

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V &VI Semesters

2018 SCHEME

COMPUTER SCIENCE AND ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V &VI Semesters

2018 SCHEME

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT VISION

To achieve leadership in the field of Computer Science & Engineering by strengthening fundamentals and facilitating interdisciplinary sustainable research to meet the ever growing needs of the society.

DEPARTMENT MISSION

- To evolve continually as a centre of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Develop Graduates capable of applying the principles of mathematics, science, core engineering and Computer Science to solve real-world problems in interdisciplinary domains.
- **PEO2:** To develop the ability among graduates to analyze and understand current pedagogical techniques, industry accepted computing practices and state-of-art technology.
- **PEO3:** To develop graduates who will exhibit cultural awareness, teamwork with professional ethics, effective communication skills and appropriately apply knowledge of societal impacts of computing technology.
- **PEO4:**To prepare graduates with a capability to successfully get employed in the right role / become entrepreneurs to achieve higher career goals or takeup higher education in pursuit of lifelong learning.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	System Analysis and Design
	The student will be able to:
	1. Recognize and appreciate the need of change in computer architecture, data organization and analytical methods in the evolving technology.
	2. Learn the applicability of various systems software elements for solving design problems.
	3. Identify the various analysis & design methodologies for facilitating development of high quality system software products with focus on performance optimization.
	4. Display team participation, good communication, project management and document skills.
PSO2	Product Development
	The student will be able to:
	1. Demonstrate the use of knowledge and ability to write programs and integrate them with the hardware/software products in the domains of embedded systems, databases /data analytics, network/web systems and mobile products.
	2. Participate in planning and implement solutions to cater to business – specific requirements displaying team dynamics and professional ethics.
	3. Employ state-of-art methodologies for product development and testing / validation with focus on optimization and quality related aspects.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	PE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PY	Physics		
21.	CY	Chemistry		
22.	MA	Mathematics		

INDEX

	V Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	18HSI51	Intellectual Property Rights and Entrepreneurship	1				
2.	18CS52	Finite Automata Formal Languages	4				
3.	18CS53	Database Design	6				
4.	18CS54	Network Programming and Security	9				
5.	18IS55	Software Engineering	12				
6.	18CS5AX	Group A: Professional Electives (MOOC Courses)	15 -24				
7.	18G5BXX	Group B: Global Elective	GE-B1-B38				

	VI Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	18HEM61	Introduction to Management & Economics	25				
2.	18CS62	Artificial Intelligence and Machine Learning	27				
3.	18CS63	Compiler Design	30				
4.	18CS64	Minor Project	33				
5.	18CS6CX	Group C: Professional Electives	35-44				
6.	18CS6DX	Group D: Professional Electives	45-54				
7.	18G6EXX	Group E: Global Elective	GE-E1-E35				
8.	18HS68	Professional Practice – II (Employability Skills and Professional Development of Engineers)	55				

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

COMPUTER SCIENCE AND ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME								
Sl. No	Course	Course Title	BoS	Credit Allocation			Total		
51. 140	Code	Course Title	DUS	L	T	P	Credits		
1.	18HSI51	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	3		
2.	18CS52	Finite Automata Formal Languages	CS	3	0	0	3		
3.	18CS53	Database Design (Common to CS & IS)	CS	3	0	1	4		
4.	18CS54	Network Programming and Security	CS	3	0	1	4		
5.	18IS55	Software Engineering (Common to CS & IS)	IS	3	0	1	4		
6.	18CS5AX	Group A: Professional Electives (MOOC Courses)	CS	3	0	0	3		
7.	7. 18G5BXX Group B: Global Elective Resp. BoS					0	3		
			21	0	3	24			
		Total number of Hours/Week		21	0	7.5			

GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)								
Sl. No.								
1.	18CS5A1	Object Oriented System Development using UML, Java and Patterns	12 Weeks					
		(Common to CS & IS)						
2.	18IS5A2	Social Networks	12 Weeks					
		(Common to CS & IS)						
3.	18CS5A3	Applied Natural Language Processing	12 Weeks					
4.	18CS5A4	Introduction to robotics	12 Weeks					
5.	18CS5A5	The Joy of Computing using Python	12 Weeks					
		(Common to All Branches)						

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

COMPUTER SCIENCE AND ENGINEERING

	SIXTH SEMESTER CREDIT SCHEME								
Sl.	G G 1	C Thu	n c	Cre	dit All	Total			
No.	Course Code	Course Title	BoS	L	T	P	Credits		
1.	18HEM61 Introduction to Management & Economics HSS		3	0	0	3			
2.	2. 18CS62 Artificial Intelligence and Machine Learning (Common to CS & IS)		3	1	1	5			
3.	3. 18CS63 Compiler Design		CS	3	0	1	4		
4.	18CS64	Minor Project	CS	0	0	2	2		
5.	18CS6CX	Group C: Professional Electives	CS	3	0	0	3		
6.	18CS6DX	Group D: Professional Electives	CS	3	0	0	3		
7.			Resp. BoS	3	0	0	3		
8.	18HS68	Professional Practice-II (Employability Skills and Professional Development of Engineers)	HSS	0	0	1	1		
					24				
		Total number of Hours/Week		18	2	10+2.5			

GROUP C: PROFESSIONAL ELECTIVES				
Sl. No.	Course Code	Course Title	Credits	
1.	18CS6C1	Internet of Things	03	
		(common to all branches)		
2.	18IS6C2	Advanced Algorithms	03	
		(Common to CS & IS)		
3.	18CS6C3	Fuzzy Logic	03	
		(Common to CS & IS)		
4.	18CS6C4	Data Warehousing and Data mining	03	
5.	18CS6C5	Big Data Analytics Using Distributed Platforms(Industry Offered)	03	
		(Common to CS & IS)		

GROUP D: PROFESSIONAL ELECTIVES								
Sl. No.	Sl. No. Course Code Course Title							
1.	18IS6D1	Web Technology	03					
		(Common to CS & IS)						
2.	18CS6D2	Quantum Computing	03					
3.	18CS6D3	Artificial Neural networks	03					
4.	18CS6D4	Probability, Statistics and Queuing Theory	03					
5.	18CS6D5	Robotic Process Automation Design & Development	03					
		(Industry Offered)						

			GROUP B: GLOBAL ELECTIVES	
Sl. No.	Dept	Course Code	Course Title	Credits
			Courses offered by the Departments	
1.	AS	18G5B01	Fundamentals of Aerospace Engineering	03
2.	BT	18G5B02	Nanotechnology	03
3.	СН	18G5B03	Fuel Cell Technology	03
4.	CS	18G5B04	Intelligent Systems	03
5.	CV	18G5B05	Remote Sensing and Geographic Information System	03
6.	EC	18G5B06	Automotive Electronics	03
7.	EE	18G5B07	E-Mobility	03
8.	EI	18G5B08	Smart Sensors & Instrumentation	03
9.	IM	18G5B09	Operations Research	03
10.	IS	18G5B10	Management Information Systems	03
11.	ME	18G5B11	Automotive Mechatronics	03
12.	TE	18G5B12	Telecommunication Systems	03
		Course	s offered by Science Departments & HSS Board	·
13.	PY	18G5B13	Quantum Mechanics of Hetero/Nano Structures	03
14.	PY	18G5B14	Thin Films and Nanotechnology	03
15.	CY	18G5B15	Advances in Corrosion Science and Technology	03
16.	MA	18G5B16	Computational Advanced Numerical Methods	03
17.	MA	18G5B17	Mathematics for Machine Learning	03
18.	HSS	18G5B18	Engineering Economy	03

			GROUP E: GLOBAL ELECTIVES		
Sl. No.	Dept	Course Code	Course Title	Credits	
			Courses offered by the Departments		
1.	AS	18G6E01	Aircraft Systems	03	
2.	BT	18G6E02	Bioinspired Engineering	03	
3.	3. CH 18G6E03 Sustainable Technology				
4.	CS	18G6E04	Graph Theory	03	
5.	CV	18G6E05	Disaster Management	03	
6.	EC	18G6E06	Wearable Electronics	03	
7.	EE	18G6E07	Energy Auditing and Management	03	
8.					
9.	IM	18G6E09	Systems Engineering	03	
10.	IS	18G6E10	Introduction to Mobile Application Development	03	
11.	ME	18G6E11	Industrial Automation	03	
12.	TE	18G6E12	Mobile Network System and Standards	03	
		Courses	s offered by Science Departments& HSS Board		
13.	PY	18G6E13	Thin Film Nanodevice Fabrication Technology	03	
14.	CY	18G6E14	Chemistry of Advanced Energy Storage Devices for E- Mobility	03	
15.	MA	18G6E15	Advanced Statistical Methods	03	
16.	MA	18G6E16	Mathematical Modeling	03	
17.	HSS	18G6E17	Foundational Course on Entrepreneurship	03	

	V Semester								
	INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP								
				(Theory)					
Co	urse Code	:	18HSI51		CIE	:	100 Marks		
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks		
To	tal Hours	:	39L		SEE Duration	:	03Hrs		
Co	urse Learning (Obje	ectives: The students	will be able to					
1	To build aware	ness	on the various forms	of IPR and to bui	ld the perspectives or	n the	concepts and		
	to develop the l	inka	ages in technology in	novation and IPR.					
2	To encourage	inn	ovation, invention a	and investment a	nd disclosure of nev	и Те	chnology		
	and to recogni	ze a	and reward innovati	veness					
3	To motivate to	war	ds entrepreneurial car	eers and build stro	ong foundations skills	to e	nable starting,		
	building and growing a viable as well as sustainable venture.								
4	Develop an en	trep	reneurial outlook an	d mind set along	with critical skills	and	knowledge to		
	manage risks as	ssoc	iated with entreprene	urs.			_		

Unit-I 08 Hrs

Introduction: Types of Intellectual Property, WIPO

Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies

Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India.

Unit – II 08 Hrs

Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non-registrable marks. Registration of Trade Mark; Deceptive similarity; Transfer of Trade Mark, ECO Label, Passing off, Infringement of Trade Mark with Case studies and Remedies.

Unit –III 09 Hrs

Industrial Design: Introduction of Industrial Designs Features of Industrial, Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies

Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Exceptions of Copy Right, Infringement of Copy Right with case studies

Intellectual property and cyberspace: Emergence of cyber-crime; Meaning and different types of cybercrime. Overview of Information Technology Act 2000 and IT Amendment Act 2008

Unit –IV 07 Hrs

Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus

Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful entrepreneurs.

Characteristics of a Successful Entrepreneur Understand the entrepreneurial journey and learn the concept of different entrepreneurial styles. Identify your own entrepreneurship style based on your personality traits, strengths, and weaknesses. Learn about the 5M Model, each of the five entrepreneurial styles in the model, and how they differ from each other. Communicate Effectively: Learn how incorrect assumptions and limiting our opinions about people can negatively impact our communication. Identify the barriers which cause communication breakdown, such as miscommunication and poor listening, and learn how to overcome them.

Communication Best Practices. Understand the importance of listening in communication and learn to listen actively. Learn a few body language cues such as eye contact and handshakes to strengthen communication. (Practical Application)

Unit –V 07Hrs

Design Thinking for Customer Delight: - Understand Design Thinking as a problem-solving process. Describe the principles of Design Thinking. Describe the Design Thinking process.

Sales Skills to Become an Effective Entrepreneur: - Understand what customer focus is and how all selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law Pub Co. Ltd.-Delhi, ISBN: 9789350350300 Intellectual Property Rights: Unleashing Knowledge Economy, PrabuddhaGanguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602. Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.

4.	Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN:
	9780198072638.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the							
	purview of engineering domain.							
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to							
	Intellectual Property Rights with the utility in engineering perspectives.							
CO3:	Enable the students to have a direct experience of venture creation through a facilitated							
	learning environment.							
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that							
	entrepreneurs use to succeed in real life.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. 50% weightage should be given to case studies. Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	-	-	-	-	2	-	1	2	2	-	1		
CO2	1	1	-	-	-	3	2	3	1	2	-	1		
CO3	-	1	-	-	-	2	1	3	3	3	3	3		
CO4	-	1	2	2	3	-	-	-	1	-	2	1		

High-3: Medium-2: Low-1

	Semester: V												
	FINITE AUTOMATA FORMAL LANGUAGES												
				(Theory)									
Cou	Course Code : 18CS52 CIE Marks : 100												
Cred	dits: L:T:P	:	3:0:0		SEE Marks	:	100						
Tota	l Hours	:	39L		SEE Duration	:	3 Hrs						
Cou	rse Learning	g Ob	jectives: The stu	ents will be able to									
1.	Understand	fund	lamental concep	of theory of comp	utation and the use of	f ma	thematical						
			applied to Comp										
2.	Compare fi	nite	automata; push c	wn automata and T	Turing machines as M	lathe	ematical models of						
	computatio	n.	_										
3.	Develop the	e cor	cepts and skills	cessary to be able	to evaluate the comp	utab	ility and						
	complexity of practical computational problems.												
4.													
5.	Design a machine model to accept a specified language												

Unit – I 8 Hrs

Regular Languages and Regular Expressions, Memory Required to Recognize a Language, Deterministic Finite Automata (DFA), Non Deterministic Finite Automata (NFA), Non Deterministic Finite Automata with ϵ -transitions (NFA- ϵ), Equivalence, Regular Expressions and Finite Automata, Applications of Regular Expressions, Algebraic laws of Regular Expressions, Minimization of Finite Automata.

Unit – II 8 Hrs

Pumping Lemma for Regular Languages, Closure properties of Regular Languages, Decision properties of Regular languages, Context-free grammars (CFG), Parse trees, Applications, Ambiguity in grammars & languages, Simplification of CFG, Normal forms of CFGs. Regular Grammars, Equivalence of Regular Grammars and Finite Automata.

Unit – III 8 Hrs

Push Down Automata (PDA): Definition, the languages of a PDA, Equivalence of PDA's & CFG's, Deterministic PDA. The Pumping Lemma for Context Free Languages (CFL), Closure properties of CFLs, Decision properties of CFLs

Unit – IV 8 Hrs

Turing Machines (TM): Definitions and Examples, TM as a Language Accepter, Computing Partial Functions with Turing Machine, Variations of Turing Machines, Combining Turing Machines, Non Deterministic TM, Universal TM, Recursively Enumerable Languages (REL) and Recursive Languages. Properties of REL and Recursive Languages.

Unit – V 7 Hrs

More General Grammars, Unrestricted Grammar, Context Sensitive Languages (CSL) and Linear Bounded Automata (LBA), Chomsky Hierarchy, Not all languages are Recursively Enumerable, Unsolvable Problem, Reducing One problem to another, The halting problem of TM, Post's Correspondence Problem (PCP), Time and Space Complexity of TM.

