

Undergraduate Programs

ಆರ್.ಬಿ ಕಾಲೇಜ್.ಆಫ್.ಇರಜನಿಯರಿಂಗ್

Bachelor of Engineering (B.E) in

Computer Science and Engineering

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

			CURRICULUM STRUCTURE					
999 TH NIRF RANKING IN ENGINEERING (2024)			61 CRED PROFESSIO CORES (PC)	NAL	23 CREDITS BASIC SCIENCE			
	BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) AV ZEE DIGITAL		22 ENGINEERING SCIENCE	18 PROJECT WORK / INTERNSHIP		12 OTHER ELECTIVES		
1001+ SUBJECT RANKING (ENGINEERING)	801+ SUBJECT RANKING (COMPUTER SCIENCE)		12 PROFESSIONAL ELECTIVES	HUMANITIE		160		
HRF 2023 ENGINEERING RANKING INDIA NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)		ELECTIVES SOCIAL SCIENCE "ABILITY ENHANCEMENT COURSES (AEC), UNIVERSAL HUMAN VALUES (UHV), INDIAN KNOWLEDGE SYSTEM (IKS), YOGA.		5 (AEC),	CREDITS TOTAL		
17 Centers of Excellence	Centers of Competence		MOUS: 90 INSDUSTR INSTITUTI	RIES / AC		IIC & ABROAD		
212 Publications On Web Of Science	669 Publications Scepus (2023 - 24)							
1093 Citations)93 <mark>70</mark> Patents Filed		EXECUTED MORE THAN RS.40 CRORES WORTH SPONSORED RESEARCH PROJECTS &					
Skill Based Laboratories Across Four Semesters	Patents Granted		CONSULTANCY WORKS SINCE 3 YEARS					

Undergraduate Programs

ಆರ್.ಬಿ ಕಾಲೇಜ್.ಆಫ್.ಇರಜನಿಯರಿಂಗ್

Bachelor of Engineering (B.E) in

Computer Science and Engineering

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

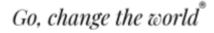
B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

Go, change the world

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology.

MISSION


- 1.To deliver outcome-based Quality education, emphasizing on experiential learning with the state-of-the-art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics, and social sensitivity.
- 4.To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5.To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT VISION

To achieve leadership in the field of Computer Science& Engineering by strengthening fundamentalsand facilitating interdisciplinary sustainable research to meet the ever growing needs of the society.

DEPARTMENT MISSION

- To evolve continually as a centre of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

PROGRAM EDUCATIONAL OBJECTIVES(PEOs)

- **PEO1:** Develop Graduates capable of applying the principles of mathematics, science, core engineering and Computer Science to solve real-world problems in interdisciplinary domains.
- **PEO2:** To develop the ability among graduates to analyze and understand current pedagogical techniques, industry accepted computing practices and state-of-art technology.
- **PEO3:** To develop graduates who will exhibit cultural awareness, teamwork with professional ethics, effective communication skills and appropriately apply knowledge of societal impacts of computing technology.
- **PEO4:** To prepare graduates with a capability to successfully get employed in the right role /become entrepreneurs to achieve higher career goals or takeup higher education in pursuit of lifelong learning.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	System Analysis and Design
	The student will be able to:
	1. Recognize and appreciate the need of change in computer architecture, data organization and analytical methods in the evolving technology.
	2. Learn the applicability of various systems software elements for solving design problems.
	3. Identify the various analysis & design methodologies for facilitating development of high quality system software products with focus on performance optimization.
	4. Display team participation, good communication, project management and document skills.
PSO2	Product Development
	The student will be able to:
	1. Demonstrate the use of knowledge and ability to write programs and integrate them with the hardware/software products in the domains of embedded systems, databases/data analytics, network/web systems and mobile products.
	2. Participate in planning and implement solutions to cater to business – specific requirements displaying team dynamics and professional ethics.
	3. Employ state-of-art methodologies for product development and testing / validation with focus on optimization and quality related aspects.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Go, change the world[®]

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	РҮ	Physics
9.	СҮ	Chemistry
10.	MA	Mathematics
11.	AS	Aerospace Engineering
12.	AI & ML	Artificial Intelligence & Machine Learning
13.	BT	Biotechnology
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	CV	Civil Engineering
17.	EC	Electronics & Communication Engineering
18.	EE	Electrical & Electronics Engineering
19.	EI	Electronics & Instrumentation Engineering
20.	ET	Electronics & Telecommunication Engineering
21.	IM	Industrial Engineering & Management
22.	IS	Information Science & Engineering
23.	ME	Mechanical Engineering

INDEX

	V Semester						
S1. No.	Course Code	Course Title	Page No.				
1.	HS251TA	Principles of Management and Economics	10				
2.	CD252IA	Database Management Systems (Common to CS & IS, AI, CD)	12				
3.	AI253IA	Artificial Intelligence and Machine Learning (Common to CS &IS, CD)	15				
4.	AI254TA	Theory of Computation (Common to CS& IS)	19				
5.	XXX55TBX	Professional Core Elective-I (Group-B)	22-36				
6.	AI256TCX	Professional Core Elective-II (Group C)	****				

	VI Semester						
S1. No.	Page No.						
1.	HS361TA	Entrepreneurship and Intellectual Property Right	39				
2.	CS362IA	Network Programming and Security	42				
3.	CS363IA	Compiler Design (Common to CS & IS)	45				
4.	IS364TA	Software Engineering with Agile Technologies (Common to CS, IS,CD & CY)	48				
5.	XX365TDX	Professional Core Elective-III (Group – D)	50-65				
6.	XX266TEX	Institutional Electives – I (Group F)	66-108				
7.	CS367P	Interdisciplinary Project					

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India Go, change the world[®]

Bachelor of Engineering in Computer Science & Engineering [CS] FIFTH SEMESTER

Slo. No.	BoS	Course Code	Course Title	C	credit .	Alloca	ation	Category	Max M CI		SEE Duration (H)	Max Ma SEE	
				L	Т	Ρ	Total		Theory	Lab	Hours	Theory	Lab
1	HS	HS251TA	Principles of Management and Economics	3	0	0	3	Theory	100		3	100	
2	CD	CD252IA	Database Management Systems (Common to CS & IS, AI, CD, CY)	3	0	1	4	Theory + Practice	100	50	3	100	50
3	IS	IS353IA	Artificial Intelligence and Machine Learning Common to CS, CY, CD & IS)	3	0	1	4	Theory + Practice	100	50	3	100	50
4	CS	CS354TA	Theory of Computation (Common to CS, CY, CD & IS)	3	1	0	4	Theory	100		3	100	
5	CS	XX355TBX	Professional Core Elective-I (Group-B)	3	0	0	3	Theory	100		3	100	
6	CS	XX256TCX	Professional Core Elective-II (Group C)	2	0	0	2	NPTEL			2	50	
					Total		20						

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	Professional Core Elective-I (Group-B)						
Sl. No.	Course Code	Course Title					
1	CS355TBA	Soft Computing					
2	CS355TBB	Advanced Algorithms					
2		(Common to CS, IS & AI)					
3	IS355TBC	Natural Language Processing					
5		(Common to CS,CD & IS)					
4	IS355TBD	Cloud Computing					
		(Common to CS,CD &IS)					
5	CS355TBE	Quantum Computing					
6	CS355TBF	Linux Internals					

	Professional Core Elective-II (Group-C)							
Sl. No.	Course Code	Course Title						
1	AI256TCA	Information Security - 5 - Secure Systems Engineering						
1		(Common to CS,CD,CY,IS & AI)						
2	CS256TCB	AI: Constraint Satisfaction						
2		(Common to CS,CD & CY)						
3	CS256TCC	Foundation of Cloud IoT Edge ML						
5		(Common to CS,CD,CY & IS)						
Λ	CS256TCD	Edge Computing						
4		(Common to CS,CD,CY & AI)						
5	IS256TCE	Introduction To Soft Computing						
5		(Common to CS,CD,CY & IS)						

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India Go, change the world[®]

Bachelor of Engineering in Computer Science & Engineering [CS] SIXTH SEMESTER

Slo. No.	BoS	Course Code	Course Title	Credit Allocation		Credit Allocation		Category	Max Marks CIE		SEE Duration (H)	Max Ma SEE	
				L	Т	Ρ	Total		Theory	Lab	Hours	Theory	Lab
1	HS	HS361TA	Entrepreneurship and Intellectual Property Rights	3	0	0	3	Theory	100		3	100	
2	CS	CS362IA	Network Programming and Security	3	0	1	4	Theory + Practice	100	50	3	100	50
3	CS	CS363IA	Compiler Design (Common to CS & IS)	3	0	1	4	Theory + Practice	100	50	3	100	50
4	IS	IS364TA	Software Engineering with Agile Technologies (Common to CS, IS, CD & CY)	4	0	0	4	Theory	100		3	100	
5	CS	XX365TDX	Professional Core Elective-III (Group- D)	3	0	0	3	Theory	100		3	100	
6	XX	XX266TEX	Institutional Electives – I (Group E)	3	0	0	3	Theory	100		3	100	
7	CS	CS367P	Interdisciplinary Project	0	0	3	3	Project		100	3		100
					Total		24						

	Professional Core Elective-III (GROUP-D)							
Sl. No. Course Code Course Title								
1.	CS365TDA	Computer Vision (Common to CS & CD)						
2.	CS365TDB	Operations Research						
3.	CS365TDC	Web Frameworks (Common to CS & IS)						
4.	AI365TDD	Generative Artificial Intelligence (Common to AI, CS, CD & IS)						
5.	CS365TDE	Big Data Systems						
6.	CS365TDF	Cryptography & Network Security						

	Institutional Elective-I (GROUP-E)						
Sl. No.	Course Code	Course Title					
1.	AS266TEA	Fundamentals of Aerospace Engineering					
2.	BT266TEB	Bioinformatics					
3.	CH266TEC	Industrial Safety Engineering					
4.	CS266TED	Robotics Process Automation					
5.	CV266TEE	Intelligent Transport Systems					
6.	CV266TEF	Integrated Health Monitoring of Structures					
7.	CM266TEG	Advanced Energy Storage for E-Mobility					
8.	EC266TEH	Human Machine Interface (HMI)					
9.	EE266TEJ	Energy Auditing and Standards					
10.	EI266TEK	Biomedical Instrumentation					
11.	ET266TEM	Telecommunication Systems					
12.	ET266TEN	Mobile Communication Networks and Standards					
13.	IS266TEO	Mobile Application Development					
14.	IM266TEQ	Elements of Financial Management					
15.	IM266TER	Optimization Techniques					
16.	ME266TES	Automotive Mechatronics					
17.	MA266TEU	Mathematical Modelling					
18.	MA266TEV	Mathematics of Quantum Computing					
19.	HS266TEW	Applied Psychology for Engineers					
20.	HS266TEY	Universal Human Values					

Bengaluru - 560059, Karnataka, India

Semester : V									
	PRINCIPLES OF MANAGEMENT & ECONOMICS (Theory)								
Course Code	Course Code : HS251TA CIE : 100 Marks								
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Total Hours	:	45 Hrs		SEE Duration	:	3.00 Hours			
			Unit-I			06 Hrs			
Introduction to N	lana	agement: Managen	nent Functions - PO	SDCORB – an ove	ervie	ew, Management levels &			
						tive Theory, Quantitative			
				Hawthorne Studies,	C	ontemporary Approach:			
Systems Theory, C	onti	ngency Theory. Cas	elets / Case studies						
			Unit – II	~ . ~		10 Hrs			
				6		ans, Strategic Management			
					1t1V	e Strategies – Porters Five			
• •			es. Caselets / Case st			w Wert Creation			
						re - Work Specialization, tralization, Formalization,			
-		Structures. Caselet			cen	Inalization, Formalization,			
Wiechanistie & Org	ame	Surctures. Caserer	Unit –III			10 Hrs			
Motivation: Early	The	eories of Motivatio		chy of Needs Theo	orv.	McGregor's Theory X &			
•				•		n: Adam's Equitytheory,			
•	-	heory. Caselets / Ca				1 5 57			
Leadership: Beha	vior	al Theories: Blake	& Mouton's Manag	erial Grid, Conting	ency	y Theories of Leadership:			
Hersey & Blanc	hard	's Situational Le	adership, Contempo	rary Views of I	Lead	ership: Transactional &			
Transformational L	eade	ership. Caselets / Ca	ase studies						
			Unit –IV			10 Hrs			
			omics and Macroeco	nomics, Circular fl	OW	model of economics, An			
Overview of Econo		•							
						Goods and Services, Price			
						cals on determining price			
elasticity of demand and supply. Changes in Income and Prices Affecting Consumption Choices, Monopolistic									
Competition, Oligopoly.									
Unit –V 09 Hrs Macroeconomic Indicators: Prices and inflation, Consumer Price Index, Exchange rate, Labor Market, Money									
				-	0	easures of GDP: Outcome			
-			L	L					
Method, Income method and Expenditure method, Numericals on GDP Calculations, ESG an overview. Macroeconomic models - The classical growth theory, Keynesian cross model, IS-LM-model, The AS-AD model.									

Macroeconomic models- The classical growth theory, Keynesian cross model, IS-LM-model, The AS-AD model, The complete Keynesian model, The neo-classical synthesis. National Budgeting process in India

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Elucidate the principles of management theory & recognize the characteristics of an organization.				
CO2	Demonstrate the importance of key performance areas in strategic management and design				
	appropriate organizational structures and possess an ability to conceive various organizational				
	dynamics.				
CO3	Compare and contrast early and contemporary theories of motivation and select and implement the				
	right leadership practices in organizations that would enable systems orientation.				
CO4	Demonstrate an understanding on the usage and application of basic economic principles.				
CO5	Appreciate the various measures of macro-economic performance and interpret the prevailing economic				
	health of the nation.				

Refe	rence Books:
1.	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 15 th Edition, 2021, Pearson Education Publications, ISBN: 13: 978-0-13-558185-8
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 2009, PHI, ISBN: 81-203-0981-2.
3.	Principles of Microeconomics, Steven A. Greenlaw, David Shapiro, 2 nd Edition, 2017, ISBN:978- 1-947172-34-0
4.	Macroeconomics: Theory and Policy, Dwivedi D.N, 5 th Edition, 2021, McGraw Hill Education; ISBN : 9789353163334

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Some of the Experiential learning topics may include Reading Leadership books and summarizing, Analysis and interpretation of various economic reports, Visit to various organizations to understand organizational mechanics. Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO. CONTENTS						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(Maxim	(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10 Unit 5: Question 9 or 10						
	TOTAL	100				

			Semester: V						
			SE MANAGEMEN						
	Category: PROFESSIONAL CORE COURSE								
		(6	(Theory and La	,					
Course Code	Τ.	CD252IA	Common to CS & IS,	CIE	Τ.	1	00 1 6	50 N	Tombra
Course Code Credits: L:T:P	:	3:0:1		SEE	:	_			<u>Iarks</u> Iarks
Total Hours	:	45L+30P		SEE Duration	:		+3E		
Total Hours	•	4311+301		SEE Duration	•		τ 31 .	IUUI	13
			Unit-I						09 Hrs
		-	-Databases and D						
			ta Models, Schemas	and Instances, Three	e-sch	ner	na Aro	chite	ecture and
Data Independenc	e, 'I	The Database System	n Environment.						
Data Modeling II	sinc	the Entity-Relation	o nship Model- High-	Level Concentual D	ata]	М	ndels f	For T	Database
_	-		Entity Types, Entity	-					
÷ .			onstraints; Weak Ent		Ксу	з,	Relati	Ulisi	inp types,
Relationship Sets,	KU			ity Types.					00 11
Defining the FD	Do	sign for the COM	<u>Unit – II</u> PANY Database; E	P Diagrama Namin	a C	1.0.00	<u> </u>		09 Hrs
6			FANT DATADASE: E				vontic	ma	and Dacian
Issues FR-to-Rel	atio	6		R Diagrams, Namin	ig C	on	ventio	ons a	and Design
Issues, ER- to-Rel Relational Mode		onal Mapping.	,	0	C				e
Relational Mode	l an	nal Mapping. Id Relational Alge	bra-Relational Mode	el Concepts; Relatio	nal	M	odel (Cons	straints and
Relational Mode Relational Databa	l an ise S	nal Mapping. Id Relational Alge Schemas; Update O	bra- Relational Mode perations and Dealin	el Concepts; Relatio g with Constraint V	nal iola	M tio	odel (ns; Ui	Cons nary	straints and Relational
Relational Mode Relational Databa Operations: SELF	l an ise S ECT	nal Mapping. d Relational Alge Schemas; Update O and PROJECT; R	bra-Relational Mode	el Concepts; Relatio g with Constraint V perations from Set	nal iola	M tio	odel (ns; Ui	Cons nary	straints and Relational
Relational Mode Relational Databa Operations: SELF	l an ise S ECT	nal Mapping. d Relational Alge Schemas; Update O and PROJECT; R	bra- Relational Mode perations and Dealin Relational Algebra O	el Concepts; Relatio g with Constraint V perations from Set	nal iola	M tio	odel (ns; Ui	Cons nary	straints and Relational
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S	l an ise S ECT and	anal Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION; Exam - SQL Data Defini	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor	el Concepts; Relatio g with Constraint V perations from Set lational Algebra.	nal iola The	M tio eor	odel (ns; U1 y; Bir	Cons nary nary	straints and Relational Relational 09 Hrs
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update	l an ise S ECT and SQI e Sta	and Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION; Exam SQL Data Definit atements in SQL Mo	bra-Relational Mode perations and Dealin elational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor pre Complex SQL Re	el Concepts; Relatio g with Constraint V perations from Set elational Algebra.	nal iola The	M tio eor	odel (ns; Uı y; Bir eries i	Cons nary nary in S	straints and Relational Relational 09 Hrs QL; Insert,
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab	I an ise S ECT and SQI e Sta pase	anal Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION; Exam L- SQL Data Defini atements in SQL Mo Design - Functiona	bra-Relational Mode perations and Dealin celational Algebra O ples of Queries in Re <u>Unit –III</u> tion, Specifying Cor ore Complex SQL Re l Dependencies – De	el Concepts; Relatio g with Constraint V perations from Set elational Algebra. Instraints in SQL, Base trieval Queries. finition, Inference R	onal iola The sic (M tio eor Qu	odel (ns; Ui y; Bir eries i	Cons nary nary in S lenc	straints and Relational Relational 09 Hrs QL; Insert, we of sets of
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se	el an ise S ECT and SQI SQI e Sta base et of	anal Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION; Exam 	bra-Relational Mode perations and Dealin Relational Algebra O ples of Queries in Re <u>Unit –III</u> tion, Specifying Cor pre Complex SQL Re 1 Dependencies – De ns Based on Primary	el Concepts; Relatio g with Constraint V perations from Set lational Algebra. estraints in SQL, Bas etrieval Queries. finition, Inference R Keys; General Defin	onal iolat The sic (ules nitio	M tio eor Qu	odel (ns; Ui y; Bir eries i	Cons nary nary in S lenc	straints and Relational Relational 09 Hrs QL; Insert, we of sets of
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se	el an ise S ECT and SQI SQI e Sta base et of	anal Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION; Exam 	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor ore Complex SQL Re 1 Dependencies – De ns Based on Primary m;Properties of Relat	el Concepts; Relatio g with Constraint V perations from Set lational Algebra. estraints in SQL, Bas etrieval Queries. finition, Inference R Keys; General Defin	onal iolat The sic (ules nitio	M tio eor Qu	odel (ns; Ui y; Bir eries i	Cons nary nary in S lenc	straints and Relational Relational 09 Hrs QL; Insert, the of sets of and Third
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Bo	l an ise S ECT and SQL e Sta e Sta e sta oase et of oyce	and Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam L- SQL Data Defini atements in SQL Mo Design - Functiona FD's ; Normal Forr e-Codd Normal Forr	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat Unit –IV	el Concepts; Relatio g with Constraint V perations from Set elational Algebra. Instraints in SQL, Base etrieval Queries. finition, Inference R Keys; General Defin ional Decomposition	nal iola The sic (ules nitio	M tio cor Qu s, E ons	odel C ns; Un y; Bir eries i cquiva of Sec	Cons nary nary in S lenc	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Bo	el an se S ECT and SQL e Sta base et of oyce	anal Mapping. ad Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam - SQL Data Defini- atements in SQL Mo Design - Functiona FD's ; Normal Forre- Codd Normal Forre- ing Concepts- Intro-	bra-Relational Mode perations and Dealin Relational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor ore Complex SQL Re I Dependencies – De ns Based on Primary m;Properties of Relat Unit –IV oduction to transactio	el Concepts; Relatio g with Constraint V perations from Set elational Algebra. Instraints in SQL, Base trieval Queries. finition, Inference R Keys; General Defini ional Decomposition	nal iola The sic (ules nitio ns.	M tio eor Qu s, E ons	odel C ns; Un y; Bir eries i cquiva of Sec states	Cons nary nary in S lenc cond and	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Updata Relational Datab FD's, Minimal Se Normal Forms; Bo Transaction Proc operations, Desira	l an use S ECT and SQL e Sta base t of cess uble	anal Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam L- SQL Data Definit atements in SQL Mo Design - Functiona FD's ; Normal Forre- Codd Normal Forre- ing Concepts- Intro- properties of transa	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re <u>Unit –III</u> tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat <u>Unit –IV</u> oduction to transaction action, Schedules of t	el Concepts; Relatio g with Constraint V perations from Set lational Algebra. estraints in SQL, Bas estrieval Queries. finition, Inference R Keys; General Defin ional Decomposition on processing, Trans cransactions. Charact	nal iola The sic (ules nitio <u>us.</u>	M tio cor Qu s, E ons	odel C ns; Ui y; Bir eries i cquiva of Sec states g sche	Cons nary nary in S lenc cond and dule	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional es based on
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Updata Relational Datab FD's, Minimal Se Normal Forms; Be Operations, Desira Serializability: Se	l an use S ECT and SQL e Sta base t of cess uble	anal Mapping. Id Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam L- SQL Data Definit atements in SQL Mo Design - Functiona FD's ; Normal Forre- Codd Normal Forre- ing Concepts- Intro- properties of transa	bra-Relational Mode perations and Dealin Relational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor ore Complex SQL Re I Dependencies – De ns Based on Primary m;Properties of Relat Unit –IV oduction to transactio	el Concepts; Relatio g with Constraint V perations from Set lational Algebra. estraints in SQL, Bas estrieval Queries. finition, Inference R Keys; General Defin ional Decomposition on processing, Trans cransactions. Charact	nal iola The sic (ules nitio <u>us.</u>	M tio cor Qu s, E ons	odel C ns; Ui y; Bir eries i cquiva of Sec states g sche	Cons nary nary in S lenc cond and dule	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional es based on
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Be Transaction Proo operations, Desira Serializability: Se schedule	and and ECT and SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL	and Mapping. and Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam - SQL Data Definit atements in SQL Mo Design - Functiona FD's ; Normal Forr -Codd Normal Forr ing Concepts- Intro- properties of transa , Non serial and Co	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat Unit –IV oduction to transaction tetion, Schedules of to onflict- Serializable s	el Concepts; Relatio g with Constraint V perations from Set <u>lational Algebra</u> . straints in SQL, Bas etrieval Queries. finition, Inference R Keys; General Defin ional Decomposition on processing, Trans transactions. Charact chedules, Testing fo	nal iolar The sic (ules nitio actio teriz or Co	M tio cor Qu s, E ons on cing	odel C ns; Un y; Bir eries i cquiva of Sec states g sche flict se	Cons nary nary in S lenc cond and dule	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional tes based on izability of
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Be Transaction Proo operations, Desira Serializability: Se schedule	l am ase S and ECT and SQL SQL SQL e Sta base t of cess able crial, ntro	and Mapping. and Relational Alge Schemas; Update Op and PROJECT; R DIVISION ; Exam - SQL Data Definit atements in SQL Moc Design - Functiona FD's ; Normal Forr -Codd Normal Forr ing Concepts- Intro- properties of transa , Non serial and Co of Techniques: Tw	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re <u>Unit –III</u> tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat <u>Unit –IV</u> oduction to transaction action, Schedules of t	el Concepts; Relatio g with Constraint V perations from Set <u>lational Algebra</u> . straints in SQL, Bas etrieval Queries. finition, Inference R Keys; General Defin ional Decomposition on processing, Trans transactions. Charact chedules, Testing fo	nal iolar The sic (ules nitio actio teriz or Co	M tio cor Qu s, E ons on cing	odel C ns; Un y; Bir eries i cquiva of Sec states g sche flict se	Cons nary nary in S lenc cond and dule	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional tes based on izability of
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Updata Relational Datab FD's, Minimal Se Normal Forms; Bo Transaction Proc operations, Desira Serializability: Se schedule Concurrency Co	l am ase S and ECT and SQL SQL SQL e Sta base t of cess able crial, ntro	and Mapping. and Relational Alge Schemas; Update Op and PROJECT; R DIVISION ; Exam - SQL Data Definit atements in SQL Moc Design - Functiona FD's ; Normal Forr -Codd Normal Forr ing Concepts- Intro- properties of transa , Non serial and Co of Techniques: Tw	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat Unit –IV oduction to transaction tetion, Schedules of to onflict- Serializable s	el Concepts; Relatio g with Constraint V perations from Set <u>lational Algebra</u> . straints in SQL, Bas etrieval Queries. finition, Inference R Keys; General Defin ional Decomposition on processing, Trans transactions. Charact chedules, Testing fo	nal iolar The sic (ules nitio actio teriz or Co	M tio cor Qu s, E ons on cing	odel C ns; Un y; Bir eries i cquiva of Sec states g sche flict se	Cons nary nary in S lenc cond and dule	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional tes based on izability of
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Be Transaction Proo operations, Desira Serializability: Se schedule Concurrency Co and system lock ta	and ase S ECT and SQL e Sta pase t of oyce cess able rial, ntro ables	anal Mapping. and Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam - SQL Data Defini- atements in SQL Mo Design - Functiona FD's ; Normal Forr -Codd Normal Forr -Codd Normal Forr ing Concepts- Intro- properties of transa , Non serial and Co bl Techniques: Tw	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re <u>Unit –III</u> tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat <u>Unit –IV</u> oduction to transaction action, Schedules of to onflict- Serializable s o phase locking tech	el Concepts; Relatio g with Constraint V perations from Set lational Algebra. straints in SQL, Base trieval Queries. finition, Inference R Keys; General Definition ional Decomposition on processing, Transact chedules, Testing for aniques for concurre	nal iolat The sic (ules nitio actions. actions r Co ncy	M tio or Qu s, E ons on con	odel C ns; Un y; Bir eries i cquiva of Sec states g sche flict se ontrol,	Cons nary nary in S lenc cond and dule erial typ	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional es based on izability of es of locks 09 Hrs
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Bo Transaction Proc operations, Desira Serializability: Se schedule Concurrency Co and system lock ta Introduction to Distribution mode	and ase S ECT and SQL e Sta pase t of oyce cess able dables ntro ables	and Mapping. and Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam - SQL Data Definit atements in SQL Mo Design - Functiona FD's ; Normal Forr -Codd Normal Forr -Codd Normal Forr ing Concepts- Intro- properties of transa , Non serial and Co ol Techniques: Tw s SQL: Aggregate d	bra-Relational Mode perations and Dealin telational Algebra O ples of Queries in Re Unit –III tion, Specifying Cor ore Complex SQL Re 1 Dependencies – De ns Based on Primary m;Properties of Relat Unit –IV oduction to transaction action, Schedules of to onflict- Serializable s o phase locking tech	el Concepts; Relatio g with Constraint V perations from Set <u>lational Algebra</u> . Instraints in SQL, Base etrieval Queries. finition, Inference R Keys; General Definition ional Decomposition on processing, Trans- transactions. Charact chedules, Testing for aniques for concurre	nal iolar The sic (ules nitio ns. action teriz or Co ncy do	M tio cor Qu s, E ons on con con	odel C ns; Un y; Bir eries i cquiva of Sec states g sche flict se ontrol, ment	Cons nary hary in S lenc cond and edule erial typ	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional tes based on izability of es of locks 09 Hrs a models.
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Bo Transaction Proc operations, Desira Serializability: Se schedule Concurrency Co and system lock ta Introduction to Distribution mode replication.	I an ase S ECT and SQL e Sta base t of oyce cess able trial, ntro ables Nos	anal Mapping. and Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam - SQL Data Defini- atements in SQL Mo Design - Functiona FD's ; Normal Forr -Codd Normal Forr -Codd Normal Forr ing Concepts- Intro- properties of transa , Non serial and Co bl Techniques: Tw s SQL: Aggregate d sharding , master-s	bra-Relational Mode perations and Dealin telational Algebra O <u>ples of Queries in Re</u> <u>Unit –III</u> tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat <u>Unit –IV</u> oduction to transaction action, Schedules of to onflict- Serializable s o phase locking tech <u>Unit –V</u> ata models: aggrega	el Concepts; Relatio g with Constraint V perations from Set lational Algebra. astraints in SQL, Base trieval Queries. finition, Inference R Keys; General Definition (on processing, Transform) on processing, Transform) on processing, Transform) cransactions. Charact chedules, Testing for aniques for concurre ates, key-value and er-peer replication –	nal iolar The sic (ules nitio is. actio teriz or Co ncy do	M tio or Qu s, E ons con con con	odel C ns; Ui y; Bir eries i cquiva of Sec states g sche flict se ontrol, ment ining	Consenary nary nary in S lenccond and dule erial typ data shar	straints and Relational Relational 09 Hrs QL; Insert, e of sets of d and Third 09 Hrs d additional es based on izability of es of locks 09 Hrs a models. rding and
Relational Mode Relational Databa Operations: SELE Operations: JOIN Introduction to S Delete and Update Relational Datab FD's, Minimal Se Normal Forms; Bo Transaction Proc operations, Desira Serializability: Se schedule Concurrency Co and system lock ta Introduction to Distribution mode replication.	and ase S ECT and SQL e Sta pase t of oyce t of oyce cess able dables els:	anal Mapping. and Relational Alge Schemas; Update O and PROJECT; R DIVISION ; Exam SQL Data Definit atements in SQL Mo Design - Functiona FD's ; Normal Forre- Codd Normal Forre- Codd Normal Forre- ing Concepts- Intro- properties of transa , Non serial and Co ol Techniques: Twe SQL: Aggregate d sharding , master-se ata: Structured, sem	bra-Relational Mode perations and Dealin telational Algebra O <u>ples of Queries in Re</u> <u>Unit –III</u> tion, Specifying Cor ore Complex SQL Re l Dependencies – De ns Based on Primary m;Properties of Relat <u>Unit –IV</u> oduction to transaction ction, Schedules of to onflict- Serializable s o phase locking tech <u>Unit –V</u> ata models: aggregation	el Concepts; Relatio g with Constraint V perations from Set lational Algebra. astraints in SQL, Base trieval Queries. finition, Inference R Keys; General Definition (on processing, Transform) on processing, Transform) on processing, Transform) cransactions. Charact chedules, Testing for aniques for concurre ates, key-value and er-peer replication –	nal iolar The sic (ules nitio is. actio teriz or Co ncy do	M tio or Qu s, E ons con con con	odel C ns; Ui y; Bir eries i cquiva of Sec states g sche flict se ontrol, ment ining	Consenary nary nary in S lenccond and dule erial typ data shar	straints and Relational Relational 09 Hrs QL; Insert, the of sets of d and Third 09 Hrs d additional es based on izability of es of locks 09 Hrs a models. rding and

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Understand and explore the needs and concepts of relational, NoSQL database and Distributed					
	Architecture					
CO 2	Apply the knowledge of logical database design principles to real time issues.					
CO 3	Analyze and design data base systems using relational, NoSQL and Big Data concepts					
CO 4	Develop applications using relational and NoSQL database					
CO 5	Demonstrate database applications using various technologies.					

