
String Handling: Introduction, String Functions, LabVIEW String Formats.	
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.	
Design patterns: Producer/consumer, event handler, derived design pattern, Queued	
message handler, Producer/consumer (events), Producer/consumer (state machine).	
UNIT-IV	
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal	06 Hrs
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.	
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,	
DAQ Assistants, Analysis Assistants.	
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,	
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.	
UNIT-V	
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process	
Communication, Notifier, Semaphore, Data Sockets.	
Simulation of systems using VI: Development of Control system, Image acquisition and	
processing.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data							
	Acquisition.							
CO2:	Apply the theoretical concepts to realize practical systems.							
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.							
CO4:	Create a VI system to solve real time problems using data acquisition.							

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3 rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

		Semester VI						
	INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT							
	(Group E: Global Elective)							
	urse Code: 16G6E09		CIE Marks: 100					
	edits: L:T:P:S: 3:0:0:0		EE Marks: 100					
Hours : 36L SEE Duration: 3Hrs								
	urse Learning Objectives: The s							
1	Learn Android application develo							
2	Understand mobile application an							
3	Define Android specific program	e 1	activities, intents, fragments	, services,				
	broadcast receivers and content p							
4	Describe sensors like motion s							
	commonly embedded in Android		pplication programming inte	erface.				
		UNIT I						
	erview of Software platforms an	-	*	07 Hrs				
	tform and tools, Programming	language, Emulator,	SDK and Development					
	vironments							
	eating Applications and Activ							
	eating Applications and Activities;	Architecture Patterns (M	(VC); Android Application					
Lif	ecycle.							
		UNIT II						
	er Interface Design: Fundame	ntal Android UI Desig	gn; Introducing Layouts;	07 Hrs				
	oducing Fragments.							
	ents and Broadcasts: Introduci	ng Intents; Creating Inte	ent Filters and Broadcast					
Ree	ceivers.							
		UNIT III						
	tabase and Content Providers:			07 Hrs				
	ntent Values and Cursors; Wo							
Pro	viders; Using Content Providers; (· · · · · · · · · · · · · · · · · · ·	id Content Providers.					
		UNIT IV						
	cation Based Services, Telephon		•	08 Hrs				
	Emulator with Location-Based							
	Proximity Alerts; Using the Geocoder; Example: Map-based activity; Hardware Support							
for	for Telephony; Using Telephony; Introducing SMS and MMS.							
		UNIT V						
Ha	rdware Support and Devices (A		JSING THE CAMERA):	07 Hrs				
	ng Sensors and the Sensor M							
	entation; Introducing the Environ							
	dio Effects; Using the Camera; Re							
Co	urse Outcomes: After completing	the course the students	s will be able to					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Assess the basic framework and usage of SDK to build GUI and apply advanced						
	technologies in developing Android mobile applications.						
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file						
	systems (internal and external storage), and SQLite database						
CO3:	Articulate the communication programming features and capabilities of Android platforms.						
CO4:	Design and create innovative, sophisticated mobile applications using Android platform.						

Refe	Reference Books							
1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley							
	Publishing, ISBN: 9781118102275							
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake							
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332							
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3 rd Edition,							
	Pragmatic Programmers, LLC.ISBN: 9781934356562							
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace							
	Independent Publishing Platform, ISBN: 9781519722089							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

		Semeste	r VI				
		Course Title: AUTOMOT	IVE ENGINEERING				
		(Group E: Glob	al Elective)				
Course Code:		16G6E10	CIE Marks: 100				
Credits: L:T:P:S		3:0:0:0	SEE Marks: 100				
Hours:		36L	SEE Duration: 3Hrs				
Cou	rse Learning Ob	jectives: The students will be	able to				
1	Identify the diff	erent sub-systems in automobil	es.				
2	Describe the fur	nctions of each of the sub-system	ms and its effect.				
3	Discuss fuel inje	Discuss fuel injection, transmission, braking, steering, suspension, air intake and exhaust					
3	systems.						
4	Explain the imp	ortance of selection of suitable	sub-system for a given performance				
4	requirement.						

