

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V &VI Semesters

2018 SCHEME

COMPUTER SCIENCE AND ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V &VI Semesters

2018 SCHEME

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT VISION

To achieve leadership in the field of Computer Science & Engineering by strengthening fundamentals and facilitating interdisciplinary sustainable research to meet the ever growing needs of the society.

DEPARTMENT MISSION

- To evolve continually as a centre of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Develop Graduates capable of applying the principles of mathematics, science, core engineering and Computer Science to solve real-world problems in interdisciplinary domains.
- **PEO2:** To develop the ability among graduates to analyze and understand current pedagogical techniques, industry accepted computing practices and state-of-art technology.
- **PEO3:** To develop graduates who will exhibit cultural awareness, teamwork with professional ethics, effective communication skills and appropriately apply knowledge of societal impacts of computing technology.
- **PEO4:**To prepare graduates with a capability to successfully get employed in the right role / become entrepreneurs to achieve higher career goals or takeup higher education in pursuit of lifelong learning.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	System Analysis and Design
	The student will be able to:
	1. Recognize and appreciate the need of change in computer architecture, data organization and analytical methods in the evolving technology.
	2. Learn the applicability of various systems software elements for solving design problems.
	3. Identify the various analysis & design methodologies for facilitating development of high quality system software products with focus on performance optimization.
	4. Display team participation, good communication, project management and document skills.
PSO2	Product Development
	The student will be able to:
	1. Demonstrate the use of knowledge and ability to write programs and integrate them with the hardware/software products in the domains of embedded systems, databases /data analytics, network/web systems and mobile products.
	2. Participate in planning and implement solutions to cater to business – specific requirements displaying team dynamics and professional ethics.
	3. Employ state-of-art methodologies for product development and testing / validation with focus on optimization and quality related aspects.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	PE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PY	Physics		
21.	СҮ	Chemistry		
22.	MA	Mathematics		

ABBREVIATIONS

INDEX

	V Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18HSI51	Intellectual Property Rights and Entrepreneurship	1			
2.	18CS52	Finite Automata Formal Languages	4			
3.	18CS53	Database Design	6			
4.	18CS54	Network Programming and Security	9			
5.	18IS55	Software Engineering	12			
6.	18CS5AX	Group A: Professional Electives (MOOC Courses)	15 -24			
7.	18G5BXX	Group B: Global Elective	GE-B1-B38			

	VI Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18HEM61	Introduction to Management & Economics	25			
2.	18CS62	Artificial Intelligence and Machine Learning	27			
3.	18CS63	Compiler Design	30			
4.	18CS64	Minor Project	33			
5.	18CS6CX	Group C: Professional Electives	35-44			
6.	18CS6DX	Group D: Professional Electives	45-54			
7.	18G6EXX	Group E: Global Elective	GE-E1-E35			
8.	18HS68	Professional Practice – II (Employability Skills and Professional Development of Engineers)	55			

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) COMPUTER SCIENCE AND ENGINEERING

Г

		FIFTH SEMESTER CREDIT SCHI	EME				
Sl. No	Course	Course Title	BoS	Cred	edit Allocation Total Credits T P Credits 0 0 3 0 0 3 0 1 4 0 1 4 0 1 4 0 1 4 0 0 3		
51. 140	Code	Course The	DUS	L	Т	Р	Credits
1.	18HSI51	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	3
2.	18CS52	Finite Automata Formal Languages	CS	3	0	0	3
3.	18CS53	Database Design (Common to CS & IS)	CS	3	0	1	4
4.	18CS54	Network Programming and Security	CS	3	0	1	4
5.	18IS55	Software Engineering (Common to CS & IS)	IS	3	0	1	4
6.	18CS5AX	Group A: Professional Electives (MOOC Courses)	CS	3	0	0	3
7.	18G5BXX	Group B: Global Elective	Resp. BoS	3	0	0	3
		Total Number of Credits		21	0	3	24
		Total number of Hours/Week		21	0	7.5	

	GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)					
Sl. No.	Course Code	Course Title	Duration			
1.	18CS5A1	Object Oriented System Development using UML, Java and Patterns	12 Weeks			
		(Common to CS & IS)				
2.	18IS5A2	Social Networks	12 Weeks			
		(Common to CS & IS)				
3.	18CS5A3	Applied Natural Language Processing	12 Weeks			
4.	18CS5A4	Introduction to robotics	12 Weeks			
5.	18CS5A5	The Joy of Computing using Python	12 Weeks			
		(Common to All Branches)				

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) COMPUTER SCIENCE AND ENGINEERING

		SIXTH SEMESTER CREDIT SCH	IEME				
Sl.		Credit Allocation			Total		
No.	Course Code	Course Title	BoS	L	Т	Р	Credits
1.	18HEM61	Introduction to Management & Economics	HSS	3	0	0	3
2.	18CS62	Artificial Intelligence and Machine Learning (Common to CS & IS)	CS	3	1	1	5
3.	18CS63	Compiler Design	CS	3	0	1	4
4.	18CS64	Minor Project	CS	0	0	2	2
5.	18CS6CX	Group C: Professional Electives	CS	3	0	0	3
6.	18CS6DX	Group D: Professional Electives	CS	3	0	0	3
7.	18G6EXX	Group E: Global Elective	Resp. BoS	3	0	0	3
8.	18HS68	Professional Practice-II (Employability Skills and Professional Development of Engineers)	HSS	0	0	1	1
		Total Number of Credits					24
		Total number of Hours/Week		18	2	10+2.5	

	GROUP C: PROFESSIONAL ELECTIVES			
Sl. No.	Course Code	Course Title	Credits	
1.	18CS6C1	Internet of Things	03	
		(common to all branches)		
2.	18IS6C2	Advanced Algorithms	03	
		(Common to CS & IS)		
3.	18CS6C3	Fuzzy Logic	03	
		(Common to CS & IS)		
4.	18CS6C4	Data Warehousing and Data mining	03	
5.	18CS6C5	Big Data Analytics Using Distributed Platforms(Industry Offered)	03	
		(Common to CS & IS)		

	GROUP D: PROFESSIONAL ELECTIVES				
Sl. No.	Course Code	Course Title	Credits		
1.	18IS6D1	Web Technology	03		
		(Common to CS & IS)			
2.	18CS6D2	Quantum Computing	03		
3.	18CS6D3	Artificial Neural networks	03		
4.	18CS6D4	Probability, Statistics and Queuing Theory	03		
5.	18CS6D5	Robotic Process Automation Design & Development	03		
		(Industry Offered)			

			GROUP B: GLOBAL ELECTIVES	
Sl. No.	Dept	Course Code	Course Title	Credits
			Courses offered by the Departments	
1.	AS	18G5B01	Fundamentals of Aerospace Engineering	03
2.	BT	18G5B02	Nanotechnology	03
3.	СН	18G5B03	Fuel Cell Technology	03
4.	CS	18G5B04	Intelligent Systems	03
5.	CV	18G5B05	Remote Sensing and Geographic Information System	03
6.	EC	18G5B06	Automotive Electronics	03
7.	EE	18G5B07	E-Mobility	03
8.	EI	18G5B08	Smart Sensors & Instrumentation	03
9.	IM	18G5B09	Operations Research	03
10.	IS	18G5B10	Management Information Systems	03
11.	ME	18G5B11	Automotive Mechatronics	03
12.	TE	18G5B12	Telecommunication Systems	03
		Courses	s offered by Science Departments & HSS Board	
13.	PY	18G5B13	Quantum Mechanics of Hetero/Nano Structures	03
14.	PY	18G5B14	Thin Films and Nanotechnology	03
15.	CY	18G5B15	Advances in Corrosion Science and Technology	03
16.	MA	18G5B16	Computational Advanced Numerical Methods	03
17.	MA	18G5B17	Mathematics for Machine Learning	03
18.	HSS	18G5B18	Engineering Economy	03

			GROUP E: GLOBAL ELECTIVES	
Sl. No.	Dept	Course Code	Course Title	Credits
			Courses offered by the Departments	
1.	AS	18G6E01	Aircraft Systems	03
2.	BT	18G6E02	Bioinspired Engineering	03
3.	СН	18G6E03	Sustainable Technology	03
4.	CS	18G6E04	Graph Theory	03
5.	CV	18G6E05	Disaster Management	03
6.	EC	18G6E06	Wearable Electronics	03
7.	EE	18G6E07	Energy Auditing and Management	03
8.	EI	18G6E08	Virtual Instrumentation & Applications	03
9.	IM	18G6E09	Systems Engineering	03
10.	IS	18G6E10	Introduction to Mobile Application Development	03
11.	ME	18G6E11	Industrial Automation	03
12.	TE	18G6E12	Mobile Network System and Standards	03
		Courses	s offered by Science Departments& HSS Board	
13.	PY	18G6E13	Thin Film Nanodevice Fabrication Technology	03
14.	CY	18G6E14	Chemistry of Advanced Energy Storage Devices for E- Mobility	03
15.	MA	18G6E15	Advanced Statistical Methods	03
16.	MA	18G6E16	Mathematical Modeling	03
17.	HSS	18G6E17	Foundational Course on Entrepreneurship	03

				V Semester			
	INTE	LLI	ECTUAL PROPER'		D ENTREPRENEUI	RSHI	P
C	ourse Code	:	18HSI51	(Theory)	CIE	•	100 Marks
	redits: L:T:P				SEE	•	100 Marks
		:				:	
	tal Hours		39L	111 1 1 4	SEE Duration	:	03Hrs
			jectives: The students		'11/1 /'	.1	. 1
1					ouild the perspectives o	n the	concepts and
~			ages in technology in			_	
2	U				and disclosure of ne	w Te	chnology
	Ų		and reward innova				
3					trong foundations skills	s to e	nable starting
			ing a viable as well a				
4					ng with critical skills	and	knowledge to
	manage risks a	asso	ciated with entrepren	eurs.			
				U nit-I			08 Hrs
	• •		of Intellectual Propert	•			
					patentable and non-pat		
				•	s; Biotechnology pate	ents,	protection o
			Infringement of pate				
Tr	ade Secrets: De	efini	tion, Significance, To		ade secrets in India.		
				nit – II			08 Hrs
					rms of Trade marks, R	•	
					similarity; Transfer of	Trad	e Mark, ECC
La	bel, Passing off,	Inf	ringement of Trade N	Aark with Case st	udies and Remedies.		
				nit –III			09 Hrs
					ures of Industrial, Des		Procedure for
					Remedies, Case studies		
					red by copy right, Cop		
					ns and performer's rig	shts,	Exceptions of
Co	py Right, Infrin	gem	ent of Copy Right with	ith case studies			
					er-crime; Meaning and		
cy	bercrime. Overv	iew	of Information Tech	nology Act 2000 a	and IT Amendment Ac	t 200	
				nit –IV			07 Hrs
In	troduction to E	ntre	epreneurship – Lear	n how entreprene	urship has changed the	worl	ld. Identify siz
en	trepreneurial my	ths	and uncover the true	facts. Explore E-	cells on Campus		
Li	sten to Some	Suc	cess Stories: - Glo	obal legends Un	derstand how ordination	ry pe	eople become
suc	ccessful global e	entre	preneurs, their journ	eys, their challen	ges, and their success	storie	es. Understand
					successful entrepreneu		
Cł	naracteristics of	f a S	Successful Entrepre	neur Understand	the entrepreneurial jo	urney	and learn the
co	ncept of differe	nt e	ntrepreneurial styles.	. Identify your o	wn entrepreneurship s	tyle ł	based on you
pe	rsonality traits,	str	engths, and weakne	esses. Learn ab	out the 5M Model,	each	of the five
en	trepreneurial sty	les	in the model, and ho	w they differ from	m each other. Commu	nicat	e Effectively
					s about people can neg		
				v	communication brea	-	• •
			d poor listening, and				
					e of listening in comm	unica	tion and lear
					eye contact and handsl		
	•		ical Application)	C	•		0
	×						
			U	nit –V			07Hrs

Design Thinking for Customer Delight: - Understand Design Thinking as a problem-solving process. Describe the principles of Design Thinking. Describe the Design Thinking process.

Sales Skills to Become an Effective Entrepreneur: - Understand what customer focus is and how all selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Reference Books

- **1.** Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law Pub Co. Ltd.-Delhi, ISBN: 9789350350300
- **2.** Intellectual Property Rights: Unleashing Knowledge Economy, PrabuddhaGanguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
- **3.** Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
- **4.** Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the							
	purview of engineering domain.							
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to							
	Intellectual Property Rights with the utility in engineering perspectives.							
CO3:	Enable the students to have a direct experience of venture creation through a facilitated							
	learning environment.							
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that							
	entrepreneurs use to succeed in real life.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. 50% weightage should be given to case studies. Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.**50% weightage should be given to case studies.**

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

	Semester: V									
	FINITE AUTOMATA FORMAL LANGUAGES									
				(Theory)						
Cou	rse Code	:	18CS52		CIE Marks	:	100			
Crec	lits: L:T:P	:	3:0:0		SEE Marks	:	100			
Tota	l Hours	:	39L		SEE Duration	:	3 Hrs			
Cou	rse Learning	g Obj	jectives: The stu	lents will be able to						
1.	Understand	func	lamental concept	s of theory of compu	tation and the use of	ma	thematical			
	thinking as	it is a	applied to Comp	ter Science.						
2.	Compare fin	nite a	utomata; push d	own automata and T	uring machines as M	athe	ematical models of			
	computation	n.								
3.	Develop the	e con	cepts and skills	ecessary to be able t	o evaluate the comp	utab	ility and			
	complexity of practical computational problems.									
4.	4. Understand formal thought processes, computation, algorithms and their limits.									
5.	Design a ma	achir	ne model to acce	t a specified languag	ge					

Unit – I

Regular Languages and Regular Expressions, Memory Required to Recognize a Language, Deterministic Finite Automata (DFA), Non Deterministic Finite Automata (NFA), Non Deterministic Finite Automata with ϵ -transitions (NFA- ϵ), Equivalence, Regular Expressions and Finite Automata, Applications of Regular Expressions, Algebraic laws of Regular Expressions, Minimization of Finite Automata.

Unit – II					
Pumping Lemma for Regular Languages, Closure properties of Regular Languages,	Decision				
properties of Regular languages, Context-free grammars (CFG), Parse trees, Applications, A	Ambiguity				
in grammars & languages, Simplification of CFG, Normal forms of CFGs. Regular C	Grammars,				
Equivalence of Regular Grammars and Finite Automata.					

Unit – III8 HrsPush Down Automata (PDA): Definition, the languages of a PDA, Equivalence of PDA's & CFG's,
Deterministic PDA. The Pumping Lemma for Context Free Languages (CFL), Closure properties of
CFLs, Decision properties of CFLs

Unit – IV	8 Hrs
Turing Machines (TM): Definitions and Examples, TM as a Language Accepter, Computing	Partial
Functions with Turing Machine, Variations of Turing Machines, Combining Turing Machine	es, Non
Deterministic TM, Universal TM, Recursively Enumerable Languages (REL) and Recursive	
Languages. Properties of REL and Recursive Languages.	
Unit – V	7 Hrs

More General Grammars, Unrestricted Grammar, Context Sensitive Languages (CSL) and Linear Bounded Automata (LBA), Chomsky Hierarchy, Not all languages are Recursively Enumerable, Unsolvable Problem, Reducing One problem to another, The halting problem of TM, Post's Correspondence Problem (PCP), Time and Space Complexity of TM.

8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	Understand the fundamental concepts of theory of computations.						
CO 2:	Analyze the tools of finite automata to various fields of computer science.						
CO 3:	Design solution model for complex problems, using the appropriate skills of automata theory						
	for better results.						
CO 4:	Apply automata skills in situations that describe computation effectively and efficiently.						

Reference Books:

1.	Introduction to Languages & Theory of Computation, John C Martin, 4 th Edition, 2011, Tata McGraw-Hill, ISBN: 978-0-07-319146-1.
	Weoraw-min, iSDN. 978-0-07-519140-1.
2.	Introduction to Automata Theory, Languages & Computation, J.P.Hopcroft, Rajeev Motwani, J.D.Ullman, 3 rd Edition, 2008, Pearson Education., ISBN:81-3172-047-0.
	Motwani, J.D.Ohman, 5 ⁻ Edution, 2008, Pearson Education., ISBN:81-5172-047-0.
3.	An Introduction To Formal Languages & Automata, Peter Linz, 6th Edition, 2007, Narosa
	Publishing House, ISBN: 07-6371-422-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q), and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three guizzes are conducted and each guiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (O) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	1	2	-	3	-	2	2	2	1
CO2	-	3	-	-	1	2	3	-	3	2	-	1
CO3	3	3	3	2	2	-	2	-	3	3	2	1
CO4	1	2	2	1	1	2	-	3	2	2	3	1

	Semester: V						
				DATABASE DESIG			
				(Theory & Practic			
				(Common to CS and	IS)		
Cour	rse Code	:	18CS53		CIE Marks	:	100+50
Credits: L:T:P		:	3 :0:1		SEE Marks		100+50
Tota	l Hours	••	39L + 35P		SEE Duration		3 Hrs + 3 Hrs
Cour	rse Learning	; Obj	ectives: The stu	idents will be able to			
1.	Explore the	evol	ution of the data	base systems from tra	ditional file systems.		
2. Describe the major components of relational and NoSQL database system.							
3. Describe the functionality provided by languages such as SQL and NoSQL.							
4.	Investigate	the u	sage of transacti	ion, concurrency contr	rol and recovery tech	niq	lues.

Unit – I

7Hrs

Introduction to Database Systems -Databases and Database users: Introduction,

An example, Characteristics of Database Approach, Actors on the scene, Workers behind the scene. Database System—Concepts and Architecture: Data Models, Schemas and Instances, Three-schema Architecture and Data Independence, Database Languages and Interfaces, The Database System Environment.

Data Modeling Using the Entity-Relationship Model-Using High-Level

Conceptual Data Models for Database Design; A Sample Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types;

Unit – II	8Hrs
Refining the ER Design for the COMPANY Database; ER Diagrams, Naming onvention	is and
Design Issues, Using ER- to-Relational Mapping.	

Relational Model and Relational Algebra-Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations and Dealing with Constraint Violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION ;Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design.

Unit – III	8Hrs
SQL Schema Definition, Basic Constraints and Queries-SQL Data Definition, S	Specifying
Constraints in SQL, Schema Change Statements in SQL; Basic Queries in SQL; Insert, I	Delete and
Update Statements in SQL More Complex	
SQL Retrieval Queries.	

Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; Multivalued Dependencies, Fourth Normal Form and Fifth Normal Form.

Unit – IV	ðHrs
Transaction Processing Concepts- Introduction to transaction processing, Transaction	states and
additional operations, Desirable properties of transaction, Schedules of transactions, Char	racterizing
schedules based on Recoverability, Characterizing schedules based on Serializabilit	y: Serial,
Nonserial and Conflict-Serializable schedules, Testing for Conflict serializability of schedules	lule, Uses
of serializability.	

Concurrency Control Techniques: Two phase locking techniques for concurrency control, types of locks and system lock tables, Guaranteeing serializability by two-phase locking, Dealing with Deadlock and starvation, Concurrency control based on timestamp ordering.

Database Recovery Techniques: Recovery Concepts, Shadow Paging, The ARIES recovery. **Introduction to NoSQL**- Aggregate data models : aggregates, key-value and document data models.

Unit – V

8 Hrs

Relationships: graph : databases , schemaless databases Distribution models :sharding, master-slave replication, peer-peer replication –combining sharding and replication.

Laboratory Component

Open Ended Mini Project should be implemented and shall be carried out in a batch of two students. The students will finalize a topic in consultation with the faculty. The Mini Project tasks would involve:

- Understand the complete domain knowledge of application and derive the complete data requirement specification.
- Design of the project with Integrated database solution (SQL, NOSQL and emerging techniques)
- Normalization of the Relational design up to 3NF (Desirable 5NF).
- Appreciate the importance of security for database systems.
- Documentation and submission of report.

 CO 1: Understand and explore the needs and concepts of relational and NoSQL database. CO 2: Apply the knowledge of logical database design principles to real time issues. CO 3: Analyze and design relational and NoSQL data model concepts 	Course	Course Outcomes: After completing the course, the students will be able to							
	CO 1:	Understand and explore the needs and concepts of relational and NoSQL database.							
CO 3: Analyze and design relational and NoSQL data model concepts	CO 2:	Apply the knowledge of logical database design principles to real time issues.							
	CO 3:	Analyze and design relational and NoSQL data model concepts							
CO 4: Develop applications using relational and NoSQL database	CO 4:	Develop applications using relational and NoSQL database							

Reference Books:1.Fundamentals of Database Systems, Elmasri and Navathe, 7th Edition, 2016,Pearson
Education, ISBN-13: 978-0-13-397077-7.2.NoSQL A brief guide to the emerging world of Polyglot Persistence, Pramod J Sdalage,
Martin Fowler, 2012, Addison-Wesley, ISBN 978-0-321-82662-6,3.Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, 3rd Edition,
2003, McGraw-Hill, ISBN : 978-0072465631.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub

questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	-	-	-	-	-	-	1	1	-	2	
CO2	-	1	1	1	1	-	1	-	1	2	-	2	
CO3	2	2	2	2	2	-	1	1	2	2	1	2	
CO4	2	2	3	2	3	-	-	2	3	3	2	1	

Semester: V NETWORK PROGRAMMING AND SECURITY (Theory & Practice) Course Code : 100+50 Credits: L:T:P i 3:0:1 SEE Marks : 100+50 Total Hours : 3:0:1 SEE Marks : 100+50 Total Hours : 3:0:1 SEE Marks : 100+50 Total Hours : 3:0:1 SEE Duration : 3 Hrs + 3 Hrs Course Learning Objectives: The students will be able to 1 Understand and Explore the OSI reference model and a variety of network concepts and protocols. 2 Analyzethe interoperability of networking protocols and its usage. Unit – I Marks Vint – I SEE Duration SEE Duration Secret keys and protocols and its usage. Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" <t< th=""></t<>
Course Code : 18CS54 CIE Marks : 100+50 Credits: L:T:P : 3:0:1 SEE Marks : 100+50 Total Hours : 39L + 35P SEE Duration : 3 Hrs + 3 Hrs Course Learning Objectives: The students will be able to SEE Duration : 3 Hrs + 3 Hrs Course Learning Objectives: The students will be able to . . 3 Hrs + 3 Hrs Course Learning Objectives: The students will be able to . . 3 Hrs + 3 Hrs Course Learning Objectives: The students will be able to . . 3 Hrs + 3 Hrs Course Learning Objectives: The students will be able to 1 Understand and Explore the OSI reference model and a variety of network concepts and protocols. 2. Analyze the interoperability of networking protocols and its usage. 3. Explore and implement the client/server communication on Unix platforms. </th
Total Hours : 39L + 35P SEE Duration : 3 Hrs + 3 Hrs Course Learning Objectives: The students will be able to . . 3 Hrs + 3 Hrs I. Understand and Explore the OSI reference model and a variety of network concepts and protocols. .
Course Learning Objectives: The students will be able to 1. Understand and Explore the OSI reference model and a variety of network concepts and protocols. 2. Analyzethe interoperability of networking protocols and its usage. 3. Explore and implement the client/server communication on Unix platforms. 4. Applyand analyze the cryptographic algorithms to ensure secure transfer of secret keys and encryption/decryption of messages. Unit – I 8 Hr The Transport Layer and introduction to sockets Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II
1. Understand and Explore the OSI reference model and a variety of network concepts and protocols. 2. Analyzethe interoperability of networking protocols and its usage. 3. Explore and implement the client/server communication on Unix platforms. 4. Applyand analyze the cryptographic algorithms to ensure secure transfer of secret keys and encryption/decryption of messages. Unit – I 8 Hr The Transport Layer and introduction to sockets Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II
protocols. 2. Analyzethe interoperability of networking protocols and its usage. 3. Explore and implement the client/server communication on Unix platforms. 4. Applyand analyze the cryptographic algorithms to ensure secure transfer of secret keys and encryption/decryption of messages. Unit – I 8 Hr The Transport Layer and introduction to sockets Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II
3. Explore and implement the client/server communication on Unix platforms. 4. Applyand analyze the cryptographic algorithms to ensure secure transfer of secret keys and encryption/decryption of messages. Unit – I 8 Hr The Transport Layer and introduction to sockets Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte orderin functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II
4. Applyand analyze the cryptographic algorithms to ensure secure transfer of secret keys and encryption/decryption of messages. Unit – I 8 Hr The Transport Layer and introduction to sockets Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II
Introduction of messages. Unit – I 8 Hr The Transport Layer and introduction to sockets Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II
The Transport Layer and introduction to sockets Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II
Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TC connection establishment and termination, TIME_WAIT state, TCP port numbers and concurre servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton arguments. Unit – II 8Hrs
connection establishment and termination, TIME_WAIT state, TCP port numbers and concurrent servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton arguments. Unit – II 8Hrst
servers, Buffer sizes and limitation.Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton as inet_ntop functions. Unit – II 8Hrst
functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton at inet_ntop functions. Unit – II 8Hrs
inet_ntop functions. Unit – II 8Hrs
Unit – II 8Hrs
function, getsockname and getpeername functions, TCP Echo server – main – str_echo ,TCP echo server – main – str_echo ,TC
UDP client/server and Name server Socket options introduction, getsockopt and setsockopt functions. recvfrom and sendto function UDP Echo server & UDP Echo client, lost datagrams. DNS, Gethostbyname function, gethostbyad function, getservbyname and getservbyport functions, getaddrinfo function, gai_strerror function freeaddrinfo function, getaddrinfo function: example, host_serv function.
Unit – IV 8Hrs
Traditional Block Cipher and Public Key Cryptosystem Stream Ciphers and Block Ciphers, Feistel Cipher Structure. The Data Encryption Standar Encryption and Decryption. Principles of Public Cryptosystems- Public-Key Cryptosystem Applications for Public-Key Cryptosystems Requirements for Public-Key Cryptosystems, Public-K Cryptanalysis. The RSA algorithm-Description of the Algorithm, Computational Aspects. T security of RSA, Other Public key Cryptosystems: Diffie-Hellman Key Exchange: The Algorithm
Key Exchange Protocols, Man-in-the Middle Attack.
Key Exchange Protocols, Man-in-the Middle Attack.
Key Exchange Protocols, Man-in-the Middle Attack. Unit – V 7Hrs Transport Layer Security and Wireless Network Security Web Security Considerations, Secure Socket Layer, Transport Layer security, HTTPS. Wireles NetworkSecurity: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN overvie

List of Experiments

PART - A: EXPERIMENTS

- 1. Implement a client and server communication using sockets programming.
- 2. Write a program to implement distance vector routing protocol for a simple topology of routers.