Reference Books

Iterer	ince Dooks
1.	Elmasri and Navathe: Fundamentals of Database Systems, 6 th Edition, Pearson
	Education, 2011, ISBN-13: 978-0136086208.
2.	Pramod J Sdalage, Martin Fowler: NoSQL A brief guide to the emerging world of Polyglot
	Persistence, Addison-Wesley, 2012, ISBN 978-0-321-82662-6,
3.	Raghu Ramakrishnan and Johannes Gehrke : Database Management Systems,
	3thEdition, McGraw-Hill, 2003 ISBN : 978-0072465631.
4.	Seema Acharya and Subhashini Chellappan. Big Data and Analytics. Wiley India Pvt. Ltd. Second
	Edition

LABORATORY COMPONENT

PART - A

Open Ended Mini Project should be implemented and shall be carried out in a batch of two students. The students will finalize a topic in consultation with the faculty. The mini project must be carried out in the college only.

The Mini Project tasks would involve:

• Understand the complete domain knowledge of application and derive the complete data requirement specification of the Mini Project

- Design of the project with Integrated database solution (SQL and NOSQL)
- Normalization of the Relational design up to 3NF.
- Appreciate the importance of security for database systems.
- Documentation and submission of report.
- · Recent Trends used (Blockchain, NLP, AI, ML, AR, VR etc) and Societal Concern issues addressed

General Guidelines :

- Database management for the project- MySQL, DB2, Oracle, SQL Server, MongoDB (Any NoSQL DB) server or any database management tool.
 - Front End for the project Java, VC++, C#, Python, Web Interface (HTML, Java Script) Use database Programming such as Embedded SQL,/Dynamic SQL/SQLJ.

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing &Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRATICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO. CONTENTS						
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of THREE Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

			Semester: V					
		ARTIFICIAL IN	NTELLIGENCE A	ND MACHINE L	EARN	ING		
		Category: P	PROFESSIONAL	CORE COURS	E			
			(Theory and La					
(Common to CS, CD,CY & IS)								
Course Code : IS353IA CIE : 100 + 50 Marks								
Credits: L:T:P : 3:0:1 SEE : 100 + 50 Marks								
Total Hours	:	45L + 30P		SEE Duration	:	3 + 3 H	Iours	
			TT •4 T				00.11	
Introduction: W		1.70	Unit-I				09 Hrs	
Intelligent agents: the structure of ag Problem Solving	: Intell gents g & Ur	ligent Agents: Age	ents and environmen • Strategies: Problem and Iterative Deepen	m-solving agents, B	readth			
			Unit – II				09 Hrs	
Informed (Heuri	stic) s	Search Strategies	: A*Search, Heuristi	c Functions				
		0	Algorithms and Opti		, Hill-c	limbing	Search,	
			, Genetic Algorithm			U		
Adversarial sear	ch: G	ames, Optimal dec	cision in games, Alp	ha-Beta Pruning				
			Unit –III				09 Hrs	
Test Conditions, I Induction, Charac Model Overfittin	Measu cteristi	res for Selecting a	thm to Build a Decis in Attribute Test Cor ee Classifiers,					
		asons for Model C	Overfitting , Incorporating Mod	lel Complexity, Est	imatin	g Statistic	cal Bounds,	
		asons for Model C og a Validation Set	Overfitting , Incorporating Mod	lel Complexity, Est	imatin	g Statistic	al Bounds,	
Model Selection f	for De	asons for Model C ag a Validation Set cision Trees, Mod	Overfitting , Incorporating Mod el Evaluation Unit –IV		imatin	g Statistic		
Model Selection f	for De	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri	Overfitting , Incorporating Mod el Evaluation	ghbor Classifiers	imatin	g Statistic	-	
Model Selection f Nearest Neighbo Naive Bayes Clas	for De or Classifier	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi	Overfitting , Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei	ghbor Classifiers Bayes assumption			09 Hrs	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of	for De or Classifier ion-Lo	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi ogistic Regression stic Regression	Overfitting , Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I as a Generalized Li	ghbor Classifiers Bayes assumption near Model, Learni	ng Mo	del Paran	09 Hrs	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of	for De or Classifier ion-Lo	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi ogistic Regression stic Regression	Overfitting , Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I	ghbor Classifiers Bayes assumption near Model, Learni	ng Mo	del Paran	09 Hrs	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of	for De or Classifier ion-Lo	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi ogistic Regression stic Regression	Overfitting , Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I as a Generalized Li	ghbor Classifiers Bayes assumption near Model, Learni	ng Mo	del Paran	09 Hrs	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of Ensemble Metho	for De or Classifier ion-Lo Logis ods – N	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi ogistic Regression stic Regression Methods for constr	Overfitting c, Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I as a Generalized Lit ructing Ensemble cla	ghbor Classifiers Bayes assumption near Model, Learni assifier, Bagging, B	ng Mo oosting	del Paran g, Randoi	09 Hrs neters, n Forests 09 Hrs	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of Ensemble Metho Unsupervised Le Types of Clusters	for De r Clas ssifier ion-Lo Logis ods – N	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabio ogistic Regression stic Regression Methods for constr ag- Overview, What	Overfitting c, Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I as a Generalized Lit ructing Ensemble cla Unit –V at Is Cluster Analysi	ghbor Classifiers Bayes assumption near Model, Learni assifier, Bagging, B s, Different Types o	ng Mo oosting of Clus	del Paran g, Randor tering's,	09 Hrs neters, n Forests 09 Hrs Different	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of Ensemble Metho Unsupervised Le Types of Clusters K-means-The Ba	for De ssifier ion-Lo Logis ods – N earnin	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi ogistic Regression stic Regression Methods for constr g- Overview, What means Algorithm,	Overfitting c, Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I as a Generalized Lit ructing Ensemble cla Unit –V at Is Cluster Analysi Additional Issues, I	ghbor Classifiers Bayes assumption near Model, Learni assifier, Bagging, B s, Different Types of Bisecting K-means,	ng Mo oosting of Clus K-me	del Paran g, Randor tering's,	09 Hrs neters, n Forests 09 Hrs Different	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of Ensemble Metho Unsupervised Le Types of Clusters K-means-The Ba Types of Clusters	for De ssifier ion-Lo Logis ods – N earnin	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi ogistic Regression Methods for constr g- Overview, What means Algorithm, ngths and Weaknes	Overfitting , Incorporating Mod el Evaluation Unit –IV stics of Nearest Neig ility Theory, Naive I as a Generalized Lin ructing Ensemble cla Unit –V at Is Cluster Analysi , Additional Issues, I sses, K-means as an	ghbor Classifiers Bayes assumption near Model, Learni assifier, Bagging, B s, Different Types of Bisecting K-means, Optimization Probl	ng Mo oosting of Clus K-mea em	del Paran g, Randor stering's, ans and D	09 Hrs neters, n Forests 09 Hrs Different Different	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of Ensemble Metho Unsupervised Lee Types of Clusters K-means-The Ba Types of Clusters Cluster Evaluati	for De ssifier ion-La Logis ods – N earnin sic K- , Strer on-Ov	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabi ogistic Regression Methods for constr g- Overview, What means Algorithm, ngths and Weaknes verview, Unsuperv	Overfitting c, Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I as a Generalized Lit ructing Ensemble cla Unit –V at Is Cluster Analysi Additional Issues, I ssees, K-means as an ised Cluster Evaluat	ghbor Classifiers Bayes assumption near Model, Learni assifier, Bagging, B s, Different Types of Bisecting K-means, Optimization Probl tion Using Cohesion	ng Mo oosting of Clus K-mea lem n and S	del Paran g, Randor stering's, ans and E Separation	09 Hrs neters, n Forests 09 Hrs Different	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of Ensemble Metho Unsupervised Lee Types of Clusters K-means-The Ba Types of Clusters Cluster Evaluati Unsupervised Clu	for De r Clas ssifier ion-Lo Logis ods – N earnin sic K- , Strer on-Ov uster E	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabio ogistic Regression Methods for constr ag- Overview, What means Algorithm, ngths and Weaknes verview, Unsuperv Evaluation Using the	Overfitting , Incorporating Model el Evaluation Unit –IV stics of Nearest Nei- ility Theory, Naive I as a Generalized Lin- ructing Ensemble cla Unit –V at Is Cluster Analysi , Additional Issues, I sses, K-means as an rised Cluster Evaluation he Proximity Matrix,	ghbor Classifiers Bayes assumption near Model, Learni assifier, Bagging, B s, Different Types of Bisecting K-means, Optimization Probl tion Using Cohesion , Determining the C	ng Mo oosting of Clus K-mea em n and S correct	del Paran g, Randor stering's, ans and E Separation Number	09 Hrs neters, m Forests 09 Hrs Different 0 ifferent 1, of	
Model Selection f Nearest Neighbo Naive Bayes Clas Logistic Regress Characteristics of Ensemble Metho Unsupervised Lee Types of Clusters K-means-The Ba Types of Clusters Cluster Evaluati Unsupervised Clu Clusters, Supervise	for De r Classisifier ion-Lo Logis ods – N earnin sic K- , Strer on-Ov uster E sed Ma	asons for Model C ag a Validation Set cision Trees, Mod ssifiers-Characteri -Basics of Probabio ogistic Regression Methods for constr ag- Overview, What means Algorithm, ngths and Weaknes verview, Unsuperv Evaluation Using the	Overfitting , Incorporating Mod el Evaluation Unit –IV stics of Nearest Nei ility Theory, Naive I as a Generalized Lit ructing Ensemble cla Unit –V at Is Cluster Analysi Additional Issues, I sses, K-means as an rised Cluster Evaluat he Proximity Matrix, Validity, Assessing	ghbor Classifiers Bayes assumption near Model, Learni assifier, Bagging, B s, Different Types of Bisecting K-means, Optimization Probl tion Using Cohesion , Determining the C	ng Mo oosting of Clus K-mea em n and S correct	del Paran g, Randor stering's, ans and E Separation Number	09 Hrs neters, m Forests 09 Hrs Different 0 ifferent 1, of	

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Explain and apply AI and ML algorithms to address various requirements of real-world problems			
CO 2	Design and develop AI and ML solutions to benefit society, science, and industry.			
CO 3	Use modern tools to create AI and ML solutions.			
CO 4	Demonstrate effective communication through team presentations and reports to analyze the impact of AI and ML solutions on society and nature.			
CO 5	Conduct performance evaluation, modeling, and validation of AI and ML solutions benefiting lifelong learning			

Referen	Reference Books		
1.	AI – A Modern Approach ,Stuart Russel, Peter Norvig, 3rd Edition, 2010, Pearson, ISBN-13: 978-0136042594		
2.	Artificial Intelligence Basics: A Self Teaching Introduction, Neeru Gupta and Ramita Mangla, Mercury Learning and Information, 1st Edition, 2020, ISBN: 978-1-68392-516-3		
3.	Machine Learning ,Tom M. Mitchell, Indian Edition, 2013, McGraw Hill Education, ISBN – 10 – 1259096955		
4.	Introduction to Data Mining ,Pang-Ning Tan, Michael Steinbach, Vipin Kumar,2nd edition, 2019,Pearson , ISBN-10-9332571406, ISBN-13 -978-9332571402		

LABORATORY COMPONENT

PART – A			
Sl. No.	· Implement the following algorithms (5 to 8) using required statistical formulae and		
	• do not use direct API's.		
	· Demonstrate the working of the algorithms by considering appropriate datasets		
	• Display the values of all the model parameters		
1	Solve the Tic-Tac-Toe problem using the Depth First Search technique		
2	Demonstrate the working of Alpha-Beta Pruning.		
3	Solve the 8-Puzzle problem using the A* algorithm		
4	Implement a Hill-climbing search algorithm to maximize a single variable function f(x).		
5	Logistic regression algorithm.		
6	Naïve Bayes Classifier		
7	KNN algorithm.		
8	K- means algorithm		

Go, change the world[®]

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

PART – B

Two students from the same batch must develop a Machine Learning model on the problem statements chosen from Agriculture, Health Care, Manufacturing, Automobiles and Process Control/Automation Domains preferably for Indian Scenarios. (Point No. 3 and 4 are optional)

- 1. The data collected should be cleansed and pre-processed.
- 2. The complete EDA process has to be demonstrated

3. Selection of the suitable algorithms and model-building

4. Model evaluation has to be carried out by selecting the proper metrics

a) Prediction/classification results have to be obtained

b) GUI should be created for demonstrating the results

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing &Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRATICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO.	CONTENTS	MARKS		
	PART A			
1	Objective type of questions covering entire syllabus	20		
	PART B (Maximum of THREE Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	20		
3	Viva	20		
	TOTAL	50		

Semester: V THEORY OF COMPUTATION Category: PROFESSIONAL CORE COURSE (Theory)

	(Common to	o CS, CD, CY & IS)	
°S354ТА		CIE	

Course Code	:	CS354TA	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	45L + 30T	SEE Duration	:	3 Hours

Unit-I	09 Hrs
Regular Languages and Regular Expressions, Memory Required to Recognize a	Language,
Deterministic Finite Automata (DFA), Non Deterministic Finite Automata (NI	FA), Non
Deterministic Finite Automata with ϵ -transitions (NFA- ϵ), Equivalence, Regular Expre	ssions and
Finite Automata, Applications of Regular Expressions, Algebraic laws of Regular Ex	xpressions,
Minimization of Finite Automata.	

Unit – II09 HrsPumping Lemma for Regular Languages, Closure properties of Regular Languages, Decision
properties of Regular languages. Context-free grammars (CFG), Parse trees, Applications,
Ambiguity in grammars & languages, Simplification of CFG, Normal forms of CFGs. Regular
Grammars, Equivalence of Regular Grammars and Finite Automata.

Unit –III09 HrsPush Down Automata (PDA): Definition, the languages of a PDA, Equivalence of PDA's & CFG's,
Deterministic PDA. The Pumping Lemma for Context Free Languages (CFL), Closure properties of CFLs,
Decision properties of CFLs

Unit –IV09 HrsContext Sensitive Languages (CSL) and Linear Bounded Automata (LBA), Turing Machines (TM):Definitions and Examples, TM as a Language Accepter, Computing Partial Functions with Turing
Machine, Variations of Turing Machines, Combining Turing Machines, Non Deterministic TM,
Universal TM.

Unit –V09 HrsRecursively Enumerable Languages (REL) and Recursive Languages. Properties of REL and
Recursive Languages. More General Grammars: Context Sensitive Grammar and Unrestricted
Grammar, Chomsky Hierarchy, Not all languages are Recursively Enumerable, Unsolvable Problem,
Reducing One problem to another, The halting problem of TM, Post's Correspondence Problem
(PCP), Time and Space Complexity of TM.

Course	Course Outcomes: After completing the course, the students will be able to: -			
CO 1	Understand the fundamental concepts of theory of computations.			
CO 2	Analyze the tools of finite automata to various fields of computer science.			
CO 3	Design solution model for complex problems, using the appropriate skills of automata theory for better results.			
CO 4	Apply automata skills in situations that describe computation effectively and efficiently.			

Refere	Reference Books		
1.	Introduction to Languages & Theory of Computation, John C Martin, Tata McGraw-Hill, 4 th Edition, 2011 ISBN: 978-0-07-319146-1.		
2.	Introduction to Automata Theory, Languages & Computation, J.P.Hopcroft, Rajeev Motwani, J.D.Ullman, Pearson Education., 3 rd Edition, 2008, ISBN:81-3172-047-0.		
3.	An Introduction To Formal Languages & Automata, Peter Linz, Narosa Publishing House, 6 th Edition, 2007, ISBN: 07-6371-422-4.		

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8 Unit 4 : Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Semester: V SOFT COMPUTING Category: PROFESSIONAL CORE COURSE ELECTIVE-I (Group-B)

(Theory)

(1110-1))						
Course Code	:	CS355TBA		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3 Hours

Unit-I					
Introduction to soft computing: Introduction, Requirement of Soft computing, Major Area	eas of Soft				
Computing, Applications of Soft Computing.					

Introduction to Fuzzy logic: Introduction, Fuzzy membership functions, Operations on Fuzzy sets, Membership value Assignments, Intuition, Inference, Features of the Membership Function.

Unit – II	09 Hrs		
Fuzzy Relations and Defuzzification: Fuzzy Relations, Cardinality of Fuzzy Relations, Operations on Fuzzy			
Relations, Properties of Fuzzy Relations, Fuzzy Cartesian product and Composition, Fuzzy Tolerance and			
equivalence Relations. Value Assignments - Cosine Amplitude, Max-min Method			
Fuzzification and Defuzzification, Euzzification defuzzification to orign sets. Lembda out	for fur		

Fuzzification and Defuzzification: Fuzzification, defuzzification to crisp sets, Lambda-cuts for fuzzy relations, Defuzzification to Scalars

Unit –III09 HrsFundamentals of Artificial Neural Networks: Introduction, learning & acquisition of knowledge, features
of artificial neural networks (ANN), Back Propagation networks, fundamentals of connectionist Modeling.Major classes of Neural Networks: Introduction, the multilayer perceptron, radial basis function network,
Kohonen's self-organizing network, the Hopfield network, Industrial and commercial applications of ANN

Unit –IV	09 Hrs
Genetic Algorithms: Introduction to genetic algorithms (GA), Traditional Optimization a	and Search
Techniques vs Genetic Algorithm, GA operators, Problem solving using GA, Integration of GA	with neural
networks, integration of GA with fuzzy logic, known issues in GA, Population based increment	al learning,
Applications of Genetic algorithms, Applications of GA in Machine Learning, Introduction	to Hybrid
Systems.	-
Unit –V	09 Hrs

Tools of soft computing in real world applications: Soft computing tools for solving a class of facilities layout planning problem, mobile position estimation using an RBF network in CDMA cellular systems, learning-based resource optimization in ATM networks. FL in database systems, fuzzy relation data models and its operations.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Apply the principles and components of soft computing in solving problems.				
CO 2	Explore and understand basic concepts of of fuzzy sets and relations, fuzzy logic extension				
	principle in the field of computer science and Engineering.				
CO 3	Develop program systems using approaches of these theories for solving various real-world				
	problems.				
CO 4	Evaluate and compare solutions by various soft computing approaches for a given problem.				
CO 5	Develop intelligent systems through case studies, simulation examples and experimental				
	results				

Refer	ence Books
1.	Fuzzy Logic with Engineering Applications Timothy J. Ross (Wiley)
2.	Soft Computing and Intelligent Systems Design – Theory Tools and Applications, Fakhreddine O Karray & Clarence De Silva, 2009, PEARSON Education, ISBN: 978-81-317-2324-1.
3.	Neural Networks and Learning Machines Simon Haykin (PHI)
4.	Fuzzy and Soft Computing; A Computational Approach to Learning and Machine Intelligence, J S R Jang, C-T Sun, E Mizatani, Neurp, 1997, Prentice Hall, ISBN: 10:0132610663.
5.	Soft Computing and its Applications, K A Thev & RR Aliev, 2001, World Scientific Publishing Co., Inc. River Edge, NJ, USA, ISBN: 98102 47001.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	5 & 6 Unit 3 : Question 5 or 6				
7&8	7 & 8 Unit 4 : Question 7 or 8				
9 & 10	9 & 10 Unit 5: Question 9 or 10				
	TOTAL	100			

				Semester: V				
	ADVANCED ALGORITHMS							
				OFESSIONAL CO		EC	TIVE-I	
			Category: 1 K	(Group-B)		LC	11 / 12-1	
				(Theory)				
					& AI)			
Course	(Common to CS, IS & AI) Course Code : CS355TBB CIE : 100 Marks							76
Total H		:	45L		SEE Duration	:	3 Hours	19
10tal 11		•	4 5L		SEE Duration	•	5 110015	
				Unit-I				09 Hrs
Analysi	is techniqu	65.	Growth of function	ns: Asymptotic notati	on Standard notation	ns ai	nd common	
-	-			ces, Recursion tree m				
			0	s, The accounting me				r theorem.
	20ui mui j 5	10 .	1155105400 unturjete	Unit – II	inou, me potentiu n			09 Hrs
Sorting	in Linear	Ti	me: Lower bounds	for sorting, Counting	sort Radix sort Bud	cket	sort	07 1115
				multiplication. Gree				on problem
-	ts of the gr		0	maniphearion. Gree		ueu	server.	on proorein,
	is of the Br		j saacegj:	Unit –III				09 Hrs
Graph	Algorithm	ns:	Bellman-Ford Alg	orithm, Shortest path	hs in a DAG. Johns	on"	s Algorithm	
graphs.			2011111111111111111					for sparse
	um Flow:	Flo	w networks. Ford F	Fulkerson method and	Maximum Bipartite	Ma	tching.	
		-	, , , , , , , , , , , , , , , , , , ,	Unit –IV			0	09 Hrs
Numbe	r Theoret	ic .	Algorithms: Eleme	entary notions, GCD). Modular arithmet	ic, S	Solving mo	
			8	m, Powers of an elem			0	
·				gorithm, Rabin-Karp a			ng with finit	e automata,
	Morris-Prat				0 / 0		C	,
				Unit –V				09 Hrs
Advanc	ced Data st	tru	ctures: Structure of	f Fibonacci heaps, M	ergeable-heap operat	tion	s, Decreasin	g a key and
			nial Queues.	1 /			,	
				g polynomials, The E	OFT and FFT, FFT ci	rcui	ts.	
			-	- • ·				
Course	Outcomes	: A	fter completing th	e course, the studen	ts will be able to: -			
CO 1				their time and space of				
					<u> </u>			
CO 2								
CO 2 CO 3	Apply ap		•	iques for solving real	world problems.			
		pro	priate design techni	iques for solving real s using appropriate m		es.		
CO 3		pro	priate design techni			es.		
CO 3 CO 4		pro	priate design techni			es.		
CO 3 CO 4	Design ar	pro nd i	priate design techni mplement solutions		athematical techniqu		n; Introducti	on
CO 3 CO 4 Referen	Design ar ace Books Thomas H	pro nd i I. C	priate design techni mplement solutions ormen, Charles E. I	s using appropriate m	athematical techniqu Rivest and Clifford S	Stein	<i>*</i>	on
CO 3 CO 4 Referen	Design ar ace Books Thomas H to Algorit	pro nd i I. C hm:	priate design techni mplement solutions ormen, Charles E. I s; Columbia Univer	s using appropriate m Leiserson, Ronald L.	athematical techniqu Rivest and Clifford S 22, ISBN 978026204	Stein 630	5.	

3. Kozen DC, The design and analysis of algorithms, Springer Science & Business Media, 2012, ISBN: 978-0387976877

4. Kenneth A. Berman, Jerome L. Paul, Algorithms, Cengage Learning, 2002. ISBN: 978-8131505212

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	2 Unit 1 : (Compulsory)					
3 & 4	3 & 4 Unit 2 : Question 3 or 4					
5&6	5 & 6 Unit 3 : Question 5 or 6					
7&8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	9 & 10 Unit 5: Question 9 or 10					
	TOTAL	100				

Semester: V							
	NATURAL LANGUAGE PROCESSING						
		Category: PRO	FESSIONAL CO	ORE COURSE EL	EC	TIVE-I	
			(Group-B)				
			(Theory)				
			Common to CS, CE	-	_		
Course Code	:	IS355TBC		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3 Hours	
		-					
			Unit-I			08 Hrs	
Introduction to	NLP	. NLP in the Rea	al-world, NLP Ta	sks, what is Langu	age:	Building Blocks	
				arning, Deep Lea	<u> </u>	e	
Overview, Appr	oach	es to NLP: Hei	uristic based NL	P, Machine Learn	ing	for NLP, Deep	
Learning for NI	LP, V	Why Deep Lear	ning is not Yet	the Silver Bullet	for	NLP, An NLP	
Walkthrough: Co		• 1	-				
U		U	Extraction and Cl	eanup: HTML Pars	sing a	and Cleanup,	
Unicode Normali	izatic	on, Spelling Corre	ection, System-Sp	ecific Error Correct	ion,	Pre-Processing:	
Preliminaries, Fre	equei	nt Steps, Other Pi	re-Processing Step	S		C	
	•	1	Unit – II			08 Hrs	
Accessing Text	Corp	oora Accessing	Fext Corpora, Bro	wn Corpus, Loadi	ng y	our own corpus,	
Annotated text co	orpus	, Conditional Fre	quency Distribution	ons, WordNet.		-	
						seful Applications of	
				sions for Tokenizin	g Te	xt	
Extracting Infor					T	· 1 T	
		n, Chunking, Dev	veloping, Named I	Entity Recognition,	Ter	m weighting, Inverse	
document freque	ncy		T 1 T			07.11	
		<u>0</u> 4	Unit –III	1 3371 46 41	TI	07 Hrs	
				lemmas, What's th	le Us	se of Syntax?,	
Analyzing the M			Context-Free Gram	imar.			
				ning Semantic An	alvei	s, Lexical semantics,	
Word- sense disa			representing wiear	ing, Schlande And	ary 513	s, Lexical semantics,	
word sense disa	more	suation.				0.0.77	
	•		Unit –IV			08 Hrs	
Transformers B			,, ,• .	T C T			
The Encoder-Decoder Framework, Attention Mechanisms, Transfer Learning in NLP, Hugging							
Face Transformers: Bridging the Gap, A Tour of Transformer Applications: Text Classification,							
Named Entity Recognition, Question Answering, Summarization, Translation, Text Generation, The Hugging Face Ecosystem: The Hugging Face Hub, Hugging Face Tokenizers, Hugging Face							
	The Hugging Face Ecosystem: The Hugging Face Hub, Hugging Face Tokenizers, Hugging Face Datasets, Hugging Face Accelerate, Main Challenges with Transformers.						
Text Classificati	0	e Accordit, 1916	uni Chancinges wi				
		ook at Hugging	Face Datasets Fr	om Datasets to Dat	a Fr	ames, looking at the	
						acter Tokenization,	
						t, Training a Text	
						, running u roat	
			tractors, Fine-Tun			, , , , , , , , , , , , , , , , , , , ,	

 Unit –V
 08 Hrs

 NLP Applications: Machine translation, Basic issues in MT. Statistical translation, Sentiment

 Analysis, Chat-Bot, Question Answering System, Text Classification, Spell Checking and Market

 Intelligence.

