

RV Educational Institutions [®] RV College of Engineering [®]

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Bachelor of Engineering (B.E) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

COMPUTER SCIENCE AND ENGINEERING

2021-2022

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII&VIII Semesters

2018 SCHEME

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT VISION

To achieve leadership in the field of Computer Science & Engineering by strengthening fundamentals and facilitating interdisciplinary sustainable research to meet the ever growing needs of the society.

DEPARTMENT MISSION

- To evolve continually as a centre of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Develop Graduates capable of applying the principles of mathematics, science, core engineering and Computer Science to solve real-world problems in interdisciplinary domains.
- **PEO2:** To develop the ability among graduates to analyze and understand current pedagogical techniques, industry accepted computing practices and state-of-art technology.
- **PEO3:** To develop graduates who will exhibit cultural awareness, teamwork with professional ethics, effective communication skills and appropriately apply knowledge of societal impacts of computing technology.
- **PEO4:**To prepare graduates with a capability to successfully get employed in the right role / become entrepreneurs to achieve higher career goals or takeup higher education in pursuit of lifelong learning.

PROGRAM SPECIFIC OUTCOMES (PS	Os)
	Obj

PSO	Description
PSO1	System Analysis and Design
	The student will be able to:
	1. Recognize and appreciate the need of change in computer architecture, data organization and analytical methods in the evolving technology.
	2. Learn the applicability of various systems software elements for solving design problems.
	3. Identify the various analysis & design methodologies for facilitating development of high quality system software products with focus on performance optimization.
	4. Display team participation, good communication, project management and document skills.
PSO2	Product Development
	The student will be able to:
	1. Demonstrate the use of knowledge and ability to write programs and integrate them with the hardware/software products in the domains of embedded systems, databases /data analytics, network/web systems and mobile products.
	2. Participate in planning and implement solutions to cater to business – specific requirements displaying team dynamics and professional ethics.
	3. Employ state-of-art methodologies for product development and testing / validation with focus on optimization and quality related aspects.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	СҮ	Chemistry
22.	MA	Mathematics

ABBREVIATIONS

INDEX

	VII Semester				
Sl. No.	Course Code	Course Title	Page No.		
1.	18HS71	Constitution of India and Professional Ethics	1		
2.	18CS72	Computer Graphics and Virtual Reality	3		
3.	18CS73	Parallel Architecture and Distributed Programming	7		
4.	18CS74	Internship	10		
5.	18CS7FX	Elective F (PE)	12-22		
6.	18CS7GX	Elective G (PE)	23-32		
7.	18G7HXX	Elective H (GE)	33-65		

	VIIISemester					
Sl. No.	Sl. No. Course Code Course Title Page No.					
1.	18CSP81	Major Project	66			

	VII Semester					
	PROFESSIONAL ELECTIVES (GROUP F)					
Sl. No.	Course Code	Course Title	Page No.			
1.	18CS7F1	Linux Internals	12			
2.	18CS7F2	Game Theory	14			
3.	18CS7F3	Information Storage Management	16			
4.	18CS7F4	Software Defined Networks	19			
5.	18CS7F5	Introduction to Optimization Techniques	21			

	VII Semester						
		PROFESSIONAL ELECTIVES (GROUP G)					
Sl. No.	Sl. No. Course Code Course Title Page No.						
1.	18CS7G1	Cyber Security for Industry 4.0	23				
2.	18CS7G2	Application Delivery Controller and Virtualization	25				
3.	18CS7G3	Fuzzy Graphs, Fuzzy Soft Sets and Petrinets	27				
4.	18CS7G4	Computer Vision	29				
5.	18IS7G5	Deep Learning	31				

	VII Semester					
	OPEN ELECTIVES (GROUP H)					
Sl. No.	Course Code	Course Title	Page No.			
1.	18G7H01	AS	Unmanned Aerial Vehicles	33		
2.	18G7H02	BT	Bioinformatics	35		
3.	18G7H03	CH	Industrial Safety And Risk Management	37		
4.	18G7H04	CS	Web Programming	39		
5.	18G7H05	CV	Solid Waste Management And Statutory Rules	41		
6.	18G7H06	EC	Image Processing And Machine Learning	43		
7.	18G7H07	EE	Renewable Energy Sources And Storage System	45		
8.	18G7H08	EI	Mems & Applications	47		
9.	18G7H09	IM	Project Management	49		
10.	18G7H10	IS	Cyber Forensics And Digital Investigations	51		
11.	18G7H11	ME	Robotics And Automation	53		
12.	18G7H12	TE	Space Technology And Applications	55		
13.	18G7H13	PY	Introduction To Astrophysics	57		
14.	18G7H14	CY	Materials For Advanced Technology And Spectroscopic Characterization	59		
15.	18G7H15	HSS	Applied Psychology For Engineers	62		
16.	18G7H16	HSS	Advanced Course In Entrepreneurship	64		

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) COMPUTER SCIENCE AND ENGINEERING

	SEVENTH SEMESTER CREDIT SCHEME						
SI.	Course Code	rse Code Course Title	BoS	Credit Allocation			Total
No.			200	L	Т	Р	Credits
1.	18HS71	Constitution of India and Professional Ethics	HSS	3	0	0	3
2.	18CS72	Computer Graphics and Virtual Reality	CS	3	0	1	4
3.	18CS73	Parallel Architecture and Distributed Programming	CS	3	1	1	5
4.	18CS74	Internship *	CS	0	0	2	2
5.	18CS7FX	Elective F (PE)	CS	3	0	0	3
6.	18CS7GX	Elective G (PE)	CS	3	0	0	3
7.	18G7HXX	Elective H (GE) **	Res. BOS	3	0	0	3
	Total Number of Credits				1	4	23
		Total number of Hours/Week		18	2	10	

Note: * Internship (6 weeks) is to be carried during the vacation after 6th semester and evaluation shall be conducted during 7th semester for 2 credits.

** Students should take other department Global Elective courses.

	EIGHT SEMESTER CREDIT SCHEME						
Sl.	Course Code Course Title BoS Cre	Course Title BoS		lit Alloo	Total		
No.			DUS	L	Т	P	Credits
1.	18CSP81	Major Project	CS	0	0	16	16
	Total Number of Credits					16	16
	Total number of Hours/Week					32	

	VII Semester					
		PROFESSIONAL ELECTIVES (GROUP F)				
Sl. No.	Course Code	Course Title	Credits			
1.	18CS7F1	Linux Internals	03			
2.	18CS7F2	Game Theory	03			
3.	18CS7F3	Information Storage Management	03			
4.	18CS7F4	Software Defined Networks	03			
5.	18CS7F5	Introduction to Optimization Techniques	03			

	VII Semester					
		PROFESSIONAL ELECTIVES (GROUP G)				
Sl. No.	Course Code	Course Title	Credits			
1.	18CS7G1	Cyber Security for Industry 4.0	03			
2.	2. 18CS7G2 Application Delivery Controller and Virtualization					
3.	18CS7G3	Fuzzy Graphs, Fuzzy Soft Sets and Petrinets	03			
4.	18CS7G4	Computer Vision	03			
5.	18IS7G5	Deep Learning	03			

	VII Semester								
	OPEN ELECTIVES (GROUP H)								
Sl. No.	Course Code Host Course Title								
1.	18G7H01	AS	Unmanned Aerial Vehicles	03					
2.	18G7H02	BT	Bioinformatics	03					
3.	18G7H03	CH	Industrial Safety And Risk Management	03					
4.	18G7H04	CS	Web Programming	03					
5.	18G7H05	CV	Solid Waste Management And Statutory Rules	03					
6.	18G7H06	EC	Image Processing And Machine Learning	03					
7.	18G7H07	EE	Renewable Energy Sources And Storage System	03					
8.	18G7H08	EI	Mems & Applications	03					
9.	18G7H09	IM	Project Management	03					
10.	18G7H10	IS	Cyber Forensics And Digital Investigations	03					
11.	18G7H11	ME	Robotics And Automation	03					
12.	18G7H12	TE	Space Technology And Applications	03					
13.	18G7H13	PY	Introduction To Astrophysics	03					
14.	18G7H14	CY	Materials For Advanced Technology And Spectroscopic Characterization	03					
15.	18G7H15	HSS	Applied Psychology For Engineers	03					
16.	18G7H16	HSS	Advanced Course In Entrepreneurship	03					

				Semester: VII					
	(COI	NSTITUTI	ON OF INDIA AND PROFE		CS			
	(Common to All Programs)								
Cou	Course Code : 18HS71 CIE : 100 Marks								
Cree	dits: L:T:P	:	3:0:0		SEE	:	: 100 Marks		
Tota	al Hours	:	39L		SEE Duration	:	3.00 Ho	ours	
Cou				he students will be able to					
1	and duties in	n the	eir role as E	6				-	
2				d legal aspects of advertising, out and service standards.	consumer problems	s an	d their rec	dressal	
3	Discuss the statutory inte		•	substantive Labor law and to o	develop skills for l	ega	al reasonir	ng and	
4	Evaluate inc shaping prof			esponsibilities and emphasize of	on professional/ er	ngir	eering eth	hics in	
				Unit - I			1	0 Hrs	
Fund studi Dire Fund Gove Judio	damental Righ ies. ective Princip damental Duti ernor; Parliam ciary; Emerge	nts- ples les i hent ency	Articles 14- s of State in the Cons & State Le	quisition and Termination of C-32 with case studies; RightUnit – IIPolicy- Significance of Dititution of India; Union Executorgislature; Council of Ministerss; Elections, Administrative	to Information Ad irective Principles itive- President ar ; Anti-defection la	ond S w;	2005 with 1 f State I State Exec Union and	0 Hrs 0 Hrs Policy, cutive- d State	
Righ	ts Commissio	<u>, 11.</u>		Unit –III			0	6 Hrs	
the O Prod Alter 2019	Unit –III06 HrsConsumer Protection Law - Definition and Need of Consumer Protection; Consumer Rights under the Consumer Protection Act, 2019; Unfair Trade Practice, Defect in goods, Deficiency in services; Product liability and Penal Consequences, False and Misleading Advertisement, E-Commerce, Alternate dispute Redressal mechanism; Redresses Mechanisms under the Consumer Protection Act, 2019.An overview of Indian Penal Code 1860 (Law Of Crimes)						under rvices; merce,		
				Unit – IV			0	6 Hrs	
India Wor Regu	Introduction to Labour Legislations - Industrial Relation, Labour Problem and Labour Policy in India; Labour Welfare and Social Security- Factories Act, 1948, Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013; the Child Labour (Prohibition and Regulation) Act, 1986, Maternity Benefit (Amendment) Act, 2017; Industrial Dispute Act, 1947, Reference of Disputes toBoards, Courts or Tribunals.								
				Unit –V			0	7 Hrs	
Impe	Scope and aims of engineering ethics (NSPE Code of Ethics), Responsibility of Engineers, Impediments to responsibility. Honesty, Integrity and reliability, Risks, Safety and Liability in Engineering. Corporate Social Responsibility. Statutory Provision regarding prohibition and								

prevention of Ragging.

Course	e Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability
	and to take affirmative action as a responsible citizen.
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to
	professional environment, strengthen the ability to contribute to the resolve of human rights
	& Ragging issues and problems through investigative and analytical skills.
CO3	Understanding process of ethical and moral analysis in decision making scenarios and
	inculcate ethical behavior as a trait for professional development.
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business
	Enterprises.

Refer	ence Books
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company,
2	5 th Edition, 2015, ISBN -13:978-9351452461
2	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6 th Edition,
3	2012, ISBN: 9789325955400
1	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics,
4	Wadsworth Cengage Learning, 5th Edition, 2009, ISBN-978-0495502791

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

				Semester: VI	[
			COMPUTER GE		IRTUAL REALI	TY	
				Theory and Prac			
Сош	rse Code	:	18CS72		CIE	:	100+50 Marks
	lits: L:T:P	:	3:0:1		SEE	:	100+50 Marks
	l Hours	:	39L+35P		SEE Duration	:	3 Hrs + 3 Hrs
		•	jectives: The stude	nts will be able to	SEE Durunon	•	
1					nd Virtual reality	una	lerlying mathematical
•							filling, Clipping and
	Transformati	•		,	, 1 org	8011	ining, enpping and
2	Understand	and	explore the conce	epts of Computer	Graphics and Virt	ual	reality using industry
			e OpenGL/VR too	· ·	1		, , ,
3	Design and I	mp	lement real time pr	ojects using Open	GL/VR tools.		
4			n solving skills usi				
			U	nit-I			08 Hrs
			nputer Graphics a				
							g with OpenGL, The
							he openGL Interface,
							s, Color, RGB Color,
					nsional Sierpinski	G	asket. Display Lists
			tion of display List				
			•		reality, commercial	l VI	R technology and the
five	e classic comp	one	nts of a VR system				
	out and Outpu			it – II			07 Hrs
Me VR	nus.	De	vices: Trackers, Na				nd Keyboard events. ated Output Devices:
300	nd displays &	пар		it –III			09 Hrs
Ras	ster graphics	alg	orithms and Geon	•	ations:		07 1115
line 2-D coo	e polygon fill a viewing: Th rdinate transf	ilgo ne v orm	rithm, boundary-fil viewing pipeline,	l and flood-fill alg viewing coordina nctions, Cohen-S	gorithms. te reference frame utherland and Lia	e, v	<i>rea primitives</i> : Scan vindow to view-port Barsky line clipping
-						tion	, Scaling, Rotation,
		-	-				eneous coordinates,
			s, transformations b				•••••••••••••••••••••••••••••••••••••••
	1			it –IV	2		08 Hrs
Gee	ometric Tran	sfoi	mations (contd)				
		Tra	nsformations: Tran	•			
3-D Vie	-					-	coordinates, Aspect
3-D Vie Rat	io and view p	oort	s, view volume, 3	-D clipping. Proj	ections: Classification	tion	of planar geometric
3-D Vie Rat pro	io and view p jections, Proje	oort ectio	s, view volume, 3 ons in openGL; V	-D clipping. Proj isible surface det	ections: Classification: Classification: Classification:	tion ion,	of planar geometric back-face detection,
3-D Vie Rat pro	io and view p jections, Proje	oort ectio	s, view volume, 3 ons in openGL; <i>V</i> he, depth sorting, B	-D clipping. <i>Proj</i> <i>isible surface det</i> SP-tree methods,	ections: Classification	tion ion,	of planar geometric back-face detection, ctree methods.
3-D Vie Rat pro dep	io and view p jections, Proje	oort ection-lin	s, view volume, 3 ons in openGL; V ne, depth sorting, B Un	-D clipping. Proj isible surface det	ections: Classification: Classification: Classification:	tion ion,	of planar geometric back-face detection,

Surface Deformation, Force Computation, Force Smoothing and Mapping, Haptic Texturing, Behaviour modelling

Laboratory Component

PART-A

Implement the following programs in C/C++ with OpenGL Libraries:

- 1. Write a program to generate a line using Bresenham'sline drawing technique. Consider slopes greater than one and slopes less than one. User must able to draw as many lines and specify inputs through keyboard/mouse.
- 2. Write a program to generate a circle using Bresenham's circle drawing. User can specify inputs through keyboard/mouse.
- 3. Design and develop **an OpenGL application program to create two windows.** Draw a rectangle of specified width and height by setting four different colors to its corners in the *first window*. In the *second window*, draw the same rectangle and spin it continuously. Use the double buffer concept.
- 4. Design and develop C program using OpenGL libraries to create two windows: display a cylinder in one window and parallelepiped in second window.

Note: Create a cylinder and a parallelepiped by extruding a circle and quadrilateral respectively.

- 5. Write a program to recursively subdivides a tetrahedron to form 3D Sierpinski gasket. The number of recursive steps is to be specified at execution time.
- 6. Write a program to **demonstrate the approximation of a 3D sphere** with appropriate mathematical formulations. Write the complete C program to approximate a sphere using OpenGL primitives.
- 7. Write a program to fill any given 2D polygon using Scan-line area filling algorithm.
- 8. Write a program to implement the Cohen Sutherland line clipping algorithm. Make provision to specify the input for multiple lines, window for clipping and viewport for displaying the clipped image.
- 9. Write a program to **implement the Liang-Barsky line clipping algorithm.** Make provision to specify the input for multiple lines, window for clipping and viewport for displaying the clipped image.
- 10. Write a program to **implement theCohen-Hodgeman polygon clipping algorithm**. Makeprovision to specify the input polygon and window for clipping.
- 11. Write a program to **create a house like figure and perform the following operations.**
 - i. Rotate it about a given fixed point using OpenGL transformation functions.
 - ii. Reflect it about an axis y=mx+c using OpenGL transformation functions.
- 12. Write a program to **create a color cube and spin it** using OpenGL transformations. The output must be adjusted suitably when the window is resized or moved to a new position.

PART B

Open-Ended learning is to be demonstrated by Case study of any Virtual Reality tools(development of a small application or mini project using VR tools).

Case study of any Virtual Reality tool and Implementation

- Students to explore the tools which provide a VR or 360-degree experience at the primary, elementary and secondary levels.
- Demonstrate the Case-Study implemented.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and explore the basic concepts of Computer Graphics & Virtual Reality which
	illustrates the use of the pipeline architecture, OpenGL library, VR tools.
CO2:	Analyze and make an appropriate choice of methods required for computer representation of
	2D/3D objects and modelling in Virtual Reality.
CO3:	Design applications like games, etcwhich involve animation using OpenGL library & VR
	tools.
CO4:	Implement common geometric construction & VR techniques as a solution to Engineering
	applications.