- 3. Write a program to implement error detection and Correction concept using Checksum and Hamming code.
- 4. Implement a simple multicast routing mechanism.
- 5. Write a program to implement concurrent chat server that allows current logged in users to communicate one with other.
- 6. Implementation of concurrent and iterative echo server using both connection and connectionless socket system calls.
- 7. Implementation of remote command execution using socket system calls.
- 8. Write a program to encrypt and decrypt the data using RSA and Exchange the key securely using Diffie-Hellman Key exchange protocol.

Note: The above experiments shall be conducted using C / C++ on Linux Operating System. PART – B: SIMULATION

1. Setup an IEEE 802.3 network with a) hub b) switch c) Hierarchy of switch. Apply theFTP, Telnet applications between nodes. Vary the number of nodes. Vary the bandwidth,queue size and observe the packet drop probability.

2. Setup a wireless sensor networks with atleast two device co-coordinators and nodes.Provide Constant Bit Rate (CBR), Variable Bit Rate (VBR) application between severalnodes. Increase the number of co-coordinators and nodes in the same area and observe theperformance at physical and MAC layers.

3. Setup an IEEE 802.11 network with atleast two access points. Apply the CBR, VBRapplications between devices belonging to same access points and different access points.Provide roaming of any device. Vary the number of access points and devices. Find outthe delay in MAC layer, packet drop probability.

4. Case Study on Configuring Routers using CISCO-Packet tracer.

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Understand and Explore the OSI reference model and a variety of network concepts and
	protocols.
CO 2:	Analyze network Protocols interoperability and application.
CO 3:	Design and demonstrate client/server programs on Unix platforms to create robust real-world
	sockets-based applications.
CO 4:	Apply appropriate cryptographic algorithms to ensure security of information through
	wired and wireless medium.

Reference Books:

1.	UNIX Network Programming – The sockets networking API, W.Richard Stevens, Bill Fenner, Andrew M. Rudoff, Vol.I , 3 rd edition, PHI. ISBN-13: 978-0131411555 ISBN-10: 9780131411555.
2.	Cryptography and Network Security Principles and Practice, William Stallings, 7 th edition, 2017, Global edition, Pearson Education, ISBN: 978-0-13-444428-4.
3.	Internetworking with TCP/IP, Douglas E. Comer, David L. Stevens, Vol. III, 6 th Edition, 2015, Paperback, Publisher: Pearson India, ISBN-10: 9332549877, ISBN-13: 978-9332549876.
4.	Learning Network Programming with Java, Richard M Reese, First Published: December 2015, Packet Publishing Ltd., ISBN-13: 978-0123742551, ISBN-10: 0123742552.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	1	1	-	-	-	-	1	1	1	1	
CO2	3	3	3	3	-	-	-	-	1	1	1	1	
CO3	3	3	3	3	2	-	1	1	1	1	1	2	
CO4	2	2	3	3	3	1	1	1	1	1	1	3	

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	Semester: V										
	SOFTWARE ENGINEERING (Theory & Practice)										
(Common to CS & IS)											
Cou	rse Code	:	18IS55		CIE	:	100+50 Marks				
Cred	Credits: L:T:P : 3:0:1 SEE : 100+50 Marks										
Total Hours:39L+35PSEE Duration:3.00+3:00 Hrs											
Course Learning Objectives: The students will be able to											
1 Understand the activities involved in Software Engineering Process											
2	2 Compare various models for software design, development and testing										
3	Comprehen	d co	ncepts of UML a	and component based	software engineerin	g					
4	Apply Soft	ware	planning technio	ques for efficient Sof	tware management						
	rview: Introd			Unit-I			08 Hrs				
Unified Process. Computer Aided Software Engineering. Agile Software Development: Introduction to agile methods, Agile development techniques, Agile project management and scaling agile methods.											
Unit – II 08 Hrs Requirements Engineering and System Modeling:											
Softw Spect	ware Require ification, Va ctural models	ment ilidat 3, Be	s: Functional ion and Chang chavioural mode	and Non-functiona e. System Modelin els, Model driven an ctural patterns and an Unit –III	ng: Context models chitecture. Architec	, In	nteraction models,				
 Development and Testing: Design and implementation: Object oriented design using UML, Design patterns, Implementation issues, Open-source development. Software Testing: Development testing, Test-driven development, Release testing, User testing. Software Evolution: Evolution processes. Legacy system evolution, Software maintenance 											
Unit –IV 08 Hrs											
Depe meth requi	ods and de	ms: I epen liabil	Dependability pr dability, Reliat ity measuremen	operties, Sociotechni bility engineering: ts, Component base omponent compositi	Availability and d software engineer	relia	ability, reliability				
· · · · · · · · · · ·		,	r	Unit –V			07 Hrs				
Softv	ware Manag	emer	nt:	· ·							
				ent, Managing Peopl	e, Teamwork, Proje	ct P	Planning: Software				

Project Management: Risk Management, Managing People, Teamwork, Project Planning: Software Pricing, Plan driven development, Project Scheduling, Agile planning, Estimation Techniques, COCOMO cost modeling.

Laboratory Component

PART-A

Software Engineering Virtual Labs will be used to carry out activities weekly in the laboratory. The Virtual Lab is a MHRD, Govt. of India initiative.

http://vlabs.iitkgp.ac.in/se/

List of Experiments:

- 1) Identifying the Requirements from Problem Statements
- 2) Estimation of Project Metrics
- 3) Modeling UML Use Case Diagrams and Capturing Use Case Scenarios
- 4) Identifying Domain Classes from the Problem Statements
- 5) State chart and Activity Modeling
- 6) Modeling UML Class Diagrams and Sequence diagrams
- 7) Modeling Data Flow Diagrams
- 8) Estimation of Test Coverage Metrics and Structural Complexity
- 9) Designing Test Suites

PART-B

Student will analyse, design, and implement an application using the appropriate Software engineering tools and practices. All topics learnt in virtual lab (SE phases) need to be covered. A report of the same is expected to be submitted.

Some example applications are listed below(not limited to):

- Automated banking application
- Online shopping portal
- CIE seating arrangement
- SEE Exam invigilation duty allotment
- UG Project Evaluation system
- Employee Payroll system

List of Submissions:

- 1) Requirements Analysis document
- 2) Design document
- 3) Implementation details
- 4) Testing document with appropriate test cases.

Constraints and Dependencies

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Comprehend various software life cycle models and steps of software development process.						
CO2:	Apply concepts of Software Project Planning and software Design techniques						
CO3:	Analyze capabilities of various tools to assist in the software development activities						
CO4:	Develop robust software design and software project plan from requirement gathering to						
	implementation						

Refere	ence Books									
1	Ian Sommerville," Software Engineering", 9th Edition, Pearson Education, 2013, ISBN:									
1	9788131762165									
2	Roger.S.Pressman," Software Engineering-A Practitioners Approach", 7th Edition, Tata									
2	McGraw Hill, 2007, ISBN: 9780071267823									
2	Pankaj Jalote," An Integrated Approach to Software Engineering", 3rd Edition, Narosa									
3	Publishing House, 2013, ISBN: 9788173197024									
	Rajib Mall, Fundamentals of Software Engineering, 3rd Edition, Prentice-hall Of India Pvt									
4	Ltd., 2012, ISBN: 9788120348981.									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	3	1	1	1	-	-	-	-	-	2	
CO2	1	2	2	1	1	1	-	-	-	-	-	2	
CO3	1	2	2	1	1	1	-	-	-	-	-	2	
CO4	1	3	3	1	1	1	-	-	-	-	-	2	

	Semester: V									
	OBJECT ORIENTED SYSTEM DEVELOPMENT USING UML, JAVA AND									
	PATTERNS									
	(Group A: PROFESSIONAL ELECTIVES, MOOC COURSE)									
~	(Common to CS & IS)									
Cou	ourse Code : 18CS5A1 CIE Marks : 100									
Cree	Credits: L:T:P : 3:0:0 SEE Marks : 100									
Tota	Total Hours:39LSEE Duration:Online Exam									
Cou	Course Learning Objectives: The students will be able to									
1.	. Specify, Design, Build and Understand Complex software systems									
2.	Acquire knowledge of notations and process of object-oriented analysis and design									
3.	Explore the object-oriented approach to system development, modeling objects, relationships and interactions.									
4.	Demonstrate	e d	esign concepts	through Unified M	odelling Language (UN	ML)			
5.	Visualize, S	peo	cify, Construct	and Document the	artifacts of software	e-in	tensive system			

Unit – I	8 Hrs
Introduction, Life Cycle Models for Object Oriented Development, modellingUse Ca	ise
Diagrams using appropriate Unified Modeling Language (UML) notations.	
Unit – II	8 Hrs
Class Diagram I, Class Diagram II, Designing software systems by modelling classes	, objects,
relationships and their interactions using appropriate Unified Modeling Language (U	ML)
notations.	
Unit – III	8 Hrs
Designing Sequence Diagrams, State chart diagrams using appropriate Unified Mode	ling
Language (UML) notations	
Unit – IV	8 Hrs
Design process, Introduction to design patterns, GRASP (General Responsibility Ass	ignment
Software Patterns) patterns	
Unit – V	7 Hrs
GoF (Gang of Four) Design pattern I, GoF (Gang of Four) Design Pattern II	

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	Explore and discuss Object Oriented analysis and Design Principles to evaluate						
	requirement analysis, System Behavior and Object Model						
CO 2:	Apply the knowledge of object oriented concepts for modeling software systems						
	design problems.						
CO 3:	Analyze the requirements of the problem and design solutions to complex problems						
	using UML notations.						
CO 4:	Design object oriented models for software systems using appropriate UML						
	notations and Design Patterns.						

Refere	nce Books:
1.	UML for Java Programmers, Robert Martin, 1 st edition, 2004, Pearson Education;
	ISBN 978-8177586756
2.	Object Oriented Systems Development using the Unified ModellingLanguage, Ali
	Bahrami, 2 nd Reprint 2008,McGraw Hill, ISBN:978-0-07-026512-7
3.	The Unified Modeling Language UserGuide, Grady Booch, James Rumbaugh, Ivar
	Jacobson, 2 nd Edition, 2005, Addison Wesley Professional, ISBN: 0-321-26797-4

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	1
CO2	1	-	1	-	-	-	-	-	-	-	-	1
CO3	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	2	2	-	1	-	-	1	1	1	-	2

	Semester: V							
	SOCIAL NETWORKS							
	()	Gro	up A: PROFE	SSIONAL ELECTI	· ·	RSF	E)	
				(Common to CS &	IS)			
Cou	rse Code	:	18IS5A2		CIE Marks	:	100	
Credits: L:T:P		:	3:0:0		SEE Marks	:	100	
Tota	al Hours	:	39L		SEE Duration	:	Online Exam	
Cou	rse Learning	Obj	jectives: The stu	dents will be able to				
1.	Understand	the l	pasic concepts o	Social Networks				
2.	Illustrate various methods for Network analysis							
3.	3. Understand and distinguish how Social Network help society and its impact.							
4.	4. Create and use appropriate technology to implement useful applications of Social Networks							
5.	Understand and institution		social networks	can be used without	breaching privacy, s	ecui	rity of individuals	

Unit – I	8 Hrs
Introduction, Handling Real-world Network Datasets	
Unit – II	8 Hrs
Strength of Weak Ties, Strong and Weak Relationships (Continued) & Homophily	
Unit – III	8 Hrs
Homophily Continued and +Ve / -Ve Relationships, Link Analysis, Cascading Beh	aviour in
Tomophily Continued and two 7 we Relationships, Entry marysis, Casedanig Den	aviour m
Networks	aviour in
	8 Hrs
Networks	8 Hrs
Networks Unit – IV	8 Hrs
Networks Unit – IV Link Analysis (Continued), Power Laws and Rich-Get-Richer Phenomena, Power law (co	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	Understand the concepts and features of Social networks						
CO 2:	Analyze various methods of social network analysis						
CO 3:	Design applications using social network analysis						
CO 4:	Implement programs that are useful to society without breaching security, privacy of						
	individuals and others						

Referen	Reference Books:						
1.	Networks, Crowds and Markets, David Easley and Jon Kleinberg, 2010, Cambridge						
	University Press. ISBN: 9780521195331, 9780521195331						
2.	Social and Economic Networks, Matthew O. Jackson, 2010, Princeton University Press.						
	ISBN-13: 978-0691148205, ISBN-10: 0691148201						

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	2										
CO3	2	2	2	2			1	2	2	1	1	1
CO4	2	2	2	2	1	2	1	3	2	1	1	1

	(Gro	APPLIED NATURAL	nester: V LANGUAGE PROCESSING L ELECTIVES, MOOC COU	RSF	(5	
Cou	rse Code	:	18CS5A3	CIE Marks	:	100	
Cre	dits: L:T:P	:	3:0:0	SEE Marks	:	100	
Tota	al Hours	:	39L	SEE Duration	:	Online Exam	
Cou	rse Learning	Obj	ectives: The students wil	l be able to			
1.	Introduce va	riou	s techniques to find simil	ar words using the context of su	rrou	nding words	
2.	Build a Language model to predict the next word and generate sentences						
3.	3. Encode every word in the vocabulary of the corpus into a vector form that represents its context and similar words						
4.	Encode a se	nten	ce for machine translatior	and conversation purposes.			
5.	5. To gather sufficient knowledge and proficiency in probabilistic, Artificial Neural Network (ANN) and deep learning techniques for NLP.						

Unit – I	8 Hrs
Introduction, terminologies, empirical rules	
Word to Vectors	
Probability and Language Model	
Unit – II	8 Hrs
Neural Networks for NLP	
Distributed word vectors (word embeddings)	
Recurrent Neural Network, Language Model	
Unit – III	8 Hrs
Statistical Machine Translation	
Statistical Machine Translation, Neural Machine Translation	
Neural Machine Translation	
Unit – IV	8 Hrs
Conversation Modeling, Chat-bots, dialog agents, Question Processing	
Information Retrieval tasks using Neural Networks- Learn to Rank, Understanding Ph	nrases,
analogies	
Spelling Correction using traditional and Neural networks, end notes	
Unit – V	7 Hrs
Practical Applications of NLP	

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Understand approaches to syntax and semantics in NLP.
CO 2:	Understand Apply approaches to discourse, generation, dialogue and summarization
	within NLP.
CO 3:	Analyze current methods for statistical approaches to machine translation.
CO 4:	Understand machine learning techniques used in NLP, including hidden Markov
	models and probabilistic context-free grammars, clustering and unsupervised
	methods, log-linear and discriminative models, and the EM algorithm as applied
	within NLP

Refere	nce Books:
1.	Features of a Corpus, Niladri Sekhar Dash and S. Arulmozi, Springer Singapore,
	2018, pp. 17–34. ISBN: 978-981-10-7458-5. doi: 10.1007/978-981-10-7458-5_2,
	url:https://doi.org/10.1007/978981-10-7458-5_2.
2.	Deep Learning, Ian Goodfellow, YoshuaBengio, and Aaron Courville, 2016, MIT
	Press, ISBN: 9780262035613, http://www.deeplearningbook.org.
3.	Handbook of natural language processing, NitinIndurkhya and Fred J Damerau,
	2010, Chapman and Hall/CRC, .ISBN-13: 978-1420085921.
4.	Speech and Language Processing: An Introduction to Natural Language Processing,
	Computational Linguistics, and Speech Recognition, Daniel Jurafsky and James H.
	Martin, 2000, 1st Upper Saddle River, NJ, USA: Prentice Hall PTR,. ISBN:
	0130950696.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	1	1	3	-	-	-	-	-	-	1	
CO2	-	3	2	2	2	-	-	-	1	1	2	3	
CO3	2	2	2	3	2	1	-	1	3	1	2	2	
CO4	2	3	3	2	2	1	1	3	1	1	-	2	

	Semester: V											
	INTRODUCTION TO ROBOTICS											
	(Group A: PROFESSIONAL ELECTIVES, MOOC COURSE)											
Cou	Course Code:18CS5A4CIE Marks:100											
Cree	dits: L:T:P	••	3:0:0		SEE Marks	••	100					
Tota	al Hours	:	39L		SEE Duration	:	Online Exam					
Cou	rse Learning	g Ob	jectives: The	students will be abl	le to							
1.		ced		•	an build robots and a sthem to take advant		-					
2.	To study rol medical and		11	in manufacturing in	dustry, underwater,	, re	habilitation,					
3.	To study rol	ootic	mechanisms	- kinematics								
4.	To study dif	ferei	nt electrical ad	ctuators used in rob	otics- Motors, sense	ors	and control					
5.		-	-	bects of robotics likes and path planning	e perception, localiz	zati	ion and					

Unit – I	8Hrs
Introduction to robotics - History, growth; Robot Applications- Manufacturing	industry,
defense, rehabilitation, medical etc., Laws of robotics.Robot mechanisms; kine	matics –
coordinate transformations, DH parameters	
Unit – II	8Hrs
Forward kinematics and inverse kinematics ; Jacobians, Statics and Trajectory	Planning.
Actuators (electrical)- DC Motors, BLDC Servo motors;	
Unit – III	8 Hrs
Sensors, Sensor integration; Control - PWM, joint motion control, feedback	control;
Computed torque control.	
Unit – IV	8 Hrs
Perception, Localization and mapping; Probabilistic robotics, path planning, BFS;	
DFS;Dijkstra; A-star; D-star; Voronoi; Potential field; Hybrid approaches	
Unit – V	7 Hrs

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Study robotic applications in manufacturing industry, underwater, rehabilitation,
	medical and other areas.
CO 2:	Learn Robot mechanisms; kinematics; Jacobians, Statics and Trajectory Planning.
CO 3:	Understand the working of Actuators (electrical)- DC Motors, BLDC Servo motors,
	Sensors and Control mechanisms.
CO 4:	
	and mapping; Probabilistic robotics, path planning and introduction to reinforcement
	learning

Refere	Reference Books:									
1.	Fundamentals of Robotics, Robert J Schilling, Pearson India, 2015ISBN : 978-93-									
	325-5523-5									
2.	Introduction to Robotics: Mechanics and control, John J Craig, 3e, Pearson India,									
	2005; ISBN: 0-13-123629-6									
3.	Introduction to autonomous robots, Nikolauscorrell, ISBN-13:978-0692700877									

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	1			3	2		2	3	2	3	
CO2	3	3	2		2	1	2		1	2	2	2	
CO3	3	3	2		2	1	2		1	2	2	2	
CO4	3	3	2		3	1	2		1	2	2	2	

	Semester: V											
	THE JOY OF COMPUTING USING PYTHON											
	(Group A:PROFESSIONAL ELECTIVES, MOOC COURSE)											
-	(Common to All Branches)											
Cou	rse Code	:	18CS5A5		CIE Ma	rks	:	100				
Cree	dits: L:T:P	••	3:0:0		SEE Ma	rks	:	100				
Tota	al Hours	••	39L		SEE Du	ration	:	Online Exam				
Cou	rse Learning	; O	bjectives: The	students will be a	able to							
1.	Understand	wh	y Python is a u	seful scripting lar	nguage for d	evelopers	5.					
2.	Learn how t	o u	se lists, tuples,	and dictionaries i	in Python pr	ograms.						
3.	Define the s	tru	cture and comp	onents of a Pytho	on program.							
4.	Develop co	ost-	effective robu	st applications	using the	latest I	Pytł	non trends and				
	technologies	5										

Unit – I	8 Hrs						
Motivation for Computing, Welcome to Programming!!, Variables and Expressions : Design							
your own calculator, Loops and Conditionals : Hopscotch once again. Lists, Tu	ples and						
Conditionals : Let's go on a trip, Abstraction Everywhere : Apps in your phone.							
Unit – II	8 Hrs						
Counting Candies : Crowd to the rescue, Birthday Paradox : Find your twin, Google	Translate						
: Speak in any Language, Currency Converter : Count your foreign trip expenses.							
Unit – III 8 Hr							
Monte Hall : 3 doors and a twist, Sorting : Arrange the books, Searching : Find in	seconds,						
Substitution Cipher : What's the secret !!, Sentiment Analysis : Analyse your	Facebook						
dataPermutations : Jumbled Words,Spot the similarities : Dobble game							
Unit – IV	8 Hrs						
Count the words : Hundreds, Thousands or Millions, Rock, Paper and Scissor : Che	ating not						
allowed !!, Lie detector : No lies, only TRUTH , Calculation of the Area : Don't mea	usure, Six						
degrees of separation, Image Processing : Fun with images							
Unit – V	7 Hrs						
Tic tac toe : Let's play, Snakes and Ladders : Down the memory lane, Recursion :	Tower of						
Hanoi, Page Rank : How Google Works !!							

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Explore and apply the concept of python to solve real world problems.									
CO 2:	Design Classes and establish relationships among Classes for various applications from problem definition.									
CO 3:	Develop applications using google translator and gaming application.									
CO 4:	Implement real time application such as browser automation, NLP, Image processing etc using python									

Refer	Reference Books:										
1.	Head First Python, Paul Barry, 10th Edition, 2016, O'Reilly, ISBN 978-9352134823.										
2.	Python Cookbook: Recipes for Mastering Python 3,David Beazley, Brian K. Jones, 9 th Edition, 2017,O'Reilly,ISBN 978-1449340377.										
3.	Python: The Complete Reference, Martin C Brown,7 th Edition,2018,McGraw Hill Education, ISBN 978-9387572942.										

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	1	-	-	1	-	-	-	2
CO2	3	3	2	1	1	-	-	1	-	-	-	2
CO3	3	3	3	2	1	-	-	2	-	-	-	2
CO4	3	3	3	2	1	-	-	2	-	-	-	2

	Semester: V								
	FUNDAMENTALS OF AEROSPACE ENGINEERING								
	(GROUP B: GLOBAL ELECTIVE)								
Com	(Theory) Course Code : 18G5B01 CIE : 100 Marks								
		:		0		-			
Cred	lits: L:T:P	:	3:0:0			-	100 Marks		
Hou	rs	:	39L	S	EE Duration	:	3.00 Hours		
Cou	rse Learning	g O	bjectives: To enable	the students to:					
1	Understand	l th	e history and basic pri	inciples of aviation					
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion								
3	Comprehend the importance of all the systems and subsystems incorporated on an air vehicle								
4	Appraise the significance of all the subsystems in achieving a successful flight								

Unit-I	08 Hrs				
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosphere	ere and its				
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anat	omy of an				
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard				
Atmospheric Properties.					
Unit – II	08 Hrs				
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Type	s of drag,				
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclat	ture, Basic				
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	.g.				
Unit -III	07 Hrs				
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Brayton Cycle,					
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	engines,				
Comparative merits and demerits of different types Engines.					
Unit -IV	09 Hrs				
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics	s, Kepler's				
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.					
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rock	ets: Solid,				
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific	Impulse,				
Exhaust Velocity, Simple Problems on rocket performance.	_				
Unit -V	07 Hrs				
Aerospace Structures and Materials: Introduction, General types of construction, Monocod	jue, Semi-				
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	on.				
Course Outcomes: At the end of this course the student will be able to:					

Course	Course Outcomes: At the end of this course the student will be able to:					
CO1:	Appreciate and apply the basic principles of aviation					
CO2:	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and aircraft materials during the development of an aircraft					
CO3:						
CO4:	Evaluate and criticize the design strategy involved in the development of airplanes					

	Ref	erence Books
	1	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN
	I	9780071086059.
	•	Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:
2	1118174208, 9781118174203.	

