

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R. V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech)
in
COMPUTER INTEGRATED
MANUFACTURING

DEPARTMENT OF
MECHANICAL ENGINEERING

INNER FRONT COVER PAGE

College Vision & Mission (To be included from our side)

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

(Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMPUTER INTEGRATED MANUFACTURING

DEPARTMENT OF
MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

Program Outcomes (PO)

- M. Tech. in Computer Integrated Manufacturing graduates will be able to:
- PO1: An ability to independently carry out a research / investigation and development work to solve practical problems related to Computer Integrated Manufacturing
- PO2: An ability to write and present a substantial technical report / document
- PO3: An ability to demonstrate a degree of mastery over the areas of Computer Integrated Manufacturing. The mastery should be at a level higher than the requirements in the BE Mechanical Engineering and allied programs
- PO4: An ability to use latest technology for the design and analysis of CNC based manufacturing and automation systems
- PO5: An ability to adapt technical, safety, ethical and environmental factors in the design of Intelligence systems
- PO6: An ability to perform interdisciplinary teams with social and management skills with a commitment to lifelong learning

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PHY	Physics
21.	CHY	Chemistry
22.	MAT	Mathematics

INDEX

	I Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18MAT11A	Applied Mathematics	01			
2.	18MCM 12	Computer Control of Manufacturing Systems	03			
3.	18MPD13	Finite Element Analysis	05			
4.	18HSS14	Professional Skills Development	07			
5.	18XXX 1AX	Elective A	09-13			
6.	18XXX1BX	Elective B	15-19			
		GROUP A: CORE ELECTIVES				
1.	18 MPD 1A1	Product Design for Quality	09			
2.	18 MMD 1A2	Tribology	11			
3.	18 MCM 1A3	Design of Hydraulic & Pneumatic Systems	13			
	GROUP B: CORE ELECTIVES					
1.	18 MPD1B1	Product Data Management	15			
2.	18MCE1B2	Intelligent Systems	17			
3.	18 MCM1B3	Non-Traditional Machining & Testing	19			

		II Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18MCM21	Mechatronics in Manufacturing Systems	21
2.	18MCM22	Tooling for Manufacturing in Automation	23
3.	18IM23	Research Methodology	25
4.	18MCM24	Minor Project	27
5.	18XXX2CX	Elective C	29-33
6.	18XXX2DX	Elective D	35-39
7.	18XXX2GXX	Global Elective	41-59
		GROUP C: CORE ELECTIVES	
1.	18 MCM 2C1	Automation and Production Systems	29
2.	18 MPD2C2	Design for Manufacture & Assembly	31
3.	18 MCM2C3	Computer Application in Design	33
		GROUP D: CORE ELECTIVES	
1.	18 MCM 2D1	Advanced Metrology	35
2.	18 MCM 2D2	Robotics & Automation	37
3.	18 IEM 2D3	Supply Chain Management	39
		GROUP G: GLOBAL ELECTIVES	·
1.	18CS2G01	Business Analytics	41
2.	18CV2G02	Industrial & Occupational Health and Safety	43
3.	18IM2G03	Modeling using Linear Programming	45
4.	18IM2G04	Project Management	47
5.	18CH2G05	Energy Management	49
6.	18ME2G06	Industry 4.0	51
7.	18ME2G07	Advanced Materials	53
8.	18CHY2G08	Composite Materials Science and Engineering	55
9.	18PHY2G09	Physics of Materials	57
10.	18MAT2G10	Advanced Statistical Methods	59

RV COLLEGE OF ENGINEERNG®, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF MECHANICAL ENGINEERING M.Tech in Computer Integrated Manufacturing

	FIRST SEMESTER CREDIT SCHEME								
Sl.				Credit Allocation					
No.	Course Code	Course Title	BoS	L	T	P	Total Credits		
1	18MAT11A	Applied Mathematics	MAT	4	0	0	4		
2	18MCM 12	ME	3	1	1	5			
3	18MPD13	Finite Element Analysis	ME	4	0	1	5		
4	18HSS14 Professional Skills Development		HSS	0	0	0	0		
5	18XXX 1AX	Elective A	ME	3	1	0	4		
6	18XXX1BX	Elective B	ME/CSE	4	0	0	4		
	Tota	18	02	02	22				
	Total N	umber of Hours / Week							

	SECOND SEMESTER CREDIT SCHEME								
Sl.				Credit Allocation					
No.	Course Code	Course Title	BoS	L	T	P	Total Credits		
1	1 18MCM21 Mechatronics in Manufacturing ME Systems				0	1	5		
2	18MCM22	ME	3	1	0	4			
3	18IM23	Research Methodology	IEM	3	0	0	3		
4	18MCM24	Minor Project	ME	0	0	2	2		
5	5 18XXX2CX Elective C ME		ME	4	0	0	4		
6	18XXX2DX	Elective D	ME	4	0	0	4		
7	18XXX2GXX	Global Elective	Respective Boards	3	0	0	3		
	Total number of Credits					03	25		
	Tota	al Number of Hours / Week							

	I Semester				
	GROUP A: CORE ELECTIVES				
Sl.	Course Code Course Title				
No.					
1.	18 MPD 1A1	Product Design for Quality			
2.	18 MMD 1A2	Tribology			
3.	18 MCM 1A3	Design of Hydraulic & Pneumatic Systems			
		GROUP B: CORE ELECTIVES			
1.	18 MPD1B1	Product Data Management			
2.	18 MCE1B2	Intelligent Systems			
3.	18 MCM 1B3	Non-Traditional Machining & Testing			
		II Semester			
		GROUP C: CORE ELECTIVES			
1.	18 MCM 2C1	Automation and Production Systems			
2.	18 MPD2C2	Design for Manufacture & Assembly			
3.	18 MCM2C3	Computer Application in Design			
	GROUP D: CORE ELECTIVES				
1.	18 MCM2D1	Advanced Metrology			
2.	18 MCM 2D2	Robotics & Automation			
3.	18 IEM 2D3	Supply Chain Management			

	GROUP E: GLOBAL ELECTIVES					
Sl. No.	Host Dept	Course Code	Course Title	Credits		
1.	CS	18CS2G01	Business Analytics	3		
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	3		
3.	IM	18IM2G03	Modelling using Linear Programming	3		
4.	IM	18IM2G04	Project Management	3		
5.	СН	18CH2G05	Energy Management	3		
6.	ME	18ME2G06	Industry 4.0	3		
7.	ME	18ME2G07	Advanced Materials	3		
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	3		
9.	PHY	18PHY2G09	Physics of Materials	3		
10.	MAT	18MAT2G10	Advanced Statistical Methods	3		

	Semester: I					
	APPLIED MATHEMATICS					
(0	omi	non to MPD,M	IMD,MCM,MPE,MBT,MBI,MCH,	<u>,MST,MH</u>	T)	
Course Code	:	18MAT11A	CIE M	arks	:	100
Credits L: T: P	:	4:0:0	SEE M	larks	:	100
Hours	:	47L	SEE D	uration	:	3 hrs

Unit – I	
Statistics: Method of least squares, fitting of straight line, linearization of nonlinear laws,	09 Hrs
curve fitting by polynomials, correlation, coefficient of correlation, lines of regression,	
Spearman rank correlation.	
Unit – II	
Probability distributions: Introduction to probability, Random variables-discrete and	09 Hrs
continuous random variables, important measures and moment generating functions,	
Standard distributions-Binomial, Exponential, Normal and Gamma distributions.	
Unit – III	
System of linear equations and eigen value problems: System of linear equations-LU	09 Hrs
decomposition and Gauss-Jordan method, Eigen value problems-bounds on eigen values,	
Power method and Inverse Power method, Eigen values and eigen vectors of real symmetric	
matrices-Jacobi method.	
Unit – IV	
Numerical solution of differential equations: Boundary value problems (BVP's)–finite difference method for linear and nonlinear problems, Shooting method and Galerkin method. Finite differences-implicit and explicit scheme, Finite difference methods for parabolic, elliptic and hyperbolic partial differential equations, Finite element method and simple problems.	10 Hrs
Unit –V	
Engineering optimization: Engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function and objective function surface. Multivariable optimization with inequality constraints-Kuhn-Tucker conditions, Constraint qualification, Genetic operators, Neural-Network-based Optimization. Optimization of Fuzzy systems.	10 Hrs

Cours	se Outcomes: After going through this course the student will be able to:
CO1	Identify and interpret the fundamental concepts of statistics, distributions, linear algebra,
	differential equations and optimization arising in various field engineering.
CO2	Apply the knowledge and skills of statistical/numerical/optimization techniques to solve
	problems of least squares, probability distributions, linear equations, eigen value problems
	and differential equations.
CO3	Analyze the physical problem to establish a statistical / mathematical model and use an
	appropriate method to solve and optimize the solution.
CO4	Distinguish the overall mathematical knowledge gained to demonstrate the problems of least
	squares, probability distributions, linear equations, eigen value problems, differential equations
	and optimization arising in practical situations.

Reference Books:

- 1 Seymour Lipschutz and Marc lars Lipson, Theory and Problems of probability, Schaum's Outline Series, 2nd edition, ISBN: 0-07-118356-6.
- 2 S. S. Sastry, Introductory method of numerical analysis, Prentice-Hall India Pvt. Ltd. 4th edition, 2009, ISBN: 81-203-1266-X.
- M K Jain, S. R. K. Iyengar, R. K. Jain; Numerical methods for scientific and engineering computation; New Age International Publishers; 6th edition; 2012; ISBN-13:978-81-224-2001-2.
- 4 Singiresu S. Rao, Engineering Optimization Theory and Practice, 3rd edition, New Age International (P)Ltd., ISBN: 81-224-1149-5.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
	COMPUTER CONTROL OF MANUFACTURING SYSTEMS						
1			(Theory & Practice)				
Course Code	:	18MCM12	CIE Marks		:	100+50	
Credits L: T: P	:	3:1:1	SEE Marks		:	100+50	
Hours	:	36L	SEE Duration	on	:	3 hrs	

*** **	
Unit – I	0= ++
INTRODUCTION TO CNC MACHINE TOOLS: Evolution of CNC Technology,	07 Hrs
principles, features, advantages, applications, CNC and DNC concept, classification of	
CNC Machines – turning centre, machining centre, grinding machine, EDM, types of	
control systems, CNC controllers, characteristics, interpolators—Computer Aided Inspection	
Unit – II	0= ++
STRUCTURE OF CNC MACHINE TOOL: CNC Machine building, structural details,	07 Hrs
configuration and design, guide ways – Friction, Anti friction and other types of guide	
ways, elements used to convert the rotary motion to a linear motion – Screw and nut,	
recirculating ball screw, planetary roller screw, recirculating roller screw, rack and pinion,	
spindle assembly, torque transmission elements – gears, timing belts, flexible couplings,	
Bearings.	
DRIVES AND CONTROLS : Spindle drives – DC shunt motor, 3 phase AC induction	
motor, feed drives –stepper motor, servo principle, DC and AC servomotors, Open loop and	
closed loop control, Axis measuring system – Resolver, gratings, moiré fringe gratings,	
encoders, laser interferometer.	
Unit – III	07 II
NC and CNC systems: Advantages and limitations. CNC systems – Introduction, types,	07 Hrs
features on CNC machining and turning centers, advantages. Coordinate system in CNC	
machine tools, Machining Centers, Tooling for CNC machines. Interpolator for a CNC	
System: DDA integrator, hardware and software interpolator.	
CNC part programming: Steps involved in preparation of part programming, coding	
systems, basic categories of NC codes, preparatory and miscellaneous codes, programming	
functions. Unit – IV	
	07 Hrs
Turning center part programming: manual part programming for turning center, single and multi-pass canned cycles, and exercise problems on turning centers.	U/ HIS
Machining center part programming: Manual part programming for machining center,	
Cutter compensations: cutter radius compensation, tool length compensation and tool wear	
compensation. Drilling canned cycles, sub-programming, macros and simple exercise	
problems on machining centers.	
Unit –V	
Adaptive control systems: Elements of Adaptive control systems, Adaptive control	08 Hrs
optimization system, adaptive control constraint system, applications to machining	00 1113
processes, Benefits of Adaptive control machining.	
Fundamentals of Rapid Prototyping: Benefits and Application, STL file	
Generation, Rapid Tooling: Introduction to Rapid Tooling (RT), Conventional Tooling vs.	
RT, Need for RT. Rapid Prototyping Machines: Classification, Description of RP	
Machines: Stereo lithography, Selective Laser Sintering, Fused deposition modeling,	
laminated object manufacturing, Laser powder forming	
Unit- VI (Lab Component)	
Manual CNC Part Programming for Turning and Machining Centers	24P
- Manual CNC Part Programming Using Standard G and M Codes	Hrs
- Manual CNC Part Programming Using Standard G and M Codes - Tool Path Simulation	пт
- Exposure to Various Standard Control Systems Machining simple components by Using CNC mechines	
- Machining simple components by Using CNC machines Part programming for CNC Machines using CAM Packages simulation of	
Part programming for CNC Machines using CAM Packages, simulation of	

turning/drilling/milling operations.	
turning arming mining operations.	