UNII-I	
Automobile Engines	06 Hrs
Classifications of Internal Combustion Engines based on no. of cylinders, Arrangement	
of cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.	
Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine.	
Direct and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel,	
LPG and Natural Gas For automotive applications. Fuel properties- Octane number and	
Cetane number. Pollutants and Emission norms- Regulated pollutants and its effects,	
Regulations as per emission norms.	
UNIT-II	
Engine Auxiliary Systems:	08 Hrs
AirIntake and Exhaust System- Working principle of Air filters, Intake manifold,	
Turbocharger, Intercooler, Exhaust manifold, Catalytic convertor, Exhaust Gas	
Recirculation system, Muffler.	
Cooling system- Components, working principle, Coolant.	
Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.	
Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter.	
Working of ignition system, Battery, Immobilizer.	
UNIT-III	
Transmission:	08 Hrs
Clutch- Classification and working, Gear box- Classification, Working of sliding mesh	
and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential	
assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing	
classification of tyres, Radial, Tubeless.	
UNIT-IV	
UNII-IV	
Vehicular Auxiliary Systems:	06 Hrs
	06 Hrs
Vehicular Auxiliary Systems:	06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs.	06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake,	06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems.	06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering.	06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV.	06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic	06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic Stability Program, Air bags, Crash testing methods.	06 Hrs 06 Hrs
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic Stability Program, Air bags, Crash testing methods. UNIT-V	

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Describe the different types of automotive systems. (L1-L2)					
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)					
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)					
4	Evaluate the performance of engines by determining Brake Power. (L6)					

1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,							
	SAE International, ISBN: 0768009871							
2.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527.							
3.	3. Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,							
	1 st Edition , 2009 , ISBN: 9781856175784.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

	Semester VI							
	MOBILE NETWORK SYSTEMS AND STANDARDS							
	(GROUP E: GLOBAL ELECTIVE)							
Cou	rse Code: 16G6E11		CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100								
Hou	rs: 34L		SEE Duration: 03Hrs					
Cou	rse Learning Objectives: The student	s will be able to						
1	Understand land mobile concepts, radi	io link design and cell	ular network.					
2	Compare the standards of WPAN, WLAN and WMAN.							
3	Analyze WPAN, WLAN and WMAN standards and their architecture.							
4	Design and demonstrate wireless netw	orks for various appli	cations.					

 Cellular Wireless Networks: Principles of cellular Networks, cellular system
 O6 Hrs

 components and Operations, channel assignment, Attributes of CDMA in cellular
 06 Hrs

 system.
 UNIT-II

Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE. 08 Hrs UNIT-III

Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in
the network.06 Hrs

UNIT-IV							
Wireless Personal Area Networks: Network architecture, components,	08 Hrs						
Applications, Zigbee, Bluetooth.							
Wireless Local Area networks: Network Architecture, Standards, Applications.							
UNIT-V							
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages,							
WMAN Network architecture, Protocols, Applications.	06 Hrs						

Course Outcomes: After completing the course, the students will be able to	
CO1	Describe the architectures and characteristics of different mobile networks. (L1-L2)
CO2	Apply the Network standards to a suitable application (L3)
CO3	Analyze the operation of various network technologies and standards (L4)
CO4	Evaluate the performance of various network technologies (L5)

Reference Books	
1	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education,
	ISBN-13:978-0-19-806066-6.
2	Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010,
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
	Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

Low-1 Medium-2 High-3

	Semester VI				
	APPLIED PARTIAL DIFFERENTIAL EQUATIONS				
		(Global Elective)			
Cou	rse Code:16G6E12		CIE Marks: 100		
Crec	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Hours: 35L			SEE Duration: 3Hrs		
Cou	Course Learning Objectives:				
1	Adequate exposure to learn basics of partial differential equations and analyze mathematical				
	problems to determine the suitable analytical technique.				
2	Use analytical techniques and finite element technique for the solution of elliptic, parabolic and				
	hyperbolic differential equations.				
3	3 Solve initial value and boundary value problems which have great significance in engineering				
	practice using partial differential equations.				
4	Identify and explain the basics of partial differential equations and use the same to analyze the				
	behavior of the system.				