Referen	ce Books						
1	Computer Graphics with OpenGL, Donald D. Hearn, M. Pauline Baker, Warren Carithers, 4 th						
1	Edition, 2010, Pearson Education, ISBN-13: 978-0136053583.						
2	Interactive Computer Graphics: A Top-Down Approach Using OpenGL, Edward Angel, 5th						
4	Edition, 2010, Pearson Education, ISBN: 978131725306.						
2	Computer Graphics, Zhigang Xiang and Roy Plastock, 2 nd Edition, 2007, ASIN: 0070601658,						
3	Tata McGraw-Hill, ISBN-13: 978-0070601659.						
	Burdea, G. C. and P. Coffet. Virtual Reality Technology, 2 nd Edition. Wiley-IEEE Press,						
4	2003/2006						

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	2	2	-	1
CO2	3	3	3	3	1	-	-	-	3	3	-	1
CO3	3	3	3	3	2	-	-	-	3	-	-	1
CO4	3	3	3	1	2	-	-	-	3	2	-	1

				Semester: VII	- ,					
	PARA	LI	LEL ARCHITECT			RA	MMING			
	(Theory and Practice)									
Cou	Course Code : 18CS73 CIE : 100+50 Marks									
Cre	dits: L:T:P	:	3:1:1	SEE : 100+50 Marks						
Tota	al Hours	:	39L+26T+35P		SEE Duration	:	3 Hrs + 3 Hrs			
Cou	rse Learning	Ob	jectives: The studer	nts will be able to						
1	To review th	ne tr	ends in parallelism	programming.						
2			the basic ideas of r		^	ns w	vith case studies.			
3		<u>.</u>	formance of differen							
4	To demonstr	rate	parallel programmi	ng using OpemM	P, MPI, OpenCL ar	nd C	UDA.			
			T	•4 -			00 T			
E····	domontola of			nit-I			08 Hrs			
			n puter design:	cture: Dependabil	ity Measuring re	nort	ing and summarizing			
			s; Quantitative Prince			pon	ing and summarizing			
			on, pipeline hazards	1 I	uesign					
					nd challenges, basi	c cc	mplier techniques for			
		-			6		zards with dynamic			
						les a	and static scheduling,			
Exp	loring ILP usin	ng d	ynamic scheduling,	A	d speculation.					
			Uni	t – II			08 Hrs			
Mul	tiprocessors a	and	Thread level para	llelism:						
							etric shared memory			
	.		Distributed share	•	directory-based	coh	erence, Basics of			
	synchronizatio	on, l	Models of memory of							
				t –III			08 Hrs			
							, Vector Architecture,			
							ecting and Enhancing			
							n Structure, A Matrix-			
	ading.	1011	Example, Device N	all Data	a Transfer. Self-Stu	idy:	Kernel Functions and			
11110	aung.			t –IV			08 Hrs			
Intr	oduction to P	ara	llel Programming:				00 1115			
					ecomposition Tech	niaı	es, Characteristics of			
	Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for containing Interaction Overheads, Parallel Algorithms Models.									
Pro	gramming Us	ing	the Using Message							
					locks, MPI, Collect	tive	Communication and			
com	putation opera	tior	ns, Groups and Com							
				t –V			06 Hrs			
	Introduction					P				
	Background, Data Parallelism Model, Device Architecture Kernel Functions, Device Management and Kernel Launch, Electrostatic Potential Map in OpenCL									
Keri	iei Launch, El	ectr	ostatic Potential Ma	ip in OpenCL						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamentals of parallel architecture.						
CO2:	Analyze the performance of parallel processors.						
CO3:	Design parallel computing constructs for different applications.						
CO4:	Demonstrate Parallel computing concepts for suitable applications.						

Refere	ence Books
1	John L Hennessy, David A Patterson; "Computer Architecture: A Quantitative Approach", Elsevier, 6 th Edition; 2017, eBook ISBN: 9780128119068, Paperback ISBN: 9780128119051
2	AnanthGrama, Anshul Gupta, George Karypis, VipinKumar : Introduction to Parallel Computing, Second Edition Pearson Education, 2013, ISBN 13: 9788131708071
3	David B Reference Books: Wen-mei W. Hwu, Programming Massively Parallel Processors on Approach, Third edition, Elsevier and nvidia publishers 2016, Paperback ISBN: 9780128119860 eBook ISBN: 9780128119877
4	CUDA Programming: A Developers Guide to Parallel Computing with GPUs, Shane Cook, First Edition, Morgan Kaufmann,2013, ISBN:9780124159334.

Laboratory

Students are supposed to execute the programs on computationally intensive algorithms like compression, decompression, encoding, decoding, encryption and decryptions using OpenMP, MPI, CUDA and OpenCL

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

RV College of Engineering $\mbox{\ensuremath{\mathbb{B}}}$ – Bengaluru - 59

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	3	1	-	-	1	1	2	-	2
CO2	1	2	1	3	2	1	-	-	1	2	1	3
CO3	1	2	3	3	3	L	2	1	2	3	1	3
CO4	3	3	3	3	3	L	2	1	2	3	2	3

			SEMESTER :			
			INTERNSHI	P		
Course Code	:	18CS74		CIE Marks	:	50
Credit L:T:P	:	0:0:2		SEE Marks	:	50
Hours/week	:	4		SEE Duration	:	3 Hrs
			GUIDELINE	S	1 1	
1) The duration	on of	the internship shall I	be for a period of 6/	8 weeks on full time	e basis afte	er IV semester fina
		e the commencement				
2) The studen	t mus	st submit letters from	the industry clearly	specifying his / her	name and	l the duration of th
		company letter head				
3) Internship	must	be related to the fi	eld of specialization	of the respective	UG progra	amme in which th
student has	enro	lled.				
4) Students u	nderg	oing internship train	ing are advised to r	eport their progress	and subm	it periodic progres
reports to t	heir r	espective guides.				
5) Students h	ave to	present the internsh	nip activities carried	out to the departme	ntal comm	ittee and only upo
approval b	y the	committee, the stu	dent can proceed to	prepare and subm	it the hard	d copy of the fin
		t. However, interim				organization can b
	-	the format acceptabl	-			
		l be printed on A4 s				
	e repo	ort (wrapper) has to b	be Ivory color for UC	G circuit Programs a	nd Light E	Blue for Non-Circu
Programs.	_					
		t of the internship fir	hal report shall be as	follows		
	ver P	•				
• Ce	rtifica	ate from College				
• Ce	rtifica	te from Industry / Or	rganization			
• Ac	know	ledgement				
• Sy	nopsi	S				
• Ta	ble of	Contents				
• Ch	apter	1 - Profile of the	Organization: Organ	izational structure.	Products.	Services. Busines
	-	, Financials, Manpow	0			, , , , , , , , , , , , , , , , , , , ,
		2 - Activities of the I				
	•	3 - Tasks Performed	•	performed during 8	8-week ner	iod
	-	4 – Reflections: H			-	
	ernsh		ing in specific tec	annear and sort SK	iiis ulat y	ou acquireu uurin
		ces & Annexure				
Course Outcor						
		he internship the stud	dent will be able to			
		ering and management				
		time problems and su		ons		
		effectively and work				

CO3: Communicate effectively and work in teams

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to	45%
	comprehend the functioning of the organization/ departments,	4370
Review-	Importance of resource management, environment and sustainability presentation	
II	skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

LINUX INTERNALS (Group F: Professional Elective) Course Code : 18CS7F1 CIE : 100 Marks Total Hours : 30:0 SEE Duration : 30:0 Hours Course Cearning Objectives: The students will be able to 1 Reinforce the kernel level features of Linux operating system. 2 2 Develop and implement the system calls. 3 Gain knowledge about memory management techniques of the Linux OS. 4 Present an adequate programming environment in Linux OS. 4 Present an adequate programming environment in Linux OS. 5 6 8 Hrs Introduction to the Linux Kernel Num Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process Scheduling Unit – II 9 Hrs Process Scheduling <th< th=""><th></th><th></th><th></th><th>Com orton VI</th><th>r</th><th></th><th></th></th<>				Com orton VI	r						
(Group F: Professional Elective) Course Code : 100 Marks Course Learning Objectives: The students will be able to Course Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: The students will be able to Image: State Learning Objectives: State Learning Objectives: State				Semester: VI							
Course Code I BCS7F1 CTE I 00 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to I Reinforce the kernel level features of Linux operating system. Istep 1 3.00 Hours 2 Develop and implement the system calls. 3 Gain knowledge about memory management techniques of the Linux OS. Implementation. Implementation. Implementation. 4 Present an adequate programming environment in Linux OS. Implementation. Implementation. Implementation of Direads. Process Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Scheduling Unit – II 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Policies, Scheduler-Related System Calls System Call Sizem Calls System Call Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Call Handler											
Credits: L:T:P i: 30:0 SEE i: 100 Marks Total Hours i: 39L SEE Duration i: 3.00 Hours Course Learning Objectives: The students will be able to i: 3.00 Hours i: 3.00 Hours 2 Develop and implement the system calls. i: 3.00 Hours i: 3.00 Hours 3 Gain Knowledge about memory management techniques of the Linux OS. 4 Present an adequate programming environment in Linux OS. 4 Present an adequate programming environment in Linux OS. 8 Hrs Introduction to the Linux Kernel 8 Hrs Introduction to the Linux Kernel 8 Hrs Process Management 1 8 Hrs The Process Creation, The Linux Implementation of Threads, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Scheduling 9 Hrs Process Scheduling Unit - II 9 Hrs Process Scheduling 9 Hrs System Calls System Call System Call Context. System Call Implementation, System Call Context. 0 Nitit - II Unit -III 8 Hrs Interrupts and Interrupt Handler, Interrupt Context, Implementing Interrupt			(010)								
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to 1 Reinforce the kernel level features of Linux operating system. 2 2 Develop and implement the system calls. 3 Gain knowledge about memory management techniques of the Linux OS. 4 Present an adequate programming environment in Linux OS. 8 8 7 Unit-I 8 8 8 Introduction to the Linux Kernel 8 8 1 Reinforces Stangement 8 8 Process Management Thiroduction to the Linux Kernels, Linux Kernel Versions, The Linux Implementation of Threads, Process Termination. 9 9 9 Process Scheduling 9 9 9 9 Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Policies, Scheduler-Related System Calls 9 9 1 System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Calls Context. 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 <		:	18CS7F1		CIE	:	100 Marks				
Course Learning Objectives: The students will be able to 1 Reinforce the kernel level features of Linux operating system. 2 Develop and implement the system calls. 3 Gain knowledge about memory management techniques of the Linux OS. 4 Present an adequate programming environment in Linux OS. 5 Unit-I 8 Hrs Introduction to the Linux Kernel History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Unit – II Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Schedule-Related System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit – II Retrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control.	Credits: L:T:P	:	3:0:0		SEE	:	100 Marks				
1 Reinforce the kernel level features of Linux operating system. 2 Develop and implement the system calls. 3 Gain knowledge about memory management techniques of the Linux OS. 4 Present an adequate programming environment in Linux OS. 5 Unit-I 8 Hrs Introduction to the Linux Kernel History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit - II Ore/interrupt Handlers Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, /proc/interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handler, /proc/interrupts, Interrupt Control.	Total Hours	:	39L		SEE Duration	:	3.00 Hours				
2 Develop and implement the system calls. 3 Gain knowledge about memory management techniques of the Linux OS. 4 Present an adequate programming environment in Linux OS. Unit-I 8 Hrs Introduction to the Linux Kernel Introduction to the Linux Kernel History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process Scheduling Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit -II Netrupts and Interrupt Handlers Interrupts and Interrupt Handlers Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Control. Bottom Halves, A World of Bottom Halves, Softirgs, Tasklets, Work Queues, Which Bottom Halfes Should I Use? Unit -IV	Course Learning	Ob	jectives: The stude	ents will be able to							
3 Gain knowledge about memory management techniques of the Linux OS. 4 Present an adequate programming environment in Linux OS. 4 Present an adequate programming environment in Linux OS. Introduction to the Linux Kernel 8 Hrs Introduction to the Linux Kernel 8 Hrs Introduction to the Linux Kernel 8 Hrs Introduction to the Linux Kernel 9 Hrs Process Management 9 Hrs Process Secreptor and the Task Structure, Process Creation, The Linux Kernel Development community 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Policies, Scheduler-Related System Calls 9 Hrs System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Context. 9 Hrs Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handler, /proc/interrupts, Interrupt Mandler, Interrupt Context, Implementing Interrupt Handler, /proc/interrupts, Interrupt Mandler, Interrupt Context, Implementing Interrupt Handlers, Opro/interrupts, Interrupt Handler, Interrupt Context, Imp	1 Reinforce th	e ke	ernel level features	of Linux operating	g system.						
4 Present an adequate programming environment in Linux OS. Unit-I 8 Hrs Introduction to the Linux Kernel 8 Hrs History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. 9 Hrs Process Scheduling Unit – II 9 Hrs Process Scheduling Implementation, Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Nuit – III Virting an Interrupt Handlers Interrupts, Interrupt Handlers, Interrupt Handlers, Interrupt Control. B Hrs Bottom Halves, A World of Bottom Halves, Softirgs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit – IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstrac	2 Develop and	l im	plement the system	n calls.							
Unit-I 8 Hrs Introduction to the Linux Kernel History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Unit – II 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Handler, Interrupt Context, Softirgs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Mapagement Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System <td>3 Gain knowl</td> <td>edge</td> <th>e about memory ma</th> <td>anagement techniq</td> <td>ues of the Linux OS</td> <td>S.</td> <td></td>	3 Gain knowl	edge	e about memory ma	anagement techniq	ues of the Linux OS	S.					
Introduction to the Linux Kernel History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Unit – II 9 Hrs Process Scheduling 9 Hrs Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –II 8 Hrs Interrupts and Interrupt Handlers Interrupt Source Context, Implementing Interrupt Handler, /proc/interrupts, Interrupt Handler, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Interrupt Control. Bottom Halves and Deferring work Softings, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem	4 Present an a	deq	uate programming	environment in Li	nux OS.						
Introduction to the Linux Kernel History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Unit – II 9 Hrs Process Scheduling 9 Hrs Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –II 8 Hrs Interrupts and Interrupt Handlers Interrupt Source Context, Implementing Interrupt Handler, /proc/interrupts, Interrupt Handler, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Interrupt Control. Bottom Halves and Deferring work Softings, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem											
History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers Interrupts and Interrupt Handlers Interrupts and Interrupt Handler, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,				nit-I			8 Hrs				
Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community Process Management The Process, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Unit – II 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Interrupts and Interrupt Handlers Interrupts and Interrupt Handlers Interrupts and Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. 8 Hrs Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Paces, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Common Filesystem Interface, Spiesytem Abstraction Layer, Unix Filesystems 6	Introduction to t	1e L	Linux Kernel								
Community Process Management The Process Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Sendeuling Unit – II 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. 8 Hrs Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Da	•		0								
Process Management The Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Unit – II 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. 8 Hrs Interrupts and Interrupt Handlers Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Commo		ersu	s Classic Unix Ke	rnels, Linux Kerne	el Versions, The Li	inux	Kernel Development				
The Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination. Unit – II 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. 8 Hrs Memory Mapement Pages, Xones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems											
Threads, Process Termination. Unit – II 9 Hrs Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. 8 Hrs Interrupts and Interrupt Handlers Unit –III 8 Hrs Interrupts, Interrupt Handler, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Vriting an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. 8 Hrs Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems 0 Hrs Mernory Mappings, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores, Reader-Write	0			~ ~ ~	~ . —						
Unit – II9 HrsProcess Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System CallsSystem Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context.Unit –III8 HrsInterrupts and Interrupt Handlers Interrupt an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control.Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use?Unit –IV8 HrsMemory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method.The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix FilesystemsUnit –V6 Hrs				Task Structure, Pro	ocess Creation, The	e Lii	nux Implementation of				
Process Scheduling Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit -III 8 Hrs Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work 8 Hrs Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	Threads, Process	ern					0.77				
Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers 8 Hrs Interrupts, Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. 8 Hrs Bottom Halves and Deferring work 8 Hors Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Ounit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	D C L L H		Un	nit – 11			9 Hrs				
Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work 8 Hrs Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? 8 Hrs Memory Management 8 Hrs Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems 6 Hrs Mernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,		0		1 D 1' TI	T. 01 11		1 '4 751 T '				
Scheduling Policies, Scheduler-Related System Calls System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers Interrupts, Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. 6 Hrs Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores, Reade											
System Calls Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Ommon Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Ontit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores, Reade					ption and Contex	a s	witching, Real-Time				
Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers Interrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves and Deferring work Softirqs, Tasklets, Work Queues, Which Bottom Halfs Should I Use? Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Onti –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Spin Locks, Semaphores, Reader-Writer Sema	0	:s, 3	scheduler-Related	System Calls							
System Call Implementation, System Call Context. Unit –III 8 Hrs Interrupts and Interrupt Handlers Interrupts, Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer S	-	th	the Kornel ADIs	DOSIV and the	C Library Sycool	10	System Call Handlar				
Unit –III8 HrsInterrupts and Interrupt HandlersInterrupts and Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control.Bottom Halves and Deferring workBottom Halves and Deferring workBottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use?Unit –IV8 HrsMemory ManagementPages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method.The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix FilesystemsUnit –V6 HrsKernel Synchronization MethodsAtomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	Ũ				C Library, Systan	115,	System Can Handler,				
Interrupts and Interrupt Handlers Interrupts, Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	System Can imple	me					8 Hrs				
Interrupts, Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? <u>Unit –IV</u> 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems <u>Unit –V</u> 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	Interrunts and Ir	tor					01115				
Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control. Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	-		-	ves Versus Bottor	n Halves Register	ino	an Interrunt Handler				
Interrupt Control. Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,											
Bottom Halves and Deferring work Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Omit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	U	upt	manaler, meerup	t context, implen	inenting interrupt i	Iun	mens, /proc/menupus,				
Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use? Unit –IV 8 Hrs Memory Management Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Omit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	-	nd T	Deferring work								
Should I Use? 8 Hrs Unit –IV 8 Hrs Memory Management 8 Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems 6 Hrs Kernel Synchronization Methods 6 Hrs Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores, Reader-Writer Semaphores, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphor			8	Halves, Softiras, T	asklets. Work Oue	eues	Which Bottom Half				
Unit –IV8 HrsMemory ManagementPages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method.The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix FilesystemsUnit –V6 HrsKernel Synchronization MethodsAtomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,											
Memory Management Pages, Zones, Getting Pages, kmalloc() , vmalloc() , Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,			Un	it –IV			8 Hrs				
Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,											
Data, Picking an Allocation Method. The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,), vmalloc(), Sla	b Layer, Statically	All	ocating on the Stack,				
The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Sema											
The virtual File System Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems Unit –V 6 Hrs Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Sema					_		-				
Unit –V 6 Hrs Kernel Synchronization Methods 6 Hrs Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores, Rea	2 a.a., 1										
Kernel Synchronization Methods Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	_		em	•							
Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores,	The virtual File S	yst		m Abstraction Lay	er, Unix Filesystem	ıs					
	The virtual File S	yst	Interface, Filesyster	•	er, Unix Filesystem	ns	6 Hrs				
Mutavas Completion Variables BKL: The Big Karnel Lock	The virtual File S Common Filesyste	yst em I	Interface, Filesyster Ur	•	er, Unix Filesystem	is	6 Hrs				
Mutexes, Completion Variables, BKL: The Big Kernel Lock	The virtual File S Common Filesyste Kernel Synchron Atomic Operation	izat s, S	Interface, Filesyster Ur Lion Methods Spin Locks, Reader	nit –V r-Writer Spin Locl	ks, Semaphores, Re						