Course Outcomes: After going through this course the student will be able to:				
CO1	Describe fundamentals and concepts in CNC system			
CO2	Analyze latest developments in CNC system			
CO3	Apply design consideration for increasing productivity with CNC and RP			
CO4	Develop manual part programs for complex profiles and test the programs through simulation.			

Reference Books:

- 1 M. Koren, Computer Controls of Manufacturing Systems, Tata McGraw-Hill Edition 2005 ISBN 0-07-060743-5
- 2 P.N. Rao, CAD/CAM Principles and Applications, Tata McGraw-Hill 2nd Edition, 2006. ISBN 10: 0070681937 / ISBN 13: 9780070681934.
- P Radhakrishnan, Computer Numerical Control Machines and Computer Aided Manufacture, 1st
- 3 Edition, 2012. ISBN: 9788122433975, 8122433979
- 4 Groover M P, Automation, Production Systems and Computer Integrated Manufacturing, Prentice Hall India (P) Ltd, 3rd Edition. ISBN 10: 0133499618 ISBN 13: 9788120334182

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: I					
FINITE ELEMENT ANALYSIS					
			(Theory & Practical)		
Course Code	:	18MPD13	CIE Marks	:	100+50
Credits L: T: P	:	4:0:1	SEE Marks	:	100+50
Hours	:	48L	SEE Duration	:	3 hrs

Unit – I	
Introduction: Introduction: Need for numerical methods to solve engineering problems –	10 Hrs
mathematical modeling – discrete and continuum modeling - relevance and scope of finite	
element methods – engineering applications of FEA. Weighted residual methods – Rayleigh	
Ritz method –application to bar element and beam elements	
Unit – II	
One Dimensional Problems: Natural co-ordinates, Elemental equations for bar element,	09 Hrs
quadratic element, truss element, nodal approximation – development of shape functions –	
element matrices and vectors – example problems	
Unit – III	
Two Dimensional Problems: Three noded triangular elements – four noded rectangular	09 Hrs
elements – higher order elements – Lagrange approach - iso-parametric, super-parametric,	
sub-parametric elements	
Unit – IV	
Dynamic Problems: Formulation of dynamic problems, consistent and lumped mass	10 Hrs
matrices for bar and beam elements, evaluation of Eigenvalue and Eigen vector	
(characteristic polynomial technique)	
Heat Transfer Problems: 1-D element, steady state heat transfer, one dimensional heat	
conduction, one dimensional heat transfer in thin fins, problems	
Unit –V	
Finite element Modeling of Machining considerations: formulation, meshing, boundary	10 Hrs
conditions, material modeling, chip separation-chip breakage, high speed machining	
modeling, 3D machining modeling	
Beams: Finite element formulation, evaluation of shear force and bending moment for	
various loading conditions, problems	
Unit- VI (Lab Component)	
Part-I	
Introduction to ANSYS, element library, applicability for engineering analysis, analysis of	12 Hrs
bars, trusses, beams and shafts, static analysis of 2D plates – subject to plane load, bending	
load and shells with internal pressure	
Part-II	
Dynamic and Thermal Analysis – Normal modal analysis of beams, bars and truss elements,	12 Hrs
harmonic analysis of beam structures, conductive, convective and radiative heat transfer	
problems, coupled field analysis	

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	1 Understand the fundamentals of finite element methods				
CO2	Develop the knowledge to analyze structures in static and dynamic conditions				
CO3	Assess the numerical techniques for solving engineering problems				
CO4	Formulate finite element model to implement industrial projects				

Reference Books:

- 1 Hutton, Fundamentals of FEM, Tata McGraw Hill education Pvt. Ltd, 2005, ISBN: 0070601224
- 2 Daryl L Logan, First Course in Finite element methods, 5th Edition, Thomson Brooks, 2011, ISBN: 10:0495668257
- T R Chandrupatla, A D Belegondu, Introduction to FE in engineering, 3rd Edition, Prentice Hall, 3 2004
- 4 Angelos.P. Markopoulos, Finite Element method in machining processes, Springer series, 2013, ISBN: 978-1-4471-4330-7

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: I					
	PROFESSIONAL SKILL DEVELOPMENT				
			(Common to all Programs)		
Course Code	:	18HSS14	CIE Marks	:	50
Credits:L: T: P	:	3:0:0	SEE Marks	:	Audit Course
Hours	:	18L			

Unit – I 03 Hrs

Communication Skills: Basics of Communication, Personal Skills & Presentation Skills – Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis. **Resume Writing:** Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts. Theory and Applications.

Unit - II 08 Hrs

Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Simple equations – Linear equations, Elimination Method, Substitution Method, Inequalities.

Reasoning – a. **Verbal** - Blood Relation, Sense of Direction, Arithmetic & Alphabet.

b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification.

Analytical Reasoning - Single & Multiple comparisons, Linear Sequencing.

Logical Aptitude - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.

Verbal Analogies/Aptitude – introduction to different question types – analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving

Unit - III 03 Hrs

Interview Skills: Questions asked & how to handle them, Body language in interview, and Etiquette – Conversational and Professional, Dress code in interview, Professional attire and Grooming, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on Stress Interviews, Technical Interviews, and General HR interviews

Unit - IV 02 Hrs

Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender sensitivity; capability and maturity model, decision making ability and analysis for brain storming; Group discussion(Assertiveness) and presentation skills

Unit - V 07 Hrs

Motivation: Self-motivation, group motivation, Behavioral Management, Inspirational and motivational speech with conclusion. (Examples to be cited).

Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Cours	Course Outcomes: After going through this course the student will be able to:			
CO1	Develop professional skill to suit the industry requirement.			
CO2	Analyze problems using quantitative and reasoning skills			
CO3	Develop leadership and interpersonal working skills.			
CO4	Demonstrate verbal communication skills with appropriate body language.			

Refe	rence Books:
1.	The 7 Habits of Highly Effective People, Stephen R Covey, 2004 Edition, Free Press,ISBN: 0743272455
2.	How to win friends and influence people, Dale Carnegie, 1 st Edition, 2016, General Press, ISBN: 9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book, 2014 Edition, Tata McGraw Hill ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity
	After 9 hours of training program, students are required to undergo a test set for a total of 50
I	marks. The structure of the test will have two parts. Part A will be quiz based evaluated for 15
	marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The
	total marks for this phase will be $50 (15 + 35)$.
	Similarly students will have to take up another test after the completion 18 hours of training.
l II	The structure of the test will have two parts. Part A will be quiz based evaluated for 15 marks
11	and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total
	marks for this phase will be $50 (15 + 35)$.
	FINAL CIE COMPUTATION

Continuous Internal Evaluation for this course will be based on the average of the score attained through the two tests. The CIE score in this course, which is a mandatory requirement for the award of degree, must be greater than 50%. Needless to say the attendance requirement will be the same as in any other course.

Semester: I						
	PRODUCT DESIGN FOR QUALITY					
			(Group A: Core Elective)			
Course Code	:	18MPD1A1	CIE Mark	S	:	100
Credits L: T: P	:	3:1:0	SEE Mark	S	••	100
Hours	:	36L	SEE Durat	ion	:	3 hrs

Unit – I	
Design for quality : Taguchi's Approach to Quality, On-line and Off-line Quality Control,	07 Hrs
, Quality Loss Function, System Design, Parameter Design, Design for Environment,	
Human factor design, Design for casting and forging, Causes of Variation.	
Unit – II	
Quality Function Deployment –Introduction, QFD team, benefits, voice of customer,	08 Hrs
organisation of information, house of quality, QFD process	
Design of Experiments : Basic methods- Two factorial experiments-Extended method	
reduced tests and fractional experiments, orthogonality, base design method, higher	
dimensional fractional factorial design	
Unit – III	
Failure Mode Effect Analysis: Refining geometry and layout, Failure tree analysis,	07 Hrs
Defects and failure modes Techniques of failure analysis, Filed inspection of failure,	
Macroscopic and Microscopic examination, Additional tests, Analysis of data and report of	
failure.	
Unit – IV	
Statistical Consideration in Product Design and Development	07 Hrs
Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto diagrams-	
Cause and Effect diagrams-Box plots- Probability distribution- Statistical Process control—	
Scatter diagrams –Multivariable charts	
Unit –V	
Six Sigma – Overview, Basics and history of the approach for six sigma, Methodology and	07 Hrs
focus, the application of Six Sigma in production and in service industries, Relationship of	
Six Sigma and Lean Management, linking Six Sigma project goals with organizational	
strategy	

Cours	Course Outcomes: After going through this course the student will be able to:			
CO1	Identify the importance of various principles of quality in product or service			
CO2	Use statistical tools in product development			
CO3	Apply basic risk analysis and experiment design techniques into practical cases			
CO4	Demonstrate knowledge about Six sigma, Design of Experiments			

R	Reference Books:					
1	Total quality Management Kevin Otto & Kristin Wood, Product Design Techniques in Reverse					
	Engineering and New Product Development, Pearson Education (LPE), 2001. ISBN10: 0130212717					
2	Karl T. Ulrich, Steven D. Eppinger, Product Design and Development, TATA McGraw-HILL-					
	3rd Edition, 2003. ISBN:13: 978-0073404776					
	James R. Evens, William M Lindsay,"The Management and control of Quality"-6th edition- South-					
3	Western Publishers ISBN: 0314062157					
4	George E Dieter, Engineering Design, 3 rd Edition, McGraw hill International Edition ISBN: 0-07-					
	116204-6					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I						
	TRIBOLOGY					
	(Group A: Core Elective)					
Course Code	:	18MMD1A2		CIE Marks	:	100
Credits L: T: P	:	3:1:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I	
Introduction to Tribology: Introduction, Friction, Wear, Wear Characterization, Regimes	06 Hrs
of lubrication, Classification of contacts, lubrication theories, Effect of pressure and	
temperature on viscosity. Newton's Law of viscous forces, Flow through stationary parallel	
plates. Hagen's poiseuille's theory, viscometers. Numerical problems, Concept of lightly	
loaded bearings, Petroff's equation, Numerical problems	
Unit – II	
Hydrodynamic Lubrications: Pressure development mechanism. Converging and	10 Hrs
diverging films and pressure induced flow. Reynolds's 2D equation with assumptions.	
Introduction to idealized slide bearing with fixed shoe and Pivoted shoes. Expression for	
load carrying capacity. Location of center of pressure, effect of end leakage on	
performance, Numerical problems.	
Journal Bearings: Introduction to idealized full journal bearings. Load carrying capacity of	
idealized full journal bearings, Somerfield number and its significance, partial bearings,	
Comparison between lightly loaded and heavily loaded bearings, effects of end leakage on	
performance, Numerical problems.	
Unit – III	
Hydrostatic Bearings: Hydrostatic thrust bearings, hydrostatic circular pad, annular pad,	08 Hrs
rectangular pad bearings, expression for discharge, load carrying capacity and condition for	
minimum power loss, numerical problems	
Antifriction bearings: Advantages, selection, nominal life, static and dynamic load bearing	
capacity, probability of survival, equivalent load, cubic mean load, bearing mountings.	
Unit – IV	0 < 11
EHL Contacts: Introduction to Elasto - hydrodynamic lubricated bearings. Introduction to	06 Hrs
'EHL' constant. Grubin type solution	
Porous Bearings: Introduction to porous and gas lubricated bearings. Governing	
differential equation for gas lubricated bearings, Equations for porous bearings and working	
principal, Fretting phenomenon and its stages.	
Unit –V	
Magnetic Bearings: Introduction to magnetic bearings, Active magnetic bearings.	06 Hrs
Different equations used in magnetic bearings and working principal. Advantages and	00 111 5
disadvantages of magnetic bearings, Electrical analogy, Magneto-hydrodynamic bearings	