Unit-I		
Partial Differential Equations of first order:	07 Hrs	
Introduction to formation of partial differential equations, Cauchy problem, Orthogonal		
surfaces, First order non-linear partial differential equations-Charpit's method,		
Classification and canonical forms of partial differential equations.		
Unit – II		
Elliptic Differential Equations:	07 Hrs	
Derivation of Laplace and Poisson equation, Separation of variable method, Dirichlet		
problem, Neumann problem, Solution of Laplace equation in cylindrical and spherical		
coordinates.		
Unit -III		
Parabolic Differential Equations:		
Formation and solution of Diffusion equation, Dirac-Delta function, Separation of variable		
method, Solution of Diffusion equation in cylindrical and spherical coordinates.		
Unit –IV		
Hyperbolic Differential Equations:	07 Hrs	
Formation and solution of one dimensional wave equation, D'Alembert's solution,		
vibrating string, Forced vibration, Periodic solution of one dimensional wave equation in		
cylindrical and spherical coordinates, Vibration of Circular membrane.		
Unit –V		
Numerical solutions of Partial Differential Equations:		
Finite difference method for Elliptic, Parabolic and Hyperbolic partial differential		
equations, Introduction to the finite element method-simple problems.		

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,					
	hyperbolic and elliptic differential equations using analytical and numerical methods.					
CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,					
	hyperbolic and elliptic differential equations arising in the field of science and engineering.					
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to					
	solve and optimize the solution using the appropriate governing equations.					
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of					
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.					

Refere	Reference Books				
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3rd Edition, 2012,				
-	ISBN: 978-81-203-3217-1.				
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10th Edition, 2016, ISBN: 978-				
2	81-265-5423-2.				
	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar,				
3	R. K. Jain, New Age International Publishers, 6th Edition, 2012, ISBN-13: 978-81-224-2001-				
	2.				
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005,				
	ISBN 13: 9780072466850.				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

S	Semester VI
GLOBA	AL ELECTIVE-E
AIRCE	RAFT SYSTEMS
	(Theory)
Course Code: 16GE6B13	CIE Marks: 100
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100
Hours: 36L	SEE Duration: 3Hrs

Course Learning Objectives:

To e	To enable the students to:				
1	1 List the various systems involved in the design of an aircraft				
2	2 Demonstrate the technical attributes of all the subsystems of an aircraft				
3	3 Explain the significance of each systems and its subsystems for developing an airplane				
4	Demonstrate the integration of the systems with the airplane				

Unit-I			
Flight Control Systems : Primary and secondary flight controls, Flight control linkage			
system, Conventional Systems, Power assisted and fully powered flight controls.			
Unit – II			
Aircraft Hydraulic & Pneumatic Systems : Components of a typical Hydraulic system,			
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and	08 Hrs		
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction	00 1115		
mechanism.			
Unit -III			
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its			
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel	07 Hrs		
control unit.			
control unit.			

Unit -IV	
Environmental Control Systems : Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids.	07 Hrs
Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.	
Unit -V	
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.	07 Hrs

	Course Outcomes:				
At t	At the end of this course the student will be able to :				
1	1 Categorise the various systems required for designing a complete airplane				
2	2 Comprehend the complexities involved during development of flight vehicles.				
3	3 Explain the role and importance of each systems for designing a safe and efficient flight vehicle				
4	Demonstrate the different integration techniques involved in the design of an air vehicle				

Ref	Reference Books						
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.						
2	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