3	;	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
		Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
4	ŀ	978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

Semester: V									
	NANOTECHNOLOGY								
	(GROUP B: GLOBAL ELECTIVE)								
				(Theory)					
Cour	rse Code	:	18G5B02		CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks		
Total Hours : 39L					SEE Duration : 3.00 Hou				
Cour	rse Learning ()bj	ectives: The student	ts will be able to					
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	inthesize and		
	characterize t	he	nanoparticles.						
2	Learn about	Na	ano sensors and th	heir applications ir	n mechanical, elect	rica	l, electronic,		
	magnetic, che	emi	cal fields.						
3	Apply the con	nce	pt of nanotechnolog	y in sensing, transdu	icing and actuating r	nec	hanism.		
4	4 Design the nanoscale products used in multidisciplinary fields.								
. <u> </u>									
			Ū	J nit-I			08 Hrs		

Omt-1	UO IIIS
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicological/inorganic, protein & DNA based nanostructures.	gy health
effects caused by nanoparticles.	
Unit – II	09 Hrs
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Botton	n up and
Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica	1 Vapour
deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft litho	ography).

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III					
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors					
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,	Magnetic				
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Bi	osensors:				
Biosensors in modern medicine.					

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ Hrs
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanica	al cutting
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.	
Course (Dutcomes: After completing the course, the students will be able to
----------	--
CO1:	Understand the structures of nano materials and their properties.
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization
	results.
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its
	knowledge in various fields.
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.

Refere	ence Books
	B.S. Murty., P. Shankar., B.Raj, BB. Rath, and J. Murday, Textbook of Nanosciences and
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.
	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1st Edition,
2	2013, ISBN 9781439827123 (Unit III).
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.
	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,
4	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	2	3	2	3	3	-	-	1	2	-	
CO2	3	3	3	2	3	3	2	-	2	-	-	-	
CO3	3	2	2	2	2	1	1	-	-	-	1	-	
CO4	1	2	3	3	3	2	1	-	-	2	-	-	

				Se	emester: V				
]	FUEL CEL		OLOGY	•		
				OUP B: G					
			(-		(Theory)	_			
Cour	se Code	:	18G5B03		<u> </u>		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0				SEE	:	100 Marks
Total	l Hours	:	39L				SEE Duration	:	3.00 Hours
Cour	se Learning (· ·			ill be able to	0			
1	Recall the c								
2	Distinguish		• •				es		
3	Know the ap					ains			
4	Understand	the c	haracteriza	tion of fuel	cells				
				Unit	+ T				07 Hrs
Intro	duction – I:			Unit	-1				07 1115
		hist	orical deve	elopments v	vorking pri	nciple of	fuel cell, compos	nen	ts of fuel cell
	of the cell, Fu			-		—	—		
				Unit -		en prope			07 Hrs
Туре	s of fuel cells	– II:		0					01 1115
• •				C 1 11					
	incation of fu	er ce	lls, alkalıne	e fuel cell, r	polymer ele	ectrolyte f	fuel cell, phospho	oric	acid fuel cell.
					•	•	fuel cell, phospho advantages of eac		acid fuel cell,
					, advantage	•			acid fuel cell,
molte		iel ce	ell, solid ox	ide fuel cell Unit -	, advantage	•			
molte	en carbonate fu iencies, losses	and	ell, solid ox kinetics– l	ide fuel cell Unit -	, advantage –III	es and disa		h	07 Hrs
molte Effici Intrin	en carbonate fu iencies, losses usic maximum	and efficient	ell, solid ox kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficier	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs
molte Effici Intrin losses	en carbonate fu iencies, losses usic maximum	and efficient	kinetics– l kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficien I current, of	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs
molte Effici Intrin losses activa	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode	and and efficience ver a	kinetics– l kinetics– l ciency, vol and internal ction kinetic	ide fuel cell Unit - III: Itaic efficien I current, of	, advantage - III ncy, farada hmic losse	es and disa	advantages of eac	cien	07 Hrs
molte Effici Intrin losses activa Fuel	en carbonate fu iencies, losses sisic maximum s, fuel crosso ation/electrode Cell Characte	ael ce and efficience ver a e/reac	kinetics- I ciency, vol and internation kinetic cs - IV:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV	ic efficie s, mass t	advantages of eac ncy, overall effic ransport/concentr	cien cien	07 Hrs cy, activation on losses, and 08 Hrs
molte Effici Intrin losses activa Fuel In-sit	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Character u characteriza	ael ce and efficience ver a c/reace eristi	kinetics– l ciency, vol and internal ction kinetic cs – IV: I-V curve	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV voltage me	es and disa ic efficie s, mass t easuremen	advantages of eac	cien cien	07 Hrs cy, activation on losses, and 08 Hrs
molte Effici Intrin losses activa Fuel In-sit cyclic	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience ver ac eristi ation: , elec	kinetics– I kinetics– I ciency, vol nd internation kinetic cs– IV: I-V curve ctrochemica	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I, current – I impedance	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry tu characteriz	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I current – I impedance s: Proton c ectrochemic	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity.
molte Efficient Intrin losses activa Fuel In-sit cyclic Ex-si electr	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur	and a efficience of the second	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve trochemica technique area and ele	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity,
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appl	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficience eristi ation: , election face el cel	kinetics – 1 ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele ls – V:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - d impedance s: Proton c ectrochemic Unit	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity -V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza ications of fue	and a efficiency ver a eristi ation: , electric ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity -V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficiency ver a eristi ation: , electric ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity -V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characterizate u characterizate tu characterizate cochemical sur ications of fue action and stor	and a efficience ver a eristi ation: , elect ation face el cell age c	ell, solid ox kinetics– I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydrogen	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V ransport, hy	es and disa ic efficie s, mass t easuremen opy v, flexural drogen st	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry c v	and a efficience ver a eristication: , electrication face el cell cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage -III ncy, farada hmic losse -IV voltage ma e spectrosco onductivity cal activity -V ransport, hy rse, the stu	es and disa ic efficie s, mass t easuremen opy y, flexural drogen str udents wil	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell cage c cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs safety issues.
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell cage c cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues.
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu character	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell age c c c Afte	ell, solid ox kinetics – I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydroger er complet fundament l engineeri	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - , current – I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce onductivity cal activity -V ansport, hy rse, the stu- acteristics es to distir	es and disa ic efficie s, mass t easuremen opy y, flexural drogen sta drogen sta udents wil of fuel cel nguish fue	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical nd s	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues. ntional energy

Refere	ence Books
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
1	2009, Universities Press, ISBN – 13: 978 1420 060287
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John
2	Wiley & Sons, ISBN – 978 0470 848579

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

				Semester: V			
			IN	TELLIGENT SYSTEMS			
			(GROU	P B: GLOBAL ELECTI	VE)		
				(Theory)			
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks
	al Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	g Obj	ectives: The stu	dents will be able to			
1.	Understand	func	lamental AI con	cepts and current issues.			
2.	Understand	and	apply a range of	AI techniques including sear	ch, logic-based re	easc	oning, neural
	networks an	nd rea	asoning with une	certain information.			
3.	Recognize	comp	outational proble	ms suited to an intelligent sys	stem solution.		
4.	Identify and	d list	the basic issues	of knowledge representation,	blind and heurist	ic s	earch.
	1						
				Unit – I			07 Hrs
Intr	oduction: Th	ne Fo	undations of Ar	tificial Intelligence, History of	of Artificial Intell	ige	nce, The State
of th	ne Art, Intelli	igent	Agent: Introdu	ction, How Agents Should A	ct, Structure of I	ntel	ligent Agents,
Prol	blem-solving	: Sol	lving Problems	by Searching Search Strate	egies, Avoiding	Re	peated States,
Avo	iding Repeate	ed Sta	ates				
				Unit – II			08 Hrs
Info	rmed Searc	h M	ethods: Best-F	irst Search, Heuristic Funct	tions, Memory	Bou	inded Search,
	tive Improve		e				
				as Search Problems, Perfect			Person, Games
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an E	lement of Chance	e	
				Unit – III			08 Hrs
	wledge Infer						
	0 1			n based system, Frame base	•		
	-		-	ue approach, Fuzzy reasonin			s, Bayes Rule,
Unce	ertainty Princ	iples	, Bayesian Theo	ry-Bayesian Network-Demps	ter - Shafer theor	y.	
-		~ 1		Unit – IV			08 Hrs
	0			neral Model of Learning Age			0
		-		heory, Learning General Log	gical Description	s, \	why Learning
			Learning Theor	•		т	
			-	Learning in a Known Environme		L	earning in an
Unk	nown Enviro	nmen	ii, Active Learni	ng in an Unknown Environmo Unit – V	ent		00 TT
F	aut Cristana	Com	nonanta Dra-1		ing portaints f-	otor	08 Hrs
_			-	tion rules, Statistical reason	-		
				vledge, Introspection. Expert	•		-
-		-	-	Knowledge Acquisition –Met DN, Expert systems shells.	ia kilowieuge, H	curi	istics. Typical
expe	n systems - r	vi i C	Π , DAKI, AU	Jin, Expert systems shells.			

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.
CO 4:	Assess their applicability by comparing different Intelligent System techniques

Reference Books:

AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
ISBN-13: 978-0-13-604259-4
Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
Hill, ISBN: 9780070087705
Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3rd Edition, 2007, ISBN-
13: 978-0134771007
Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

			Semester: V			
R	EMOT		ND GEOGRAPHIC II JP B: GLOBAL ELI		YSTI	EM
			(Theory)			
Course Code	:	18G5B05		CIE	:	100 Marks
Credits: L:T:I	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39 L		SEE Duration	:	3.00 Hours
Course Learn	ng Ob	jectives: The stu	dents will be able to			
1 Understan	d conc	ept of using pho	ographic data to determ	ine relative position	s of p	ooints.
2 Study the	nethoo	ls of collection of	land data using Terrest	rial and Aerial cam	era.	
3 Analyze th	e data	gathered from v	rious sensors and interp	oret for various appl	icatio	ons.
4 Apply the	princip	oles of RS, GIS a	nd GPS in various scope	es of Civil Engineer	ing.	
ł						
			Unit-I			07 Hı

Unit-I	07 Hrs					
Remote Sensing- Definition, types of remote sensing, components of remote sensing, elec	tromagnetic					
spectrum, Black body, Atmospheric windows, energy interaction with earth surface feature	es. Spectral					
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other						
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key elements.						
Unit – II	08 Hrs					
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry,	Introduction					
to digital Photogrammetry.						
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,					
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –					
flight planning.						
Unit –III	08 Hrs					
Geographic Information System- Introduction, Functions and advantages, sources of da	ata for GIS.					
Database - Types, advantages and disadvantages. Data Analysisoverlay operations, netwo	ork analysis,					
spatial analysis. Outputs and map generation.						
GPS- components and working principles.						
Unit –IV	08 Hrs					
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and r	nanagement					
(prioritization of river basins, water perspective zones and its mapping), Highway and tra	ansportation					
(highway alignment, Optimization of routes, accident analysis), Environmental Engine	ering (Geo-					
statistical analysis of water quality, rainfall).						
Unit –V	08 Hrs					
Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, ur	ban sprawl,					
Change detection studies, forests and urban area, agriculture, Disaster Management. La	youts: Dead					
and Dedict Cristian Constant						
end, Radial, Grid iron, Circular system.						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Understand and remember the principle of Remote Sensing (RS) and Geographical Information							
	Systems (GIS) data acquisition and its applications.							
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs							

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	rence Books										
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3rd Edition, Wiley										
	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.										
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,										
2	John Wiley Publishers, New Delhi, ISBN – 8126532238.										
2	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,										
3	ISBN: 8122438121										
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.										
_	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,										
3	ISBN - 0198072392										

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V									
	AUTOMOTIVE ELECTRONICS									
	(GROUP B: GLOBAL ELECTIVE)									
		1	100	(Theory)		100 3 5 1				
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks				
Cr	redits: L:T:P	:	3:0:0	SEE Marks	:	100 Marks				
He	ours	:	39L	SEE Duration	ı :	3.00 Hours				
Co	ourse Learning	Ob	jectives: The s	tudents will be able to						
1	Acquire the kn	ow	ledge of autom	otive domain fundamentals, need of Electronics a	nd co	ommunication				
I	interfaces in A	utoi	motive systems							
2	Apply various	typ	es of sensors, a	ctuators and Motion Control techniques in Autom	otive	systems				
2	Understand digital engine control systems and Embedded Software's and ECU's used in automotive									
3	3 systems.									
4	Analyse the co	nce	pts of Diagnost	ics, safety and advances in Automotive electronic	Syst	ems.				

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and						
	communication interfaces in Automotive systems.						
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive						
	systems						
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in						
	automotive systems.						
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.						

Referen	Reference Books											
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier											
	science, Newness publication, ISBN-9780080481494.											
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-											
	0471288357											
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3rd Edition, Elsevier Butterworth-											
	Heinemann. ISBN 0-7506-62190.											
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-											
	Heinemann. ISBN 0-75-066991-8.											

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

	Semester: V									
	e- MOBILITY									
	(GROUP B: GLOBAL ELECTIVE)									
				(Theory)						
Co	ourse Code	:	18G5B07		CIE	:	100 Marks			
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks			
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours			
Co	ourse Learning	g O	bjectives: The stud	ents will be able to						
1	Understand th	ne b	asics of electric and	hybrid electric vehi	cles, their architectur	e ar	nd modelling.			
2	Explain differ	ent	energy storage tech	nologies used for el	ectric vehicles and th	leir	management			
	system.									
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for			
	electric vehicles.									
4	Design EV S	imı	lator through perfo	ormance evaluation	and system optimiz	atio	n techniques			
	and need for t	the	charging infrastruct	ure.						

Unit-I	06 Hrs
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, BE	EV Fuel
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Power	ertrains,
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Com	parison
of Automotive and Other Transportation Technologies.	_
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle
Comparisons	
Unit – II	09 Hrs
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery
Charging, Protection, and Management Systems, Battery Models, Determining the Ca	ell/Pack
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.	
Battery Charging: Basic Requirements for Charging System, Charger Architecture	es, Grid
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, W	Vireless
Charging, The Boost Converter for Power Factor Correction.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	atteries,
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Funct	ionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pro	otection,
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commun	ication:
Dedicated analog and digital wires.	
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	used in
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric
machines, electric machine and power electronics integration Constraints.	
Unit –V	07 Hrs
EV Simulation: system level simulation, EV simulator, simulator modules, perfo	ormance
evaluation, system optimization.	
EV Infrastructure: Domestic charging infrastructure, Public charging infrast	ructure,
Standardization and regulations, Impacts on power system.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies							
	and modelling.							
CO2:	Discuss and implement different energy storage technologies used for electric vehicles							
	and their management system.							
CO3:	Analyze various electric drives and its integration techniques with Power electronic							
	circuits suitable for electric vehicles.							
CO4 :	Design EV Simulator for performance evaluation and system optimization and							
	understand the requirement for suitable EV infrastructure.							

Refe	erence Books
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN
	9781119063667.
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,
2	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions
3	Technip, Paris, ISBN 978-2-7108-0994-4.
1	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford
-	university press, ISBN 0 19 850416 0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

	Semester: V								
	SMART SENSORS & INSTRUMENTATION								
	(GROUP B: GLOBAL ELECTIVE)								
	(Theory)								
Cour	Course Code : 18G5B08 CIE : 1					100 Marks			
Cred	Credits: L:T:P		3:0:0	SEE	:	100 Marks			
Tota	l Hours	: 39L		SEE Dura	ation :	3.00 Hours			
Cour	rse Learning	g ()	bjectives: The	students will be able to					
1	Understand	l th	e fundamentals	of transducers and sensors.					
2	Demonstra	te t	he working prir	nciples of different transducers and sensors.					
3	3 Apply the principles of different type of sensors and transducers on state of art problems.								
4	4 Create a system using appropriate transducers and sensors for a particular application.								

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, A	dvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and problem	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potenti	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	.ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	l Sensors,
Gas flame detectors	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the basic principles of different transducers and sensors.							
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation							
	systems.							
CO3:	Analyze and evaluate the performance of different transducers and sensors for various							
	applications.							
CO4:	Create a system using appropriate transducers and sensors for a particular application.							

Refere	ence Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
1	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
2	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
1	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
-	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

				Semester: V			
			OI	PERATIONS RESEARCH			
	(GROUP B: GLOBAL ELECTIVE)						
(Theory)							
Cour	rse Code	:	18G5B09	× × /	CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cour	rse Learning (Dbje	ectives: The stu	idents will be able to			
1	Develop the	ski	lls in the appl	cation of operations resear	rch models for	con	nplex decision-
making situations.							
2 Implement the methodology and tools of operations research to assist decision-making.							
	1			1			
				UNIT-I			07 Hrs
Intro	oduction: OR	metl	hodology, Defii	ition of OR, Application of	OR to Engineeri	ng	and Managerial
probl	lems, Features	of C	OR models, Lin	itations of OR.			
Line	ar Programm	ing	Definition, Ma	thematical Formulation, Sta	ndard Form, Sol	utio	n Space, Types
	-	-		e, Solution through Graphic			
			•	ad assignments only)	e	,	
10 40		(ue	monstrations a	UNIT-II			10Hrs
Sim	olex Method &	k Se	ensitivity Anal	ysis: Simplex methods, Arti	ficial Stating So	luti	
				nalysis - Graphical sensitiv	-		
	-		-	tput from software packages	• •	-	fulle sensitivity
unury	sis. interpretat	1011	of grupineur ou	UNIT-III		01	10 Hrs
Tran	sportation P	rob	lem:Formulatio	on of transportation mode	el. Basic feasib	le	
	-			hods, Unbalanced transpo			-
	portation prob			n Transportation Problem	-		
probl		1011	is, variants	in multiportution recordin	s, rippiloutions	01	mansportation
•		em	Formulation	of the Assignment problen	n Solution meth	hod	of assignment
-	-			method of assignment problem			-
-	-		raveling Salesm			icu	iou, variants in
•	•		e				
Usag	ge of software t	0015	s to demonstrate	Transportation and Assignment	nent problems		06 11
Droi	oot Managam	mt	Liging Notwork	UNIT-IV Analysis:Network construct	ation Datarmina	tion	06 Hrs
-	-		-				-
		, CI	PM - Elements	of crashing, Usage of softw	are tools to dem	ons	strate N/W flow
probl	lems						
C	- The	1		UNIT-V			06 Hrs
	=		-	son Zero Sum game, Pure st	-		-
-			ne rules of do	minance, solution method	of games with	iou	t saddle point,
Arith	metic method.						
Corre	man Autoomore	A 6	ton 00m-1-4:	the course the stordards	ll he able to		
				the course, the students wi			augh
CO1			ie basic conce	pts of different models	or operations r	ese	arch and then
	application			Models and Assignment M			

CO2:	Build and	solve Transp	portation M	odels and Assignment M	Iodels.
000	D :	. 1	1 1 1 1 1		1

CO3:	Design new simple models, like: CPM, MSPT to improve decision -making and develop
	critical thinking and objective analysis of decision problems.
CO4:	

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	2	2	-	-	-	1	-	-	1
CO2	-	2	-	-	-	-	-	-	-	1	-	1
CO3	2	-	-	2	2	-	-	1	-	-	-	-
CO4												

			Semester: V			
		MANAGEN	IENT INFORMATION SYS	TEMS		
		(GROU	P B: GLOBAL ELECTIV	E)		
		T	(Theory)			
Course Code	:	18G5B10		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	Obje	ectives: The stude	nts will be able to			
1 To understa	nd the	e basic principles	and working of information tec	hnology.		
2 Describe the	role	of information tec	hnology and information syste	ms in business.		
3 To contrast	and c	compare how inter	net and other information techn	ologies support bu	sine	ess processes.
4 To give an	overa	all perspective of	he importance of application of	of internet technol	ogie	es in business
administrati						
			Unit-I			08 Hrs
Information system	ns in '	Global Business	Foday:			
The role of inform	nation	n systems in busi	ness today, Perspectives on	information system	ms,	Contemporar
approaches to inform	natio	on systems, Hands	on MIS projects. Global E-Bu	siness and Collal	bor	ation: Busines
process and information	ation	systems, Types of	business information systems	, Systems for colla	aboı	ation and tear
work, The informati	on sy	stems function in	business. A Case study on E bu	isiness.		
			Unit – II			08 Hrs
Information System	ns, O	Organizations and	Strategy:			
Organizations and	inforr	mation systems, H	low information systems impa	act organization a	nd	business firms
Using information s	syster	ms to gain compe	itive advantage, management	issues, Ethical an	d S	ocial issues in
Information System	ns: U	Understanding eth	cal and Social issues related t	o Information Sys	stem	ns, Ethics in an
information society,	The	moral dimensions	of information society. A Case	study on business	pla	nning.
			Unit –III			08 Hrs
IT Infrastructure a	ınd E					08 Hrs
		Emerging Techno		tform trends, Cont	emj	
IT infrastructure, In	frastr	Emerging Techno ructure component	logies:		-	porary softwar
IT infrastructure, In platform trends, M	frastr Ianag	Emerging Techno ructure component gement issues. Se	l ogies: s, Contemporary hardware pla	s: System vulner	abil	porary softwar ity and abuse
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System	s: System vulner	abil	porary softwar ity and abuse
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi	s: System vulner	abil	porary softwar ity and abuse
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulner	abil	porary softwar ity and abuse ology and tool
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. See ty and control, Est n resources. A cas Excellence and C	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulnera ty and control, Tea	abil chn	porary softwar ity and abuse ology and tool 08 Hrs
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operatie Enterprise systems,	frastr Ianag ecurit nation onal I Supp	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage	logies: s, Contemporary hardware pla curing Information Systems ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy:	s: System vulnera ty and control, Tea ner relationship ma	abil chn ana	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the internet
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli ss an A Ca	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital G mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interner Building and E
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle	frastr lanag ecurit nation onal l Supp appli ass an A Ca dge:	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital G mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, H	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle The knowledge mage	frastr Ianag ecurit nation onal I Supp appli ess an A Ca dge: anage	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (e mobile digital platform and r Unit –V	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, F	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs nowledge wor

Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand and apply the fundamental concepts of information systems.									
CO2:	Develop the knowledge about management of information systems.									
CO3:	Interpret and recommend the use information technology to solve business problems.									
CO4 :	Apply a framework and process for aligning organization's IT objectives with business strategy.									

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.											
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10 th Edition, 2011, ISBN: 978-0072823110.											
3	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4 th Edition, 2002, ISBN:978-0130617736.											
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.											

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	3	-	-	-	-	-	-	-	1	-	1	
CO3	3	3	1	-	2	-	-	-	-	1	-	1	
CO4	3	3	2	1	2	-	-	-	-	1	-	1	

			V	Semester						
				'E MECHATRONICS						
			`	LOBAL ELECTIVE)					
0		1		Theory)	CIE		100 M			
	se Code	:	18G5B11		CIE	:	100 Marks			
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours			
Cour	rse Learning O	bje	ctives: The students will	be able to						
1	Identify vario	us N	Iechatronics systems of a	a modern automobile						
2	Describe how	the	proper quantity/grade of	fuel affects engine perfe	ormance.					
3	Understand B	hara	t-VI / EURO-VI emissio	on norms						
4	Apply the know	wle	dge of engineering and s	cience to analyse the per	rformance of Me	cha	tronics			
	system									
5	Analyse vehicle sub-systems comprising of sensors and actuators									

Unit-I	06 Hrs
Automobile Engines	
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.
Unit-II	10 Hrs
Engine Auxiliary Systems:	
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.	
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Re	turn line,
Quantity control valve, Injectors – solenoid and piezo injectors.	
Unit-III	10 Hrs
Vehicular Auxiliary Systems:	
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,
Caster and Camber angle. Classification of tyres, Radial, Tubeless.	
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator	and air
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.	
Unit-IV	07 Hrs
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	rol units and
On-Board Diagnostic kit.	
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling
system- Components, working principle, Properties, Viscosity.	
Unit-V	06 Hrs
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	ensor,
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.	