Information Retrieval: Vector space model, term weighting

Course O	Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Understand the approaches to syntax and semantics in Natural Language Processing, the various types of language processors, the elements of formal language theory, the types of grammar, and the computational morphology.					
CO 2	Understand the basic parsing technique for context-free grammars, the data structures and algorithms for parsing, and the approaches to ambiguity resolution.					
CO 3	Design and Develop agents that use Transformers for natural language understanding and generation					
CO 4	Comprehend and compare different natural language models.					

Refere	Reference Books						
1.	Practical Natural Language Processing: A Comprehensive Guide to Building Real- World NLP Systems, SowmyaVajjala, BodhisattwaMajumder, Anuj Gupta &HarshitSurana, 1st Edition, 2020, O'Reilly, ISBN: 978-1-492-05405-4						
2.	StevenBird,EwanKlein,EdwardLoper,—NaturalLanguageProcessingwithPython, Publisher: O'Reilly Media, June 2009, ISBN :9780596516499						
3.	 Python 3 Text Processing with NLTK 3 Cookbook, Jacob Perkins 2014, 1st Edition, Packt Publishing, ISBN 978-1-78216-785-3 Natural Language Processing with Transformers: Building Language Applications with Hugging Fac,LewisTunstall, Leandro von Werra, and Thomas Wolf, 2022, 1st Edition, O'Reilly Media, ISBN: 978-1-098-10324-8 						
4.							

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8		16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semester	: V			
CLOUD COMPUTING							
Category: PROFESSIONAL CORE COURSE ELECTIVE-I							
	(Group-B)						
			(Theory	-			
		(Common to		& IS Programs)			
Course Code	:	IS355TBD	,	CIE	:	100 Mark	S
Credits: L:T:P	:	3:0:0		SEE	:	100 Mark	S
Total Hours	:	42L		SEE Duration	:	3 Hours	
		Un	nit-I				08 Hrs
Defining Cloud C	Con	nputing					
Cloud Types, Exa	mir	ing the Characteristics o	f Cloud C	omputing, Assessing	g the Ro	ole of Oper	Standards
Understanding S	erv	ices and Applications b	у Туре		_	_	
Defining Infrastru	ctu	re as a Service (IaaS), De	efining Pla	atform as a Service (PaaS), I	Defining S	oftware as a
Service (SaaS), De	efin	ing Identity as a Service	(IDaaS),	Defining Complianc	e as a S	ervice (Ca	aS)
		Uni	t – II				08 Hrs
Understanding C	lou	d Architecture					
Exploring the Clo	ud (Computing Stack, Conne	cting to th	e Cloud			
		ice Oriented Architectu					
Introducing Service	ce C	Driented Architecture, D	efining SO	DA Communications	s, Mana	aging and N	Monitoring
SOA, Relating SO	DA	and Cloud Computing					
Unit –III 09 Hrs							
Cloud Computin	g T	echnology					
Hardware and Infi	ast	ructure: Clients, Security	, Network	, Services			
Accessing the Clo	ud:	Platforms, Web Applica	tions, We	b APIs, Web Brows	ers		
0		view, Cloud Storage Prov					
Standards: Applic	atic	on, Client, Infrastructure,	Service				1
		Uni	t –IV				09 Hrs
		raction and Virtualizat					
		Technologies, Load Bala		l Virtualization, Unc	lerstanc	ling Hyper	visors,
•		ine Imaging, Porting Ap	plications				
Capacity Plannin	0						
Capacity Planning	ς, Γ	Defining Baseline and Me	etrics, Ne	twork Capacity, Sca	aling		1
			it –V				08 Hrs
Developing Appl							
0		tuit QuickBase, Cast Iro	n Cloud, I	Bungee Connect, De	velopm	ent, Troub	leshooting,
Application Mana	gen	nent					

Course Outcomes: After completing the course, the students will be able to:-				
CO1	Understand the basics of cloud computing models and virtualization.			
CO2	Analyse the issues related to the development of cloud applications.			
CO3	Apply the concepts to design cloud based simple applications.			
CO4	Identify solutions through cloud based software for real world case studies.			

Ref	Reference Books						
1.	Barrie Sosinsky,"Cloud computing bible", CRC Press, 2010, ISBN: 978-0-470-90356-8.						
2	Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A practical Approach", Wiley						
2.	India, 2011, ISBN: 0071626948.						
3.	George Reese, "Cloud Application Architectures", Wiley India 2011, ISBN: 978-0596156367.						
4	1. Eugene Ciurana, "Developing with Google App Engine" Wiley India 2011 ISBN: 978-						
4.	1430218319.						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6 Unit 3 : Question 5 or 6		16				
7 & 8 Unit 4 : Question 7 or 8		16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Bengaluru - 560059, Karnataka, India

	Semester: V					
	QUANTUM COMPUTING					
		Category: PRC	DFESSIONAL CO	RE COURSE EL	EC	TIVE-I
			(Group-B)			
			(Theory)			
Course Code	:	CS355TBE		CIE	:	100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	45L		SEE Duration	:	3 Hours

Unit-I	09 Hrs				
Quantum Building Blocks: Quantum mechanics of Photon Polarization, Single Quantum bits, Single					
Qubit Measurement, A Quantum key Distribution Protocol, State Space of a Single-Qubit System, Direct					
Sums and Tensor Products of Vector Spaces, State Space of an n-Qubit System, Entangled States, MultiQubit					
Measurement, QKD using Entangled states.					
Unit – II	09 Hrs				
Multiple-Qubit States Measurements: Dirac Bra/Ket Notation for Linear Transformation	tion, Projection				
Operators for Measurement, Hermitian Operator Formalism for Measurement, EPR Para	dox and Bell's				
Theorem.					
Unit –III	09 Hrs				
Quantum State Transformations: Unitary transformations, No-Cloning Principle, Some S	imple Quantum				
Gates, Pauli transformations, Hadamard Transformations, Multiple-Qubit Transformations,	ControlledNOT				
and other singly controlled gates, Applications of Simple Gates, Dense coding, Quantum telep	ortation				
Unit –IV 09 Hrs					
Introduction To Quantum Algorithms: Computing with Superpositions, Walsh-Hadamard	transformation,				
Quantum Parallelism, Notions of Complexity, Query Complexity, Communication Com	plexity, Simple				
Quantum Algorithm- Deutsch's Problem.					
Unit –V 09 Hrs					
Simple Quantum Algorithms: Deutsch-Jozsa Problem, Bernstein-Vazirani Problem, Sin	non's Problem,				
Machine Models and Complexity Classes, Shor's factoring Algorithm, Example illustrating Shor's Algorithm					
Course Outcomes: After completing the course, the students will be able to: -					
CO1 Explain the various essentials of quantum computation, Qubits, and Quantum operated	ors.				
CO1Explain the various essentials of quantum computation, Qubits, and Quantum operatedCO2Analyze the working of quantum transformations and quantum gates.	ors.				
CO 2 Analyze the working of quantum transformations and quantum gates.					
 CO 2 Analyze the working of quantum transformations and quantum gates. CO 3 Describe the principle of working of some of the quantum algorithms and conduct si open-source quantum simulators. 	mulations using				
CO 2Analyze the working of quantum transformations and quantum gates.CO 3Describe the principle of working of some of the quantum algorithms and conduct si open-source quantum simulators.	mulations using				

CO 5	Appraise the knowledge and potential in quantum computing to build a successful career, work in
	teams, and communicate their ideas effectively.

Refere	Reference Books			
1.	Quantum Computing: A Gentle Introduction, Eleanor Rieffel and Wolfgang Polak, 2011, The MIT			
	Press, ISBN 9780262015066.			
2.	An introduction to Quantum Computing, Phillip Kaye, Raymond Laflamme, Muchele Mosca, Oxford			
	University Press, 2007, ISBN-13: 978-0198570493, ISBN-10: 019857049X			
3.	Quantum Computing for Computer Scientists, 1st Edition, Noson S. Yanofsky and Mirco A.			
	Mannucci, Cambridge University Press, 2008, ISBN 978-0-521-879965.			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
MAXIMUM MARKS FOR THE CIE THEORY			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: V					
			LINUX INTERN	NALS				
	Category: PROFESSIONAL CORE COURSE ELECTIVE-I							
			(Group-B)		_			
	(Theory)							
Course Code	:	CS355TBF		CIE	:	100 Mark	S	
Credits: L:T:P	:	3:0:0		SEE	:	100 Mark	s	
Total Hours	:	45L		SEE Duration	:	3 Hours		
	•	•				•		
			Unit-I				09 Hrs	
Introduction to the	ne l	Linux Kernel						
History of Unix,	Alo	ng Came Linus: In	troduction to Linux,	Overview of Operat	ting	g Systems an	nd Kernels,	
Linux Versus Clas	sic	Unix Kernels, Linu	x Kernel Versions, T	he Linux Kernel Dev	elo	pment Com	nunity	
Process Managen	nen	ıt						
The Process, Proce	ess	Descriptor and the 7	Task Structure, Proces	ss Creation, The Linu	ıx I	mplementati	on of	
Threads, Process 7	ſerı	nination						
			Unit – II				09 Hrs	
Process Schedulin	0							
0,			· · · ·	Scheduling Algorith			0	
1			emption and Contex	t Switching, Real-7	ſim	e Schedulin	g Policies,	
Scheduler-Related	Sy	stem Calls						
System Calls								
				ibrary, Syscalls, Sys	tem	n Call Hand	ler, System	
Call Implementation, System Call Context								
			Unit –III				09 Hrs	
Interrupts and In					_			
				lves, Registering an				
			nplementing Interrup	ot Handlers, /proc/inte	erru	ipts, Interrup	t Control.	
Bottom Halves ar			G 61				10.01 11.1	
	W	orld of Bottom Hal	ves, Softirqs, Tasklet	s, Work Queues, Wl	nch	n Bottom Ha	lf Should I	
Use								
			Unit –IV				09 Hrs	
Memory Manage				~				
				ayer, Statically Allo				
			, The New percpu Int	terface, Reasons for U	JSII	ng Per-CPU	Data,	
Picking an Allocat								
The virtual File S	•							
Common Filesyste	em .	Interface, Filesysten	h Abstraction Layer,	Unix Filesystems				
			Unit –V				09 Hrs	
Kernel Synchron								
				ks, Semaphores, R	ead	er-writer S	emaphores,	
· ·		Variables, BKL: Th	ie Big Kernel Lock					
Devices and Mod								
Device types, Mod	iule	28.						
1								

Course	Course Outcomes: After completing the course, the students will be able to: -						
CO 1	Explore the fundamental concepts of Linux, kernel-level data-structure and Linux kernel development environments						
CO 2	Illustrate the use of data structures for process, memory, interrupt management and system calls within the Linux kernel						
CO 3	Integrate the operating system concepts with relevant design issues associated with Linux kernel						
CO 4	Develop kernel modules using Linux Processes and Interrupt handling techniques with process synchronization						
CO 5	Implement real world applications using Linux OS.						

Refere	Reference Books						
1.	Robert Love; Linux Kernel Development; Pearson Education; 3rd Edition; 2010, ISBN 8131758182.						
2.	M. Beck et.al ; Linux Kernel Programming; Pearson Education; 3rd Edition; 2002, ISBN-110-201-71975-4						
3.	Daniel Bovet ; Understanding the Linux Kernel, O'Reilly, 3rd Edition, 2005, ISBN-10: 0596005652.						
4.	Michael kerrish; Linux Programming Interface; 1st Edition, 2010, ISBN-10159327220						
5	Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.						

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India Go, change the world[®]

Bachelor of Engineering in Computer Science & Engineering [CS] SIXTH SEMESTER

Slo. No.	BOS		Course Title		Credit Allocation			Category	Max Marks CIE		SEE Duration (H)	Max Marks SEE	
					Т	Ρ	Total		Theory	Lab	Hours	Theory	Lab
1	HS	HS361TA	Entrepreneurship and Intellectual Property Rights		0	0	3	Theory	100		3	100	
2	CS	CS362IA	Network Programming and Security	3	0	1	4	Theory + Practice	100	50	3	100	50
3	CS	CS363IA	Compiler Design (Common to CS & IS)	3	0	1	4	Theory + Practice	100	50	3	100	50
4	IS	IS364TA	Software Engineering with Agile Technologies (Common to CS, IS, CD & CY)	4	0	0	4	Theory	100		3	100	
5	CS	XX365TDX	Professional Core Elective-III (Group- D)	3	0	0	3	Theory	100		3	100	
6	XX	XX266TEX	Institutional Electives – I (Group E)	3	0	0	3	Theory	100		3	100	
7	CS	CS367P	Interdisciplinary Project	0	0	3	3	Project		100	3		100
					Total		24						

RV College of Engineering[®]

Go, change the world $^{\circ}$

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Professional Core Elective-III (GROUP-D)							
Sl. No.	Course Code	Course Title					
1		Computer Vision					
1.	CS365TDA	(Common to CS & CD)					
2.	CS365TDB	Operations Research					
3.		Web Frameworks					
5.	CS365TDC	(Common to CS & IS)					
4.		Generative Artificial Intelligence					
4.	AI365TDD	(Common to AI, CS, CD & IS)					
5.	CS365TDE	Big Data Systems					
6.	CS365TDF	Cryptography & Network Security					

Institutional Elective-I (GROUP-E)						
Sl. No.	Course Code	Course Title				
1.	AS266TEA	Fundamentals of Aerospace Engineering				
2.	BT266TEB	Bioinformatics				
3.	CH266TEC	Industrial Safety Engineering				
4.	CS266TED	Robotics Process Automation				
5.	CV266TEE	Intelligent Transport Systems				
6.	CV266TEF	Integrated Health Monitoring of Structures				
7.	CM266TEG	Advanced Energy Storage for E-Mobility				
8.	EC266TEH	Human Machine Interface (HMI)				
9.	EE266TEJ	Energy Auditing and Standards				
10.	EI266TEK	Biomedical Instrumentation				
11.	ET266TEM	Telecommunication Systems				
12.	ET266TEN	Mobile Communication Networks and Standards				
13.	IS266TEO	Mobile Application Development				
14.	IM266TEQ	Elements of Financial Management				
15.	IM266TER	Optimization Techniques				
16.	ME266TES	Automotive Mechatronics				
17.	MA266TEU	Mathematical Modelling				
18.	MA266TEV	Mathematics of Quantum Computing				
19.	HS266TEW	Applied Psychology for Engineers				
20.	HS266TEY	Universal Human Values				

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

EN	TR		ester: VI ELLECTUAL PROPERTY RIO	H	S	
		(T	heory)			
Course Code	:	HS361TA	CIE	:	100 Marks	
Credits: L: T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	otal Hours : 42 L SEE Duration : 3 Hours					

Introduction to Entrepreneurship: Definition and Scope of Entrepreneurship, Importance of Entrepreneurship in Engineering Innovation and Economic Growth, Techniques for Identifying Entrepreneurial Opportunities, Types of Entrepreneurs: Innovative, Imitative, Fabian, Characteristics and Traits of Successful Entrepreneurs.

Role in economic development- Emerging Trends in Entrepreneurship, Entrepreneur and Entrepreneurship, characteristics of Entrepreneur, Myths about Entrepreneurship, Entrepreneur vs Intrapreneur, Role of Entrepreneurial Teams

Activities: Case study on Entrepreneurship in Indian Scenario, Ideation Workshops and Hackathons,

Unit – II

08 Hrs

Entrepreneurial Opportunity Evaluation: Identifying Market Opportunities and Trends, Integration of Engineering Principles in Ideation Process, Cross-Disciplinary Collaboration for Technological Innovation, Assessing Market Feasibility and Demand Analysis, Evaluating Technical Feasibility: Prototype Development, Proof of Concept, Financial Feasibility Analysis: Cost Estimation, Revenue Projection, Break-Even Analysis.

Business Planning and Strategy Development: Elements of a Business Plan, Executive Summary, Company Description, Market Analysis, writing a Business Plan: Structure and Components, Strategic Planning: Vision, Mission, Goals, Objectives, SWOC Analysis, Competitive Strategy: Porter's Generic Strategies, Differentiation, Cost Leadership, Focus Strategy, Growth Strategies: Organic Growth, Mergers and Acquisitions, Strategic Alliances

Activities: Writing a Business Plan on given templates, Developing Business Models and Prototypes Based on Generated Ideas

Unit –III	08Hrs				
Entrepreneurial Marketing and Sales: Basics of Marketing: Product, Price, Place, Promo	otion (4Ps),				
Market Segmentation, Targeting, and Positioning (STP), Branding and Product Development	Strategies,				
Creating a Unique Value Proposition (UVP) Digital Marketing: Social Media Marketin	ig, Content				
Marketing, SEO, SEM, Sales Techniques and Customer Relationship Management (CRM).					
Entrepreneurial Finance and Resource Management: Sources of Financing: Equity Finan	icing, Debt				
Financing, Venture Capital, Angel Investors, Crowdfunding, Financial Management: Budgeting, Cash Flow					
Management, Financial Statements Analysis, Risk Management and Insurance, Human	n Resource				
Management: Recruitment, Training, Performance Evaluation, Legal and Ethical	Issues in				
Entrepreneurship: Intellectual Property Rights, Contracts, Corporate Governance					

Activities: Case Studies and Practical Applications

09Hrs	
-------	--

Introduction to IP : Types of Intellectual Property

Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; protection of traditional knowledge, Infringement of patents and remedy, Case studies, Patent Search and Patent Drafting, Commercialization and Valuation of IP.

Unit -IV

Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non-registrable marks. Registration of Trade Mark; Deceptive similarity; Transfer of Trade Mark, ECO Label, Passing off, Infringement of Trade Mark with Case studies and Remedies.

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Unit –V	
---------	--

09 Hrs

Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. **Industrial Design:** Introduction of Industrial Designs Features of Industrial, Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies.

Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Exceptions of Copy Right, Infringement of Copy Right with case studies.

Course	Course Outcomes: After completing the course, the students will be able to:-		
CO 1	Understand the concepts of entrepreneurship and cultivate essential attributes to become an entrepreneur or Intrapreneur and demonstrate skills such as problem solving, team building, creativity and leadership.		
CO 2	Comprehend the process of opportunity identification of market potential and customers while developing a compelling value proposition solutions.		
CO 3	Analyse and refine business models to ensure sustainability and profitability and build a validated MVP of their practice venture idea and prepare business plan, conduct financial analysis and feasibility analysis to assess the financial viability of a venture.		
CO 4	Apply insights into the strategies and methods employed to attain a range of benefits from these IPs and deliver an investible pitch deck of their practice venture to attract stakeholders		
CO 5	Knowledge and competence related exposure to the various Legal issues pertaining to Intellectual Property Rights with the utility in engineering perspectives.		

Refe	rence Books
1.	Donald F. Kuratko ,"Entrepreneurship: Theory, Process, and Practice", South-Western Pub publishers, 10th edition, 2016,978-ISBN-13: 1305576247
2.	Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses", Crown Currency Publishers,1 st Edition, 2011, ISBN-13: 978-0307887894.
3.	Dr B L Wadehra, Law Relating to Intellectual Property, universa Law publishers 05th edition, ISBN : 9789350350300.
4	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	# COMPONENTS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	MARKS			
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6 Unit 3 : Question 5 or 6		16		
7 & 8 Unit 4 : Question 7 or 8		16		
9 & 10 Unit 5: Question 9 or 10		16		
	TOTAL	100		

rs

09 Hrs

00 T

09 Hrs

	Semester: VI				
		NETWORK	PROGRAMMING AND SECURITY		
		Category: P	ROFESSIONAL CORE COURSE		
			(Theory and Lab)		
Course Code	:	CS362IA	CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 + 50 Marks
Total Hours	:	45L+30P	SEE Duration	:	3 + 3 Hours

Unit-I	09 H

The Transport Layer and introduction to sockets: Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TCP connection establishment and termination, TIME_WAIT state, TCP port numbers and concurrent servers, Buffer sizes and limitation. Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton and inet_ntop functions.

	07 III 5
TCP client/server: Socket function, connect function, bind, listen, accept, fork, exec	functions,
concurrent servers, close function, getsockname and getpeername functions, TCP Ech	o server –
main – str echo, TCP Echo client - main – str echo, Normal startup, Normal termination.	

Unit – II

Unit –III	09 Hrs
UDP client/server and Name server: Socket options introduction, getsockopt and	setsockopt
functions. recvfrom and sendto functions, UDP Echo server & UDP Echo client, lost of	datagrams.
DNS, Gethostbyname function, gethostbyaddr function, getservbyname and getservbyport	functions,
getaddrinfo function, gai_strerror function, freeaddrinfo function, getaddrinfo function:	example,
host serv function.	

Traditional Block Cipher and Public Key Cryptosystem: Stream Ciphers and Block Ciphers, Feistel Cipher Structure. The Data Encryption Standard-Encryption and Decryption. Principles of Public Cryptosystems- Public-Key Cryptosystems, Applications for Public-Key Cryptosystems Requirements for Public-Key Cryptosystems, Public-Key Cryptanalysis. The RSA algorithm-Algorithm, Computational Aspects. The security of RSA, Other Public key Cryptosystems: Diffie-Hellman Key Exchange.

Unit –IV

		-
Unit –V	09 Hrs	5

Transport Layer Security and Wireless Network Security: Web Security Considerations, Secure Socket Layer, Transport Layer security, HTTPS. Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN overview, IEEE 802.11i Wireless LAN Security – Services, Phases of operation.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Analyze the OSI reference model and a variety of network concepts and protocols.				
CO 2	Analyze network Protocols interoperability and application.				
CO 3	Design and demonstrate client/server programs on Unix platforms to create robust real-				
	world sockets-based applications.				
CO 4	Apply appropriate cryptographic algorithms to ensure security of information through wired				
	and wireless medium.				

Refere	nce Books
1.	W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, UNIX Network Programming – The sockets networking API, Vol.I, Third edition, PHI. ISBN-13: 978-0131411555 ISBN-10: 9780131411555.
2.	William Stallings, "Cryptography and Network Security", 6th Edition, ISBN-13: 978-0-13- 335469-0.
3.	Comer, Stevens, Internetworking with TCP/IP, Vol. III, Second Edition, PHI, ISBN-13: 978-0132609692 ISBN-10: 013260969X.
4.	Richard M Reese, Learning Network Programming with Java, First Published: December 2015, Packet Publishing Ltd., ISBN-13: 978-0123742551, ISBN-10: 0123742552.

LABORATORY COMPONENT

PART – A

- 1. Implement a client and server communication using sockets programming.
- 2. Write a program to implement distance vector routing protocol for a simple topology of routers.
- 3. Write a program to implement error detection and Correction concepts using Checksum and Hamming code.
- 4. Implement a simple multicast routing mechanism.
- 5. Write a program to implement a concurrent chat server that allows current logged in users to communicate one with another.
- 6. Implementation of concurrent and iterative echo server using both connection and connectionless socket system calls.
- 7. Implementation of remote command execution using socket system calls.
- 8. Write a program to encrypt and decrypt the data using RSA and Exchange the key securely using Diffie-Hellman Key exchange protocol.

PART - B

1. Setup an IEEE 802.3 network with a) hub b) switch c) Hierarchy of switch. Apply the FTP, Telnet applications between nodes. Vary the number of nodes. Vary the bandwidth, queue size and observe the packet drop probability.

2. Setup a wireless sensor networks with atleast two device co-coordinators and nodes. Provide Constant Bit Rate (CBR), Variable Bit Rate (VBR) application between several nodes. Increase the number of co-coordinators and nodes in the same area and observe the performance at physical and MAC layers.

3. Setup an IEEE 802.11 network with at least two access points. Apply the CBR, VBR applications between devices belonging to same access points and different access points. Provide roaming of any device. Vary the number of access points and devices. Find out the delay in MAC layer, packet drop probability.

4. Case Study on Configuring Routers using CISCO-Packet tracer.

RV College of Engineering[®]

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing &Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRATICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	-
1	Objective type of questions covering entire syllabus	20
	PART B (Maximum of THREE Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	20		
3	Viva	20		
	TOTAL	50		

			Semester: VI			
			COMPILER DES			
		Category	: PROFESSIONAL			
		Cutegory	(Theory and La			
			(Common to CS &			
Course	e Code	: CS363IA		CIE	:	100 + 50 Marks
Credits	s: L:T:P	: 3:0:1		SEE	:	100 + 50 Marks
Total H	Iours	: 45L+30P		SEE Duration	:	3 + 3 Hours
			TT *4 T			00 11
Introd	luction to	Compilation Pro	Unit-I cess: Language Proce	agora The structure	ro of	09 Hrs
		-	cess: Language Floce	ssors, the shuch		Complier, Evolution
		Languages.	Lovical Apolyzon I	nnut Duffaring	naa	fications of Tokons
	nition of T		Lexical Analyzer, I	nput buttering, S	pec	incations of Tokens,
Recog		UNCIIS	Unit – II			09 Hrs
Syntax	x Analycic	• Introduction To	p-down Parsing, Bott	om-un Parsing In	trod	
			sers (Excluding effici			
-	,	biguous grammar	(U	ent construction a		ompaction of parsing
tubics)	, Osing an		Unit –III			09 Hrs
Syntay	x-Directed	Translation:	Syntax-Directed De	finitions Evalua	tion	
		ntax Directed Tra				
11			ge Organization, Stac	k Allocation of S	nace	Access to Nonlocal
		, Heap Manageme			puee	, 1100035 to 1101110000
2 0		, 110up 111uuu80	Unit –IV			09 Hrs
Intern	nediate C	ode Generation:	: Variants of Syntax	k trees. Three a	ldre	
			pe Equivalence, Decla			• • •
			Code for Procedures	,		1
,	I	0	Unit –V			09 Hrs
Code	Generatio	n: Issues in the	e design of Code Ge	enerator, Basic B	lock	and Flow graphs,
			mple Code Generator,			
-			tions: Principal Sour			
Flow A	Analysis	-	Ĩ	1		
	•					
Course	e Outcomes	: After completing	the course, the studen	ts will be able to: -		
CO 1	Demonst	rate the ability to o	design a compiler give	en a set of languag	e fe	atures
CO 2			cts of the language	and develop lexi	cal	analyser, parser to
		n input to an appro	opriate representation			
CO 3	Apply t		f computing and m			ate the intermediate
	represent	he knowledge of		athematics to g	ener	
		tation of the code a	and to optimize the co	de		
CO 4	Design of	tation of the code a or develop solution	ns using modern com	de piler construction	too	s to build a compiler
CO 4	Design of	tation of the code a or develop solution		de piler construction	too	
CO 4 CO 5	Design of that conv	tation of the code a or develop solution verts from a non-tr	ns using modern com	de piler construction age to machine coo	too] le.	s to build a compiler
	Design c that conv Exhibit	ation of the code a or develop solution verts from a non-tr skills like investi	ns using modern com ivial high level langua igation, effective cor	de piler construction age to machine coo nmunication, wor	too le. king	s to build a compiler

Refere	nce Books
1.	Compilers- Principles, Techniques and Tools, Alfred V Aho, Monica S.Lam, Ravi Sethi, Jeffrey D Ullman; 2nd Edition, 2023, Pearson Education, ISBN-10 -9357054111, ISBN-13 - 978-9357054119
2.	Compiler Design, Santanu Chattopadhyay, 1st Edition, 2011, PHI Learning, ISBN-978-81- 203-2725-2C
3.	Compiler Construction Principles & Practice, Kenneth C Louden; Cengage Learning, 1st Edition, 2009. ISBN – 0534939724
4.	Crafting a Compiler with C, Charles N. Fischer, Richard J. leBlanc, Jr., 1st Edition, 2009, Pearson Education, ISBN-13:978-0136067054, ISBN-10: 0136067050

LABORATORY COMPONENT

PART - A

Student should be able to design phases of compiler by incorporating following features:

1. Writing a scanner, lexical analyzers for tokenizing code snippet written in programming languages such as C, C++ ,etc.