Course Outcomes: After going through this course the student will be able to:							
CO1	Demonstrate fundamentals of tribology, lubricants and methods of lubrication						
CO2	Analyze bearings for load carrying capacity, frictional force and power loss						
CO3	Illustrate the different modes of lubrication system for various applications.						
CO4	Design the different bearing system such as antifriction bearings, magnetic bearings and porous						
	bearings for various applications						

R	Reference Books:				
1	Dudley D.Fuller, Theory and practice of Lubrication for Engineers, New YorkCompany.1998				
2	Moore, Principles and applications of Tribology, Pergamon press, 1975				

- 3 G W Stachowiak, A W Batchelor, Engineering Tribology, Elsevier publication 1993.
- 4 Radzimovsky, Lubrication of Bearings Theoretical principles and design, Oxford press Company, 2000

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I					
	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS				
	(Group A: Core Elective)				
Course Code	:	18MCM1A3	CIE Marks	:	100
Credits L: T: P	:	3:1:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Unit – I	
Introduction to Hydraulic System: Introduction, Basic hydraulic system, classification of	07 Hrs
hydraulic motors, hydraulic pumps, Performance of hydraulic motors, Hydraulic actuators,	07 1113
types of hydraulic actuators.	
Control Components in Hydraulic Systems: Introduction, Direction control valves,	
Solenoid actuated valve, Pilot operated valve, Rotary spool DCV, Pressure control valves,	
Hydraulic fuse, Flow control valve, graphic symbols. Unit – II	
	06 Hrs
Maintenance of Hydraulic Systems: Prime function of hydraulic fluids, desirable	UO HIS
properties of hydraulic fluids, general types of fluids, factors affecting the selection of	
fluids, sealing devices, reservoir systems, filters and strainers, heat exchangers, pressure	
switch, wear of moving parts, troubleshooting of hydraulic systems.	
Unit – III	T a =
Hydraulic circuit Design and Analysis: Control of a single acting cylinder, double acting	07 Hrs
cylinder, regenerative circuit, counter balance valve applications, Hydraulic cylinder	
sequencing circuits, automatic cylinder reciprocating systems, Locked cylinder using pilot	
check valves, cylinder synchronizing circuits, fail safe circuits.	
Unit – IV	
Pneumatic Concepts: Introduction, comparison of hydraulics/pneumatics/and electrical	08 Hrs
system, air compressor system, types of compressors, compressed air behavior, pneumatic	
actuators, direction control valves, building a pneumatic circuits, application of logic	
valves.	
Design of Pneumatic Circuits: Speed control circuits, Application of time delay valves.	
Position sensing in pneumatic cylinders, roller lever valve, pressure sensing in pneumatic	
circuits, pressure sequence valve, two cylinder movement, cascade method.	
Unit –V	
Electro-Pneumatics: Introduction, Pilot operated solenoid valve, Electrical connection to	08 Hrs
the solenoid, Electro-pneumatic circuit, Electrical limit switches and proximity switches,	00 1110
Relays, Solenoid, PE converter, Concept of latching.	
Servo System and PLC Applications in Pneumatics: Closed loop control with servo	
system, Hydro-mechanical servo system, Electro-hydraulic servo system, Conventional	
valve vs proportional valve, Proportional valve in hydraulic circuits, characteristics of	
proportional valve and servo valve. PLC application in fluid power, logic in ladder logic	
diagram and Mnemonics, Timer- on delay and off delay.	

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Describe the constructional features of hydraulic and pneumatic components					
CO2	Apply hydraulic and pneumatic controls in the design of automated controls.					
CO3	Evaluate the design of hydraulic and pneumatic components for building a circuit					
CO4	Design the hydraulic and pneumatic based systems for industrial applications.					

R	Reference Books:					
1	S Ilango, V Soundararajan, Introduction to Hydraulics and Pneumatics, PHI Publication, ISBN-978-81-203-3079-5.					
2	Jagadeesha T, Hydraulics and Pneumatics, I K International Publication, ISBN: 978-93-84588-90-8					
	James L Johnson, Introduction to fluid power, Cengage Learning, first edition 2003, ISBN- 981-					
3	243-661-8					
4	R Srinivasan, Hydraulic and pneumatic controls, Tata McGraw hill, second edition,2010 ISBN –					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

978-81-8209-138-2

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I					
	PRODUCT DATA MANAGEMENT				
	(Group B: Core Elective)				
Course Code	:	18MPD1B1	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	48L	SEE Duratio	n :	3 hrs

Unit – I	
Centralized systems: Client Server Systems, Parallel Systems, Distributed Systems, Network Types, Parallel Database, Distributed Database, Security and Integrity, Standardization views.	10 Hrs
Product Data Management: Complexity in Product Development, General Description of PDM Basic functionality of PDM: Information architecture, PDM System architecture, Applications used in PDM systems. Trends in PDM	
Unit – II	ſ
Product life cycle management – Need for PLM, Components of PLM, Product Data and	10 Hrs
Product workflow, Drivers for Change, The PLM Strategy, Developing a PLM Strategy, A	
Five-step Process	
Unit – III	
Document Management Systems: Document management and PDM, Document life cycle, Content Management, Document management and related technologies, Document management resources on the Internet Workflow Management in PDM: Structure Management, Engineering Change Management, Release Management, Version Management, Configuration Management	10 Hrs
Unit – IV	
Creating Product Structures: Part centric approach, CAD centric approach, Product Structure configuration, Managing Product Structures, PDM resources on the Internet.	08 Hrs
Unit –V	<u> </u>
PDM Implementation Case Studies: Matrix One, Team Center, Windchill, Enovia. Standards in PDM, CM, SCM and CMM.	10 Hrs

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Understanding the Product data base systems					
CO2	Select the Product data base systems based on material and product					
CO3	Analyzing the Product data base and Product life cycle for new products					
CO4	Evaluate the parameters for Product data base considerations based on process					

R	Reference Books:						
1	Implementing and Integrating Product Data Management and Software Configuration Management - 20 - Ivica Cmkovic Ulf Asklund - Annita Persson Dahlqvist - Archtech House Publishers.						
2	Product Data Management - Rodger Burden - Publisher: Resource Publishing- ISBN-10: 0970035225, ISBN-13: 978-0970035226 - 2003.						
	Windchill 8.0 – PDM Link User's Guide- Parametric Technology Corporation (PTC),2008						
3							
4	The AutoCAD Database Book – Accessing and Managing CAD Drawing Information - Galgotia						
	Publications - Third Edition						

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt

innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I								
	INTELLIGENT SYSTEMS							
			(Group B: Core Elective)					
		(Con	nmon to CSE, MPD, MD, CIM)					
Course Code	Course Code : 18MCE1B2 CIE Marks : 100							
Credits L: T: P	Credits L: T: P : 4:0:0							
Hours	:	46L	SEE Duration	:	3 hrs			

Unit – I	
Overview of Artificial Intelligence: Artificial Intelligence and its Application areas;	09 Hrs
Knowledge Representation and Search: The Predicate Calculus :The Propositional	
Calculus, The Predicate Calculus, Using Inference Rules to Produce Predicate Calculus	
Expressions, Application: A Logic-Based Financial Advisor	
Structures and strategies for state space search: Introduction, Structures for state space	
search, Strategies for State Space Search, Using the State Space to Represent Reasoning	
with the Predicate Calculus; And/Or Graphs	
Unit – II	1
Heuristic Search: Introduction, Hill Climbing and Dynamic Programming, The Best-First	09 Hrs
Search Algorithm, Admissibility, Monotonicity and Informedness, Using Heuristics in	
Games, Complexity Issues.	
Control and Implementation of State Space Search: Introduction, Recursion-Based	
Search, Production Systems, The Blackboard Architecture for Problem Solving	
Unit – III	1
Other Knowledge Representation Techniques: Semantic Networks, Conceptual	09 Hrs
Dependencies, Scripts and Frames, Conceptual Graphs	
Knowledge Intensive Problem Solving: Overview of Expert System Technology, Rule-	
Based Expert Systems, Model-Based, Case Based, and Hybrid Systems	
Planning: Introduction to Planning, Algorithms, as State-Space Search, Planning graphs.	
Unit – IV	1
Automated Reasoning: Introduction to Weak Methods in Theorem Proving, The General	10 Hrs
Problem Solver and Difference Tables, Resolution Theorem Proving	
Uncertain Knowledge and Reasoning	
Introduction to Uncertainty, Inference using Full-Joint Distribution, Independence, Bayes'	
Rule and its use.	
Representing Knowledge in Uncertain Domain:	
Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions,	
Exact Inference in Bayesian Network, Approximate Inference in Bayesian Network	
Unit –V	1
Introduction to Learning: Forms of Learning: Supervised learning, Unsupervised	09 Hrs
Learning, Semi-Supervised and Reinforcement Learning; Parametric Models & Non-	
Parametric Models, Classification and Regression problems	
Artificial Neural Networks: ANN Structures, Single Layer feed-forward neural networks,	
multilayer feed-forward neural networks, Learning in multilayer networks, networks.	
Artificial Intelligence Current Trends: The Science of Intelligent Systems, AI: Current	
Challenges and Future Directions	

Cours	Course Outcomes: After going through this course the student will be able to:								
CO1	Explore various Artificial Intelligence problem solving techniques.								
CO2	Identify and describe the different AI approaches such as Knowledge representation, Search strategies, learning techniques to solve uncertain imprecise, stochastic and nondeterministic nature of AI problems.								
CO3	Apply the AI techniques to solve various AI problems.								

CO4 Analyze and compare the relative challenges pertaining to design of Intelligent Systems

R	Reference Books:							
1	George F Luger, Artificial Intelligence – Structures and Strategies for Complex problem Solving, 6 th Edition, Pearson Publication, 2009, ISBN-10: 0-321-54589-3, ISBN-13: 978-0-321-54589-3							
2	Stuart Russel, Peter Norvig, Artificial Intelligence A Modern Approach, 3 rd Edition, Pearson Publication, 2015, ISBN-13 : 978-93-325-4351-5							
3	Elaine Rich, Kevin Knight, Artificial Intelligence, 3 rd Edition, Tata McGraw Hill, 2009, ISBN-10: 0070087709, ISBN-13: 978-0070087705							
4	Grosan, Crina, Abraham, Ajith, Intelligent Systems-A Modern Approach, Springer-Verlag Berlin Heidelberg 2011, ISBN 9783642269394, 2011.							