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and Explore the fundamental concepts of Linux, kernel-level data-structure and
	Linux kernel development environments.
CO2:	Illustrate the use of data structures for process, memory, interrupt management and system calls
	within the Linux kernel
CO3:	Integrate the operating system concepts with relevant design issues associated with Linux
	kernel.
CO4:	Develop kernel modules using Linux Processes and Interrupt handling techniques with process
	synchronization.

Refer	ence Books						
1	Robert Love; Linux Kernel Development; Pearson Education; 3 rd Edition; 2010, ISBN8131758182.						
2	M. Beck et.al ; Linux Kernel Programming; Pearson Education; 3 rd Edition; 2002, ISBN-110-201-71975-4						
3	Daniel Bovet ; Understanding the Linux Kernel, O'Reilly, 3 rd Edition, 2005, ISBN-10: 0596005652.						
4	Michael kerrish; Linux Programming Interface; 1 st Edition, 2010, ISBN-10159327220						

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	1	-	-	-	1	-	1	1
CO2	2	2	3	2	1	-	-	-	2	-	1	1
CO3	2	2	3	2	1	-	-	-	2	-	1	1
CO4	2	3	3	2	1	2	1	1	2	-	1	1

	Semester: VII							
	GAME THEORY							
	(Group F: Professional Elective)							
Cou	rse Code	:	18CS7F2		CIE	:	100 Marks	
Crec	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	••	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning	Ob	jectives: The stude	ents will be able to				
1	Comprehend	l the	e basics of strategic	gaming and mixe	d strategic equilibr	ium		
2	2 Enable students to develop skills on extensive gaming strategies.							
3								
4	Illustrate sor	ne 1	eal time situations.					

Unit-I	8 Hrs
Introduction to Strategic Games: What is game theory?, The theory of rational choi	ce, Interacting
decision makers, Strategic games; Examples: The prisoner's dilemma, Bach or Stravin	nsky, Matching
pennies; Nash equilibrium; Examples of Nash equilibrium; Best response functions; I	Dominated actions;
Cournot's model of oligopoly; Equilibrium in a single population: symmetric games a	
equilibrium	•
Unit – II	9 Hrs
Mixed Strategy Equilibrium: Introduction; Strategic games in which players may	randomize; Mixed
strategy Nash equilibrium; Dominated actions; Pure equilibrium when randomiz	zation is allowed,
Illustration: Expert Diagnosis; Equilibrium in a single population; The formation of	
Extensions; Representing preferences by expected payoffs.	
Unit –III	8 Hrs
Extensive Games: Extensive games with perfect information; Strategies and	outcomes; Nash
equilibrium; Sub game perfect equilibrium; Finding sub game perfect equilibria of fin	ite horizon games:
Backward induction; Illustrations: The ultimatum game, Stackelberg's model of duop	oly.
Unit –IV	7 Hrs
Bayesian Games, Extensive Games with Imperfect Information: Motivational of	examples; General
definitions; Two examples concerning information; Illustrations: Cournot's due	opoly game with
imperfect information, Providing a public good; Auctions: Auctions with an arbitration	ary distribution of
valuations; Extensive games with imperfect information; Strategies.	
Unit –V	7 Hrs
Competitive and Iterated Games, Bargaining: Strictly Competitive Gam	nes, Evolutionary
Equilibrium: Strictly competitive games and maximization; Case Study. Repeated	games: The main
Equinorium. Survey competitive games and maximization, Case Study. Repeated	Bannest The mann
idea; Preferences; Repeated games; Finitely and infinitely repeated Prisoner's dilemm	0
	na; Strategies in an
idea; Preferences; Repeated games; Finitely and infinitely repeated Prisoner's dilemm	na; Strategies in an

Course (Course Outcomes: After completing the course, the students will be able to						
CO1:	Interpret the basics of strategic gaming and extensive games.						
CO2:	Analyze gaming strategies on real-time incidence.						
CO3:	Designing models of gaming on real-time incidence.						
CO4:	Apply game theory in Economics, Political Science and Corporate world.						

Refer	ence Books
1	An Introduction to Game Theory, Martin Osborne, Oxford University Press, First Indian Edition, 2009, 7 th impression, ISBN – 0195128958.
2	Analysis of Conflict Game Theory, Roger B. Myerson, Re-print Edition, 2008, Harvard University Press, ISBN – 978-0674341166.
3	Introduction to Operations Research: Concepts and Cases, Frederick S. Hillier and Gerald J. Lieberman, 9 th Edition; 2010, Tata McGraw Hill, ISBN – 0073376299.
4	An Introduction to Game Theory, Joel Watson; Strategy, 2 nd Edition, 2007, W.W. Norton &Company, ISBN – 9780393929348.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	1	-	1	-	2	-	-	-	2
CO2	2	1	2	-	1	-	-	-	-	-	2	2
CO3	-	2	1	2		-	-	-	-	-	-	2
CO4	1	2	2	1	1	2	2	-	2	2	-	2

				of Engineering®							
			INFODMAT	Semester: VII							
				up F: Professional							
Course Code : 18CS7F3 CIE : 100 Marks											
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks				
	Statistics Statistics Statistics										
		· Oh		lents will be able to	SEE Duration	•	5.00 110015				
1	Ŭ l		, ,		er elements in clas	sic	virtualized and cloud				
Ŧ	environment		age architectures	and key data cento	er cicilients in clas	sic,	virtualized and cloud				
2	Understand storage networking technologies such as FC SAN, NAS.										
3				inctions in typical d		nent					
4							archive for managing				
-	fixed conten		j		····F, ··F-·····						
	•										
			ι	J nit-I			06 Hrs				
Stor	age Fundame	enta	ls:								
							rarchy of a computer				
							Access time and Disk				
							d NOR Organization				
							ifferent RAID Levels				
							ions Introduction to				
	•		Ū.	ge, Evolution of sto	rage architecture,	Data	a center infrastructure				
Virtu	alization and	Clo	oud Computing.								
	Systems and			nit — II			10 Hrs				
Journ Tech Bus, Netw Netw Syste	naling Flash iniques: Pollin and PCI Bus vork Attached work Attached em protocol (1	File ng, 1 prot d Sto NFS	e System (JFFS) Interrupt, DMA an tocol, SCSI Bus pr torage: prage (NAS), NAS b),Remote procedu formance issues, in	for SSDs: Wear nd I/O Processors. rotocol and comman S architectures and ure call (RPC),NFS nconsistency	level algorithm, Buses as data tran nds. objectives, NAS F	Gar spoi File	nd Local file system. bage collection. I/O ter: System Bus, I/O Server. Network File FS (Common Internet				
			Ur	nit —III			09 Hrs				
Data Mana Repl site r Stor SNIA virtu	ager based Re ication: Snaps nulti-target, T age Virtualiz A shared sto	Fecle plic shot 'hre atio orage	hnologies: Synchr cation, Hypervisor and Journal based e site triangle. on: e model, Host 1	based replication, replication, Replic	and Array based re cation Topologies: ⁴ rk based, Storage	eplic Thro e ai	yer, Logical Volume cation, Asynchronous ee site cascade, Three nd Controller based sion, De-duplication,				
51012	ige Helling		T T.	nit –IV			08 Hrs				
Stor	age Area Net	WA		mi —1 v							
Fibre conn Conf LUN	e Channel Pr ectivity, Fibro figurations and	oto e Cl d Ti	col Stack, SAN hannel SAN, FC- raffic Managemen	SAN topologies, H nt, SAN Addressing	ardware Compone g ,Zoning and Mul	nts lti-p	FC-SAN ports and of FC-SAN,FC-SAN athing, Trunking and Traffic over Ethernet				

Unit –V

Backup and Recovery:

06 Hrs

Backup and Recovery. Backup and Recovery. Backup methods (Hot, Offline, LAN based, and SAN based)Backup types (Full, Incremental, Differential, Synthetic Application aware),Backup retention policies and Archiving, Network Data Management Protocol (NDMP) Capacity Management: Over provisioning, Trending, De-duplication and compression Performance Management: Latency and Response time, Performance Metrics Storage performance factors, Storage and the Cloud, Cloud storage model Data Durability and Consistency Model.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Explore fundamentals of storage centric paradigm for large Data Centre.									
CO2:	Analyze techniques used for data access and maintenance using different evolving technologies									
	in SAN and NAS.									
CO3:	Realize storage virtualization on different levels and backup/recovery processes.									
CO4:	Evaluate various techniques used in intelligent storage systems.									

Refer	ence Books								
1	Storage Networking-Real World Skills for the CompTIA Storage+ Certification and Beyond by								
1	Nigel Poulton, Publishers, SYBEX a Wiley brand, 2015: ISBN-13 : 978-8126557677								
2	Storage Networks Explained – by Ulf Troppens, Wolfgang Muller-Freidt, Rainer Wolafka, IBM								
2	Storage Software Development, Germany. Publishers: Wiley								
3	Information storage and management- Somasundaram, Gnanasundaram, AlokShrivatsava, 2 nd								
3	Edition, 2015, Wiley publishing ISBN 978-81-265-3750-1.								
1	Storage Networks Explained – Ulf Troppens, Rainer Erkens and Wolfgang Muller, 2012, John								
4	Wiley & Sons, ISBN: 978-81-265-1832-6.								
5	Storage Networks: The Complete Reference - Robert Spalding, 2003, Tata McGraw Hill,								
5	ISBN: 978-007224764.								
	Introduction to Storage Area Networks - Jon Tate, Pall Beck, Hector Hugo, Ibarra								
6	ShanmuganathanKumaravel, Libor Miklas, 9th Edition, December 2017, IBM Redbooks,								
	ISBN-13: 9780738442884.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	-	2	-	-	-	1	2	-	1
CO2	-	2	1	-	2	-	-	-	1	-	-	-
CO3	2	1	2	2	3	-	-	-	2	1	-	1
CO4	-	2	-	2	2	-	-	-		-	-	-

	Semester: VII											
	SOFTWARE DEFINED NETWORKS											
	(Group F: Professional Elective)											
(Common to CS & IS)												
Cou	Course Code		18CS7F4		CIE		100 Marks					
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning	Ob	jectives: The stude	ents will be able to								
1	Explore defi	niti	ons, standards and	protocols for Softw	ware defined Netwo	orks	(SDN).					
2	Understandi	ng S	SDN framework the	rough its constitue	nt elements.							
3	Design SDN	ap	plications using dif	ferent controllers	and network progra	ımm	able switches.					
4	Explore futu	re o	of network program	ming through adv	ances of SDN.							

Unit-I	07 Hrs
Introduction : The Modern Data Center, Traditional Switch Architecture, Autono	mous and Dynamic
Forwarding Tables, Can We Increase the Packet-Forwarding IQ? Open Source Shifts.	and Technological

 Why SDN? Evolution of Switches and Control Planes, Cost, SDN Implications for Research and Innovation, Data Center Needs

 Unit – II

 10 Hrs

Olitt – II	10 1115							
The Genesis of SDN: The Evolution of Networking Technology, Forerunners of SDN, Software								
Defined Networking is Born, Sustaining SDN Interoperability, Legacy Mechanism	ns Evolve Toward							
SDN, Network Virtualization.								

How SDN Works: Fundamental Characteristics of SDN, SDN Operation, SDN Devices, SDN Controller, SDN Applications, Alternate SDN Methods

Unit –III	08 Hrs						
The OpenFlow Specification - OpenFlow Overview, OpenFlow 1.0 and OpenFlow Basics, OpenFlow							
1.1 Additions, OpenFlow 1.2 Additions, OpenFlow 1.3 Additions, OpenFlow Limitations.							
Unit –IV	07 Hrs						

SDN in the Data Center- Data Center Definition, Data Center Demands, Tunneling Technologies for the Data Center, Path Technologies in the Data Center, Ethernet Fabrics in the Data Center, SDN Use Cases in the Data Center, Open SDN versus Overlays in the Data Center, Real-World Data Center Implementations.

SDN in Other Environments - Consistent Policy Configuration, Global Network View, Wide Area Networks, Service Provider and Carrier Networks, Campus Networks, Hospitality Networks, Mobile Networks.

Unit –V07 HrsSDN Applications- Reactive versus Proactive Applications, Reactive SDN Applications, Proactive
SDN Applications, Analyzing Simple SDN Applications, A Simple Reactive Java Application,
Background on Controllers, Using the Floodlight Controller, Using the Open Daylight Controller,
Switch Considerations.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the fundamental definitions, standards and protocols for Software defined Networks									
	(SDN)									
CO2:	Explore network programmability through different components such as network programming									
	switches and controller that develop into SDN framework									
CO3:	Design network programmable applications using SDN frameworks									
CO4:	Analyze the applicability of SDN for future network programmability.									

Reference Books

1	Software Defined Networks: A Comprehensive Approach, by Paul Goransson and Chuck Black, Morgan Kaufmann, June 2014, Print Book ISBN: 9780124166752, eBook ISBN : 9780124166844
2	SDN: Software Defined Networks, An Authoritative Review of Network Programmability Technologies, By Thomas D. Nadeau, Ken Gray Publisher: O'Reilly Media, August 2013, ISBN: 978-1-4493-4230-2, ISBN 10:1-4493-4230-2.
3	Network Innovation through OpenFlow and SDN: Principles and Design, Edited by Fei Hu, CRC Press, ISBN-10: 1466572094, 2014.
4	Software defined networks: Design and Deployment, Particia A. Morreale and James M. Anderson. CRC Press, 1 st edition, December 2014, ISBN: 9781482238631

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	-	-	-	-	-	-	-	-	1
CO2	3	2	2	1	2	-	-	-	-	-	-	1
CO3	3	3	2	2	2	-	-	-	-	-	-	1
CO4	3	3	3	2	2	-	-	-	-	-	-	1

	Semester: VII							
]	INTRODUCTION	N TO OPTIMIZA	TION TECHNIQ	QUE	S	
			(Grou	p F: Professional	l Elective)			
Cou	Course Code:18CS7F5CIE:100 Marks							
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Tota	Total Hours:39LSEE Duration:3.00 Hours							
Cou	rse Learning	Ob	jectives: The stude	ents will be able				
1	To explore the	he c	concepts of optimiz	ation techniques				
2	To learn the	mo	delling frameworks	s for solving proble	ems using optimiza	ation	techniques.	
3	To design an	nd d	evelop optimizatio	n models for real l	ife situations.			
4	To generate	solı	utions using optimi	zation methods for	r a given problem.			
5	To compare	mo	dels developed usir	ng various optimiz	ation techniques			

Unit-I	07 Hrs
Introduction: Optimization Research (OR) Methodology, Definition of OR, Application	tion of OR to
Engineering and Managerial problems, Features of OR models, Limitations of OR.	
Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution	ion Space, Types
of solution - Feasible, Basic Feasible, Degenerate, Solution through Graphical Metho	d. Special cases in
Linear programming.	
Unit – II	09 Hrs
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables. Dua	ality, Dual simplex
method, Revised simplex method: Standard forms for Revised Simplex method	ds, Computational
procedure for standard form, comparison of Simplex method and Revised simplex Me	ethod.
Unit –III	08 Hrs
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solu	tion using North-
West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unba	lanced
Transportation Problem, Degeneracy in Transportation Problems, Variants in Transpo	ortation Problems.
Assignment Problem: Formulation of the Assignment problem, solution meth	od of assignment
problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Pr	roblem (TSP).
Unit –IV	07 Hrs
Queuing Theory: Queuing system and their characteristics, The M/M/I Queuing sy	stem, Steady state
performance analysing of M/M/1 queuing models. Introduction to M/M/C and M/ E_k /1	queuing models.
Unit –V	08 Hrs
Non-Linear Programming Methods: Introduction, The General Non-Linear Programming	ramming Problem,
Graphical solution method, Quadratic Programming, Applications of Quadra	tic Programming,
Stochastic Programming.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explore the various optimization models and their areas of application.								
CO2:	Analyse various models through formulating and solving problems using optimization								
	techniques								
CO3:	Identify and apply the appropriate optimization techniques to solve real world problems								
CO4:	Develop models and create design solutions for engineering systems through optimization								
	techniques.								