2. Experiment with scanner (LEX/FLEX) and parser (YACC/BISON) generators

3. Writing a predictive parser parsing for simple language constructs.

4. Translation of the language constructs to an intermediate form (e.g. three-address code),

5. Implementation of three address code using quadruple, triple and indirect triples.

PART - B

- 1. Writing simple compiler using compiler construction using tools such as Flex/lex, Bison,LLVM
- 2. Generation of target code (in assembly language) using compiler construction tool
- 3. Parsing sample code snippet written using programming languages such as C/C+ Objective C code and translating it into a representation using CLANG suitable for optimization
- 4. Code improvement and optimization using tools such as LLVM compiler.

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION MARKS # **COMPONENTS** 1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 20 10 marks adding up to 20 MARKS TESTS: Students will be evaluated in test, descriptive questions with different 2. complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be 40 conducted. Each test will be evaluated for 50Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. 3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration 40 (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 4. Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and 50 Implementation (20Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE **50MARKS**

MAXIMUM MARKS FOR THE CIE (THEORY AND PRATICE) 150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	-
1	Objective type of questions covering entire syllabus	20
	PART B (Maximum of THREE Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	20		
3	Viva	20		
	TOTAL	50		

			Semester:					
	SC			AGILE TECHNOL		ES		
		Category: 1		L CORE COURSE	2			
			(Theory)					
	-		Common to CS, IS,			1		
Course Code	:	IS364TA		CIE	:	100 N		
Credits: L:T:P	:	4:0:0		SEE	:	100 N	/larks	6
Total Hours	:	60L		SEE Duration	:	3 Ho	urs	
			Unit-I					12 Hrs
Overview: Introd	ictio)n:						
Professional Softw	are I	Development, Softw	ware Engineering E	thics, Case studies.				
				n Change, Process imp	prove	ment.		
Requirements Eng								
		: Functional and	Non-functional rec	quirements. Requirements	ents I	Elicitati	on, S	pecification
Validation and Cha	nge							
			Unit – II					12 Hrs
			action models, Strue	ctural models, Behavi				
architecture. Archit	ectu	ral Design: Design	action models, Strue decisions, Archite	ctural views, Architec	tural	pattern	s and	del driven
architecture. Archit architectures Desig	ectu n an	ral Design: Design d implementation:	action models, Strue decisions, Archite		tural	pattern	s and	del driven
architecture. Archit	ectu n an	ral Design: Design d implementation:	action models, Strue decisions, Archited Object oriented des	ctural views, Architec	tural	pattern	s and	del driven mentation
architecture. Archit architectures Desig issues, Open-source	ectu n an e de	ral Design: Design d implementation: velopment	action models, Strue a decisions, Archited Object oriented des Unit –III	ctural views, Architec sign using UML, Desi	tural gn pa	pattern tterns,	s and Imple	del driven
architecture. Archit architectures Desig issues, Open-sourc Software Testing:	tectu n an e de Dev	ral Design: Design d implementation: velopment velopment testing, 7	action models, Strue a decisions, Archited Object oriented des Unit –III Fest-driven develop	ctural views, Architec sign using UML, Desi ment, Release testing	tural gn pa	pattern tterns,	s and Imple	del driven mentation
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio	ectu n an e de Dev n : H	ral Design: Design d implementation: velopment velopment testing, T Evolution processes	action models, Struc a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system ev	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma	tural gn pa , Use	pattern tterns, r testing ance	s and Imple	del driven mentation 12 Hrs
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based	ectu n an e de Dev n : H	ral Design: Design d implementation: velopment velopment testing, T Evolution processes	action models, Struc a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system ev	ctural views, Architec sign using UML, Desi ment, Release testing	tural gn pa , Use	pattern tterns, r testing ance	s and Imple	del driven mentation 12 Hrs
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio	ectu n an e de Dev n : H	ral Design: Design d implementation: velopment velopment testing, T Evolution processes	action models, Struc decisions, Archited Object oriented des <u>Unit –III</u> Test-driven develop s. Legacy system ev : Components and	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma	tural gn pa , Use	pattern tterns, r testing ance	s and Imple	del driven mentation 12 Hrs componer
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition	ectu n an e de Dev n : I sof	ral Design: Design d implementation: velopment velopment testing, T Evolution processes tware engineering:	Action models, Struct a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system ev Components and Unit –IV	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models,	tural gn pa , Use iinten CBS	pattern tterns, r testing ance E proce	s and Imple g. esses,	del driven mentation 12 Hrs componer 12 Hrs
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem	Dev n an Dev n: H sof	ral Design: Design d implementation: velopment relopment testing, T Evolution processes tware engineering:	Action models, Struct a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system eve Components and Unit –IV at, Managing Peopl	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec	tural gn pa , Use iinten CBS t Plat	pattern tterns, r testing ance E proce	s and Imple g. esses,	del driven mentation 12 Hrs componer 12 Hrs are Pricing
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem	Dev n an Dev n: H sof	ral Design: Design d implementation: velopment relopment testing, T Evolution processes tware engineering:	action models, Struc a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system ev components and Unit –IV at, Managing Peopl ing, Agile planning	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models,	tural gn pa , Use iinten CBS t Plat	pattern tterns, r testing ance E proce	s and Imple g. esses,	del driven mentation 12 Hrs componer 12 Hrs are Pricing st modeling
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem Plan driven develop	Dev n: H sof	ral Design: Design d implementation: velopment relopment testing, T Evolution processes tware engineering: Risk Managemen nt, Project Scheduli	Action models, Struct a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system ev components and Unit –IV at, Managing Peopl ing, Agile planning Unit –V	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec s, Estimation Techniqu	tural gn pa , Use iinten CBS t Plan ies, C	pattern tterns, r testing ance E proce ming: OCOM	s and Imple g. esses, Softw IO co	del driven mentation 12 Hrs componen 12 Hrs are Pricing st modeling 12 Hrs
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem Plan driven develop Agile Software De	ectu n an Dev n: H sof ent: velo	ral Design: Design d implementation: velopment relopment testing, T Evolution processes tware engineering: Risk Managemen nt, Project Scheduli	Action models, Struct a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system ev components and Unit –IV at, Managing Peopl ing, Agile planning Unit –V	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec	tural gn pa , Use iinten CBS t Plan ies, C	pattern tterns, r testing ance E proce ming: OCOM	s and Imple g. esses, Softw IO co	del driven mentation 12 Hrs componer 12 Hrs are Pricing st modeling 12 Hrs
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem Plan driven develo Agile Software De management and so	ectu n an e de Dev n: H sof ent: pomer velo	ral Design: Design d implementation: velopment /elopment testing, T Evolution processes tware engineering: Risk Managemen nt, Project Scheduli p pment: Introduction g agile methods.	Action models, Struct a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system eve components and Unit –IV at, Managing Peopling, Agile planning Unit –V on to agile methods	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec s, Estimation Techniqu	tural gn pa , Use iinten CBS t Plan ies, C	pattern tterns, r testing ance E proce ming: OCOM	s and Imple g. esses, Softw IO co	del driven mentation 12 Hrs componer 12 Hrs are Pricing st modeling 12 Hrs
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem Plan driven develop Agile Software De management and so Kanban, Flow, an	ectu n an e de Dev n: H sof ent: pmer velo calin d Co	ral Design: Design d implementation: velopment Zelopment testing, T Evolution processes tware engineering: Risk Managemen nt, Project Scheduli pment: Introduction g agile methods. onstantly Improvi	Action models, Struct a decisions, Architer Object oriented des Unit –III Test-driven develop s. Legacy system eve components and Unit –IV at, Managing Peopling, Agile planning Unit –V on to agile methods ng:	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec , Estimation Techniqu	tural gn pa , Use iinten CBS t Plan ies, C	pattern tterns, r testing ance E proce mning: OCOM ques, A	s and Imple g. esses, Softw IO cos Agile p	del driven mentation 12 Hrs componer 12 Hrs are Pricing st modeling 12 Hrs project
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem Plan driven develop Agile Software De management and so Kanban, Flow, an The Principles of K	ectu n an e de' Dev n: I sof ent: come calin d Co	ral Design: Design d implementation: velopment Zelopment testing, T Evolution processes tware engineering: Risk Managemen nt, Project Scheduli pment: Introduction g agile methods. onstantly Improvi	Action models, Struct a decisions, Architer Object oriented des Unit –III Test-driven develop s. Legacy system eve components and Unit –IV at, Managing Peopling, Agile planning Unit –V on to agile methods ng:	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec s, Estimation Techniqu	tural gn pa , Use iinten CBS t Plan ies, C	pattern tterns, r testing ance E proce mning: OCOM ques, A	s and Imple g. esses, Softw IO cos Agile p	del driven mentation 12 Hrs componen 12 Hrs are Pricing st modeling 12 Hrs project
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem Plan driven develop Agile Software De management and so Kanban, Flow, an The Principles of K Behavior with Kan	ectu n an e de' Dev n: I sof ent: comer velo calin d Co canb ban	ral Design: Design d implementation: velopment relopment testing, T Evolution processes tware engineering: Risk Managemen nt, Project Scheduli p pment: Introduction g agile methods. onstantly Improvi an, Improving You	Action models, Struct a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system eve : Components and Unit –IV at, Managing Peopling, Agile planning Unit –V on to agile methods ng: ar Process with Kan	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec s, Estimation Techniqu a, Agile development t ban, Measure and Ma	tural gn pa , Use , Use , inten CBS t Plan nes, C echni nage	pattern tterns, r testing ance E proce ming: OCOM ques, A Flow ,	s and Imple g. esses, Softw IO cos Agile I Emers	del driven mentation 12 Hrs componen 12 Hrs are Pricing st modeling 12 Hrs project
architecture. Archit architectures Desig issues, Open-source Software Testing: Software Evolutio Component based composition Project Managem Plan driven develo Agile Software De management and so Kanban, Flow, an The Principles of K Behavior with Kan The Agile Coach :	ectu n an e dev Dev n: H sof ent: comer velo calin d Co	ral Design: Design d implementation: velopment /elopment testing, T Evolution processes tware engineering: Risk Managemen nt, Project Scheduli opment: Introduction g agile methods. onstantly Improving an, Improving You aches Understand V	Action models, Struct a decisions, Archited Object oriented des Unit –III Test-driven develop s. Legacy system eve components and Unit –IV at, Managing Peopling, Agile planning Unit –V on to agile methods ng: ar Process with Kan	ctural views, Architec sign using UML, Desi oment, Release testing volution, Software ma component models, le, Teamwork, Projec , Estimation Techniqu	tural gn pa , Use iinten CBS t Plan echni nage ge , C	pattern tterns, r testing ance E proce ming: OCOM ques, A Flow , oaches	s and Imple g. esses, Softw 10 cos Agile I Emers Unde	del driven mentation 12 Hrs componer 12 Hrs are Pricing st modeling 12 Hrs project

Course	e Outcomes: After completing the course, the students will be able to:-
CO1	Understand and apply key concepts and stages of the software development lifecycle, including
	requirements analysis, design, implementation, testing, deployment, and maintenance.
CO2	Demonstrate an ability to use the techniques and tools in the area of software engineering
	necessary for engineering practice
CO3	Examine the various software design and development solutions using appropriate techniques
CO4	Students will be able to apply various Agile methodologies such as Scrum, Kanban, or XP
	effectively in software development projects.

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Refer	rence Books
1.	IanSommerville,"SoftwareEngineering",9thEdition,PearsonEducation,2013,ISBN:9788131762165
2.	Learning Agile- Understanding Scrum, XP, Lean and Kanban, Andrew Stellman& Jennifer Greene, O'Reilly Media, 2015, ISBN 978-1-449-33192-4
3.	Roger.S.Pressman," Software Engineering-A Practitioners Approach", 7 th Edition, Tata McGraw Hill, 2007, ISBN: 9780071267823
4.	Pankaj Jalote," An Integrated Approach to Software Engineering", 3 rd Edition, Narosa Publishing House, 2013, ISBN: 9788173197024
5	Rajib Mall, Fundamentals of Software Engineering, 3rd Edition, Prentice-hall Of India Pvt Ltd., 2012, ISBN: 9788120348981.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

			Semester: VI				
			COMPUTER V				
		Category: PF	ROFESSIONAL CO	DRE ELECTIVE-	III		
			(Group-D)				
			(Theory)				
Course Code	.	CS365TDA	(Common to CS &	CIE		100	
Credits: L:T:P	:	3:0:0		SEE	:	100	
Total Hours	•	45L		SEE Duration	:	3 Hours	
	•			SEE Duration	•	e nours	
			Unit-I				09 Hrs
Introduction t	o D	igital Image Fu	ndamentals				
What is Digital	Ima	ge Processing?	The origin of Digit	al Image processin	ng, l	Fundamen	tal Steps i
Digital Image	Proc	essing, Compo	nents of an Image	Processing System	n, 1	Image Sa	mpling an
Quantization, So	ome	Basic Relations	hips between Pixels.			-	
0		0	Equalization, Histog	0,1			
-		-	als Of Spatial Filterin	-	t Li	near Spati	al Filtering
Spatial Correlat	ion	and Convolution	n, Separable Filter Ke	ernels.			
			Unit – II				09 Hrs
Imaga Sagmant	otic	n. Fundamental	s, Thresholding: The	Basics of Intensity	7 T	racholdin	
			e Role of Illuminati				
of noise in ma	ge i	mesnolding, 11	е које от пнитипац				
		111 0					
			m Global Threshold	ing Using Otsu's M	Met	hod Segm	entation b
Region Growin				ing Using Otsu's M	Met	hod Segm	entation b
Region Growin			m Global Threshold Splitting and Mergi	ing Using Otsu's M	Met	hod Segm	entation b plitting an
Region Growin Merging.	g ai	nd By Region S	m Global Threshold Splitting and Mergi Unit –III	ing Using Otsu's M ng Region Growin	Met ng	hod Segm Region S	entation b plitting an 09 Hrs
Region Growin Merging. Region Segmen	g ai	nd By Region S	m Global Threshold Splitting and Mergi Unit –III ering and Super pix	ing Using Otsu's M ng Region Growin Kels: Region Segm	Met ng	hod Segm Region S	entation b plitting an
Region Growin Merging. Region Segmen	g ai	nd By Region S	m Global Threshold Splitting and Mergi Unit –III	ing Using Otsu's M ng Region Growin Kels: Region Segm	Met ng	hod Segm Region S	entation b plitting an
Region Growin Merging. Region Segmen Clustering, Regi	g an tati	nd By Region S on Using Cluster Segmentation Us	m Global Threshold Splitting and Mergi Unit –III ering and Super pix	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor	Met ng nent	hod Segm Region S ation Usir n.	entation b plitting an 09 Hrs ng K-Mean
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn	g an tati on S itio	nd By Region S on Using Clust Segmentation Us n: Image Patter	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human	Met ng i nent ithr	hod Segm Region S ation Usir n. esigner, F	entation b plitting an 09 Hrs ng K-Mean Patterns an
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn	g an tati on S itio	nd By Region S on Using Clust Segmentation Us n: Image Patter	m Global Threshold Splitting and Mergi Unit –III ering and Super pix sing Super pixels, Sli m Classification: Pr uctural Patterns, Patt	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human	Met ng i nent ithr	hod Segm Region S ation Usir n. esigner, F	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching.
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes,	g an tati on S itio Patt	on Using Clust on Using Clust Segmentation Us n: Image Patter ern Vectors, Str	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli on Classification: Pr uctural Patterns, Patt Unit –IV	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b	Met ng nent ithr Doy P	hod Segm Region S ation Usir n. esigner, F Prototype N	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching. 09 Hrs
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn	g an tati on S itio Patt	nd By Region S on Using Clust Segmentation Us n: Image Patter tern Vectors, Stru- n: Minimum-Dis	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b	Met ng nent ithr Doy P	hod Segm Region S ation Usir n. esigner, F Prototype N	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching. 09 Hrs
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat	g an tati on S itio Patt ition	nd By Region S on Using Clust Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis ng Structural Pro	m Global Threshold Splitting and Mergi Unit –III ering and Super pix sing Super pixels, Sli cn Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes.	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for	Met ng nent ithr Doy P 2-I	hod Segm Region S ation Usir n. esigner, F Prototype P O Prototyp	entation b plitting an <u>09 Hrs</u> ng K-Mean Patterns an Matching. 09 Hrs be Matchin
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac	g an tati on S itio Patt	on Using Clust on Using Clust Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes.	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for h, Independence A	Met ng nent ithr Doy P 2-I ssu	hod Segm Region S ation Usin n. esigner, F Prototype N D Prototyp	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching. 09 Hrs be Matchin Tracking a
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data	g an tati on S ition Patt ition chir king	nd By Region S on Using Cluster Segmentation Us n: Image Patter tern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli sing Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes. et Inference Problem loosing the Nearest-	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for n, Independence A - Global Nearest	Met ng nent ithr Doy P 2-I ssu	hod Segm Region S ation Usin n. esigner, F Prototype I O Prototyp mptions, ' ghbours,	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching. 09 Hrs be Matchin Fracking a Gating an
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da	g an tati on S ition Patt ition chir king	nd By Region S on Using Cluster Segmentation Us n: Image Patter tern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes.	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for n, Independence A - Global Nearest	Met ng nent ithr Doy P 2-I ssu	hod Segm Region S ation Usin n. esigner, F Prototype I O Prototyp mptions, ' ghbours,	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching. 09 Hrs be Matchin Fracking a Gating an
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da	g an tati on S ition Patt ition chir king	nd By Region S on Using Cluster Segmentation Us n: Image Patter tern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli sing Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes. et Inference Problem loosing the Nearest- lications and Example	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for n, Independence A - Global Nearest	Met ng nent ithr Doy P 2-I ssu	hod Segm Region S ation Usin n. esigner, F Prototype I O Prototyp mptions, ' ghbours,	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching. 09 Hrs be Matchin Fracking a Gating an nd Trackin
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da People.	g an tati on S ition Patt ition chir king ta A	nd By Region S on Using Cluster Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch ssociation, Appl	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli sing Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes. et Inference Problem loosing the Nearest- lications and Examp Unit –V	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for h, Independence A Global Nearest les, Vehicle Trackin	Met ng nent ithr Doy P 2-I Ssu Nei ng,	hod Segm Region S ation Usin n. esigner, F Prototype N D Prototyp mptions, ' ghbours, Finding a	entation b plitting an <u>09 Hrs</u> ng K-Mean Patterns an Matching. <u>09 Hrs</u> be Matchin Tracking a Gating an nd Trackin
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da People. Applications:	g an tati on S itio Patt itio chin king As ta A Find	on Using Clust on Using Clust Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch ssociation, Appl ding Faces Us	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli m Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes. Inference Problem lications and Examp Unit –V ing Frame Invaria	ing Using Otsu's M ng Region Growin kels: Region Segment c Superpixel Algor fori by A Human ern Classification b ng Correlation for a, Independence A Global Nearest les, Vehicle Trackin nce, Multilocal	Met ng nent ithr Doy P 2-I Ssun Nei ng,	hod Segm Region S ation Usin n. esigner, F Prototype N D Prototyp mptions, ' ghbours, Finding an ual Even	entation b plitting an op Hrs ng K-Mean Patterns an Matching. 09 Hrs be Matchin Tracking a Gating an nd Trackin in Trackin st, finding
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da People. Applications: Annotation and	g an tati on S ition Patt ition chir king ta A find seg	on Using Clust on Using Clust Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch ssociation, Appl ling Faces Us mentation, Temp	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli sing Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes. et Inference Problem oosing the Nearest- lications and Examp Unit –V ing Frame Invaria plate matching, Shap	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for a, Independence A Global Nearest les, Vehicle Trackin nce, Multilocal T e and corresponder	Met ng nent ithr Doy P 2-I SSU Nei ng, Visu nce,	hod Segm Region S ation Usin n. esigner, F Prototype P D Prototyp mptions, ' ghbours, Finding an ual Even , Video In	entation b plitting an operation of the second plitting an operation of the second patterns and the Matching. operation of the second operation of the second patterns and the second patterns and the second the second of the second operation of the second patterns and the second of the second test of the second of the second of the second operation of the second of
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da People. Applications: Annotation and	g an tati on S ition Patt ition chir king ta A find seg	on Using Clust on Using Clust Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch ssociation, Appl ling Faces Us mentation, Temp	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli m Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes. Inference Problem lications and Examp Unit –V ing Frame Invaria	ing Using Otsu's M ng Region Growin kels: Region Segm c Superpixel Algor iori by A Human ern Classification b ng Correlation for a, Independence A Global Nearest les, Vehicle Trackin nce, Multilocal T e and corresponder	Met ng nent ithr Doy P 2-I SSU Nei ng, Visu nce,	hod Segm Region S ation Usin n. esigner, F Prototype P D Prototyp mptions, ' ghbours, Finding an ual Even , Video In	entation b plitting an 09 Hrs ng K-Mean Patterns an Matching. 09 Hrs be Matchin Tracking a Gating an nd Trackin 09 Hrs ts, finding nage-Base
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da People. Applications: Annotation and Rendering: Co	g an tati on S ition Patt ition chir king As ta A Find segunstr	on Using Clust on Using Clust Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis og Structural Pro g as an Abstrac ssociation: Ch ssociation, Appl ding Faces Us mentation, Temp ucting 3D Mode	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli sing Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi ototypes. et Inference Problem oosing the Nearest- lications and Examp Unit –V ing Frame Invaria plate matching, Shap	ing Using Otsu's M ng Region Growin kels: Region Segment c Superpixel Algor iori by A Human ern Classification b ng Correlation for a, Independence A - Global Nearest les, Vehicle Trackin nce, Multilocal M e and corresponder uences, Scene Mo	Met ng nent ithr Doy P 2-I ssu Nei ng, Visi nce, odel	hod Segm Region S ation Usin n. esigner, F prototype N prototype N D Prototyp mptions, ' ghbours, Finding an ual Even , Video In ling from	entation b plitting an <u>09 Hrs</u> ng K-Mean Patterns an Matching. <u>09 Hrs</u> be Matchin Tracking a Gating an nd Trackin <u>09 Hrs</u> ts, finding nage-Base Registere
Region Growin Merging. Region Segmen Clustering, Regi Object Recogn Pattern Classes, Object Recogn Sift Feature Mat Tracking: Trac Inference. Data Probabilistic Da People. Applications: Annotation and Rendering: Co	g an tati on S itio Patt itio chir king As ta A Fino segunstr Moo	on Using Clust on Using Clust Segmentation Us n: Image Patter ern Vectors, Stru- n: Minimum-Dis ng Structural Pro g as an Abstrac ssociation: Ch ssociation, Appl ding Faces Us mentation, Temp ucting 3D Mode lelling from Un	m Global Threshold Splitting and Mergi Unit –III ering and Super pixels, Sli sing Super pixels, Sli en Classification: Pr uctural Patterns, Patt Unit –IV stance Classifier Usi stotypes. It Inference Problem lications and Examp Unit –V ing Frame Invaria plate matching, Shap els from Image Seq	ing Using Otsu's M ng Region Growin kels: Region Segment c Superpixel Algor iori by A Human ern Classification b ng Correlation for a, Independence A - Global Nearest les, Vehicle Trackin nce, Multilocal M e and corresponder uences, Scene Mo	Met ng nent ithr Doy P 2-I ssu Nei ng, Visi nce, odel	hod Segm Region S ation Usin n. esigner, F prototype N prototype N D Prototyp mptions, ' ghbours, Finding an ual Even , Video In ling from	entation b plitting an <u>09 Hrs</u> ng K-Mean Patterns an Matching. <u>09 Hrs</u> be Matchin Tracking a Gating an nd Trackin <u>09 Hrs</u> ts, finding nage-Base Registere

RV College of Engineering[®]

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Course	Course Outcomes: After completing the course, the students will be able to: -							
CO 1	Explain the fundamental concepts such as image acquisition, pre-processing and post processing							
	operations and fundamentals of Computer Vision.							
CO 2	Analyze the difficulties of the pattern recognition problems which include classification							
	techniques, Feature detection and Histogram equalization process. in feature extraction methods,							
	which help identify meaningful patterns and structures in images.							
CO 3	Apply appropriate image processing methods for image filtering, image restoration, image							
	reconstruction, segmentation, classification and representation.							
CO 4	Designing and implement a Computer Vision system as part of an experiential learning initiative							
	in teams to solve societal and environmental problems using pattern recognition in images and							
	videos							

Refere	Reference Books						
1.	David Forsyth and Jean Ponce, "Computer Vision: A Modern Approach", Prime student, 2nd edition, ISBN-13: 978-0136085928						
2.	Rafael C. Gonzalez, Richard E. Woods;" Digital Image Processing"; Pearson Education; 3rd Edition; 2012; ISBN 978-93-325-7032-0.						
3.	Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis and Machine Vision". 3rd edition, CL Engineering, ISBN-13: 978-0495082521.						
4.	Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag : http://szeliski.org/Book/.						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester:							
	OPERATION RESEARCH						
	Category: PROFESSIONAL CORE ELECTIVE-III						
		(Gr	oup-D)				
(Theory)							
Course Code : CS365TDB CIE Marks : 100							
Credits: L:T:P	:	3:0:0	SEE Marks	:	100		
Total Hours	:	45L	SEE Duration	:	3 Hrs		

Unit – I	9 Hrs				
Introduction to Operation Research: Definition and scope of operation	research,				
Multidisciplinary nature of operation research, Distinction between operation res	earch and				
operations management. Applications of operation research in various fields: Man	ufacturing,				
Logistics and transportation, Finance and economics, Healthcare, Energy and en-	vironment.				
Phases of an operation research: Study Problem formulation and definition, Data coll	lection and				
analysis, Model development and selection, Solution techniques and algorithms, Vali	dation and				
sensitivity analysis, Implementation and monitoring.					
Unit – II 9 Hrs					
Linear Programming: Formulation of linear programming problems: Decision variables and					
their interpretation, Objective function, Constraints, assumptions and limitations	of linear				
programming models. Graphical method for solving linear programming problems	s with two				
variables: Feasible region and corner point solutions, Identifying the optimal solution					
graphically, Sensitivity analysis. Simplex method for solving linear programming problems:					
Standard form and canonical form of linear programming problems, Basic feasible solutions and					
their properties Simplex algorithm (iterative process), Pivot operations and tableau updates,					
Duality in linear programming. Transportation and assignment problems: Problem for	ormulation				
and special structures, Solution methods for transportation problems, Northwest corner	er method,				
Least-cost method, Vogel's approximation method, Transportation algorithm (modified	ed simplex				

Queuing Theory:

algorithm.

Unit – III

9 Hrs

Characteristics of queuing systems: Arrival process (Poisson, general, etc.) Service process (exponential, general, etc.), Queue discipline (FIFO, LIFO, priority, etc.), System capacity (single-server, multi-server), Performance measures (waiting time, queue length, utilization). Single-server queuing models: M/M/1 model (Poisson arrivals, exponential service times), Steady-state analysis and performance measures, Little's law and its applications, M/G/1 model (Poisson arrivals, general service times) Pollaczek-Khintchine formula Numerical methods for evaluation, *Multi-server queuing models:* M/M/c model (Poisson arrivals, exponential service times, c servers) Steady-state analysis and performance measures Erlang's delay formula, M/G/c model (Poisson arrivals, general service times, c servers) Numerical methods for evaluation. *Queuing decision models:* Cost analysis and optimization, determining optimal service rates, Determining optimal number of servers, Priority queuing models and applications

method) Solution methods for assignment problems Hungarian method Branch-and-bound

Decision Theory:

Unit – IV

9 Hrs

Decision making under certainty: Optimization techniques, Linear programming Dynamic programming Integer programming Applications in resource allocation, scheduling, and planning. *Decision making under risk:* Expected value criterion, Expected utility theory, Utility functions and risk

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

attitudes, Certainty equivalents and risk premiums, Decision trees and their evaluation. **Decision making under uncertainty:** Maximin, maximax, and minimax regret criteria, Bayesian decision theory, Prior and posterior probabilities, Value of information and value of perfect information. *Decision tree analysis:* Constructing and evaluating decision trees, Incorporating probabilities and utilities, Decision tree rollback and optimal decision selection, Influence diagrams and their applications.