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Understand the fundamental concepts of theory of computations.								
CO 2:	Analyze the tools of finite automata to various fields of computer science.								
CO 3:	Design solution model for complex problems, using the appropriate skills of automata theory								
	for better results.								
CO 4:	Apply automata skills in situations that describe computation effectively and efficiently.								

Refere	ence Books:								
1.	Introduction to Languages & Theory of Computation, John C Martin, 4th Edition, 2011, Tata								
	McGraw-Hill, ISBN: 978-0-07-319146-1.								
2.	Introduction to Automata Theory, Languages & Computation, J.P.Hopcroft, Rajeev								
	Motwani, J.D.Ullman, 3 rd Edition, 2008, Pearson Education., ISBN:81-3172-047-0.								
3.	An Introduction To Formal Languages & Automata, Peter Linz, 6 th Edition, 2007, Narosa								
	Publishing House, ISBN: 07-6371-422-4.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	2	1	2	-	3	-	2	2	2	1		
CO2	-	3	-	-	1	2	3	-	3	2	-	1		
CO3	3	3	3	2	2	-	2	-	3	3	2	1		
CO4	1	2	2	1	1	2	-	3	2	2	3	1		

High-3: Medium-2: Low-1

	Semester: V												
	DATABASE DESIGN												
	(Theory & Practice)												
	(Common to CS and IS)												
Cou	rse Code	:	18CS53		CIE Marks	:	100+50						
Cred	lits: L:T:P	:	3:0:1		SEE Marks	:	100+50						
Tota	l Hours	:	39L + 35P		SEE Duration	:	3 Hrs + 3 Hrs						
Cou	rse Learning	g Ob	jectives: The stu	idents will be able to									
1.	Explore the	evo	lution of the data	abase systems from tra	aditional file systems.								
2.	Describe th	e ma	jor components	of relational and NoS	QL database system.								
3.	3. Describe the functionality provided by languages such as SQL and NoSQL.												
4.	Investigate	the u	sage of transact	ion, concurrency cont	rol and recovery tech	niq	ues.						

Unit – I 7Hrs

Introduction to Database Systems - Databases and Database users: Introduction,

An example, Characteristics of Database Approach, Actors on the scene, Workers behind the scene. Database System—Concepts and Architecture: Data Models, Schemas and Instances, Three-schema Architecture and Data Independence, Database Languages and Interfaces, The Database System Environment.

Data Modeling Using the Entity-Relationship Model-Using High-Level

Conceptual Data Models for Database Design; A Sample Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types;

Unit – II 8Hrs

Refining the ER Design for the COMPANY Database; ER Diagrams, Naming onventions and Design Issues, Using ER- to-Relational Mapping.

Relational Model and Relational Algebra-Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations and Dealing with Constraint Violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION; Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design.

Unit – III 8Hrs

SQL Schema Definition, Basic Constraints and Queries-SQL Data Definition, Specifying Constraints in SQL, Schema Change Statements in SQL; Basic Queries in SQL; Insert, Delete and Update Statements in SQL More Complex

SOL Retrieval Oueries.

Relational Database Design - Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions; Multivalued Dependencies, Fourth Normal Form and Fifth Normal Form.

Unit – IV 8Hrs

Transaction Processing Concepts- Introduction to transaction processing, Transaction states and additional operations, Desirable properties of transaction, Schedules of transactions, Characterizing schedules based on Recoverability, Characterizing schedules based on Serializability: Serial, Nonserial and Conflict-Serializable schedules, Testing for Conflict serializability of schedule, Uses of serializability.

Concurrency Control Techniques: Two phase locking techniques for concurrency control, types of locks and system lock tables, Guaranteeing serializability by two-phase locking, Dealing with Deadlock and starvation, Concurrency control based on timestamp ordering.

Unit – V 8 Hrs

Database Recovery Techniques: Recovery Concepts, Shadow Paging, The ARIES recovery. **Introduction to NoSQL**- Aggregate data models: aggregates, key-value and document data models.

Relationships: graph: databases, schemaless databases. Distribution models: sharding, master-slave replication, peer-peer replication—combining sharding and replication.

Laboratory Component

Open Ended Mini Project should be implemented and shall be carried out in a batch of two students. The students will finalize a topic in consultation with the faculty. The Mini Project tasks would involve:

- Understand the complete domain knowledge of application and derive the complete data requirement specification.
- Design of the project with Integrated database solution (SQL, NOSQL and emerging techniques)
- Normalization of the Relational design up to 3NF (Desirable 5NF).
- Appreciate the importance of security for database systems.
- Documentation and submission of report.

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	CO 1: Understand and explore the needs and concepts of relational and NoSQL database.								
CO 2:	Apply the knowledge of logical database design principles to real time issues.								
CO 3:	CO 3: Analyze and design relational and NoSQL data model concepts								
CO 4:	Develop applications using relational and NoSQL database								

Refere	nce Books:
1.	Fundamentals of Database Systems, Elmasri and Navathe, 7th Edition, 2016, Pearson
	Education, ISBN-13: 978-0-13-397077-7.
2.	NoSQL A brief guide to the emerging world of Polyglot Persistence, Pramod J Sdalage,
	Martin Fowler, 2012, Addison-Wesley, ISBN 978-0-321-82662-6,
3.	Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, 3 rd Edition,
	2003, McGraw-Hill, ISBN: 978-0072465631.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub

questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	-	-	-	-	-	-	1	1	-	2		
CO2	-	1	1	1	1	-	1	-	1	2	-	2		
CO3	2	2	2	2	2	-	1	1	2	2	1	2		
CO4	2	2	3	2	3	-	-	2	3	3	2	1		

High-3: Medium-2: Low-1

	Semester: V											
			NETWORK	OGRAMMING AND SECURITY	•							
(Theory & Practice)												
Cou	Course Code : 18CS54 CIE Marks : 100+50											
Cre	dits: L:T:P	:	3:0:1	SEE Marks	:	100+50						
Tot	al Hours	:	39L + 35P	SEE Duration	:	3 Hrs + 3 Hrs						
Cou	ırse Learninş	g Ob	jectives: The stu	nts will be able to								
1.	Understand protocols.	l and	Explore the OSI	ference model and a variety of netwo	ork co	ncepts and						
2.	Analyzethe	inte	roperability of n	orking protocols and its usage.								
3.	3. Explore and implement the client/server communication on Unix platforms.											
4.												

Unit – I	8 H1
Umt – I	оп

The Transport Layer and introduction to sockets

Introduction to TCP, UDP and SCTP, The big picture, Difference between UDP, TCP, SCTP, TCP connection establishment and termination, TIME_WAIT state, TCP port numbers and concurrent servers, Buffer sizes and limitation. Socket address structure, value result arguments, byte ordering functions, byte manipulation functions, inet_aton, inet_addr and inet_ntoa functions, inet_pton and inet_ntop functions.

Unit – II 8Hrs

TCP client/server

Socket function, connect function, bind, listen, accept, fork, exec functions, concurrent servers, close function, getsockname and getpeername functions, TCP Echo server – main – str_echo , TCP Echo client - main – str_echo , Normal startup, normal termination.

Unit – III 8Hrs

UDP client/server and Name server

Socket options introduction, getsockopt and setsockopt functions. recvfrom and sendto functions, UDP Echo server & UDP Echo client, lost datagrams. DNS, Gethostbyname function, gethostbyaddr function, getservbyname and getservbyport functions, getaddrinfo function, gai_strerror function, freeaddrinfo function, getaddrinfo function: example, host_serv function.

Unit – IV 8Hrs

Traditional Block Cipher and Public Key Cryptosystem

Stream Ciphers and Block Ciphers, Feistel Cipher Structure. The Data Encryption Standard-Encryption and Decryption. Principles of Public Cryptosystems- Public-Key Cryptosystems, Applications for Public-Key Cryptosystems Requirements for Public-Key Cryptosystems, Public-Key Cryp

Unit – V 7Hrs

Transport Layer Security and Wireless Network Security

Web Security Considerations, Secure Socket Layer, Transport Layer security, HTTPS. Wireless NetworkSecurity: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN overview, IEEE 802.11i Wireless LAN Security – Services, Phases of operation.

Laboratory Component

List of Experiments

PART - A: EXPERIMENTS

- 1. Implement a client and server communication using sockets programming.
- 2. Write a program to implement distance vector routing protocol for a simple topology of routers.

- 3. Write a program to implement error detection and Correction concept using Checksum and Hamming code.
- 4. Implement a simple multicast routing mechanism.
- 5. Write a program to implement concurrent chat server that allows current logged in users to communicate one with other.
- 6. Implementation of concurrent and iterative echo server using both connection and connectionless socket system calls.
- 7. Implementation of remote command execution using socket system calls.
- 8. Write a program to encrypt and decrypt the data using RSA and Exchange the key securely using Diffie-Hellman Key exchange protocol.

Note: The above experiments shall be conducted using C / C++ on Linux Operating System. PART – B: SIMULATION

- 1. Setup an IEEE 802.3 network with a) hub b) switch c) Hierarchy of switch. Apply theFTP, Telnet applications between nodes. Vary the number of nodes. Vary the bandwidth,queue size and observe the packet drop probability.
- 2. Setup a wireless sensor networks with atleast two device co-coordinators and nodes. Provide Constant Bit Rate (CBR), Variable Bit Rate (VBR) application between severalnodes. Increase the number of co-coordinators and nodes in the same area and observe the performance at physical and MAC layers.
- 3. Setup an IEEE 802.11 network with atleast two access points. Apply the CBR, VBRapplications between devices belonging to same access points and different access points. Provide roaming of any device. Vary the number of access points and devices. Find outthe delay in MAC layer, packet drop probability.
- 4. Case Study on Configuring Routers using CISCO-Packet tracer.

Course	Outcomes: After completing the course, the students will be able to						
CO 1:	Understand and Explore the OSI reference model and a variety of network concepts and						
	protocols.						
CO 2:	Analyze network Protocols interoperability and application.						
CO 3:	Design and demonstrate client/server programs on Unix platforms to create robust real-world						
	sockets-based applications.						
CO 4:	Apply appropriate cryptographic algorithms to ensure security of information through						
	wired and wireless medium.						

Refer	ence Books:
1.	UNIX Network Programming – The sockets networking API, W.Richard Stevens, Bill Fenner, Andrew M. Rudoff, Vol.I , 3 rd edition, PHI. ISBN-13: 978-0131411555 ISBN-10: 9780131411555.
2.	Cryptography and Network Security Principles and Practice, William Stallings, 7 th edition, 2017, Global edition, Pearson Education,ISBN: 978-0-13-444428-4.
3.	Internetworking with TCP/IP, Douglas E. Comer, David L. Stevens, Vol. III, 6 th Edition, 2015, Paperback, Publisher: Pearson India, ISBN-10: 9332549877, ISBN-13: 978-9332549876.
4.	Learning Network Programming with Java, Richard M Reese, First Published: December 2015, Packet Publishing Ltd.,ISBN-13: 978-0123742551, ISBN-10: 0123742552.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End	Evaluation (SEE):	: Theory (100 Marks) +	+ Practical (50 Marks) =	Total 150 Marks
--------------	-------------------	------------------------	--------------------------	-----------------

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	-	-	1	1	1	1
CO2	3	3	3	3	-	-	-	-	1	1	1	1
CO3	3	3	3	3	2	-	1	1	1	1	1	2
CO4	2	2	3	3	3	1	1	1	1	1	1	3

High-3: Medium-2: Low-1

	Semester: V						
	SOFTWARE ENGINEERING						
				(Theory & Practic	*		
				(Common to CS & 1	IS)		
Cou	rse Code	:	18IS55		CIE	:	100+50 Marks
Cred	lits: L:T:P	:	3:0:1		SEE	:	100+50 Marks
Tota	l Hours	:	39L+35P		SEE Duration	:	3.00+3:00 Hrs
Cour	rse Learning	g Ob	jectives: The stu	dents will be able to			
1	Understand	the	activities involve	ed in Software Engine	ering Process		
2 Compare various models for software design, development and testing							
3	3 Comprehend concepts of UML and component based software engineering						
4	4 Apply Software planning techniques for efficient Software management						

Unit-I 08 Hrs

Overview: Introduction:

Professional Software Development, Software Engineering Ethics, Case studies. . **Software Processes**: Models, Process activities, Coping with Change, Process improvement. The Rational Unified Process. Computer Aided Software Engineering. Agile Software Development: Introduction to agile methods, Agile development techniques, Agile project management and scaling agile methods.

Unit – II 08 Hrs

Requirements Engineering and System Modeling:

Software Requirements: Functional and Non-functional requirements. Requirements Elicitation, Specification, Validation and Change. System Modeling: Context models, Interaction models, Structural models, Behavioural models, Model driven architecture. Architectural Design: Design decisions, Architectural views, Architectural patterns and architectures.

Unit –III 08 Hrs

Development and Testing:

Design and implementation: Object oriented design using UML, Design patterns, Implementation issues, Open-source development. Software Testing: Development testing, Test-driven development, Release testing, User testing.

Software Evolution: Evolution processes. Legacy system evolution, Software maintenance

Unit –IV 08 Hrs

Advanced Software Engineering:

Dependable systems: Dependability properties, Sociotechnical systems, dependable processes, formal methods and dependability, Reliability engineering: Availability and reliability, reliability requirements, Reliability measurements, Component based software engineering: Components and component models, CBSE processes, component composition.

Unit –V 07 Hrs

Software Management:

Project Management: Risk Management, Managing People, Teamwork, Project Planning: Software Pricing, Plan driven development, Project Scheduling, Agile planning, Estimation Techniques, COCOMO cost modeling.

Laboratory Component

PART-A

Software Engineering Virtual Labs will be used to carry out activities weekly in the laboratory. The Virtual Lab is a MHRD, Govt. of India initiative.

http://vlabs.iitkgp.ac.in/se/

List of Experiments:

- 1) Identifying the Requirements from Problem Statements
- 2) Estimation of Project Metrics
- 3) Modeling UML Use Case Diagrams and Capturing Use Case Scenarios
- 4) Identifying Domain Classes from the Problem Statements
- 5) State chart and Activity Modeling
- 6) Modeling UML Class Diagrams and Sequence diagrams
- 7) Modeling Data Flow Diagrams
- 8) Estimation of Test Coverage Metrics and Structural Complexity
- 9) Designing Test Suites

PART-B

Student will analyse, design, and implement an application using the appropriate Software engineering tools and practices. All topics learnt in virtual lab (SE phases) need to be covered. A report of the same is expected to be submitted.

Some example applications are listed below(not limited to):

- Automated banking application
- Online shopping portal
- CIE seating arrangement
- SEE Exam invigilation duty allotment
- UG Project Evaluation system
- Employee Payroll system

List of Submissions:

- 1) Requirements Analysis document
- 2) Design document
- 3) Implementation details
- 4) Testing document with appropriate test cases.