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I								
	NON-TRADITIONAL MACHINING & TESTING							
			(Group B: Core Elective)					
Course Code	:	18MCM1B3		CIE Marks	:	100		
Credits L: T: P	:	4:0:0		SEE Marks	:	100		
Hours	:	48L		SEE Duration	:	3 hrs		

Unit – I				
Introduction: Need for unconventional machining processes, classification of non-	08 Hrs			
traditional machining processes.				
Abrasive Jet Machining (AJM) : Abrasive Jet Machining Setup – Gas propulsion System,				
Abrasive feeder, Machining Chamber, AJM Nozzle; Parametric Analysis - Stand-off-				
distance, Abrasive flow rate, Nozzle pressure, Mixing ratio; Process Capabilities.				
Ultrasonic machining (USM): Ultrasonic Machining System, Mechanics of cutting, Model				
proposed by Shaw - Grain Throwing Model, Grain Hammering Model; Parametric				
Analysis, Process Capabilities.				
Unit – II				
Water Jet Cutting (WJC): WJC Machine, Process Characteristics, Process Performance.	12 Hrs			
Applications, Advantage and Limitations.				
Abrasive Water Jet Machining (AWJM): Working Principle, AWJM Machine –				
Pumping System, Abrasive Feed System, Abrasive Water Jet Nozzle, Catcher; Process				
Analysis – Water Jet Pressure during Slotting, Water Flow Rate, Abrasive Flow Rate,				
Abrasive Particle Size, Abrasive Material, Cutting Parameters – Traverse Speed, Number of				
Passes, Stand-Off-Distance, Process Capabilities.				
Abrasive Flow Machining (AFM): Working Principle of Abrasive flow Machining				
System Process Variables,				
Magnetic Abrasive Finishing (MAF) – Working Principle of MAF, Material Removal and				
Surface Finish – Type and Size of Grains.				
Unit – III				
LASER Beam Machining (LBM): Production of LASERS, Working Principle of LASER	10 Hrs			
Beam Machining, Types of Lasers – Solid State Lasers, Gas Lasers; Process Characteristics.				
Applications, Advantage and Limitations.				
Plasma Arc Machining (PAM): Working Principle, Plasma Arc Cutting System, Elements				
of Plasma Arc Cutting System, Process Performance.				
Electron Beam Machining (EBM): Working Principle, Electron Beam Machining System				
– Electron Beam Gun, Power Supply, Vacuum System and Machining Chamber; Process				
Parameters, Characteristics of the Process. Applications, Advantage and Limitations.				
Unit – IV				
Electrochemical Machining (ECM): Electrolysis, ECM Principle, ECM Machine Tool-	08 Hrs			
Power Source, Electrolyte supply and Cleaning System, Tool and Tool Feed System,				
Workpiece and Work Holding Device; Theory of ECM – Faraday's Laws of Electrolysis,				
Electrochemical Equivalent of Alloys, Material Removal Rate in ECM.				
Chemical Processes: Introduction, Maskants – Cut and Peel, Screen Printing, Photoresist				
Maskant; Electropolishing – Introduction, Process Description, Process parameters, Process				
limitations, Applications, Advantage and Limitations.				
Unit –V				
Non Destructive Testing: Scope and advantages of NDT, comparison of NDT with DT,	10 Hrs			
classifications of NDT, introduction, principle, equipment, procedures and characteristics				
of Visual Inspection, Eddy Current Testing, Liquid Penetrant Testing, Magnetic Particle				
Testing and Radiographic Testing.				

Course Outcomes: After going through this course the student will be able to:										
CO1	Explain the	principle,	mechanism	of 1	metal	removal	of	various	unconventional	machining
	processes									

CO2	Analyses the process parameters and their effect on the component machined on various
	unconventional machining processes and tested using NDT techniques.
CO3	Apply the concept for different NTM and NDT concepts industry.
CO4	Evaluate appropriate NTM and non-destructive techniques.

R	Reference Books:					
1	Bennedict, G. F., "Non Tradtional Machining Techniques", Marcel Decker, New York, 1990 ISBN 9780824773526					
2	Pandey and Sha, "Modern Manufacturing Process", Prentice Hall, New Delhi, 1997 ISBN: 978-81-7319-138-1					
3	Garry F. Benedict, "Unconventional Machining Process", Marcel Dekker Publication, New York, 1987. ISBN: 0-8247-7352-7					
4	I. J Prasad, C G K Nair, "Non-Destructive Testing and Evaluation of Materials", Tata McGraw Hill Education Private Limited					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SECOND SEMESTER

			SECOND SEMESTER				
Semester: II							
	Mechatronics in Manufacturing Systems						
			(Theory & Practice)				
Course Code	:	18MCM21	CIE Marks	:	100+50		
Credits L: T: P	:	4:0:1	SEE Marks	:	100+50		
Hours	:	48L	SEE Duration	:	3 hrs		

Unit – I	
INTRODUCTION : Definition, Systems, Measurement systems, Control systems-open loop and closed loop control system, Basic elements of a closed loop system, Examples for mechatronic system- water level controller, engine management system, digital camera,	09 Hrs
washing machine etc. Benefits of mechatronic system, Evolution of mechatronic system.	
TRANSDUCERS AND SENSORS: Sensors and transducers, Performance terminology,	
Sensors: Displacement, Position, Proximity sensor, Velocity, Force, Fluid pressure, Liquid	
flow, Liquid level, Temperature, Light, Selection of sensors, Input data by switches.	
Unit – II	I
Signal Conditioning: Operational amphlifier, Protection, Filtering, Wheatstone bridge,	10 Hrs
Digital signals, Multiplexer, Data acquisition, Digital signal processing, Pulse modulation.	
Mechanical and electrical actuation: types of motion, kinematic chains, cams, gear trains,	
ratchet and pawl, belt and chain drives, bearings, mechanical aspects of motor selection,	
mechanical switches, solid state switches, solenoids, DC motor, AC motor, stepper motors,	
servo motos, induction motors.	
Unit – III	10 TT
Basic and Dynamic System Models: mathematic models, mechanical system building	10 Hrs
block, electrical system building block, fluid system building block, thermal system	
building blocks. System models: engineering system, rotational-translational systems,	
electromechanical systems, Hydraulic –mechanical systems. Dynamic responses of	
systems: modeling dynamic systems, first-order system, second-order systems, performance	
measure for second order systems, system identification.	
Unit – IV System Transfer functions: Transfer functions, first order systems, second order systems,	10 Hrs
system in series, system with feedback loops, effect of pole location on transient response.	10 Hrs
Frequency response: Sinusoidal input, phasors, frequency response, bode plots, performance specifications, stability	
Unit –V	
Closed Loop Controllers: Continious and discrete processes, control modes, two step	09 Hrs
mode, proportional mode, derivative control, integral control, PID controller, digital	07 1113
controller, control system performance, controller tuning, velocity control, adaptive control.	
Microprocessor and Microntroller: Basic structure of a microprocessor system,	
architecture, technique used to find faults in microprocessor based system, basic structure of	
micro-controller, architecture, program development using flow charts.	
Unit- VI (Lab Component)	
Hydraulic and Pneumatic lab Experiments: Application Of 4/3 Direction Control Valve	24P
(Tandem And Closed Centre), hydraulic system using Rotary Actuator, Design a Hydraulic	Hrs
& Electric Circuit for a hydraulic system Accumulator, Analysis of a Pressure Switch	
Characteristics in a hydraulic system.	
Speed Control of a Single Acting Cylinder using pneumatics, Logical Control of pneumatic	
circuit with AND, OR functions,	
Circuit Simulation - Analysis of Simple Hydraulic Circuits, Meter-In Circuit Analysis,	
Meter-out circuit, Bleed Off Circuit, Analysis of circuit - valves in series, Analysis of	
circuit - valves in parallel.	

Course Outcomes: After going through this course the student will be able to:					
CO1	CO1 Define various types of transducers used in industrial automation and machine control systems.				
CO2	Explain the architecture of a microprocessor system				
CO3	Describe the working principle of mechanical, electrical, pneumatic and hydraulic actuators				
CO4	Design ladder logic based PLC circuit to control various industrial activities				

R	eference Books:
1	W.Bolton, Mechatronics - Electronic Control Systems in Mechanical and Electrical Engineering, Pearson Education-2005, ISBN: 0273742868
2	
2	Mechatronics by HMT Ltd. – Tata Mc GrawHill -2000.ISBN: 007463643X
	Nitaigour Premchand Mahalik, Mechatronics-Principles, Concepts and Applications, Tata Mc Graw
3	Hill –2003, ISBN:0070483744
4	Anthony Esposito, Fluid Power, Pearson Education-Sixth Edition-2011, ISBN:0135136903

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: II						
	Tooling for Manufacturing in Automation					
		(The	eory)			
Course Code	:	18MCM22	CIE Marks	:	100	
Credits L: T: P	:	3:1:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I	
Cutting Tool Materials: Cutting Technology – an Introduction, The Evolution of	08 Hrs
Cutting Tool Materials, Tool Coatings: Chemical Vapour Deposition (CVD),	
Physical Vapour Deposition (PVD), Diamond-Like CVD Coatings, Cubic Boron	
Nitride (CBN) and Poly-crystalline Diamond (PCD), Natural Diamond. Turning	
and Chip-breaking Technology: Cutting Tool Technology, Chip-Development,	
Tool Nose Radius, and Multi-Functional Tooling	
Unit – II	
Drilling and Associated Technologies: Drilling Technology, Boring Tool	07 Hrs
Technology, Reaming Technology. Milling Cutters and Associated Technologies:	
Milling, Pocketing, Closed-Angle Faces, Thin-Walled and Thin-Based Milling	
Strategies, Rotary and Frustum-Based Milling Cutters – Design and Operation,	
Customised Milling Cutter Tooling, Mill/Turn Operations.	
Unit – III	
Threading Technologies: Threads, Hand and Machine Taps, Fluteless Taps,	07 Hrs
Threading Dies, Thread Turning, Thread Milling, Thread Rolling. Modular	
Tooling and Tool Management: Modular Quick-Change Tooling, Tooling	
Requirements for Turning Centers, Machining and Turning Centre Tooling,	
Balanced Modular Tooling for HS.	
Unit – IV	0=
Machinability and Surface Integrity: Machinability, Chatter in Machining	07 Hrs
Operations, Milled Roundness, Machined Surface Texture, Machining	
Temperatures, Tool Wear and Life	
Unit –V	
Cutting Fluids: Primary Functions, High-Pressure Jet-Assisted Coolant Delivery,	07 Hrs
Types, Classification, Selecting the Correct Cutting Fluid, Care, Handling, Control	
and Usage of Cutting Fluids, Multi-Functional Fluids, Disposal of Cutting Fluids,	
Health and Safety Factors.	

Course Outcomes: After going through this course the student will be able to:				
CO1	Understand the fundamental concepts Tooling in Manufacturing			
CO2	Analyze the concepts of Tooling			
CO3	Explain the principles of Tooling			
CO4	Evaluate the machining and coolant capabilities			

R	Reference Books:				
1	Graham T. Smith, Cutting Tool Technology- Industrial Handbook - Springer. 2 nd Ed, ISBN 978-1-84800-204-3.				
2	Cyrol Donaldson, Tool Design -, Tata McGraw Hill, , India, 4th Ed ISBN 0070992746.				
3	Edward G Hoffman, Fundamentals of Tool Design SME, USA. ISBN 0872634906				
4	David A.Stephenson, John S. Agapiou, Metal cutting theory and practicel, CRC Taylor				

and Francis publishers, 2nd Ed. ISBN 0824795792.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	RESEARCH METHODOLOGY					
	(Common to all programs)					
Course Code	:	18IM23	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I	
Overview of Research: Research and its types, identifying and defining research problem and introduction to different research designs. Essential constituents of Literature Review. Basic principles of experimental design, completely randomized, randomized block, Latin Square, Factorial.	07 Hrs
Unit – II	
Data and data collection: Overview of probability and data types. Primary data and Secondary Data, methods of primary data collection, classification of secondary data, designing questionnaires and schedules. Sampling Methods: Probability sampling and Non-probability sampling	08 Hrs
Unit – III	
Processing and analysis of Data: Statistical measures of location, spread and shape, Correlation and regression, Hypothesis Testing and ANOVA. Interpretation of output from statistical software tools	07 Hrs
Unit – IV	
Advanced statistical analyses: Non parametric tests, Introduction to multiple regression, factor analysis, cluster analysis, principal component analysis. Usage and interpretation of output from statistical analysis software tools.	07 Hrs
Unit –V	
Essentials of Report writing and Ethical issues: Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Ethical issues related to Research, Publishing, Plagiarism Case studies: Discussion of case studies specific to the domain area of specialization	07 Hrs

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	CO1 Explain the principles and concepts of research types, data types and analysis procedures.				
CO2	Apply appropriate method for data collection and analyze the data using statistical principles.				
CO3	Present research output in a structured report as per the technical and ethical standards.				
CO4	Create research design for a given engineering and management problem situation.				

R	eference Books:
1	Kothari C.R., Research Methodology Methods and techniques, New Age International Publishers, 4th edition, ISBN: 978-93-86649-22-5
2	Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology, Pearson Education: New Delhi, 2006. ISBN: 978-81-77585-63-6
	William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3 rd Edition,
3	Atomic Dog Publishing, 2006. ISBN: 978-1592602919
4	Levin, R.I. and Rubin, D.S., Statistics for Management, 7th Edition, Pearson Education: New Delhi.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two

assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	MINOR PROJECT					
Course Code	:	18 MCM 24		CIE Marks	:	100
Hrs/Week	:	L:T:P	0:0:10	SEE Marks	:	100
Credits	:	02	CHIDEI INES	SEE Duration	:	3 Hours

- GUIDELINES
- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course Outcomes:

After going through this course the students will be able to

CO1: Conceptualize, design and implement solutions for specific problems.