Pro	iect	Management:	
I I V	JUCE	managemente	

Unit – V

9 Hrs

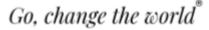
PERT (*Program Evaluation and Review Technique*): Network construction and analysis, Activity-on-node (AON) and activity-on-arc (AOA) representations, Identifying critical paths, Time estimation and probability calculations, Beta and normal distributions for activity time estimation, Calculating project completion time distributions.

CPM (*Critical Path Method*): Differences and similarities with PERT, Resource allocation and levelling, Resource-constrained project scheduling, Resource levelling techniques (heuristics and optimization methods).

Project crashing and time-cost trade-offs: Identifying critical activities, Determining optimal crushing strategy, Linear programming and dynamic programming approaches, Project compression and resource allocation.

Case Studies and Applications: Real-world examples and case studies from various industries like-Manufacturing, Logistics and transportation, Finance and economics, Healthcare etc.

Course	ourse Outcomes: After completing the course, the students will be able to				
CO 1:	Solve linear programming problems using appropriate techniques and optimization solvers, interpret the results obtained.				
CO 2:	Determine optimal strategy for Minimization of Cost of shipping of products from source to Destination/ Maximization of profits of shipping products using various methods, Finding initial basic feasible and optimal solution of the Transportation problems				
CO 3:	Optimize the allocation of resources to Demand points in the best possible way using various techniques and minimize the cost or time of completion of number of jobs by number of persons.				
CO 4:	Formulate Network models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these Network problems				


Refer	Reference Books:					
1.	S D Sharma, Operations Research (Theory Methods & Applications), January 2014.					
2.	Hamdy A Taha, Operations Research: An Introduction, 10e, Pearson, August 2019.					
3.	J K Sharma, Operation Research (Theory and Applications), 4 th Edition, 2019.					

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7&8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VI WEB FRAMEWORKS Category: PROFESSIONAL CORE ELECTIVE-III (Group-D)

(Theory)

Course Code : CS365TDC CIE : 100 Credits: L:T:P : 3:0:0 SEE : 100	(Common to CS & IS)							
	Course Code	••	CS365TDC		CIE	:	100	
	Credits: L:T:P	:	3:0:0		SEE	:	100	
Total Hours : 45L SEE Duration : 3 Hours	Total Hours	:	45L		SEE Duration	:	3 Hours	

Unit-I09 HrsThe Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; General syntactic
characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control
statements.

JavaScript (continued):Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts

Unit – II09 HrsJavaScript and HTML Documents: The JavaScript execution environment; The Document Object Model;
Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button
elements, Text box and Password elements; The DOM 2 event model; The navigator object.

Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements.

	09 Hrs
Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic cha	aracteristics;
Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern	n Matching;
Form Handling; Cookies; Session Tracking.	

XML: Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets.

Unit –IV

Web Development Framework: AngularJS

Angular JS: Introduction, Angular JS Expressions, Modules, Data Binding, Controllers, DOM, Events, Forms, Validations.

Introduction to Node JS

Node JS and its advantages, Traditional Web Server Model, Node JS Process Model, Installation of Node JS, Node JS Basics, Modules Event Loop.

Introduction to React JS

Advantages of React JS, Understanding Components and Props, Handling Events, Working with Forms.

Omt−v	09 1118
Ajax: Overview of Ajax; History of Ajax; Ajax Technology; Implementing Ajax, Basics	of Ajax: The
Application; The Form Document; The Request Phase; The Response Document; The Receiver	Phase; Cross-
Browser Support.	

Introduction to Django

What is Django, Django and Python, Django Model View Template, Installation of Django, Form Classes, Validation.

Course Outcomes: After completing the course, the students will be able to: -

09 Hrs

CO 1	Understand the basic syntax and semantics of web technology tools such as JavaScript,
COT	
	PHP and XML.
CO 2	Appy web technology tools for designing static and dynamic web pages.
CO 3	Investigate & web based design solution to a given problem using different modern web
	tools and appropriate techniques.
CO 4	Implement Client and Server side web based real-time applications using JavaScript, PHP
	, AJAX, Angular JS, Node JS, React JS and Django.
CO 5	Demonstrate good coding practices for web applications engaging in lifelong learning.

Refere	ence Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013, ISBN-13:978-0132665810.
2.	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4.
3.	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4.	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.
5.	Chris Northwood, 'The Full Stack Developer': Your Essential Guide to Everyday Skills, Apress, 2018, ISBN:484241525, 9781484241523

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semester:	VI			
		GENERAT		AL INTELLIGEN	CE		
				L CORE ELEC			
			(Group-)				
			(Theory	-			
		(C	ommon to AI, C	,			
Course Code	:	AI365TDD		CIE	:	100 Marks	
Credits: L: T: P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	45L		SEE Duration	:	3.00 Hours	
			Unit-I				9Hrs
Introduction to C	len	erative Deep Le	arning, Generat	ive Modeling Wh	at I	s Generative N	Aodeling?
				erative Versus			
Introduction to	Lar	ge Language M	Iodels (LLMs),	, Applications of	La	arge Language	e Models,
Limitations and l	Ris	<u>ks of Large Lan</u>	guage Models				
			Unit – II				9Hrs
Variational Au	toe	ncoders Introd	uction, Autoen	coders, The Aut	oen	coder Archite	ecture the
Encoder, The De	coc	ler, Joining the	Encoder to the I	Decoder, Analysis	s of	the Autoencoo	ler
6				der The Loss			
Variational Auto	enc	coder Using VA	AEs to Generate	Faces, Training	the	e VAE, Analy	sis of the
VAE, Generatin	g N	New Faces, Late	ent Space Arithn	netic, Morphing	Bet	ween Faces	
			Unit –III				9Hrs
Generative Ad	ver	rsarial Networ	ks Introductio	on to GAN (G	AN), The Disc	riminator,
TheGenerator							
Cycle GAN Ove	rvi	ew, The Genera	tors (U-Net) Th	e Discriminators	Co	mpiling the C	ycle GAN
Training the Cy	cle	GAN Analysis	of the Cycle (GAN Creating a	Су	cle GAN to F	aint Like
Monet the Gener	ato	rs (ResNet) Ana	lysis of the Cyc	le GAN.			
Neural Style Tr	ans	sfer Content Los	ss Style Loss To	tal Variance Loss	s Ri	unning the Neu	ral Style
Transfer Analysi	s of	f the Neural Styl	le Transfer Mod	lel			
			Unit -IV				9Hrs
Diffusion Models	In	troduction Deno	oising Diffusion	Models (DDM),	Th	ne Flowers Da	taset, The
		Process, The R	eparameterizati	on Trick, Diffusi	on	Schedules, the	e Reverse
Diffusion Proces	s.						
Energy-Based M	ode	els Introduction	Energy-Based	Models, The MI	NIS	T Dataset, Th	e Energy
Function Sampli	ng,	Using Langevir					
			Unit -V				9Hrs
				g Bias in AI Ty		· •	
data, societal) Fairness Metrics Statistical parity, equal opportunity, disparate impact Mitigation							
Strategies Pre-processing, in-processing, and post-processing techniques							
Ethical Design and Deployment of Generative AI Ethical AI Design Principles Human-centered							
-				Real-world imple		-	
-			-	Guidelines and			-
deployment		1				1	

Course (Outcomes: After completing the course, the students will be able to
CO1:	Apply the concepts and principles of Generative Artificial Intelligence to engineering requirements.
CO2:	Design and demonstrate proficiency in implementing and training various generative AI models using modern tools.
CO3:	Investigate the need for Generative AI techniques to solve real-world problems in diverse domains.
CO4:	Explore advanced topics and research directions in Generative AI and critically evaluate their potential applications.
CO5	Equip students with the knowledge to identify and address ethical issues in Generative AI, focusing on fairness, accountability, transparency, and human rights.

Referen	Reference Books					
1	"Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play" by David Foster, 2 nd Edition, 2023. ISBN: 978-1492041948. Publisher: O'Reilly Media.					
	'Deep Learning" by Ian Good fellow, Yoshua Bengio, and Aaron Courville.2 nd Edition 2016,					
2	ISBN: 978-0262035613. Publisher: MIT Press.					
3	"Fairness and Machine Learning: Limitations and Opportunities"; Author(s) Solon Barocas,					
	Moritz Hardt, Arvind Narayanan, 2023, ISBN-10/ASIN: 0262048612, Publisher: MIT Press					
4	"Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way" by					
-	Virginia Dignum, 1 st Edition, 2021, ISBN 9783030303716, Publisher: MIT Press					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARK S		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Go, change the world[®]

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	9 & 10 Unit 5: Question 9 or 10					
	TOTAL	100				

			Semester: VI				
BIG DATA SYSTEMS							
		Category: PF	ROFESSIONAL CO	ORE ELECTIVE-	III		
			(Group-D)				
Course Code		CS365TDE	(Theory)	CIE		100	
Credits: L:T:P	:	3:0:0		SEE	:	100	
Total Hours	:	45L		SEE Duration	:	3 Hours	
	•	101		SEL Duration	•	Jilouis	
			Unit-I				09 Hrs
Different Types o	f D	ata and Storage f	for Data: Structured D	ata (Relational Data	base	es) Semi-st	ructured
		_	Data (File systems), Ch				
			ndary storage vs. (over	•			
Locality of Refer		•	•)			
v		. .	data structures that le	verage locality, data	a or	panization o	on disk for
better locality	-j.			eruge roeuriej, aud		Samparion o	
			Unit – II				09 Hrs
 Parallel and Distributed Processing: Motivation (Size of data and complexity of processing); Storing data in parallel and distributed systems: Shared Memory vs. Message Passing; Strategies for data access: Partition, Replication, and Messaging. Distributed Systems: Motivation (size, scalability, cost-benefit), Client-Server vs. Peer-to-Peer models, Cluster Computing: Components and Architecture Big Data Analytics: Requirements, constraints, approaches, and technologies. Big Data Systems – Characteristics: Failures; Reliability and Availability; Consistency – Notions of Consistency. CAP Theorem and implications for Big data Analytics 							
			Unit –III				09 Hrs
Hadoop: Introduction, Architecture, and Map-reduce Programming on Hadoop, Hadoop Distributed File System (HDFS), Scheduling in Hadoop (using YARN). Example – Hadoop application, Hadoop Ecosystem: Databases and Querying (HBASE, Pig, and Hive) Hadoop Ecosystem: Integration and coordination (Sqoop, Flume, Zookeeper & Oozie)							
Unit –IV 09 Hrs							09 Hrs
Unit –IV09 HrsDistributed Architecture and Computing-HPCC Systems HPCC System functions, Data Lake Architecture, The HPCC Systems design, Thor Vs ROXIE, Hadoop V/s HPCC Systems, ECL programming An activity Declaration, A Record Declaration, Schema on Read (RECORD) explained, A Function Declaration, A MODULE, ECL File(s), Importing files, Spraying and Reading a file Data Shaping (Transforming) : Function, Module and Project, Iterate and Rollup ,Sort, Join and Dedup ,Normalize and Denormalize ,Distribute and Reading The Execution Graph, GROUP and functions (SUM, AVE, COUNT), TABLE and AGGREGATE							

Unit –V09 HrsSpark: Introduction, Architecture and Features, Programming on Spark: Resilient Distributed Datasets,
Transformation, Examples, Machine Learning (on Spark): Regression, Classification, Collaborative
Filtering, and Clustering, Streaming on Spark: Architecture of Spark Streaming, Stream Processing Model,
Example.

Course	Outcomes: After completing the course, the students will be able to: -
CO 1	Interpret/explore popular distributed systems architectures, emphasizing their significance in
	addressing Big Data challenges through scalable, fault-tolerant, and efficient data processing solutions.
CO 2	Apply distributed computing principles using Hadoop, MapReduce, or HPCC Systems to design and implement scalable solutions for real-world Big Data challenges.
CO 3	Identify and use suitable tools and techniques for efficient Big Data storage and database management, leveraging advanced querying mechanisms and interfaces to enable optimized data retrieval, analysis, and performance.
CO 4	Demonstrate in-memory processing and stream processing techniques for building Big Data systems.
CO 5	Demonstrate skills in investigation, effective communication, teamwork/individual work, and ethical practices by implementing Big Data solutions for diverse applications.

Referen	nce Books
1.	Seema Acharya and Subhashini Chellappan. Big Data and Analytics. Wiley India Pvt. Ltd. Second Edition, ISBN-13 978-8126579518
2.	Kai Hwang, Jack Dongarra, and Geoffrey C. Fox. Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kauffman 2011 ISBN-13 978-0123858801
3.	Tom White , The Definitive Guide , 4 th Edition, 2012, O'reilly Publications, ISBN: 9780596521974
4.	https://cdn.hpccsystems.com/releases/CE-
	Candidate9.0.10/docs/EN_US/ECLLanguageReference_EN_US-9.0.10-1.pdf

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	Q. NO. CONTENTS			
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3: Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
			Semester: VI			
		CRYPTOGRAP	HY & NETWORK SECURITY			
		Category: PROFES	SSIONAL CORE ELECTIVE-	III		
			(Group-D)			
			(Theory)			
Course Code	:	CS365TDF	CIE	:	100	
Credits: L:T:P	:	3:0:0	SEE	:	100	
Total Hours	:	45L	SEE Duration	:	3 Hours	
			Unit-I			09 Hrs
Introduction: Se	curi	ty Goals, Cryptographic A	Attacks, Services and Mechanism, T	Fech	niques. Mathen	natics of
Cryptography: In	tege	r Arithmetic, Modular Ar	ithmetic, Matrices, Linear Congrue	nce.		

 Unit – II
 09 Hrs

 Traditional Symmetric-Key Ciphers: Introduction, Substitution Ciphers, Transpositional Ciphers, Stream and Block Ciphers. Data Encryption Standard (DES): Introduction, DES Structure, DES Analysis, Security of DES. Advanced Encryption Standard: Introduction, Transformations, Key Expansion, The AES Ciphers, Examples, Analysis of AES.

 Unit –III
 09 Hrs

 Encipherment using Modern Symmetric-Key Ciphers: Use of Modern Block Ciphers, Use of Stream

 Ciphers. Asymmetric Key Cryptography: Introduction, RSA Cryptosystem, Rabin Cryptosystem. Elgamal

 Cryptosystem.

Unit –IV09 HrsMessage authentication: Authentication Requirements, Authentication Functions, Message AuthenticationCodes. SHA-3, MD5.Digital signatures: Digital Signatures, Digital Signature Algorithm.Key managementand distribution: Distribution of public keys, X.509 certificates, Kerberos.

Unit -V09 HrsTransport level security: Web Security considerations, Secure Sockets Layer.IP Security: IP Security
overview, IP Security policy, Encapsulating Security payload.Wireless Network Security: IEEE 802.11
Wireless LAN Overview, IEEE 802.11i Wireless LAN Security, Wireless Application Protocol Overview,
Wireless Transport Layer Security, WAP End-to-End Security

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Explore fundamental concepts of cryptography, including symmetric and asymmetric encryption,				
	hash functions, and digital signatures.				
CO 2	Apply cryptographic algorithms to secure data in transit and at rest, ensuring confidentiality,				
	integrity, and authenticity.				
CO 3	Analyze and implement network security protocols (e.g., SSL/TLS, IPsec) to protect data				
	communications.				
CO 4	Demonstrate modern security mechanisms for protection of data and networks				

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Refere	nce Books
1.	Behrouz A. Forouzan, Debdeep Mukhopadhyay; Cryptography and Network Security; 2e,
	McGraw-Hill; 2010, ISBN: 007070208x
2.	Cryptography and Network Security: Principles and Practice, 7 th Edition, ISBN 978-
	0-13-444428-4, by William Stallings published by Pearson Education © 2017.
3.	Douglas Stinson; Cryptography Theory and Practice; Chapman & Hall; 3rd Edition; 2005,
	ISBN 9781584885085
4.	Josef Pieprzyk, Thomas Hardjono, Jennifer Serberry Fundamentals of Computer Security,
	Springer ISBN: 9783642077135, ISBN: 9783662073247 (eBook).

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

FUNDAMENTALS OF AEROSPACE ENGINEERING Category: INSTITUTIONAL ELECTIVES-I						
		_	(Group-E)			
			(Theory)			
Course Code	:	AS266TEA		CIE	:	100 Marks
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks					
Total Hours	Total Hours : 45L SEE Duration : 3.00 Hours					

Unit-I	09 Hrs
Basics of Flight Vehicles: History of aviation, International Standard atmosphere (IS	A), Temperature,
pressure and altitude relationships, Simple Problems on Standard Atmospheric Propert	ies, Classification
of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions	
Unit – II	10 Hrs
Aircraft Aerodynamics: Bernoulli's theorem, Centre of Pressure, Lift and Drag,	Types of Drag,
Aerodynamic Coefficients, Aerodynamic Centre, Wing Planform Geometry, Airfoil No	menclature, Basic
Aerodynamic characteristics of Airfoil, Simple Numericals on Lift and Drag.	
Unit –III	12 Hrs
Aerospace Propulsion: Introduction, Turbine Engines: Brayton Cycle, Operation	ion of Turbojet,
Turboprop, Turbofan, Turboshaft, RAMJET and SCRAMJET Engines, Rocket Engin	nes: Principles of
operation of Solid, Liquid, Hybrid, Nuclear and Electric Rockets.	
Introduction to Space Mechanics: Basic Orbital Mechanics-Types of Trajectories, E	scape and Orbital
Velocities, Kepler's Laws of Planetary Motion, Simple Numericals.	
Unit –IV	06 Hrs
Aerospace Structures and Materials: General types of construction-Monocoque, Ser	mi-Monocoque &
Geodesic, Structure of Wing and Fuselage, Metallic and Composite Materials.	
Unit –V	08 Hrs
Aircraft Systems & Instruments: Instrument Displays, Basic Air data systems & Pi	tot Probes- Mach
meter, Air speed indicator, Vertical speed indicator, Altimeter.	
Basics of Aircraft Systems: Hydraulic and pneumatic systems, Electrical System, Airc	craft Fuel System,
Environmental Control System.	-

Course	Course Outcomes: At the end of this course the student will be able to :				
CO1:	Identify the fundamental nuances of Aerospace Engineering and appreciate their significance on the Flight Vehicles design and performance				
the Flight Vehicles design and performance					
CO2:	Interpret the design parameters that influence the design of the Aerospace Vehicles systems and				
CO2.	its sub-systems				
CO3:	Evaluate critically the design strategy involved in the development of Aerospace vehicles				
CO4:	Categorically appraise the operation of the Aerospace Vehicles for different operating conditions				

Re	Reference Books		
1	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.		
2	Fundamentals of Aerodynamics, Anderson J .D, 5 th Edition, 2011, McGraw-Hill International Edition, New York ISBN: <u>9780073398105</u> .		
3	Rocket Propulsion Elements, Sutton G.P., 8 th Edition, 2011, John Wiley, New York, ISBN: 1118174208, 9781118174203.		
4	Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN: 978- 1-85617-932-4		
5	Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystem Integration", John Wiley & Sons, 3rd edition, 2011, ISBN: 9781119965206		

RASHT	Service State	RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	vorld [®]
	#	COMPONENTS	MARKS
	1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
	2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
	3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
		MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B (Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7 & 8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

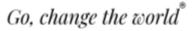
Semester: VI **BIOINFORMATICS Category: INSTITUTIONAL ELECTIVES-I** (Group-E) (Theory) **BT266TEB** CIE **Course Code 100 Marks** Credits: L:T:P : 3:0:0 SEE : 100 Marks **Total Hours** 45 Hrs **SEE Duration 3Hours** : : Unit-I **09 Hrs** Introduction to tools and databases: Introduction to Bioinformatics, Goals, Scope, Applications, Sequence databases, Structure databases, Special databases – genome and microarray, Applications of these databases, examples, Database similarity search: Unique requirements of database searching, Heuristic Database Searching, Basic Local Alignment Search Tool (BLAST), FASTA, Comparison of FASTA and BLAST, Database Searching with Smith-Waterman Method Unit – II **09 Hrs** Sequence Analysis: Types of Sequence alignment -Pairwise and Multiple sequence alignment, Alignment algorithms, Scoring matrices, Statistical significance of sequence alignment. Multiple Sequence Alignment: Scoring function, Exhaustive algorithms, Heuristic algorithms, Profiles and Hidden Markov Models: Position-Specific scoring matrices, Profiles, Markov Model and Hidden Markov Model, Scoring matrices - BLOSSUM and PAM Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation. **09 Hrs** Unit –III Introduction to Next-Generation Sequencing (NGS) analysis: Sanger sequencing principles - history and landmarks, of Sequencing Technology Platforms, A survey of next-generation sequencing technologies, A review of DNA enrichment technologies, Base calling algorithms, Base quality, phred values, Reads quality checks, Interpretations from quality checks. Adapter and primer contamination. Processing reads using clipping of reads-Advantages and disadvantages of processing of reads, automation in NGS analysis and advantages (shell scripting) Unit -IV **09 Hrs** Structural analysis & Systems Biology: Gene prediction programs - ab initio and homology-based approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. Predicting RNA secondary structure, Protein structure basics, structure visualization, comparison and classification. Protein structure predictive methods using protein sequence, Protein identity based on composition. Structure prediction - Prediction of secondary structure, tertiary structure prediction methods, Scope, Applications. Concepts, implementation of systems biology, Mass spectrometry and Systems biology, Flux Balance analysis. Unit –V **09 Hrs** Drug Screening: Introduction to Computer-aided drug discovery, target selection, ligand preparation and enumeration, molecular docking, post-docking processing, molecular dynamics simulations, applications and test cases, AI/ML in Drug discovery

Course Outcomes: After completing the course, the students will be able to:-		
CO1	Gain proficiency in utilizing a range of bioinformatics tools and databases for comprehensive sequence and	
	structural analysis.	
CO2	Investigate and apply innovative sequencing technologies and analytical methods to solve complex biological	
	questions and advance research in genomics and molecular biology.	
CO3	Demonstrate expertise in NGS technologies, including performing data quality assessments, read processing,	
	and managing large-scale data.	
CO4	Apply bioinformatics tools for modeling and simulating biological processes, with a focus on gene prediction	
	using both ab initio and homology-based approaches.	

-	
1.	Xiong J. Essential bioinformatics. Cambridge University Press; 2006 Mar 13.
2.	Buehler LK, Rashidi HH, editors. Bioinformatics basics: applications in biological science and medicine. CRC
	Press; 2005 Jun 23.
3.	Ghosh Z, Mallick BM. Bioinformatics principles and Applications. Oxford University Press; 2018 Jun 13.
4.	Low L, Tammi MT. Introduction to next generation sequencing technologies. Bioinformatics. WORLD
4.	SCIENTIFIC. 2017 Jul 26:1-21.
5	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN:
5.	9780879697129.
	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-
6.	208-87866.

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B	-	
(Ma	(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7&8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	


Semester: VI

INDUSTRIAL SAFETY ENGINEERING Category: INSTITUTIONAL ELECTIVES-I (Group-E) (Theory) CH266TEC **Course Code** CIE 100 Marks Credits: L:T:P 3:0:0 SEE 100 Marks **Fotal Hours** 45L SEE Duration **3Hours Unit-I 09 Hrs** Introduction Safety: Introduction to industrial safety engineering, major industrial accidents, safety and health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard actuation, Actuation transition, Causal factors, problems on **OSHA** Unit – II **09 Hrs Risk assessment and control:** Risk assessment, Risk perception, acceptable risk, problems on net present value. internal rate of return, payback period concepts including real life examples. Hazard Identification Methods: Preliminary Hazard List (PHL), worksheets, case study. Preliminary Hazard Analysis (PHA), Fault tree and Event tree analysis. Design and development of fault tree and event tree for high pressure reactor system. Unit –III **09 Hrs** Hazard analysis: Hazard and Operability Study (HAZOP): Guide words, HAZOP matrix, Procedure, HAZOP studies on reactors, heat exchanger, design of HAZOP table, Failure Modes and Effects Analysis (FMEA) concept, methodology, problems of FMEA, examples. Unit –IV **09 Hrs Risk analysis on capital budgeting:** Risk adjusted discount rate (RADAR) method, certainty equivalent approach, scenario analysis, probability distribution, quantification of risk using statistical parameters and associated problems. Unit -V **09 Hrs** Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safety glasses, face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, types of foot PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical plant explosion and fire.

Course Outcomes: After completing the course, the students will be able to:-				
	Understand the risk assessment techniques used in process industry			
CO2	Interpret the various risk assessment tools.			
CO3	Use hazard identification tools for safety management.			
CO4	Analyze tools and safety procedures for protection in process industries.			

Refe	rence Books
1.	Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of IEC61511
	and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina,Lulu publication, ISBN:1291187235.
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005,
Ζ.	Pensulvania ISA publication, ISBN:155617909X.
2	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of
3.	alberta press, Canada, ISBN: 0888643942.
4.	Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005,
	Khanna Publishers, New Delhi, ISBN: 8174092102.

RV College of Engineering[®]

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Semester: VI							
	ROBOTIC PROCESS AUTOMATION							
		Category:	INSTITUTIONAL ELECTI	VES-I				
	(Group-E)							
			(Theory)					
Course Code	••	CS266TED		CIE	:	100		
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100							
Total Duration	Total Duration:45LSEE Duration:3 Hrs							

Unit – I	9 Hrs				
RPA Concepts: RPA Basics, History of Automation, what is RPA? RPA vs Automation, H					
Flowcharts, Programming Constructs in RPA, What Processes can be Automated? Types of Bots,					
Workloads that can be automated.	,				
RPA Advanced Concepts: Standardization of processes, Setting up the Centre of Excel	lence. RPA				
Development methodologies, Difference from SDLC, RPA journey, RPA business case, I					
Process Design Document/Solution Design Document, Industries best suited for RPA					
Challenges with RPA, RPA and emerging ecosystem.	,				
Unit – II	9 Hrs				
RPA Tool Introduction: Introduction to UiPath - the User Interface, Types of Variables, V	Variables in				
UiPath, Managing Arguments, The Arguments Panel, Namespaces; Control flow statements	s in UiPath,				
Sequences and Flowcharts, Control Flow Activities					
Data Manipulation Introduction, Data Manipulation Operations, Types of data storing vari	ables, Text				
Manipulation, main string methods.					
UiPath Recording: Basic, Desktop and Web Recording, Image and Native Citrix	Recording,				
Input/output methods, Types of OCR, Data Scraping, Advanced Scraping techniques.	-				
Unit – III	Unit – III 9 Hrs				
Advanced Automation Concepts: Selectors, Types of Selectors (Full, partial, dynamic), Defining and					
Assessing Selectors, Customization, Debugging.					
Image, Text & Advanced Citrix Automation – Introduction, Keyboard based automation,	Information				
Retrieval, Best Practices					
Excel Data Tables & PDF, Data Tables in RPA, Excel and Data Table, Extracting Data from	Data Table,				
Anchors, Using anchors in PDF					
Unit – IV	9 Hrs				
Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, K	ey concepts				
of email, email protocols, email automation in UiPath, email as input and output.					
Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for sol	ving issues,				
Catching errors.					
Overview of orchestration Server, orchestrator functionalities, Connecting Bot to orchestrator					
Unit – V	9 Hrs				
Unit – V Hyperautomation: Components and application of Hyperautomation, Automati	9 Hrs on versus				
Unit – V	9 Hrs on versus				

	hyperautomation, Benefits and challenges of hyperautomation, use cases, Phases (Integration, Discover,
	Orchestration and Governance), Trends in Hyperautomation (low-code/no-code platform, HaaS)
-	

	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand RPA principles, its features and applications						
CO2	Demonstrate proficiency in handling variables and decision making inside a workflow and data manipulation techniques						
CO3	Gain insights into recording, Email Automation and exception handling and orchestrator.						
CO4	Analyze the trends in automation and chose business strategy to design a real-world automation workflow.						