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Describe the functions of Mechatronic systems in a modern automobile									
CO2:	Evaluate the performance of an engine by its parameters									
CO3:	Analyse the automotive exhaust pollutants as per emission norms									
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit									

Refere	Reference Books									
1.	Automotive Technology - A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage									
	Learning, ISBN-13: 978-1428311497									
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,									
	SAE International, ISBN: 0768009871									
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527									
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-									
	Heinemann, ISBN 0-7506-7008-8									

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	2	1	2	1	-	-	1	2	3	-	-	
CO2	2	1	2	1	3	-	-	2	2	3	-	-	
CO3	1	2	2	1	2	-	-	2	2	3	-	-	
CO4	1	2	2	1	2	-	-	2	2	1	-	1	

	Semester: V							
	TELECOMMUNICATION SYSTEMS							
			(GROUP I	B: GLOBAL ELEC	(TIVE)			
				(Theory)				
Cou	rse Code	:	18G5B12		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	: 39L			SEE Duration		3.00 Hours	
Cou	rse Learning C	bje	ectives: The student	s will be able to			·	
1	Represent sch	em	atic of communicati	on system and identif	Ty its components.			
2	Classify satell	ite	orbits and sub-syste	ms for communication	on.			
3	Analyze differ	rent	telecommunication	i services, systems an	d principles.			
4	Explain the ro	le d	of optical communic	ation system and its	components.			
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds			

UNIT-I	06 Hrs
Introduction to Electronic Communication: The Significance of Human Commu	nication,
Communication Systems, Types of Electronic Communication, Modulation and Mult	iplexing,
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.	
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.	
Radio Receivers: Super heterodyne receiver.	
UNIT-II	10 Hrs
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.	
Wideband Modulation: Spread spectrum, FHSS, DSSS.	
Multiple Access: FDMA, TDMA, CDMA.	
UNIT-III	09 Hrs
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,
Ground Stations, Satellite Applications, Global Positioning System.	
UNIT-IV	07 Hrs
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical	c Cables,
Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network	vorks.
UNIT-V	07 Hrs
0111-1	
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	Internet
	Internet
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basics of communication systems.						
CO2	Analyze the importance of modulation and multiple access schemes for communication						
	systems.						
CO3	Analyze the operational concept of cell phone and other wireless technologies.						
CO4	Justify the use of different components and sub-system in advanced communication systems.						

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

· · · · · · · · · · · · · · · · · · ·				Semester: V				
	(QUA	NTUM MECHA	NICS OF HETERO	/NANO STRUCT	JRES	5	
			(GROU	P B: GLOBAL EL	ECTIVE)			
~	~ .	, , ,		(Theory)				. <u>.</u>
	se Code	:	18G5B13		CIE	:	100 M	
	ts: L:T:P Hours	:	3:0:0 39L		SEE SEE Duration	:	100 M 3.00 H	
) Dhie	Sectives: The studen	ts will be able to	SEE Duration	:	5.00 П	lours
	8	÷		chanics in physical pr	coossos os wo rodu	o dir	ansion	
				of low dimensional s				
	-		-					lig.
				l in transport propertie	es of low dimension	ai ma	aterials.	
			heterostructures in		1 (1 ((1	
	-	now	ledge to design and	d develop smart devic	ces and sensors that	runs	on the q	uantum
1	technology.							
				Unit-I				08 Hrs
Dovio	w of Quantu	m M	Iechanics and Soli					U8 Hrs
	-			tainty Principle, grou	n valaaity. Tima in	1	donton	d damam dami
	•	•	•	• • • •	•	•		•
	•			, Perturbation theory				
	•		•	states and its depend		•		
-		-		ons and holes in b	ands, Effective ma	ass, o	listinct	regimes of
condu	ction and the	imp	ortant parameters c					
			ors and lower dim	Unit – II				08 Hrs
differe (From	ent geometrie 0-Dim to 3 I	es-Sq		l and intra-band pro Friangular and their	cess. Quantum we	lls o	t nanos	
			-	and its effect on band		n Dot		s and wells
). Strained Layers a ects in them.			n Dot		s and wells in Quantum
	tum Nano sti	c eff	-	Unit –III		n Dot		s and wells
Quant Archit Homo Lattice genesi	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III	semiconductor cont on and strain doped ling Approximation mechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga.	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r	semiconductor cont on and strain doped ling Approximation mechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs) in details, Vells. Super lattice. The ocus will be per lattices:
Quant Archit Homo Lattice genesi on Ga. Stark e	ecture and w -junction, He e: Kronig Pe as of Quantun As), hot elect effect.	c efference ructo vorki etero nney n Tr trons	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr 2. Perpendicular tra	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur	semiconductor cont on and strain doped ling Approximation nechanism, experin neling. Electric fiel	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs 0 in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form antum point contacts ircuit laws for quantu- c field. Landau qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The per lattices: 08 Hrs to explain d rings and ide. Density gnetic field.
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta Shubn	tecture and w -junction, He e: Kronig Pe is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol ttes of a 2D ikov-de Haas	c eff ructivork: etero nney n Tr crons str ance lation syst	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua Unit –V	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	After successful completion of the course the student will be able to identify the different domains
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and
	Photonics.
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at
	the core of nano and meso technology.
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)
CO4 :	The student can apply the concepts in an interdisciplinary manner and can create new ideas and
	products related to appliances and sensors, that use the said concepts.

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
1	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
3	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
3	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1 st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
(Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
6	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	3	2	2	-	-	-	1
CO2	3	3	3	2	1	2	1	1	-	-	-	1
CO3	3	3	3	2	1	1	1	1	-	-	-	1
CO4	1	2	1	2	1	2	2	1	2	2	-	1

				Semester: V				
			THIN FILM	IS AND NANOTE	CHNOLOGY			
			(GROU	P B: GLOBAL EI	LECTIVE)			
<u> </u>	~ .	1	100	(Theory)			400.35	
	rse Code	:	18G5B14		CIE	:	100 Marks	
Credits: L:T:P Total Hours		:	3:0:0 39L		SEE SEE Duration	:	100 Marks	
		:)bic	SPL ctives: The students	will be able to	SEE Duration	:	3.00 Hours	
<u>1</u>			asics of thin films st		X 7			
2					y. us techniques and the	air ch	aracterization	
4	methods.	now	ledge of unit time p	reparation by vario	us teeninques and the		aracterization	
3		w1	dga to salact the mo	et potential mathe	ls to produce thin fill	me fo	r wonted	
3	applications.	JWIE	uge to select the III	si potential metho	is to produce thin fill	115 10	n wanteu	
4	**	thin	film applications.					
-+	Asses typical	um	min applications.					
				Unit-I			08 H	Hre
Non	ostructures an			0			001	
Type dime Quai	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st	ructures, Multilayer	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) 1 ge
Type dime Quan and	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st sis.	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic	nsional nano-struct thin films and sup cal-chemical prop	tured materials. Carl	bon N ynthe	Nano Tubes (CN esis through Sol and challenges	NT) l gel s of
Type dime Quar and nanc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lictur lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) l ge s of
Type dime Quan and nanc Thir	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lime lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup cal-chemical prop Unit – II	tured materials. Carl per lattice clusters. S erties. Current tren	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H	NT) 1 ge ⁻ s of Hrs
Type dime Quan and nanc Thir Vac	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nan Film Prepara uum technolog	lime lime ll st sis. note tion y- I	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit	NT) 1 ge s of Hrs ition
Type dime Quar and nanc Thir Vac (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT). 1 gei s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum nal evaporation, E Sputtering, Magne	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering.	NT) 1 gei s of Hrs ition
Type dime Quan and nanc Thir Vac (PV) depc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter	ictur lime ll st sis. note tion y- I :: E ring	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT) 1 gei s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV) depo	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter	ictum lime ll st sis. note tion y- I :: E ring	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and	bon N ynthe nds sical S pration	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H	NT) 1 ge ² s of Hrs ition e arc Hrs
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret	ictum lime ll st sis. note tior y- I : E : E : ing on a	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and p paration & Engineer	bon N ynthe nds sical S pration Ion b	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov	NT) 1 ge s of Hrs ition e arc Hrs
Type dime Quar and nance Thir Vace (PV) depoe Surf Nucl Clea	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat	ictum lime ll st sis. note tion y- I :: E ring on a tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre uing, Base Coats an	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s of <u>Hrs</u> ition e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o <u>Hrs</u> itior e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence rowth. Properties	NT) 1 ge s or Hrs itior itior e arc Hrs wwth ce of es of
Type dime Quan and nance Thir Vace (PV) depce Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D Films: Adhesio	tion y - I y - I y - I y - I i E ing on a tical tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Thern : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Fhickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre hing, Base Coats an Effect of Deposition Physical, Chemical Unit –IV	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o
Type dime Quar and nancc Thir Vacu (PV) depcc Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o	tion tion y- H ing on a tical ion Defe on, '	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV S:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S pration Ion b ing fo iing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H	NT) 1 ge s o Hrs ition e ard Hrs wwth ce o es o Hrs
Type dime Quan and nance Thir Vacu (PV) depo Surf Nucl Clea thin Thin Thin Film	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o n thickness me	tion y- I tical tical tical tical tical tical tical tical tical tical tical tical tical	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, min Film Properties rement: Quartz cry	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer and Top Coats. Thin F on Parameters on fill and Mechanical.	bon N ynthe nds sical S oration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H r methods. Surf	NT) 1 ge s or Hrs itior e ard Hrs wwth ce or es or Hrs
Type dime Quar and nance Thir Vact (PV) depo Surf Nucl Clea thin Thin Thin Thin Thin Thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D a Films: Adhesion racterization on thickness met phology and to	tion y- I is: E ing on a tical tical f T asun	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, in Film Properties rement: Quartz cry raphy by SEM, A	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo FM. Film compos	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil and Mechanical.	bon N ynthe nds sical S ration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence owth. Properties 08 H r methods. Surf ctron Spectrosco	NT) l ge s o Hrs ition e ard Hrs with ce o es o Hrs copy

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.

Unit –V

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic mechanism of surface modification and thin film growth.
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization
	methods.
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted
	applications.
CO4:	Detailed knowledge of thin film selection for various applications.

Refere	ence Books
1	Thin Film Phenomenon, K.L.Chopra, 1 st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
4	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

				Semester	: V			
	4	ADV	VANCES IN C		ENCE AND TECHNOL	OGY	7	
	-			ROUP B: GLOBA				
			X -	(Theory				
Cou	rse Code	:	18G5B15		CIE	:	100 Ma	rks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Ma	ırks
Tota	al Hours	:	39L		SEE Duration	:	3.00 Ho	ours
Cou	rse Learning (Dbje	ectives: The stu	dents will be able	0			
1	Understand th	ne fi	Indamental & so	ocio, economic asp	pects of corrosion.			
2	Identify pract	ices	for the prevent	ion and remediatio	n of corrosion.			
3	Analyzing me	etho	dologies for pre	edicting corrosion t	endencies.			
4					nt suitable corrosion contr	ol me	asures.	
-	L'unduce vuil	040	corrosion situat	ions and impremen		01 1110	ubui obi	
				Unit-I				08 Hrs
Intr	oduction to con	rros	ion and its effe					00110
					on, economic losses, In	direct	losses -	Shutdown
					nvironmental damage, I			
			-	•	ustries, corrosion map of	-		corrosion
-				-	-			:1 and as
		_			on, chemical processing	indu	stries, o	ii and gas
Indu	stries, pulp and	pap	per plants, corro	sion effect in elect	ronic industry.			I
				Unit – II				08 Hrs
		nic	-	•	pes: Galvanic corrosion, stress corrosion, seas			
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling- r corrosion, o perature corros nanism of diffe	erosion corrosion sion, bacterial corro rential aeration co	pes: Galvanic corrosion, , stress corrosion, seas osion, corrosion in polyme rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling-H r corrosion, on perature corros	erosion corrosion sion, bacterial corro rential aeration co s.	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o	nic nula tem necl of m	series, Pilling-H ar corrosion, on perature corros manism of diffe metals and alloys	erosion corrosion sion, bacterial corre- rential aeration co s. Unit –III	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe	nic nula tem necl of m	series, Pilling-H ar corrosion, of aperature corros nanism of diffe aetals and alloys t engineering n	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials	, stress corrosion, seas osion, corrosion in polymo rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com Con	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures,	nic nula tem necl of m ren	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for und	hydrogen terials. lerstanding 07 Hrs
corre emb Crev com Corre Corre	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj	series, Pilling-H ar corrosion, o aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nic ourbaix diagram	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs 0ys. on and its
corre emb Crev com Con Con Con The calce	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The calcu	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u>	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in	son c er (pla theor n and metal	stic) mat stic) mat y for und Super all corrosid	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs
corre emb Crev com Cor Cor Cor The calce Adv	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro	nic nula tem necl of m ren fic du ific Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV naterial selection,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	son c er (pla theory n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment
corrections control co	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corre emb Crev com Con Con Cor The calcu Adv Prin decr elect	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic,
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating
corrections of the correction of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj fic 1 of Cu, 1 Osion Sion Sion	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren fic 1 of Cu, 1 osion city, oppo	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV material selection, moval oxidizer, Chromium, physic Unit –V	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, res er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corrections of the second seco	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro case in veloc croplating of Co ickel.	nic nula tem mecl of n ren fic 1 of Cu, 1 of Cu, 1 osion city, oppe	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys tengineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, re- passivity, re- er, Nickel and O hods: Specime ray, service test	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment, ss.	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	on control on and metal control tors, ering,	Super all corrosid	hydroger terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- organic ess plating 09 Hrs Accelerated

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the causes and mechanism of various types of corrosion
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.
CO4:	Develop practical solutions for problems related to corrosion.

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

				Semester: V				
		CC	OMPUTATIONA	L ADVANCED NUN	IERICAL METHO	ODS		
(GROUP B: GLOBAL ELECTIVE)								
		-	1	(Theory)	I			
	rse Code	:	18G5B16		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
	al Hours	:) :/	39L	unta uvill ha ahla ta	SEE Duration	:	3.00 Hours	
	0	•		ents will be able to	1 1 1			
1	-		•	lternative methods to s	solve algebraic and	trans	cendental equations	
-	•		merical techniques		· C. 11			
2		-	_	echniques arising in va			<u> </u>	
3		val	ue and boundary	value problems whi	ich have great sigr	nfica	nce in engineering	
	practice.			1 •	1.1.1.1.1.1	1		
4								
	phenomena.							
5	5 Demonstrate elementary programming language, implementation of algorithms and computer programs to solve mathematical problems.							
	programs to s	solve	e mathematical pro	oblems.				
				TT •4 T			07.11	
Alac	hunia and Tua		endental Equatio	Unit-I			07 Hrs	
0			-		ive method Aitken	nrook	Muller method	
			nulation using MA	ce - Fixed point iteration	ive method, Altken	proce	ess, wunter method,	
Chei	bysnev method.	. 511					07 11	
Into	rpolation:			Unit – II			07 Hrs	
	-	e di	fferences Finite d	lifferences of a polyno	mial Divided differ	ence	Newton's divided	
				te interpolation, Spline				
	-				e interpolation - ini	cal, (quadratic and cubic	
spline interpolation. Simulation using MATLAB. Unit –III 08 Hrs								
Diff	erential Equat	ions	s I•				001115	
Differential Equations I: Runge-Kutta and Runge-Kutta-Felhberg methods to solve differential equations, Boundary value problems								
		-	-		-			
	(BVPs) - Rayleigh-Ritz method, Shooting method, Differential transform method to solve differential equations. Simulation using MATLAB.							
equu	dions. Sindian			Unit –IV			08 Hrs	
Diff	erential Equat	ions	s II:	Cint IV			UO III S	
				blems - Runge-Kutta r	nethod, Milne metho	od. C	ubic spline method.	
			-	ear, Nonlinear differen			-	
				Unit –V			09 Hrs	
Eige	en Value Probl	ems	5:				07 1115	
0				ver method, Inverse	Power method. Bo	ounds	on Eigen values.	
-		-					-	
	Bershgorin circle theorem, Jacobi method for symmetric matrices, Given's method. Simulation using							

MATLAB.

Course	course Outcomes: After completing the course, the students will be able to							
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and							
	corresponding computational techniques.							
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application							
	problems.							
CO3:	Analyze the physical problem and use appropriate method to solve numerically using							
	computational techniques.							
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems							
	arising in engineering practice.							

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.
L	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage
2	Learning, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private
5	Ltd., ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata
-	Mcgraw Hill, ISBN-10: 0-07-063416-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

MATHEMATICS FOR MACHINE LEARNING (GROUP B: GLOBAL ELECTIVE) (Theory) Course Code : 1865B17 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Code : 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Vector Calculus and Continuous					Semester: V						
(Theory) Course Code : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 3:0:0 More SEE Duration : 3:0:0 Acquire practical knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge or techniques. Signamental knowledge or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems.				MATHEMAT		E LEARNING					
Course Code : 18G5B17 CIE : 100 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Hours of machine intelligence.				(GROU	P B: GLOBAL ELI	ECTIVE)					
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 391 SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Indextand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Orthiz I 07 Hrs Vinit – II 07 Hrs Standardity of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Ba											
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learnin algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decisi problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit -I Of Hrs Vector Calculus and Continuous Optimization Inter I OT Hrs Sign colspan= 2 Unit - II OT Hrs Vector S											
Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit - II Vector Calculus and Continuous Optimization Init - III <td col<="" th=""><th></th><th colspan="9"></th></td>	<th></th> <th colspan="9"></th>										
1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Brobability and Distributions: Onstruction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit -IV 08 Hrs											
foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -III 08 Hrs <td <="" colspan="2" td=""><td></td><td>6</td><th>•</th><th></th><th></th><td>concepts of linear</td><td>· əla</td><td>ebra that form the</td></td>	<td></td> <td>6</td> <th>•</th> <th></th> <th></th> <td>concepts of linear</td> <td>· əla</td> <td>ebra that form the</td>			6	•			concepts of linear	· əla	ebra that form the	
2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs <td>I</td> <td></td> <th></th> <th>-</th> <th>n the fundamental</th> <td>concepts of inteal</td> <td>arg</td> <td></td>	I			-	n the fundamental	concepts of inteal	arg				
algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Inear Algebra: 7 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2				or calculus and ontir	nization to understa	nd th	he machine learning			
3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Linear Algebra: 07 Hrs 8 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement 1 Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 1 Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert 1 Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2			-	or calculus and optim	inzation to underste	ina u				
learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	3			<u>^</u>	nd distributions to	analyze possible a	annlia	cations of machine			
4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	U		leept	s of probability a	nd distributions to	unaryze possible a	ippin	cations of machine			
5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II O7 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV Unit –IV 08 Hrs	4		ncer	ts of regression and	estimation to solve a	problems of machin	e lea	rning			
problems. O7 Hrs Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	-										
Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 07 Nrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs											
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs		Problems.									
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs				l	Unit-I			07 Hrs			
Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Line	ar Algebra:						·			
Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Revi	ew of Vector	Spac	ces-Linear Independ	dence, Basis, Rank a	and Linear Mappin	gs. A	Affine Spaces, Inner			
Unit – II07 HrsVector Calculus and Continuous Optimization:Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing GradientBackpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, OptimizationUsing Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization.Unit –III08 HrsProbability and Distributions:Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:	Prod	ucts, Lengths a	and]	Distances, Angles a	nd Orthogonality. O	rthonormal Basis, (Drtho	gonal Complement			
Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs								Sonar Complement			
Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression: 08 Hrs	Inner	-		-							
Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:		r Product of Fu	Incti	ons, Orthogonal Pro	jections, Rotations, S nit – II						
Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect	r Product of Fu	nction	ons, Orthogonal Pro U Continuous Optimi	ojections, Rotations, S nit – II zation:	Singular Value Dec	ompo	osition. 07 Hrs			
Unit –III08 HrsProbability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:08 Hrs	Vect Grad	r Product of Fu cor Calculus an lients of Vect	nction nd C	ons, Orthogonal Pro U: Continuous Optimiz /alued Functions,	ojections, Rotations, S nit – II zation: Gradients of Matri	Singular Value Dec	ompo Cor	mputing Gradients			
Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization			
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.			
Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus an lients of Vect cpropagation an g Gradient Des	nd C tor-V nd A	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.			
Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Des	nd C tor-V nd A scent	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim Un butions:	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C	Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs			
Unit –IV08 HrsLinear Regression:08	Vect Grad Back Usin Prob	r Product of Fu cor Calculus and lients of Vecto coropagation and g Gradient Des coability and Distruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and			
Linear Regression:	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and			
	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables			
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and			
Problem Formulation, Parameter Estimation, Bayesian Linear Regression, Maximum Likelihood	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu for Calculus and lients of Vector g Gradient Des pability and Di struction of a I es' Theorem, C rse Transform.	nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Des Dability and Di struction of a H es' Theorem, O rse Transform.	inction nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
•	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corve	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs 108 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corve	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs 108 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discu- sian Distribution, C Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim butions: ability Space, Discr sian Distribution, O U: Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve ylor S Conve Rule , Cha laxim	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the setting of the setting of the setting.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri Prob Gaus istri ion, ion, ion, ion, ion, Mod	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Class	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable			
Orthogonal Projection. Density Estimation with Gaussian Mixture Models:	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	07 Hrs 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables			
Density Estimation with Caussian Mixture Models.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	05 ition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
Density Estimation with Gaussian Mixture Woulds.	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
•	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim butions: ability Space, Discr sian Distribution, O U: Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve ylor S Conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the provide the setting of the provide the setting of the perspective of the per	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Perspective	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri istri Prob Gaus istri ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Cow- Persp Clas	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Pers- tions, PCA in High oport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Perspective	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Orthe Dens Gaus Persp Dime Prob Low- Persp Class Sepa	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ese' Theorem, O rse Transform. Car Regression lem Formulate ogonal Projections sian Mixture H pective. ensionality Re lem Setting, N -Rank Approx pective. sification with arating Hyperp	inction nd C tor-V nd A scent istri istri ion, ion, ion, ion, Mod educ Aaxi imat a Suj blane	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Pers- tions, PCA in High oport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable			

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.
CO2:	Orient the basic concepts of mathematics towards machine learning approach.
CO3:	Apply the linear algebra and probability concepts to understand the development of different
	machine learning techniques.
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical
	problems.

Refere	ence Books
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,
1	2020, Cambridge University Press.
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge
4	Press, ISBN: 0692196382, 9780692196380.
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-
5	978-81-203-4160-9.
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd
4	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

			V Semester			
			ENGINEERING ECONOMY			
		(0	ROUP B: GLOBAL ELECTIVE	E)		
			(Theory)			
Course Code	:	18G5B18		CIE	:	100 Marks
Course Code	:	18G5B02		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	03 Hours
Course Learnin	ig O	bjectives: Stud	lents are expected to			
1. To incul	cate	an understandi	ng of concept of money and its imp	portance in the ev	alu	ation of
projects.						
2. Analyze the present worth of an asset.						
3. Evaluate	the	alternatives ba	sed on the Equivalent Annual Wort	h.		
4. Illustrate	con	cept of money	and its importance in evaluating th	e projects.		

Unit – I	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engineering	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Futu	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR miscon	nceptions,
Problems.	
Unit – IV	06 Hrs
Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, ina	adequacy,
economic life for cyclic replacements, Exercises, Problems.	
Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	
Unit – V	06 Hrs
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, I	Exercises,
Problems.	
Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	8.
Course Outcomes: After going through this course the student will be able to	
CO 1: Explain the time value of money, and how to sketch the cash flow diagram	

CO 2:	Compare the alternatives using different compound interest factors, Select a feasible alternative
	based on the analysis.
CO 3:	Formulate a given problem for decision making

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Referen	Reference Books:							
1.	Engineering Economy, Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5							
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN – 81-							
	203-1743-2.							
3.	Cost Accounting, Khan M Y, 2 nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248							
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna							
	Publishers, ISBN 8174091009							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

			V	I Semester				
]	IN'I	RODUCTION TO M		ECONOMICS			
			(7)	THEORY)				
Co	urse Code	:	18HEM61	C	IE	:	100 Marks	
Credits: L:T:P		:	3:0:0	S	EE	:	100 Marks	
Total Hours		:	39L	S	EE Duration	:	03 Hrs	
Co	urse Learning O	bje	ectives: The students w	ill be able to			•	
1	1 Understand the evolution of management thought.							
2	Acquire knowledge of the functions of Management.							
3	3 Gain basic knowledge of essentials of Micro economics and Macroeconomics.							
4	Understand the concepts of macroeconomics relevant to different organizational contexts.							