Refer	ence Books
1	Taha H A, Operation Research an Introduction, PHI, 8 th Edition, 2009, ISBN: 0130488089.
2	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4 th Edition, 2009, ISBN 13: 978-0-23-063885-3.
3	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9 th Edition, 2012, ISBN 13: 978-0-07-133346-7.
4	Philips, Ravindran and Solberg - Principles of Operations Research – Theory and Practice, John Wiley & Sons (Asia) Pte Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	1	-	1	-	2	1	1	1	2
CO2	2	1	2	1	1	-	-	-	2	-	2	1
CO3	-	2	1	-	2	-	-	-	1	-	-	1
CO4	1	2	2	1	1	2	2	-	2	2	1	2

	Semester: VII								
	CYBER SECURITY FOR INDUSTRY 4.0								
			(Grou	ıp G: Professiona	l Elective)				
Cou	rse Code	:	18CS7G1		CIE	:	100 Marks		
Credits: L:T:P : 3:0:0					SEE	100 Marks			
Tota	Total Hours : 39L SEE Duration : 3.00 Hours								
Cou	rse Learning	Ob	jectives: The stude	ents will be able to					
1	Understand	the	basic concepts of c	yber security and l	Industry 4.0.				
2	Apply the co	once	epts of security at s	ystem and network	k leves.				
3	Demonstrate	th:	e understanding of	of system manage	ement and net wo	ork	management through		
	cryptographic and network security solutions.								
4	Use concept	s of	Threat and Incider	nt management by	forensic investigati	on.			

	<
Unit-I	6 Hrs
Defining Cyberspace and Cybersecurity, The Value of Standards and Best Practice	
Standard of Good Practice for Information Security, The ISO Suite of Information S	
NIST Cybersecurity Framework and Security Documents, The CIS Critical Sec	
Effective Cyber Defense, COBIT 5 for Information Security, Payment Card Indu	stry Data Security
Standard, ITU-T Security Documents, Effective Cybersecurity.	
Unit – II	10 Hrs
Industrial Internet: Security in Manufacturing, PLCs and DCS, Securing the OT	, Network Level:
Potential Security Issues, System Level: Potential Security Issues, Identity Act	cess Management.
Introducing Industry 4.0: Defining Industry 4.0, Why Industry 4.0 and why	now?, Four main
characteristics of Industry 4.0, The Value chain, Industry 4.0 design principles, E	Building Blocks of
Industry 4.0.	
Unit –III	9 Hrs
System Management: Server Configuration, Virtual Servers, Network Storage Syste	ems, Service Level
Agreements, Performance and Capacity, Management, Backup, Change Mar	agement, System
Management Best Practices. Network Communication: Network Management Co	oncepts, Firewalls,
Virtual Private Networks and IP Security, Security Considerations for Netw	ork Management,
Electronic Communications, Network and Communications Best Practices.	-
Unit –IV	8 Hrs
Technical Security Management: Security Architecture, Malware Protection A	ctivities, Malware
Protection Software, Identity and Access Management, Intrusion Detection, Inf	ormation Leakage
Protection, Digital Rights Management, Cryptographic Solutions, Cryptographic	Key Management,
Public Key Infrastructure.	
•	
Unit –V	6 Hrs
Threat and Incident Management: Technical Vulnerability, Management, Securit	y Event Logging,
Security Event Management, Threat Intelligence, Cyber Attack Protection,	
Management Framework, Security Incident Management Process, Emergency	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	To understand the cybersecurity discipline and Industry 4.0						
CO2:	To define security governance, assess risks and manage strategy and tactics						
CO3:	To harden systems across the system development life cycle						
CO4:	To mitigate security risks and attacks using security measures						

Reference Books

INCIUI	
1	"Effective Cybersecurity", William Stallings, Pearson Education, 2019, ISBN-13:978-0-13- 477280-6
2	"Industry 4.0: The Industrial Internet of Things", by Alasdair Gilchrist (Apress)2. 2016, ISBN-13 (pbk): 978-1-4842-2046-7
3	Cyber security: The Essential Body of Knowledge, Dan Shoemaker, Ph.D., William Arthur
5	Conklin, Wm Arthur Conklin, 2012 by cengage learning, ISBN13:978-1-4354-8169-5.
4	James Graham, Richard Howard, Ryan Olson- "Cyber Security Essentials" CRC Press, 2011by
-	Taylor and Francis Group. ISBN13: 978-1-4398-5126-5.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII								
	APPLICATION DELIVERY CONTROLLER AND VIRTUALIZATION								
	(Group G: Professional Elective)								
	(Industry Offered)								
Cour	rse Code	:	18CS7G2		CIE	:	100 Marks		
Credits: L:T:P :		:	3:0:0	:0 SEE		:	100 Marks		
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning	g Obj	jectives: The stu	idents will be able to					
1.	Understand	the	functionalities of	f various network fund	ctions.				
2.	Analyze the	e des	ign issues involv	ved in load balancers,	traffic management.				
3.	3. Introduce students the concept of Application delivery controller.								
4.	4. Illustrate the operation of cloud and virtualization.								

Unit – I	8 Hrs.					
Load balancers: Concepts of L4 load balancing, Managing application delivery using load	balancers,					
L7 Load balancing, Persistence methods, Health monitoring						
ADC: Introduction, Why ADC is needed and a brief introduction, How ADC is different from a						
legacy load balancer, Overview of broadened ADC use cases						
Unit – II	9 Hrs.					
SSL details, SSL offloading and acceleration, Deployment models for Enterprise Apps, Deep Packet						
Inspection, Web Application Firewalls (WAF), Intrusion prevention system (IPS),	Difference					
Between an IPS and WAF, Deployment modes for NSX.						
Unit – III	8Hrs.					
Traffic Management: Core principles of traffic management, Multiprotocol Label Switch	ing, DNS					
and global server load balancing, Content switching, AppQoE, TCP and SSL profiles, Introduction to						
and grobal server roud bulancing, content switching, ripp 202, Ter and SS2 promes, into	duction to					
Optimization and Security.	duction to					
	7Hrs.					
Optimization and Security. Unit – IV	7Hrs.					
Optimization and Security. Unit – IV Virtualization and Cloud: Why virtualizing ADCs is important, Essentials of virtualization	7Hrs. and					
Optimization and Security. Unit – IV	7Hrs. and					
Optimization and Security. Unit – IV Virtualization and Cloud: Why virtualizing ADCs is important, Essentials of virtualization cloud computing, Cloud computing infrastructure,Public clouds like AWS, Azure & Google	7Hrs. and					
Optimization and Security. Unit – IV Virtualization and Cloud: Why virtualizing ADCs is important, Essentials of virtualization cloud computing, Cloud computing infrastructure,Public clouds like AWS, Azure & Google How to deliver Apps through Cloud and virtual data centers. Unit – V	7Hrs. and cloud,					

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Understand and explore the importance of various network functionalities like load balancer,
	offloading.
CO 2:	Identify the components of application delivery controller and its importance
CO 3:	Analyze the operation of internetwork and solve problems related to traffic management.
CO 4:	Investigate the relevance of virtualization and cloud in the present business scenario.

Referen	nce Books:
1.	Rick Roetenberg, Marius Sandbu, "Mastering NetScaler VPX", 2 nd edition, Packt
	Publishing, ISBN: 978-1-78528-898-2
2.	Citrix ADC 13.0, Citrix Product Documentation dated May 28, 2021
3.	Citrix NetScaler Deployment Guide and Citrix whitepapers from Citrix website
4.	Deepak Vohra, "Kubernetes Microservices with Docker", ISBN-13: 978-1-4842-1906-5
5.	Instructor notes

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	-	-	-	1	1	-	1	-	-	
CO2	2	-	-	-	1		-	-	-	1	-	1
CO3	2	-	2	-	1	1	-	-	-	-	1	1
CO4	-	-	-	1	-		-	1	1	-	-	

Semester: VII FUZZY GRAPHS, FUZZY SOFT SETS AND PETRINETS (Group G: Professional Elective) Course Code : 18CS7G3 CIE : 100 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Course Code : 18CS7G3 CIE : 100 Marks Course Code : 100 Marks Sourse Learning Objectives: The students will be able to 1 Learn basic skills of Fuzzy Graph Theory, Fuzzy sets, Fuzzy graphs in Database theory, Fuzzy Decision trees and Network Models using fuzzy graphs. 2 Analyze constructing the fuzzy graphs which gives the student a good insight into various topics like Trees, level cut, chords and eccentricity. 3 Know the Knowledge of different forms of fuzzy graphs, interval-valued fuzzy graphs and intuitionistic fuzzy graphs. Unit-1 8 Hrs ntroduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weak somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, connectivity in Fuzzy Graphs: Path and onnectedness, Connectivity in fuzzy graphs. Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy co ees, fuzzy twigs. Unit - II 9
(Group G: Professional Elective) Course Code : 18CS7G3 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to I Learn basic skills of Fuzzy Graph Theory, Fuzzy sets, Fuzzy graphs in Database theory, Fuzzy Decision trees and Network Models using fuzzy graphs. 2 Analyze constructing the fuzzy graphs which gives the student a good insight into various topics like Trees, level cut, chords and eccentricity.
Course Code : 18CS7G3 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Ordal Hours : 39L SEE Duration : 3:0:0 Hours Course Learning Objectives: The students will be able to : 3:0:0 Hours :
Unit-I SHrs noroduction to Fuzzy Graphs: Fuzzy graphs, competing of a fuzzy graphs, complement of a fuzzy graphs, complement of a fuzzy graphs. 8 Hrs Unit – II 9 Hrs Operations and characterization in fuzzy graphs. 9 Hrs Operations of Fuzzy Graphs: Fuzzy graphs, connectivity, fuzzy graphs, interval graphs. 9 Hrs 0 0 1 Learn basic skills of Fuzzy Graph Theory, Fuzzy sets, Fuzzy graphs in Database theory, Fuzzy Decision trees and Network Models using fuzzy graphs. 3 2 Analyze constructing the fuzzy graphs which gives the student a good insight into various topics like Trees, level cut, chords and eccentricity. 3 3 Know the Knowledge of different forms of fuzzy graphs, interval-valued fuzzy graphs and intuitionistic fuzzy graphs. 4 4 Investigate other forms of fuzzy graphs partial fuzzy sub graphs, fuzzy sub graphs, weak somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, connectivity in Fuzzy Graphs: Path and onnectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy co cees, fuzzy twigs. 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. 8 Hrs operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to I Learn basic skills of Fuzzy Graph Theory, Fuzzy sets, Fuzzy graphs in Database theory, Fuzzy Decision trees and Network Models using fuzzy graphs. I Learn basic skills of Fuzzy Graph Theory, Fuzzy sets, Fuzzy graphs in Database theory, Fuzzy Decision trees and Network Models using fuzzy graphs. 2 Analyze constructing the fuzzy graphs which gives the student a good insight into various topics like Trees, level cut, chords and eccentricity. Interval-valued fuzzy graphs and intuitionistic fuzzy graphs. 3 Know the Knowledge of different forms of fuzzy graphs, interval-valued fuzzy graphs and intuitionistic fuzzy graphs. Investigate other forms of fuzzy graphs like Petri nets. 4 Investigate other forms of fuzzy graphs. Fuzzy graphs. Fuzzy graphs, connectivity in Fuzzy Graphs: Path and onnectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy crees, fuzzy twigs. 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs. Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. 9 Hrs Operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs. Interval valued fuzzy graphs, Fuzzy gra
Course Learning Objectives: The students will be able to 1 Learn basic skills of Fuzzy Graph Theory, Fuzzy sets, Fuzzy graphs in Database theory, Fuzzy Decision trees and Network Models using fuzzy graphs. 2 Analyze constructing the fuzzy graphs which gives the student a good insight into various topics like Trees, level cut, chords and eccentricity. 3 Know the Knowledge of different forms of fuzzy graphs, interval-valued fuzzy graphs and intuitionistic fuzzy graphs. 4 Investigate other forms of fuzzy graphs like Petri nets. 4 Investigate other forms of fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weak somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and connectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy coreces, fuzzy twigs. Unit – II 9 Hrs Operations and characterization in fuzzy graphs : Operations on fuzzy graphs. Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. Unit – III 9 Hrs Operations of Fuzzy Graphs: Fuzzy mode connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory uzzy Decision trees, Network Models using fuzzy graphs.
1 Learn basic skills of Fuzzy Graph Theory, Fuzzy sets, Fuzzy graphs in Database theory, Fuzzy Decision trees and Network Models using fuzzy graphs. 2 Analyze constructing the fuzzy graphs which gives the student a good insight into various topics like Trees, level cut, chords and eccentricity. 3 Know the Knowledge of different forms of fuzzy graphs, interval-valued fuzzy graphs and intuitionistic fuzzy graphs. 4 Investigate other forms of fuzzy graphs like Petri nets. Unit-I 8 Hrs ntroduction to Fuzzy Graphs: Fuzzy graphs, partial fuzzy sub graphs, fuzzy sub graphs, weak somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graph egular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and connectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maxima panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy cores, fuzzy twigs. Unit – II 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. Applications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and croperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory unit – II 8 Hrs
2 Analyze constructing the fuzzy graphs which gives the student a good insight into various topics like Trees, level cut, chords and eccentricity. 3 Know the Knowledge of different forms of fuzzy graphs, interval-valued fuzzy graphs and intuitionistic fuzzy graphs. 4 Investigate other forms of fuzzy graphs like Petri nets. 4 Investigate other forms of fuzzy graphs like Petri nets. 6 Unit-I 8 Hrs ntroduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weak somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graph egular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and connectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy coreces, fuzzy twigs. 9 Unit – II 9 Hrs 0 Unit – II 8 Hrs 0 nut – II 9 Hrs 0 Unit – II 9 Hrs 0 Unit – II 9 Hrs 0 Unit – II 8 Hrs
Unit - II 9 Hrs Operations and characterization in fuzzy graphs: 9 Hrs Unit - II 9 Hrs Operations of Fuzzy Graphs: 9 Hrs Description of the second of the
3 Know the Knowledge of different forms of fuzzy graphs, interval-valued fuzzy graphs and intuitionistic fuzzy graphs. 4 Investigate other forms of fuzzy graphs like Petri nets. 4 Unit-I 8 Hrs ntroduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weak somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graph egular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and connectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy corees, fuzzy twigs. 9 Hrs Dependions and characterization in fuzzy graphs: Operations on fuzzy graphs. 8 Hrs Unit – II 9 Hrs Operations of Fuzzy Graphs: Fuzzy graph and density of fuzzy graph. 8 Hrs Unit –III 9 Hrs Operations of Fuzzy Graphs: Fuzzy graph and density of fuzzy graph. 8 Hrs Unit –III 8 Hrs Operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and coperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory uzzy Decision trees, Network Models using fuzzy graphs.
Investigate other forms of fuzzy graphs like Petri nets. Unit-I 8 Hrs Introduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weak somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graph. egular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and onnectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy crees, fuzzy twigs. Unit – II 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. 8 Hrs Unit –III 9 Hrs Operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory. uzy Decision trees, Network Models using fuzzy graphs.
ntroduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weaksomorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graphegular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path andonnectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximalpanning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy corees, fuzzy twigs.Unit – II9 HrsOperations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph.Unit – II9 HrsOperations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, clusteranning tree analysis, fuzzy intersection equations, Intuitionistic fuzzy graphUnit – II9 HrsOperations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph.Unit – III8 HrsOperations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, clusteranalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory fuzzy Decision trees, Network Models using fuzzy graphs.
ntroduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weaksomorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graphegular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path andonnectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximalpanning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy corees, fuzzy twigs.Unit – II9 HrsOperations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph.Unit – II9 HrsOperations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, clusteranalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and fuzzy graphs.Unit – III8 HrsOperations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, clusteranalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory.uzzy Decision trees, Network Models using fuzzy graphs.
somorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graph egular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and onnectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy cor- rees, fuzzy twigs. <u>Unit – II</u> 9 Hrs Derations and characterization in fuzzy graphs: Operations on fuzzy graphs: union, intersection oin, Cartesian product and composition, fuzzy line graphs, Fuzzy interval graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. <u>Unit –III</u> 8 Hrs Splications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory uzzy Decision trees, Network Models using fuzzy graphs.
egular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and onnectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal panning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy correct, fuzzy twigs. Unit – II 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. 9 Hrs Unit – III 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. 8 Hrs Unit –III 8 Hrs Applications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and cry graphs. Yuzy Decision trees, Network Models using fuzzy graphs.
Operations and characterization in fuzzy graphs: Connectivity, Fuzzy interval graphs: union, intersection, fuzzy graphs and density of fuzzy graphs. 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs: union, intersection, fuzzy graphs, Fuzzy interval graphs, Edge connectivity, ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. 8 Hrs Unit – III 8 Hrs Operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster, nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and fuzzy graphs. Operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster, nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and fuzzy graphs. Supplication trees, Network Models using fuzzy graphs. Supervision fuzzy graphs.
Operations and characterization in fuzzy graphs: Operations on fuzzy graphs: union, intersection of the connectivity, Eccentricity of fuzzy graph and density of fuzzy graphs. 9 Hrs Operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster analysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and fuzzy graphs.
panning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy corrections, fuzzy twigs. Unit – II 9 Hrs Operations and characterization in fuzzy graphs: Operations on fuzzy graphs: union, intersection on, Cartesian product and composition, fuzzy line graphs, Fuzzy interval graphs, Edge connectivity ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. 9 Hrs Unit – III 9 Hrs Operations on fuzzy graphs: Edge connectivity ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. Unit –III 8 Hrs Operations of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory fuzzy Decision trees, Network Models using fuzzy graphs.
Unit – II9 HrsOperations and characterization in fuzzy graphs: Operations on fuzzy graphs: union, intersection poin, Cartesian product and composition, fuzzy line graphs, Fuzzy interval graphs, Edge connectivity ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph.9 HrsUnit –III8 HrsApplications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory fuzzy Decision trees, Network Models using fuzzy graphs.
Decrations and characterization in fuzzy graphs: Operations on fuzzy graphs: union, intersection on, Cartesian product and composition, fuzzy line graphs, Fuzzy interval graphs, Edge connectivity ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. Unit –III 8 Hrs Applications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory fuzzy Decision trees, Network Models using fuzzy graphs.
Din, Cartesian product and composition, fuzzy line graphs, Fuzzy interval graphs, Edge connectivity ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. Unit –III 8 Hrs Applications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory fuzzy Decision trees, Network Models using fuzzy graphs.
ertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph. Unit –III 8 Hrs pplications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory fuzzy Decision trees, Network Models using fuzzy graphs.
Unit –III 8 Hrs Applications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory Yuzzy Decision trees, Network Models using fuzzy graphs.
Applications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory fuzzy Decision trees, Network Models using fuzzy graphs.
nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory uzzy Decision trees, Network Models using fuzzy graphs.
nalysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory uzzy Decision trees, Network Models using fuzzy graphs.
roperties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory uzzy Decision trees, Network Models using fuzzy graphs.
uzzy Decision trees, Network Models using fuzzy graphs.
Unit –IV 7 Hrs
Theory of Fuzzy Soft Relations: Fuzzy Soft set Relations, Operations on Fuzzy Soft Set Relations
roperties of Fuzzy Soft set Relations and Composition of fuzzy Soft Set relation.
ntroduction to Rough sets: Definition of rough set, Approximations, Properties of approximations
Rough membership function, Reduct and core, Attribute dependency, Significance of attributes and
and a second relation, receiver and core, rainbute dependency, significance of autobates and
pproximate reducts
pproximate reducts.
Unit –V 7 Hrs
Unit –V7 HrsPetri nets: Petri nets, Petri nets for Rule – Based Decision making, Introduction to Petri nets, firing