CO2: Communicate the solutions through presentations and technical reports.

CO3: Apply resource managements skills for projects

CO4: Synthesize self-learning, team work and ethics.

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members: guide, two senior faculty members and Head of the Department.

Phase	Activity	Weightage
I	Synopsis submission, Preliminary seminar for the approval of selected	20%
	topic and Objectives formulation	
II	Mid-term seminar to review the progress of the work and documentation	40%
III	Oral presentation, demonstration and submission of project report	40%

^{**}Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

 Selection of the topic & formulation of objectives 	10%
• Design and simulation/algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
• Demonstration & Presentation	15%
Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2	Presentation / Demonstration of the project	20%

RV College of Engineering®

3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

Semester: II					
AUTOMATION AND PRODUCTION SYSTEMS					
			(Group C: Core Elective)		
Course Code	:	18MCM2C1	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	48L	SEE Duration	:	3 hrs

Unit – I	
Introduction: Production System Facilities, Manufacturing Support Systems, Automation	10 Hrs
in Production Systems, Manual Labor in Production Systems, Automation Principles and	
Strategies, Ten Strategies for Automation and Production Systems, Basic Elements of	
Automated System, Advanced Automation Functions, Levels of Automation.	
Unit – II	
Basic Elements of an Automated System: Process Industries Versus Discrete	10 Hrs
Manufacturing Industries, Continuous Versus Discrete Control, Computer process control	
Forms of Computer Process Control.	
Sensors, Actuators, and Other Control System Components: Sensors, Actuators,	
Analog-to-Digital Conversion, Digital-to-Analog Conversion, Input / Output Devices for	
Discrete Data.	
Unit – III	
Discrete Control Using Programmable Logic Controllers and Personal Computers:	10 Hrs
Discrete Process Control, Ladder Logic Diagrams, Programmable Logic Controller,	
Personal Computers Using Soft Logic.	
Material Handling and Transportation System: Overview Material Handling Equipment,	
Considerations in Material Handling System Design, Principles of Material Handling,	
Industrial Trucks, Automated Guided Vehicle Systems, Monorails and Other Rail Guided	
Vehicles, IDA Conveyors Systems, Crane and Hoists, Analysis of Material Transport	
Systems.	
Unit – IV	
Storage Systems: Storage System Performance, Storage Location Strategies, Conventional	09 Hrs
Storage Methods and Equipment, Automated storage systems, Engineering Analysis of	
Storage System.	
Unit –V	
	09 Hrs
FMS and Automated System Assembly: What is FMS, FMS Components, FMS	U7 1118
Applications and Benefits, FMS Planning and Implementation Issues, Quantitative Analysis of Flexible Manufacturing Systems, Fundamentals of Automated Assembly Systems,	
Design for Automated Assembly, Quantitative Analysis of Assembly Systems	

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Classify the types of Automation and Production System					
CO2	Analyze the concepts of Automation					
CO3	Apply the concepts of mathematical equation in material handling and AS/RS and Automation					
	System					
CO4	Evaluate the techniques involved in FMS					

R	eference Books:
1	David J Parrish, Flexible manufacturing, Butterworth-Heinemann Publisher, 1990 ISBN: 9780750610117
2	Mikell P Groover Automation, Production Systems and Computer Integrated Manufacturing, Prentice Hall India (P) Ltd, 2008 ISBN: 9780132393218
3	William W. Luggen Flexible Manufacturing Cells & Systems, Prentice hall, 2006, ISBN: 9780133217384

Viswanadham N, Narahari Y, Performance Modeling of Automated Manufacturing Systems, Prentice Hall of India (P) Ltd, 1992. ISBN: 9780136588245

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	DESIGN FOR MANUFACTURE & ASSEMBLY				
			(Group C: Core Elective)		
Course Code	:	18MPD2C2	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	48L	SEE Duration	:	3 hrs

Unit – I	
Introduction to Design for Manufacture & Assembly: Steps in DFMA, Advantages of	10 Hrs
DFMA,	10 1115
Design guidelines for Manual Assembly and High Speed Automatic and Robotic Assembly	
Geometrical Dimensioning & Tolerance – Dimensions & Tolerance, Limits, Fits and	
Tolerances, Hole and Shaft Basis, Three datum – functional, machining and manufacturing,	
geometrical and form tolerance, conventional and advanced tools and techniques for	
measurements, numerical	
Unit – II	
Metal Casting Processes – Gravity Die Casting: compute the dimensions for Pattern,	10 Hrs
Mould, based on materials to be cast – ferrous and non-ferrous alloys, influence of parting	
line, cast holes, special sand cores, shrinkage compensation, numericals, Pressure Die	
Casting: Die casting alloys, machine selection, operation, sub-systems, post-processing	
equipments, mould design, number of cavities, manufacturing and assembly of moulds,	
design principles.	
Unit – III	
Design for Injection Molding - Injection moulding systems - injection subsystem,	10 Hrs
ejection system, clamping and feeding system, machine sizing, materials for injection	
moulding and its properties, injection mould design - cavity and core, manufacturing	
processes for moulds, operation and cycle time.	
Unit – IV	Г
Design for Powder Metallurgy Processes: Introduction to PM process, blending and	10 Hrs
mixing, compaction, sintering processes. Tooling materials, heat treatment, surface	
treatments and preparation of green compacts, Press tools for PM process – load, tooling	
layout, capacity; sintering furnace and influence of process and materials parameters on	
shrinkage.	
Unit –V	00.77
Design for Sheet Metal Processing: Design of moulds for shearing, piercing, bending,	08 Hrs
deep drawing, progressive die operation, selection of press – hydraulic and electric, sub-	
systems, turret operation, cycle time calculation, laser cutting of sheet metals.	
Cost Estimation for sand casting, pressure die casting, injection moulding, PM process and	
sheet metal processes.	

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain the concept of DFMA and GD&T				
CO2	Apply engineering products and suggest suitable manufacturing process				
CO3	Evaluate the influence of design, material and manufacturing processes on product assembly				
CO4	Develop appropriate manufacturing and assembly processes for a given product				

R	eference Books:
1	Geoffrey Boothroyd, Peter Dewhurst, Winston Knight Marcel Dekker, Inc., Product Design for
	Manufacture and Assembly, –Newyork - Second Revision, ISBN 0-8247-0584-X
2	Harry Peck, Designing for Manufacturing, Pitman Publications,1983, ISBN: 1-85233-810-5
3	Merhyle F Spotts, Englewood Cliffs, Dimensioning and Tolerance for Quantity Production Prentice Hall, 5th edition, ISBN: 2-95433-956-3

4 Design for manufacturing – a structured approach, Corrado Colig, BH publishers, 3rd Edition, ISBN :978-0750673419

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	COMPUTER APPLICATION IN DESIGN				
			(Group C: Core Elective)		
Course Code	:	18MCM2C3	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	48L	SEE Duration	:	3 hrs

110015	•	40L		SEE Duration	. 31	115
			Unit – I			
Points, lines and p	lan	ar curves: Vec				08 Hrs
Shapes inside a of Position vectors, A	c om angl	puter: Review es between line	of geometry and trig es - introducing the thi- ucts, Following a line:	onometry, Points in a rd dimension: Scalar pr Parameters	•	
			Unit – II			
space, Different p	aran	netric forms; L	ines and common cur	al space, in three-dime ves: Parametric and Ca a, The circle, The ellips	rtesian	12 Hrs
Matrices, Adding Scaling, reflection	and and n v	subtracting m rotation: Matri ectors in the	atrices, Multiplying n ces as geometric opera axes, Rotating positi	ns: Matrices, Transform natrices; Moving in a ttors, Scaling position vi ion vectors about the	plane: vectors,	
			Unit – III			
combinations of the plane Sizing thing	rans gs u	formations, Tr p: Homogeneo				12 Hrs
l .	ard,	Rotation about		s the viewing transform lection in an arbitrary lin		
The third dimension: Moving along rays, points at infinity and three-dimensional transformations: Geometrical insights using homogeneous vectors, Completing consideration of (3*3) matrices, Points at infinity, Three dimensional transformations, Some specific (4x4) matrices, Local scaling, Reflections in the coordinate planes, Rotations about the coordinate axes, Translation, Overall scaling, In conclusion						
			Unit – IV			Ţ
onto a plane, Orth	ogra	aphic projection		pjection from three dime etive, Single point persp sm		08 Hrs
perspective, Tran- perspective, givin perspective improv	slati g t ved g th	on then single wo points per two point personee point personee	e point perspective, rspective, Rotation, t pective, Two rotations	Rotation then single translation then single translation then single translation then single pes of perspective-projective	point point e point	
functions: Lines a	nd c	curves, Slope of an equation, Pra	a straight line from its	es and planar curves: G Cartesian equation, Slo attation, Slope of a straig	pe of a	
Slopes of space curve, Tangents a				, The tangent vector to a angents and normals in		

dimensions

Unit -V

Curve fitting: Interpolation and shape function: Lines and curves from real objects, Linear interpolation, Quadratic interpolation, Uniqueness

08 Hrs

Planes and surfaces: Bi parametric forms: sweeps and revolutions, Surface formulae and two parameters, Vector equations of planes, The vector equation of a plane, given two vectors in the plans, The vector equation of a plane, given two unit vectors in the plane, The vector equation of a plane, given three points in a plane, Parameter lines and parameter planes, Plotting a plane, The implicit form of equation of a plane, Generating a swept surface, Generating a surface of revolution

Wire frame surfaces surface Tangents and normal: Partial differentiation: General surfaces, Forming a wire frame, Carved surfaces from the, Partial differentiation, Surface tangents and surface normal.

Piecewise surfaces Quadrilateral patches: Dividing up surfaces, A quadrilateral patch on a sphere, Bilinear patches, Linear Coons patches.

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Discuss the concepts of Computer Graphics in CAD in product development				
CO2	Apply the concepts of CAD in the manufacturing industry				
CO3	Analyze the concepts of computer Aided Design				
CO4	Evaluating the techniques involved in CAD				

R	eference Books:
1	P A Eagerton and W S Hall, Computer Graphics, Mathematical first steps, Prentice Hall, Europe, 1998, ISBN: 0-13-599572-8
2	Chennakesava R Alavala, CAD/CAM Concepts and Applications, 1st Ed PHI, New Delhi, 2009 ISBN 978-81-203-3340-6
3	P.N. Rao, CAD/CAM Principles and Applications, 3rd Ed., McGraw Hill, Education Pvt Ltd., New Delhi ISBN 0-07-058373-0
4	Ibrahim Zeid, Mastering CAD/CAM, 2nd Ed., TMH Publishing Company Limited., New Delhi, ISBN 0-07-0634334-3
5	M.P. Groover and 3 E W Zimmers, CAD/CAM Computer aided Design and Manufacturing, 9 th Ed, 1993, ISBN 81-203-0402-0

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II								
	ADVANCED METROLOGY							
	(Group D: Core Elective)							
Course Code	:	18MCM2D1	CIE Marks	:	100			
Credits L: T: P	Credits L: T: P : 4:0:0 SEE Marks : 100							
Hours	:	48L	SEE Duration	:	3 hrs			