Constraints and Dependencies

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Comprehend various software life cycle models and steps of software development process.							
CO2:	Apply concepts of Software Project Planning and software Design techniques							
CO3:	Analyze capabilities of various tools to assist in the software development activities							
CO4:	Develop robust software design and software project plan from requirement gathering to							
	implementation							

Refere	ence Books
1	Ian Sommerville," Software Engineering", 9th Edition, Pearson Education, 2013, ISBN: 9788131762165
	Roger.S.Pressman," Software Engineering-A Practitioners Approach", 7 th Edition, Tata
2	McGraw Hill, 2007, ISBN: 9780071267823
2	Pankaj Jalote," An Integrated Approach to Software Engineering", 3rd Edition, Narosa
3	Publishing House, 2013, ISBN: 9788173197024
4	Rajib Mall, Fundamentals of Software Engineering, 3 rd Edition, Prentice-hall Of India Pvt
4	Ltd., 2012, ISBN: 9788120348981.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	1	1	1	-	-	-	-	-	2
CO2	1	2	2	1	1	1	-	-	-	-	-	2
CO3	1	2	2	1	1	1	-	-	-	-	-	2
CO4	1	3	3	1	1	1	-	-	-	-	-	2

High-3: Medium-2: Low-1

	Semester: V							
	OBJECT ORIENTED SYSTEM DEVELOPMENT USING UML, JAVA AND							
	PATTERNS							
	(Group A: PROFESSIONAL ELECTIVES, MOOC COURSE)							
	·		•	(Common to CS &	IS)			
Cou	rse Code	:	18CS5A1		CIE Marks	:	100	
Credits: L:T:P		:	3:0:0		SEE Marks		100	
Total Hours		:	39L		SEE Duration		Online Exam	
Cou	rse Learning	g O	bjectives: The	students will be abl	e to			
1.	Specify, De	sig	n, Build and U	nderstand Complex	software systems			
2.	2. Acquire knowledge of notations and process of object-oriented analysis and design							
3.	3. Explore the object-oriented approach to system development, modeling objects,							
	relationships and interactions.							

Visualize, Specify, Construct and Document the artifacts of software-intensive system

Unit – I	8 Hrs				
Introduction, Life Cycle Models for Object Oriented Development, modellingUse Case					
Diagrams using appropriate Unified Modeling Language (UML) notations.					
Unit – II					
Class Diagram I, Class Diagram II, Designing software systems by modelling classes	, objects,				
relationships and their interactions using appropriate Unified Modeling Language (UML)					
notations.					
Unit – III	8 Hrs				
Designing Sequence Diagrams, State chart diagrams using appropriate Unified Modeling					
Language (UML) notations					
Unit – IV	8 Hrs				
Design process, Introduction to design patterns, GRASP (General Responsibility Ass	ignment				
Software Patterns) patterns					
Unit – V	7 Hrs				
GoF (Gang of Four) Design pattern I, GoF (Gang of Four) Design Pattern II					

Demonstrate design concepts through Unified Modelling Language (UML)

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Explore and discuss Object Oriented analysis and Design Principles to evaluate							
	requirement analysis, System Behavior and Object Model							
CO 2:	Apply the knowledge of object oriented concepts for modeling software systems							
	design problems.							
CO 3:	Analyze the requirements of the problem and design solutions to complex problems							
	using UML notations.							
CO 4:	Design object oriented models for software systems using appropriate UML							
	notations and Design Patterns.							

4. 5.

Refere	nce Books:
1.	UML for Java Programmers, Robert Martin, 1st edition, 2004, Pearson Education;
	ISBN 978-8177586756
2.	Object Oriented Systems Development using the Unified ModellingLanguage, Ali
	Bahrami, 2 nd Reprint 2008,McGraw Hill, ISBN:978-0-07-026512-7
3.	The Unified Modeling Language UserGuide, Grady Booch, James Rumbaugh, Ivar
	Jacobson, 2 nd Edition, 2005, Addison Wesley Professional, ISBN: 0-321-26797-4

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	•	-	•	-	-	-	-	-	1
CO2	1	-	1	-	-	-	-	-	-	-	-	1
CO3	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	2	2	-	1	-	-	1	1	1	-	2

High-3: Medium-2: Low-1

	Semester: V										
	SOCIAL NETWORKS										
	(Group A: PROFESSIONAL ELECTIVES, MOOC COURSE)										
			((Common to CS &	IS)						
Cou	rse Code	:	18IS5A2		CIE Marks	:	100				
Credits: L:T:P		:	3:0:0		SEE Marks	:	100				
	l Hours	:	39L		SEE Duration		Online Exam				
Cou	rse Learning	Ob	jectives: The stud	ents will be able to							
1.	Understand	the 1	basic concepts of	Social Networks							
2.	Illustrate var	iou	s methods for Net	work analysis							
3.	Understand a	and	distinguish how S	Social Network help	society and its impact	et.					
4.	Create and u	se a	ppropriate techno	logy to implement u	seful applications of	So	cial Networks				
5.	Understand and institution		social networks of	can be used without	breaching privacy, so	ecui	rity of individuals				

Unit – I	8 Hrs
Introduction, Handling Real-world Network Datasets	
Unit – II	8 Hrs
Strength of Weak Ties, Strong and Weak Relationships (Continued) & Homophily	
Unit – III	8 Hrs
Homophily Continued and +Ve / -Ve Relationships, Link Analysis, Cascading Beh	aviour in
Networks	
Unit – IV	8 Hrs
Link Analysis (Continued), Power Laws and Rich-Get-Richer Phenomena, Power law (co	ntd) and
Epidemics	
Epidemics Unit – V	7 Hrs

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Understand the concepts and features of Social networks								
CO 2:	Analyze various methods of social network analysis								
CO 3:	Design applications using social network analysis								
CO 4:	Implement programs that are useful to society without breaching security, privacy of								
	individuals and others								

Referen	nce Books:
1.	Networks, Crowds and Markets, David Easley and Jon Kleinberg, 2010, Cambridge University Press. ISBN: 9780521195331, 9780521195331
2.	Social and Economic Networks, Matthew O. Jackson, 2010, Princeton University Press. ISBN-13: 978-0691148205, ISBN-10: 0691148201

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	2										
CO3	2	2	2	2			1	2	2	1	1	1
CO4	2	2	2	2	1	2	1	3	2	1	1	1

High-3: Medium-2: Low-1

	Semester: V											
	APPLIED NATURAL LANGUAGE PROCESSING											
	(Group A: PROFESSIONAL ELECTIVES, MOOC COURSE)											
Cou	rse Code	:	18CS5A3	CIE Ma	arks	:	100					
Cred	lits: L:T:P	:	3:0:0	SEE Ma	arks	:	100					
Tota	l Hours	:	39L	SEE Du	ration	:	Online Exam					
Cou	rse Learning	Obj	ectives: The students	will be able to								
1.	Introduce va	riou	s techniques to find si	milar words using the co	ntext of surro	oui	nding words					
2.	Build a Lang	guag	e model to predict the	next word and generate s	sentences							
3.	Encode ever and similar v			of the corpus into a vector	r form that re	epi	resents its context					
4.	Encode a ser	nten	ce for machine transla	tion and conversation pur	poses.							
5.			ent knowledge and pro- learning techniques for	oficiency in probabilistic, or NLP.	, Artificial N	leu	ral Network					

Unit – I	8 Hrs
Introduction, terminologies, empirical rules	
Word to Vectors	
Probability and Language Model	
Unit – II	8 Hrs
Neural Networks for NLP	
Distributed word vectors (word embeddings)	
Recurrent Neural Network, Language Model	
Unit – III	8 Hrs
Statistical Machine Translation	
Statistical Machine Translation, Neural Machine Translation	
Neural Machine Translation	
Unit – IV	8 Hrs
Conversation Modeling, Chat-bots, dialog agents, Question Processing	
Information Retrieval tasks using Neural Networks- Learn to Rank, Understanding Pl	hrases,
analogies	
Spelling Correction using traditional and Neural networks, end notes	
Unit – V	7 Hrs
Practical Applications of NLP	

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Understand approaches to syntax and semantics in NLP.								
CO 2:	Understand Apply approaches to discourse, generation, dialogue and summarization								
	within NLP.								
CO 3:	Analyze current methods for statistical approaches to machine translation.								
CO 4:	Understand machine learning techniques used in NLP, including hidden Markov								
	models and probabilistic context-free grammars, clustering and unsupervised								
	methods, log-linear and discriminative models, and the EM algorithm as applied								
	within NLP								

Refer	rence Books:
1.	Features of a Corpus, Niladri Sekhar Dash and S. Arulmozi, Springer Singapore,
	2018, pp. 17–34. ISBN: 978-981-10-7458-5. doi: 10.1007/978- 981- 10- 7458- 5_2,
	url:https://doi.org/10.1007/978981-10-7458-5_2.
2.	Deep Learning, Ian Goodfellow, YoshuaBengio, and Aaron Courville, 2016, MIT
	Press, ISBN: 9780262035613, http://www.deeplearningbook.org.
3.	Handbook of natural language processing, NitinIndurkhya and Fred J Damerau,
	2010, Chapman and Hall/CRC, .ISBN-13: 978-1420085921.
4.	Speech and Language Processing: An Introduction to Natural Language Processing,
	Computational Linguistics, and Speech Recognition, Daniel Jurafsky and James H.
	Martin, 2000, 1st Upper Saddle River, NJ, USA: Prentice Hall PTR,. ISBN:
	0130950696.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	•	1	1	3	-	-	-	•	-	-	1
CO2	-	3	2	2	2	-	-	-	1	1	2	3
CO3	2	2	2	3	2	1	-	1	3	1	2	2
CO4	2	3	3	2	2	1	1	3	1	1	-	2

High-3: Medium-2: Low-1

	Semester: V									
	INTRODUCTION TO ROBOTICS									
	(0	Frou	ip A: PROFE	SSIONAL ELECTI	VES, MOOC COUR	RSF	Ξ)			
Cou	rse Code	:	18CS5A4		CIE Marks	:	100			
Cre	dits: L:T:P	:	3:0:0		SEE Marks	:	100			
Tota	al Hours	:	39L		SEE Duration	:	Online Exam			
Cou	rse Learning	g Ob	jectives: The	students will be ab	le to					
1.	To learn bas	sics	of robotics and	d to see how they ca	an build robots and	rot	otic aplications			
	using advan	ced	technologies.	The course prepare	s them to take advar	nce	ed course in			
	robotics late	er.								
2.	To study rol	otic	applications	in manufacturing in	dustry, underwater,	re	habilitation,			
	medical and	oth	er areas.							
3.	To study rol	otic	e mechanisms	- kinematics						
4.	To study dif	fere	nt electrical ac	ctuators used in rob	otics- Motors, senso	ors	and control			
5.	-				e perception, localiz	zat	ion and			
	mapping, pr	obal	bilistic robotic	s and path planning	J.					

Unit – I	8Hrs					
Introduction to robotics – History , growth; Robot Applications- Manufacturing	industry,					
defense, rehabilitation, medical etc., Laws of robotics. Robot mechanisms; kine	ematics -					
coordinate transformations, DH parameters						
Unit – II	8Hrs					
Forward kinematics and inverse kinematics; Jacobians, Statics and Trajectory	Planning.					
Actuators (electrical)- DC Motors, BLDC Servo motors;						
Unit – III	8 Hrs					
Sensors, Sensor integration; Control - PWM, joint motion control, feedback	control;					
Computed torque control.						
Unit – IV	8 Hrs					
Perception, Localization and mapping; Probabilistic robotics, path planning, BFS;						
DFS;Dijkstra; A-star; D-star; Voronoi; Potential field; Hybrid approaches						
Unit – V	7 Hrs					
Simultaneous localization and mapping; introduction to reinforcement learning						

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Study robotic applications in manufacturing industry, underwater, rehabilitation,							
	medical and other areas.							
CO 2:	2: Learn Robot mechanisms; kinematics; Jacobians, Statics and Trajectory Planning.							
CO 3:	Understand the working of Actuators (electrical)- DC Motors, BLDC Servo motors,							
	Sensors and Control mechanisms.							
CO 4:	Application of computer algorithmic aspects to robots like Perception, Localization							
	and mapping; Probabilistic robotics, path planning and introduction to reinforcement							
	learning							

Refer	Reference Books:								
1.	Fundamentals of Robotics, Robert J Schilling, Pearson India, 2015ISBN: 978-93-								
	325-5523-5								
2.	Introduction to Robotics: Mechanics and control, John J Craig, 3e, Pearson India,								
	2005; ISBN: 0-13-123629-6								
3.	Introduction to autonomous robots, Nikolauscorrell,ISBN-13:978-0692700877								

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1			3	2		2	3	2	3
CO2	3	3	2		2	1	2		1	2	2	2
CO3	3	3	2		2	1	2		1	2	2	2
CO4	3	3	2		3	1	2		1	2	2	2

High-3: Medium-2: Low-1

	Semester: V									
	THE JOY OF COMPUTING USING PYTHON									
	(Group A:PROFESSIONAL ELECTIVES, MOOC COURSE)									
			(0	common to All Bi	ranches)					
Cou	rse Code	:	18CS5A5		CIE Ma	rks	:	100		
Cred	dits: L:T:P	:	3:0:0		SEE Ma	rks	:	100		
Tota	al Hours	:	39L		SEE Du	ration	n : Online Ex		ım	
Cou	rse Learning	g O	bjectives: The	students will be	able to					
1.	Understand	wh	y Python is a u	seful scripting la	nguage for d	evelopers.				
2.	Learn how t	o u	se lists, tuples,	and dictionaries	in Python pr	ograms.				
3.	3. Define the structure and components of a Python program.									
4.	1. Develop cost-effective robust applications using the latest Python trends and									
	technologie	S								

Unit – I	8 Hrs					
Motivation for Computing, Welcome to Programming!!, Variables and Expressions	: Design					
your own calculator, Loops and Conditionals : Hopscotch once again. Lists, Tu	iples and					
Conditionals : Let's go on a trip, Abstraction Everywhere : Apps in your phone.						
Unit – II	8 Hrs					
Counting Candies: Crowd to the rescue, Birthday Paradox: Find your twin, Google	Translate					
: Speak in any Language, Currency Converter : Count your foreign trip expenses.						
Unit – III	8 Hrs					
Monte Hall: 3 doors and a twist, Sorting: Arrange the books, Searching: Find in	seconds,					
Substitution Cipher: What's the secret !!, Sentiment Analysis: Analyse your	Facebook					
dataPermutations : Jumbled Words,Spot the similarities : Dobble game						
Unit – IV	8 Hrs					
Count the words: Hundreds, Thousands or Millions, Rock, Paper and Scissor: Che	eating not					
allowed !!, Lie detector : No lies, only TRUTH, Calculation of the Area : Don't mea	asure, Six					
degrees of separation, Image Processing: Fun with images						
Unit – V	7 Hrs					
Tic tac toe: Let's play, Snakes and Ladders: Down the memory lane, Recursion:	Tower of					
Hanoi, Page Rank: How Google Works!!						