High-3 : Medium-2 : Low-1

	Semester V/VI									
	PROFESSIONAL PRACTICE – III									
	EMPLOYABILITY SKILLS AND PROFESSIONAL DEVELOPMENT OF									
ENGINEERS										
Course Code: 16HS68 CIE Marks: 50										
Cr	redits: L:T:P:S: 0:0:1:0		SEE Marks: NA							
Ho	ours: 18 Hrs		CIE Duration: 02 Hrs							
Co	ourse Learning Objectives: The stude	nts will be able to								
1	Improve qualitative and quantitative problem solving skills.									
2	Apply critical and logical thinking process to specific problems.									
3	Ability to verbally compare and contrast words and arrive at relationships between concepts, base									
3	on verbal reasoning.									
4	Applying good mind maps that help in communicating ideas as well as in technical documentation									

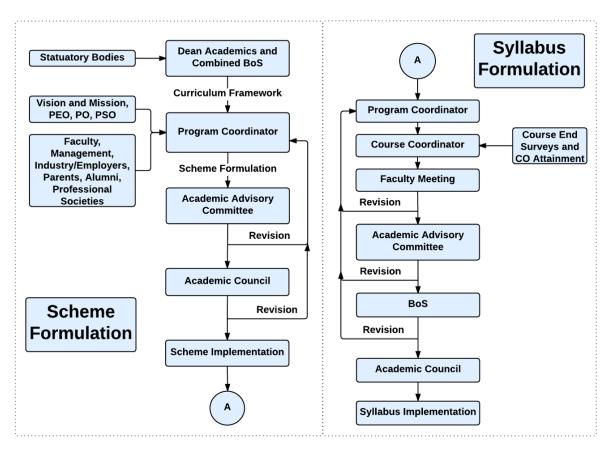
V Semester	
UNIT-I	
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vessbulary, fraction desirals, digit places etc.	06 Hrs
Number Systems, Math Vocabulary, fraction decimals, digit places etc.	
Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.	
Analytical Reasoning, Critical Reasoning.	
UNIT-II	
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies &	06 Hrs
developing Higher Vocabulary, Grammar, Comprehension and Application,	
Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude.	
Group Discussion- Theory & Evaluation : Understanding why and how is the	
group discussion conducted, The techniques of group discussion, Discuss the FAQs	
of group discussion, body language during GD.	
UNIT-III.A	
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better	06 Hrs
presentation of facts.	
VI Semester	
UNIT-III.B	
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation	06 Hrs
problems.	
	0.011
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews -	06 Hrs
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress	06 Hrs
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews -	06 Hrs

Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender 06 Hrs sensitivity

Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.

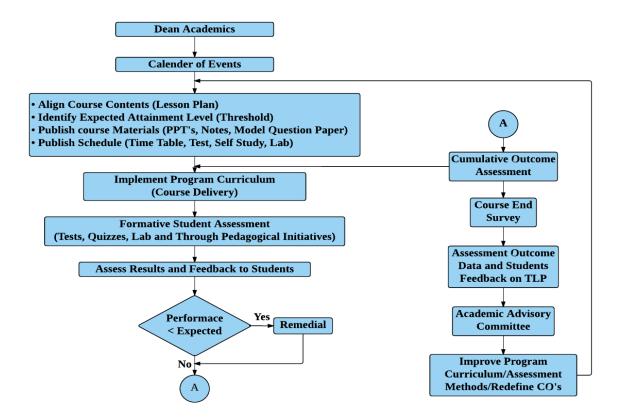
Cou	Course Outcomes: After completing the course, the students will be able to									
CO	CO1: Inculcate employability skill to suit the industry requirement.									
CO2	Analyze problems using quantitative and reasoning skills									
CO	Exhibit verbal aptitude skills with appropriate comprehension and application.									
CO	Focus on Personal Strengths and Competent to face interviews and answer									
Refe	rence Books									
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:									
	0743272455									
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:									
	789380914787									
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,									
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204									
4.	Aptimithra: Best Aptitude Book ,Ethnus,2014 Edition, Tata McGraw Hill ISBN:									
	9781259058738									

Scheme of Continuous Internal Examination (CIE)