Refe	Reference Books:				
1.	Alok Mani Tripathi, "Learning Robotic Process Automation, Publisher: Packt Publishing, Release Date: March 2018 ISBN: 9781788470940				
2.	PASCAL BORNET, Intelligent automation: Welcome to the world of hyperautomation, World Scientific Publishing Company, ISBN-13: 978-9811235481 December 2020				
3.	UiPath pdf manuals				
4.	https://www.uipath.com/rpa/robotic-process-automation				
5.	https://www.ibm.com/topics/hyperautomation				
6.	https://www.pega.com/hyperautomation				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: VI					
	INTELLIGENT TRANSPORTATION SYSTEMS							
		Category:	INSTITUTIONAL	ELECTIVES-I				
			(Group-E)					
			(Theory)		1	1		
	Course Code : CV266TEE CIE : 100 Marks							
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45L		SEE Duration	:	3Hours		
			Unit-I			09 Hrs		
Introduction to	Inte	elligent Transport	ation Systems (IT	S): Historical bac	kgr	ound, Urbanisation,		
Motorisation, Tra	ans	port system chara	acteristics, Transpo	ort problems and	issı	ues, Challenges and		
opportunities in	IT	S: ITS-Today and	d tomorrow, ITS	training and educ	atio	on needs, Role and		
importance of ITS	S ir	context of Indian	Transport system a	and opportunity for	sec	ctor growth of ITS.		
1			Unit – II	** *		09 Hrs		
ITS Architecture:	int	roduction, Function	alities required for	User service, Logic	cal	architecture, Physical		
architecture, Equip	me	nt and Market packa	iges, Need of ITS Ard	chitecture to solve pro	obl	ems in Urban area.		
						ools, Data analysis and		
Traveller informati	on.	Various detection,	Identification and col	lection methods for I	TS.			
Unit –III09 HrsTraffic management system components and ITS: Introduction, objectives, traffic management measures,								
						Management Centre,		
		•		•		vance Vehicle Control		
-	Pu	blic Transport Syst	em, Commercial Ve	nicle Operations, 11	5 F	For Intermodal Freight		
Transport.			Unit –IV			09 Hrs		
ITS Evolution	Dr	aiast coloction at t		Doploymont Trooler	na			
						Impact Assessment,		
-	Benefits by ITS components, Evaluation Guidelines. ITS for Law Enforcement: Introduction,							
Enhance and supp	Enhance and support the enforcement traffic rules and regulations, ITS Funding options.							
Unit –V 09 Hrs								
		-	-			and standards, ITS		
standards application areas, National Transportation Communications for ITS Protocol, Standards								
testing. ITS for st	nai	t cities and Case s	tudies.					

Cours	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Identify and apply ITS applications at different levels				
CO2	Illustrate ITS architecture for planning process				
CO3	Examine the significance of ITS for various levels				
CO4	Compose the importance of ITS in implementations				

Go, change the world[®]

Ref	Reference Books						
1	Pradip Kumar Sarkar and Amit Kumar Jain, "Intelligent Transport Systems", PHI Learning						
1.	Private Limited, Delhi,2018, ISBN-9789387472068						
2	Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Planning"						
2.	Artech House publishers (31 March 2003); ISBN-10: 1580531601						
2	Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2008.						
3.	ISBN-13: 978-1-59693-291-3						

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZESwill be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OFTWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100
4.	Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola Transport Systems: Technologies and Applications" Wiley Publishing ISBN:1118894782 9781118894781,	U
5	R.P Roess, E.S. Prassas, W.R. McShane. Traffic Engineering, Pearson Educational In Third Edition, 2004, ISBN-13: 978-0-13-459971-7.	ternational,

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)	-				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semester: VI				
			EALTH MONITOR		JRF	ES	
	Category: INSTITUTIONAL ELECTIVES-I						
	(Group-E)						
	1		(Theory)		1		
Course Code	:	CV266TEF		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	45L		SEE Duration	:	3Hours	
			Unit-I	~		09 Hrs	
			Health of Structures	s, Causes of Distre	ess,	Regular Maintenance,	
Importance of main							
		<u> </u>		Analysis of behavior	r of	structures using remote	
structural health me	oni	toring, Structural Sa				0.0 11	
			Unit – II			09 Hrs	
					nan	ical impedance (EMI)	
			Sensor technologies u				
				and Investigation, Ir	ives	stigation Management,	
SHM Procedures, S	SHI	M using Artificial In					
			Unit –III			09 Hrs	
	0	Types of Static Tes esponse Measureme		Loading Methods, set	nso	r systems and hardware	
			Unit –IV			09 Hrs	
Dynamic Field T	esti	ng: Types of Dyna	mic Field Test, Stre	ess History Data, Dy	nar	nic Response Methods,	
Hardware for Rem	ote	Data Acquisition Sy	stems, Remote Struc	tural Health Monitor	ing		
	Unit –V 09 Hrs						
Remote Structure	al I	Health Monitoring	: Introduction, Hard	dware for Remote l	Dat	a Acquisition Systems,	
Advantages, Case s	stuc	lies on conventional	and Remote structur	al health monitoring			
Case studies: Stru	ctui	al Health Monitorin	g of Bridges, Buildin	igs, Dams, Applicatio	ons	of SHM in offshore	
						onitoring of structural	

Course Outcomes: After completing the course, the students will be able to:-					
CO1	Diagnose the distress in the structure understanding the causes and factors.				
CO2	Understand safety aspects, components and materials used in Structural Health Monitoring.				
CO3	Assess the health of structure using static field methods and dynamic field tests.				
CO4	Analyse behavior of structures using remote structural health monitoring				

Reference Books

	1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, 2006, John
		Wiley and Sons, ISBN: 978-1905209019
- [-	

- Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, 2007, John Wiley and Sons, ISBN:9780470033135
- 3 Structural Health Monitoring and Intelligent Infrastructure, J. P. Ou, H. Li and Z. D. Duan, Vol1,2006,Taylor and Francis Group, London, UK. ISBN: **978-0415396523**
- 4 Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, 2007, Academic Press Inc, ISBN: 9780128101612

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7&8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

					Semester: VI				
		A	DVANCE	D ENE		FOR E-MOBIL	ITY		
					STITUTIONAL				
			c	5 0	(Group-E)				
		_			(Theory)				
	se Code	:	CM266T	EG		CIE	:	-	0 Marks
Credi	its: L:T:P	:	3:0:0			SEE	:		0 Marks
	Hours	:	45L			SEE Duration	ı :	3.0	0 Hours
Cours	0				nts will be able to				
1						nergy storage in e	lectric	veh	icles
2			-		attery technologie	-			
3	Impart the p	rinc	iples of ele	ectroche	emistry for analyz	ing issues in elect	ric/hy	brid	vehicles.
4	Develop solu	utio	ns for batte	ery man	agement systems	and recycling of a	advano	ced s	torage devices.
				U	nit-I				09 Hrs
Energ	gy storage in (elec	tric vehicl	les					
				0		ergy sources and			
						eir energy requir			
advan	ced battery tee	chn	ology. Batt	tery cha	racteristics. Speci	fication of advance	ed ba	ttery	
				Un	it – II				09 Hrs
Adva	nced lithium-	ion	batteries						
						cathode and anod			
lithium batteries. Construction, working and future applications of lithium cobalt oxide, lithium iron									
phosp	hate, Lithium	n ai				ations of lithium of mer batteries wi			
phosp		n ai		sulfur	and lithium poly				dvancement in
phosp vehicl	bhate, Lithium le electrificatio	n ai on.	r, lithium	sulfur Un					
phosp vehicl	bhate, Lithium le electrificatio ithium batter	n ai on. ries	r, lithium for e mobi	sulfur Un ility	and lithium poly it –III	vmer batteries wi	th the	eir a	dvancement in 09 Hrs
phosp vehicl Non l Limita	hate, Lithium le electrification ithium batter ations of lith	n ai on. ies ium	r, lithium for e mobi batteries.	sulfur Un ility Overv	and lithium poly it –III iew of non-lithiu	vmer batteries wi	th the	eir a	dvancement in 09 Hrs onstruction and
phosp vehicl Non I Limita worki	hate, Lithium le electrification ithium batter ations of lithing of advance	n ai on. ries ium ed r	r, lithium for e mobi batteries.	sulfur Un ility Overv n batter	and lithium poly it –III iew of non-lithin ries such as Lead	um batteries wi um battery techn acid, Nickel Me	th the ology tal Hy	eir a . Co dride	dvancement in 09 Hrs onstruction and e, Redox flow,
phosp vehicl Non I Limita worki Zebra	hate, Lithium le electrification ithium batter ations of lithing of advance , Sodium and	n ai on. ries ium ed r Ma	r, lithium for e mobi batteries. ion-Lithiur ignesium b	sulfur Un ility Overv n batter batteries	and lithium poly it –III iew of non-lithing ries such as Lead s. Electrode mate	um battery techn acid, Nickel Me rials and electroly	ology tal Hy	eir a	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non
phosp vehicl Non I Limita worki Zebra lithiur	thium batter ithium batter ations of lithing of advance , Sodium and m batteries. Pe	n ai on. ries ium ed r Ma	r, lithium for e mobi batteries. ion-Lithiur ignesium b	sulfur Un ility Overv n batter batteries	and lithium poly it –III iew of non-lithing ries such as Lead s. Electrode mate	um batteries wi um battery techn acid, Nickel Me	ology tal Hy	eir a	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non
phosp vehicl Non I Limita worki Zebra lithiur	hate, Lithium le electrification ithium batter ations of lithing of advance , Sodium and	n ai on. ries ium ed r Ma	r, lithium for e mobi batteries. ion-Lithiur ignesium b	sulfur Un ility Overv n batter patteries mpariso	and lithium poly it –III iew of non-lithin ries such as Lead s. Electrode mate n with lithium-ion	um battery techn acid, Nickel Me rials and electroly	ology tal Hy	eir a	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non ent in charging
phosp vehicl Non I Limita worki Zebra lithiun infras	whate, Lithium le electrification ithium batter ations of lithing of advance and of advance by Sodium and an batteries. Per tructure.	n ai on. ries ium ed r Ma erfo	r, lithium for e mobi batteries. on-Lithiur agnesium b mance cor	sulfur Un ility Overv n batter patteries npariso Un	and lithium poly it –III iew of non-lithin ries such as Lead s. Electrode mate n with lithium-ion it –IV	um battery techn acid, Nickel Me rials and electroly	ology tal Hy	eir a	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non
phosp vehicl Non I Limita worki Zebra lithiun infrass Chem	hate, Lithium le electrification ithium batter ations of lithe ng of advance , Sodium and m batteries. Per tructure.	i ai on. ies ium ed r Ma erfo nat	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor	sulfur Un ility Overv n batter batteries mpariso Un e device	and lithium poly it –III iew of non-lithin ries such as Lead s. Electrode mate n with lithium-ion it –IV s	mer batteries wi um battery techn acid, Nickel Me rials and electroly n batteries. Battery	ology tal Hy yte co y requ	eir ac . Co dridd nsidd irem	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs
phosp vehicl Non I Limita worki Zebra lithiun infras Chem Introd	hate, Lithium le electrification ithium batter ations of lithing of advance of advance of advance of advance of advance of advance of advance of advance of advance of advance	n ai on. ium ed r Ma erfo nat	r, lithium for e mobi batteries. ion-Lithiur ignesium t mance cor we storage	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct	and lithium poly it –III iew of non-lithiu ries such as Lead s. Electrode mate n with lithium-ion it –IV s tion, working and	um battery techn acid, Nickel Me rials and electroly n batteries. Battery	th the ology tal Hy yte co y requ uperca	cir av	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with
phosp vehicl Non I Limita worki Zebra lithiun infrast Introd the mat	hate, Lithium le electrification ithium batter ations of lithing of advance and advance by Sodium and m batteries. Per tructure.	n ai on. ies ium ed r Ma erfo nat	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor we storage apacitor. Co ectrodes. T	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct	and lithium poly it –III iew of non-lithin ries such as Lead s. Electrode mate n with lithium-ion it –IV es tion, working and advanced superc	um battery techn acid, Nickel Mer rials and electroly n batteries. Battery	th the ology tal Hy yte co y requ uperca	eir ad Co dridd nsidd irem	09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with percapacitors in
phosp vehicl Non I Limita worki Zebra lithiun infrass Chem Introd the ma regene	hate, Lithium le electrification ithium batter ations of lithe ng of advance , Sodium and m batteries. Per tructure. histry of alter luction to super aterials used in erative brakin	n ai on. ion. ium ed r Ma erfo: nat g.	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor ve storage pacitor. Co ectrodes. T Advancem	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Sypes of nent in	and lithium poly it –III iew of non-lithin- ries such as Lead s. Electrode mate n with lithium-ion it –IV es tion, working and advanced superc battery-supercapa	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica	th the ology tal Hy yte co y requ uperca uperca	eir ad Co dridd nsidd irem	09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with percapacitors in
phosp vehicl Non I Limita worki Zebra lithiun infrass Chem Introd the ma regene	hate, Lithium le electrification ithium batter ations of lithe ng of advance , Sodium and m batteries. Per tructure. histry of alter luction to super aterials used in erative brakin	n ai on. ion. ium ed r Ma erfo: nat g.	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor ve storage pacitor. Co ectrodes. T Advancem	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Sypes of nent in	and lithium poly it –III iew of non-lithin- ries such as Lead s. Electrode mate n with lithium-ion it –IV es tion, working and advanced superc battery-supercapa	um battery techn acid, Nickel Mer rials and electroly n batteries. Battery	th the ology tal Hy yte co y requ uperca uperca	eir ad Co dridd nsidd irem	09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with percapacitors in
phosp vehicl Non I Limita worki Zebra lithiun infrass Chem Introd the ma regene	hate, Lithium le electrification ithium batter ations of lithe ng of advance , Sodium and m batteries. Per tructure. histry of alter luction to super aterials used in erative brakin	n ai on. ion. ium ed r Ma erfo: nat g.	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor ve storage pacitor. Co ectrodes. T Advancem	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Sypes of hent in vehicles	and lithium poly it –III iew of non-lithin ries such as Lead s. Electrode mate n with lithium-ion it –IV s tion, working and advanced superc battery-supercapa with their advant	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica	th the ology tal Hy yte co y requ uperca uperca	eir ad Co dridd nsidd irem	dvancement in 09 Hrs onstruction onstruction and e, Redox flow, erations in non erations in charging 09 Hrs tors along with oercapacitors in ell hybrid, and on
phosp vehicl Non I Limita worki Zebra lithiur infrast Chem Introd the ma regent Batter	whate, Lithium le electrification ithium batter ations of lith ng of advance , Sodium and m batteries. Per tructure. histry of alter luction to super aterials used in erative brakin ry-solar cell hy	n ai ion. iium ed r Ma erfo mat g. ybri	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor ve storage apacitor. C ectrodes. T Advancem d electric v	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Types of hent in vehicles Un	and lithium poly it –III iew of non-lithin- ries such as Lead s. Electrode mate n with lithium-ion it –IV es tion, working and advanced superc battery-supercapa	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica	th the ology tal Hy yte co y requ uperca uperca	eir ad Co dridd nsidd irem	09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with percapacitors in
phosp vehicl Non I Limita worki Zebra lithiuu infrast Introd the ma regend Batter	hate, Lithium le electrification ithium batter ations of lithing of advance ing o	n ai ion. ies ium ed r Ma erfo mat g. ybri g. ybri	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor ve storage pacitor. Co ectrodes. T Advancem d electric v	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Types of hent in vehicles Ur ing:	and lithium poly it –III iew of non-lithin ties such as Lead s. Electrode mate n with lithium-ion it –IV es tion, working and advanced superc battery-supercapa with their advant hit –V	um battery techn acid, Nickel Mer rials and electroly n batteries. Battery applications of su apacitors. Applica icitor hybrid, Batt ages and limitatio	th the ology tal Hy yte co y requ uperca tion o tery-fu ns.	eir av	09 Hrs 09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with bercapacitors in ell hybrid, and 09 Hrs
phosp vehicl Non I Limita worki Zebra lithiun infrass Chem Introd the ma regend Batter Batter	hate, Lithium le electrification ithium batter ations of lithing of advance of advance o	n ai ion. iium ed r Ma erfo: mat g. ybri ent s	r, lithium for e mobi batteries. ion-Lithiur ignesium b mance cor ve storage pacitor. Ce ectrodes. T Advancem d electric v	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Sypes of nent in vehicles Ur ing: MS): Fi	and lithium poly it -III iew of non-lithing ties such as Lead s. Electrode mate n with lithium-ion it -IV s tion, working and advanced supercess battery-supercapa with their advant it -V undamentals of b	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica citor hybrid, Batt ages and limitatio	th the ology tal Hy yte co y requ uperca tion o tery-fu ns.	eir av	09 Hrs 09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with bercapacitors in ell hybrid, and 09 Hrs
phosp vehicl Non I Limita worki Zebra lithiur infras Chem Introd the ma regend Batter Batter State-	hate, Lithium le electrification ithium batter ations of lithe ng of advance of advance solution and m batteries. Per tructure. histry of alter luction to super aterials used in erative brakin ry-solar cell hy ry management of-charge (Sol	n ai ion. iium ed r Ma erfor mati erfor mati g. ybri ent s C),	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor ve storage pacitor. Co ectrodes. T Advancem d electric v and recycl ystems (Bl state-of-he	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Types of hent in vehicles Un tehicles Un struct Sypes of hent in vehicles	and lithium poly it –III iew of non-lithin- ries such as Lead s. Electrode mate n with lithium-ion it –IV s tion, working and advanced superc battery-supercapa with their advant it –V undamentals of b bH) and Cell balar	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica icitor hybrid, Batt ages and limitatio	th the ology tal Hy yte co y requ uperca tion o tery-fu ns.	eir ac conside irem paci f sup rel c	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with bercapacitors in ell hybrid, and 09 Hrs s and controls,
phosp vehicl Non I Limita worki Zebra lithiun infrast Introd the ma regend Batter Batter State- Batter	hate, Lithium le electrification ithium batter ations of lithing of advance ing o	n ai on. ium ies ium ed r Ma erfo mat g. ybri g. ybri ent s C), fana	r, lithium for e mobi batteries. ion-Lithiur agnesium b mance cor ve storage pacitor. Co ectrodes. T Advancem d electric v and recycl ystems (B) state-of-he agement: H	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Sypes of hent in vehicles Ur ing: MS): Fi alth (So Passive	and lithium poly it –III iew of non-lithin- ries such as Lead s. Electrode mate n with lithium-ion it –IV s tion, working and advanced superc battery-supercapa with their advant it –V undamentals of b bH) and Cell balar	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica citor hybrid, Batt ages and limitatio	th the ology tal Hy yte co y requ uperca tion o tery-fu ns.	eir ac conside irem paci f sup rel c	dvancement in 09 Hrs onstruction and e, Redox flow, erations in non ent in charging 09 Hrs tors along with bercapacitors in ell hybrid, and 09 Hrs s and controls,
phosp vehicl Non I Limita worki Zebra lithiun infrass Chem Introd the ma regend Batter Batter State- Batter runaw	whate, Lithium le electrification ithium batter ations of lithing of advance of advance	n ai on. ium ium ed r Ma erfo: mat g. ybri ent a n el- g. ybri ent a n al- g. ybri	r, lithium for e mobi batteries. ion-Lithiur ignesium b mance cor ve storage pacitor. Ce ectrodes. T Advancem d electric v and recycl ystems (Bl state-of-he agement: F anagement	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Sypes of nent in T vehicles Ur ing: MS): Fi alth (So Passive t.	and lithium poly it -III iew of non-lithing ties such as Lead s. Electrode mate n with lithium-ion it -IV it -IV s tion, working and advanced supercess battery-supercapa with their advant it -V undamentals of the bH) and Cell balarian and active cooli	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica citor hybrid, Batt ages and limitatio pattery manageme ncing techniques. ng systems. Safe	th the ology tal Hy yte co y requ uperca tion o tery-fu ns.	eir ac dridd nsidd irem paci f sup iel c stems echar	dvancement in 09 Hrs onstruction onstruction and e, Redox flow, erations in non erations in charging 09 Hrs tors along with oercapacitors in ell hybrid, and 09 Hrs s and controls, nisms, thermal
phosp vehicl Non I Limita worki Zebra lithiun infrass Chem Introd the ma regend Batter Batter State- Batter runaw	whate, Lithium le electrification ithium batter ations of lithing of advance by Sodium and m batteries. Per tructure. nistry of alter luction to super aterials used in erative brakin ry-solar cell hy ry management of-charge (Sourcy Thermal No yoay and thermatic ry recycling:	n ai on. ium ium ed r Ma erfo: mat g. ybri ent a n el- g. ybri ent a n al- g. ybri	r, lithium for e mobi batteries. ion-Lithiur ignesium b mance cor ve storage pacitor. Ce ectrodes. T Advancem d electric v and recycl ystems (Bl state-of-he agement: F anagement	sulfur Un ility Overv n batter batteries mpariso Un e device onstruct Sypes of nent in T vehicles Ur ing: MS): Fi alth (So Passive t.	and lithium poly it -III iew of non-lithing ties such as Lead s. Electrode mate n with lithium-ion it -IV it -IV s tion, working and advanced supercess battery-supercapa with their advant it -V undamentals of the bH) and Cell balarian and active cooli	um battery techn acid, Nickel Me rials and electroly n batteries. Battery applications of su apacitors. Applica icitor hybrid, Batt ages and limitatio	th the ology tal Hy yte co y requ uperca tion o tery-fu ns.	eir ac dridd nsidd irem paci f sup iel c stems echar	dvancement in 09 Hrs onstruction onstruction and e, Redox flow, erations in non erations in charging 09 Hrs tors along with oercapacitors in ell hybrid, and 09 Hrs s and controls, nisms, thermal

Course	Course Outcomes: After completing the course, the students will be able to:-						
CO1	Implement the fundamentals of chemistry in advanced energy storage and conversion devices.						
CO2	Apply the chemistry knowledge used for hybridization of various energy storage and conversion						
	devices.						
CO3	Analyze the different battery system for achieving maximum energy storage for vehicle						
	electrification						
CO4	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy						
	consumption and recycling.						

Refe	erence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and
1	Professional Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of
2	Automotive Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
3	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic
5	Publisher, 2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN:
4	0824742494 9780824742492.
5	Electric Vehicle Technology Explained, James Larminie and John Lowry. 2nd Edition,
5	Wiley, ISBN-13: 978-1118505429.
6	Electric Vehicle Technology and Design, Antoni Gandia. CRC Press, ISBN-13: 978-
0	1138551912.
7	Sustainable Transportation: Problems and Solutions. William R. Black, The Guilford Press,
/	ISBN-13: 978-1462532072.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	5 & 6 Unit 3 : Question 5 or 6						
7&8	7 & 8 Unit 4 : Question 7 or 8						
9 & 10	9 & 10 Unit 5: Question 9 or 10						
	TOTAL	100					

			Semester: VI				
		HUMAN	MACHINE INTE	CRFACE (HMI)			
		Category:	INSTITUTIONAL	ELECTIVES-I			
			(Group-E)				
			(Theory)				
			try Assisted Electi			100 37	
Course Code	:	EC266TEH		CIE	:	100 Mar	
Credits: L:T:P	:	3:0:0 45L		SEE SEE Duration	:	100 Mar	KS
Total Hours	:	45L	Unit-I	SEE Duration	:	03 Hrs	09 Hrs
			y of User Interface I				
			logy of everyday Th Devices, Memory, H				
	-		interactivity, Paradia	0	worr	s. merac	uon. models,
•		•	Automotive, Industr		FCI	le within	car and their
			. Communication p				
Ethernet etc)			P	10000000 101 20000(, 21, , 1,	obe, 11011100,
,			Unit – II				09 Hrs
Automotive Huma	n-M	Iachine Interfaces:	Automotive infotain	nment system - Evol	utio	n road map	, Feature sets.
System architecture	, Tr	ends, Human factor	s and ergonomics in	automotive design,	Auto	omotive Us	ser Experience
			nation Systems (IVI				
			Voice and Gesture				
		ve eruise control,					
Interfaces and Controls, Usability Testing and Evaluation in Automotive HMIs, Safety Considerations and							
			g and Evaluation in	Automotive HMIs	, Sa	fety Consi	iderations and
Regulations in Auto	mot			Automotive HMIs	, Sa	fety Consi	iderations and
	mot		g and Evaluation in g Technologies in A	Automotive HMIs	, Sa	fety Consi	iderations and Interfaces for
Regulations in Auto Autonomous Vehicl	omot les	tive HMIs, Emergin	g and Evaluation in g Technologies in A Unit –III	Automotive HMIs utomotive HMIs, Hu	, Sa umai	fety Consi n-Machine	iderations and Interfaces for 09 Hrs
Regulations in Auto Autonomous Vehicl UX and Guidelines	es	tive HMIs, Emergin	g and Evaluation in g Technologies in A Unit –III sign - stages, theory,	Automotive HMIs utomotive HMIs, Hu Design thinking, UX	, Sa umai K Stu	fety Consi n-Machine dy, Interac	iderations and Interfaces for 09 Hrs tion concepts,
Regulations in Auto Autonomous Vehicl UX and Guidelines	omot les : Int s - A	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A	g and Evaluation in g Technologies in A Unit –III	Automotive HMIs utomotive HMIs, Hu Design thinking, UX	, Sa umai K Stu	fety Consi n-Machine dy, Interac	iderations and Interfaces for 09 Hrs tion concepts,
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool	omot les : Int s - A	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A	g and Evaluation in g Technologies in A Unit –III sign - stages, theory,	Automotive HMIs utomotive HMIs, Hu Design thinking, UX	, Sa umai K Stu	fety Consi n-Machine dy, Interac	iderations and Interfaces for 09 Hrs tion concepts,
Regulations in Auto Autonomous Vehicle UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In	omot les : Int s - A ering	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, Adobe XD, Blender, Unit –IV ed HMI develo	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process,	, Sa uman X Stu n - O Bas	fety Consi n-Machine dy, Interac verview, C	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server.
Regulations in Auto Autonomous Vehicle UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HM	omot les : Int s - A ering terf	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML	, Sa umai X Stu n - O Bas	fety Consi n-Machine dy, Interac verview, C sics of CSS,	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server, JavaScript.
Regulations in Auto Autonomous Vehicle UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HM HMI on Mobile: F	omot les : Int s - A ering terf	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, Adobe XD, Blender, Unit –IV ed HMI develo	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML	, Sa umai X Stu n - O Bas	fety Consi n-Machine dy, Interac verview, C sics of CSS,	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server, JavaScript.
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HM	omot les : Int s - A ering terf	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, Adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML	, Sa umai X Stu n - O Bas	fety Consi n-Machine dy, Interac verview, C sics of CSS,	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server. JavaScript. Development
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HN HMI on Mobile: F Suites.	omot les : Int s - A ering terf MI: four	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace : User-centere Basics o Principles of Mobi	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs	, Sa umar K Stuu n - O Bas , Mo	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server. JavaScript. Development 09 Hrs
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User Int Web-based HN HMI on Mobile: F Suites. HMI Control Syste	omot les :: Int s - A ering terfa MI: four	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi : Introduction to Vo	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef Unit –V ice-Based HMI, Ges	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs automotive HMI, Se	, Sa uman (Stuu 1 - O Bas , , Mo	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server JavaScript Development 09 Hrs controls.
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HM HMI on Mobile: F Suites. HMI Control Syste Haptics in Automo	ems tterfi four	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs automotive HMI, Se	, Sa uman (Stuu 1 - O Bas , , Mo	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server JavaScript Development 09 Hrs controls.
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HN HMI on Mobile: F Suites. HMI Control Syste Haptics in Automot	ems tive tive terns	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi : Introduction to Vo e HMI: Kinesthetic Cases	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, dobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef Unit –V ice-Based HMI, Ges Feedback Systems, T	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs ature-Based HMI, Se factile Feedback Sys	, Sa uman (Stuu n - O Bas , Mo nsor stem	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI s, Haptics i	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server, JavaScript Development 09 Hrs controls. in Multimodal
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User Int Web-based HM HMI on Mobile: F Suites. HMI Control Syste Haptics in Automot HMI, Automotive U HMI Testing: Limit	emoto les :: Inf s - A ering terfi VII: Cour ems otive	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi : Introduction to Vo e HMI: Kinesthetic Cases	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef Unit –V ice-Based HMI, Ges	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs ature-Based HMI, Se factile Feedback Sys	, Sa uman (Stuu n - O Bas , Mo nsor stem	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI s, Haptics i	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server, JavaScript Development 09 Hrs controls. in Multimodal
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HM HMI on Mobile: F Suites. HMI Control Syste Haptics in Automot HMI, Automotive U HMI Testing: Limit Test Systems (GTS)	emotion iterfi vil: vil: vil: vil: vil: vil: vil: vil	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi : Introduction to Vo e HMI: Kinesthetic Cases ons of Traditional T	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef Unit –V ice-Based HMI, Ges Feedback Systems, T Cest Solutions, Case	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs ature-Based HMI, Se Factile Feedback Sys - Study: Bosch's HM	, Sa uman (Stuu n - O Bas , Mo nsor stem	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI s, Haptics i	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server. JavaScript. Development 09 Hrs controls. in Multimodal
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HM HMI on Mobile: F Suites. HMI Control Syste Haptics in Automot HMI, Automotive U HMI Testing: Limit Test Systems (GTS)	emotion iterfi vil: vil: vil: vil: vil: vil: vil: vil	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi : Introduction to Vo e HMI: Kinesthetic Cases ons of Traditional T	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, dobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef Unit –V ice-Based HMI, Ges Feedback Systems, T	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs ature-Based HMI, Se Factile Feedback Sys - Study: Bosch's HM	, Sa uman (Stuu n - O Bas , Mo nsor stem	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI s, Haptics i	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server. JavaScript. Development 09 Hrs controls. in Multimodal
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HM HMI on Mobile: F Suites. HMI Control Syste Haptics in Automot HMI, Automotive U HMI Testing: Limit Test Systems (GTS)	emotion iterfi vil: vil: vil: vil: vil: vil: vil: vil	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi : Introduction to Vo e HMI: Kinesthetic Cases ons of Traditional T	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef Unit –V ice-Based HMI, Ges Feedback Systems, T Cest Solutions, Case	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs ature-Based HMI, Se Factile Feedback Sys - Study: Bosch's HM	, Sa uman (Stuu n - O Bas , Mo nsor stem	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI s, Haptics i	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server. JavaScript. Development 09 Hrs controls. in Multimodal
Regulations in Auto Autonomous Vehicl UX and Guidelines Graphic design tool norms, 2D/3D rende HMI User In Web-based HN HMI on Mobile: F Suites. HMI Control Syste Haptics in Automot HMI, Automotive U HMI Testing: Limi Test Systems (GTS) UI analytics: Usage	emoto s - A ering terfi VII: four ems otive Jse-t itation).	tive HMIs, Emergin troduction to UX des Adobe Photoshop, A g, OpenGL, OSG. ace: User-centere Basics o Principles of Mobi : Introduction to Vo e HMI: Kinesthetic Cases ons of Traditional T tterns, Debugging, F	g and Evaluation in g Technologies in A Unit –III sign - stages, theory, adobe XD, Blender, Unit –IV ed HMI develo f TwinCAT le UI Design, Benef Unit –V ice-Based HMI, Ges Feedback Systems, T Cest Solutions, Case	Automotive HMIs automotive HMIs, Hu Design thinking, UX GIMP, Asset Design pment process, and HTML fits of Mobile HMIs ture-Based HMI, Se factile Feedback Sys - Study: Bosch's HM g, Use Cases.	, Sa uman (Stuu n - O Bas , Mo nsor stem	fety Consi n-Machine dy, Interac verview, C sics of CSS, obile HMI -Based UI s, Haptics i	iderations and Interfaces for 09 Hrs tion concepts, Guidelines and 09 Hrs Web-Server. JavaScript. Development 09 Hrs controls. in Multimodal

CO3 Apply and analyse the car multimedia system free software and hardware evolution.
 CO4 Design and evaluate the graphic tools and advanced techniques for creating car dashboard multimedia systems.