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Explore and apply the concept of python to solve real world problems.								
CO 2:	Design Classes and establish relationships among Classes for various applications from problem definition.								
CO 3:	Develop applications using google translator and gaming application.								
CO 4:	Implement real time application such as browser automation, NLP, Image processing etc using python								

Refere	eference Books:									
1.	Head First Python, Paul Barry, 10 th Edition, 2016, O'Reilly, ISBN 978-9352134823.									
2.	Python Cookbook: Recipes for Mastering Python 3,David Beazley, Brian K. Jones, 9 th Edition, 2017,O'Reilly,ISBN 978-1449340377.									
3.	Python: The Complete Reference, Martin C Brown,7 th Edition,2018,McGraw Hill Education, ISBN 978-9387572942.									

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PO12
CO1	2	3	2	1	1	-	-	1	-	-	-	2
CO2	3	3	2	1	1	-	-	1	-	-	-	2
CO3	3	3	3	2	1	-	•	2	-	-	-	2
CO4	3	3	3	2	1	-	-	2	-	-	-	2

High-3: Medium-2: Low-1

	Semester: V								
	FUNDAMENTALS OF AEROSPACE ENGINEERING								
	(GROUP B: GLOBAL ELECTIVE) (Theory)								
Course Code		:	18G5B01	C	CIE		100 Marks		
Cred	lits: L:T:P	:	3:0:0	S	SEE		100 Marks		
Hou	rs	:	39L	S	EE Duration	ration : 3.0			
Cour	rse Learning	g O	bjectives: To enable	the students to:					
1	Understand	l th	e history and basic pri	inciples of aviation					
2	Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion								
3	Compreher	Comprehend the importance of all the systems and subsystems incorporated on an air vehicle							
4	Appraise th	ne s	ignificance of all the	subsystems in achieving a succ	cessful flight				

	Unit-1	U8 Hrs							
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosphere									
	properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anato								
	aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard							
	Atmospheric Properties.								

Unit – II 08 Hrs

Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Types of drag, Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclature, Basic Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and drag.

Unit -III 07 Hrs

Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Brayton Cycle, Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet engines, Comparative merits and demerits of different types Engines.

Unit -IV 09 Hrs

Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics, Kepler's Laws of planetary motion, Orbit equation, and Space vehicle trajectories.

Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rockets: Solid, Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific Impulse, Exhaust Velocity, Simple Problems on rocket performance.

Unit -V 07 Hrs

Aerospace Structures and Materials: Introduction, General types of construction, Monocoque, Semi-Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction.

Course	Course Outcomes: At the end of this course the student will be able to:						
CO1:	Appreciate and apply the basic principles of aviation						
CO2:	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and						
CO2:	aircraft materials during the development of an aircraft						
CO3:	Comprehend the complexities involved during development of flight vehicles.						
CO4:	Evaluate and criticize the design strategy involved in the development of airplanes						

Ref	Reference Books							
1	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN							
	9780071086059.							
2	Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:							
	1118174208, 9781118174203.							

3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

High-3: Medium-2: Low-1

Semester: V								
NANOTECHNOLOGY (GROUP B: GLOBAL ELECTIVE)								
(Theory)								
Course Code : 18G5B02 CIE : 100 Ma						100 Marks		
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks		
Total Hours		:	39L	SEE Duration	n :	3.00 Hours		
Course Learning Objectives: The students will be able to								
1	1 Understand the basic knowledge of nanomaterials and the process to synthesize and							
	characterize the nanoparticles.							
2	Learn about Nano sensors and their applications in mechanical, electrical, electronic,							
	magnetic, chemical fields.							
3	Apply the concept of nanotechnology in sensing, transducing and actuating mechanism.							
4	Design the nanoscale products used in multidisciplinary fields.							

Unit-I 08 Hrs

Introduction to Nanomaterials: History of Nanotechnology, structures and properties of carbon based, metal based, bio-nanomaterials and hybrids: Bucky Ball, Nanotubes, Diamond like carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals, hybrid biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicology health effects caused by nanoparticles.

Unit – II 09 Hrs

Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and Top down approaches using processes like Ball milling, Sol-gel Process, and Chemical Vapour deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft lithography). Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III 08 Hrs

Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors and their applications. Electromagnetic nanosensors: Electronic nose and electronic tongue, Magnetic nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Biosensors: Biosensors in modern medicine.

Unit –IV 07 Hrs

Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels, mixing, microvalves & micropumps.

Unit –V 07 Hrs

Applications of Nanotechnology: Molecular electronics, molecular switches, mechanical cutting tools, machine components, magnets, DLC coated grinding wheels. Electrical, electronic, solar cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeutics, Drug delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.

Course (Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the structures of nano materials and their properties.							
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization							
	results.							
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its							
	knowledge in various fields.							
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.							

Refere	Reference Books							
	B.S. Murty., P. Shankar., B.Raj, BB. Rath, and J. Murday, Textbook of Nanosciences and							
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,							
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.							
	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1st Edition,							
2	2013, ISBN 9781439827123 (Unit III).							
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew							
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.							
4	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,							
4	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	_	-	2	-	-

High-3: Medium-2: Low-1

	Semester: V						
				ELL TECHNOLOGY			
			(GROUP B	: GLOBAL ELECTIV	(E)		
Com	rse Code		18G5B03	(Theory)	CIE		100 Marks
		:			<u> </u>	:	
Cred	lits: L:T:P	••	3:0:0		SEE	••	100 Marks
Tota	l Hours	••	39L	9	SEE Duration	••	3.00 Hours
Cour	rse Learning O	bje	ectives: The students	s will be able to			
1	Recall the co	nce	ept of fuel cells				
2	2 Distinguish various types of fuel cells and their functionalities						
3	3 Know the applications of fuel cells in various domains						
4	Understand t	he	characterization of f	uel cells			

Unit-I	07 Hrs
Introduction – I:	

Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties

> Unit – II **07 Hrs**

Types of fuel cells – II:

Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each

> **Unit –III 07 Hrs**

Efficiencies, losses and kinetics-III:

Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics

> Unit -IV 08 Hrs

Fuel Cell Characteristics – IV:

In-situ characterization: I-V curve, current - voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy

Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity

> Unit -V 10 Hrs

Applications of fuel cells -V:

Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the fundamentals and characteristics of fuel cells							
CO2:	Apply chemical engineering principles to distinguish fuel cells from conventional energy							
	systems							
CO3:	Analyze the performance of fuel cells using different characterization techniques							
CO4:	Evaluate the possibility of integrating fuel cell systems with conventional energy systems							

	Reference Books							
	1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1st Edition,						
	1	2009, Universities Press, ISBN – 13: 978 1420 060287						
Ī	2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John						
	2	Wiley & Sons, ISBN – 978 0470 848579						

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	_	2	2	-	_	_	2	_	3	-	-	2

High-3: Medium-2: Low-1

	Semester: V							
	INTELLIGENT SYSTEMS							
			(GROU	JP B: GLOBAL ELECTI	VE)			
				(Theory)				
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE Marks	:	100 Marks	
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning	g Obj	jectives: The stu	idents will be able to				
1.	Understand	func	lamental AI con	cepts and current issues.				
2.	Understand	and	apply a range of	f AI techniques including search	ch, logic-based re	easc	oning, neural	
	networks and reasoning with uncertain information.							
3.	3. Recognize computational problems suited to an intelligent system solution.							
4.	Identify and	d list	the basic issues	of knowledge representation,	blind and heurist	ic s	earch.	

Unit – I	07 Hrs
Cint 1	0, 111

Introduction: The Foundations of Artificial Intelligence, History of Artificial Intelligence, The State of the Art, **Intelligent Agent:** Introduction, How Agents Should Act, Structure of Intelligent Agents, **Problem-solving:** Solving Problems by Searching Search Strategies, Avoiding Repeated States, Avoiding Repeated States

Unit – II 08 Hrs

Informed Search Methods: Best-First Search, Heuristic Functions, Memory Bounded Search, Iterative Improvement Algorithms

Game Playing: Introduction: Games as Search Problems, Perfect Decisions in Two-Person, Games Imperfect Decisions, Alpha-Beta Pruning, Games That Include an Element of Chance

Unit – III 08 Hrs

Knowledge Inference

Knowledge representation -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayes Rule, Uncertainty Principles, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

Unit – IV 08 Hrs

Learning from Observations: A General Model of Learning Agents, Inductive Learning, Learning Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why Learning Works: Computational Learning Theory

Reinforcement Learning: Passive Learning in a Known Environment, Passive Learning in an Unknown Environment, Active Learning in an Unknown Environment

Unit – V 08 Hrs

Expert Systems, Components, Production rules, Statistical reasoning, certainty factors, measure of belief and disbelief, Meta level knowledge, Introspection. Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert systems shells.

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.							
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.							
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.							
CO 4:	Assess their applicability by comparing different Intelligent System techniques							

Refer	ence Books:
1.	AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education, ISBN-13: 978-0-13-604259-4
2.	Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw Hill, ISBN: 9780070087705
3.	Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3 rd Edition, 2007, ISBN-13: 978-0134771007
4.	Introduction to Expert Systems, Peter Jackson, 4 th Edition, Pearson Education, 2007, ISBN-13: 978-8131709337

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

High-3: Medium-2: Low-1

	Semester: V								
	REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM (GROUP B: GLOBAL ELECTIVE)								
				(Theory)					
Cou	ırse Code	:	18G5B05		CIE	:	100 Marks		
Cre	Credits: L:T:P		3:0:0		SEE	:	100 Marks		
Tot	Total Hours		39 L		SEE Duration	:	3.00 Hours		
Cou	ırse Learning	Ob	jectives: The studer	nts will be able to					
1	Understand c	onc	ept of using photogr	aphic data to determi	ne relative positions	of p	ooints.		
2	Study the methods of collection of land data using Terrestrial and Aerial camera.								
3	3 Analyze the data gathered from various sensors and interpret for various applications.								
4	Apply the pri	ncip	oles of RS, GIS and	GPS in various scope	es of Civil Engineeri	ng.			

Unit-I	07 Hrs
Omt-i	0/1115

Remote Sensing- Definition, types of remote sensing, components of remote sensing, electromagnetic spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. Spectral reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key elements.

Unit – II 08 Hrs

Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry, Introduction to digital Photogrammetry.

Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical photographs, scales of vertical photograph. Ground coordination- relief displacement, scale ground coordinates – flight planning.

Unit –III 08 Hrs

Geographic Information System- Introduction, Functions and advantages, sources of data for GIS. Database – Types, advantages and disadvantages. Data Analysis.-overlay operations, network analysis, spatial analysis. Outputs and map generation.

GPS- components and working principles.

Unit –IV 08 Hrs

Applications of GIS, Remote Sensing and GPS: Water Resources engineering and management (prioritization of river basins, water perspective zones and its mapping), Highway and transportation (highway alignment, Optimization of routes, accident analysis), Environmental Engineering (Geostatistical analysis of water quality, rainfall).

Unit –V 08 Hrs

Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, urban sprawl, Change detection studies, forests and urban area, agriculture, Disaster Management. Layouts: Dead end, Radial, Grid iron, Circular system.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and remember the principle of Remote Sensing (RS) and Geographical Information
	Systems (GIS) data acquisition and its applications.
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	rence Books							
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3 rd Edition, Wiley							
1	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.							
	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,							
2	John Wiley Publishers, New Delhi, ISBN – 8126532238.							
2	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,							
3	ISBN: 8122438121							
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.							
_	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,							
5	ISBN - 0198072392							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

High-3: Medium-2: Low-1

	Semester: V								
	AUTOMOTIVE ELECTRONICS								
	(GROUP B: GLOBAL ELECTIVE)								
				(Theory)					
Co	ourse Code	:	18G5B06	CIE Ma	rks	:	100 Marks		
Cı	Credits: L:T:P		3:0:0	SEE Ma	ırks	:	100 Marks		
He	ours	:	39L	SEE Du	ration	:	3.00 Hours		
Co	ourse Learning (Ob	jectives: The st	udents will be able to					
1	Acquire the kno	ow]	ledge of automo	tive domain fundamentals, need of Electro	nics and	co	mmunication		
I	interfaces in Au	itoi	motive systems.						
2	2 Apply various types of sensors, actuators and Motion Control techniques in Automotive systems								
2	Understand digital engine control systems and Embedded Software's and ECU's used in automotive								
3	3 systems.								
4									

T	VIT.I	08 Hrs
	N	WO IIIS

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems.

Basics of electronic engine control: Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

UNIT-II 07 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III 08 Hrs

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV 08 Hrs

Automotive Communication Systems:

Automotive networking: Bus systems, Technical principles, network topology. Buses in motor vehicles: CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

UNIT-V 08 Hrs

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Outcomes: After completing the course, the students will be able to						
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and						
	communication interfaces in Automotive systems.						
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive						
	systems						
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in						
	automotive systems.						
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.						

Referer	nce Books
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-
	0471288357
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3 rd Edition, Elsevier Butterworth-
	Heinemann. ISBN 0-7506-62190.
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-
	Heinemann. ISBN 0-75-066991-8.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

High-3: Medium-2: Low-1

			Semester: V			
			e- MOBILITY			
		(GROUP F	B: GLOBAL ELE	CCTIVE)		
		`	(Theory)	,		
Course Code	:	18G5B07		CIE	:	100 N
~		• • •		~		400 -

 Course Code
 : 18G5B07
 CIE
 : 100 Marks

 Credits: L:T:P
 : 3:0:0
 SEE
 : 100 Marks

 Total Hours
 : 39L
 SEE Duration
 : 3.00 Hours

Course Learning Objectives: The students will be able to

- 1 Understand the basics of electric and hybrid electric vehicles, their architecture and modelling.
- 2 Explain different energy storage technologies used for electric vehicles and their management system.
- 3 Describe various electric drives and its integration with Power electronic circuits suitable for electric vehicles.
- 4 Design EV Simulator through performance evaluation and system optimization techniques and need for the charging infrastructure.

Unit-I 06 Hrs

Electromobility and the Environment: A Brief History of the Electric Powertrain, Energy Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, BEV Fuel Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Powertrains, An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Comparison of Automotive and Other Transportation Technologies.

Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for Vehicle Comparisons

Unit – II 09 Hrs

Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations, Battery Charging, Protection, and Management Systems, Battery Models, Determining the Cell/Pack Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.