properties.

RV College of Engineering® –	Bengaluru - 59
------------------------------	----------------

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and explore the concepts like fuzzy graph, connectivity, operations, rough sets and							
	Petri nets.							
CO2:	Demonstrate and analyze applications of various methodologies like cluster analysis and its							
	applications by annualizing problems such as neural networks, database theory.							
CO3:	Apply fuzzy graph theory to draw Petri nets to various engineering applications.							
CO4:	Solve real world problems involving emerging technologies and multi-disciplinary tasks.							

Refer	ence Books
1	Fuzzy graphs, Basics Concepts and Applications, S Mathew and M S Sunitha, 2012, Lambert Academic Publishing ISBN:978-3-659-21234-5.
2	Application to Petrinets-Thesis submitted by Bucket YILMAZ for degree of Master of Science-2008.
3	Fuzzy Graphs and Fuzzy Hypergraphs, J. N. Mordeson and P.S. Nair, Physica- Verlag, 2000, ISBN:3-7908-1286-2.
4	Fuzzy Discrete Structures, D.S. Malik and J.N. Mordeson, Physica – Verlag, 2000, ISBN:3790813257.
5	Modern Trends in Fuzzy Graph Theory, Pal, Madhumangal, Samanta, Sovan, Ghori, Ganesh, 2020, ISBN 978-981-15-8803-7
6	Research papers on Rough Sets by Pawlak

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	1	-	1	-	2	-	-	-	2
CO2	2	1	2	-	1	-	-	-	-	-	2	2
CO3	-	2	1	2		-	-	-	-	-	-	2
CO4	1	2	2	1	1	2	2	-	2	2	-	2

	Semester: VII								
	COMPUTER VISION								
			(Grou	p G: Professiona	l Elective)				
Cour	Course Code : 18CS7G4 CIE : 100 Marks								
Cred	lits: L:T:P : 3:0:0 SEE		SEE	:	100 Marks				
Tota	Total Hours : 39L SEE Duration : 3.00 Hours						3.00 Hours		
Cour	rse Learning	Ob	jectives: The stude	ents will be able to					
1	Acquire kno	owl	edge on problem so	olving skills in Cor	nputer Vision.				
2	Select app	rop	riate techniques	or methods for	Filtering, Segme	ntir	ng, Recognition and		
	classification	1.							
3	3 Describe basic feature and applications of Computer Vision in real time applications.								
4	4 Develop skills to work or carry out task on multi-disciplinary domains / projects.								
	-		•				-		

Unit-I	07 Hrs					
Geometric Camera Models:						
Image Formation: Pinhole Perspective, Weak perspective, Cameras with lenses; G	eometric Camera					
Calibration: Linear approach to camera calibration, Non- Linear approach to camera calibration;						
Light and Shading: Modeling Pixel brightness: Reflection at surfaces, Sources	and their effects,					
Lambertineaand Spectacular model, Area sources; Inferences from shading: Radio	ometric calibration					
and high dynamic range images, The Shape of Specularities , Inferring Lightness	and Illumination,					
Photometric Stereo: Shape from Multiple Shaded Images.						
Unit – II	08 Hrs					
Early vision:						
Linear Filters:Linear Filters and Convolution; Shift Invariant Linear Systems: Dis	crete Convolution,					
Continuous Convolution, Edge Effects in Discrete Convolution; Spatial Frequ	ency and Fourier					
Transforms: Fourier Transforms; Sampling and Aliasing, Filters as Templates;						
Stereopsis: Binocular Camera Geometry and the Epipolar constraint- Epipolar geom	netry, The essential					
matrix, The fundamental matrix; Binocular reconstruction: Image rectification.						
Unit –III	08 Hrs					
Mid level Vision: Segmentation by clustering, Human Vision: Grouping and	Gestalt; Important					
applications; Image Segmentations by Clustering pixels; Segmentation, Cluster	ring, and Graphs.					
Grouping and Model Fitting: The Hough transform, Fitting lines and planes; Fitting	g Curved Structure;					
Robustness; Fitting using Probabilistic models; Motion Segmentation by Parameter es	stimation.					
Tracking: Simple Tracking strategies; Tracking using Matching; Tracking Linear	dynamics models					
with Kalman filters.						
Unit –IV	08 Hrs					
High level Vision: Registration; Model based Vision: Registering Rigid Ob	jects; Registering					
deformable objects.						
Classifying images: Building good Image features; Classifying Images of Sing	le Objects; Image					
Classification in practice.						
Unit –V	08 Hrs					
Detecting Objects in Images: Sliding Window method; Detecting Deformable Ob	jects; The State of					
the Art of Detection						
Object recognition: Basics of Object Recognition: Object Recognition System, O						
Categorization, Selection; Feature questions; Geometrical questions; Semantic question	ons.					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explore and acquire knowledge on fundamentals of Computer Vision concepts.							
CO2:	Analyze and interpret the inherent difficulties encountered in Computer Vision.							
CO3:	Apply Computer Vision techniques to solve problems in the visible world around us.							
CO4:	Investigate and draw inferences by processing Image in real time applications.							

Refer	ence Books
1	Computer Vision: A Modern Approach, David Forsyth and Jean Ponce, 2 nd edition, 2015,
	Pearson Education India, ISBN-10: 9332550115, ISBN-13 : 978-9332550117
2	Computer Vision: Algorithms and Applications, Richard Szeliski, Springer Verlag, 2013
	Edition, ISBN-13: 978-1848829343, ebook :http://szeliski.org/Book/
3	Digital Image Processing, Rafael C. Gonzalez, Richard E. Woods, 4 th Edition; 2018, Pearson
	Education, ISBN-10: 9353062985, ISBN-13: 978-9353062989
4	Introductory Computer Vision, Imaging Techniques and Solutions, Adrian Low, 2nd Edition,
	2010, BS Publications, ISBN-13 9788178001977

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	1	1	1	-	-	-	-	1
CO2	-	2	-	1	1	1	1	-	-	-	-	2
CO3	1	1	1	1	1	1	-	1	-	-	-	2
CO4	2	1	-	3	2	1	1	1	1	1	-	2

	Semester: VII							
	DEEP LEARNING							
			(Grou	ip G: Professional	l Elective)			
				(Common to CS &	& IS)			
Cou	rse Code	:	18IS7G5		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours		:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning	Ob	jectives: The stude	ents will be able to				
1	Understand	the	basic concepts of n	eural networks and	d its variants			
2	Use concept	s of	Convolutional Ne	ural Networks to d	esign computer vis	ion	applications	
3								
4								
5	Explore lear	ning	g algorithms for de	ploying various de	eep learning model	S		

Unit-I	08 Hrs
Neural Networks: What is a neural network, Models of a Neuron, Activation for	unctions, Network
Architectures, Knowledge representation, Learning Process.	
Deep Feedforward Networks: Multilayer Perceptron, Example: Learning XOF	R, Gradient-Based
Learning, Hidden Units, Architecture Design, Back-Propagation Algorithm	
Unit – II	08 Hrs
Convolutional Networks: Convolution Operation, Motivation, Pooling, Convolution	and Pooling as an
Infinitely Strong Prior, Variants of the basic convolution function, Structured Ou	tputs, Data types,
Efficient Convolution Algorithms, Random or Unsupervised features, The Neuros	cientific basis for
convolutional networks.	
Unit –III	08 Hrs
Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational	Graphs, Recurrent
Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence A	rchitectures, Deep
Recurrent Networks, Recursive Neural Networks, Echo State Networks, The Long Sh	ort-Term Memory
and Other Gated RNNs	
Unit –IV	08 Hrs
Autoencoders: Undercomplete Autoencoders, Regularized Autoencoders, Repres	sentational Power,
Layer Size and Depth, Stochastic Encoders and Decoders, Denoising Autoencoders,	Contractive Auto
encoders, Applications of Autoencoders, Variational Autoencoders	
Unit –V	07 Hrs
Pretrained models: Lenet, AlexNet, VGGNet, Densenet, Resnet, Transfer Learning	g, Improving Deep
Neural Networks- Hyperparameter Tuning, Regularization and Optimization. D	ata Augmentation
techniques.	
Other Architectures: Generative Adversarial Networks, Reinforcement Learning.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain the concepts of neural network, its applications and various learning models						
CO2:	Apply the knowledge of neural networks in various deep learning architecture (Convnet,						
	Recurrent and Nets and Auto-encoder models)						
CO3:	Analyze different deep Network Architectures, learning tasks for various applications						
CO4:	Evaluate and compare the solutions by various deep learning approaches for a given problem						

Refer	ence Books
1	Deep Learning (Adaptive Computation and Machine Learning Series), Ian Good Fellow,
1	Yoshua Bengio and Aaron Courville, MIT Press (3 January 2017), ISBN-13: 978-0262035613.
2	Neural Networks and Learning Machines, Simon S. Haykin, 3rd Edition 2010, PHI Learning,
2	ISBN- 9789332586253, 933258625X.
2	Introduction to Artificial Neural Networks, Gunjan Goswami, S.K. Kataria & Sons; 2012
3	Edition, ISBN-13: 978-9350142967.
1	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms,
4	Nikhil Buduma, by O'Reilly Publications, 2016 Edition, ISBN-13: 978-1491925614.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	1	-	-	-	-	1	-	-
CO2	3	2	2	2	2	2	-	-	-	1	-	-
CO3	3	3	2	2	3	2	2	-	2	1	-	1
CO4	3	3	3	3	3	2	2	-	2	1	-	1

Semester: VII								
UNMANNED AERIAL VEHICLES								
	(Group H: Global Elective)							
Course Code	:	18G7H01	CIE	:	100 Marks			
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks			
Hours	:	39L	SEE Duration:	:	3Hrs			

1	Get an overview of the history of UAV systems
2	Understand the importance of aerodynamics, propulsion, structures and avionics in the design of UAV
3	Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion systems, integration with manned systems
4	Comprehend the importance of guidance and navigation of a UAV

	.
Unit-I	07 Hrs
Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unmann	
systems, Overview of UAV Systems-System Composition, Classification of UAVs based on s	ize, range
and endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.	
Unit – II	08 Hrs
Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characteristic	ics, Basic
aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flapping	ng wings,
Airframe configurations-HTOL, VTOL and Hybrids.	
Unit -III	08 Hrs
Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV (general intr	
Selection criteria for structure, Types of structural elements used in UAV their signific	cance and
characteristics.	
UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Pisto	n, Rotary,
Gas turbine engines, electric or battery powered UAVs.	•
Unit -IV	08 Hrs
Payloads of UAVs : Non-dispensable Payloads- Electro-optic Payload Systems, Radar Imaging	Payloads,
Electronic Warfare Payloads, Dispensable Payloads and other payloads.	
Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi	
Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO Launch	
UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute Recovery, VTC	DL UAVs,
Mid-Air Retrieval, Shipboard Recovery.	1
Unit -V	08 Hrs
UAV Navigation and Guidance Systems	
Navigation, Dead Reckoning, Inertial, Radio Navigation, Satellite-Way point Navigation, UAV	
Types of guidance, UAV communication systems, Ground control station, Telemetry, UAS future	<u>. </u>
Course Outcomes:	
At the end of this course the student will be able to :	
CO1 Appraise the evolution of UAVs and understand the current potential benefits of UAVs	
CO2 Apply the principles of Aerospace Engineering in design and development of UAVs	

CO3	Determine	and e	valuate the	performan	ice of UA	V design	ed for var	ious Miss	ions and a	pplications
CO4	Appreciate	the g	uidance and	l navigatic	on systems	s for enal	oling the v	versatility	of UAV s	ystems

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	2
CO3	1		3	3	-	-	-	-	-	-	-	2
CO4	3	3	3	3	-	2	1	2	-	-	-	2

				Semester: VII				
				BIOINFORMAT				
			(Group H: Global El	ective)			
Cou	rse Code	:	18G7H02		CIE	:	100 Marks	
Cre	dits: L:T:P	:	3:0:0:0		SEE	:	100 Marks	
Tota	al Hours	:	39 L		SEE Duration	:	3.00 Hours	
Cou	rse Learning C)bj	ectives: The student	s will be able to				
1	Acquire the k	nov	vledge of biological	database and its role	in insilico research			
2				behind the biologica				ogramming
				ering algorithms alon	<u> </u>			
3			·	r the prediction of li				
				nics of macromolecul				
4		otati	on of unknown D	NA and Protein sequ	iences and explore	e the	principles of	molecula
_	modelling		1.1	-1	· · · · · · · · · · · · · · · · · · ·		. 1	
5	development	nov	viedge towards an	alyzing the sequent	ces using program	nmin	g languages	and Drug
	development							
				Unit-I				08 Hrs
Bior	nolecules and I	[ntr	oduction to Bioinf					00 1115
				Types and Functions	s of Carbohydrates	s, Lip	oids, Nucleic	Acids and
				, Genes and Genome				
				dicine. Biological dat				
			ome, Microarray.	-	-		-	
				Unit – II				08 Hrs
-	•		• •	of sequence alignment		-	•	
				s Needleman & Wur				
				- Scoring matrices –				
				xt Generation Seque				
				y, Forms of Tree R			netic Tree C	onstruction
Met	hods - Distance	-Ва	sed, Character-Base	d Methods and Phylo	genetic Tree evalua	ation		0.0 11
Due	listing and st		turnal hisinformest	Unit –III		::4:	hours	09 Hrs
				ics: Gene prediction				
				ection of functional s sics, structure visual				
				sequence, Protein ide	-			
	diction of second		Ű,	sequence, i roteni lue	finity based on com	iposn	Ion. Suuctuit	prediction
-110		liua	ly structure.	Unit –IV				07 Hrs
PER	L. Introduction	n to	Perl writing and e	xecuting a Perl progr	ram Operators Va	riabl	es and Specia	
			-	ass and object, Poly	-		-	
				array. Regular Exp				
			ers and Modifiers.	may, regular Dap		, 20	Ponento or	
				Unit –V				07 Hrs
Biol	PERL: Introdu	ctic	n to BioPerl, Biol	Perl Modules, Appli	cations of BioPerl	1 – 1	Sequence ret	
				online Database, Inc			·	
				s - Pair wise and Mu				
	m 4 1.				· ·	-	. 0	

FASTA results.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Demonstrate the knowledge of retrieval of the biological data in the essential formats and its analysis.							
CO2:	Analyse the gene, protein and RNA data to find the degree of similarities and identifying the patterns							
CO3:	Apply the drug designing methods for screening and inventing the new targets and drugs							
CO4 :	Predict the structure of a compound and design the molecule.							