Unit – I	
INTRODUCTION TO METROLOGY: Basic Concepts - Legal Metrology - Precision -	08 Hrs
Accuracy - Types of errors –least square fit. Linear and Angular Measurements - Standards	
of Measurements - Calibration - Interchangeability and selective assembly- Gauges for	
inspection-types- Gauge design-Taylor's principle- Introduction to Comparators - Types of	
Comparators - Mechanical, Mechanical - Optical, Electrical and Electronic, pneumatic-	
flow type differential pressure type.	
Unit – II	.
MEASUREMENTS OF SCREW THREAD - GEAR ELEMENTS – SURFACE FINISH:	10 Hrs
Internal and External screw threads: Measurements of various elements of thread - Best size	
wire - Two and three wire method. Gear: Measurements of various elements - Constant	
chord method - Base tangent method. Surface Finish: Surface topography definitions -	
Measurement of Surface Texture - Methods - Evaluation of Surface finish.	
Unit – III	T
OPTICAL METROLOGY and NON CONTACT MEASUREMENT TECHNIQUES:	10 Hrs
Principle of light wave interference - Light sources -Measurement with optical flats-Types	
of Interferometers - Michelson, Twyman Green Specialization of Michelson, NPL flatness	
Interferometers, The Pitter NPL gauge - laser interferometer- laser micrometer- surface	
roughness measurement using laser. Laser Telemetry systems, Laser and Lead based	
distance measuring instruments.Laser based small diameter and large displacment	
measurments.	
Unit – IV	10 TT
COORDINATE METROLOGY AND FORM MEASUREMENT: Coordinate Measuring	10 Hrs
Machine-components of CMM-types-measuring head -types of probe- alignment error-	
causes of error -measuring accuracy-calibration of CMM performance of CMM-	
applications-measurement integration, Measurement of straightness - Flatness - squareness -	
parallelism - circularity – roundness and run out.	
Unit –V	10 Hrs
ADVANCES IN METROLOGY- Mision Vision: Image Analysis and Computer Vision,	10 Hrs
Computer Vision Systems, Image Analysis Techniques, Digital Image Processing, Challenges in Image Processing-Image, Vision System for Measurement, Comparision	
of Laser scanning and Vision system. MACHINE TOOL TESTING USING LASER	
INTERFEROMETER- Alignment, Tooling Laser, Photodetectors, Auto reflectors,	
Autocollimation, Combines measurement of Tilt and Displacement. Rotation about z-axis,	
High precision alignment.	
Tirgh precision anguincht.	<u> </u>

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Explain the fundamental concepts of metrology					
CO2	Apply the knowledge to use the various measuring instrument precisisly and accuratly.					
CO3	Apply the knowledge of laser measurements and machine vision in various manufacturing					
	techniques					
CO4	Suggest advanced measurement techiques over conventional techniques in the area of advanced					
	manufacturing fields					

Reference Books:

Jain.R.K, Engineering Metrology, Khanna Publishers, New Delhi, 2012.ISBN 13:9788174091536

Kevin G Harding, Handbook of Optical Dimensional Metrology, CRC Press, A Taylor & Francis group, 2013. ISBN: 9781439854815.
 Robert.JHocken, Paulo H. Pereira, Coordinate, Measuring Machines and Systems, CRC Press, Taylor & Francis Group, 2011. ISBN:9781574446524.
 Connie Dotson, "Dimensional Metrology" Cengage Learning (India Edition), ISBN-13:978-81-315-0823-7

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
	ROBOTICS & AUTOMATION						
	(Group D: Core Elective)						
Course Code	:	18MCM2D2		CIE Marks	:	100	
Credits L: T: P	Credits L: T: P : 4:0:0						
Hours	:	48L		SEE Duration	:	3 hrs	

Unit – I	
Automation and Robotics - Historical Development, Definitions, Basic Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Factors related to use Robot Performance, Basic Robot Configurations and their Relative Merits and Demerits, Types of Drive Systems and their Relative Merits, the Wrist & Gripper Subassemblies. Concepts and Model about Basic Control System, Control Loops of Robotic Systems, PTP and CP Trajectory Planning, Control Approaches of Robots Unit – II	07 Hrs
Kinematics of Robot Manipulator: Introduction, General Description of Robot Manipulator, Mathematical Preliminaries on Vectors & Matrices, Homogenous Representation of Objects, Robotic Manipulator Joint Co-Ordinate System, Euler Angle & Euler Transformations, Roll-Pitch-Yaw(RPY) Transformation, Relative Transformation, Direct & Inverse Kinematics' Solution, D H Representation & Displacement Matrices for Standard Configurations, Geometrical Approach to Inverse Kinematics. Homogeneous Robotic Differential Transformation: Introduction, Jacobian Transformation in Robotic Manipulation	10 Hrs
Unit – III	
Robotic Workspace & Motion Trajectory : Introduction, General Structures of Robotic Workspaces, Manipulations with n Revolute Joints, Robotic Workspace Performance Index, Extreme Reaches of Robotic Hands, Robotic Task Description. Robotic Motion Trajectory Design: – Introduction, Trajectory Interpolators, Basic Structure of Trajectory Interpolators, Cubic Joint Trajectories. General Design Consideration on Trajectories: 4-3-4 & 3-5-3 Trajectories, Admissible Motion Trajectories.	12 Hrs
Unit – IV	
Dynamics of Robotic Manipulators: Introduction, Bond Graph Modeling of Robotic Manipulators, Examples of Bond Graph Dynamic Modeling of Robotic Manipulator. Brief Discussion on Lagrange–Euler (LE) Dynamic Modeling of Robotic Manipulators: - Preliminary Definitions, Generalized Robotic Coordinates, Dynamic Constraints, Velocity & Acceleration of Moving Frames, Robotic Mass Distribution & Inertia Tensors, Newton's Equation, Euler Equations, The Lagrangian& Lagrange's Equations. Application of Lagrange–Euler (LE) Dynamic Modeling of Robotic Manipulators: - Velocity of Joints, Kinetic Energy T of Arm, Potential Energy V of Robotic Arm, The Lagrange L, Two Link Robotic Dynamics with Distributed Mass, Dynamic Equations of Motion for A General Six Axis Manipulator.	12 Hrs
Unit –V	07 II
Autonomous Robot: Locomotion Introduction, Key issues for locomotion Legged Mobile Robots Leg configurations and stability Examples of legged robot locomotion Wheeled Mobile Robots Wheeled locomotion: the design space Wheeled locomotion: case studies Mobile Robot Kinematics Introduction Kinematic Models and Constraints Representing robot position Forward kinematic models Wheel kinematic constraints Robot kinematic constraints, Mobile Robot Maneuverability Degree of mobility Degree of steerability Robot maneuverability.	07 Hrs

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	CO1 Analyze the manipulator design including actuator, drive and sensor issues					
CO2	Calculate the forward kinematics, inverse kinematics and Jacobian industrial robots					
CO3	Solve trajectory and dynamic related robotic problems					

CO4 Evaluate the different configurations and stability of autonomous robots

R	Reference Books:					
1	Mohsen Shahinpoor A Robot Engineering Textbook, Harper & Row publishers, New York. ISBN:006045931X					
2	Fu, Lee and Gonzalez, Robotics, control vision and intelligence, McGraw Hill International. ISBN:0070226253					
	John J. Craig, Introduction to Robotics, Addison Wesley Publishing, ISBN:0201543613					
3						
4	Roland Illah R. Siegwart Nourbakhsh, Autonomous mobile robots, The MIT Press Cambridge, Massachusetts London, England, 2004.ISBN:0262015358					

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II								
	SUPPLY CHAIN MANAGEMENT							
	(Group D: Core Elective)							
Course Code	:	18MCM2D3	CIE Marks	:	100			
Credits L: T: P	Credits L: T: P : 4:0:0							
Hours	:	48L	SEE Durati	on :	3 hrs			

Unit – I				
Introduction to Supply Chain Management: Definition of Supply Chain Management	10 Hrs			
(SCM), Development Chain, Global Optimization, Managing Uncertainty and Risk,				
Evolution of SCM Complexity, Key Issues.				
Inventory Management: Introduction, Single stage Inventory control – Economic Lot				
Size, Effect of demand uncertainty, Single period models, Inventory, Multiple order				
Opportunities, Continuous review policy, Variable lead times, Periodic Review policy,				
Service Level optimization.				
Risk Pooling: Centralized vs Decentralized Supply Chains, Managing Inventory in Supply				
chain, Forecasting, Judgement methods, Market Research methods, Time series methods,				
Causal methods, Selection of appropriate technique.				
Unit – II				
Network Planning: Introduction, Network Design – Data collection, Aggregation,	10 Hrs			
Transportation rates, Mileage estimation, Warehouse costs, Warehouse capacities, Potential	10 1115			
warehouse locations, Service level requirements, Future demand, Model and data				
validation, Solution techniques, Key features of Network Configuration, Supply Chain				
Planning, Inventory positioning and Logistics coordination, Strategic safety stock.				
Supply Contracts: Introduction, Strategic components, Supply contracts, Limitations,				
Contracts for Made to stock/Make to order Supply chains, Contracts with Asymetric				
Information, Contracts for Nonstrategic components.				
Unit – III				
The Value of Information: Introduction, the Bull whip effect, Information sharing and				
Incentives, Effective forecasts, Information for coordination of systems, Locating desired	10 Hrs			
products, Lead time reduction, Information and Supply chain trade-offs, Decreasing				
marginal value of information.				
Supply Chain Integration: Introduction Push, Pull and Push-Pull Systems, Identifying the				
appropriate Supply chain strategy, Implementing a Push-Pull Strategy, Impact of Lead				
Time, Demand driven Strategies, Impact of Internet on Supply Chain Strategies.				
Unit – IV Strategie Allianeer Introduction Framework for strategie alliance Third Dorty Logistics	09 Hrs			
Strategic Alliances: Introduction, Framework for strategic alliance, Third Party Logistics,	UY MIS			
Retail- Supplier relationships, Distributor Integration. Programment and Outcoming Strategies, Introduction, Outcoming Banefits and Bisks				
Procurement and Outsourcing Strategies: Introduction, Outsourcing Benefits and Risks,				
Framework for Buy/Make decisions, Procurement strategies, E-procurement.				
Smart Pricing: Introduction, Price and Demand, Markdowns, Price differentiation,				
Revenue Management, Smart Pricing, Impact of the Internet.				
Unit –V	00.11			
Global Logistics and Risk Management: Introduction, Risk Management, Issues in	09 Hrs			
International Supply Chain Management, Regional differences.				
Distribution Strategies: Introduction Direct Shipment Distribution Strategies, Intermediate				
Inventory storage point strategies.				

Cours	Course Outcomes: After going through this course the student will be able to:						
CO1	CO1 Explain supply chain concepts, systemic and strategic role of SCM in global competitive						
	environment.						
CO2	Apply various supply chain models for different decision scenarios.						

CO3	Evaluate alternative supply chain strategies using optimization and other models.
CO4	Analyze the given situation and develop appropriate supply chain strategy.

Reference Books: David Simchi Levi, Philip Kaminsky, Edith Simchi Levi & Ravi Shankar; "Designing & Managing the Supply Chain – Concepts Strategies and Case Studies"; Mc Graw Hill, 3rd Edition, 2008, ISBN: 978- 0-07-066698-6. Sunil Chopra, Peter Meindl & D V Kalra: "Supply Chain Management - Strategy, Planning & Operation"; Pearson Education Asia; 5th Edition, 2013, ISBN: 978-0-13-274395-2. Sarika Kulkarni & Ashok Sharma: "Supply Chain Management – Creating Linkages for Faster Business Turnaround", TATA Mc Graw hill, 1st Edition, 2004, ISBN: 0-07-058135—5 Jeremy F Shapiro, Duxbury; "Modelling the Supply Chain", Thomson Learning, 2002 Edition,

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

ISBN 0-534-37363.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II								
	BUSINESS ANALYTICS							
		(Grouj	G: Global Elective)					
Course Code	:	18CS2G01	CIE Marks	:	100			
Credits L: T: P	Credits L: T: P : 3:0:0							
Hours	:	36L	SEE Duration	:	3 hrs			

Unit – I	
Business analytics: Overview of Business analytics, Scope of Business analytics, Business	08 Hrs
Analytics Process, Relationship of Business Analytics Process and organization,	
competitive advantages of Business Analytics.	
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability	
distribution and data modelling.	
Unit – II	
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple	07 Hrs
Linear Regression. Important Resources, Business Analytics Personnel, Data and models	
for	
Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics	
Technology.	
Unit – III	
Organization Structures of Business analytics, Team management, Management Issues,	08 Hrs
Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring	
contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive	
Analytics, Predicative Modelling, Predictive analytics analysis.	
Unit – IV	
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting	07 Hrs
Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time	
Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression	
Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.	
Unit –V	.
Decision Analysis: Formulating Decision Problems, Decision Strategies with and without	06 Hrs
Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision	
Making.	