Battery Charging: Basic Requirements for Charging System, Charger Architectures, Grid Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, Wireless Charging, The Boost Converter for Power Factor Correction.

Unit -III 10 Hrs

Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion Batteries, BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Functionality Comparison, Technology, Topology.

BMS Functions: Measurement: Voltage, Temperature, Current, Management: Protection, Thermal Management, Balancing, Distributed Charging, Evaluation, External Communication: Dedicated analog and digital wires.

Unit –IV 07 Hrs

Electric Drivetrain: Overview of Electric Machines, classification of electric machines used in automobile drivetrains, modelling of electric machines, Power Electronics, controlling electric machines, electric machine and power electronics integration Constraints.

Unit –V 07 Hrs

EV Simulation: system level simulation, EV simulator, simulator modules, performance evaluation, system optimization.

EV Infrastructure: Domestic charging infrastructure, Public charging infrastructure, Standardization and regulations, Impacts on power system.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies									
	and modelling.									
CO2:	Discuss and implement different energy storage technologies used for electric vehicles									
	and their management system.									
CO3 :	Analyze various electric drives and its integration techniques with Power electronic									
	circuits suitable for electric vehicles.									
CO4:	Design EV Simulator for performance evaluation and system optimization and									
	understand the requirement for suitable EV infrastructure.									

Refe	erence Books
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, <i>ISBN</i>
	9781119063667.
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,
4	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions
3	Technip, Paris, ISBN 978-2-7108-0994-4.
4	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford
-	university press, ISBN 0 19 850416 0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

High-3: Medium-2: Low-1

	Semester: V								
	SMART SENSORS & INSTRUMENTATION								
	(GROUP B: GLOBAL ELECTIVE)								
				(Theory)					
Cour	rse Code	:	18G5B08	CIE	:	100 Marks			
Cred	lits: L:T:P	T:P : 3:0:0		SEE	:	: 100 Marks			
Tota	l Hours	:	39L	SEE Duration	:	3.00 Hours			
Cour	rse Learning	g O	bjectives: The	students will be able to					
1	Understand	l th	e fundamentals	of transducers and sensors.					
2	2 Demonstrate the working principles of different transducers and sensors.								
3	3 Apply the principles of different type of sensors and transducers on state of art problems.								
4									

Unit-I 07 Hrs

Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, Advantages of Electrical transducers.

Resistive Transducers:

Potentiometers: Characteristics, Loading effect, and problems.

Strain gauge: Theory, Types, applications and problems.

Thermistor, RTD: Theory, applications and problems.

Unit – II 09 Hrs

Thermocouple: Measurement of thermocouple output, compensating circuits, lead compensation, advantages and disadvantages of thermocouple.

LVDT: Principle, Characteristics, Practical applications and problems.

Capacitive Transducers: Capacitive transducers using change in area of plates, distance between plates and change of dielectric constants, Applications of Capacitive Transducers and problems

Unit –III 09 Hrs

Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-electric materials, equivalent circuit, loading effect, Frequency response and Problems.

Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers: Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the design of sensor, applications.

Unit –IV 07 Hrs

Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potential sensor, Zirconium probe Sensors, Chem FET sensors.

Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled device.

Tactile sensors: Construction and operation, types.

Unit –V 07 Hrs

Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity Sensors, Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.

IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared Sensors, Gas flame detectors

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the basic principles of different transducers and sensors.								
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation								
	systems.								
CO3:	Analyze and evaluate the performance of different transducers and sensors for various								
	applications.								
CO4:	Create a system using appropriate transducers and sensors for a particular application.								

Refere	ence Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
1	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
2	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
4	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
4	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

High-3: Medium-2: Low-1

	Semester: V OPERATIONS RESEARCH (GROUP B: GLOBAL ELECTIVE)								
			(GKO	(Theory)					
Course Code		:	18G5B09	CIE		:	100 Marks		
Cre	dits: L:T:P	:	3:0:0	SEE		:	100 Marks		
Tota	al Hours	:	39 L	SEE Du	ration	:	3.00 Hours		
Cou	rse Learning ()bje	ectives: The stu	idents will be able to					
1	1 Develop the skills in the application of operations research models for complex decision-								
	making situations.								
2	2 Implement the methodology and tools of operations research to assist decision-making.								

UNIT-I 07 Hrs

Introduction: OR methodology, Definition of OR, Application of OR to Engineering and Managerial problems, Features of OR models, Limitations of OR.

Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution Space, Types of solution - Basic Feasible, Degenerate, Solution through Graphical Method. Usage of software tools to demonstrate LPP (demonstrations and assignments only)

UNIT-II 10Hrs

Simplex Method & Sensitivity Analysis: Simplex methods, Artificial Stating Solution - M Method & Two phase method, Sensitivity Analysis - Graphical sensitivity analysis, Algebraic sensitivity analysis. Interpretation of graphical output from software packages such as MS Excel

UNIT-III 10 Hrs

Transportation Problem:Formulation of transportation model, Basic feasible solution using different methods, Optimality Methods, Unbalanced transportation problem, Degeneracy in transportation problems, Variants in Transportation Problems, Applications of Transportation problems.

Assignment Problem: Formulation of the Assignment problem, Solution method of assignment problem-Hungarian Method, Solution method of assignment problem-Hungarian Method, Variants in assignment problem, Traveling Salesman Problem.

Usage of software tools to demonstrate Transportation and Assignment problems

UNIT-IV 06 Hrs

Project Management Using Network Analysis: Network construction, Determination of critical path and duration, floats, CPM - Elements of crashing, Usage of software tools to demonstrate N/W flow problems

UNIT-V 06 Hrs

Game Theory: Introduction, Two person Zero Sum game, Pure strategies – Games with saddle point, Graphical Method, The rules of dominance, solution method of games without saddle point, Arithmetic method.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the basic concepts of different models of operations research and their									
	applications.									
CO2:	Build and solve Transportation Models and Assignment Models.									
CO3:	Design new simple models, like: CPM, MSPT to improve decision –making and develop									
	critical thinking and objective analysis of decision problems.									
CO4:										

Ref	erence Books
1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	-	3	2	2	-	-	-	1	-	-	1			
CO2	-	2	1	-	-	-	-	-	-	1	-	1			
CO3	2	-	-	2	2	-	-	1	-	-	-	-			
CO4															

High-3: Medium-2: Low-1

	Semester: V												
	MANAGEMENT INFORMATION SYSTEMS												
	(GROUP B: GLOBAL ELECTIVE)												
	(Theory)												
Cou	Course Code : 18G5B10 CIE : 100 Marks												
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours						
Cou	rse Learning ()bje	ectives: The students	s will be able to									
1	To understand	d the	e basic principles an	d working of information tech	nology.								
2	Describe the 1	ole	of information tech	nology and information system	ns in business.								
3	To contrast ar	nd c	ompare how interne	t and other information techno	logies support bu	sin	ess processes.						
4	4 To give an overall perspective of the importance of application of internet technologies in business												
	administration	n.											

Unit-I	08 Hrs

Information systems in Global Business Today:

The role of information systems in business today, Perspectives on information systems, Contemporary approaches to information systems, Hands-on MIS projects. **Global E-Business and Collaboration**: Business process and information systems, Types of business information systems, Systems for collaboration and team work, The information systems function in business. A Case study on E business.

Unit – II 08 Hrs

Information Systems, Organizations and Strategy:

Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues, **Ethical and Social issues in Information Systems**: Understanding ethical and Social issues related to Information Systems, Ethics in an information society, The moral dimensions of information society. A Case study on business planning.

Unit –III 08 Hrs

IT Infrastructure and Emerging Technologies:

IT infrastructure, Infrastructure components, Contemporary hardware platform trends, Contemporary software platform trends, Management issues. **Securing Information Systems**: System vulnerability and abuse, Business value of security and control, Establishing framework for security and control, Technology and tools for protecting information resources. A case study on cybercrime.

Unit –IV 08 Hrs

Achieving Operational Excellence and Customer Intimacy:

Enterprise systems, Supply chain management (SCM) systems, Customer relationship management (CRM) systems, Enterprise application. **E-commerce: Digital Markets Digital Goods**: E-commerce and the internet, E-commerce-business and technology, The mobile digital platform and mobile E-commerce, Building and E-commerce web site. A Case study on ERP.

Unit –V 07 Hrs

Managing Knowledge:

The knowledge management landscape, Enterprise-wide knowledge management system, Knowledge work systems, Intelligent techniques. **Enhancing Decision Making**: Decision making and information systems, Business intelligence in the enterprise. Business intelligence constituencies. **Building Information Systems**: Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Understand and apply the fundamental concepts of information systems.								
CO2:	Develop the knowledge about management of information systems.								
CO3:	Interpret and recommend the use information technology to solve business problems.								
CO4:	Apply a framework and process for aligning organization's IT objectives with business strategy.								

Refere	ence Books										
1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital										
1	Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.										
	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill,										
2	10 th Edition, 2011, ISBN: 978-0072823110.										
2	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4th Edition,										
3	2002, ISBN:978-0130617736.										
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN:										
4	9780070616349.										

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	3	-	-	-	-	-	-	-	1	-	1			
CO3	3	3	1	-	2	-	-	-	-	1	-	1			
CO4	3	3	2	1	2	-	-	-	-	1	-	1			

High-3: Medium-2: Low-1

	V Semester											
				IVE MECHATRONICS								
			(GROUP B:	GLOBAL ELECTIVI	Ε)							
				(Theory)								
Cour	Course Code : 18G5B11 CIE : 100 Marks											
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours					
Cour	rse Learning O	bje	ctives: The students wi	ll be able to								
1	Identify variou	ıs N	lechatronics systems of	f a modern automobile								
2	Describe how	the	proper quantity/grade	of fuel affects engine perf	formance.							
3	Understand Bl	nara	t-VI / EURO-VI emiss	ion norms								
4	Apply the kno	wle	dge of engineering and	science to analyse the pe	erformance of Me	cha	tronics					
	system											
5	Analyse vehic	le s	ub-systems comprising	of sensors and actuators								

Unit-I	06 Hrs
--------	--------

Automobile Engines

Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture formation and direct fuel injection – homogeneous and stratified injection. Thermodynamic principles of Otto and Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline, Diesel, LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane number.

Unit-II 10 Hrs

Engine Auxiliary Systems:

Air Intake and Exhaust System (Bharat Stage –VI norms) - Intake manifold, Turbocharger, Intercooler, Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.

Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Return line, Quantity control valve, Injectors – solenoid and piezo injectors.

Unit-III 10 Hrs

Vehicular Auxiliary Systems:

Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive Brakes - Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In, Toe-Out, Caster and Camber angle. Classification of tyres, Radial, Tubeless.

Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator and air bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.

Unit-IV 07 Hrs

Principles of motor vehicle electronics – Basic structure of control units, Functions of control units and On-Board Diagnostic kit.

Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication and cooling system- Components, working principle, Properties, Viscosity.

Unit-V 06 Hrs

Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Sensor, Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Describe the functions of Mechatronic systems in a modern automobile								
CO2:	Evaluate the performance of an engine by its parameters								
CO3:	Analyse the automotive exhaust pollutants as per emission norms								
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit								

Refere	nce Books											
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage											
	Learning, ISBN-13: 978-1428311497											
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,											
	SAE International, ISBN: 0768009871											
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527											
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-											
	Heinemann, ISBN 0-7506-7008-8											

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	2	1	2	1	-	-	1	2	3	-	-			
CO2	2	1	2	1	3	-	-	2	2	3	-	-			
CO3	1	2	2	1	2	-	-	2	2	3	-	-			
CO4	1	2	2	1	2	-	-	2	2	1	-	1			

High-3: Medium-2: Low-1

	Semester: V												
	TELECOMMUNICATION SYSTEMS												
(GROUP B: GLOBAL ELECTIVE)													
				(Theory)									
Cou	rse Code	:	18G5B12		CIE	:	100 Marks						
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours						
Cou	rse Learning O	bje	ectives: The students	s will be able to									
1	Represent sch	em	atic of communication	on system and identif	ly its components.								
2	Classify satell	ite	orbits and sub-syste	ms for communication	n.								
3	Analyze differ	ren	telecommunication	services, systems an	d principles.								
4	4 Explain the role of optical communication system and its components.												
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds								

1	UNIT-I	06	Hrs
,	U1 111-1	· vv	1113

Introduction to Electronic Communication: The Significance of Human Communication, Communication Systems, Types of Electronic Communication, Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.

The Fundamentals of Electronics: Gain, Attenuation, and Decibels.

Radio Receivers: Super heterodyne receiver.

UNIT-II 10 Hrs

Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.

Digital Modulation: PCM, Line Codes, ASK, FSK, PSK. **Wideband Modulation:** Spread spectrum, FHSS, DSSS.

Multiple Access: FDMA, TDMA, CDMA.

UNIT-III 09 Hrs

Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations, Satellite Applications, Global Positioning System.

UNIT-IV 07 Hrs

Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Cables, Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Networks.

UNIT-V 07 Hrs

Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Internet Telephony, The Advanced Mobile Phone System [AMPS].

Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless Networks.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the basics of communication systems.							
CO2	Analyze the importance of modulation and multiple access schemes for communication							
	systems.							
CO3	Analyze the operational concept of cell phone and other wireless technologies.							
CO4	Justify the use of different components and sub-system in advanced communication systems.							

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	_	1	-	-	-

High-3: Medium-2: Low-1

	Semester: V							
	QUANTUM MECHANICS OF HETERO/NANO STRUCTURES							
	(GROUP B: GLOBAL ELECTIVE)							
			T	(Theory)	T			
Cou	rse Code	:	18G5B13		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning C)bje	ectives: The studen	ts will be able to				
1	Understand th	e ro	ole of Quantum me	chanics in physical pro	ocesses as we reduc	e din	nensions.	
2	Explain the de	esig	n and performance	of low dimensional se	emiconductors and t	heir	modelling.	
3	3 Understand the differences observed in transport properties of low dimensional materials.							
4	4 Apply the role of heterostructures in devices							
5	5 Acquire the knowledge to design and develop smart devices and sensors that runs on the quantum							
	technology.							

Unit-I	08 Hrs

Review of Quantum Mechanics and Solid state Physics:

Wave particle duality, Heisenberg's Uncertainty Principle, group velocity, Time independent and dependent Schrodinger Equation and its application, Perturbation theory, Fermi's Golden Rule. Free electron and Fermi gas model of solids, Density of states and its dependence on dimensionality, Bloch theorem in periodic structures, Dynamics of electrons and holes in bands, Effective mass, distinct regimes of conduction and the important parameters characterising it.