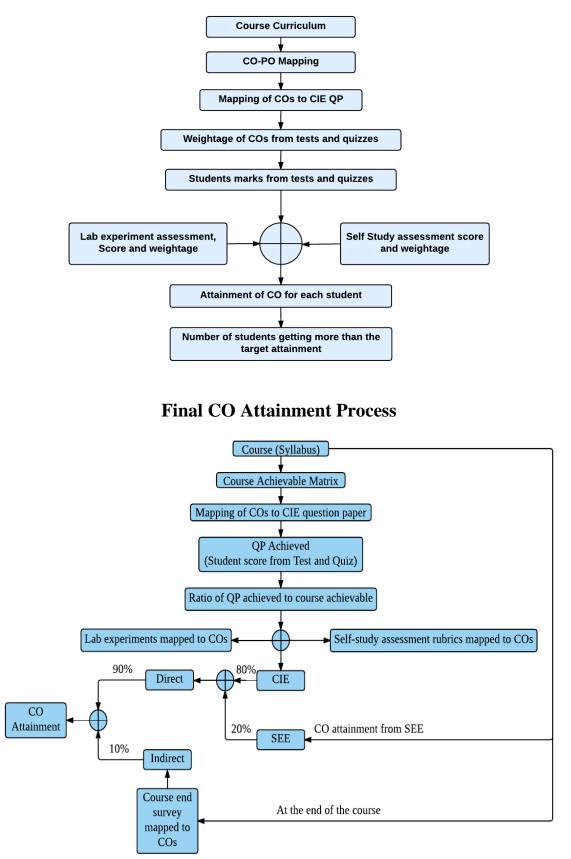

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage								
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35									
	Marks Descriptive answers) after completion of Unit-1, Unit-2 and Unit									
	-3.A for 18 hours of training sessions.									
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35	50%								
	Marks Descriptive answers) after completion of Unit -3B, Unit - 4 and									
	Unit-5 for 18 hours of training sessions.									
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for 50 marks									
	(Average of Test1 and Test 2 $(T1+T2/2)$). The grading is provided by the Coe. The									
	final CIE marks is scrutinized by the committee comprising of HSS- Chairman,									
	Training Co-ordinator, respective department Staff Placement co-ordinator before									
	submitting to CoE.									

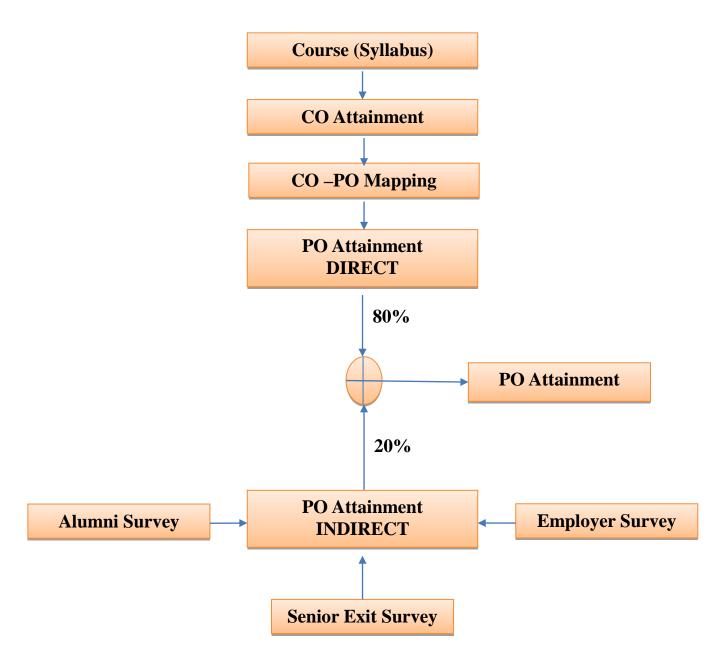
SEE: NA


CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					1		1	1	1	2	1
CO2	1	2	2					1	2	1	2	1
CO3			3			1		2	1	2	1	
CO4						1	3	1	1	1	1	

Low-1 Medium-2 High-3



Curriculum Design Process


Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.