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Explore the concepts, data and models for Business Analytics.				
CO2	Analyze various techniques for modelling and prediction.				
CO3	Design the clear and actionable insights by translating data.				
CO4	Formulate decision problems to solve business applications				

Reference Books: Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Business analytics Principles, Concepts, and Applications FT Press Analytics, 1st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402 Evan Stubs, "The Value of Business Analytics: Identifying the Path to Profitability", John Wiley & Sons, ISBN:9781118983881 |DOI:10.1002/9781118983881,1st edition 2014 James Evans, "Business Analytics", Pearsons Education 2nd edition, ISBN-13: 978-0321997821 ISBN-10: 0321997824 Gary Cokins and Lawrence Maisel, "Predictive Business Analytics Forward Looking Capabilities to Improve Business", Wiley; 1st edition, 2013.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
INDUSTRIAL & OCCUPATIONAL HEALTH AND SAFETY						
	(Group G: Global Elective)					
Course Code	:	18CV2G02	CIE	Marks	:	100
Credits L: T: P	:	3:0:0	SEE	Marks	:	100
Hours	:	36L	SEE	Duration	:	3 hrs

Unit - I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

07 Hrs

Unit – II

Occupational health and safety: Introduction, Health, Occupational health: definition, Interaction between work and health, Health hazards, workplace, economy and sustainable development, Work as a factor in health promotion. Health protection and promotion Activities in the workplace: National governments, Management, Workers, Workers' representatives and unions, Communities, Occupational health professionals. Potential health hazards: Air contaminants, Chemical hazards, Biological hazards, Physical hazards, Ergonomic hazards, Psychosocial factors, Evaluation of health hazards: Exposure measurement techniques, Interpretation of findings recommended exposure limits. Controlling hazards: Engineering controls, Work practice controls, Administrative controls. Occupational diseases: Definition, Characteristics of occupational diseases, Prevention of occupational diseases.

07 Hrs

Unit – III

Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents, Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and Oxidizers, General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical Exposure Limits. Physical Agents, Noise and Vibration, Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.

08 Hrs

Unit - IV

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

07 Hrs

Unit -V

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, over hauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

07 Hrs

Course Outcomes: After going through this course the student will be able to:

CO1 Explain the Industrial and Occupational health and safety and its importance.

CO2	Demonstrate the exposure of different materials, occupational environment to which the employee can expose in the industries.				
CO3	Characterize the different type materials, with respect to safety and health hazards of it.				
CO4	Analyze the different processes with regards to safety and health and the maintenance required in the industries to avoid accidents.				

R	Reference Books:						
1	Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.						
2	Maintenance Engineering Principles, Practices & Management, H. P. Garg, S. Chand and Company, New Delhi, 2009. ISBN:9788121926447						
3	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition, International Labour Office – Geneva: ILO, 2008. ISBN 978-92-2-120454-1						
4	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.						

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
MODELING USING LINEAR PROGRAMMING						
		(G	roup G: Global Electiv	ve)		
Course Code	:	18IM2G03		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I			
Linear Programming: Introduction to Linear Programming problem	07 Hrs		
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables			
Unit – II	I.		
Advanced Linear Programming: Two Phase simplex techniques, Revised simplex method	07 Hrs		
Duality: Primal-Dual relationships, Economic interpretation of duality			
Unit – III	•		
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes in RHS, Changes in objectives, Post optimal analysis - changes affecting feasibility and optimality			
Unit – IV			
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation Problems.			
Unit –V			
Assignment Problem: Formulation of the Assignment problem, solution method of assignment problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem (TSP).	07 Hrs		

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Explain the various Linear Programming models and their areas of application.					
CO2	Formulate and solve problems using Linear Programming methods.					
CO3	Develop models for real life problems using Linear Programming techniques.					
CO4	Analyze solutions obtained through Linear Programming techniques.					

R	Reference Books:				
1	Taha H A, Operation Research An Introduction, PHI, 8th Edition, 2009, ISBN: 0130488089.				
2	Philips, Ravindran and Solberg - Principles of Operations Research – Theory and Practice, John Wiley & Sons (Asia) Pvt Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0				
3	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9 th Edition, 2012, ISBN 13: 978-0-07-133346-7				
4	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4 th Edition, 2009, ISBN 13: 978-0-23-063885-3.				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	PROJECT MANAGEMENT				
	(Group G: Global Elective)				
Course Code	Course Code : 18IM2G04 CIE Marks : 100				
Credits L: T: P : 3:0:0 SEE Marks : 100				100	
Hours : 36L SEE Duration : 3 hrs			3 hrs		

Unit – I	
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles,	07 Hrs
Responsibility and Team Work, Project Planning Process, Work Breakdown Structure	
(WBS), Introduction to Agile Methodology.	
Unit – II	
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital	07 Hrs
budgeting, levels of decision making, facets of project analysis, feasibility study – a	
schematic diagram, objectives of capital budgeting	
Unit – III	1
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital	08 Hrs
Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement,	00 1115
Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit	
Analysis	
Unit – IV	
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for	07 Hrs
	0/1118
combined activities, logic diagrams and networks, Project evaluation and review	
Techniques (PERT) Critical Path Method (CPM), Computerized project management	
Unit –V	
Project Management and Certification: An introduction to SEI, CMMI and project	07 Hrs
management institute USA – importance of the same for the industry and practitioners.	
PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing	
Agile.	
Domain Specific Case Studies on Project Management: Case studies covering project	
- · · · · · · · · · · · · · · · · · · ·	
planning, scheduling, use of tools & techniques, performance measurement.	<u> </u>

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain project planning activities that accurately forecast project costs, timelines, and quality.				
CO2	Evaluate the budget and cost analysis of project feasibility.				
CO3	Analyze the concepts, tools and techniques for managing projects.				
CO4	Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations				

R	Reference Books:				
1	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review, Tata				
	McGraw Hill Publication, 8 th Edition, 2010, ISBN 0-07-007793-2.				
2	Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK				
	Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9				
	Harold Kerzner, Project Management A System approach to Planning Scheduling & Controlling,				
3	John Wiley & Sons Inc., 11 th Edition, 2013, ISBN 978-1-118-02227-6.				
4	Rory Burke, "Project Management – Planning and Controlling Techniques", John Wiley & Sons, 4th				
	Edition, 2004, ISBN: 9812-53-121-1				

 $Scheme \ of \ Continuous \ Internal \ Evaluation \ (CIE); \ Theory \ (100 \ Marks)$

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
ENERGY MANAGEMENT						
		(Gr	roup G: Global Electiv	(e)		
Course Code	:	18CH2G05		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

TImi4 T		
Unit – I	L 0 = 77	
Energy conservation: Principles of energy conservation and energy audit, types of energy	07 Hrs	
audit, Energy conservation approaches, Cogeneration and types of cogeneration, Heat		
recuperators- classification, liquid/gas and gas/liquid heat exchangers		
Unit – II		
Wet Biomass gasifiers: Introduction, Classification of feedstock for biogas generation.	07 Hrs	
Biomass conversion technologies: Wet and dry processes, Photosynthesis, Biogas		
generation, Factors affecting bio-digestion, Classification of biogas plants, Floating drum		
plant and fixed dome plant their advantages and disadvantages, Biogas from aquatic weed.		
Unit – III		
Dry Biomass Gasifiers: Biomass energy conversion routes, Thermal gasification of	08 Hrs	
biomass, Classification of gasifiers, Fixed bed systems: Construction and operation of up		
draught and down draught gasifiers. Pyrolysis.		
Unit – IV	•	
Solar Photovoltaic: Principle of photovoltaic conversion of solar energy, types of solar	07 Hrs	
cells and fabrication.		
Wind Energy: Atmospheric circulations, classification, factors influencing wind, wind		
shear, turbulence, wind speed monitoring, Betz limit, WECS: classification, characteristics,		
and applications		
Unit –V		
	07 Hrs	
Alternative liquid fuels: Introduction. Ethanol production: Raw materials, Pre-treatment,	U/ Hrs	
Conversion processes, Fermentation systems. Methanol production: Raw materials,		
Gasification of wood, Gas purification and shift conversion, Synthesis, Gasification		
equipment.		

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Understand the use alternate fuels for energy conversion					
CO2	Develop a scheme for energy audit					
CO3	Evaluate the factors affecting biomass energy conversion					
CO4	Design a biogas plant for wet and dry feed					

R	Reference Books:				
1	Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.				
2	Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.				
3	Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.				
4	C. S. Solanki, Solar Photovoltaics: Fundamental Applications and Technologies, Prentice Hall of India, 2009, ISBN:9788120343863				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each

and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	INDUSTRY 4.0				
		(Group G: 0	Global Elective)		
Course Code	:	18ME2G06	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Unit – I	
Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and	07 Hrs
Artificial Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data	
Management.	
Unit – II	
The Concept of the HoT: Modern Communication Protocols, Wireless Communication	07 Hrs
Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical	
Perspective, Middleware Architecture.	
Unit – III	
Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing,	08 Hrs
Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems	
with Komatsu, Quality Prediction in Steel Manufacturing.	
Internet of Things and New Value Proposition, Introduction, Internet of Things Examples,	
IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.	
Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological	
Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of	
Robotic Things, Cloud Robotics.	
Unit – IV	
Additive Manufacturing Technologies and Applications: Introduction, Additive	07 Hrs
Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling,	
Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net	
Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive	
Manufacturing.	
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual	
Factory Software , Limitations of the Commercial Software	
Unit –V	0 = 11
Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0,	07 Hrs
Introduction, AR Hardware and Software Technology, Industrial Applications of AR,	
Maintenance, Assembly, Collaborative Operations, Training.	
Smart Factories: Introduction, Smart factories in action, Importance, Real world smart	
factories, The way forward.	
A Roadmap: Digital Transformation, Transforming Operational Processes, Business	
Models, Increase Operational Efficiency, Develop New Business Models.	

Cours	Course Outcomes: After going through this course the student will be able to:						
CO1	Understand the opportunities, challenges brought about by Industry 4.0 for benefits of						
	organizations and individuals						
CO2	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services						
CO3	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits						
CO4	Evaluate the effectiveness of Cloud Computing in a networked economy						

Reference Books:

- 1 Alasdair Gilchrist, Industry 4.0 The Industrial Internet Of Things, Apress Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
- 2 Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018 ISBN 978-3-319-57869-9.

- Ovidiu Vermesan and Peer Friess, Designing the industry Internet of things connecting the physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
- 4 Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	ADVANCED MATERIALS					
	(Group G: Global Elective)					
Course Code	:	18ME2G07		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

07 Hrs
07 Hrs
08 Hrs
07 Hrs
07 Hrs

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Describe metallic and non-metallic materials					
CO2	Explain preparation of high strength Materials					
CO3	Integrate knowledge of different types of advanced engineering Materials					
CO4	Analyse problem and find appropriate solution for use of materials.					