Unit – II 08 Hrs

Basics of semiconductors and lower dimensions:

Intrinsic and extrinsic semiconductors, electron and hole concentration. Mobility, Energy Diffusion, Continuity equations. Carrier life-times and Diffusion length. Degenerate semiconductors. Optical processes of semi-conductors, inter-band and intra-band process. Quantum wells of nanostructures of different geometries-Square, Parabolic, Triangular and their solutions, Quantum Dots, wires and wells (From 0-Dim to 3 Dim). Strained Layers and its effect on bands. Band structure/energy levels in Quantum Wells and Excitonic effects in them.

Unit –III 08 Hrs

Quantum Nano structures and Quantum Transport:

Architecture and working of n-channel MOSFET, metal – semiconductor contact(interface) in details, Homo-junction, Hetero-junction, Hetero-structures. Modulation and strain doped Quantum Wells. Super Lattice: Kronig Penney Model of a super-lattice, Tight Binding Approximation of a super lattice. The genesis of Quantum Transport: Parallel transport: scattering mechanism, experimental data(focus will be on GaAs), hot electrons. Perpendicular transport: Resonant tunneling. Electric field effect in super lattices: Stark effect.

Unit –IV 08 Hrs

Transport in Nano-structures in electric and magnetic fields:

Quantized conductance: Landauer Buttiker transmission formalism, Application of formalism to explain quantized conductance of devices like quantum point contacts. Aharonov-Bohm effect in gold rings and other systems. Violation of Kirchhoff's circuit laws for quantum conductors. Coulomb Blockade. Density of States of a 2D system in a magnetic field. Landau quantization of electrons in a magnetic field. Shubnikov-de Haas effect. Quantum Hall Effect-integer and quantum.

Unit –V 07 Hrs

Applications in Opto-electronics and Spintronics:

Lasers and photodetectors on quantum wells and quantum dots, High-mobility transistors, Ballistic-

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	After successful completion of the course the student will be able to identify the different domains
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and
	Photonics.
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at
	the core of nano and meso technology.
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)
CO4:	The student can apply the concepts in an interdisciplinary manner and can create new ideas and
	products related to appliances and sensors, that use the said concepts.

Refere	nce Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
1	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
2	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
3	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
_	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
	Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
6	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CC	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	3	2	2	-	-	-	1
CO2	3	3	3	2	1	2	1	1	-	-	-	1
CO3	3	3	3	2	1	1	1	1	-	-	-	1
CO4	1	2	1	2	1	2	2	1	2	2	-	1

High-3: Medium-2: Low-1

Semester: V								
	THIN FILMS AND NANOTECHNOLOGY							
			(GROU	JP B: GLOBAL ELE	CTIVE)			
Corre	usa Cada		18G5B14	(Theory)	CIE	Τ.	100 Mariles	
	rse Code	:			CIE	:	100 Marks	
	lits: L:T:P	:	3:0:0		SEE D4	:	100 Marks	
	l Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning C) bj€	ectives: The studen	ts will be able to				
1	Understand th	e b	asics of thin films s	tructure and property.				
2	Acquire the k	now	ledge of thin film	preparation by various	techniques and thei	r ch	aracterization	
	methods.							
3 Apply the knowledge to select the most potential methods to produce thin films for wanted								
	applications.							
4	Asses typical	thir	film applications.					

Unit-I	08 Hrs

Nanostructures and Nanomaterials:

Types of nanostructures and properties of nanomaterials: Introduction, Three dimensional, Two dimensional, One dimensional, Zero-dimensional nano-structured materials. Carbon Nano Tubes (CNT), Quantum Dots, shell structures, Multilayer thin films and super lattice clusters. Synthesis through Sol gel and Spray Pyrolysis. Mechanical-physical-chemical properties. Current trends and challenges of nanoscience and nanotechnology.

Unit – II 08 Hrs

Thin Film Preparation Methods:

Vacuum technology- Basics of Vacuum pumps and vacuum measurements, **Physical Vapour Deposition** (**PVD**) **Techniques:** Evaporation - Thermal evaporation, Electron beam evaporation, and Cathode arc deposition. **Sputtering:** DC sputtering, RF Sputtering, Magnetron sputtering, and Ion beam sputtering.

Unit –III 08 Hrs

Surface Preparation and Growth of Thin Films:

Nucleation – theoretical and experimental aspects. Surface preparation & Engineering for Thin film growth: Cleaning, Modification, Masking & Patterning, Base Coats and Top Coats. Thin Film growth: Sequence of thin film growth, Defects and impurities, Effect of Deposition Parameters on film growth. Properties of Thin Films: Adhesion, Thickness, Surface, Physical, Chemical and Mechanical.

Unit –IV 08 Hrs

Characterization of Thin Film Properties:

Film thickness measurement: Quartz crystal thickness monitor and Stylus Profiler methods. Surface morphology and topography by SEM, AFM. Film composition by X-ray Photoelectron Spectroscopy; Electrical characterization by Hall effect measurement, Four probe analyzer. Optical characterization – Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.

Unit –V 07 Hrs

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basic mechanism of surface modification and thin film growth.						
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization						
	methods.						
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted						
	applications.						
CO4:	Detailed knowledge of thin film selection for various applications.						

Refer	ence Books
1	Thin Film Phenomenon, K.L.Chopra, 1st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
4	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

High-3: Medium-2: Low-1

				Semester: V								
	ADVANCES IN CORROSION SCIENCE AND TECHNOLOGY (GROUP B: GLOBAL ELECTIVE)											
	(Theory)											
Course Code : 18G5B15 CIE						:	100 Marks					
Credits: L:T:P			3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning ()bje	ectives: The student	s will be able to								
1	Understand th	e fu	ındamental & socio,	, economic aspects of	corrosion.							
2	Identify pract	ices	for the prevention a	and remediation of co	orrosion.							
3	Analyzing me	tho	dologies for predicti	ing corrosion tendend	cies.							
4	Evaluate vario	ous	corrosion situations	and implement suita	ble corrosion contro	ol me	asures.					

Unit-I	08 Hrs
Unit-1	uð Hrs

Introduction to corrosion and its effect

Introduction: The direct and indirect effects of corrosion, economic losses, Indirect losses -Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India.

Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, pulp and paper plants, corrosion effect in electronic industry.

Unit – II 08 Hrs

Types of Electrochemical corrosion

Introduction: Galvanic series, Pilling-Bedworth ratio, Types: Galvanic corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, erosion corrosion, stress corrosion, season cracking, hydrogen embrittlement, high temperature corrosion, bacterial corrosion, corrosion in polymer (plastic) materials.

Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys.

Unit –III 07 Hrs

Corrosion in different engineering materials

Concrete structures, duplex, super duplex stainless steels, ceramics, composites.

Corrosion in Specific Materials: Corrosion of Iron, Nickel, Aluminium, Titanium and Super alloys.

Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe.

Unit –IV 07 Hrs

Advances in Corrosion Control

Principles of corrosion prevention, material selection, design considerations, control of environment-decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.

Unit –V 09 Hrs

Corrosion Testing

Physio-chemical methods: Specimens, environment, evaluation of corrosion damage, Accelerated laboratory tests-salts spray, service tests.

Electrochemical methods: Electrode potential measurements, polarization measurements. Stern-Geary equation, Impedance measurements, Accelerated tests. Advantages and limitations of corrosion testing methods.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the causes and mechanism of various types of corrosion									
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.									
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.									
CO4 :	Develop practical solutions for problems related to corrosion.									

Refere	ence Books
1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-
_	0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-
2	0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: V											
	COMPUTATIONAL ADVANCED NUMERICAL METHODS											
	(GROUP B: GLOBAL ELECTIVE)											
	(Theory)											
Cou	Course Code : 18G5B16 CIE : 100 Marks											
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	Course Learning Objectives: The students will be able to											
1	Gain adequate	ex	posure to learn alte	rnative methods to se	olve algebraic and tr	ans	cendental equations					
	using suitable	nuı	nerical techniques.									
2	Use the conce	pts	of interpolation tech	nniques arising in var	ious fields.							
3	Solve initial	val	ue and boundary v	alue problems which	ch have great signit	fica	nce in engineering					
	practice.											
4	Apply the cor	ice	ots of eigen value a	nd eigen vector to o	btain the critical valu	ues	of various physical					
	phenomena.	•	-	-								
5	Demonstrate	ele	mentary programm	ing language, impl	lementation of algo	rith	nms and computer					
			e mathematical prob				•					

Unit-I 07	Hrs
-----------	-----

Algebraic and Transcendental Equations:

Roots of equations in engineering practice - Fixed point iterative method, Aitken process, Muller method, Chebyshev method. Simulation using MATLAB.

Unit – II 07 Hrs

Interpolation:

Introduction to finite differences, Finite differences of a polynomial, Divided differences, Newton's divided difference interpolation formula, Hermite interpolation, Spline interpolation - linear, quadratic and cubic spline interpolation. Simulation using MATLAB.

Unit –III 08 Hrs

Differential Equations I:

Runge-Kutta and Runge-Kutta-Felhberg methods to solve differential equations, Boundary value problems (BVPs) - Rayleigh-Ritz method, Shooting method, Differential transform method to solve differential equations. Simulation using MATLAB.

Unit –IV 08 Hrs

Differential Equations II:

Solution of second order initial value problems - Runge-Kutta method, Milne method, Cubic spline method, Finite difference method for ordinary linear, Nonlinear differential equations, Simulation using MATLAB.

Unit –V 09 Hrs

Eigen Value Problems:

Eigen values and Eigen vectors, Power method, Inverse Power method, Bounds on Eigen values, Gershgorin circle theorem, Jacobi method for symmetric matrices, Given's method. Simulation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and										
	corresponding computational techniques.										
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application										
	problems.										
CO3:	Analyze the physical problem and use appropriate method to solve numerically using										
	computational techniques.										
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems										
	arising in engineering practice.										

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.
1	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage
2	Learning, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4 th Edition, 2011, PHI Learning Private
3	Ltd., ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5 th Edition, 2011, Tata
4	Mcgraw Hill, ISBN-10: 0-07-063416-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	Semester: V						
	MATHEMATICS FOR MACHINE LEARNING						
			(GROU	P B: GLOBAL ELE	CTIVE)		
				(Theory)			
Cou	rse Code	:	18G5B17		CIE	:	100 Marks
Cred	lits: L:T:P	••	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning O	bje	ectives: The students	s will be able to			
1	Understand th	ne	basic knowledge o	n the fundamental	concepts of linear	alge	ebra that form the
	foundation of	ma	chine intelligence.				
2	Acquire practi	ical	knowledge of vector	or calculus and optim	nization to understan	d th	ne machine learning
	algorithms or	tec	nniques.				
3	Use the conc	ept	s of probability a	nd distributions to	analyze possible ap	plic	cations of machine
	learning.						
4	4 Apply the concepts of regression and estimation to solve problems of machine learning.						
5	Analyze the	app	ropriate mathemati	cal techniques for c	lassification and op	tim	ization of decision
	problems.						

Unit-I	07 Hrs

Linear Algebra:

Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, Inner Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement, Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition.

Unit – II 07 Hrs

Vector Calculus and Continuous Optimization:

Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradients, Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization.

Unit –III 08 Hrs

Probability and Distributions:

Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule and Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variables - Inverse Transform.

Unit –IV 08 Hrs

Linear Regression:

Problem Formulation, Parameter Estimation, Bayesian Linear Regression, Maximum Likelihood as Orthogonal Projection.

Density Estimation with Gaussian Mixture Models:

Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Variable Perspective.

Unit –V 09 Hrs

Dimensionality Reduction with Principal Component Analysis (PCA):

Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation and Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective.

Classification with Support Vector Machines:

Separating Hyperplanes, Primal Support Vector Machine, Dual Support Vector Machine, Kernels, Numerical Solution.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.						
CO2:	Orient the basic concepts of mathematics towards machine learning approach.						
CO3:	Apply the linear algebra and probability concepts to understand the development of different						
	machine learning techniques.						
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical						
	problems.						

Refere	Reference Books						
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,						
1	2020, Cambridge University Press.						
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge						
2	Press, ISBN: 0692196382, 9780692196380.						
2	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-						
3	978-81-203-4160-9.						
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd						
4	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

V Semester									
	ENGINEERING ECONOMY								
	(GROUP B: GLOBAL ELECTIVE)								
Course Code : 18G5B18 CIE : 100 Marks									
Course Code		:	18G5B02		SEE		100 Marks		
Total 1	Hours	:	39L		SEE Duration	:	03 Hours		
Cours	e Learnin	g O	bjectives: Student	s are expected to					
1.	To inculo	ate	an understanding o	of concept of money and its impo	ortance in the ev	alu	ation of		
	projects.								
2.	2. Analyze the present worth of an asset.								
3.	3. Evaluate the alternatives based on the Equivalent Annual Worth.								
4.	4. Illustrate concept of money and its importance in evaluating the projects.								

Unit – I 07 Hrs

Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engineering and Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.

Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow diagrams, Exercises and Discussion.

Unit – II 07 Hrs

Present worth comparison: Conditions for present worth comparisons, Basic Present worth comparisons, Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Future worth comparison, Pay – back comparison, Exercises, Discussions and problems.

Unit – III 07 Hrs

Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situations for Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with equal and unequal lives, Use of sinking fund method, Exercises, Problems.

Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR misconceptions, Problems.

Unit – IV 06 Hrs

Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, inadequacy, economic life for cyclic replacements, Exercises, Problems.

Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.

Unit – V 06 Hrs

Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Exercises, Problems.

Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis.

Course	Course Outcomes: After going through this course the student will be able to						
CO 1:	1: Explain the time value of money, and how to sketch the cash flow diagram						
CO 2:	Compare the alternatives using different compound interest factors, Select a feasible alternative						
	based on the analysis.						
CO 3:	Formulate a given problem for decision making						

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
--------------	--

Referen	Reference Books:						
1.	Engineering Economy, Riggs J.L., 5 th Edition, Tata McGraw Hill, ISBN 0-07-058670-5						
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN – 81-203-1743-2.						
3.	Cost Accounting, Khan M Y, 2 nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248						
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16 th Edition, 2011, Khanna Publishers, ISBN 8174091009						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

High-3: Medium-2: Low-1

	VI Semester						
INTRODUCTION TO MANAGEMENT & ECONOMICS (THEORY)							
Co	Course Code : 18HEM61 CIE : 100 Marks						
Credits: L:T:P		:	3:0:0	SEE		:	100 Marks
Total Hours		: 39L			SEE Duration	:	03 Hrs
Co	urse Learning O	bje	ectives: The students wi	ill be able to			
1	1 Understand the evolution of management thought.						
2	Acquire knowledge of the functions of Management.						
3	Gain basic knowledge of essentials of Micro economics and Macroeconomics.						
4	Understand the concepts of macroeconomics relevant to different organizational contexts.						