	Unit-I	07 Hrs
Introd	uction to Management: Management Functions, Roles & Skills, Management	History –
Classic	cal Approach: Scientific Management & Administrative Theory, Quantitative A	Approach:
Operat	ions Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: S	ystems &
Contin	gency Theory.Case studies	
	Unit – II	09 Hrs
Found	ations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	Strategic
	ement Process, Corporate & Competitive Strategies. Case studies	
	izational Structure & Design: Overview of Designing Organizational Structu	
Special	lization, Departmentalization, Chain of Command, Span of Control, Centrali	zation &
Decent	tralization, Formalization, Mechanistic & Organic Structures. Case studies	
	Unit –III	09 Hrs
Motiva	ating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	5 Theory,
McGre	gor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Th	neories of
Motiva	tion: Adam's Equity & Vroom's Expectancy Theory. Case studies	
Manag	gers as Leaders: Behavioral Theories: Ohio State & University of Michigan Studies	, Blake &
Mouto	n's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's S	ituational
Leader	ship, Contemporary Views of Leadership: Transactional & Transformational Leaders	hip. Case
studies	8	
	Unit –IV	07 Hrs
Introd	uction to Economics: Importance of Economics, Microeconomic	s and
	economics, Theories and Models to Understand Economic Issues, An Overview of I	
	ns.Demand, Supply, and Equilibrium in Markets for Goods and Services,Price Ela	
	nd and Price Elasticity of Supply, Elasticity and Pricing, Changes in Income and Prices	Affecting
Consu	mption Choices, Monopolistic Competition, Oligopoly.	
	Unit –V	07Hrs
	ials of Macroeconomics: Prices and inflation, Exchangerate, Gross domestic prod	
	onents of GDP,theLaborMarket,Money and banks,Interestrate,Macroeconomic me	
	ew, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The	
	The complete Keynesian model, The neo-classical synthesis, Exchange rate determine	ation and
the Mu	Indell-Fleming model	
Course	e Outcomes: After completing the course, the students will be able to	
CO1:	Explain the principles of management theory & recognize the characteristic	cs of an
	organization.	
CO2:	Demonstrate the importance of key performance areas in strategic management a	
	appropriate organizational structures and possess an ability to conceive various orga	nizational
	dynamics.	
CO3:	Select & Implement the right leadership practices in organizations that would enabl	e systems
	orientation.	
	1	

CO4: Understand the basic concepts and principles of Micro economics and Macroeconomics.
Refe	erence Books
1	Stephen Robbins, Mary Coulter & NeharikaVohra, Management, Pearson Education
	Publications, 10th Edition, ISBN: 978-81-317-2720-1.
2	James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, ISBN: 81-
	203-0981-2.
3	Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Edition,ISBN:978-1-
	947172-34-0
4	Dwivedi.D.N, Macroeconomics: Theory and Policy, McGraw Hill Education; 3rd
	Edition,2010,ISBN-13: 978-0070091450.
5	Peter Jochumzen, Essentials of Macroeconomics, e-book(www.bookboon.com), 1st Edition.,
	2010, ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

50% weightage should be given to case studies. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

	CO-PO Mapping												
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3		1			3		3	3	3	3	3	
CO2	3	2						1	2	3	2	2	
CO3			1			2		2	2	3	3	3	
CO4	2		2			3	1	3	2	2	3	3	

Semester: VI												
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING												
	(Theory & Practice)											
(Common to CS & IS)												
Course Code	:	18CS62		CIE Marks	:	100+50						
Credits: L:T:P	:	3:1:1		SEE Marks	:	100+50						
Total Hours	:	39L+26T +35P		SEE Duration	:	3 Hrs + 3 Hrs						

Course Learning Objectives: The students will be able to

1.	Acquire basic principles of working of Artificial Intelligence technology and Machine learning
	algorithms
2.	Understand the practical requirements of AI agents, Searching strategies, Propositional and First-
	order Logics
3.	Develop AI and ML solutions for reasoning while dealing the uncertain situations, and making
	use of effective Knowledge representation strategies
4.	Identify the applications of some of the Machine learning techniques such as Bayesian networks,
	Decision tress, and Reinforcement learning in real world problems

Unit – I7 HrsIntroduction, intelligent agents, searching: What is AI? Intelligent Agents: Agents and environment;
Rationality; the nature of environments; the structure of agents. Problem-solving: Problem-solving
agents; Searching for solution; Uninformed search strategies; Informed search strategies, Heuristic
Functions

Unit – II

Adversarial search, constraint satisfaction problems, logical agents, first-order logic : Games, Optimal decision in games, Alpha-Beta Pruning, Defining Constraint satisfaction problems; Backtracking search for CSPs; Knowledge-based agents; The Wumpus world as an example world; Logic; propositional logic; Propositional theorem proving; Syntax and semantics of first-order logic; Using first-order logic;

Unit – III

8 Hrs

8 Hrs

Knowledge representation: Ontological Engineering; Categories and Objects; Events; Mental events and Mental objects; Reasoning system for categories;

Probabilistic reasoning: Representing knowledge in an uncertain domain; Semantics of Bayesian Networks; Efficient representation of conditional distributions; Exact inference in Bayesian Networks; Approximate inference in Bayesian Networks;

Unit – IV

8 Hrs

8 Hrs

Introduction to machine learning: Well-posed learning algorithms; Designing a learning algorithm; Perspectives and Issues in machine learning;

Decision tree learning: Introduction, Decision tree representation; Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning;

Unit – V

Instance based learning: Introduction; k-nearest neighbor learning; Locally weighted regression; Radial based regression case-based functions;

Reinforcement learning: Introduction; The learning task; Q learning; Nondeterministic rewards and actions;

Laboratory Component

Open ended AI/Machine Learning based experiential project should be carried out in a team of two students, belongs to same batch of the laboratory of that particular section. (Cross-sections and Cross-batches not allowed)

General Guidelines for the project

The topic of the project should be from current thrust areas along with consultation with the faculty in charge.

There may be more than one batch solving same problem, but you need to have different approaches and the best approach will be ranked high.

The selected topic on the basis of standard papers (like IEEE/ACM/CSI etc.) is highly encouraged.

Presenting/publishing the paper in a reputed IEEE/ACM conferences / Journal with good indexing like WoS, SCI, Scopus, will attract higher marks in CIE.

The student needs to submit both hard & soft copy of the report for valuation.

All the batches must adhere to the guidelines released time to time by the Lab coordinators, and submit all the proofs asked in support of your experiential project.

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Describe the required theory and building blocks of Artificial intelligence technology and								
	Machine learning algorithms								
CO 2:	Demonstrate the working of various searching algorithms, games, pruning, inferencing, etc.								
	with suitable examples.								
CO 3:	Choose the suitable AI and machine learning technique for a given use case and analyze it's								
	performance while solving real world problems.								
CO 4:	Recommend and develop the AI and ML-based solutions for some of the well-posed								
	learning problems.								

Reference Books:

1.	AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson,
	ISBN-13: 978-0136042594
2.	Machine Learning, Tom M. Mitchell, Publisher: McGraw-Hill
	Science/Engineering/Math; (March 1, 1997) ,ISBN: 0070428077
3.	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication,
	ISBN-978-81-203-4160-9.
4.	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome
	2008Friedman: Springer, ISBN 978-0-387-84858-7.
5.	Pattern Classification, Richard O. Duda, Peter E. Hart and David G. Stork, 2 nd Edition, 2001,
	Wiley-Inter science, ISBN-13: 978-04710566902001.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2			2	2	2		2	2		3	
CO2	2	2	2		3								
CO3			2									2	
CO4	1	2		3	2	2			2			2	

Semester: VI											
COMPILER DESIGN											
Сош	(Theory & Practice) Course Code : 18CS63 CIE Marks : 100+50										
	lits: L:T:P	•	3:0:1		SEE Marks	:	100+50				
	l Hours	:	39L + 35P		SEE Duration	:	3 Hrs + 3 Hrs				
Course Learning Objectives: The students will be able to											
1.	1. Learn basic skill for constructing the compiler which gives the good insight into the algorithms, which have wider applications.										
2.	Gain Knowledge of different forms of language translators that shapes compilers.										
3.	Construct le	exica	l analyser and th	e parsing methods that	at are typically used	in c	ompilers				
4.											
5.	Understand	abou	it the Syntax dir	ected translation, code	e generation and cod	le oj	ptimization.				
	I										
		~	piling and Lexio	Unit – I			7Hrs				
	cal Analysis ognition of To			xical Analyzer, Inpu Unit – II	at Buffering, Spec	ifica	ations of Tokens, 9Hrs				
Svnt	ax Analysis						91115				
Intro Intro	duction, Cor duction to L	R Pa	rsing: Simple L	, Writing a Grammar R, Most powerful LR ng ambiguous gramm	parsers (Excluding						
				Unit – III			9 Hrs				
Lexical –Analyzer and Parser generators Lexical –Analyzer generator Lex, The parser generator YACC, Using YACC with ambiguous grammars, Creating YACC lexical Analyzer with LEX, Error recovery in YACC Syntax-Directed Translation Syntax-Directed Definitions, Evaluation orders for SDD, Application of Syntax Directed Translation.											
				Unit – IV			7Hrs				
Varia	•	x tree		s code, Types and Dec ng.	elaration-Type Expr	essi	ons, equivalence,				
	*		· •	Unit – V			7 Hrs				
Cod	e Generatior	n and	optimization								

Issues in the design of Code Generator, The Target Language, Address in the target Code, Basic Blocks and Flow graphs, Optimization of Basic blocks, A Simple Code Generator, Peephole Optimization. Introduction to LLVM compiler and Clang.

Laboratory Component

Student should be able to design phases of compiler by incorporating following features:

- 1 Writing a scanner, writing predictive parser for a language constructs.
- 2 Experiment with scanner (lex/flex) and parser (yacc/byson) generators
- 3 Writing scanner-parse specification for a simple language constructs.
- 4 Translation of the language constructs to an intermediate form (e.g. three-address code),
- 5 Generation of target code (in assembly language) using compiler construction tools.
- 6 Code improvement and optimization using LLVM compiler.

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Understand and explore the fundamental concepts of compiler design and its									
	implementation.									
CO 2:	Identify and apply rules for designing various phases of compiler									
CO 3:	Analyse the practices adopted in constructing an efficient compiler.									
CO 4:	Implement and demonstrate in-depth knowledge of various technologies related to									
	principles, techniques and tools for designing compiler.									

Reference Books:

I UTUTU	
1.	Compilers- Principles, Techniques and Tools, Alfred V Aho, Monica S.Lam, Ravi Sethi, Jeffrey D Ullman; 2 nd Edition, 2013, Pearson Education, ISBN – 10-1-292-02434-8, ISBN – 13-978-1-292-02434-9.
2.	Compiler Design, Santanu Chattopadhyay, 1 st Edition, 2011, PHI Learning, ISBN-978-81-203-2725-2.
3.	Compiler Construction Principles & Practice, Kenneth C Louden; Cengage Learning, 1 st Edition, 2009. ISBN – 0534939724.
4.	Crafting a Compiler with C, Charles N. Fischer, Richard J. leBlanc, Jr., 1 st Edition, 2009, Pearson Education, ISBN-13:978-0136067054, ISBN-10: 0136067050.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub

questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	-	-	-	-	-	-	1	1	-	1	
CO2	1	2	-	1	2	-	1	-	1	2	-	1	
CO3	2	1	2	-	2	-	1	-	2	3	-	1	
CO4	2	2	2	2	2	1	1	2	3	3	-	1	

	Semester: VI							
	Minor Project							
Cou	Course Code : 18CS64 CIE : 50 Marks							
Crea	lits: L:T:P	:	0:0:2	SEE	:	50 Marks		
Hou	rs	:	26P	SEE Duration	:	02 Hours		
Cou	rse Learning (Dbje	ectives: To ena	ble the students to:		·		
1	 <i>Knowledge Application:</i> Acquire the ability to make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task. 							
2	2 <i>Communication:</i> Acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific audience in both the written and oral forms.							
3	Collaboration	ı:A	cquire collabor	ative skills through working in a team to achi	eve	e common goals.		
4	Independent Learning I earn on their own reflect on their learning and take appropriate action							

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to					
CO 1:	Interpreting and implementing the project in the chosen domain by applying the concepts					
	learnt.					
CO 2:	The course will facilitate effective participation by the student in team work and					
	development of communication and presentation skills essential for being part of any of the					
	domains in his / her future career.					
CO 3:	Appling project life cycle effectively to develop an efficient product.					
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area or					
	carry out research work in an industrial environment.					

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, Problem	10M
	definition, Literature review, formulation of objectives, methodology	
II	Mid-term evaluation to review the progress of implementation,	15M
	design, testing and result analysis along with documentation	
III	Submission of report, Final presentation and demonstration	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	1	2	2	2	2	2
CO2	3	3	3	3	2	2	1	2	2	2	2	2
CO3	3	3	3	3	2	2	1	2	2	2	2	2
CO4	1	1	1	1	1	1	1	2	1	2	1	1

				Semester: VI					
				INTERNET OF TH	INGS				
	(Group C: Professional Elective)								
	(Common to All Branches)								
	rse Code	:	18CS6C1		CIE Marks	:	100		
Cred	lits: L:T:P	:	3:0:0		SEE Marks	:	100		
	l Hours	:	39L		SEE Duration	:	3 Hrs		
Cou	rse Learning	g Ob	jectives: The s	udents will be able to					
1.	Understand	l desi	ign principles in	n lot ,edge ,fog compu	ting and its challen	ges			
2.	Identify the	Inte	rnet Connectiv	ity, security issues and	its protocols				
3.	Explore and	d imp	plement Interne	t of Things (IoT) and	New Computing Par	adig	ms		
4.	Apply and	anal	vze the Orche	stration and resource	management inioT.	5G.	Fog. Edge. and		
	Clouds	unui			inanagement mior,	,	1 0 <u>9</u> , <u>L</u> u <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		
				Unit – I			8 Hrs		
Inter	net of Thing	s Stra	ategic Research	and Innovation Agen	da -Internet of Thing	gs Vi	sion ,IoT Strategic		
				IoT Applications, Int					
Tech	nologies, I	nfras	structure, Net	works and Communi	cation, Processes	, Da	ata Management,		
Secu	rity, Privacy	& T1	rust , Device Le	evel Energy Issues					
				Unit – II			8 Hrs		
				1 — Status, Requir					
			•	andardisation , OGC S					
				w, More Interoperabi					
				The Physical Word,					
				Interoperability, The	e Eternal Interoperat	oility	, The Importance		
of St	andardisation	1 — '	The Beginning						
				Unit – III			8 Hrs		
		0	•	y and Governance-In			-		
				Issues, Contribution					
				he IoT in Smart Citie					
Platf	orms for Sm	art C	ities, First Step	s Towards a Secure Pl	atform, Smartie App	oroac	h		
				Unit – IV			8 Hrs		
		<u> </u>	,	Computing Paradig	0 0				
				LE , How FEC Achiev					
				ness Models, Addres					
		Netv	working Challe	nge, The Managemen	nt Challenge, Inte	grat	ing IoT + Fog +		
Clou	ıd			T T 1 / T T					
<u> </u>		10	1 4 4	$\frac{\text{Unit} - \text{V}}{\text{f. N. 4} + \text{SV}}$		10	7 Hrs		
	0			f Network Slices in					
	-		-	, Network Slicing in	Software-Defined C	loud	s, Network Slicing		
Mana	agement in E	age	and Fog						
Carr			64 on operation 1 - 4*	a 4h a a a mar a - 1 4	an4a mill h h l - 4				
				g the course, the stud			Dana di anna 111 50		
CO				ternet of Things (IoT)	with New Computi	ng I	aradigms like 5G,		
CO			nd Clouds	emonstrate resource	management concer	te in	New Computing		
CO	2: Analyze Paradig		notyping and C	emonstrate resource	management concep	лѕ 11	Thew Computing		
	i araulgi	115							

Refere	nce Books:
1.	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers, 2013ISBN: 978-87- 92982-73-5(Print) ISBN: 978-87-92982-96-4(E-Book).
2.	 Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya, Satish Narayana Srirama, 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, 2017, TMH Publications, ISBN:9789352605224.
4.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, 1 st Edition, 2013, Willy Publications ,ISBN: 978-1-118- 47347-4.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	2	2	-	-	1	-	2
CO2	2	2	1	1	-	2	2	-	1	1	-	3
CO3	1	2	1	1	-	2	2	-	1	1	-	2
CO4	1	2	2	2	-	3	3	1	2	2	-	3

	Semester: VI								
	ADVANCED ALGORITHMS								
	(Group C: Professional Elective)								
				(Common to CS &]	IS)				
Cou	rse Code	:	18IS6C2		CIE Marks	:	100		
Crec	lits: L:T:P	:	3:0:0		SEE Marks	:	100		
Total Hours		:	39L		SEE Duration	:	3 Hrs		
Cou	rse Learning	; Obj	ectives: The stu	dents will be able to					
1.	Enhance the	eir kr	nowledge on asy	mptotic performance	of various algorithms	5.			
2.	Develop the	e skil	ls to design and	apply efficient algorit	hms tovarious real w	orl	d problems.		
3.	3. Ability to differentiate between various design paradigms and apply the same appropriately								
4.	4. Appreciate the time and space complexity of various algorithms								

Unit-I	08Hrs
Analysis techniques:	
Growth of functions: Asymptotic notation, Standard notations and common functions, Su	bstitution
method for solving recurrences, Recursion tree method for solving recurrences, Master theore	em.
Amortized Analysis : Aggregate analysis, The accounting method, The potential method.	
Unit – II	08 Hrs
Sorting in Linear Time:	
Lower bounds for sorting, Counting sort, Radix sort, Bucket sort.	
Advanced Design and Analysis Technique: Matrix-chain multiplication, Longest subsequence, Elements of the greedy strategy, An activity-selection problem	common
Unit –III	08 Hrs
Graph Algorithms	
Bellman-Ford Algorithm, Shortest paths in a DAG, Johnson's Algorithm for sparse graphs.	
Maximum Flow	
Flow networks, Ford Fulkerson method and Maximum Bipartite Matching	
Unit –IV	07Hrs
Number Theoretic Algorithms:	
Elementary notions, GCD, Modular arithmetic, Solving modular linear equations, The	Chinese
remainder theorem, Powers of an element, RSA cryptosystem.	
Unit –V	08 Hrs
Advanced Data structures:	
Structure of Fibonacci heaps, Mergeable-heap operations, Decreasing a key and deleting	g a node,
Binomial Queues, Splay Trees.	
String Matching Algorithms: Naïve algorithm, Rabin-Karp algorithm, String matching w	ith finite
automata, Knuth-Morris-Pratt algorithm	
Course Outcomes: After completing the course, the students will be able to	
CO1: Analyze various algorithms for their time and space complexity	

course o	course outcomest miter completing the course, the students will be usit to						
CO1:	Analyze various algorithms for their time and space complexity.						
CO2:	Demonstrate a familiarity with major algorithms and data structures						
CO3:	Apply appropriate design techniques for solving real world problems.						
CO4:	Design and implement solutions using appropriate mathematical techniques.						

Referen	ice Books
1	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein; Introduction to Algorithms; Columbia University, 3 rd Edition; 2009, ISBN-13: 978-0262033848.
	Mark Allen Weiss; Data Structures and Algorithm Analysis in C++, Addison-Wesley;
2	4 th Revised edition; 2013, ISBN-13: 9780132847377.
3	Kozen DC, The design and analysis of algorithms, Springer Science & Business Media,
	2012, ISBN: 978-0387976877 Kenneth A. Berman, Jerome L. Paul, Algorithms, Cengage Learning, 2002. ISBN: 978-
4	8131505212

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	1	1	-	1	-	-	-	-	1
CO2	1	3	2	1	1	-	1	-	-	-	-	1
CO3	1	3	2	1	1	-	1	-	-	-	-	1
CO4	1	3	2	1	1	-	1	-	-	-	-	1

			Semester: VI		
			FUZZY LOGIC		
		(Gr	oup C: Professional Elective)		
			(Common to CS & IS)		
Course Code	:	18CS6C3	CIE Marks	:	100
Credits: L:T:P	:	3:0:0	SEE Marks	:	100
Total Hours	:	39L	SEE Duration	:	3 Hrs

Course L	Course Learning Objectives: The students will be able to							
1	Gain knowledge of fundamental concepts in Fuzzy Logic.							
2	Illustrate fuzzy sets and fuzzy logic as mathematical models.							
3	Focus on problems related to various engineering, mathematics and science disciplines.							
4	Use fuzzy logic based techniques for various applications.							

Unit – I

Introduction

The case for Imprecision, The Utility and Limitations of Fuzzy Systems, Fuzzy sets and membership, Chance verses fuzziness, Sets as points in hyper cubes. Fuzzy Sets - Fuzzy set operations, Properties of Fuzzy Sets, Alternative fuzzy set operations, Membership value Assignments, Intuition, Inference, Features of the Membership Function

Fuzzy Relations

Fuzzy Relations, Cardinality of Fuzzy Relations, Operations on Fuzzy Relations, Properties of Fuzzy Relations, Fuzzy Cartesian product and Composition, Fuzzy Tolerance and equivalence Relations. Value Assignments - Cosine Amplitude, Max-min Method

Fuzzification and Defuzzification

Fuzzification, defuzzification to crisp sets, Lambda-cuts for fuzzy relations, Defuzzification to Scalars **Fuzzy Logic and Fuzzy Systems**

Unit – II

Classical Logic - Tautologies, Contradictions, Equivalence, Exclusive or and Exclusive Nor, Logical Proofs, Deductive Inferences. Fuzzy Logic, approximate reasoning, other forms of the Implication Operation, Fuzzy Systems: Natural Languages, Fuzzy (Rule -Based) systems.

Unit – III	08Hrs
Fuzzy Arithmetic and Extension Principle	
Extension principle, Crisp Function, Mapping and Relations, Function of fuzzy sets- Extension p	orinciple,
fuzzy transform, practical considerations, fuzzy arithmetic, internal analysis in arithmetic, Approx	timate of
extension.	
Fuzzy Soft Sets	
Soft Sets and Fuzzy Soft Sets - Soft sets and Fuzzy Soft set operations, Properties of soft sets and	nd Fuzzy
Soft Sets, Cartesian product of soft sets and fuzzy soft sets, Fuzzy Soft set Relations, Operations of	on Fuzzy
Soft Set Relations, Composition of fuzzy Soft Set relation.	
	011
Unit – IV	8Hrs
Fuzzy Classification and Pattern Recognition	

Classification of Equivalence relations, Crisp Relations and Fuzzy Relations, Cluster Analysis, Cluster Validity, c-means clustering, Hard c-means, Fuzzy c-means algorithm, cluster validity, Knowledge based pattern recognition, Hybrid pattern based recognition, applications in Medical Image Segmentation: case study of hybrid fuzzy system for MRI segmentation. 8Hrs

Unit – V

Fuzzy Logic and Artificial Intelligence

07Hrs

08Hrs

AI, Neural Network, genetic Algorithms, Fuzzy logic in frame based representation, FL in expert systems, Intelligent Agents, FL in Intelligent systems.

Fuzzy Logic in Database and Information Systems

Fuzzy information, FL in database systems, fuzzy relation data models and its operations,

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Explore and Understand basic concepts of all types of fuzzy sets and relations, fuzzy logic
	extension principle in the field of computer science and Engineering.
CO 2:	Analyse the tools of all types of fuzzy sets in different areas of intelligent information systems
	where uncertainty and imprecision are involved.
CO 3:	Design fuzzy systems and solve complex problems using various fuzzy techniques.
CO 4:	Create application by utilizing cloud platforms. Apply fuzzy systems and solve complex
	problems using various fuzzy techniques.