R	eference Books:
1	Donald R. Askeland, and Pradeep P. Fulay, The Science & Engineering of Materials, 5th Edition, Thomson, 2006, ISBN-13-978-0534553968
2	Gregory L. Timp, Nanotechnologym 1999th Editionmm Springer, 1999 ISBN-13: 978-0387983349
	Dr. VD Kodgire and Dr. S V Kodgire, Material Science and Metallurgym 42nd Edition 2018,
3	Everest Publishing House ISBN NO: 81 86314 00 8
4	N Bhatnagar, T S Srivatsan, Processing and Fabrication of Advanced Materials, 2008, IK
	International, ISBN: 978819077702

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two

RV College of Engineering®

assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	COMPOSITE MATERIALS SCIENCE AND ENGINEERING					
	(Group G: Global Elective)					
Course Code	:	18CHY2G08		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Hours	:	36L		SEE Duration	: 3	hrs
Unit – I						
INTRODUCTION TO COMPOSITE MATERIALS						07 Hrs
	Fundamentals of composites – need for composites – Enhancement of properties –					
			olymer matrix composi			
			composites (CMC) –			
	Interfaces and Interphases, Distribution of constituents, Types of Reinforcements, Particle					
reinforced composites, Fibre reinforced composites. Fiber production techniques for glass, carbon and ceramic fibers Applications of various types of composites.						
carbon and ceran	11C T1	bers Application		posites.		
DOLYMED MA	(TID)	IX COMPOSITE	Unit – II			00 11
POLYMER MA				TI .		08 Hrs
			, Thermoplastic resins &		1 7	
		• • • • • • •	s, Woven fabrics. PMC	•	• •	
			mpression Moulding – I			
			ament winding – Injection			
			(GFRP & CFRP). Lami ninates, Cross Ply Lamir			
			ngth, ILSS, Impact Streng			
			tomotive industries.	gui- As pei As i wi	Stanuaru.	
Applications of I	IVIC	in acrospace, au	Unit – III			
CERAMIC MA	TRI	X COMPOSITE	ES AND SPECIAL CON	/POSITES		07 Hrs
			roperties – advantages		onolithic	
ceramics – need for CMC – ceramic matrix – various types of ceramic matrix composites- oxide ceramics – non oxide ceramics – Aluminium oxide – silicon nitride – reinforcements						
- particles- fibres- whiskers. Sintering - Hot pressing - Cold Isostatic Pressing (CIPing) -						
Hot isostatic pressing (HIPing). Applications of CMC in aerospace, automotive industries-						
	Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix					
carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel						
technique- Processing of Ceramic Matrix composites.						
Unit – IV						•
METAL MATRIX COMPOSITES					07 Hrs	
			pes of metal matrix co			
			MMC, Reinforcements –			
reinforcement - volume fraction - rule of mixtures. Processing of MMC - powder						
metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process,						
			ns-Interface-measurement	t of interface pr	roperties-	
applications of M	MC	in aerospace, au	tomotive industries.			
Unit –V						10=
POLYMER NA			NT .	T. 1.1.5	1	07 Hrs
Introduction and Significance of polymer Nano composites. Intercalated and Exfoliated Nanocomposites. Classification of Nano fillers- nanolayers, nanotubes, nanoparticles.						
Preparation of Polymer Nano composites by Solution, In-situ Polymerization and melt						
	mixing techniques. Characterization Of polymer nanocomposites- XRD, TEM, SEM and					
AFM. Mechanical and Rheological properties of Polymer Nano composites. Gas barrier,						
			ame retardant properties	_		
			ity studies of Polymer na			
		_	ity studies of Forymor in	anocomposites, rip	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
of polymer nano		_	ity studies of Folymer na	anocomposites, App	Jiicauons	

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Understand the purpose and the ways to develop new materials upon proper combination of known materials.				
CO2	Identify the basic constituents of a composite materials and the list the choice of materials available				
CO3	Will be capable of comparing/evaluating the relative merits of using alternatives for important engineering and other applications.				
CO4	Get insight to the possibility of replacing the existing macro materials with nanomaterials.				

R	eference Books:
1	Krishan K Chawla- Composite Materials Science and Engineering" Springer-verlag Gmbh, 3rd Edition, ISBN: 9780387743646, 0387743642
2	K Balani, Donald R Askeland, - "The Science Engineering of Materials" 6th Edition- Cengage, ISBN: 9788131516416
3	Joel R Fried- "Polymer Science and Technology", 2nd Edition, Prentice Hall, ISBN: 9780137039555
4	Rajendra Kumar Goyal-"Nanomaterials and nanocomposites", 2nd Edition, CRC Press-Taylor & Francis, ISBN: 9781498761666, 1498761666

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
PHYSICS OF MATERIALS					
		(G	roup G: Global Elective)		
Course Code	:	18PHY2G09	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Unit – I	
CRYSTAL STRUCTURE: Symmetry elements-seven crystals systems-Reciprocal lattice-	07 Hrs
Packing fraction, Lattice Vibration-Brillouin zones, Analysis of Crystal structure using	07 1115
XRD, Thermal properties.	
Unit – II	
DIELECTRIC MATERIALS: Basic concepts-Lange in's Theory of Polarisation-	07 Hrs
· · ·	0/1118
Clausius-Mossotti Relation-Ferro electricity-Piezoelectricity-Properties of Dielectric in	
alternating fields-The complex Dielectric Constant and Dielectric Loss, Polarizability as a	
function of frequency-Complex dielectric constant of non-polar solids-Dipolar relaxation,	
Applications.	
Unit – III	
MAGNETIC MATERIALS: Dia and Paramagnetic materials-Quantum theory of	08 Hrs
paramagnetic materials-Paramagnetic susceptibility of conduction electrons-Ferro-anti	
ferromagnetic materials-Superconductors and Applications.	
Unit – IV	
SEMICONDUCTING MATERIALS: Semiconductor-Direct and Indirect bonding	07 Hrs
characteristics-Importance of Quantum confinement-quantum wires and dots-Ferro electric	
semiconductors-applications-Polymer semiconductors-Photo conductive polymers,	
Applications.	
Unit –V	
	07.11
NOVEL MATERIALS: Smart materials-shape memory alloys-shape memory effects-	07 Hrs
Martensitia Transformation functional properties-processing-texture and its nature.	

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Analyse crystals using XRD technique.				
CO2	Explain Dielectric and magnetic materials.				
CO3	Integrate knowledge of various types of advanced engineering Materials.				
CO4	Use materials for novel applications.				

R	Reference Books:				
1	Solid State Physics, S O Pillai, 2015, New Age International Publishers, ISBN 10-8122436978.				
2	Introduction to Solid State Physics, C.Kittel, Seventh Edition, 2003, John Wiley & Sons, ISBN 9971-51-180.				
	Material Science, Rajendran V and Marikani, , Tata McGraw Hill, 2013, ISBN 10-007132871.				
3					
4	The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, Sixth Edition, 2012 Cengage Learning, ISBN-13:978-0-495-66802-2.				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two

RV College of Engineering®

assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

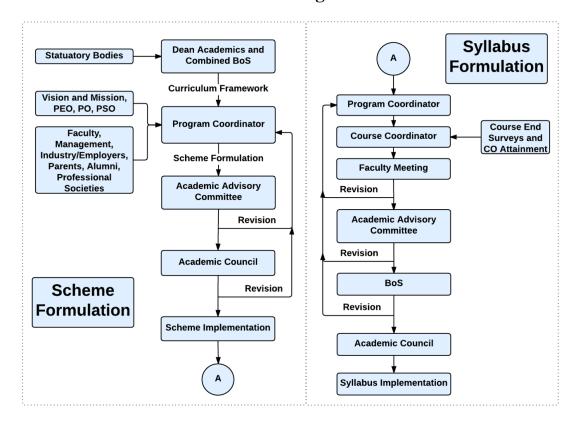
Semester: II						
	ADVANCED STATISTICAL METHODS					
	(Group G: Global Elective)					
Course Code	:	18MAT2G10	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I		
Sampling Techniques: Random numbers, Concepts of random sampling from finite and	07 Hrs	
infinite populations, Simple random sampling (with replacement and without replacement).		
Expectation and standard error of sample mean and proportion.		
Unit – II	I	
Estimation: Point estimation, Estimator and estimate, Criteria for good estimates -	07 Hrs	
unbiasedness, consistency, efficiency and sufficiency, Method of moment's estimation and		
maximum likelihood estimation, Properties of maximum likelihood estimator (no proofs),		
Confidence intervals-population mean (large sample), population proportion.		
Unit – III	T	
Tests of Hypothesis: Principles of Statistical Inference, Formulation of the problems with	07 Hrs	
examples, Simple and composite hypothesis, Null and alternative hypothesis, Tests - type I		
and type II error, Testing of mean and variance of normal population (one sample and two		
samples), Chi squared test for goodness of fit.		
Unit – IV	•	
Linear Statistical Models: Definition of linear model and types, One way ANOVA and	07 Hrs	
two way ANOVA models-one observation per cell, multiple but equal number of		
observation per cell.		
Unit –V	I.	
Linear Regression: Simple linear regression, Estimation of parameters, Properties of least	08 Hrs	
square estimators, Estimation of error variance, Multivariate data, Multiple linear		
regressions, Multiple and partial correlation, Autocorrelation-introduction and plausibility		
of serial dependence, sources of autocorrelation, Durbin-Watson test for auto correlated		
variables.		
· warmone		

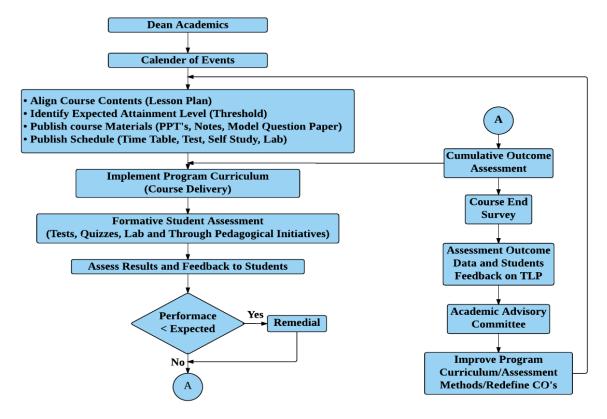
Course	Course Outcomes: After going through this course the student will be able to:				
CO1	Identify and interpret the fundamental concepts of sampling techniques, estimates and types, hypothesis, linear statistical models and linear regression arising in various fields engineering.				
CO2	Apply the knowledge and skills of simple random sampling, estimation, null and alternative hypotheses, errors, one way ANOVA, linear and multiple linear regressions.				
CO3	Analyze the physical problem to establish statistical/mathematical model and use appropriate statistical methods to solve and optimize the solution.				
CO4	Distinguish the overall mathematical knowledge gained to demonstrate the problems of sampling techniques, estimation, tests of hypothesis, regression and statistical model arising in many practical situations				

Reference Books:

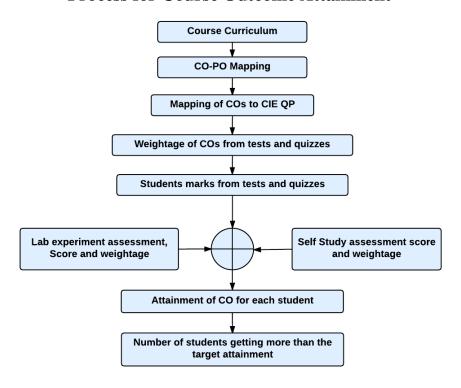
- A. M. Goon, M. K. Gupta and B. Dasgupta-Fundamentals of Statistics (Vol. I and Vol. II), World Press Private Limited, 3rd Edition, 1968, ISBN-13: 978-8187567806.
- D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, John Wiley & Sons, Inc., 3rd Edition, 2003, ISBN 0-471-20454-4.

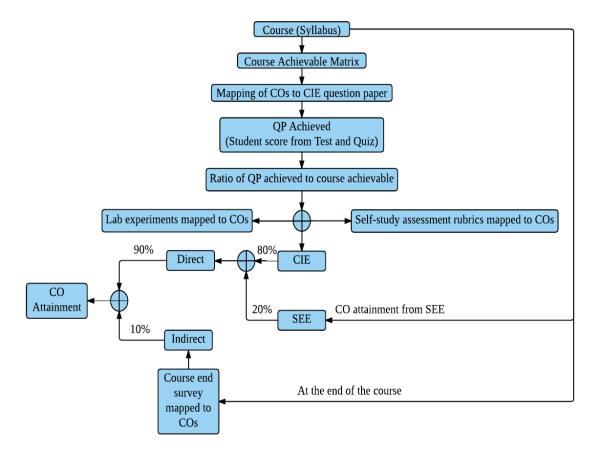

- S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistic A Modern Approach, S Chand Publications, 10th Edition, 2000, ISBN 81-7014-791-3.
- 4 Regression Analysis: Concepts and Applications F. A. Graybill and H. K. Iyer, Belmont, Calif.: Duxbury Press, 1994, ISBN-13: 978-0534198695.

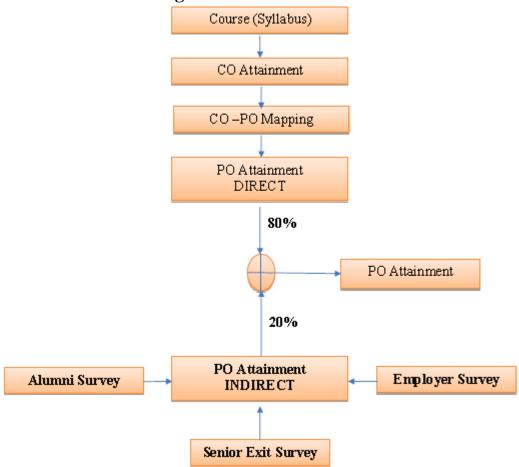
CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.


Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:


Curriculum Design Process


Academic Planning And Implementation


Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