Unit-I 07 Hrs

Introduction to Management: Management Functions, Roles & Skills, Management History – Classical Approach: Scientific Management & Administrative Theory, Quantitative Approach: Operations Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: Systems & Contingency Theory. Case studies

Unit – II 09 Hrs

Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate & Competitive Strategies. **Case studies**

Organizational Structure & Design: Overview of Designing Organizational Structure: Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. **Case studies**

Unit –III 09 Hrs

Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. **Case studies**

Managers as Leaders: Behavioral Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. **Case studies**

Unit –IV 07 Hrs

Introduction to Economics: Importance of Economics, Microeconomics and Macroeconomics, Theories and Models to Understand Economic Issues, An Overview of Economic Systems. Demand, Supply, and Equilibrium in Markets for Goods and Services, Price Elasticity of Demand and Price Elasticity of Supply, Elasticity and Pricing, Changes in Income and Prices Affecting Consumption Choices, Monopolistic Competition, Oligopoly.

Unit –V 07Hrs

Essentials of Macroeconomics: Prices and inflation, Exchangerate, Gross domestic product (GDP), components of GDP, the Labor Market, Money and banks, Interestrate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-classical synthesis, Exchange rate determination and the Mundell-Fleming model

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the principles of management theory & recognize the characteristics of an							
	organization.							
CO2:	Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.							
CO3:	Select & Implement the right leadership practices in organizations that would enable systems orientation.							
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconomics.							

Refe	Reference Books								
1	Stephen Robbins, Mary Coulter & Neharika Vohra, Management, Pearson Education								
	Publications, 10th Edition, ISBN: 978-81-317-2720-1.								
2	James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, ISBN: 81-								
	203-0981-2.								
3	Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Edition,ISBN:978-1-								
	947172-34-0								
4	Dwivedi.D.N, Macroeconomics: Theory and Policy, McGraw Hill Education; 3rd								
	Edition, 2010, ISBN-13: 978-0070091450.								
5	Peter Jochumzen, Essentials of Macroeconomics, e-book(www.bookboon.com), 1st Edition.,								
	2010, ISBN:978-87-7681-558-5.								

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

50% weightage should be given to case studies. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1			3		3	3	3	3	3
CO2	3	2						1	2	3	2	2
CO3			1			2		2	2	3	3	3
CO4	2		2			3	1	3	2	2	3	3

High-3: Medium-2: Low-1

Semester: VI											
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING											
	(Theory & Practice)										
		(Co	mmon to CS &	IS)							
Course Code	:	18CS62		CIE Marks	:	100+50					
Credits: L:T:P	:	3:1:1		SEE Marks	:	100+50					
Total Hours	:	39L+26T +35P		SEE Duration	:	3 Hrs + 3 Hrs					

Cou	rse Learning Objectives: The students will be able to
1.	Acquire basic principles of working of Artificial Intelligence technology and Machine learning algorithms
2.	Understand the practical requirements of AI agents, Searching strategies, Propositional and First-order Logics
3.	Develop AI and ML solutions for reasoning while dealing the uncertain situations, and making use of effective Knowledge representation strategies
4.	Identify the applications of some of the Machine learning techniques such as Bayesian networks, Decision tress, and Reinforcement learning in real world problems

Unit – I 7 Hrs

Introduction, intelligent agents, searching: What is AI? Intelligent Agents: Agents and environment; Rationality; the nature of environments; the structure of agents. Problem-solving: Problem-solving agents; Searching for solution; Uninformed search strategies; Informed search strategies, Heuristic Functions

Unit – II 8 Hrs

Adversarial search, constraint satisfaction problems, logical agents, first-order logic: Games, Optimal decision in games, Alpha-Beta Pruning, Defining Constraint satisfaction problems; Backtracking search for CSPs; Knowledge-based agents; The Wumpus world as an example world; Logic; propositional logic; Propositional theorem proving; Syntax and semantics of first-order logic; Using first-order logic;

Unit – III 8 Hrs

Knowledge representation: Ontological Engineering; Categories and Objects; Events; Mental events and Mental objects; Reasoning system for categories;

Probabilistic reasoning: Representing knowledge in an uncertain domain; Semantics of Bayesian Networks; Efficient representation of conditional distributions; Exact inference in Bayesian Networks; Approximate inference in Bayesian Networks;

Unit – IV 8 Hrs

Introduction to machine learning: Well-posed learning algorithms; Designing a learning algorithm; Perspectives and Issues in machine learning;

Decision tree learning: Introduction, Decision tree representation; Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning;

Unit – V 8 Hrs

Instance based learning: Introduction; k-nearest neighbor learning; Locally weighted regression; Radial based regression case-based functions;

Reinforcement learning: Introduction; The learning task; Q learning; Nondeterministic rewards and actions;

Laboratory Component

Open ended AI/Machine Learning based experiential project should be carried out in a team of two students, belongs to same batch of the laboratory of that particular section. (Cross-sections and Cross-batches not allowed)

General Guidelines for the project

The topic of the project should be from current thrust areas along with consultation with the faculty in charge.

There may be more than one batch solving same problem, but you need to have different approaches and the best approach will be ranked high.

The selected topic on the basis of standard papers (like IEEE/ACM/CSI etc.) is highly encouraged.

Presenting/publishing the paper in a reputed IEEE/ACM conferences / Journal with good indexing like WoS, SCI, Scopus, will attract higher marks in CIE.

The student needs to submit both hard & soft copy of the report for valuation.

All the batches must adhere to the guidelines released time to time by the Lab coordinators, and submit all the proofs asked in support of your experiential project.

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Describe the required theory and building blocks of Artificial intelligence technology and
	Machine learning algorithms
CO 2:	Demonstrate the working of various searching algorithms, games, pruning, inferencing, etc.
	with suitable examples.
CO 3:	Choose the suitable AI and machine learning technique for a given use case and analyze it's
	performance while solving real world problems.
CO 4:	Recommend and develop the AI and ML-based solutions for some of the well-posed
	learning problems.

Refer	ence Books:
1.	AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson, ISBN-13: 978-0136042594
2.	Machine Learning, Tom M. Mitchell, Publisher: McGraw-Hill Science/Engineering/Math; (March 1, 1997) ,ISBN: 0070428077
3.	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-978-81-203-4160-9.
4.	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome 2008Friedman: Springer, ISBN 978-0-387-84858-7.
5.	Pattern Classification, Richard O. Duda, Peter E. Hart and David G. Stork, 2 nd Edition, 2001, Wiley-Inter science, ISBN-13: 978-04710566902001.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			2	2	2		2	2		3
CO2	2	2	2		3							
CO3			2									2
CO4	1	2		3	2	2			2			2

High-3: Medium-2: Low-1

	Semester: VI										
	COMPILER DESIGN										
			(Th	neory & Practio	ce)						
Cou	rse Code	:	18CS63		CIE Marks	:	100+50				
Credits: L:T:P		:	3:0:1		SEE Marks		100+50				
Tota	l Hours	:	39L + 35P		SEE Duration	:	3 Hrs + 3 Hrs				
Cou	rse Learning	g Ob	jectives: The student	ts will be able to)						
1.			I for constructing the or applications.	compiler which	gives the good insig	ht in	to the algorithms,				
2.	Gain Know	ledg	e of different forms of	f language transl	lators that shapes con	mpil	lers.				
3.	Construct le	exica	l analyser and the par	sing methods th	at are typically used	in c	ompilers				
4.			principle ideas in syn le for the typical prog			ons	to generate				
5.	Understand	abo	ut the Syntax directed	translation, cod	e generation and coo	de oj	ptimization.				

Unit – I	7Hrs

Introduction to Compiling and Lexical Analysis

Introduction, Language Processors, The structure of Compiler, Evolution of programming Languages. Lexical Analysis- The Role of Lexical Analyzer, Input Buffering, Specifications of Tokens, Recognition of Tokens.

Unit – II 9Hrs

Syntax Analysis

Introduction, Context-free Grammars, Writing a Grammar, Top-down Parsing, Bottom-up Parsing, Introduction to LR Parsing: Simple LR, Most powerful LR parsers (Excluding efficient construction and compaction of parsing tables), Using ambiguous grammars.

Unit – III 9 Hrs

Lexical -Analyzer and Parser generators

Lexical –Analyzer generator Lex, The parser generator YACC, Using YACC with ambiguous grammars, Creating YACC lexical Analyzer with LEX, Error recovery in YACC

Syntax-Directed Translation

Syntax-Directed Definitions, Evaluation orders for SDD, Application of Syntax Directed Translation.

Unit – IV 7Hrs

Intermediate Code Generation

Variants of Syntax trees, Three address code, Types and Declaration-Type Expressions, equivalence, Declaration, Control flow, Back patching.

Unit – V 7 Hrs

Code Generation and optimization

Issues in the design of Code Generator, The Target Language, Address in the target Code, Basic Blocks and Flow graphs, Optimization of Basic blocks, A Simple Code Generator, Peephole Optimization. Introduction to LLVM compiler and Clang.

Laboratory Component

Student should be able to design phases of compiler by incorporating following features:

- 1 Writing a scanner, writing predictive parser for a language constructs.
- 2 Experiment with scanner (lex/flex) and parser (yacc/byson) generators
- Writing scanner-parse specification for a simple language constructs.
- 4 Translation of the language constructs to an intermediate form (e.g. three-address code),
- 5 Generation of target code (in assembly language) using compiler construction tools.
- 6 Code improvement and optimization using LLVM compiler.

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Understand and explore the fundamental concepts of compiler design and its									
	implementation.									
CO 2:	Identify and apply rules for designing various phases of compiler									
CO 3:	Analyse the practices adopted in constructing an efficient compiler.									
CO 4:	Implement and demonstrate in-depth knowledge of various technologies related to									
	principles, techniques and tools for designing compiler.									

Refer	ence Books:
1.	Compilers- Principles, Techniques and Tools, Alfred V Aho, Monica S.Lam, Ravi Sethi, Jeffrey D Ullman; 2 nd Edition, 2013, Pearson Education, ISBN – 10-1-292-02434-8, ISBN – 13-978-1-292-02434-9.
2.	Compiler Design, Santanu Chattopadhyay, 1 st Edition, 2011, PHI Learning, ISBN-978-81-203-2725-2.
3.	Compiler Construction Principles & Practice, Kenneth C Louden; Cengage Learning, 1 st Edition, 2009. ISBN – 0534939724.
4.	Crafting a Compiler with C, Charles N. Fischer, Richard J. leBlanc, Jr., 1 st Edition, 2009, Pearson Education, ISBN-13:978-0136067054, ISBN-10: 0136067050.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (O) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub

questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	•	-	-	-	-	-	1	1	-	1
CO2	1	2	-	1	2	-	1	-	1	2	-	1
CO3	2	1	2	-	2	-	1	-	2	3	-	1
CO4	2	2	2	2	2	1	1	2	3	3	-	1

High-3: Medium-2: Low-1

	Semester: VI							
	Minor Project							
Cou	Course Code : 18CS64 CIE : 50 Marks							
Credits: L:T:P		:	0:0:2	SEE	:	50 Marks		
Hou	rs	:	26P	SEE Duration	:	02 Hours		
Cou	rse Learning C)bje	ectives: To ena	ble the students to:				
1	 Knowledge Application: Acquire the ability to make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task. 							
2	2 Communication: Acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific audience in both the written and oral forms.							
3	3 <i>Collaboration:</i> Acquire collaborative skills through working in a team to achieve common goals.							
4	Independent Learning: Learn on their own, reflect on their learning and take appropriate action							

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Interpreting and implementing the project in the chosen domain by applying the concepts							
	learnt.							
CO 2:	The course will facilitate effective participation by the student in team work and							
	development of communication and presentation skills essential for being part of any of the							
	domains in his / her future career.							
CO 3:	Appling project life cycle effectively to develop an efficient product.							
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area or							
	carry out research work in an industrial environment.							

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
I	Synopsis submission, approval of the selected topic, Problem	10M
	definition, Literature review, formulation of objectives, methodology	
II	Mid-term evaluation to review the progress of implementation,	15M
	design, testing and result analysis along with documentation	
III	Submission of report, Final presentation and demonstration	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl.	Evaluation Component	Marks
No.		
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	1	2	2	2	2	2
CO2	3	3	3	3	2	2	1	2	2	2	2	2
CO3	3	3	3	3	2	2	1	2	2	2	2	2
CO4	1	1	1	1	1	1	1	2	1	2	1	1

High-3: Medium-2: Low-1

	Semester: VI								
	INTERNET OF THINGS								
	(Group C: Professional Elective)								
				Common to All Bran	ches)				
Cou	rse Code	:	18CS6C1		CIE Marks	:	100		
Credits: L:T:P		:	3:0:0		SEE Marks		100		
Total Hours		:	39L		SEE Duration		3 Hrs		
Cou	rse Learning	g Ob	jectives: The st	idents will be able to					
1.	Understand	l desi	gn principles in	Iot ,edge ,fog comput	ing and its challen	ges			
2.	Identify the	Inte	rnet Connectivi	y, security issues and i	ts protocols				
3.	3. Explore and implement Internet of Things (IoT) and New Computing Paradigms								
4.	4. Apply and analyze the Orchestration and resource management inioT, 5G, Fog, Edge, and Clouds								

Unit – I 8 Hrs

Internet of Things Strategic Research and Innovation Agenda -Internet of Things Vision ,IoT Strategic Research and Innovation Directions , IoT Applications , Internet of Things and Related Future Internet Technologies , Infrastructure , Networks and Communication , Processes , Data Management , Security, Privacy & Trust , Device Level Energy Issues

Unit – II 8 Hrs

Internet of Things Standardisation — Status, Requirements, Initiatives and Organisations - Introduction , M2M Service Layer Standardisation , OGC Sensor Web for IoT , IEEE and IETF , ITU- T . Simpler IoT Word(s) of Tomorrow, More Interoperability Challenges to Cope Today-Physical vs Virtual , Solve the Basic First — The Physical Word , The Data Interoperability , The Semantic Interoperability , The Organizational Interoperability , The Eternal Interoperability , The Importance of Standardisation — The Beginning of Everything

Unit – III 8 Hrs

Internet of Things Privacy, Security and Governance-Introduction, Overview of Activity Chain — Governance, Privacy and Security Issues, Contribution From FP7 Project, Security and Privacy Challenge in Data Aggregation for the IoT in Smart Cities-Security, Privacy and Trust in Iot-Data-Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach

Unit – IV 8 Hrs

Internet of Things (IoT) and New Computing Paradigms Fog and Edge Computing Completing the Cloud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9,Hierarchy of Fog and Edge Computing , Business Models , **Addressing the Challenges in Federating Edge Resources,** The Networking Challenge, The Management Challenge , **Integrating IoT** + **Fog** + **Cloud**

Unit – V 7 Hrs

Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introduction Background, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network Slicing Management in Edge and Fog