Reference Books

L	Itere	
	1.	Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley, 2 nd Edition,
		2007, ISBN: 13 978-81-265-1337-6.
	2.	Fuzzy Logic Intelligence, Control and Information, John Yen, Reza Langari, 1st edition, 9th
		Impression, 2012, Pearson, ISBN: 978-81-317-0534-6.
	3.	Fuzzy Sets and Fuzzy Logic-Theory and Applications, George J. Klir, Bo Yuan, Prentice Hall, 1st
		Edition; 2008, ISBN: 81-203-0695-3.
	4.	Fuzzy Logic Theory and Applications: Part I and Part II, Lofti A Zadeh and Rafik A Aliev, World
		Scientific Publishing Co. PTe. Ltd, 2018, ISBN: 978-9813238176
	5.	Fuzzy Sets and Fuzzy Logic with Applications: Implementation, Uncertainty and Vagueness, M.K.
		Hasan, 2019, Scholars Press, ISBN-978-6138833789
Ī	6.	Research Papers on Soft sets and Fuzzy Soft sets.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	2	2	1	-	1	-	-	-	2
CO2	1	3	-	2	2	1	-	1	1	2	2	2
CO3	2	1	-	1	1	1	-	1	1	2	1	2
CO4	2	2	2	1	1	1	-	1	1	2	-	2

			S	Semester: VI		
			DATA WAREHO	USING AND DATA MINING		
			(Group C:	Professional Elective)		
Cou	rse Code	:	18CS6C4	CIE Marks	:	100
Cred	lits: L:T:P	:	3:0:0	SEE Marks	:	100
Tota	Total Hours		39L	SEE Duration	:	3 Hrs
Cou	rse Learning	Obj	ectives: The students v	will be able to		
1.	To understan	nd tł	ne concepts of data war	ehousing and data mining.		
2.	2. To learn different classification techniques adopted for data mining.					
3.	To learn the	visı	alization techniques in	data mining		

Unit – I	8 Hrs

Data Warehouse : Introduction to Data Warehouse, Differences between Operational Database Systems and Data Warehouses, A Separate Data Warehouse, Data Warehousing : A Multitier Architecture, Data Warehouse Models: Enterprise Warehouse, Data Mart, and Virtual Warehouse, Extraction, Transformation, and Loading, Metadata Repository

Data Warehouse Modelling: Data Cube and OLAP; Data Cube : A Multidimensional Data Model, Stars, Snowflakes, and Fact Constellations: Schemas for multidimensional Data Models, Dimensions: The Role of Concept Hierarchies, Typical OLAP Operations, A Starnet Query Model for Querying Multidimensional Databases.

Introduction to Data Mining:Kinds of data,kinds of patterns,technologies used,Application	ons,Major
Issues in Data Mining.	-

Data Objects and Attribute Types, Basic Statistical Descriptions of Data, Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization

Unit – III

Unit – II

Mining Frequent Patterns, Associations, and Correlations: Basic Concepts, Frequent Itemset Mining Methods, Pattern Evaluation Methods

Basic concepts of classification:Decision Tree Induction, Bayesian Classification, Rule based Classification, Model Evaluation and selection, Techniques to improve classification accuracy

Unit – IV	8 Hrs
Classification: Advanced Methods: Bayesian Belief Networks, Classification by Back pr	opagation,
Support Vector Machines, Classification Using Frequent Patterns	
Unit – V	7 Hrs

Cluster Analysis: Basic Concepts and Methods: Cluster Analysis, Partitioning Methods, Hierarchical Methods, Density-Based Methods

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	Understand the concepts of data warehousing and data mining.						
CO 2:	To apply the classification and clustering algorithms for the historical data.						
CO 3:	To identify hidden patterns in the huge data.						
CO 4:	To visualize and draw inference from the knowledge extracted for decision making.						

8 Hrs

8 Hrs

Referen	nce Books:
1.	Data Mining – Concepts and Techniques, Jiawei Han and Micheline Kamber, 3 rd Edition,
	2012, Morgan Kaufmann, ISBN 978-0-12-381479-1.
2.	Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 2007,
	Pearson Education, ISBN 9788131714720
3.	Practical data science with R, Zumel, N. & Mount, J, 2014, Manning Publications, ISBN
	9781617291562
4.	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication,
	ISBN-978-81-203-4160-9.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2		1	2	2	2	1	2	2		3
CO2	2	2	2	1	2			1		1		2
CO3	1		2	1	1			1		1		2
CO4	1	2		2	2	2		1	2	1		2

	Semester: VI							
	BIG DATA ANALYTICS USING DISTRIBUTED PLATFORMS							
			(Gre	oup C: Professional	,			
				(Common to CS &	· ·			
~		1		(Industry Offered		_		
Cou	rse Code	:	18CS6C5		CIE Marks	:	100	
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:	100	
Tota	al Hours	:	39L		SEE Duration		3 Hrs	
Cou	rse Learning	g Obj	ectives: The stu	idents will be able to				
1.	Think and h	nandl	e big data, and p	perform data analysis.				
2.	Use HPCC	platf	orm and ECL pr	rogramming language	for big data process	sing.		
3.	Understand	and	apply machine l	earning algorithms or	distributed platform	n		
				Unit – I				08Hrs
_	Big data processing and Distributed architectures -Types of data: Structured, semi structured,							
unstructured , Data Pre-processing: Data cleaning, Data Integration, Data Reduction, Data								
Transformation and discretization, data cleaning, validation, modifications, enhancements.								
Dist	ributed Archi	tectu	res : Hadoop, sp	ark, HPCC Systems V	/s Hadoop			
Disti	Distributed Architectures : Hadoop, spark, HPCC Systems Vs Hadoop							

HPCC Systems architecture

HPCC System functions, Data Lake Architecture, The HPCC Systems design, Thor Vs ROXIE

Unit – II

ECL the programming language & Structures

ECL Watch, ECL Cloud IDE / VS Code, Simple ECL programs and Data Types explained, Data flow graphs (diagrams), Declarative programming, Declarative vs Imperative programming, the ECL Compiler, The ECL program deployment and execution

ECL the programming language & Structures

An Activity, An Activity Declaration, A Record Declaration, Schema on Read (RECORD) explained, A Function Declaration, A MODULE, ECL File(s), Importing files, Spraying and Reading a file

Data Shaping (Transforming)

FUNCTION, MODULE and PROJECT, ITERATE and ROLLUP ,SORT, JOIN and DEDUP ,NORMALIZE and DENORMALIZE ,DISTRIBUTE and Reading the execution Graph

Unit – IV	08Hrs
Data Aggregation	
GROUP and functions (SUM, AVE, COUNT), TABLE and AGGREGATE	
HPCC Systems Machine Learning Library- Part I	

ML_Core , PBblas- Parallel Block Linear Algebra Subsystem, Supervised Learning Bundles- Linear Regression, Logistic Regression, Support Vector Machines, Learning Trees

Unit – V

HPCC Systems Machine Learning Library- Part II

Supervised Learning Bundles- GLM, Generalized Neural Network, Unsupervised Learning Bundles-K-Means, DBSCAN, Natural Language Processing Bundles- TextVectors

07Hrs

08Hrs

08Hrs

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	Understand and explore the concepts of data processing, distributed systems, HPCC systems,						
	ECL programming language and HPCC machine learning library.						
CO 2:	Apply ECL programming language & structures, Machine Learning Algorithms on HPCC						
	Systems Platform						
CO 3:	Analyse Machine Learning Algorithms on HPCC platforms						
CO 4:	Implement Machine Learning Algorithms on HPCC Platform.						

Reference Books:

Keleici	ice books.
1.	Detailed handouts with references to material available on the web will be handed
	out every week.
	https://hpccsystems.com/training/documentation/learning-ecl
	https://github.com/hpcc-systems/Solutions-ECL-Training,
2.	Data Mining – Concepts and Techniques, Jiawei Han and Micheline Kamber, Jian
	Pei, 3 rd Edition, 2012, Morgan Kaufmann, ISBN 978-0-12-381479-1.
3.	Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar:,
	2007, Pearson Education, ISBN 978-81-317-1472-0.
4.	Big Data and Analytics, Seema Acharya and Subhashini C, 1 st Edition, 2015, Wiley
	India Private Limited, ISBN 978-8126554782.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			2	2	2		2	2		3
CO2	2	2	2		3							
CO3			2									2
CO4	1	2		3	2	2			2			2

	Semester: VI								
	WEB TECHNOLOGY								
			(Gr	up D: Professional Ele	· · · · · · · · · · · · · · · · · · ·				
				(Common to CS & IS	5)				
Cou	rse Code	:	18IS6D1		CIE Marks	:	100		
Crea	lits: L:T:P	: 3:0:0		S	SEE Marks		100		
Tota	l Hours	:	39L	S	SEE Duration	:	3 Hrs		
Cou	rse Learning	g Obj	jectives: The st	dents will be able to					
1.	Understand	the s	standard structu	e of HTML/XHTML ar	nd its differences.				
2.	Adapt HTM	1L ar	nd CSS syntax &	semantics to build web	pages.				
3.	Learn the o	defin	itions and synt	x of different web pro	ogramming tools	suc	h as JavaScript,		
	XML, Ajax, Angular JS and Node.js to design web pages.								
4.	Design and	i dev	velop interactiv	e, client-side, server-si	ide executable we	eb	applications using		
	different tec	chniq	ues such as CS	, JavaScript, XML, Aja	x, Angular JS and	No	de.js.		

Unit-I	08Hrs
Introduction to Web, HTML and XHTML:	
Fundamentals of Web, XHTML: Basic syntax, Standard structure, Basic text markup,	Images,
Hypertext Links, Lists, Tables, Forms, Frames.HTML 5: The audio Element; The video I	
Organization Elements; The time Element, Syntactic Differences between HTML and XHTM	L.
CSS (Cascading Style Sheet):Introduction, Levels of style sheets, Style specification	formats,
Selector forms, Property value forms, Font properties, List properties, Color, Alignment of t	ext, The
box model, Background images, The and <div> tags, Conflict resolution.</div>	
Unit – II	08Hrs
The Basics of JavaScript:	
Overview of JavaScript; Object orientation and JavaScript; General syntactic charac	teristics;
Primitives, operations, and expressions; Screen output and keyboard input; Control statements	š.
JavaScript (continued):Object creation and modification; Arrays; Functions; Constructor	; Pattern
matching using regular expressions; Errors in scripts.	
Unit –III	08 Hrs
JavaScript and HTML Documents:	
The JavaScript execution environment; The Document Object Model; Element access in Jav	vaScript;
Events and event handling; Handling events from the Body elements, Button elements, Text	box and
Password elements; The DOM 2 event model; The navigator object.	
Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning e	
Moving elements; Element visibility; Changing colors and fonts; Dynamic content;	
elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of e	lements;
Dragging and dropping elements and Introduction to jQuery.	
Unit –IV	08Hrs
Introduction to PHP:	_
Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Or	
and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching	g; Form
Handling;Cookies; Session Tracking.	
XML:Introduction; Syntax; Document structure; Document Type definitions; Namespace	
schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSI	LT style
sheets.	
	07 Hrs
Ajax: Overview of Ajax; History of Ajax; Ajax Technology; Implementing Ajax, Basics of A	5
Application; The Form Document; The Request Phase; The Response Document; The	Keceiver
Phase; Cross-Browser Support.	

Database Access through the web: Architectures for Database Access: Client Server Architecture; The Microsoft open Database Connectivity; PHP and Database Access; The Java JDBC Architecture; The MySQL Database System, Database Access with PHP and MySQL.

Course O	Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic syntax and semantics of HTML/XHTML.
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading
	Style Sheet.
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and
	utilize the concepts of XML & Ajax to design dynamic web pages.
CO4:	Develop web based applications using PHP, XML and Ajax.

Refere	ence Books
1	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, Pearson Education,
L	2013, ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India,
2	2006, ISBN: 978-81-265-1290-4.
2	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg,
3	3rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata
4	McGraw Hill, 2003, ISBN: 978-0-07-222942-4.
5	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education,
5	2013, ISBN-13:978-0132665810.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

Semester: VI						
	QUANTUM COMPUTING					
		(Group	D: Professional I	Elective)		
Course Code	:	18CS6D2		CIE Marks	:	100
Credits: L:T:P	:	3:0:0		SEE Marks	:	100
Total Hours	:	39L		SEE Duration	:	3 Hrs

Cou	Course Learning Objectives: The students will be able to			
1.	Explain the basic concepts of quantum computation and its physics			
2.	Use various operators of quantum computation and work on quantum transformation			
3.	Illustrate the working of some standard quantum algorithms			
4.	Analyse the complexities involved in working of quantum algorithms			

Unit – I8 HrsQUANTUM BUILDING BLOCKS: Quantum mechanics of Photon Polarization, Single Quantum
bits, Single Qubit Measurement, A Quantum key Distribution Protocol, State Space of a Single-Qubit
System, Direct Sums and Tensor Products of Vector Spaces, State Space of an n-Qubit System,
Entangled States, Multi-Qubit Measurement, QKD using Entangled states

Unit – II8 HrsMULTIPLE-QUBIT STATES MEASUREMENTS: Dirac's bra/ket Notation for
Linear transformations, Projection operators, Hermitian OperatorFormalism, Bell's
Theorem

Unit – III8 HrsQUANTUM STATE TRANSFORMATIONS: Unitary transformations, Simple Quantum Gates,
Pauli transformations, Hadamard Transformations, Multiple-Qubit Transformations, Controlled-NOT
and other singly controlled gates, Applications of Simple Gates, Dense coding, Quantum teleportation

Unit – IV	8 Hrs
QUANTUM ALGORITHMS: Computing with Superpositions, Walsh-Hadamard trans	formation,
Quantum Parallelism, Notions of Complexity, Query Complexity, Communication Co	omplexity,
Simple Quantum Algorithm	
Unit – V	7 Hrs

SHOR'S AND GROVER'S ALGORITHM: Classical reduction to Period-Finding, Shor's factoring Algorithm, Example illustrating Shor's Algorithm, DLP and Hidden Subgroup Problems, Grover's Algorithm, Amplitude amplification

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	Explain the various essentials of quantum computation, Qubits, and Quantum operators						
CO 2:	Analyse working of quantum transformations and quantum gates						
CO 3:	Describe principle of working of some of the standard quantum algorithms and their						
	applications						
CO 4:	Investigate the applications of quantum computing and quantum cryptography						

0.77

Text Bo	ook:
1.	Quantum Computing: A Gentle Introduction, Eleanor Rieffel and Wolfgang Polak, 2011,
	The MIT Press, ISBN 9780262015066.
Referen	ace Books:
1 <u>.</u>	An introduction to Quantum Computing, Phillip Kaye, Raymond Laflamme, Muchele
	Mosca, Oxford University Press, 2007, ISBN-13: 978-0198570493, ISBN-10: 019857049X
2.	Quantum Computing for Computer Scientists, 1 st Edition, Noson S. Yanofsky and Mirco A.
	Mannucci, Cambridge University Press, 2008, ISBN 978-0-521-879965.
3.	Quantum Computing for Everyone, Chris Bernhardt, MIT Press, 2019, ISBN:
	9780262039253
4.	Mathematics of Quantum Computing: An Introduction, Wolfgang Scherer, Springer, 2019,
	ISBN-10: 303012357X.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	-	2	-	-	-	-	-	-	-	-	-	-
CO4	-	2	1	1	2	-	-	-	2	-	-	-

		Sen	nester: VI		
			EURAL NETWORKS		
		(Group D: Pi	ofessional Elective)		
Course Code	:	18CS6D3	CIE Marks	:	100
Credits: L:T:P	:	3 :0:0	SEE Marks	:	100
Total Hours	:	39L	SEE Duration	:	3 Hrs

С	our	rse Learning Objectives: The students will be able to
	1	Perceive the basic theory of ANN, applications and learning techniques
4	2	Explain the working of perceptron, adaptive filters, and unconstrained optimization techniques
	2	Gain essential knowledge on back propagation algorithm with respect to multilayer perceptron,
-	5	along with various related concepts
2	4	Explore the significance of support vector machines in ANN

UNIT-I	08 Hrs
ARTIFICIAL NEURAL NETWORKS INTRODUCTION AND LEARNING PRO	
I:What is a Neural Network? Human Brain, Models of a Neuron, Neural Networks View	
Feedback, Network Architectures, Error-correction learning, Memory-based learning	g, Hebbian
Learning, Competitive learning, Boltzmann Learning	
UNIT-II	08 Hrs
LEARNING PROCESSES- II& STATSTICAL LEARNING THEORY: Learning wit	
Learning without a teacher, Learning tasks (includes Function approximation, Control	
Memory, Adaptation. Statistical Learning Theory: Model of the supervised learning pa	rocess, VC
dimension with examples, Probably approximately correct model of learning	
UNIT-III	08 Hrs
SINGLE-LAYER PERCEPTRON: Adaptive filtering problem, Unconstrained o	
techniques: Steepest Descent, Newton's, Gauss-Newton; Linear Least-Squares Filter, We	
LMS algorithm (includes Signal-Flow Graph Representations, Convergence Cons	
Learning curves, Learning rate annealing techniques, Perceptron and Convergence theorem	1
UNIT-IV	08 Hrs
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co	omputation,
	omputation, ics for BP
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of consequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristic	omputation, ics for BP , Universal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristi algorithm to perform better, Output representation and Decision rule, Generalization,	omputation, ics for BP , Universal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of consequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristic algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping)	omputation, ics for BP , Universal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristi algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping of training and Variants) UNIT-V SUPPORT VECTOR MACHINES: Optimal hyperplane for linearly separable pattern	omputation, ics for BP , Universal ing method 07 Hrs ns, Optimal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of consequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristic algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping of training and Variants) UNIT-V	omputation, ics for BP , Universal ing method 07 Hrs ns, Optimal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristi algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping of training and Variants) UNIT-V SUPPORT VECTOR MACHINES: Optimal hyperplane for linearly separable pattern	omputation, ics for BP , Universal ing method 07 Hrs ns, Optimal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristi algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping of training and Variants) UNIT-V SUPPORT VECTOR MACHINES: Optimal hyperplane for linearly separable pattern hyperplane for non-separable patterns, Building a support vector machine for pattern r	omputation, ics for BP , Universal ing method 07 Hrs ns, Optimal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristi algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping of training and Variants) UNIT-V SUPPORT VECTOR MACHINES: Optimal hyperplane for linearly separable pattern hyperplane for non-separable patterns, Building a support vector machine for pattern r	omputation, ics for BP , Universal ing method 07 Hrs ns, Optimal
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristi algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping of training and Variants) UNIT-V SUPPORT VECTOR MACHINES: Optimal hyperplane for linearly separable pattern hyperplane for non-separable patterns, Building a support vector machine for pattern r XOR Problem, SVM for nonlinear regression	omputation, ics for BP , Universal ing method 07 Hrs ns, Optimal recognition,
MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of co Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristi algorithm to perform better, Output representation and Decision rule, Generalization, approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping of training and Variants) UNIT-V SUPPORT VECTOR MACHINES: Optimal hyperplane for linearly separable pattern hyperplane for non-separable patterns, Building a support vector machine for pattern r XOR Problem, SVM for nonlinear regression Course Outcomes: After completing the course, the students will be able to	omputation, ics for BP , Universal ing method 07 Hrs ns, Optimal recognition,

UU 2:	That ye and approximation of the origination of the
00-11	and techniques for optimization
CO 3:	Explore modelling aspects of BP algorithm, SVM, Generalization, and Cross-validation
CO 4·	Investigate and apply neural networks model and learning techniques to solve problems
004	related to society and industry, and demonstrate a prototype application developed using any
	NN tools and APIs

Text	t Books
1.	Neural Networks – A Comprehensive Foundation, Simon Haykin, 2 nd Edition, 2005, PHI.
	(Units I to III)
Refe	erence Books
1.	Introduction to Artificial Neural Networks, Gunjan Goswami, S.K. Kataria & Sons, 2012
	Edition, ISBN-13: 978-9350142967.
2.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, Thomson Learning, Edition, 2009, ISBN-13: 978-0-9717321-1-7.
3.	Fundamentals of Artificial Neural Networks, M H Hassoun, MIT Press, 2010, ISBN-13: 978-0262514675.
4.	Principles of Artificial Neural Networks: Basic Designs To Deep Learning, Graupe Daniel, 4 th Edition, 2019, World Scientific.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	2	2	-	-	-	-	-	-	-	2	-	3
CO2	-	2	2	-	-	-	-	-	-	-	-	3
CO3	2	3	3	2	-	-	-	1	2	-	-	-
CO4	2	2	3	3	-	-	-	-	3	2	2	-

Semester: VI							
	PROBABILITY, STATISTICS AND QUEUING THEORY						
		(Gro	oup D: Professional 1	Elective)			
Course Code	:	18CS6D4		CIE Marks	:	100	
Credits: L:T:P	:	3 :0:0		SEE Marks	:	100	
Total Hours	:	39L		SEE Duration	:	3 Hrs	

Course Learning Objectives: The students will be able to

Understand the basics of Probability, Statistics and Queuing theory.

Evaluate probability bounds, basic statistical measures and demonstrate their significance.

Design and perform hypothesis tests and other evaluative tests.

Develop probability models for solving real world problems.

UNIT-I	08Hrs
Introduction of Probability and Random Variables: Axioms of probability, Co	onditional
probability, Baye's theorem, Discrete Random variable and Continuous Random variable,pr	nf, pdf of
some well-known distributions, Moment Generating Functions, Two-dimensional Random	variables,
Joint pmf and Joint pdf and their properties, Conditional distributions and conditional exp	ectations,
Covariance.	
UNIT-II	09Hrs

	07 1110
Probability bounds, Approximations, Testing Hypothesis and Regression: Probability ined	qualities -
Markov's inequality, Chernoff bounds, Jensen's inequality, Chebyshev's inequality, Bi	enayme's
inequality, Schwartz inequality, Cauchy-Schwartz inequality, sampling theory, Confidence	intervals
and Testing Hypothesis (Mean σ known and σ unknown, Standard deviation), Simp	ole linear
regression, Multiple linear regression,-assumptions, estimation of coefficients, coeff	icient of
determination and adjusted coefficient of determination.	

UNIT-III	08Hrs
Random Processes: Classification, Methods of description, Special classes, Average	values of
Random Processes, Analytical representation of Random Process, Autocorrelation function	on, Cross-
correlation function and their properties, Ergodicity, Poisson process, Counting processes, Int	ter-arrival
and waiting time distributions, Markov Process, Markov chain.	
UNIT-IV	07Hrs

Queuing Theory:Symbolic Representation of a Queuing Model, Poisson Queue system, Little Law, Types of Stochastic Processes, Birth-Death Process, The M/M/1 Queue, M/M/m Queue, M/M/m/B Queue with Finite Buffers.

UNIT-V07HrsRandom Number Generation:Desired Properties of a Good Generator, Linear-Congruential
Generators, Tausworthe Generators, Extended Fibonacci Generators, Combined Generators, Testing
Random Number Generators: Chi-Square Test, Kolmogorov-Smirnov.

Course	e Outcomes: After completing the course, the students will be able to
CO1.	Identify basic tools of Probability and queuingin the fields where uncertainty and imprecision
	are involved.
CO2.	Apply random process, sampling theory, stochastic process and queuing models to the field of
	computer science.
CO3.	Apply probability models using modern tools of probability for synthesizing information to
	use effectively.
CO4.	Analyze and design probability models for various real world problems involving
	randomness.

Reference Books

1. Probability & Statistics with Reliability, Queuing and Computer Applications, Kishor S Trivedi, Eastern Economy Edition, 2nd Edition, 2008, Prentice Hall India, ISBN: 81-203-0508-6. Probability, Statistics and Random Processes, T Veerarajan, 3rd Edition, 2008, Tata McGraw Hill Education Private Limited, ISBN:978-0-07-066925-3.
 Probability and Statistics for Computer Scientists, Michael Baron, 3rd Edition, 2006, CRC Press, ISBN: 978-1138044487
 The Art of Computer Systems Performance Analysis, Raj Jain, 1st Edition, 2009, Wiley India Private Limited, ISBN:978-81265-1905-7.
 Probability and statistics for Engineers, Miller and Freund's, Richard .A. Johnson, C. B. Gupta, Second impression 2007, Pearson Education, ISBN: 978-0-12-051051-1.
 Introduction to Probability, Statistics and Random Processes, Kappa Research, Hossein Pishro-Nik, LLC, 2014, ISBN-978-0990637202

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-1	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	2	-	1	1	2	1	1
CO2	3	3	2	2	2	2	-	1	1	2	1	2
CO3	2	3	2	2	3	2	-	1	1	2	1	2
CO4	3	2	2	2	3	2	-	1	1	2	1	2

	Semester: VI							
	ROBOTIC PROCESS AUTOMATION DESIGN & DEVELOPMENT							
			(Gro	up D: Professional Elective)				
				(Industry Offered)				
Cou	rse Code	:	18CS6D5	CIE Ma	arks :	100		
Crea	lits: L:T:P	:	3:0:0	SEE Ma	arks :	100		
Total Hours		:	39L	SEE Du	ration :	3 Hrs		
Cou	rse Learning	Obj	jectives: The stu	lents will be able to				
1.	1. To understand Basic Programming concepts and the underlying logic/structure							
2.	2. To Describe RPA, where it can be applied and how its implemented							
3.	3. To Describe the different types of variables, Control Flow and data manipulation techniques							
4.	To Describe	aut	omation to Emai	and various types of Exception	ons and strateg	ies to handle		

Unit – I8 HrsPROGRAMMING BASICS &RECAP:Programming Concepts Basics - Understanding the
application - Basic Web Concepts - Protocols - Email Clients -. Data Structures - Data Tables -
Algorithms - Software Processes - Software Design - Scripting - .Net Framework - .Net Fundamentals
- XML - Control structures and functions - XML - HTML - CSS - Variables & Arguments.