Comparison of various communication protocols used in HMI development.

CO2

Refe	Reference Books				
1	Touch based HMI; Principles and Applications, Shuo gao, Shuo Yan, Hang Zhao, Arokia Nathan, Springer				
1.	Nature Switzerland AG, 1 st Edition.				
2	Unity 2020 by Example: A Project based guide to building 2D, 3D augmented reality and Virtual reality games from sratch, Robert Wells, Packt Publishing ltd, 2020.				
2.	games from sratch, Robert Wells, Packt Publishing ltd, 2020.				
3.	GUI Design and Android Apps, Ryan Cohen, Tao Wang, Apress, Berkley, CA,2014.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	5 & 6 Unit 3: Question 5 or 6					
7 & 8	7 & 8 Unit 4: Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: VI							
	ENERGY AUDITING AND STANDARDS						
		Category: IN	STITUTIONAL	ELECTIVES-I			
			(Group-E)				
			(Theory)				
Course Code	:	EE266TEJ		CIE	:	100 Marks	
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	Fotal Hours : 45 L SEE Duration : 3 Hours						

Unit-I	06 Hrs
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of A	udit, Energy
- Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy	Monitoring
and Training.	
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement	nent, Speed
Measurement, Data Logger and Data Acquisition System,	
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of Power Pl	ants, Energy
Audit of Power Plant.	
Unit – II	10 Hrs
Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable Freque	ency Drives,
Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.	
Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a M	otor, Energy
Conservation in Motors, BEE Star Rating and Labelling.	
Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Tower	
Unit –III	09 Hrs
Communication & Standards:	
Wireless technologies: WPANs, LAN, Wireless metropolitan area network, cellular network	ork, satellite
communication, Zigbee, Bluetooth, LAN, NAN	
Wireline communication: Phone line technology, powerline technology, coaxial cable technology	ogy; Optical
communication, TCP/IP networks	1
Unit –IV	10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of e	excess Air in
Boiler Efficiency, Energy Saving Methods.	
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving Measures	in Furnaces,
Furnace Efficiency	
Energy Audit of Steam-Distribution Systems : S team as Heating Fluid, Steam Basics, Requirement	ent of Steam,
Pressure, Piping, Losses in Steam Distribution Systems, Energy Conservation Methods	1
Unit-V	10 Hrs
Energy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems, Balla	sts, Fixtures
(Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Er	nergy Saving
Opportunities.	
Energy Audit Applied to Buildings: Energy - Saving Measures in New Buildings, Water Audit	, Method of
Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.	
Course Outcomes. After completing the course, the students will be able to:	
Course Outcomes: After completing the course, the students will be able to: - CO 1 Explain the need for energy audit, prepare a flow for audit and identify the instruments need	1.1

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	CO 1 Explain the need for energy audit, prepare a flow for audit and identify the instruments needed.				
CO 2	Design and perform the energy audit process for electrical systems.				
CO 3	Design and perform the energy audit process for mechanical systems				
CO 4	Propose energy management scheme for a building				

Go, change the world[®]

Ref	ference Books
1.	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348.
2.	Energy management handbook, Wayne C Turner and Steve Doty, 6th Edition, 2015, CRC Press, ISBN: 0-88173-542-6.
3.	Energy management, Sanjeev Singh and Umesh Rathore, 1st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014.
4.	Energy audit of building systems, Moncef Krarti, 2nd Edition, 2010, CRC Press ISBN: 9781439828717

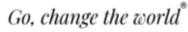
RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	5 & 6 Unit 3 : Question 5 or 6					
7&8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrod Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Blc diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Blc diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Coximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Dopp				Semester:	VI					
(Group-E) (Theory) Course Code : 100 Marks Course Code : 100 Marks Course Code : 100 Marks Total Hours : 103 Har Finder Hours Colspan="2">Interview of Biomedical Systems, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. Bioelectric Signals and Electrode: Signals, Recordir Unit – II 09 He Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Blod diagram description of an EEG, 10-20 Electrode system <th <="" colspan="2" th=""><th></th><th></th><th>BIO</th><th>MEDICAL INSTRU</th><th>MENTATION</th><th></th><th></th><th></th></th>	<th></th> <th></th> <th>BIO</th> <th>MEDICAL INSTRU</th> <th>MENTATION</th> <th></th> <th></th> <th></th>				BIO	MEDICAL INSTRU	MENTATION			
(Theory) Course Code i 100 Marks Credits: L:T:P i 30:0 SEE i 100 Marks Total Hours i 101 Marks Total Hours SEE Duration i 09 Hit Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. Biolectroic signals, Types of bioelectric signals, Recordir electrode signals and Electrode-tissue interface, Polaritation, Skin contact impedance, Silver-silver chloride electrode			Category :	: INSTITUTIONAL	ELECTIVES-I					
Course Code : EI266TEK CIE : 100 Marks Credits: LT:P : 30:00 SEE : 100 Marks Total Hours : 45L SEE Duration : 03 Hrs Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. 09 Hi Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrod Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electroetoriss of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, Skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Laser Doppler blood flo										
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 45L 09 Hi Unit-I 09 Hi Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrode Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –II 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Electromagnetic blood flow meters, Types of electromagnetic blood flow meters, Ultraso blood flow meters, Laser Doppler blood flow meters. 0				(Theory)						
Total Hours : 45L SEE Duration : 03 Hrs Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. 09 Hi Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes for ECG, EEG, EMG, Microelectrodes. 09 Hi Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrod Electrodes for ECG, EEG, EMG, Microelectrodes. 09 Hi Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. 09 Hi Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H 09 Hi Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. 03 Hi Oximeters: Nint –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NAR blood flow meters, Laser Doppler blood flow meters. Mog Hi <th></th> <th></th> <th></th> <th></th> <th></th> <th>:</th> <th></th> <th></th>						:				
Unit-I 09 Hi Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrod Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electrocardiograph: Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit – II 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Types of electromagnetic blood flow meters, Ultraso blood flow meters, Luraso blood flow meters, Luraso and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker, and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Blood Flow Meters in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography, Fluoroscopy, Angio						:		XS		
Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrod Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Blc diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Electromagnetic blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker, Implantable Pacemaker, Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Electrodes of generation, C	Total Hours	:	45L		SEE Duration	:	03 Hrs	-		
design of medical instrumentation systems. Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrode Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle								09 Hrs		
Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recordir electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrod Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode system Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, Laser Doppler blood flow meters. Og Phi Blood Flow Meters: Electromagnetic blood flow meters, Cardiac pacemaker, and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantabl Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker, and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Future V O9 Hi Muit –V O9 Hi Materia: Audiol					nstrumentation syst	em,	General cor	nstraints in		
electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrod Electrodes for ECG, EEG, EMG, Microelectrodes. Unit – II 09 Hi Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantabl Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle	0		•							
Unit – II 09 Hi Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Blo diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. 09 Hi Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator petibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventio										
Unit – II 09 Hi Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, Skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Laser Doppler blood flow meters. Or and a pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle					ct impedance, Silve	er-si	ver chlorid	le electrodes,		
Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III O9 Ha Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV O9 Ha Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantabl Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Pacemaker in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle <td>Electrodes for ECG</td> <td>, EF</td> <td>EG, EMG, Microeleo</td> <td>ctrodes.</td> <th></th> <td></td> <td></td> <td></td>	Electrodes for ECG	, EF	EG, EMG, Microeleo	ctrodes.						
Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Bld diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III O9 Ha Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV O9 Ha Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantabl Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Pacemaker in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle <td></td> <td></td> <td></td> <td></td> <th></th> <td></td> <td></td> <td>0.0 77</td>								0.0 77		
diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmal Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle										
Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode syste Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V O9 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle								(ECG), Block		
Computerized analysis of EEG. Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. 09 Hi Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle 09 Hi										
Unit –III 09 Hi Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle		-		G, Block diagram de	scription of an EE	G, 1	0-20 Elect	rode system,		
Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle	Computerized analy	/sis	of EEG.							
Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average H Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meters, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmal Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle										
Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmal Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle								09 Hrs		
indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 He Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 He Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle										
Oximeters: Oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter. Unit –IV 09 Hi Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. 09 Hi Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmal Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hi Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle								ent, Direct an		
Unit –IV 09 Hr Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hr Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle										
Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Hr Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle	Oximeters: Oximet	ry,	ear oximeter, pulse	oximeter, skin reflect	ance oximeter and in	ntrav	vascular oxi	meter.		
Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultraso blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V O9 Ha Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle				I init _IV				09 Hrs		
blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmal Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 He Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle	Blood Flow Motors	• F	lastromagnatic blog		falactromagnetick	1000	1 flow moto			
Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmal Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Ha Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle						1000		is, Olitasoine		
Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programma Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Ha Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle						01 D	aamalaar	Implantabla		
Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchroniz Unit –V 09 Ha Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle										
Unit –V 09 Hr Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle										
Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle	r accillanci. Necu ic	na	denominator, DC der		of electrodes, DC de	11011		synchionizer.		
Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiograph Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle				Unit –V				09 Hrs		
Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle	Advances in Rad	iolo	orical Imaging: X		peneration Conver	ntion	al X_ray_r			
computed tomography, magnetic resonance magning system and Offiasonic magning system.								principie of		
	computed tomograp	лту,	magnetic resonance	e magnig system and	Unrasonic magnig	s sys				
	Course Outcomes:	Af	ter completing the	course, the students	will be able to:-					
Course Outcomes: After completing the course, the students will be able to:-			i <u>v</u>							
Course Outcomes: After completing the course, the students will be able to:- CO1 Understand the sources of biomedical signals and basic biomedical instruments.	(()) Inderstand	the	sources of niomedia	cal stonals and haste	nomedical instrume	nte				

CO1	Understand the sources of biomedical signals and basic biomedical instruments.
CO2	Apply concepts for the design of biomedical devices
CO3	Analyze the methods of acquisition and signal conditioning to be applied to the physiological parameters.
CO4	Develop instrumentation for measuring and monitoring biomedical parameters.

Re	ference Books
1.	Handbook of Biomedical Instrumentation, R. S. Khandpur,3 rd Edition, Reprint 2016, Tata McGraw-Hill, ISBN: 9780070473553.
2.	Biomedical Instrumentation and Measurements, Leslie Cromwell & others, 2 nd Edition, Reprint 2015, ISBN: 9780130771315.
3.	Medical instrumentation: Application and Design, J. G. Webster, 3 rd Edition, Reprint 2015, Wiley Publications, ISBN: 9788126511068.
4.	Principles of Medical Imaging, K.Kirk Shung, Michael B. Smith and Banjamin Tsui, Academic Press, 2016, ISBN: 978-0126409703.


RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20). Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5&6	Unit 3: Question 5 or 6	16					
7&8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

"ISTITUTION"							
	Semester: VI						
	TELECOMMUNICATION SYSTEMS						
		Category:		TIONAL ELECTIV	'ES	-I	
				coup-E)			
			(T	heory)			
Course Code	:	ET266TEM		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	45 L		SEE Duration	:	3 Hours	
			Unit-I				8 Hrs
Introduction to	Ele	ectronic Comm	unication	: The Significan	ce	of Human Com	munication,
Communication	Syste	ems, Types of	Electroni	c Communication,	Ν	Iodulation and M	lultiplexing,
Electromagnetic S	Spect	trum, Bandwidth	, A Surve	y of Communicatio	n A	Applications.	
				uation, and Decibe			
Radio Receivers:	: Sup	er heterodyne re	ceiver.				
			Unit – I	[10 Hrs
Modulation Sche	emes	: Analog Modu	lation: Al	M, FM and PM- bri	ef 1	review.	
				SK, PSK & QAM			
Wideband Modu						,	
Unit –III 10 Hrs							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Subsystems,							
				Positioning System.		,,	, , , , , , , , , , , , , , , , , , ,
Unit –IV 9 Hrs							
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Cables,							
Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Networks.							
			Unit –V				8 Hrs
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Internet Telephony.							
- ·	Wireless Technologies: Wireless LAN, PANs and Bluetooth, Zig Bee, Mesh Wireless Networks,						
	0						
WiMax, and Wireless Metropolitan Area Networks.							

Course	Course Outcomes: After completing the course, the students will be able to :-					
CO1	Describe the basics of communication systems.					
CO2	Analyze the importance of modulation and multiple access schemes for communication					
	systems.					
CO3	Analyze the operational concept of cell phone and other wireless technologies.					
CO4	Justify the use of different components and sub-system in advanced communication systems.					

	Reference Books					
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 4 th Edition, 2016, Tata McGraw Hill, ISBN: 978-0-07-337385-0.					
2.	Electronic Communication Systems, George Kennedy,3 rd Edition, 2008, Tata McGraw Hill, ISBN: 0-02-800592-9.					
3.	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning ISBN: 981-240-081-8					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A	-				
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	Semester: VI						
Ν	101	BILE COMM	UNICATION N	ETWORKS AN	D SI	TANDARDS	
		Catego	ory: INSTITUTI	ONAL ELECTIVI	ES-I		
			(Grou	ıр-Е)			
			(The	ory)			
Course Code	:	ET266TEN		CIE	:	100 Marks	
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	45 L		SEE Duration	:	3 Hours	

Unit-I	9 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure	and Cluster,
Frequency Reuse Concept, Cluster size and System Capacity, Method of Locating Co	o-channel cells,
Frequency Reuse distance, Co-channel Interference and Signal Quality, Co-channel	el interference
Reduction Methods.	

Unit – II	9 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic	cellular system
connected to PSTN, Main parts of a basic cellular system, Operation of a C	ellular system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficient	ency of FDMA
and TDMA systems	

Unit –III	9 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Iden	ntifiers used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Pr	ocedure, GSM
Hand-off Procedures.	

Unit –IV	9 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS NetworkArchi	itecture, GPRS
signalling, Mobility Management in GPRS. UMTS: UMTS Network Archite	ecture, UMTS
Interfaces, UMTS Air Interface Specifications, UMTS Channels.	

Unit –V	9 Hrs
Wireless Personal Area Networks: Network architecture, components, Blue	tooth, Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards	, Applications.
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WI	MAN Network
architecture, Protocol stack	

Cours	Course Outcomes: After completing the course, the students will be able to :-			
CO1	Describe the concepts and terminologies for Cellular Communication.			
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.			
CO3	Compare the performance features of 2G and 3G Cellular Technologies.			
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.			

Refer	Reference Books			
1.	Wireless Communications, T.L. Singal, 2nd Reprint 2011, Tata McGraw Hill Education Private Limited, ISBN: 978-0-07-068178-1			
2.	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar SManvi, 2010, Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.			
3.	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education, ISBN- 13:978-0-19-806066-6.			
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2nd Edition, Pearson, ISBN 97881-317-3186-4			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Ser	nester: VI	
	MOBILE APPLI	CATION DEVELOPMENT	
Category: INSTITUTIONAL ELECTIVES-I			
		(Group-E)	
		(Theory)	
:	IS266TEO	CIE	: 100 Marks
:	3:0:0	SEE	: 100 Marks
:	45L	SEE Duration	: 03 Hours
-	:	MOBILE APPLI	(Theory) : IS266TEO CIE : 3:0:0 SEE

Prerequisite: - Programming in Java.

	Unit-I	09 Hrs
Introdu	uction:	•
	phone operating systems and smart phones applications. Introduction to Android, Insta	
	creating an Android app project, deploying the app to the emulator and a device. UI Desig	gn: Building a
•	with UI elements, Layouts, Views and Resources, Text and Scrolling Views.	
	ies and Intents, The Activity Lifecycle, Managing State, Activities and Implicit Intents,	The Android
Studio	Debugger, Testing the Android app, The Android Support Library.	
	Unit–II	09 Hrs
User ex	xperience:	
	nteraction, User Input Controls, Menus, Screen Navigation, Recycler View, Delightful use bles, Styles, and Themes, Material Design, Testing app UI, Testing the User Interface	er experience,
	Unit–III	09 Hrs
Async	ng in the background: Task and Async Task Loader, Connect to the Internet, Broadcast Receivers and Service	
and opt	timizing background tasks – Notifications, Scheduling Alarms, and Transferring Data Effic	iently
	Unit–IV	09 Hrs
	out data:	
Prefere		
Preferen Sharing Advan	out data: ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL	Lite Database.
Preferen Sharing Advan	but data: ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL g data with content providers. aced Android Programming: Internet, Entertainment and Services. Displaying web pag	Lite Database.
Prefere: Sharing Advan commu	but data: Ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL g data with content providers. Inced Android Programming: Internet, Entertainment and Services. Displaying web pag unicating with SMS and emails, Sensors.	Lite Database.
Prefere: Sharing Advan- commu Hardw	but data: ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL g data with content providers. liced Android Programming: Internet, Entertainment and Services. Displaying web pag inicating with SMS and emails, Sensors. Unit–V	Lite Database. es and maps, 09 Hrs
Preferer Sharing Advan commu Hardw Permiss	but data: ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL g data with content providers. liced Android Programming: Internet, Entertainment and Services. Displaying web pag inicating with SMS and emails, Sensors. Unit–V ware Support & devices:	Lite Database. es and maps, 09 Hrs
Preferer Sharing Advan commu Hardw Permiss	but data: Ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL g data with content providers. Internet, Entertainment and Services. Displaying web pag unicating with SMS and emails, Sensors. Unit–V vare Support & devices: sions and Libraries, Performance and Security. Fire base and AdMob, Publish and Polish, N	Lite Database. es and maps, 09 Hrs
Preferen Sharing Advan commu Hardw Permiss Factors	but data: ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL g data with content providers. leed Android Programming: Internet, Entertainment and Services. Displaying web pag unicating with SMS and emails, Sensors. Unit–V vare Support & devices: sions and Libraries, Performance and Security. Fire base and AdMob, Publish and Polish, M s, Using Google Services.	Lite Database. es and maps, 09 Hrs
Preferen Sharing Advan commu Hardw Permiss Factors	but data: Ences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQL g data with content providers. Internet, Entertainment and Services. Displaying web pag unicating with SMS and emails, Sensors. Unit–V vare Support & devices: sions and Libraries, Performance and Security. Fire base and AdMob, Publish and Polish, N	Lite Database. es and maps, 09 Hrs Multiple Form

CO2:	Apply and explore the basic framework, usage of SDK to build Android applications
	incorporating
	Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting tools.
CO4.	Create innovative applications, understand the economics and features of the app marketplace by

CO4: Create innovative applications, understand the economics and features of the app marketplace by offering the applications for download.

Reference Books				
1	Android Programming, Phillips, Stewart, Hardyand Marsicano, Big Nerd Ranch Guide, 2 nd Edition, 2015, ISBN-13 978-0134171494			
2	AndroidStudioDevelopmentEssentials-Android6, NeilSmyth,2015, Create space Independent Publishing Platform, ISBN:9781519722089			
3	Android Programming–Pushing the limits, EricHellman,2013, Wiley, ISBN-13:978-1118717370			
4	Professional Android2ApplicationDevelopment, 2012, ISBN-13:9788126525898RetoMeier, Wiley India Pvt. Ltd, 1st Edition,			
5	BeginningAndroid3, Mark Murphy, A press Springer India Pvt Ltd,1 st Edition,2011, ISBN-13:978-1-4302-3297-1			
6	AndroidDeveloperTraining-https://developers.google.com/training/android/ AndroidTestingSupportLibrary-https://google.github.io/android-testing-support-library/			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO. CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester:	VI		
			ENTS OF FINANCIA			
		Catego	ory: INSTITUTION			
			(Group-E			
	1		(Theory)			1
Course Code	:	IM266TEQ		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3.00 Hours
			Unit-I			06 Hrs
				n a firm, Goals of a firm, Fu		
				her functions, Regulatory fram		
•			ts, Markets, Market re	eturns, Intermediaries, regulat	ory	framework, Growt
and trends in India	an f	inancial system.				
			Unit – II			10 Hrs
				statement of profit and loss	, iter	ns in annual repor
				onceptual treatment only)		
			of a single amount, f	uture value of an annuity, p	reser	nt value of a singl
amount, present v		•				• •
			n model, bond valuation	on, equity valuation-dividend	cap	italization approac
and other approac	nes.	•	T			10 11
Dials and Datas		Lalz and Datum a	Unit –III			
KISK and Keturi			f aim also access and my	autholics and some and of an	مساءم	10 Hrs
			f single assets and po	ortfolios, measurement of m	arke	
between risk and r	retu	rn, implications.	с , , , , , , , , , , , , , , , , , , ,			t risk, relationship
between risk and r Techniques of C	retu C api	rn, implications. ital Budgeting: C	apital budgeting proc	ess, project classification, in	ivest	t risk, relationship tment criteria, Net
between risk and r Techniques of C present value, Ber	retu C api nefit	rn, implications. ital Budgeting: C t-Cost ratio, Interna	apital budgeting proc al Rate of return, Payba		ivest	t risk, relationship tment criteria, Net
between risk and r Techniques of C present value, Ber	retu C api nefit	rn, implications. ital Budgeting: C	apital budgeting proc al Rate of return, Payba b)	ess, project classification, in	ivest	t risk, relationship tment criteria, Net urn.
between risk and r Techniques of C present value, Ber (Conceptual and	retu C api nefit <u>Nu</u>	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment	apital budgeting proc al Rate of return, Payba t) Unit –IV	ess, project classification, in ack period, Accounting rate o	rvest f ret	t risk, relationship tment criteria, Net urn. 10 Hrs
between risk and to Techniques of C present value, Ber (Conceptual and Long term finance	retu Capi nefit Nu ce:	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca	apital budgeting proc al Rate of return, Payba t) <u>Unit –IV</u> pital, Internal accruals	ess, project classification, in ack period, Accounting rate o	nvest f ret ns, d	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising
between risk and to Techniques of C present value, Ber (Conceptual and Long term finance	retu Capi nefit Nu ce:	rn, implications. ital Budgeting: C -Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi	apital budgeting proc al Rate of return, Payba t) <u>Unit –IV</u> pital, Internal accruals	ess, project classification, in ack period, Accounting rate o	nvest f ret ns, d	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising
between risk and a Techniques of C present value, Ber (Conceptual and Long term finance Term Loans, Inve	retu Capi nefit Nu ce: ce: ce:	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking	apital budgeting proc al Rate of return, Payba t) Unit –IV pital, Internal accruals al Public Offer, Follo	ess, project classification, in ack period, Accounting rate o , preference capital, term loa w on Public Offer, Rights Iss	f ret	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement,
between risk and r Techniques of C present value, Ber (Conceptual and Long term finance Term Loans, Inve Securities Marke	retu Capi nefit Nu ce: ce: stm et: H	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking Primary market vs	apital budgeting proc al Rate of return, Payba t) <u>Unit –IV</u> pital, Internal accruals al Public Offer, Follo Secondary market, Tra	ess, project classification, in ack period, Accounting rate o	f ret	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement,
between risk and r Techniques of C present value, Ber (Conceptual and Long term finance Term Loans, Inve Securities Marke	retu Capi nefit Nu ce: ce: stm et: H	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking	apital budgeting proc al Rate of return, Payba t) Unit –IV pital, Internal accruals al Public Offer, Follo Secondary market, Tra ate debt market.	ess, project classification, in ack period, Accounting rate o , preference capital, term loa w on Public Offer, Rights Iss	f ret	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement, ket quotations and
between risk and to Techniques of C present value, Ber (Conceptual and Long term finance long term finance Term Loans, Inve Securities Marke Indices, Govt. sec	retu Capi nefit Nu ce: ce: stm et: F	rn, implications. ital Budgeting: C -Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking Primary market vs ies market, Corpora	apital budgeting proc al Rate of return, Payba b) Unit –IV pital, Internal accruals al Public Offer, Follo Secondary market, Tra ate debt market. Unit –V	ess, project classification, in ack period, Accounting rate o s, preference capital, term loa w on Public Offer, Rights Iss ading and Settlements, Stock	nvest f ret ns, d sue, i mar	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement, ket quotations and 09 Hrs
between risk and a Techniques of C present value, Ber (Conceptual and Long term finance long term finance Term Loans, Inve Securities Marke Indices, Govt. sec Working Capita	retu Capi nefit Nu ce: - Vo sstmo sstmo et: I curit	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking Primary market vs ies market, Corpora Policy and Fina	apital budgeting proc al Rate of return, Payba b) Unit –IV pital, Internal accruals al Public Offer, Follo Secondary market, Tra ate debt market. Unit –V ncing: Factors influer	ess, project classification, in ack period, Accounting rate o s, preference capital, term loa w on Public Offer, Rights Iss ading and Settlements, Stock	nvest f ret ns, d sue, mar emer	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement, ket quotations and 09 Hrs nts, Current assets
between risk and r Techniques of C present value, Ber (Conceptual and Long term finance Term Loans, Inve Securities Marke Indices, Govt. sec Working Capita financing policy,	retu: Capinefit Nu ce: - Vo sstmo et: I - vo et: I - ope	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking Primary market vs ies market, Corpora Policy and Finan erating cycle and c	apital budgeting proc al Rate of return, Payba by <u>Unit –IV</u> pital, Internal accruals al Public Offer, Follo Secondary market, Tra ate debt market. <u>Unit –V</u> ncing: Factors influer cash cycle. Accruals,	ess, project classification, in ack period, Accounting rate o s, preference capital, term loa w on Public Offer, Rights Iss ading and Settlements, Stock	nvest f ret ns, d sue, mar emer	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement, ket quotations and 09 Hrs nts, Current assets
between risk and a Techniques of C present value, Ber (Conceptual and Long term finance long term finance Term Loans, Inve Securities Marke Indices, Govt. sec Working Capita financing policy, deposits, short ter	retu Capinefit Nu ce: - Vo stma et: H curit l – ope m lo	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking Primary market vs ies market, Corpora Policy and Finan erating cycle and c pans, right debentur	apital budgeting proc al Rate of return, Payba b) Unit –IV pital, Internal accruals al Public Offer, Follo Secondary market, Tra ate debt market. Unit –V ncing: Factors influer	ess, project classification, in ack period, Accounting rate o s, preference capital, term loa w on Public Offer, Rights Iss ading and Settlements, Stock	nvest f ret ns, d sue, mar emer	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement, ket quotations and 09 Hrs nts, Current assets
between risk and r Techniques of C present value, Ber (Conceptual and Long term finance Term Loans, Inve Securities Marke Indices, Govt. sec Working Capita financing policy,	retu Capinefit Nu ce: - Vo stma et: H curit l – ope m lo	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking Primary market vs ies market, Corpora Policy and Finan erating cycle and c pans, right debentur	apital budgeting proc al Rate of return, Payba by <u>Unit –IV</u> pital, Internal accruals al Public Offer, Follo Secondary market, Tra ate debt market. <u>Unit –V</u> ncing: Factors influer cash cycle. Accruals,	ess, project classification, in ack period, Accounting rate o s, preference capital, term loa w on Public Offer, Rights Iss ading and Settlements, Stock	nvest f ret ns, d sue, mar emer	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement, ket quotations and 09 Hrs nts, Current assets
between risk and n Techniques of C present value, Ber (Conceptual and Long term finance long term finance Term Loans, Inve Securities Marke Indices, Govt. sec Working Capita financing policy, deposits, short ter (Conceptual trea	retur Capinefit Nu ce: - Vo stmo et: I - vo et: I - ope m lo tme	rn, implications. ital Budgeting: C t-Cost ratio, Interna merical treatment Sources- Equity ca enture capital, Initi ent Banking Primary market vs ies market, Corpora Policy and Finan erating cycle and co pans, right debenture ent only)	apital budgeting proc al Rate of return, Payba by <u>Unit –IV</u> pital, Internal accruals al Public Offer, Follo Secondary market, Tra ate debt market. <u>Unit –V</u> ncing: Factors influer cash cycle. Accruals,	ess, project classification, in ack period, Accounting rate o s, preference capital, term loa w on Public Offer, Rights Iss ading and Settlements, Stock	nvest f ret ns, d sue, mar emer	t risk, relationship tment criteria, Net urn. 10 Hrs lebentures. Raising Private Placement, ket quotations and 09 Hrs nts, Current assets

Cours	se Outcomes. After completing the course, the students will be able to:-
CO1	Explain the features and elements of a financial system.
CO2	Recognize the relevance basic principles of financial management in decision making.
CO3	Describe the processes and techniques of capital budgeting and working capital financing by organizations.
CO4	Demonstrate an understanding of various sources of finance.