Refere	ence Books
1.	Essential Bioinformatics, Jin Xiong, 2006, Cambridge University Press, ISBN: 978-05-216-00828.
2.	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-	-	-	1	-	1		
CO3	3	3	2	2	-	-	-	-	-	1	-	1		
CO4	3	3	3	3	-	-	-	-	-	1	-	1		

Semester: VII											
INDUSTRIAL SAFETY AND RISK MANAGEMENT											
(Group H: Global Elective)											
Course Code	:	: 18G7H03 CIE		CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total Hours	:	39L	SEE Duration			3.00 Hours					
Course Learnin	g Ol	bjectives: The s	students will be	able to							
1 Select appr	opri	ate risk assessm	ent techniques.								
2 Analyze pu	2 Analyze public and individual perception of risk.										
3 Relate safe	ty, e	rgonomics and	human factors.								
1 Communication	iale a	accompant in m	a a a a a in duatria								

4 Carry out risk assessment in process industries

Unit-I	08 Hrs
Introduction: Introduction to industrial safety engineering, major industrial acc	idents, safety
and health issues, key concepts and terminologies, Hazard theory, Hazard tria	ngle, Hazard
actuation, Actuation transition, Causal factors, Hazard recognition.	
Unit – II	08 Hrs
Risk assessment and control: Individual and societal risks, Risk asses	ssment, Risk
perception, Acceptable risk, ALARP, Prevention through design.	
Hazard Identification Methods: Preliminary Hazard List (PHL): Overview, 1	methodology,
worksheets, case study. Preliminary Hazard Analysis (PHA): Overview,	methodology,
worksheets, risk index, example.	
Unit –III	08 Hrs
Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Proces	s parameters,
Guide words, HAZOP matrix, Procedure, Example. Failure Modes and Effe	ects Analysis
(FMEA): Introduction, system breakdown concept, methodology, example.	
Unit –IV	08 Hrs
Application of Hazard Identification Techniques: Case of pressure t	ank, system
breakdown structure, safety ontology, Accident paths, HAZOP application,	risk adjusted
discounted rate method, probability distribution, Hiller's model	
Unit –V	07 Hrs
Safety in process industries and case studies: Personnel Protection Equipment	(PPE): Safety
glasses, face shields, welding helmets, absorptive lenses, hard hats, types of ha	-
of foot PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nu	• • 1
Chemical plant explosion and fire.	,

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Recall risk assessment techniques used in process industry.							
CO2:	Interpret the various risk assessment tools.							
CO3:	Use hazard identification tools for safety management.							
CO4:	Analyze tools and safety procedures for protection in process industries.							

Refer	rence Books
1	Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina, Lulu publication, ISBN:1291187235
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.

4	Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S
4	Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

							1 0					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	-	-	1	-	1	-

CO-PO Mapping

			0	Semester: VI	Denguiara - 57								
			NA/	EB PROGRAM									
	(Group H: Global Elective)												
~	~ .				-	-	10075						
	rse Code	:	18G7H04		CIE	:	100 Marks						
Credits: L:T:P : 3:0:0 SEE : 100 Marks													
Total Hours : 39 L SEE Duration : 3.00 Hours													
Course Learning Objectives: The students will be able to													
	1 Understand the standard structure of HTML/XHTML and its differences.												
	2 Adapt HTML and CSS syntax & semantics to build web pages.												
3	3 Learn the definitions and syntax of different web programming tools such as JavaScript, XML and Ajax to design web pages.												
4			<u> </u>	client side serv	ar sida avacutabla	11/6	eb applications using						
4	U U		jues such as CSS, J			we	to applications using						
	different teel	mit	lues such as CDD, 5		па г цих.								
				Unit-I			07 Hrs						
Intro	oduction to W	Veb.	HTML and XHT				0, 115						
					and Web Servers	s. U	RLs, MIME, HTTP,						
			-				structure, Basic text						
mark	tup, Images, H	Iype	ertext Links, Lists,	Tables, Forms, Fra	ames.								
HTN	AL 5:Core H	ГMI	L attributes, headin	gs, paragraphs an	d breaks, quotation	is, p	reformatted text, lists,						
							; The video Element;						
Orga	nization Elem	nents	s; The time Elemen	*	ences between HT	ML							
				Unit – II			08 Hrs						
	(Cascading S	•			~		-						
							Property value forms,						
					, The box model,	Bac	ckground images, The						
-		-	s, Conflict resolutio	on.									
	Basics of Jav		-	on and IavaScript.	General syntactic	har	acteristics; Primitives,						
					put; Control statem								
open	ations, and exp	0105		Unit –III	put, control staten		09 Hrs						
Java	Script (conti	nne					07 1115						
				vs: Functions: C	onstructor: Pattern	n m	atching using regular						
•	essions; Errors				,								
			L Documents:										
				The Document O	bject Model; Elem	nent	access in JavaScript;						
Even	its and event	han	dling; Handling ev	ents from the Boo	ly elements, Butto	n el	ements, Text box and						
Pass	word elements	s; Tl	he DOM 2 event m	odel; The navigate	or object.								
				Unit –IV			08 Hrs						
•			with JavaScript:										
		-		-	-		s; Element visibility;						
							nouse cursor; Reacting						
				nents; Dragging ar	nd dropping elemen	its.							
	oduction to P			DUD: Comoral accord	tootio chamatanisti	ac. 1	Drimitizzo Onantian						
-				-			Primitives, Operations						
			ssion Tracking.	statements, Alla	ys, Functions, P	alle	rn Matching; Form						
114110	mig,COOKIES,	, 55	ssion macking.	Unit –V			07 Hrs						
XM	Introduction	<u>. s</u>	vntax. Document		nent Type definiti	ione	; Namespaces; XML						
			-				S; XSLT style sheets.						
							t; The Request Phase;						
-		-	•				., The Request Thuse,						
1110	The Response Document; The Receiver Phase.												

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the basic syntax and semantics of HTML/XHTML.							
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style							
	Sheet.							
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and utilize the							
	concepts of XML & Ajax to design dynamic web pages.							
CO4:	Develop web based applications using PHP, XML and Ajax.							

Reference Books

1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013, ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	-	2	-	1	1	1	-	-	-	-	1		
CO2	-	-	2	-	1	1	-	-	-	-	-	-		
CO3	-	-	-	-	2	-	-	-	2	-	-	2		
CO4	-	-	3	-	2	-	-	-	2	-	-	2		

				Semester: VII							
SOLID WASTE MANAGEMENT AND STATUTORY RULES											
(Group H: Global Elective)											
Cou	Course Code:18G7H05CIE:100 Marks										
Crec	Credits: L:T:P : 3:0:0 SEE : 100 Marks										
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours				
Cou	rse Learning ()bje	ctives: The students	s will be able to							
1	Impart the kr	low	ledge of present me	ethods of solid waste	e management syst	em	and to analyze the				
	drawbacks.										
2	Understand va	ario	us waste manageme	nt statutory rules for t	he present system.						
3	Analyze diffe	rent	elements of solid v	vaste management and	d design and develo	op re	ecycling options for				
	biodegradabl	le w	aste by composting.								
4	Identify haza systems.	rdo	us waste, e-waste,	plastic waste and b	io medical waste	and	their management				
				Unit-I			08 Hrs				
pyro funct Sour	lysis, composti tional elements	ng, of s	sanitary landfill. Sc solid waste managen	l methods. Merits and ope and importance of	of solid waste mana	gen	nping, incineration, nent. Definition and				
		nspo	ortation of municip	oal solid waste: Colle	ction of solid waste	e- se	rvices and systems				

Collection and transportation of municipal solid waste: Collection of solid waste- services and systems, Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to collection system.

Unit – II	08 Hrs
Composting Aerobic and anaerobic composting - process description, process mic	crobiology,
Vermicomposting, Site visit to compost plant, Numerical problems.	
Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction	n occurring
in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site visit to land	ndfill site.
Unit –III	08 Hrs
Hazardous waste management: Definitions, Identification of hazardous waste, Classic	fication of
hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Haza	ardous and
other wastes (Management and Transboundary Movement) Rules, 2016 with amendments. S	ite visit to

 bit
 08 Hrs

 Bio medical waste management:
 Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Biomedical waste management (Management & Handling Rules) 2016 with amendments. Site visit to hospital to observe biomedical waste collection and transportation system and visit to biomedical waste incineration plant.

Unit –V

07 Hrs

E-waste management: Definition, Components, Materials used in manufacturing electronic goads, Recycling and recovery integrated approach. e-waste (Management) Rules 2016 and amendments. Site visit to e- waste treatment plant.

Plastic waste management: Manufacturing of plastic with norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with amendments.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the current solid waste management system and statutory rules.								
CO2:	Analyse drawbacks in the present system and provide recycling and disposal options for each type								
	of waste in compliance to rules.								
CO3:	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management								
	system.								
CO4:	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal								
	waste management as per the rules laid by Ministry of Environment, Forest and Climate change.								

RV College of Engineering [®] – Bengaluru - 5	9
--	---

Refere	ence Books :
1	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993,
1	McGraw hill publication. ISBN 978-0070632370
	Electronic waste management, R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC
2	Publication, ISBN 9780854041121
3	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change
3	Notification, New Delhi, 8 th April 2016
4	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016, Ministry
-	of Environment, Forest and Climate Change Notification, New Delhi, 04 th April, 2016.
5	Biomedical waste management (Management & Handling Rules) 2016, Ministry of
5	Environment & Forest Notification, New Delhi, amendment on 28 th March, 2016.
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change
U	Notification, New Delhi, 23 rd March, 2016.
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of
/	Environment, Forest and Climate Change Notification, New Delhi, 27th March, 2018

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	2	1	-	1	-	2
CO2	2	2	2	2	-	1	2	1	-	-	-	-
CO3	1	-	2	2	-	1	2	1	-	1	-	-
CO4	2	-	-	3	-	1	2	1	-	-	-	1

'ourse Code	T		Semester: VII							
Course Code	L	MAGE PRO	CESSING AND MACHINE LE	ARNING						
Course Code	(Group H: Global Elective)									
Course Code:18G7H06CIE:100 Marks										
Credits: L:T:P	:	3:0:0	SI		:	100 Marks				
Cotal Hours	:	40 L		EE Duration	:	3.00 Hours				
	g Obie		udents will be able to							
			and techniques in image processi	ng and Machi	ne I	earning				
			lyze image processing techniques							
3 To become	e famili	ar with regres	sion methods, classification meth	ods, clustering	g me	ethods.				
			and Machine Learning knowledg	e by designing	g an	d implementing				
algorithms	to solv	e practical pr	oblems							
	•	•	Unit-I			08 Hrs				
ntroduction to		- 0		· c		с ·				
			Applications of image process							
			s in image processing, Image for hage resolution, PPI and DPI, Bi							
•••			or spaces, Bezier curve, Ellipsoid			•				
			essing Advanced image concepts.			on, Examples of				
bolling and sin	inking i	in mage proc	Unit – II			08 Hrs				
asics of Pytho	- Sciki	t image & A	Ivanced Image Processing using	n Open CV.		00 1113				
•		0	data types, data structures,	-	w	& conditional				
			an image, Image resolution, g							
tructural simila	0		an mage, mage resolution, g							
			Unit –III			08 Hrs				
dvanced Imag	e proce	essing using (
0	-	0 0	Contrast and Brightness Addi	ng Text to Ir	mag	ges Smoothing				
-	-		ilter,Bilateral Filter,Changing	-	_					
0			radients, Performing Histogram	-		<i>U</i> / <i>C</i>				
	U,	<u> </u>	Unit –IV	1		08 Hrs				
mage Processir	g using	g Machine L								
			orithm, Image registration us	sing the RAI	NS	AC algorithm.				
			al Neural Networks, Image cla							
			ng Approaches.		υ					
	8		Unit –V			08 Hrs				
	CASE	5								
leal time use (Real time use CASES									
	Exhaustive vs. Stochastic Search, Shapes, Contours, and Appearance Models. Mean-shift									
Exhaustive vs.		tracking; Contour-based models, finding palm lines, Face Detection / Recognition, Tracking								
Exhaustive vs. racking; Conto			· · · · · · ·	1						
Exhaustive vs.			· · · · · · ·	1						

CO1:	Gain knowledge about basic concepts of Image Processing
CO2:	Identify machine learning techniques suitable for a given problem
CO3:	Write programs for specific applications in image processing
CO4:	Apply different techniques for various applications using machine learning techniques.

Referen	
	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson
I	Education, 3 rd Edition, ISBN 978-81-317-2695-2.
H	Practical Machine Learning and Image Processing: For Facial Recognition, Object
2 I	Detection, and Pattern Recognition Using Python, Himanshu Singh, 1 st Edition, Apress,
I	ISBN:978-1-4842-4149-3
2 H	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer,
3	2008, ISBN: 978-0387-31073-2
	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition,
4 F	Prentice Hall India 2004, ISBN: 978-0136085928

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for assignment is 20. The total marks of CIE are 100.

Total CIE is 30(Q)+50(T)+20(EL)=100Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO	PO2	PO3	PO4	PO	PO	PO	PO	PO	PO1	PO1	PO1
	1				5	6	7	8	9	0	1	2
CO1	3	3	2	3	2	-	-	-	-	-	-	1
CO2	-	3	-	1	2	-	-	1	2	-	-	1
CO3	3	-	2	1	3	-	-	1	1	1	-	1
CO4	3	3	3	3	2	-	-	1	1	1	-	1

	Semester: VII								
	RENEWABLE ENERGYSOURCES AND STORAGE SYSTEM (Group H: Global Elective)								
Co	ourse Code	:	18G7H07		CIE	:	100 Marks		
Credits: L:T:P :		:	3:0:0		SEE	:	100 Marks		
Total Hours : 3			39L		SEE Duration	:	3.00 Hours		
Co	ourse Learning	Ob	jectives: The stuc	lents will be able to					
1	Understand Co energy convers		•	ional energy sources a	and allied technol	ogy	required for		
2	Analyse the Ba	asic	s of battery working	ng and sizing of batter	y for a given appl	icat	tion.		
3	Design aspects	s of	solar and wind po	wer systems.					
4	Energy storage	e tec	hniques						

UNIT-I	08 Hrs
Basics of Renewable Energy: Energy balance of the earth, Solar radiation, v	vind energy,
geothermal energy.	
Geothermal Energy – principles, technical description, heat supply by hydro-geothern	
heat supply by deep wells, geothermal generation, economic and environmental analysis	
Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification	· •
Gasification, Gasifier and Their Classifications, Updraft, Downdraft and Cross-dra	aft Gasifiers,
Applications of Biomass Gasifier.	
Tidal Energy: Introduction, Tidal Energy Resource, Tidal Power Basin, Adv	antages and
Disadvantages of Tidal Power.	
Unit – II	08 Hrs
Photo Voltaic Systems: PV Cell, Module and array; Equivalent electrical circuit, Oper	n –circuit
voltage and short circuit current, I-V and P-V curves, Array design, Peak power Tracki	
Components,	
Grid Connected Solar PV Power System: Introduction to grid connected	PV system,
Configuration of Grid-connected solar PV system, Components of Grid -connect	
systems, Grid connected PV system Design for small power Applications, Grid- co	onnected PV
system design for power plants.	
Unit -III	08 Hrs
	Wind power
installations in the world.	
Wind Speed and Energy:Speed and Power Relations,Power Extracted from the	
Swept Area, Air Density, Global Wind Patterns, Wind Speed Distribution, Weibull	
Distribution, Mode and Mean Speeds, Root Mean Cube Speed, Mode, Mean, and R	
Energy Distribution, Digital Data Processing, Effect of Hub Height, Importance of R	eliable Data,
Wind Speed Prediction, Wind Energy Resource Maps.	. 1 75 1.
Wind Power Systems: System Components, Tower, Turbine, Blades, Speed Com	trol, Turbine
Rating, Power vs Speed and TSR.	
Unit –IV	08 Hrs
Wind Power Systems: Maximum Energy Capture, Maximum Power Operation C	Constant-TSR
Scheme, Peak-Power-Tracking scheme, System-Design Trade-offs, Turbine Towers	
Number of Blades, Rotor Upwind or Downwind, Horizontal vs. Vertical Axis.	
System Control Requirements: Speed Control, Rate Control.	
Environmental Aspects: Audible Noise, Electromagnetic Interference (EMI), Effects	on Birds.

Unit –V							
Energy storage							
Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charge	ing, Battery						

management

Flywheels: Energy Relations, Components, Benefits over battery

Other Storage devices: Superconducting magnetic energy storage, Compressed air, Pumped storage hydropower, Hydrogen Energy storage

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	1: Understand the concepts of power generation from various renewable sources.							
CO2:	Design the Size of the battery required for solar PV applications.							
CO3:	Design main components of solar and wind power systems.							
CO4:	Execute projects in renewable power generation.							