Unit – II8 HrsRPA Concepts: RPA Basics - History of Automation - What is RPA - RPA vs Automation -
Processes & Flowcharts - Programming Constructs in RPA - What Processes can be Automated -
Types of Bots - Workloads which can be automated - RPA Advanced Concepts - Standardization of
processes - RPA Development methodologies - Difference from SDLC - Robotic control flow
architecture - RPA business case - RPA Team - Process Design Document/Solution Design Document
- Industries best suited for RPA - Risks & Challenges with RPA - RPA and emerging ecosystem.

Unit – III8 HrsRPA TOOL INTRODUCTION & BASICS: Introduction to RPA Tool - The User Interface -
Variables - Managing Variables - Naming Best Practices - The Variables Panel - Generic Value
Variables - Text Variables - True or False Variables - Number Variables - Array Variables - Date and
Time Variables - Data Table Variables - Managing Arguments - Naming Best Practices - The
Arguments Panel - Using Arguments - About Imported Namespaces - Importing New Namespaces-
Control Flow - Control Flow Introduction - If Else Statements - Loops - Advanced Control Flow -
Sequences - Flowcharts - About Control Flow - Control Flow Activities - The Assign Activity - The
Delay Activity - The Do While Activity - The If Activity - The Switch Activity - The While Activity -
The For Each Activity - The Break Activity - Data Manipulation - Data Manipulation Introduction -
Scalar variables, collections and Tables - Text Manipulation - Data Manipulation - Gathering and
Assembling Data

Unit –	IV
--------	----

8 Hrs

ADVANCED AUTOMATION CONCEPTS AND TECHNIQUES :

Recording and Advanced UI Interaction - Recording Introduction - Basic and Desktop Recording -Web Recording - Input/output Methods - Screen Scraping - Data Scraping - Scraping advanced techniques - Selectors - Selectors - Defining and Assessing Selectors - Customization - Debugging -Dynamic Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix Automation - Introduction to Image & Text Automation - Image based automation - Keyboard based automation -Information Retrieval - Advanced Citrix Automation challenges - Best Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA - Excel and Data Table basics - Data Manipulation in excel - Extracting Data from PDF - Extracting a single piece of data -Anchors - Using anchors in PDF

Unit – V	7 Hrs
EMAIL AUTOMATION & EXCEPTIONAL: Email Automation - Email Automation -	Incoming
Email automation - Sending Email, automation - Debugging and Exception Handling - I	Debugging
Tools - Strategies for solving issues - Catching errors.	

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Understand RPA principles, its features and applications.
CO 2:	Demonstrate proficiency in handling several types of variables inside a workflow and data
	manipulation techniques
CO 3:	Gain insights into Desktop, Web, Citrix, Email Automation and exception handling.
CO 4:	Analyze and design a real-world automation project and debug the workflows.

Refer	ence Books:
1.	Learning Robotic Process Automation, Alok Mani Tripathi, March 2018, Packt Publishing, Release ISBN: 9781788470940
2.	Introduction to Robotic Process Automation: a Primer, Frank Casale, Rebecca Dilla, Heidi Jaynes, Lauren Livingston, Institute of Robotic Process Automation.
3.	Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant, Richard Murdoch.
4.	Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation, Srikanth Merianda
5.	https://www.uipath.com/rpa/robotic-process-automation

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	3	2	-	-	-	1	-	-
CO2	2	1	1	1	3	2	-	-	-	-	-	-
CO3	2	3	3	3	3	3	2	-	2	-	2	2
CO4	2	3	3	3	3	3	2	-	3	2	2	2

				Semester: VI							
	AIRCRAFT SYSTEMS										
	(GROUP E: GLOBAL ELECTIVE)										
(Theory)											
Course Code		:	: 18G6E01		IE	:	100 Marks				
Credits: L:T:P		: L:T:P : 3:0:0		SI	SEE		100 Marks				
Hours		: 39L		SI	SEE Duration		3.00 Hours				
Cou	rse Learning O	bje	ectives: To ena	ble the students to:							
1	List the variou	is s	ystems involve	d in the design of an aircraft							
2	Demonstrate t	he 1	technical attrib	utes of all the subsystems of an	n aircraft						
3	Explain the sig	gnif	ficance of each	systems and its subsystems for	r developing an	ai	rplane				
4	Demonstrate t	he i	integration of the	he systems with the airplane							

Unit-I	07Hrs							
Flight Control Systems: Primary and secondary flight controls, Flight control linkage system,								
Conventional Systems, Power assisted and fully powered flight controls.								
Unit – II	10Hrs							
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or							
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	e of bleed							
air, Landing gear and braking, Shock absorbers-Retraction mechanism.								
Unit -III	08Hrs							
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components,								
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.								
Unit -IV	07Hrs							
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-							
icing system, Fire detection- warning and suppression. Crew escape aids.								
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical								
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system.	l a typical							
	a typical 07Hrs							
lubricating system.	07Hrs							
lubricating system. Unit -V	07Hrs							
lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	07Hrs Vavigation							

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane
CO2:	Comprehend the complexities involved during development of flight vehicles.
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
CO4 :	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A.,3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

	Semester: VI BIO INSPIRED ENGINEERING (GROUP E: GLOBAL ELECTIVE) (Theory)										
(Theory) Course Code : 18G6E02 CIE : 100 Marks											
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks				
Total Hours			39 L		SEE Duration		3.00 Hours				
Cou	rse Learning ()bj	ectives: The studen	ts will be able to							
1	To familiarize	e er	igineering students	with basic biologica	l concepts						
2	Utilize the si	mil	arities noted in nat	ture for a particular	problem to bring i	nsp	iration to the				
	designer.			_		_					
3	Explain appli	cat	ions such as smart	structures, self-heali	ng materials, and ro	bot	ics relative to				
	their biologic	al a	inalogs		-						
4	To gain an u	nde	rstanding that the d	esign principles from	m nature can be tran	islat	ed into novel				
	devices and st	truc	ctures.	_							

Unit-I	08 Hrs							
Introduction to biological systems: General and Special biomolecules, Plant, an	imal and							
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural networks,								
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsupervised and								
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems	with case							
study Harvesting Desert Fog.								
Unit – II	08 Hrs							
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and	l physical							
functions of biological composites of engineering – related case study: Camera from eyes	, clothing							
designs and hooks from Velcro Criteria for future materials design and processing. Con	mputation							
Cellular systems: Cellular automata – modelling with cellular systems with cellular systems –								
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.								
Unit –III	08 Hrs							
Engineering of synthetic organs: Growth, development and principle of artificial skins	s, hearing							
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pa	acemaker,							
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Appl	ication of							
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods								
Unit –IV	07 Hrs							
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequivalence.	uivalence,							
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, I	ssues on							
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar	Products,							
Challenges involved in Biosimilars.								
Unit –V	08 Hrs							
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural	systems,							
learning in behavioural systems – co evolution of body and control. Behaviour in cognitiv	ve science							
and artificial intelligence. Biological inspiration for robots, Robots as biological mo								
robotics behaviour, Application of sleek scale of shark skin.								
Course Outcomest After completing the course the students will be able to								

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Remember and explain the concepts of biological and physiological processes								
CO2:	Elucidate the basic principles for design and development of biological systems.								
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems								

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

MUICIC	LICC DOORS
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI
2	
_	Global, 2016. ISBN: 1466698128, 9781466698123.
	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN:
3	1606502255, 9781606502259.
	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature -
4	
-	Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	-	-	1	3	2	-	1	1	1	-	
CO2	3	3	2	3	2	-	1	2	-	1	2	-	
CO3	2	2	2	3	3	3	2	2	-	1	2	2	
CO4	2	2	3	3	2	-	1	2	1	-	-	-	

			Semester: VI			
		SUSTA	AINABLE TECHNO	DLOGY		
		(GROU	P E: GLOBAL ELE	CTIVE)		
			(Theory)			
Course Code	:	18G6E03		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	g Obj	ectives: The stud	ents will be able to			
				tion of industrial and e	ecolo	gical systems
			life cycle assessment.			
				appropriate case studie	es.	
4 Use concep	ts of s	systems-based, tr	ans-disciplinary appro	bach to sustainability.		
			TT •4 T			
Introduction to			Unit-I			08 Hrs
Introduction to		•	nts and Life Cyclo	Analysis, Material	flor	v and west
		• •	ects, Character of Env	-	110	w and wast
management, en	mica		Unit – II	ironnentar i robienis		07 Hrs
Environmental l)ata (Collection and L	CA Methodology:			07 111
				sis of Environmenta	l Da	ata, Commo
			CA Methodology. – Ge			,
J.			Unit –III	,		08 Hrs
Life Cycle Asses	smen	t:				·
			cle Interpretation, LCA	A Benefits and Drawb	acks	
Wet Biomass Ga						
				tion, Biomass conver		
-	0	0	5	gestion, Classification	1 of	biogas plants
Floating drum pla	nt an	a fixed dome plai	nt their advantages an Unit –IV	d disadvantages.		08 Hrs
Design for Susta	inahi	litx,.	Unit –I v			00 113
0		v	ental Design for Susta	inability		
Dry Biomass Ga			intui Design for Susta	indonity.		
U U			rmal gasification of b	iomass, Classification	of g	asifiers. Fixe
bed systems:		,	0	,	0	,
•			Unit –V			08 Hrs
Case Studies:						
	r Org	anics Treatment	Plant, Bio-methanatic	on, Bioethanol produc	tion.	Bio fuel from
water hyacinth.						
		<u> </u>	he course, the studer			
				current generation,	and	systems-base
approach	es req	uired to create su	stainable solutions fo	r society.		
CO2: Identify	proble	ems in sustainabi	ility and formulate a	ppropriate solutions l	based	l on scientifi
research,	appli	ed science, social	and economic issues			
				ciplinary approach to	susta	inability
11 2		· · · · · · · · · · · · · · · · · · ·		c research, applied s		÷
	- app		s subta on berenting	- resources, upplied s		e, sooiai an

Refere	nce Books									
1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge
I	University F	Press, ISBN - 9	9781108333	726.						

economic issues.

	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VI								
GRAPH THEORY								
	(GROUP E: GLOBAL ELECTIVE)							
			(Theory)					
Course Code	:	18G6E04		CIE Marks	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks		
Total Hours	:	39L		SEE Duration	:	3.00 Hours		

Cour	rse Learning Objectives: The students will be able to
1	Understand the basics of smark theory and their regions means

Cour		ing Ob	jeenves.	Inco	iuuciii	9 WH						
1	Understa	and the	basics of	graph	theory	and	their	various	prop	erties.		
•	X 1 1	1 1	•	1	1.	1	.1	1.1	1	1.1	•	11

2

- Model problems using graphs and to solve these problems algorithmically. Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, 3 etc.
- Optimize the solutions to real problems like transport problems etc., 4

UNIT-I	07 Hrs
Introduction to graph theory	
Introduction, Mathematical preliminaries, definitions and examples of graphs, degree	es and regular
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	C
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivit	y in digraphs.
UNIT-II	09 Hrs
Graph representations, Trees, Forests	
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees an	d properties of
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Span	ning trees and
forests, Spanning trees of complete graphs, An application to electrical networks,	Minimum cos
spanning trees.	
UNIT-III	09 Hrs
Fundamental properties of graphs and digraphs	I.
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in we	ighted graphs
Eulerian digraphs.	0 0 1
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratow	vski's theorem
Dual of a planar graphs.	
UNIT-IV	07 Hrs
Matchings and Factors	
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite n	natching.
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynon	nial of a graph
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge colo	ring of graphs
UNIT-V	07Hrs
Graph algorithms	·
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest p	ath algorithms
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm	•
and Prim's.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the basics of graph theory.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1.	Understand and explore the basics of graph theory.					
CO2.	Analyse the significance of graph theory in different engineering disciplines					
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.					
CO4.	Evaluate or synthesize any real world applications using graph theory.					
Reference	Books					
-----------	-------					

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

			Semester: VI			
		DI	ISASTER MANAGE	MENT		
		(GRO	UP E: GLOBAL EI	LECTIVE)		
(Theory)						
Course Code	:	18G6E05	()	CIE	•	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	Ob	jectives: The stu	dents will be able to		_	1
1 Study the env	viror	nmental impact of	of natural and manmad	e calamities		
2 Learn to anal	yze	and assess risk i	nvolved due to disaster	rs.		
		ole of public part				
4 Learn the ma	nage	ement tools and	mitigation techniques.			
			Unit-I			08 Hrs
Natural disasters				111 .1 1		
			Hazards- floods, land			
			ients, harmful gases, B			
			tivities. Preparation of Post disaster plans. Re			
organization and a			-	her camp organizatio	II. N	ole of voluntary
organization and a	inte	u torees during (Unit – II			07 11
Diale analysis and			Unit – 11			07 Hrs
Risk analysis and			alysis. Analytical te	abriques and tools	of	rick accomment
			k characterization. Ris			
emergency respon					. 1010	inagomoni, i ii ii
			Unit –III			08 Hrs
Environmental In	npa	ct Assessment (
			ciples of EIA. Regula	atory framework in I	ndia	. Environmental
inventory. Base lin				-		
			Unit –IV			08 Hrs
Assessment and M	Met	hodologies				
		0	es, Socio economic an	d cultural environment	ntal	assessment. EIA
			list approaches. Econo			
EIA. Public partic	cipa	tion in environn	nental decision makin	g. Procedures for rev	iewi	ng EIA analysis
and statement. Dec	cisic	on methods for e	valuation of alternative	es.		
			Unit –V			08 Hrs
Disaster Mitigati	on a	nd Managemer				
e		0	management, tools an	d techniques, primary	and	l secondary data
•			ies-Earthquake hazard			•
			andslides-causes and			-
			ement, Cyclones and			-
Regional and glob	al d	isaster mitigation	n.	-		_
Course Outcome	s: A	fter completing	g the course, the stude	ents will be able to		
			f disasters and manage		ter s	ituation.
CO2. Estimata			the might by conductin			1

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	rence Books
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.
2	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.
3	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN:9780470052457.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-

			Sen	nester: VI		
			WEARABLI	E ELECTRONICS		
			(GROUP E: GI	LOBAL ELECTIVE)		
			(7)	Theory)		
Course Code		:	18G6E06	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks
Total Hours		: 39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	Obj	ectives: The students will	be able to		
1	Explain the t	ypes	and application of wearab	le sensor.		
2	Describe the	wor	king of sensitivity, conduc	tivity and energy generation in wear	abl	e devices.
3	Explain the v	varic	us facets of wearable appli	cation, advantage & challenges.		
4	Understand of	liffe	rent testing and calibration	in wearable devices.		

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III					
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of con	nductive fibre,				
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,				
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case studies, H					
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &.	Ref 3: Chapter				
6,9]					
Unit –IV	08 Hrs				

	00 1115			
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradient,				
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input			
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,			
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]				

Unit –V					
Wearable antennas for communication systems: Introduction, Background of textile antennas, Design					
rules for embroidered antennas, Integration of embroidered textile surfaces onto polyn	mer substrates,				
Characterizations of embroidered conductive, textiles at radio frequencies, RF p	erformance of				
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]					

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna					
CO2:	Analysis measurable quantity and working of wearable electronic devices.					
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges					
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem					
	statement.					

Refer	rence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
l	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
5	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

	Semester: VI							
	ENERGY AUDITING AND MANAGEMENT							
	(GROUP E: GLOBAL ELECTIVE)							
				(Theory)		_		
Course Code			18G6E07		CIE	:	100 Marks	
Cr	edits: L:T:P	:	3:0:0		SEE		100 Marks	
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours	
Co	ourse Learning	g O	bjectives: The stud	ents will be able to				
1	Understand th	ne r	eed for energy audi	t, energy manageme	nt and the concepts	of t	ooth.	
2	2 Explain Processes for energy audit of electrical systems.							
3	3 Design and develop processes for energy audit of mechanical systems.							
4	Prepare the fo	orm	at for energy audit of	of buildings and ligh	ting systems.			

Unit-I	06 Hrs				
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of					
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing					
Options, Energy Monitoring and Training.					
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement,					
Speed Measurement, Data Logger and Data Acquisition System,					
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of					
Power Plants, Energy Audit of Power Plant.					
Unit – II 10 Hrs					
Electrical Load Management: Electrical Passiag Electrical Load Management, Variable	•				

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III 10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving
Measures in Furnaces, Furnace Efficiency
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy
Conservation Methods
Unit –IV 07 Hrs
Unit –IV 07 Hrs Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System.
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System. Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air – Conditioning

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments								
	needed.								
CO2:	Design and perform the energy audit process for electrical systems.								
CO3:	Design and perform the energy audit process for mechanical systems								
CO4 :	Propose energy management scheme for a building								

Reference Books

INCIG	LICHCE DOORS
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6 th Edition, 2015, CRC Press, ISBN: 0-88173-542-6
3	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

				Semester: VI					
	VIRTUAL INSTRUMENTATION & APPLICATIONS								
	(GROUP E: GLOBAL ELECTIVE)								
	(Theory)								
	rse Code	:	18G6E08		CIE	:	100 Marks		
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks		
	al Hours	:	39L		SEE Duration	:	3.00 Hours		
		<u> </u>	v	e students will be able to					
1				e between conventional and graph	ical programmin	g			
2				and virtual instrument.	6.1.4	•••	• • • • • •		
3	Analyzing LabVIEW	the	e dasies of dat	a acquisition and learning the conc	epts of data acqu	151t	tion with		
4		ר <u>א</u> ד	real time annl	cation using myRIO and myDAQ	programming co	nce	ents		
-	Developing	<u>,</u> u	icar time appi	ication using mytero and myDrig	programming ee				
				Unit-I			07 Hrs		
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Comp	onents of LabVI	EW	V and Labels.,		
Cont	troller, Indic	cato	rs data type	s, wiring tool, debugging tools	, Creating Sub-	Vis	s, Boolean, -		
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Typ	e Def, Strict Typ	e E	Def.		
				Unit – II			09 Hrs		
For	Loop, While	Lo	op , Shift reg	sters, stack shift register, feedbac	k node, and tunn	el,	elapsed time,		
				mula node, Sequence structures, L			^		
				Unit –III			09 Hrs		
Arra	ys and cluste	ers,	Visual displa	y types- graphs, charts, XY graph,	Introduction to	Stri			
	-		-	cal examples, File Formats, File I/C			-		
	0		, ,1	Unit –IV	, ,	1	07 Hrs		
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure Mo	odel, Master-Sla	ve	Model, State		
	•			n using Semaphore, Introduction to					
		-		ssistants, Analysis Assistants, I	· •				
			-	•					
	application using myDAQ Configured it as Virtual labs, Counters, Low level Lab-VIEW Program, Unit –V 07 Hrs								
Sign	al Processing	y A	pplication- Fo	purier transforms, Power spectrum,	Correlation met	hoc			
-				-			-		
	& flittering, Real time application using myRIO, Communication protocol (SPI, I2C, UART) for Embedded Applications, Configure myRIO for speed control of DC Motor using encoder, Keypad								
			•	and onboard sensors. Develop	•		• •		
~ ~	isition and p			and onboard sensors. Develop.	ment of control		, stem, mage		
acqu	instruori and p		coome						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.							
CO2:	Apply the theoretical concepts to realize practical systems.							
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.							
CO4 :	Create a VI system to solve real time problems using data acquisition.							

Reference Books							
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning						
I	Pvt.Ltd , ISBN: 978-8120340305						

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017, Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
4	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	-	-	-	-	-	1	1	-	1		
CO2	1	3	2	1	2	-	-	-	1	1	-	1		
CO3	2	2	3	3	3	-	-	-	1	1	-	2		
CO4	1	2	2	3	3	1	0	2	3	2	1	2		

	Semester: VI												
	SYSTEMS ENGINEERING												
	(GROUP E: GLOBAL ELECTIVE)												
(Theory)													
Cou	rse Code	:	18G6E09	CI	E	:	100 Marks						
Credits: L:T:P :			3:0:0	SE	E	:	100 Marks						
Tota	l Hours	:	39 L	SE	E Duration	:	3.00 Hours						
Cou	rse Learning (Obje	ectives:										
1.	Understand th	he L	ife Cycle of System	IS.									
2.	Explain the re	ole	of Stake holders and	their needs in organiz	ational system	ıs.							
3.	Develop and	Doc	cument the knowled	ge base for effective s	ystems engine	ering	g processes.						
4.	Apply availal	ble t	cools, methods and to	echnologies to support	t complex high	n tec	hnology systems.						
5.	5. Create the frameworks for quality processes to ensure high reliability of systems.												

UNIT-I	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, Or	rigins of
System Engineering, Examples of Systems Requiring Systems Engineering, System Eng	ineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	s.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of C	Complex
systems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evol	utionary
Characteristics of the description of the sector of the sector of the sector of the description of the sector of t	

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems10 Hrs

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs						
Engineering Design: Implementing the System Building blocks, requirements analysis, Functional							
analysis and design, Component design, Design validation, Configuration Management, problems.							
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test plan	ning and						
preparation, System integration, Developmental system testing, Operational test and eva	aluation,						
problems.							
LINIT – V	06 Hrs						

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the Life Cycle of Systems.								
CO2:	Explain the role of Stake holders and their needs in organizational systems.								
CO3:	Develop and Document the knowledge base for effective systems engineering processes.								
CO4:	Apply available tools, methods and technologies to support complex high technology systems.								
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.								

Reference Books:

-	
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	-	-	-	-	1	-	-	-	-	-	1			
CO2	-	2	3	-	1	-	-	1	-	-	2	-			
CO3	-	3	-	-	-	2	2	1	-	3	2	-			
CO4	-	-	2	1	-	-	-	-	-	-	-	-			
CO5	1	1	-	2	-	1	2	-	3	-	-	-			

			S	emester: VI			
	I	NTI	RODUCTION TO MOBI	LE APPLICATION I	DEVELOPMEN	JT	
			(GROUP E: C	GLOBAL ELECTIV	'E)		
				(Theory)			<u></u>
	e Code	:	18G6E10		CIE	:	100 Marks
	ts: L:T:P	:	3:0:0		SEE	:	100 Marks
Total]		:	39L		SEE Duration	:	3.00 Hours
			ctives: The students will b		1 1		
1	-		e knowledge on essentials		<u>^</u>		
2			e basic and advanced featu				
3	-		lls in designing and buildi		÷ .		rm.
4		-	nd publish innovative mot			•	
5	Comprehen	d th	e knowledge on essentials	of android application	development.		
			T	•			00.11
TA	1 4*		Un	it-I			08 H
	luction:		. 1 . 1	1° (° T (1		1 т	/ 11° A 1
		-	systems and smart phone				-
	-		oid app project, deploying			JIL	Jesign: Building
•			, Layouts, Views and Reso		•	• • • •	Intende Tredit
			The Activity Lifecycle,		-		
-		ng s	upport libraries, The And	droid Studio Debugger	, Testing androi	ld a	ipp, The Andro
Suppo	rt Library.		T T •/				
I. ann a			Unit	; – II			08 H
	experience:	T	anut Controlo Monuo Co	man Naviation Dear	lan Wiener Deliel		1
			nput Controls, Menus, Sch		-		-
	-		Themes, Material Design,	Providing Resources in	or Adaptive Lay	outs	s, resulig app (
Tesun	g the User Inte	eria		TTT			
Work	ing in the bac	lzar	Unit	-111			08 H
	0	0	vncTask and Async Task	Loader Connect to th	a Internet Bree	daa	st Docoivors
-			heduling and optimizing				
	Ferring Data E	-	v , v	background tasks - Iv	otifications, Sen	Cut	ning Alarins, a
1141151			Unit	IV			08 H
All ah	out data:			- I V			00 11
		ting	s, Storing Data, Shared Pro	eferences Ann Setting	s Storing data us	sinc	sol ite - SOL
		-	e. Sharing data with conten		-	-	
			s and Debugging, Displayi		-		os and Fragmer
-		-	ogramming: Internet, E	÷ •	-	-	
			web pages and maps, con				
		-	d services, Sensors.	municating with SND		au	
301 1100	lo - Location (Jase		t V			07 H
			Uni	t - V			1 U/ H
Hardy	vare Sunnort	8					0711
	ware Support			curity Firebase and A	dMob Publish	and	

Form Factors, Using Google Services.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Comprehend the basic features of android platform and the application development process.							
	Acquire familiarity with basic building blocks of Android application and its architecture.							
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating							
	Android features in developing mobile applications.							
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android							
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting							
	tools.							
CO4:	Create innovative applications, understand the economics and features of the app marketplace by							
	offering the applications for download.							