Re	ference Books:
1	Fundamentals of Financial Management, Prasanna Chandra, 6th Edition, 2018, McGraw Hill Education(India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5
1.	Education(India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5
2.	Financial Management, I M Pandey, 12 th edn, 2021, Pearson, ISBN-939057725X, 978-9390577255
2	Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018, McGraw Hill Education(India) Pvt. Ltd, ISBN: 9353162181, 9789353162184
з.	Hill Education(India) Pvt. Ltd, ISBN: 9353162181 , 9789353162184
4	Fundamentals of Financial Management, Eugene F Brigham, Joel F Houston, 8th Edition, 2014, Cengage
4.	Learning, ISBN : 9781285065137, 1285065131.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS				
	PART A					
1	1 Objective type questions covering entire syllabus					
	PART B (Maximum of TWO Sub-divisions only)					
2						
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10 Unit 5: Question 9 or 10						
	TOTAL	100				

ANSTRUTION ^{IS} Be	ngalı	ıru - 560059, Karnataka, India				
			Semester: VI			
			ZATION TECHNIQUE			
		Category: INS	STITUTIONAL ELECT	TVES-I		
			(Group-E)			
			(Theory)			
Course Code	:	IM266TER		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	03 Hours
			UNIT – I			08 Hrs
Introduction: OR M	etho	dology, Definition of	OR, Application of OR t	to Engineering and Ma	inag	erial problems,
Features of OR model	s, L	imitations of OR.				
Linear Programming	g: D	efinition, Mathematica	I Formulation, Standard I	Form, Solution Space, '	Туре	es of solution -
Feasible, Basic Feasi	ble,	Degenerate, Solution	through Graphical Meth	od. Problems on Produ	uct]	Mix, Blending,
Marketing, Finance, A	gric	ulture and Personnel.				
Simplex methods: V	aria	nts of Simplex Algorith	m – Use of Artificial Vari	ables.		
			UNIT – II			09 Hrs
1 0			Standard Form, Preview	1 0		
			otimal basic feasible solu			
			Problems, Alternative C		egen	eracy and the
Convergence of the Si	impl	ex Algorithm, The Big	M Method, The Two-Pha	ase Simplex Method.		r
		-	JNIT – III			09 Hrs
			portation Model, Basic F			
	• •		imality Methods, Unbala	nced Transportation Pre	oble	m, Degeneracy
		s, Variants in Transpor				
			nment problem, solution		prob	lem-Hungarian
Method, Variants in as	ssigr	ment problem, Travelli	ing Salesman Problem (T	SP).		
			JNIT – IV			09 Hrs
•		0	s: Network construction,			
path and duration, floa	ats. (Crashing of Network. U	Jsage of software tools to	demonstrate N/W flow	pro	blems
		τ	JNIT – V			09 Hrs
Game Theory: Introd	lucti	on, Two person Zero Su	um game, Pure strategies,	Games without saddle	poi	nt - Arithmetic
		d, The rules of dominar		,	r	
		· · · · · · · · · · · · · · · · · · ·				

Cours	Course Outcomes: After going through this course the student will be able to				
CO1	CO1 Understand the characteristics of different types of decision – making environments and the appropriat				
	decision making approaches and tools to be used in each type.				
CO2	Build and solve Transportation Models and Assignment Models.				
CO3	Design new simple models, like: CPM, PERT to improve decision -making and develop critical thinking and				
	objective analysis of decision problems.				
CO4	Implement practical cases, by using TORA, WinQSB, Excel, GAMS.				

Ref	ference Books:
1.	Operation Research An Introduction, Taha H A, 10 th Global Edition, 2017, Pearson Education Limited, ISBN 13: 978-1-292-16554-7
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd Edition, 2007, John Wiley & Sons (Asia) Pvt Ltd, ISBN 13: 978-8126512560
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 10 th Edition, 2017, McGraw Hill Education, ISBN 13: 978-9339221850
4.	Operations Research Theory and Application, J K Sharma, 6 th Edition, 2009, Trinity Press, ISBN : 978-93-85935-14-5

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	Q.NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	2 Unit 1 : (Compulsory)					
3 & 4	3 & 4 Unit 2 : Question 3 or 4					
5&6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10 Unit 5: Question 9 or 10						
	TOTAL	100				

Semester: VI							
	AUTOMOTIVE MECHATRONICS						
		Category	INSTITUTIONAL ELECTIVES-I				
			(Group-E)				
			(Theory)				
Course Code	Course Code:ME266TESCIE:100 Marks						
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	45 L	SEE I	Duration :	03 Hours		

Unit-I	09 Hrs
Automobile Engines	
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture formation	– External,
internal, quality and quantity control - homogeneous and stratified injection. Thermodynamic principles of	of Otto and
Diesel cycle. Characteristics – pressure curve and energy yield, engine speed, torque, and power	
Unit-II	10 Hrs
Engine Auxiliary Systems:	
Turbocharger, Intercooler, Exhaust manifold, 3-way catalytic convertor, Exhaust Gas Recirculation system	
Common Rail Fuel Injection system- Low pressure and high pressure fuel systems, Return line, Quanti	ty control
valve and Injectors.	
Unit-III	10 Hrs
Vehicular Auxiliary Systems:	
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive Brakes -	Disc and
drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In, Toe-Out, Caster and	d Camber
angle. Classification of tyres, Radial, Tubeless.	
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator and ai	r bags, Belt
Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.	
Unit-IV	09 Hrs
EV Technology : Types of EV's, ICE vs EV torque output, Architecture and Working of EV's.	
Battery Thermal Management System, Regenerative braking, Safety system and Impacts of EV on the env	ironment.
Unit-V	07 Hrs
Telematics in vehicles – Radio Transmission, Exchange of information, signal path & properties, Concept	t of radio
waves.	
Sensors: Oxygen sensors, Crankshaft/Cam shaft Sensor, Boost Pressure Sensor, Coolant Temperature Se	nsor, Hot
Film Air Mass flow Sensor, Throttle Position Sensor, Rain/Light sensor	

Course Ou	Course Outcomes: After completing the course, the students will be able to				
CO1:	CO1: Describe the functions of Mechatronic systems in a modern automobile				
CO2:	Evaluate the performance of an engine by its parameters				
CO3: Analyse the automotive exhaust pollutants as per emission norms					
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit				

Refer	rence Books
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage Learning, ISBN-13: 978-1428311497
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004, SAE International, ISBN: 0768009871
3.	Bosch Automotive Handbook, Robert Bosch, 9 th Edition, 2004, ISBN: 9780768081527
4.	Understanding Automotive Electronics, William B Ribbens, 5 th Edition, Butterworth–Heinemann, ISBN 0-7506-7008-8

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: (Internal Choice)	16				
5&6	Unit 3: (Internal Choice)	16				
7 & 8 Unit 4: (Internal Choice)						
9 & 10	Unit 5: (Internal Choice)	16				
	TOTAL	100				

				Semester: `` ATHEMATICAL M ry: INSTITUTION (Group-E (The sure)	IODELLING AL ELECTIVES-I	[
Со	ırse Code	:	MA266TEU	(Theory)	CIE	:	100 Marks
Credits: L:T:P		•	3:0:0		SEE	:	100 Marks
Total Hours		:	45L		SEE Duration	:	3 Hours
Cou	urse Learning	Ob	jectives: The studen	its will be able to			
1	Understand th	e b	asic procedure of ma	athematical modeling			
2							
3							
4	Demonstrate demonstrate the practical importance of graph theoretic models, variational problem and dynamic programming.						

Unit-I	09 Hrs	
Introduction to Mathematical Modelling:	•	
Basic concepts, steps involved in modelling, classification of models, assorted simple mathematical model	dels	
from diverse fields.		
Unit – II	09 Hrs	
Mathematically Modelling Discrete Processes:	•	
Difference equations - first and second order, Introduction to Difference equations, Introduction to disc	rete models-	
simple examples, Mathematical modelling through difference equations in economics, finance, populatio		
dynamics, genetics and other real world problems.		
Unit –III	09 Hrs	
Markov modelling:		
Mathematical foundations of Markov chains, application of Markov Modelling to problems.		
Unit –IV	09 Hrs	
Modelling through graphs:		
Graph theory concepts, Modelling situations through different types of graphs.		
Unit –V	09 Hrs	
Variational Problem and Dynamic Programming:		
Optimization principles and techniques, Mathematical models of variational problem and dynamic pr	ogramming,	
Problems with applications.		

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explore the fundamental concepts of mathematical models arising in various fields engineering.					
CO2:	Apply the knowledge and skills of discrete and continuous models to understand various types of					
	analysis.					
CO3:	Analyze the appropriate mathematical model to solve the real world problem and to optimize the					
	solution.					
CO4:	4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical					
	situations.					

Refe	Reference Books				
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN: 81-224-0006-X.				
2	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and Hall/CRC Textbook, ISBN 9781439854518.				
3	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames, Cheltonham, ISBN: 0470271779, 9780470271773.				
4	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13: 9780853122869.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
	COMPONENTS	MARKS
1 •	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
(N	PART B (Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

				Semester:	VI I					
				MATICS FOR QUAN						
	Category: INSTITUTIONAL ELECTIVES-I									
				(Group-E (Theory))					
Coi	Course Code : MA266TEV CIE : 100 Marks									
Credits: L: T:P			3:0:0		SEE : 100 Mar		100 Marks			
Tot	Fotal Hours : 45L SEE Duration : 3.00 Hours									
Cou	ırse Learning	Ob	jectives: The stud	ents will be able to		•				
1	Understand th	le b	asic principles of (Quantum Computing.						
2	Use the conce	pts	of Quantum gates	to build quantum algor	rithms					
3	Apply the Qu	Apply the Quantum algorithms to solve the problems arising in various fields.								
4	Demonstrate	the	practical importan	ce of Quantum comput	ing.					

Unit-I	09 Hrs
Introduction to Quantum Computing:	·
Quantum superposition, Qubits, Linear algebra for quantum computing, Inner products and Tensor	products of
vector spaces, Quantum states in Hilbert space, The Bloch sphere, Generalized measurements, No-clonic	ing theorem.
Unit – II	09 Hrs
Quantum Gates:	
Universal set of gates, quantum circuits, Dirac formalism, superposition of states, entanglement Bits	s and Qubits.
Qubit operations, Hadamard Gate, CNOT Gate, Phase Gate, Z-Y decomposition, Quantum Circuit	
Basic Quantum circuits.	•
Unit –III	09 Hrs
Quantum Algorithm - I:	
Deutsch Algorithm, Deutsch-Jozsa Algorithm, Bernstein-Vazarani Algorithm, Simon periodicity algorit	hm,
Phase estimation algorithm, Quantum Fourier transform.	
Unit –IV	09 Hrs
Quantum Algorithm - II:	
Grover search algorithm, Shor quantum factoring algorithm, Harrow-Hassidim-Lloyd (HHL) algorithm	n for
solving linear system problems.	
Unit –V	09 Hrs
Applications of Quantum Computing:	•
Application to: order-finding, discrete logarithm, quantum counting, Boolean satisfiability problems(SA	AT),
graph theory problems.s	
Course Outcomes: After completing the course, the students will be able to	
CO1: Explore the fundamental concepts of quantum computing.	

Apply the knowledge and skills of quantum computing to understand various types of problems arising in						
various fields engineering						
Analyze the appropriate quantum algorithm to solve the real-world problem and to optimize the						
solution.						
Distinguish the overall knowledge gained to demonstrate the problems arising in many practical						

situations.

Refer	Reference Books					
1	An introduction to Quantum Computing, Phillip Kaye, Raymond Laflamme, 2007, Oxford University press.					
2	Quantum Computing for Everyone, Chris Bernhardt, 2020, The MIT Press, Cambridge.					
2	Quantum Computation and Quantum Information, M. A. Nielsen & I. Chuang, 2013, Cambridge					
3	University Press.					
4	Quantum Computing for the quantum curious, Cirian Hughes et. al., 2021, Springer, ISBN 978-3-030-					
4	61600-7.					
5	Concise guide to quantum computing, Sergei Kurgalin, Sergei Borzunov, 2021, Springer, ISBN 978-3-030-					
	65051-3, ISBN 978-3-030-65052-0 (eBook).					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
	COMPONENTS	MARKS		
1 •	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(N	faximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related	topics)				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semester:	VI				
APPLIED PSYCHOLOGY FOR ENGINEERS								
	Category: INSTITUTIONAL ELECTIVES-I							
(Group-E)								
~ ~ .	1		(Theory)	~~~~	1			
	ourse Code : HSS266TEW CIE : 100 Marks							
Credits: L:T:P	:	3:0:0		SEE	:	100 Mark	S	
Total Hours	:	45 Hrs	Unit-I	SEE Duration	:	3 Hours		
Introduction to Psy	ah	alagu Definition		alagy Dala of a F	0	hologistin	08 Hrs	
Today's Perspectiv Cognitive, Humanis								
Observation, Questi				us to study numa	II C	ellavioi. E	xperimentar,	
Observation, Questi	om		Unit – II				08 Hrs	
Intelligence and A	nti			liconco and Antitu	da	Noturo of		
Theories of Intellig								
Types of tests. Me								
Intelligence – Fluid			-	, concept of IQ,	IVIC	asurement	or muniple	
Interingence – Pluid	and		Unit –III				10 Hrs	
Personality: Conce	pt a			ches of personality	v- r	svchoanaly		
Cultural, Interperso								
Assessment of Pers		-				• •		
Projective technique		• 1		•				
			Unit –IV	, I			10 Hrs	
Learning: Definition	on,	Conditioning – Cla	assical Conditionin	g, Basics of Classi	cal	Condition	ing (Pavlov),	
the process of Extin								
basics of operant co				-		-		
Latent Learning, Ob		-		-			C	
			Unit –V				09 Hrs	
Application of Psy	cho	logy in Working	Environment: Th	e present scenario	of i	nformation	technology,	
the role of psycholo	the role of psychologist in the organization, Selection and Training of Psychology Professionals to work							
in the field of Inform	mat	ion Technology. P	sychological Stre	ss: a. Stress- Defin	itic	n, Sympton	ms of Stress,	
Extreme products o	f st	tress v s Burnout,	Work Place Traur	na. Causes of Stre	ess	– Job relat	ed causes of	
stress.Sources of Fru	ustr	ation, Stress and Jo	ob Performance, St	ress Vulnerability-	Str	ess thresho	ld, perceived	
control. Type A and	I T	ype B. Psychologic	al Counseling - N	Need for Counselir	ıg, '	Types – Di	rected, Non-	
Directed, Participati	ve	Counseling.	_					

Course	Course Outcomes: After completing the course, the students will be able to:-						
CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to						
	behaviors and mental processes.						
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and						
	Humanistic theorists believe influence the learning process.						
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,						
	resulting in their enhancement and apply effective strategies for self-management and self-						
	improvement.						
CO4	Apply the theories into their own and others' lives in order to better understand their						
	personalities and experiences.						
CO5	Understand the application of psychology in engineering and technology and develop a route to						
	accomplish goals in their work environment.						

Refe	Reference Books						
2.	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India						
2.	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.						
3.	Organizational Behaviour, Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN – 81-317 – 1132 – 3						
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5						
5	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	# COMPONENTS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(Ma	(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: VI										
	Universal Human Values - II									
		Category:	INSTITUTIONAL ELECTIVE	ES-I						
			(Group-E)							
			(Theory)							
Course Code	:	HS266TEY	CII	E	:	100 Marks				
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks									
Total Hours	:	42L	SEI	E Duration	:	3.00 Hours				

Unit-I	10 Hrs			
Introduction-Basic Human Aspiration, its fulfillment through All-encompassing Resolution. The basic				
human aspirations and their fulfillment through Right understanding and Resolution, Right				
understanding and Resolution are the activities of the Self, Self is central to Human Ex	understanding and Resolution are the activities of the Self, Self is central to Human Existence; All-			
encompassing Resolution for a Human Being, its details and solution of problems in	the light of			
Resolution.	-			
Unit – II	10 Hrs			
Right Understanding (Knowing)- Knower, Known & the Process. The domain of right up	nderstanding			
starts from understanding the human being (the knower, the experiencer and the doer); an	d extends up			
to understanding nature/existence – its interconnectedness and co-existence; and finally understanding				
the role of human being in existence (human conduct).				
Unit –III	08 Hrs			
Understanding Existence (including Nature). A comprehensive understanding (knowledg	ge) about the			
existence, which certainly includes the Nature. The need and the process of inner evolut	existence, which certainly includes the Nature. The need and the process of inner evolution (through			
self-exploration, self-awareness and self-evaluation)- particularly awakening to activities	s of the Self:			
Realization, Understanding and Contemplation in the Self (Realization of C	Realization, Understanding and Contemplation in the Self (Realization of Co-Existence,			
Understanding of Harmony in Nature and Contemplation of Participation of Human in th	nis harmony/			
order leading to comprehensive knowledge about the existence).	-			
Unit –IV	08 Hrs			
Understanding Human Being. Understanding the human being comprehensively is the f	irst step and			
the core theme of this course; human being as co-existence of the self and the body, the a	activities and			
potentialities of the self, Reasons for harmony/contradiction in the self.				
Unit –V	08 Hrs			
Understanding Human Conduct, All-encompassing Resolution & Holistic Way	of Living.			
Understanding Human Conduct, Understanding different aspects of All-encompassing Resolution				
(understanding, wisdom, science etc.), Holistic way of living for Human Being				
encompassing Resolution covering all four dimensions of human endeavour viz., realizat				
behavior and work (participation in the larger order) leading to harmony at all levels	from self to			
Nature and entire Existence.				

Course Outcomes: After completion of the course the students will be able to					
CO1	Understand the basic human aspiration with program of its fulfilment and meaning of				
	resolution in the complete expanse of human living.				
CO2	Understand human being in depth and see how self is central to human being				
CO3	Understand existence in depth and see how coexistence is central to existence				
CO4	Understand human conduct and the holistic way of living leading to human tradition				

Re	Reference Books				
1	A foundation course in human values and professional ethics, R. R. Gaur, R Asthana, G P Bagaria, 2nd revised Edition, excel books, New Delhi – 2019, ISN 978-93-87034-47-1				
2	Avartansheel Arthshastra, A Nagraj, Divya Path Sansthan, Amarkantak, India, ISBN 978-8-174-46781-2				
3	Economy of Performance- a quest for social order based on non – violence, J C Kumarappa, 2010, Sarva-Seva-Sangh-Prakashan, Varanasi, India				
4	Energy and Equity, Ivan Illich, 1974, The Trinity Press, Worcester & Harper Collins, USA, ISBN, 0060803274, 9780060803278				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

Bengaluru - 560059, Karnataka, India

Semester VI						
INTERDISCIPLINARY PROJECT						
Course Code	:	CS367P		CIE	:	50Marks
Credits: L:T:P	:	0:0:3		SEE	:	50Marks
Total Hours	:	15 P		SEE Duration	:	2Hours

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to the irrespective internal guide(s) before the beginning of the VI semester.
- 2. The detailed Synopsis(approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of VI semester.

Batch Formation:

- > Students are free to choose their project partners from any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house only.
- > The project work is to be carried out by a team of two to four students.

Project Topic Selection:

The topics of the project work must be in the *field of Sustainable Development goals areas or in line with CoE's(Centre of Excellence) identified by the college* or List of project are as given by Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

Continuous monitoring of project work will be carried out and cumulative evaluation will be done.

- > The students are required to meet their guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Guide regularly.
- For CIE assessment the project groups must give a final presentation with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➢ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.

Course Outcomes:1Identifying critical thinking and problem-solving abilities by analyzing and addressing
interdisciplinary challenges, utilizing creative approaches and innovative solutions.2Exhibit proficiency in conducting comprehensive research, including literature review, data
collection, modelling, simulation, and analysis, to address significant technical challenges and
propose innovative solutions.3Demonstrate the ability to do effective teamwork, leadership, project management, and
communication skills, while adhering to ethical standards and professional responsibility in

delivering the project outcomes within time and budget constraints.
 Utilize appropriate engineering tools, technologies, and software to design, test, and implement project solutions, ensuring adherence to technical specifications, safety standards, and industry best practices.

CIE Assessment:

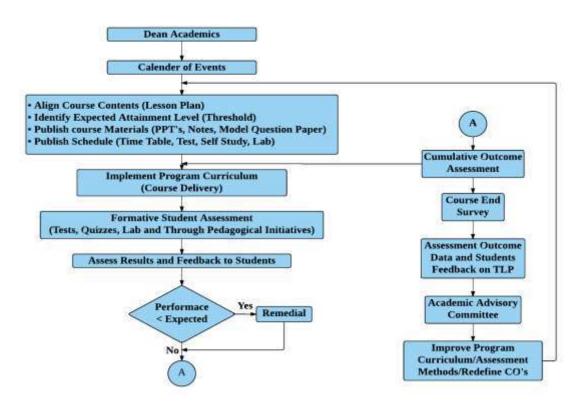
The following are the weightings given for the various stages of the project.

1	Selection of the topic and formulation of objectives	10%
2	Design and Development of Project methodology	25%
3	Execution of Project	25%
4	Presentation, Demonstration and Results Discussion	30%
5	Report Writing & Publication	10%

SEE Assessment:

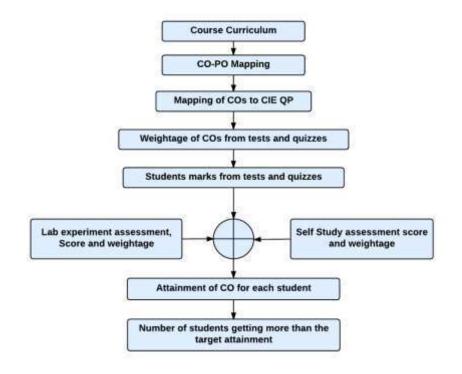
The following are the weightages given during Viva Examination.

1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

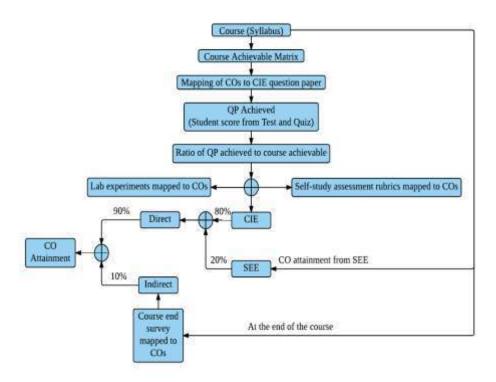

Bengaluru - 560059, Karnataka, India

Go, change the world[®]

Curriculum Design Process Syllabus Dean Academics and Δ Statutory Bodies Combined BOS Formulation Curriculum Framework **Program Coordinator** Vision and Mission, PEO, PO, PSO **Program Coordinator** Course End Surveys and **Course Coordinator** Faculty, CO Attainment Management, Scheme Formulation Industry/Employers, Parents, Alumni, Academic Advisory Faculty Meeting **Professional** Committee Societies Revision Feebback BoS Academic Advisory Revision Committee Scheme Revision Academic Council Formulation BoS Revision Revision Scheme Implementation Academic Council

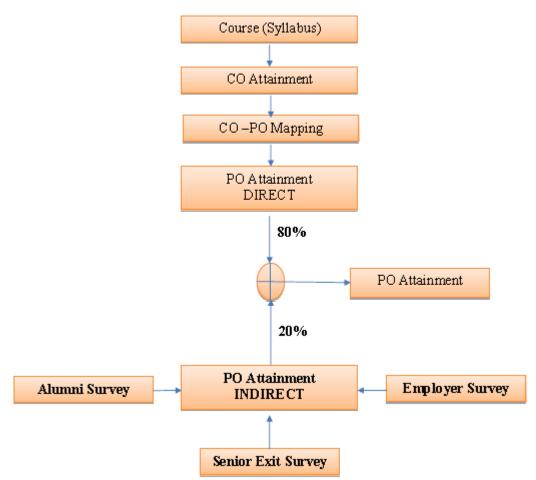

Academic Planning And Implementation

Syllabus Implementation



Process For Course Outcome Attainment

Final CO Attainment Process



Go, change the world[®]

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Program Outcome Attainment Process

Knowledge and Attitude Profile (WK)

- WK1: A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- WK2: Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- WK3: A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- WK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- WK6: Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- WK7: Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

INNER BACK COVER PAGE

New Program Outcomes(PO)

- PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- QUIZCORP (Quizzing society)
 ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV College of Engineering Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India +91-80-68188110 www.rvce.edu.in

Go, change the world