Refere	nce Books
1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt, Wolfgang Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947- 3
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), PHI, Learning private limited New Delhi ISBN: 978-81-203-4711-3
3	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition. CRC Group ,Taylor and Francis group, New Delhi ,ISBN 978-0-8493-1570-1
4	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN 978-0-12-812902-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	-	-	-	-	-	1	-	1
CO2	3	3	2	1	1	2	-	-	-	1	-	1
CO3	3	2	2	2	2	2	2	1	-	1	-	1
CO4	3	3	3	3	2	3	1	1	1	3	1	3

				Semester: VII			
			ME	MS AND APPLICATIONS			
			()	Group H: Global Elective)			
Course Code		:	18G7H08	C	IE	••	100 Marks
Cı	redits: L:T:P	:	3:0:0	SI	EE	:	100 Marks
Total Hours		Hours : 39 L		SI	EE Duration	:	3.00 Hours
Co	ourse Learning	Ob	jectives: The st	udents will be able to			
1	Understand the	ruc	liments of Mici	o fabrication techniques.			
2	Identify and ass	soci	ate the various	sensors and actuators to appli	ications.		
3	3 Analyze different materials used for MEMS.						
4	Design applicat	ion	s of MEMS to	disciplines.			

Unit-I	06 Hrs
Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS an	d micro
system products, Evolution of micro fabrication, Microsystems and microeled	ctronics,
Multidisciplinary nature of Microsystems, Design and manufacture, Applications of Micro	systems
in automotive, healthcare, aerospace and other industries.	•
Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: A	coustic,
Chemical, Optical, Pressure, Thermal.	
Unit – II	09 Hrs
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric cryst	als and
electrostatic forces. MEMS with micro actuators: Microgrippers, micromotors, microval	ves and
micropumps, microaccelerometers, microfluidics.	
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Sca	aling in
Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanics.	
Unit –III	09 Hrs
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate m	naterials,
Silicon as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezo	pelectric
Crystals, Polymers and packaging materials. Three level of Microsystem packaging, D	ie level
packaging, Device level packaging, System level packaging. Interfaces in microsystem pac	ckaging.
Essential packaging technologies: die preparation, Surface bonding, Wire bonding, Seal	ing, 3D
packaging.	
Unit –IV	08 Hrs
Microsystem Fabrication Process: Introduction to microsystems, Photolithograph	hy, Ion
Implantation, Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition by Epitaxy, Etching	
process: General description, Materials for substrates and photoresists, Electroplating and	SLIGA
process.	DLION
Micro Sensors, Actuators, Systems and Smart Materials: An Overview	07 Hrs
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Fibre-optic	
Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable	07 Hrs sensors, e blood
Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection, Mic	07 Hrs sensors, e blood
Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable	07 Hrs sensors, e blood
Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection, Mic	07 Hrs sensors, e blood
Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection, Mic	07 Hrs sensors, e blood

CO1:	Understand the operation of micro devices, micro systems and their applications.
CO2:	Apply the principle of material science to sensor design.
CO3:	Analyze the materials used for sensor designs.
CO4:	Conceptualize and design micro devices, micro systems.

Refer	rence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata
1	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015,

	Wiley Publications, ISBN-:978-81-265-2715-1.
3	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.
4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006, Wiley-INDIA, ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-		-	1	-	1
CO3	3	3	2	2	1	-	-		-	1	-	1
CO4	3	3	3	3	1	-	-		1	1	1	1

	Semester: VII						
	PROJECT MANAGEMENT						
			(Gi	roup H: Global E	lective)		
Cou	rse Code	:	18G7H09		CIE		100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		: 39L			SEE Duration		3.0 Hours
Cou	rse Learning	Ob	jectives: The stude	ents will be able to			
1	To understan	nd t	he principles and c	omponents of proj	ect management.		
2	To appreciat	e th	e integrated approa	ach to managing pi	rojects.		
3							
			U	nit-I			07 Hrs

Introduction: What is project, what is project management, relationships among portfolio management,					
program management, project management, and organizational project management, relationship					
between project management, operations management and organizational strategy, business value, role					
of the project manager, project management body of knowledge.					
Unit – II	09 Hrs				

Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle.

Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated change control, close project or phase.

 Unit –III
 09 Hrs

 Project Scope Management: Project scope management, collect requirements define scope, create WBS, validate scope, control scope.

Project Time Management: Plan schedule management, define activities, sequence activities, estimate activity resources, estimate activity durations, develop schedule, control schedule.

 Unit –IV
 07 Hrs

 Project Cost management: Project Cost management, estimate cost, determine budget, control costs.

 Project Quality management: Plan quality management, perform quality assurance, control quality.

 Unit –V
 07 Hrs

Project Risk Management: Plan risk management, identify risks, perform qualitative risk analysis, perform quantitative risk analysis, plan risk resources, control risk. **Project Procurement Management**: Project Procurement Management, conduct procurements, control

procurements, close procurement.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the concepts, tools and techniques for managing large projects.							
CO2:	Explain various knowledge areas and process groups in the project management framework.							
CO3:	Analyze and evaluate risks in large and complex project environments.							
CO4:	Develop project plans for various types of organizations.							

Refer	ence Books
1	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5 th Edition, 2013, ISBN: 978-1-935589-67-9
2	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7 th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10 th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1 st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

Low-1 Medium-2 High-3

			KV College of I	Engineering® – Bengalu	iru - 39		
				Semester: VII			
		C		CS AND DIGITAL INVE	ESTIGATIONS		
				oup H: Global Elective)			
Cou	rse Code	:	18G7H10		CIE	:	100 Marks
Crec	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning C	bje	ctives: The students	s will be able to			
1	·		0 1	er forensics fundamentals	and comprehend t	he i	mpact of
	cybercrime an						
2				asures for cybercrime, dete		g.	
3				of Tools used in cyber fore			
4	Analyse areas	aff	ected by cybercrime	and identify Legal Perspe	ectives in cyber sec	curi	ty.
				Unit-I			09 Hrs
Intro	aduction to ('vh	ercrime Cybercrit	ne: Definition and Orig	vins of the Wor	d l	
Cybe				Them : How Criminals P nes, Botnets: The Fuel fo			v v
	F			Unit – II			08 Hrs
Hanc Lapt	-	levi	-	Security Policies and M	Measures in Mob	ile	Computing Era
Pass	word Cracking	,	Used In Cybercri Keyloggers and S	me : Introduction, Proxy pywares, Virus and Wor	rms, Trojan Hors	ses	nizers, Phishing and Backdoors
				QL Injection, Buffer Over		Wi	reless Networks
Phis	ning and ident	ity		, Phishing, Identity Theft (ID Theft).		00 11
Und	erstanding Co	mn		U nit –IV troduction, Historical Bac	ekaround of Cybe	or f	08 Hrs
Fore Anal Appr Unde Mod Com	nsics Science, ysis of E-Mai coaching a Co erstanding the I el to Compute puter Forensics	The 1, 1 omp Req r Fo s fro	Need for Comput Digital Forensics I puter Forensics In uirements, Compute prensics, Forensics om Compliance Per Auditing, Anti-foren	er Forensics, Cyber foren Life Cycle, Chain of Cu vestigation, Setting up er Forensics and Steganog s and Social Networking spective, Challenges in Co nsics.	nsics and Digital ustody Concept, a Computer Fo graphy, Relevance Sites: The Secur	Evi Net rens of ity/	dence, Forensic work Forensics sics Laboratory the OSI 7 Laye Privacy Threats pecial Tools an
0.1	A	1_ 1		Unit –V		7. 1	07 Hrs
The	Indian Context	-	he Indian IT Act,	Legal Perspectives-Introd Challenges to Indian Law mendments to the Indian I	w and Cybercrime	e So	cenario in India
Соц	rse Quitcomes:				•		a i unisiment.
Cou		nd t		course, the students will l			d i unisiment.
CO1		nd t Aft	er completing the	course, the students will l r security, cyber law and t	be able to		
	: Interpret the	nd t Aft ba	er completing the	r security, cyber law and t	be able to		
CO1	: Interpret the Articulate e	nd t Aft ba vide	er completing the original states of cybe	r security, cyber law and t legal challenges.	be able to		

CO4: Demonstrate through use of proper tools knowledge on the cyber security, Cybercrime and forensics

RV College of Engineering® – Bengaluru - 59

Refer	ence Books :
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives,
1	SunitBelapure and Nina Godbole, , Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.
2	Introduction to information security and cyber laws, Dr. Surya PrakashTripathi, RitendraGoyal,
2	Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.
2	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J.
3	Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 -1-118 84965 -1
1	Cyber Forensics, Technical Publications, I. A. Dhotre, 1 st Edition, 2016, ISBN-13: 978-
4	9333211475

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	3	1	-	-
CO2	1	2	-	2	2	-	-	2	2	3	1	2
CO3	2	3	-	2	2	2	-	2	3	2	-	-
CO4	3	2	3	2	3	1	-	2	3	2	1	1

	Semester: VII								
			ROBO	TICS AND AUTOMATIO	N				
			(Gı	roup H: Global Elective)					
Cour	se Code	:	18G7H11		CIE	:	100 Marks		
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours		:	39 L		SEE	:	3.00 Hours		
					Duration				
Cour	se Learning O	bje	ectives: The stud	dents will be able to					
1	Understand th	ne c	oncepts of robo	tics and automation.					
2	Impart the kn	ow	ledge of robotic	programming and robotic o	peration control				
3	Selection and	an	alysis of robot c	onfiguration and kinematics					
4	4 Importance of automation manufacturing techniques and processing industries								
5	Development	of	automation syst	em for manufacturing and p	rocessing indust	ries			

	Unit-I	06 Hrs
	luction - Basics of kinematics, Anatomy of robot, Robot configuration, Robot joints, Se	nsors and
drive s	ystem, Control modes, Specification of robots, Robot programming methods.	
	Unit – II	09 Hrs
Robot	Kinematics - Position and orientation of objects, Objects coordinate frame, Rotatio	n matrix,
Euler a	angles roll, pitch and yaw angles coordinate transformations, Joint variables and positiv	on of end
effecto	or, Homogeneous transformation.	
D-H pa	arameters and conventions, D-H matrix, Direct kinematic and inverse analysis of plana	r and 3
DoF ro	obots.	
	Unit –III	10 Hrs
Trajec	ctory planning - Introduction, Path versus trajectory, Joint-space versus Cartes	ian-space
descrip	ptions, Basics of trajectory planning, Joint-space trajectory planning, Third-order and F	ifth-order
polyno	mial trajectory planning.	
Autom	nation in Production Systems - Manufacturing support systems, Automation principles	and
	ies, Levels of Automation, Production Concepts and Mathematical models, Numericals.	
	Unit –IV	08 Hrs
Machi	ne Vision - Object recognition by features, Basic features used for object iden	tification,
Momen	nts, Template matching, Discrete Fourier descriptors, Computed Tomography (CT	T), Depth
measu	rement with vision systems, Scene analysis versus mapping, Range detection and Depth	analysis,
	imaging, Scene analysis with shading and sizes, Specialized lighting, Image data con	
Intrafra	ame spatial domain techniques, Interframe coding, Compression techniques, Colour	r images,
Heuris	tics, Applications of vision systems	
	Unit –V	06 Hrs
Flexib	le Manufacturing Systems - Introduction to FMS - concepts, integration in the data p	rocessing
system	as, FMS scheduling. Case studies.	
Materi	al Handling systems - Conveyors - AGVs - industrial robots in material handling - A	utomated
Storage	e and retrieval system.	
Distrib	outed data processing in FMS - Database Management System and their applic	ations in
CAD/C	CAM and FMS – distributed systems in FMS - Integration of CAD and CAM	
Cours	e Outcomes: After completing the course, the students will be able to	
CO1:		
CO2:	Apply the related mathematical model to formulate the kinematics and trajectory pla	anning of
	industrial robot.	÷
~~•		

CO3: Analyse the machine vision for effective Flexible Manufacturing Systems.

CO4: Develop model and integrate drives for industrial robots and automation systems.

Refer	rence Books
1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3 rd Edition,
1	New York, ISBN:006045931X
	John J. Craig, "Introduction to Robotics", Pearson Education International, 3 rd Edition,
2	ISBN:109876543, 1-13-123629-6
2	Mikell P Groover, "Automation, Production Systems, and Computer-integrated Manufacturing",
3	Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2
1	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and
4	Simulation", CRC Press, 1987, ISBN 9780824777180

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	2	-	2
CO2	3	3	1	3	1	1	-	-	-	2	-	2
CO3	2	-	2	-	1	1	-	-	2	-	-	2
CO4	3	3	2	3	1	1	-	2	3	-	3	2

	Semester: VII							
	SPACE TECHNOLOGY AND APPLICATIONS (GROUP H: GLOBAL ELECTIVE)							
Cou	irse Code	:	18G7H12	CIE	:	100 Marks		
Cre	dits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Tot	al Hours	:	39L	SEE Duration	:	3.00 Hours		
Cou	irse Learning ()bje	ectives: The students wil	l be able to				
1	Define the ear concepts.	rth	environment and its beha	aviour, launching vehicles for satell	ites	and its associated		
2	Analyse satelli	tes	in terms of technology, st	ructure and communications.				
3	3 Use satellites for space applications, remote sensing and metrology.							
4	4 Apply the space technology, technology mission and advanced space systems to nation's growth.							
-								

UNIT-I

08 Hrs Magnetosphere, Allen Radiation belts, Earth's environment: Atmosphere, ionosphere, Van Interplanetary medium, Solar wind, Solar- Earth Weather Relations.

Launch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic engines, Control and Guidance system, Ion propulsion and Nuclear Propulsion.

UNIT-II 07 Hrs Satellite Technology: Structural, Mechanical, Thermal, Power control, Telemetry, Telecomm and Quality and Reliability, Payloads, Classification of satellites.

Satellite structure: Satellite Communications, Transponders, Satellite antennas. **UNIT-III**

		00 111 5
Satellite Communications:	LEO, MEO and GEO orbits, Altitude and orbit controls, Multiple	e Access
Techniques.		

Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Education, Telemedicine, Satellite navigation, GPS.

UNIT-IV	08 Hrs
Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land	use, Land
mapping, geology, Urban development resource Management, and image processing techniques.	
Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr	edictions,
Disaster and flood warning, rainfall predictions using satellites.	
UNIT-V	08Hrs
Space Missions: Technology missions, deep space planetary missions, Lunar missions, zer	o gravity
experiments, space biology and International space Missions.	-

Advanced space systems: Remote sensing cameras, planetary payloads, space shuttle, space station, Interspace communication systems.

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain different types of satellites, orbit and associated subsystems.						
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.						
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrology etc.						
CO4	Study technology trends, satellite missions and advanced space systems.						

08 Hrs

Refe	rence Books
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009,
	ISBN- 10 :0415465702.
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN:9788120324015.
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0-471-37007-9,
	ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009,
	ISBN: 108176496308.

CIE is executed by the way of Tests (T), Quizzes (Q) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-PO) Mapp	oing					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	1	-
CO2	2	2	1	1	-	-	-	-	-	-	1	-
CO3	2	2	1	-	-	-	-	-	-	-	1	-
CO4	2	2	1	-	-	-	-	-	-	-	1	-

			Somestow VII				
Semester: VII INTRODUCTION TO ASTROPHYSICS							
(Group H: Global Elective)							
Course Code : 18G7H13 CIE : 100 Marks							
Credits: L: T:P	•	3:0:0		SEE	•	100 Marks	
Total Hours	•	39 L		SEE Duration	:	3.00 Hours	
	Course Learning Objectives: The students will be able to						
			lestial bodies and the laws go	verning their bel	iavi	or	
			oncepts of relativity and established				
matter			1 7			C	
			tify and investigate the nature				
			atures of any star by understan	V	-	operties	
5 Contemplate	the	complex syste	em of the milky way galaxy ar	nd its component	(S		
		• • •	Unit-I			07 Hrs	
Fundamental conce	-			ania Mianaman	- D	adiation (CMD)	
0		U	tituents of the universe, Co trograde Motion of planets, I				
			tial Sphere: Altitude-Azimu				
			nets - laws of motion of plane				
	001	<i>ai 555</i> 0000, 1 14	Unit – II	ts, inner prunets,	ou	08 Hrs	
Theory of Special R	Rela	tivity:					
• -		•	Galilean Transformations, L	orentz Transform	mat	ions, Derivation,	
Time & Space in Sp	ecia	al Relativity, I	Momentum & Energy in Rela	tivity, Doppler 1	Effe	ect for light (Red	
			principle, the principle of		vita	tional coupling,	
Schwarzschild space	tim	e, Past-Presen	t-Future (Light Cone diagram).			
			Unit –III			08 Hrs	
Stellar Astrophysic		opposion bot	ween Color and Temperature	Stallor Daralla	~ N	Jamituda Saala	
			th), Hertzsprung-Russel Diag				
			naries, Eclipsing Spectrosco				
			ent and independent equa				
Chandrashekar's Lin						1,	
			Unit –IV			08 Hrs	
Light and Matter:						·	
			ng), Spectral Lines, de-Bro	glie's Waveleng	gth	and Frequency,	
			coadening of Spectral lines				
Spectral Character							
			ellar Opacity, Transfer Equation	on, Profile of Sp	ectr	al Lines, Optical	
Telescopes, Radio Telescopes (Case Studies)							
Galaxy Astronomy			Unit –V			08 Hrs	
• •		Counting the	e Stars, Historical Models, Di	fferential & Inte	aore	ted Star Counts	
	-	-	on of extrasolar planets, Dista		-		
-			Galaxies, Introduction to El				
Dwarf galaxies				r Burnitos	,	- <u>Barran</u> Barran (1995)	

Dwarf galaxies.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Contemplate the nature of our universe by identifying and studying the behavior of						
	celestial bodies.						
CO2:	Explain the usefulness of the theory of relativity, light and matter in establishing the						
	fundamental behavior of stellar bodies.						
CO3:	Utilize various techniques to discover the components of our universe and conclude their						
	celestial properties.						
CO4:	Interpret the spectral properties of any astronomical body to illustrate its properties.						
CO5:	Inspect the milky way galaxy to identify the proponents and their characteristic features.						