Refere	ence Books
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,
1	2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
2	Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1st Edition,
4	2012, ISBN-13: 9788126525898
=	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1st Edition, 2011, ISBN-13:
5	978-1-4302-3297-1
(Android Developer Training - https://developers.google.com/training/android/
6	Android Testing Support Library - https://google.github.io/android-testing-support-library/

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	-	-	-	3	-	-	-	-	-	-	2		
CO2	3	-	-	-	3	-	-	-	-	-	1	2		
CO3	-	3	3	-	3	-	1	-	-	2	1	3		
CO4	3	3	3	1	3	2	1	2	2	1	1	3		

	Semester: VI												
	INDUSTRIAL AUTOMATION												
	(GROUP E: GLOBAL ELECTIVE) (THOERY)												
Cour	Course Code : 18G6E11 CIE : 100 Marks												
Credits: L:T:P : 3:0:0 SEE : 100 Mark						100 Marks							
Tota	Total Hours : 39 L SEE Duration : 3.00 Hours												
Cou	rse Learning (Dbj	ectives: The students will	be able to									
1	Identify the v	ario	ous types of Actuators, ser	nsors and switching devices us	sed in	n industrial							
	automation.												
2	Understand	the	fundamentals of CNC, PL	C and Industrial robots.									
3	Describe the	fun	ctions of hardware compo	nents for automation									
4	Prepare simp	le n	anual part programs for C	CNC and Ladder logic for PLO	С.								
5	Demonstrate	the	ability to develop suitable	e industrial automation system	is usi	ng all the concepts							

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation.
continuous and discrete control, basic elements of an automated system, advanced automation	functions,
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	ensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation s	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic mo	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	atic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	·
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,
	-

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection
	technologies in industrial automation.
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and
	identify its application areas.
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning
	centres interfaced with Robots.
CO4:	Develop a suitable industrial automated system integrating all of the above advanced
	automation concepts

Referen	ce Books
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0
	TTESS, 2010, ISBN - 978-1-4987-0540-0
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st
	Edition, 2011, ISBN -13-978-8126529889.
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-
	13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	-	3	1	-	-	-	1	-	1
CO2	2	2	3	2	2	-	-	-	1	2	-	1
CO3	2	2	3	3	2	-	-	-	-	2	-	-
CO4	3	3	3	2	2	-	-	-	-	2	-	1

	Semester: VI							
	MOBILE NETWORK SYSTEM AND STANDARDS (GROUP E: GLOBAL ELECTIVE) (Theory)							
Cou	rse Code	:	18G6E12	CIE	:	100 Marks		
Credits: L:T:P : 3:0:0 SI				SEE	:	100 Marks		
Hrs/Week			40L	SEE Duration	:	3.00 Hrs		
Cou	rse Learning	; Ol	ojectives: The	students will be able to				
1	1 Understand the essential principles of cellular communication and factors that might degrade the performance.							
2	2 Describe the second-Generation pan-European digital mobile cellular communication standards.							
3	3 Analyze the 3G cellular technologies including GPRS and UMTS.							
4								

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	eduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	r system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	f FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	
rippileutons, i in cless Locul in cu networks, i termore cleare, standards, i ippileuton	s.

architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	CO1 Describe the concepts and terminologies for Cellular Communication.							
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.							
CO3	Compare the performance features of 2G and 3G Cellular Technologies.							
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.							

Reference Books

Keitt									
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education								
1	Private Limited, ISBN: 978-0-07-068178-1.								
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,								
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.								
3	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,								
5	ISBN-13:978-0-19-806066-6.								
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,								
4	Pearson, ISBN 97881-317-3186-4.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

	Semester: VI						
	r	ΓH		EVICE FABRICAT		GY	7
			(GROU)	P E: GLOBAL ELE	CTIVE)		
C	<u> </u>	1	19C/(E12	(Theory)	CHE	1	100 10
	rse Code	:	18G6E13		CIE	:	100 Marks
	lits: L:T:P	:	3:0:0		SEE	:	
	l Hours	:	39L		SEE Duration	:	3.00 Hours
-	<u> </u>		ectives: The students				
1			ing of vacuum and r		C (1) C'1 1		
2	-	_	-	nd characterization o		ostri	uctures
3	U 11 1		<u> </u>	for desired application			
4	Fabricate and	Eva	aluate thin film nand	devices for advanced	d applications		
				Unit-I			08 Hrs
Vacu	um Technolog	gy:					
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	nd pumping, Q-rate	e ca	lculation, Basics of
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo mo	olec	ular, and Cryogenic
	-		-	pump (TSP); differe			• •
				and Penning gauges.	I I O , I		
cone	ept of cupuoli			Unit – II			08 Hrs
Subs	Unit – II 08 Hrs Substrate Surfaces& Thin Film Nucleation:						
Aton	Atomic view of substrate surfaces, Thermodynamic aspects of nucleation, Kinetic processes in nucleation						
				tion and growth (Brie		•	
Defe	cts in Thin Fil	ms:					

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1: Choose the right choice of material for the desired application						
CO2:	Improve the desired nanostructures and their properties					
CO3:	Fabricate appropriate Nanodevices					
CO4:	Optimize the nanodevice fabrication process for repeatability.					

Refere	ence Books
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-
1	0030839931
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.
2	Microfabrication for Industrial Applications, Regina Luttge, 1st Edition, William Andrew,2011,
3	ISBN: 9780815515821.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-		-	2
CO2	3	2	2	2	-	-	-	-	-		-	2
CO3	2	3	3	2	2	1	1	1	-	1	-	2
CO4	2	3	3	2	2	2	2	2	2	2	-	2

					Semeste	er: VI					
	CHEMIS	TRY	OF AD	VANCE	D ENERGY S		E DEVICES I	FOR E	2-N	IOBILIT	Y
				(GRO	OUP E: GLOB	BAL ELEC	CTIVE)				
					(Theo			r			
	e Code	:	18G6E	14			CIE		:	100 Mar	
	ts: L:T:P	:	3:0:0				SEE		:	100 Mar	
Total]			39L				SEE Duration	n	:	3.00 Hou	irs
					ents will be abl dvanced storag						
					e devices for E	0					mina
			<u> </u>							•	
V	vehicles.				mistry to ana		•				ric/nybri
4 I	Develop kno	owled	lge of bat	ttery mar	nagement syste	em and recy	cling of stora	ge dev	vice	es.	
			~	~	Unit-I						07 Hrs
		0	•	•	ns in Electric						
-			-	•	es and sustaina	-			-		
	-				on. Vehicle pe				-		
			•	•••	and power re	•	ts for various	HEV	S	and EVs	Vehicle
Fundar	mentals of b	attery	y technol	ogy in hy	ybrid vehicles.						
					Unit – II						08 Hrs
Advan	ced Lithiu	m ior	a Battery	7 Techno	logy for Floot	twig wohigh	0.0.0				
				Ittimo	hogy for Elect	uric-venicio	es:				
Basic of	concepts of	lithiu	•		vanced Lithiun			y: Cel	1 c	onstructio	n, batter
	-		um batter	ries, Adv		n batteries	for E-mobilit	•			
compo	nents, prin	ciple	um batter of oper	ries, Adv ration, e	vanced Lithiun	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prin	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prinuction, wor	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr sulfide	nents, prinuction, wor	ciple king olid-s	um batter of oper and futur tate batte	ries, Adv ration, e re applica pries.	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	nd packs y, Li-iro
compo Constr sulfide Future	nents, prin uction, worl cells and so e Scope in n	ciple king blid-s	um batter of oper and futur tate batte	ries, Adw ration, e re applica pries. Batterie	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs
compo Constr sulfide Future Limita	nents, prin uction, work cells and so e Scope in r tions of lit	ciple king blid-s blid-s	um batten of oper and futur tate batte Lithium batteries	ries, Adv ration, e re applica eries. Batterie s. Const	vanced Lithium electrode fabri ations of Li-po Unit –III es:	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs n-Lithiur
compo Constr sulfide Future Limita batterie	e Scope in r tions of lit	ciple king blid-s blid-s non- l hium batte	um batter of oper and futur tate batte Lithium batteries ry, Magr	ries, Adv ration, e re applica eries. Batterie s. Const nesium b	vanced Lithiun electrode fabri ations of Li-po Unit –III es: ruction, comp	n batteries rication, el olymer batt ponents, we Metal Hyd	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery,	attery ttery, 1 pplicat Zebra		odules an Air batter	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterie iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s non- l hium batte es, l b-Aci	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterid iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt	ciple king blid-s bon- hium batte es, 1 b-Acie	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices:	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l	pplicat Zebra Sportat	m Li- ion ior es.	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu	e Scope in r tions of litters sed batterintal plate Pt tistry of Alter action to su	ciple king blid-s blid-s non- hium batte es, I b-Acid ernat	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin	pplicat zebra sportat batterio	ma Li- ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt istry of Alter action to su tors and Ul	ciple king blid-s blid-s blid-s blid-s bli	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E mo	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors	pplicat Zebra sportat batterio g and s, Aqu	ion ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organio	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulicons and Ul	ciple king blid-s blid-s non-l hium batte es, l b-Acie ernat per c tra ca er ca	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitors,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa	n batteries fication, el olymer batt ponents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito	pplicat pplicat Zebra sportat batterio g and s, Aqu	ma Li- Lion ion es. ap ieo dva	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organic capacit Solar C	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f	ciple king blid-s blid-s on- l hium batte es, l b-Acie es, l b-Acie ernat per c tra ca for la coltaic	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Future Limita batterid iron-ba horizon Chemi Introdu capacit organid capacit Solar C Batter	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov	ciple king blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ection, workin per capacitors Ultra capacito on for transpor age devices fo	g and s, Aquors, Aquor	me Li- Li- ior es. ap leo dva ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar o	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptristerion of Alteriations and Ulic based superior of the construction of superior of the construction	ciple king blid-s blid-s non- bhium batte es, 1 b-Acie es, 1 b-Acie ernat per c tra ca for la coltaic ance a ent Sy	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor; apacitor; c) hybridi and Recy ystems (E	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries fication, el olymer batt bonents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizations energy stors	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back	me Li- Lion ion es. ap eo dva ap -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of ancel solar of solar of	d packs y, Li-iro 08 Hrs n-Lithium dium and battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery	e Scope in re- tions of litters: Sodium- ased battering tal plate Pterson istry of Alters istry of Alters istr	ciple king blid-s blid-s non-l hium batte es, l b-Acie er cap for la oltaic ance a ent Sy Viana	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, coacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet cles, Batt ization, a ycling: BMS), Fu Passive o	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stors f battery ma M systems,	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito on for transpor age devices fo anagement sys	g and sportat g and s, Aquors. A rtation or back stems a ng – L	me Li- Lion ior es. ap leo dv: ap -up	odules an Air batter Air batter ans of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of solar of ancel solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non-l hium batte es, l b-Acid ernat per c tra ca for la coltaic ance a coltaic ance a for la	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, c) hybridi and Recy ystems (E gement: 1 hnologies	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN pology and eco	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit Solar C Batter Battery Battery safety	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid ernat per c tra ca for la coltaid ent Sy Mana recy	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor apacitor, apacitor, apacitors, rge vehic c) hybridi and Recy ystems (E gement: hnologies cling pro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn ocess. Re	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN ology and ecc egulations and	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric
	vehicles.
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion
	devices for vehicle electrification.
CO3:	Analyses of battery management, safety, global market trends for large format batteries.
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy
	consumption, reuse and recycling.

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	-	-	-	1	-	1
CO2	3	3	2	2	2	-	-	-	1	1	-	1
CO3	2	2	3	3	2	-	-	-	3	1	2	1
CO4	3	3	2	3	2	-	-	-	2	1	3	1

				Semester: VI			
			ADVANCE	ED STATISTICAL	METHODS		
			(GROU	P E: GLOBAL ELE	ECTIVE)		
				(Theory)	ſ	-	ſ
	rse Code	:	18G6E15		CIE	:	100 Marks
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
	ll Hours	:	39L		SEE Duration	:	3.00 Hours
			ctives: The student		-1: C'		
1				basic knowledge on	classification and re	egres	ssion trees that form
			analyzing data.				
2		-	•	and conjoint analysis	· ·		
3		-		analysis and factor	analysis which hav	ve g	reat significance in
	engineering p	ract	ice.				
4	Demonstrate	the p	practical importance	e of regression and lo	glinear models.		
				Unit-I			07 Hrs
Clas	sification and	Reg	ression Trees:				
			-	orical or Quantitative	-	ion [Frees, Classification
Trees	s, Stopping Ru	les, l	Pruning and Cross-V	Validation, Loss func	tions, Geometry.		
				Unit – II			07 Hrs
Clus	ster Analysis:						
Intro	duction, Types	s of	Clustering, Correlat	tions and Distances,	Hierarchical Cluster	ring,	Partitioning via K-
mear	ns, Additive Tr	ees.					
				Unit –III			08 Hrs
Conj	joint Analysis:	:					
Intro	duction, Addit	tive	Tables, Multiplicat	tive Tables, Comput	ting Table Margins	bas	sed on an Additive
Mod	el, Applied Co	njoii	nt Analysis.	-			
		0	•	Unit –IV			08 Hrs
Disc	riminant Anal	ysis	and Factor Analys	sis:			Ι
Intro	duction, Linea	r Di	scriminant Model,	Linear discriminant	function, Discrimi	nant	analysis, Principal
				nponents versus Fact			•
	1 /			Unit –V	5 / 11		09 Hrs
Logi	stic Regressio	n an	d Loglinear Mode				•> 115
	0		0	ogit, Conditional Lo	git. Discrete Choice	e Lo	git. Stepwise Logit.
	ng a Loglinear	-	-				5, Step Logit,
1 1111	is a Dogimear	.,100					
Сош	rse Outcomes	Aft	er completing the	course, the students	will be able to		
CO1			1 0	of statistical methods		ielde	engineering
CO2	1			statistical techniques			
002	· Apply the R	110 %	reuge and skins of	statistical techniques	to understand valio	usiy	pes of analysis.

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge goined to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Refere	ence Books
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4 th Edition, 2003, Marcel Decker, New York. ISBN: 0-8247-4052-1.

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey, ISBN: 0-471-36091-0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

				Semester:	VI		
			MA	THEMATICAL			
			(GRO		L ELECTIVE)		
~	~ .		10000	(Theory			400.7.7.7
	rse Code	:	18G6E16		CIE	:	100 Marks
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
	al Hours):)::	39L	lanta mill ha ahla t	SEE Duration	:	3.00 Hours
	0			lents will be able t		1:	
1	· ·				lge of mathematical mode	nng.	
2		-	-	ess models arising			
3	Apply the copractice.	once	epts of modelin	ig of nano liquid	s which have great sigr	iifica	nce in engineering
4	Demonstrate	the	practical impor	tance of graph th	eoretic models, variationa	ıl pro	blem and dynamic
	programming	5 .					
				Unit-I			07 Hrs
Eler	nentary Mathe	ema	tical Modeling:				
Basi	c concepts. Re	al v	world problems,	(Science and En	gineering), Approximatio	n of	the problem, Steps
	-		-		l, Logistic model, Model		
		-	-	•	blems), Chemical reaction		
				0 01	trical circuits (LCR).	1, DI	ug ubsorption from
0100		011 0	a projectile, et	Unit – II	inear chedits (LCK).		07 Hrs
Dia	crete Process	Ма	dolar	0mt – 11			07 1115
				T . 1			1 1 1 1 1
			-		discrete models-simple of		-
		diff	erence equation	is in economics,	finance, population dyna	amics	s and genetics and
prob	ability theory.						
Mod	leling of Nano			Unit –III			08 Hrs
		_	_				•
	o liquids-Basic	_	_		of nano liquids-Buongio	rno]	•
Nan	•	c co	oncepts, Mathem	natical modeling			Model (Two phase
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio	vatio	Model (Two phase n equation for two
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two
Nan mod phas	lel): Relative in se nano liquids:	c co mpo The	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two
Nan mod phas Gra	el): Relative in se nano liquids: ph Theoretic N	c co mpo The Mod	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum Unit –IV	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs cted graphs, signed
Nan mod phas Gra Mat grap	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte	c co mpo The Mod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph raphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mati grap Var	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble	c co mpo The VIod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming:	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	e Continuity equates of the n continuity equation of the	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems y and Dynamic Pr es and techniqu s with engineerin	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod has and weighte iational Proble mization prince gramming, Prob	c co mpo The Mod elin, d gr em a ciple isiple isiple	encepts, Mathem ortance of the n e Continuity equa elels: g through graph raphs. Problems and Dynamic Pr es and techniqu s with engineerin ter completing t	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs plem and dynamic
Nan mod phas Gra Mati grap Var Opti prog Cou	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems of and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic
Nan mod phas Gra Mat grap Var Opti prog	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems of and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic dds engineering.
Nan mod phas Gra Mati grap Var Opti prog Cou	 Relative in se nano liquids: ph Theoretic Mematical modules and weighte iational Problection princet gramming, Problection I: Explore the analysis. 	c co mpo The Mod elin, d gr em a ciple iem a ciple iem a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to idamental concep- wledge and skill	hatical modeling anoparticle transp ation, Momentum Unit –IV hs-Models in tern with engineering a Unit –V rogramming: hes, Mathematica ing applications. the course, the stup pts of mathematica is of discrete and	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prob	Model (Two phase n equation for two 08 Hrs eted graphs, signed 09 Hrs olem and dynamic lds engineering. nd various types of

Refere	Reference Books							
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:							
1	81-224-0006-X.							
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,							
2	Cheltonham, ISBN: 0470271779, 9780470271773.							
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:							
3	9780853122869.							
	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and							
4	Hall/CRC Textbook, ISBN 9781439854518.							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	(GROUP E: GLOBAL ELECTIVE)										
C	C. I.		100/17	(Theory)		—	100 M				
	urse Code edits: L:T:P	:	18G6E17 3:0:0	CIE Mark			100 Marks				
-		:		SEE Mark SEE Dura			100 Marks				
	tal Hours		39L	SEE DUra	lon :	<u>.</u>	3.00 Hours				
	urse Learning						11				
1		-		er their innate flow, entrepreneurial style, and ic	lentify	pro	oblems				
	worth solving	the	reby becoming	entrepreneurs							
2	To handhold p	arti	cipants on lean	methodology to craft value proposition and get	ready v	wit	th lean				
	canvas										
3	To create solu	tion	demo by cond	ucting customer interviews and finding problem	-soluti	on	fit for				
	building Minii	nun	n Viable Produ	ct (MVP)							
4	e			cost structure, pricing, revenue types and impor	tance o	of a	adonting				
•	_	_	to build good to		tunee	<i>)</i> 1 U	uopung				
		-			1 .	1	4 1				
_		pan	its build a stron	g brand and identify various sales channels for	their pr	odi	ucts and				
5	services										
5	To take participants through basics of business regulations and other legal terms along-with										
5 6	To take partici	pan		understanding of Intellectual Property Rights							

Unit-I	08 Hrs
Self-Discovery and Opportunity Discovery	
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Id	lentifying
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified proble	ms; Identifying
the Entrepreneurial Style.	
Unit – II	08 Hrs
Customer, Solution and Lean Methodology	
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains a	nd Early
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business	Model and
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Car	ivas.
Unit – III	07 Hrs
Problem-Solution Fit and Building MVP	
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-R	educe-Raise-
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Int	erviews;
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.	
Unit – IV	07 Hrs
Financial Planning & Team Building	
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Type	es, Identifying
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstra	apping and
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and	
Responsibilities.	
Unit – V	09 Hrs
Marketing, Sales, Regulations and Intellectual Property	
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Busin	1000

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Showcase the ability to discern distinct entrepreneurial traits					
CO2	Know the parameters to assess opportunities and constraints for new business ideas					
CO3	Understand the systematic process to select and screen a business idea					
CO4	Design strategies for successful implementation of ideas					
CO5	Create Business Model and develop Minimum Viable Product					

Refer	ence Books:
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.
2	Entrepreneurship. Roy, R., 2012. Oxford University Press
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial
4	Modern Classics
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar
3	Publishing Ltd.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

			V	Semester				
				NAL PRACTICE –	II			
	EMPLOYABILITY SKILLS AND PROFESSIONAL DEVELOPMENT OF ENGINEERS							
Co	ourse Code	•	18HS68	GINEEKS	CIE Marks: 50			
	redits: L:T:P	:	0:0:1		SEE Marks: 50			
	ours:	:	18 Hrs/Semester		CIE Duration: 02	Hrs		
Co	ourse Learnin	g C	bjectives: The student	s will be able to				
1	Improve quali	tati	ve and quantitative problem	n solving skills.				
2			l logical thinking process t					
3			y compare and contrast w	ords and arrive at rela	tionships between con	cepts, based		
4	on verbal reas		ng. ind maps that help in com	nunicating ideas as we	all as in technical docu	mentation		
4	Applying good	4 111	ind maps that help in com	indificating focas as we	en as in teennear doeu	mentation		
			V	Semester				
			UNIT			06 Hrs		
Aŗ	otitude Test	Pre	paration- Importance	of Aptitude tests, l	Key Components, Q			
			n Solving, Data Suffi					
	•		decimals, digit places of					
	-		gical Aptitude, - Introd	_				
-	-		ent, common flaws, ar	guments and assum	nptions. Analytical	Reasoning,		
Cr	itical Reasonir	ıg.	TINITA					
V	whal Analasi		UNIT		Analazias & develor	06 Hrs		
			What are Analogies, H mar, Comprehension					
			easers. Creativity Aptitu		Withen Ability. No			
			Theory & Evaluation : U		nd how is the group	discussion		
			niques of group discuss					
	guage during			,		, ,		
			UNIT-I			06 Hrs		
		-	Vriting Resume, how to		-			
ess	sentials for a re	esui	ne, Resume writing tips		r presentation of fact	s.		
			VI Sem					
T				NIT-III.B		06 Hrs		
			ntation - Introduction to	-				
			general and technical wr	-		-		
	-		format Headings, list & n, Power revision techn	-		-		
			unctuation problems.	ques, i atterns & cle	ments of sentences,	Common		
5"		~ P	UNIT-	IV		06 Hrs		
Int	terview Skills -	a) P	Personal Interviews , b) G		ock Interviews - Quest			
			, Body language in intervi					
			Mock interviews - Mock i		nt Panels. Practice on s	stress		
int	erviews, technic	al i	nterviews, General HR int					
Im	townowcomal D	مام	UNIT		tivity Condon consis	06 Hrs		
	-		tions - Optimal Co-exis porate Culture- Capabili		-	•		
			ng to the Corporate Cul			mary 515,		
\mathbf{D}	an storn. Au	۰µu	no to the corporate cur					

Cou	rse Outcomes: After completing the course, the students will be able to
COI	: Inculcate employability skill to suit the industry requirement.
CO2	: Analyze problems using quantitative and reasoning skills
CO3	: Exhibit verbal aptitude skills with appropriate comprehension and application.
CO4	: Focus on Personal Strengths and Competent to face interviews and answer
Refe	rence Books
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:
	0743272455
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:
	9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN:
	9781259058738

Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 5 th semester and evaluated for 50	50%
V Sem	marks. The test will have two components. The Quiz is evaluated for	
	15 marks and second component consisting of questions requiring	
	descriptive answers is evaluated for 35 marks. The test & quiz will	
	assess the skills acquired through the training module.	
	SEE is based on the test conducted at the end of the 5 th semester The	
	test will have two components a Quiz evaluated for 15 marks and	
	second component consisting of questions requiring descriptive	
	answers is evaluated for 35 marks.	
Phase II	During the 6 th semester a test will be conducted and evaluated for 50	50%
VISem	marks. The test will have two components a Short Quiz and Questions	
	requiring descriptive answers. The test & quiz will assess the skills	
	acquired through the training module.	
	SEE is based on the test conducted at the end of the 6 th semester The	
	test will have two components. The Quiz evaluated for 15 marks and	
	second component consisting of questions requiring descriptive	
	answers is evaluated for 35 marks	
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consoli	dated for 50
At the	marks (Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of	At the end of the VISem Marks of SEE (5 th Sem and 6 th Sem) is consoli	dated for 50
VISem	marks (Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.