Reference Books

1101	
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2 nd
1	Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press,
2	ISBN- 9780521016278.
•	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-
3	0935702057.
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-
4	0387949437.
5	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st
3	Edition, 1983, Wiley, ISBN: 9780471873167.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 20. **Total CIE is 30(Q) + 50(T) + 20(A) = 100 Marks.**

101a1 C1E 15 50(Q) + 50(1) + 20(R) = 100 Walks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-PO) Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	-	1	-	-	2
CO2	3	2	2	2	-	-	1	-	1	-	-	2
CO3	2	3	1	2	2	1	1	-	2	1	-	2
CO4	3	3	1	2	2	1	2	-	3	3	-	2

	Semester: VII								
	MATERIALS FOR ADVANCED TECHNOLOGY AND SPECTROSCOPIC								
	CHARACTERIZATION								
	(Group H: Global Elective)								
Co	ourse Code	:	18G7H14	CIE	:	:	100 Marks		
Credits: L:T:P		:	3:0:0	SEE	:	:	100 Marks		
Total Hours		al Hours :		: 40L		SEE Du	ration :	:	3.00 Hours
Co	ourse Learning	g Ol	bjectives: Th	students will be able to					
1	Apply the bas	ic c	concepts of C	emistry to develop futuristic materials f	for high-tee	ch	applications in the		
	area of Engine	eeri	ng.						
2	Impart sound	kno	wledge in th	different fields of material chemistry so	o as to app	oly	it to the problems		
	in engineering	g fie	eld.						
3	Develop anal	ytic	al capabilitie	of students so that they can characterize	ze, transfor	rm	and use materials		
	in engineering	g an	d apply know	edge gained in solving related engineering	ng problen	ns.			

Unit-I	08 Hrs
Coating and packaging materials	
Surface Coating materials:	
Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chlor	ride & its
copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.	
Properties required in a pigment and extenders.	
Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, molybdat	e orange,
chrome green, ultramarine blue, iron blue, cadmium red.	
Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments,	ceramic
pigments, metal flake pigments, extenders.	
Developments in new polymers such as dendrimers, biopolymers & biodegradable polymers.	
Packaging materials:	
Food products: Cellulosic and Polymeric packaging materials and their properties - including	ıg barrier
properties, strength properties, optical properties. Glass, aluminum, tin, paper, plastics, compos	ites.
Pharmaceutical products: Injectables and tablet packaging materials.	
Unit – II	08 Hrs
Adhesives	
Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying a	dhesives,
pressure sensitive adhesives, contact adhesives, hot adhesives. One-part adhesives, multi part a	dhesives.
Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive	e Action-
surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength.	Chemical
Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, co	mplexity
of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical	adhesive
action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion	n theory.
Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics,	Silicone,
Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.	
Unit –III	08 Hrs
Optical fibre materials	
Fiber Optics, Advantages of optical fiber communication over analog communication, Clas	sification
based on refractive index of the core- step index and graded index optical fibres, Classification	based on
core radius-single mode and multimode optical fibres, Fibre fabricationMethods to man	nufacture
optical glass fibres. Double crucible method and preform methods. Manufacture of perform-	Chemical
Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour d	eposition
(PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing t	
from perform, coating and jacketing process.	
Ion exchange resins and membranes	
Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples,	physical

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes. Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method. Unit –IV 08 Hrs

Unit –IV	
Spectroscopic Characterization of materials:	

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

Unit –V

08 Hrs

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent – magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Identify sustainable engineering materials and understand their properties.						
CO2:	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications						
	in different areas of engineering.						
CO3:	Analyze and evaluate the specific application of materials.						
CO4:	Design the route for synthesis of material and its characterization.						

Refere	ence Books
1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38 th Editon, Tata McGraw-Hill
	Publishing Company Limited-2015, ISBN: 9780074517963
2	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-
2	4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
	Spectroscopy of organic compounds by P.S.Kalsi, New Age International (P) ltd, Publisher, 2005,
3	ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill Publishing
4	Company Limited, 1996, ISBN :0074622382 9780074622384.

RV College of Engineering® – Bengaluru - 59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	-	-	-	-	-	-	-	-	-	-	-			
CO2	3	-	-	-	-	2	2	-	-	1	-	-			
CO3	-	3	-	2	-	-	-	-	-	-	-	-			
CO4	-	-	3	-	-	1	1	-	-	-	-	1			

				Semester: VII									
APPLIED PSYCHOLOGY FOR ENGINEERS													
(Group H: Global Elective)													
Cour	se Code	:	18G7H15		CIE	:	100 Marks						
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Total Hours: 39 LSEE Duration: 3.00 Hours													
Course Learning Objectives: The students will be able to													
1	1 To appreciate human behavior and human mind in the context of learner's immediate society and environment.												
2	 2 To understand the importance of lifelong learning and personal flexibility to sustain personal 												
and Professional development as the nature of work evolves.													
3													
	engineering pr			C	•								
4				as effective Engineering Ps	ychologists in an	Indu	ustrial,						
	Governmental				<u> </u>								
5				ological knowledge, skills,		ipat	tional pursuits						
	in a variety of	sett	ings that meet	personal goals and societal	i needs.								
				Unit-I			07 Hrs						
Intro	duction to Psv	cho	ology: Defini	tion and goals of Psycholo	ogy: Role of a Ps	vch							
	•		0.	nes of psychology). Psycho		•	÷						
Hum	anistic, Psycho	log	ical Research	and Methods to study									
Obse	rvation, Questio	nna	aire and Clinic										
				Unit – II			09 Hrs						
				t and definition of Intel									
				– Spearman, Thurston, G leasurement of Intelligence									
				– Fluid and Crystallized Int		CU	nicept of IQ,						
meas		upi	e intenigence	Unit –III	temgenee.		09 Hrs						
Socio appro Scale Beha produ	b- Cultural, In baches. Assessm es and Project vioral Assessme ucts of stress v s ces of Frustratio	terp ient ive ent. 5 Bu	personal and of Personality techniques, Psychologica urnout, Work I	of personality, Approaches developmental, Humanis Self- report measures of l its Characteristics, advan l Stress: a. Stress- Definiti Place Trauma. Causes of St Performance, Stress Vulne	tic, Behaviorist, Personality, Quest ntages & limita ion, Symptoms of tress – Job related	Traion tion St ca	ait and type naires, Rating as, examples. ress, Extreme uses of stress.						
				Unit –IV			07 Hrs						
Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. Distance learning, Psychological consequences of recent developments in Information Technology. Type A and Type B Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.													
				Unit –V			07 Hrs						
(Pavl (Skin appro	ov), the process oner expt). The b	ss oasi	of Extinction, ics of operant	 Classical Conditioning, Discrimination and Gene conditioning, Schedules of earning, Observational Le 	eralization. Operative reinforcement. C	ant ogn	Conditioning nitive – Social						

	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the application of psychology in engineering and technology and develop a route to									
	accomplish goals in their work environment.									
CO2:	Define learning and compare and contrast the factors that cognitive, behavioral, and									
	Humanistic theorists believe influence the learning process.									
CO3:	Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting in their enhancement and apply effective strategies for self-management and self-									
	improvement.									
CO4:	Apply the theories into their own and others' lives in order to better understand their personalities and experiences.									
	personanties and experiences.									

Refe	erence Books
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
3	3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN $- 81-317 - 1132 - 3$
4	4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	-	-	-	-	-	1	-	1			
CO4	3	3	3	3	-	-	-	-	-	1	-	1			

High-3:	Medium-2 : Low-1
Ingin CV	

	Semester: VII											
	ADVANCED COURSE IN ENTREPRENEURSHIP											
	(Group H: Global Elective)											
Co	ourse Code	:	18G7H16	CIE		:	100 Marks					
Cı	redits: L:T:P	:	3:0:0	SEE		:	100 Marks					
To	otal Hours	••	39 L	SEE Du	iration	:	3.00 Hours					
Co	ourse Learning Ob	ject	t ives: The student	s will be able to								
1	Acquire additional	kn	owledge and skill	s for developing early customer tract	ion into a 1	repe	atable business.					
2				ing sustainable growth, such as by 1		eir p	roduct or service					
	and business mode	els,	building brand str	ategy, making a sales and financial p	olan							
3	Develop brand stra	iteg	y and create digit	al presence, Develop channel strateg	y for custo	mer	outreach.					
4												
	expand markets											

Unit-I	07 Hrs
Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product Life Cy your Start-up's attractiveness	cle? Assess
Competition & testing: Conduct a Competition Analysis Identify your Competitive Advantage	
Unit – II	06 Hrs
Market Validation: Market validation, Customer Usability Interviews, Analyzing Customer feedback	
Delivering Value: Enlist marketing channels, Identify partners for your venture, Create a Sales plan	
Unit –III	07 Hrs
Customer acquisition & growth channels: Types of Marketing Channels: TargetingBlogs, Unconv Search EngineMarketing, Search EngineOptimization, Socialads, displayads and existing platforms, En ViralMarketing, Affiliate programs, Magazines, Newspaper, Radio and TVads, OfflineAds, TradeShows	
Unit –IV	10 Hrs
Business model: ReiterateandRefineyourBusinessModelCanvas, Choosetherightbusinessmodelforyourstart- Financial Planning: Forecastingsalesandrevenueprojections, Cash-flowstatement	up
Unit –V	09 Hrs
Pitching: Create your funding plan, Build your pitch deck and compose your pitch.	

Experiential Learning: Studentteams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	01: Develop strategies to increase revenues and expand markets, Explore licensing and franchising								
	for business expansion.								
CO2:	Leverage technologies and platforms for growth stage companies, Develop key metrics to track								
	progress.								
CO3:	Basics of registering a company, Understanding business regulations and compliances.								
CO4:	Advanced concepts of business finance, Financial planning.								

Refere	ence Books
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.
2	Entrepreneurship. Roy, R., 2012. Oxford University Press
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial Modern Classics

RV College of Engineering® – Bengaluru - 59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(M1, M2 and M3) +50(T) +20(M4) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	-	-	-	-	-	1	-	1			
CO4	3	3	3	3	-	-	-	-	-	1	-	1			

	Semester VIII												
	MAJOR PROJECT												
Cours	Course Code:18CSP81CIE:100 Marks												
Credi	its: L:T:P		0:0:16:0		SEE	:	100 Marks						
Total	Hours	:	32		SEE Duration	:	3.00 Hours						
Cours	se Learning Obj	ecti	ves: The students wil	be able to									
1.	Acquire the ab	ility	to make links across	different areas of knowl	edge and to generate, d	level	lop and evaluate						
				e skills to the project tas									
2.	Acquire the sk	tills	to communicate effe	ctively and to present	ideas clearly and cohe	erent	tly to a specific						
	audience in bot	h w	ritten and oral forms.										
3.	· ·		~	king in a team to achieve	<u> </u>								
4.	4. Self-learn, reflect on their learning and take appropriate action to improve it.												
5.													

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution.
- The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's(Centre of Excellence) identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in **NPTEL** from the discipline of **Humanities and Social Sciences**, **Management**, **Multidisciplinary and Design Engineering**. The course chosen could be either of 4w/8w/12w duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. **The same will be considered** as one of the components during project evaluation of phase 2 and phase 5.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- > The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➢ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Cours	Course Outcomes of Major Project:					
1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain problems.					
2	Design, develop, present and document innovative/multidisciplinary modules for a complete engineering system.					
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long learning to follow technological developments.					
4	Function effectively as an individual, or leader in diverse teams, with the understanding of professional ethics and responsibilities.					

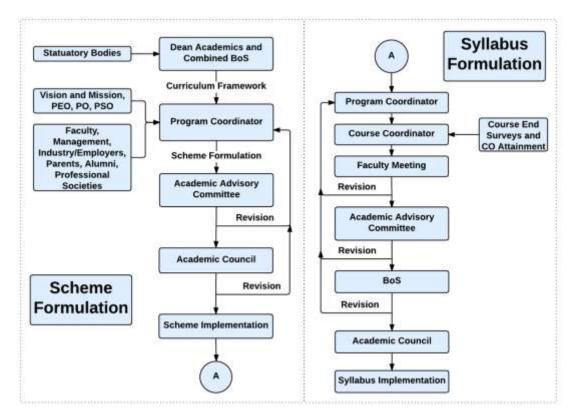
CIE Assessment:

The following are the weightings given for the various stages of the project.

Selection of the topic and formulation of objectives			10%
Design and Development of Project methodology			25%
Execution of Project			25%
Presentation, Demonstration and Results Discussion			30%
Report Writing & Publication			10%
	Selection of the topic and formulation of objectives Design and Development of Project methodology Execution of Project Presentation, Demonstration and Results Discussion Report Writing & Publication	Design and Development of Project methodology Execution of Project Presentation, Demonstration and Results Discussion	Design and Development of Project methodology Execution of Project Presentation, Demonstration and Results Discussion

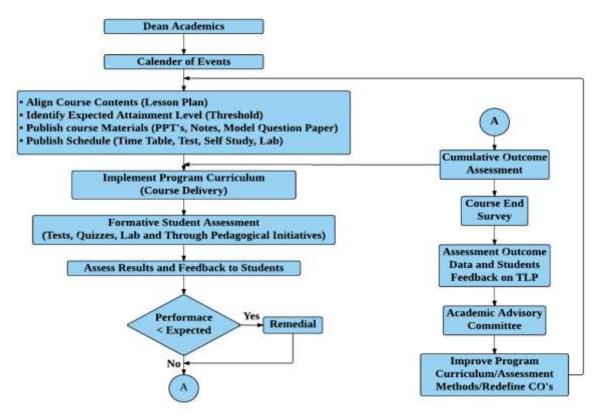
SEE Assessment:

The following are the weightages given during Viva Examination.

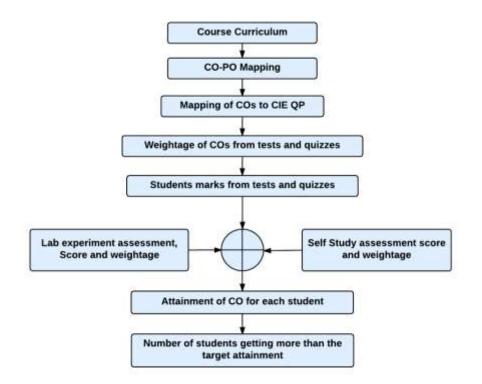

1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being carried out
	in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by
	Department project Committee and guide for internal assessment. Finalization
	of CIE.

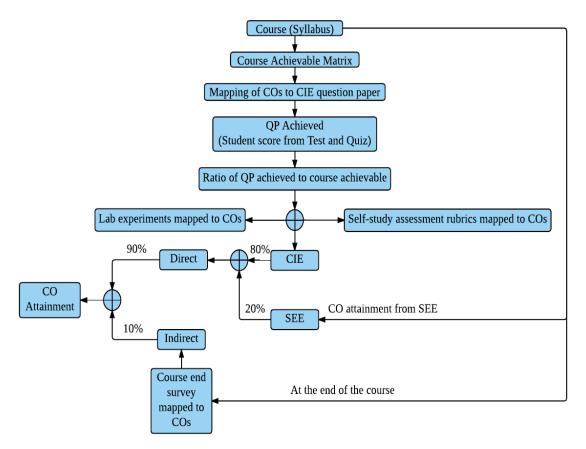
Calendar of Events for the Project Work:

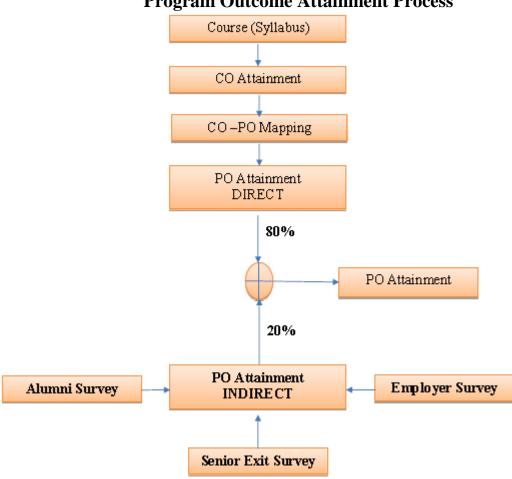

Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CI	E	Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks	
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%	
Project Evaluation II	25%	Project Demo / Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	



Curriculum Design Process


Academic Planning And Implementation


Process For Course Outcome Attainment

Final CO Attainment Process

RV College of Engineering® – Bengaluru - 59

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.