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Understand and Explore Internet of Things (IoT) with New Computing Paradigms like 5G,							
	Fog, Edge, and Clouds							
CO 2:	Analyze Prototyping and demonstrate resource management concepts in New Computing							
	Paradigms							
CO 3:	Apply optimal wireless technology to implement Internet of Things and edge computing							
	applications							
CO 4:	Propose IoT-enabled applications for building smart spaces and services with security							
	features, resource management and edge computing							

Refer	Reference Books:						
1.	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers, 2013ISBN: 978-87-92982-73-5(Print) ISBN: 978-87-92982-96-4(E-Book).						
2.	Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya, Satish Narayana Srirama, 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.						
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, 2017, TMH Publications, ISBN:9789352605224.						
4.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, 1 st Edition, 2013, Willy Publications, ISBN: 978-1-118-47347-4.						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	2	2	-	-	1	-	2
CO2	2	2	1	1	-	2	2	-	1	1	-	3
CO3	1	2	1	1	-	2	2	-	1	1	-	2
CO4	1	2	2	2	-	3	3	1	2	2	-	3

High-3: Medium-2: Low-1

	Semester: VI							
	ADVANCED ALGORITHMS							
(Group C: Professional Elective)								
				(Common to CS &]	IS)			
Cour	urse Code :		18IS6C2		CIE Marks	:	100	
Credits: L:T:P		:	3:0:0		SEE Marks		100	
Tota	l Hours	Iours : 39L			SEE Duration		3 Hrs	
Cour	rse Learning	g O bj	jectives: The stu	dents will be able to				
1.	Enhance the	eir kr	nowledge on asy	mptotic performance	of various algorithm	s.		
2. Develop the skills to design and apply efficient algorithms tovarious real world problems.								
3. Ability to differentiate between various design paradigms and apply the same appropriately								
4.	. Appreciate the time and space complexity of various algorithms							

3.	Ability to differentiate between various design paradigms and apply the same appropria	tely
4.	Appreciate the time and space complexity of various algorithms	
	Unit-I	08Hrs
Ana	lysis techniques:	
Grov	wth of functions: Asymptotic notation, Standard notations and common functions, Sub	stitution
meth	nod for solving recurrences, Recursion tree method for solving recurrences, Master theore	m.
Amo	ortized Analysis: Aggregate analysis, The accounting method, The potential method.	
	Unit – II	08 Hrs
Sort	ing in Linear Time:	
Low	er bounds for sorting, Counting sort, Radix sort, Bucket sort.	
Adv	anced Design and Analysis Technique: Matrix-chain multiplication, Longest	common
subs	equence, Elements of the greedy strategy, An activity-selection problem	
	Unit –III	08 Hrs
Gra	ph Algorithms	
Bell	man-Ford Algorithm, Shortest paths in a DAG, Johnson's Algorithm for sparse graphs.	
Max	ximum Flow	
Flov	v networks, Ford Fulkerson method and Maximum Bipartite Matching	
	Unit –IV	07Hrs
Nun	nber Theoretic Algorithms:	
Elen	nentary notions, GCD, Modular arithmetic, Solving modular linear equations, The	Chinese
rema	ninder theorem, Powers of an element, RSA cryptosystem.	
	Unit –V	08 Hrs
1		

Advanced Data structures:

Structure of Fibonacci heaps, Mergeable-heap operations, Decreasing a key and deleting a node, Binomial Queues, Splay Trees.

String Matching Algorithms: Naïve algorithm, Rabin-Karp algorithm, String matching with finite automata, Knuth-Morris-Pratt algorithm

Course Outcomes: After completing the course, the students will be able to							
CO1:	Analyze various algorithms for their time and space complexity.						
CO2:	Demonstrate a familiarity with major algorithms and data structures						
CO3:	Apply appropriate design techniques for solving real world problems.						
CO4:	Design and implement solutions using appropriate mathematical techniques.						

Referen	ce Books
1	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein; Introduction
	to Algorithms; Columbia University, 3 rd Edition; 2009, ISBN-13: 978-0262033848.
2	Mark Allen Weiss; Data Structures and Algorithm Analysis in C++, Addison-Wesley;
4	4 th Revised edition; 2013, ISBN-13: 9780132847377.
2	Kozen DC, The design and analysis of algorithms, Springer Science & Business Media,
3	2012, ISBN: 978-0387976877
4	Kenneth A. Berman, Jerome L. Paul, Algorithms, Cengage Learning, 2002. ISBN: 978-
4	8131505212

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	2	1	1	-	1	-	-	-	-	1	
CO2	1	3	2	1	1	-	1	-	-	-	-	1	
CO3	1	3	2	1	1	-	1	-	-	-	-	1	
CO4	1	3	2	1	1	-	1	-	-	-	-	1	

High-3: Medium-2: Low-1

Semester: VI											
	FUZZY LOGIC										
		(Gr	oup C: Professional I	Elective)							
			(Common to CS &	IS)							
Course Code	:	18CS6C3		CIE Marks	:	100					
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE Marks										
Total Hours	:	39L		SEE Duration	:	3 Hrs					

Course Learning Objectives: The students will be able to									
1	Gain knowledge of fundamental concepts in Fuzzy Logic.								
2	Illustrate fuzzy sets and fuzzy logic as mathematical models.								
3	Focus on problems related to various engineering, mathematics and science disciplines.								
4	Use fuzzy logic based techniques for various applications.								

Unit – I	07Hrs

Introduction

The case for Imprecision, The Utility and Limitations of Fuzzy Systems, Fuzzy sets and membership, Chance verses fuzziness, Sets as points in hyper cubes. Fuzzy Sets - Fuzzy set operations, Properties of Fuzzy Sets, Alternative fuzzy set operations, Membership value Assignments, Intuition, Inference, Features of the Membership Function

Fuzzy Relations

Fuzzy Relations, Cardinality of Fuzzy Relations, Operations on Fuzzy Relations, Properties of Fuzzy Relations, Fuzzy Cartesian product and Composition, Fuzzy Tolerance and equivalence Relations. Value Assignments - Cosine Amplitude, Max-min Method

Unit – II 08Hrs

Fuzzification and Defuzzification

Fuzzification, defuzzification to crisp sets, Lambda-cuts for fuzzy relations, Defuzzification to Scalars

Fuzzy Logic and Fuzzy Systems

Classical Logic – Tautologies, Contradictions, Equivalence, Exclusive or and Exclusive Nor, Logical Proofs, Deductive Inferences. Fuzzy Logic, approximate reasoning, other forms of the Implication Operation, Fuzzy Systems: Natural Languages, Fuzzy (Rule -Based) systems.

Unit – III 08Hrs

Fuzzy Arithmetic and Extension Principle

Extension principle, Crisp Function, Mapping and Relations, Function of fuzzy sets- Extension principle, fuzzy transform, practical considerations, fuzzy arithmetic, internal analysis in arithmetic, Approximate of extension.

Fuzzy Soft Sets

Soft Sets and Fuzzy Soft Sets – Soft sets and Fuzzy Soft set operations, Properties of soft sets and Fuzzy Soft Sets, Cartesian product of soft sets and fuzzy soft sets, Fuzzy Soft set Relations, Operations on Fuzzy Soft Set Relations, Composition of fuzzy Soft Set relation.

Unit – IV 8Hrs

Fuzzy Classification and Pattern Recognition

Classification of Equivalence relations, Crisp Relations and Fuzzy Relations, Cluster Analysis, Cluster Validity, c-means clustering, Hard c-means, Fuzzy c-means algorithm, cluster validity, Knowledge based pattern recognition, Hybrid pattern based recognition, applications in Medical Image Segmentation: case study of hybrid fuzzy system for MRI segmentation.

Unit – V 8Hrs

Fuzzy Logic and Artificial Intelligence

AI, Neural Network, genetic Algorithms, Fuzzy logic in frame based representation, FL in expert systems, Intelligent Agents, FL in Intelligent systems.

Fuzzy Logic in Database and Information Systems

Fuzzy information, FL in database systems, fuzzy relation data models and its operations,

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Explore and Understand basic concepts of all types of fuzzy sets and relations, fuzzy logic								
	extension principle in the field of computer science and Engineering.								
CO 2:	Analyse the tools of all types of fuzzy sets in different areas of intelligent information systems								
	where uncertainty and imprecision are involved.								
CO 3:	Design fuzzy systems and solve complex problems using various fuzzy techniques.								
CO 4:	Create application by utilizing cloud platforms. Apply fuzzy systems and solve complex								
	problems using various fuzzy techniques.								

Refe	rence Books
1.	Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley, 2 nd Edition,
	2007, ISBN: 13 978-81-265-1337-6.
2.	Fuzzy Logic Intelligence, Control and Information, John Yen, Reza Langari, 1st edition, 9th
	Impression, 2012, Pearson, ISBN: 978-81-317-0534-6.
3.	Fuzzy Sets and Fuzzy Logic-Theory and Applications, George J. Klir, Bo Yuan, Prentice Hall, 1st
	Edition; 2008, ISBN: 81-203-0695-3.
4.	Fuzzy Logic Theory and Applications: Part I and Part II, Lofti A Zadeh and Rafik A Aliev, World
	Scientific Publishing Co. PTe. Ltd, 2018, ISBN: 978-9813238176
5.	Fuzzy Sets and Fuzzy Logic with Applications: Implementation, Uncertainty and Vagueness, M.K.
	Hasan, 2019, Scholars Press, ISBN-978-6138833789
6.	Research Papers on Soft sets and Fuzzy Soft sets.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	1	-	2	2	1	-	1	-	-	-	2	
CO2	1	3	-	2	2	1	-	1	1	2	2	2	
CO3	2	1	-	1	1	1	-	1	1	2	1	2	
CO4	2	2	2	1	1	1	-	1	1	2	-	2	

High-3: Medium-2: Low-1

	Semester: VI											
	DATA WAREHOUSING AND DATA MINING											
			(Gro	up C: Professional Elec	tive)							
Cou	rse Code	:	18CS6C4	CI	E Marks	:	100					
Credits: L:T:P		:	3:0:0	SE	EE Marks	:	100					
Tota	al Hours :		39L	SE	EE Duration	:	3 Hrs					
Cou	rse Learning	Obj	ectives: The stu	dents will be able to								
1.	To understar	ıd tl	ne concepts of da	ta warehousing and data	mining.							
2.	2. To learn different classification techniques adopted for data mining.											
3.	To learn the	vist	alization techni	ques in data mining								

Unit – I 8 Hrs

Data Warehouse : Introduction to Data Warehouse, Differences between Operational Database Systems and Data Warehouses , A Separate Data Warehouse, Data Warehousing : A Multitier Architecture, Data Warehouse Models: Enterprise Warehouse, Data Mart, and Virtual Warehouse, Extraction, Transformation, and Loading, Metadata Repository

Data Warehouse Modelling: Data Cube and OLAP; Data Cube: A Multidimensional Data Model, Stars, Snowflakes, and Fact Constellations: Schemas for multidimensional Data Models, Dimensions: The Role of Concept Hierarchies, Typical OLAP Operations, A Starnet Query Model for Querying Multidimensional Databases.

Unit – II 8 Hrs

Introduction to Data Mining:Kinds of data,kinds of patterns,technologies used,Applications,Major Issues in Data Mining.

Data Objects and Attribute Types, Basic Statistical Descriptions of Data, Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization

Unit – III 8 Hrs

Mining Frequent Patterns, Associations, and Correlations: Basic Concepts, Frequent Itemset Mining Methods, Pattern Evaluation Methods

Basic concepts of classification: Decision Tree Induction, Bayesian Classification, Rule based Classification, Model Evaluation and selection, Techniques to improve classification accuracy

Unit – IV 8 Hrs

Classification: Advanced Methods: Bayesian Belief Networks, Classification by Back propagation, Support Vector Machines, Classification Using Frequent Patterns

Unit – V 7 Hrs

Cluster Analysis: Basic Concepts and Methods: Cluster Analysis, Partitioning Methods, Hierarchical Methods, Density-Based Methods

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Understand the concepts of data warehousing and data mining.									
CO 2:	To apply the classification and clustering algorithms for the historical data.									
CO 3:	To identify hidden patterns in the huge data.									
CO 4:	To visualize and draw inference from the knowledge extracted for decision making.									

Refer	ence Books:
1.	Data Mining – Concepts and Techniques, Jiawei Han and Micheline Kamber, 3 rd Edition, 2012, Morgan Kaufmann, ISBN 978-0-12-381479-1.
2.	Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 2007, Pearson Education, ISBN 9788131714720
3.	Practical data science with R, Zumel, N. & Mount, J, 2014, Manning Publications, ISBN 9781617291562
4.	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-978-81-203-4160-9.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2		1	2	2	2	1	2	2		3
CO2	2	2	2	1	2			1		1		2
CO3	1		2	1	1			1		1		2
CO4	1	2		2	2	2		1	2	1		2

High-3: Medium-2: Low-1

Semester: VI BIG DATA ANALYTICS USING DISTRIBUTED PLATFORMS (Group C: Professional Elective) (Common to CS & IS) (Industry Offered) 18CS6C5 **CIE Marks** 100 : Credits: L:T:P **SEE Marks** 100 3:0:0 : 39L **SEE Duration** 3 Hrs Course Learning Objectives: The students will be able to Think and handle big data, and perform data analysis.

Unit – I 08Hrs

Big data processing and Distributed architectures -Types of data: Structured, semi structured, unstructured, Data Pre-processing: Data cleaning, Data Integration, Data Reduction, Data Transformation and discretization, data cleaning, validation, modifications, enhancements.

Use HPCC platform and ECL programming language for big data processing.

Understand and apply machine learning algorithms on distributed platform

Distributed Architectures: Hadoop, spark, HPCC Systems Vs Hadoop

Unit – II 08Hrs

HPCC Systems architecture

Course Code

Total Hours

2.

3.

HPCC System functions, Data Lake Architecture, The HPCC Systems design, Thor Vs ROXIE

ECL the programming language & Structures

ECL Watch, ECL Cloud IDE / VS Code, Simple ECL programs and Data Types explained, Data flow graphs (diagrams), Declarative programming, Declarative vs Imperative programming, the ECL Compiler, The ECL program deployment and execution

> Unit – III 08Hrs

ECL the programming language & Structures

An Activity, An Activity Declaration, A Record Declaration, Schema on Read (RECORD) explained, A Function Declaration, A MODULE, ECL File(s), Importing files, Spraying and Reading a file

Data Shaping (Transforming)

FUNCTION, MODULE and PROJECT, ITERATE and ROLLUP ,SORT, JOIN and DEDUP ,NORMALIZE and DENORMALIZE ,DISTRIBUTE and Reading the execution Graph

> Unit - IV 08Hrs

Data Aggregation

GROUP and functions (SUM, AVE, COUNT...), TABLE and AGGREGATE

HPCC Systems Machine Learning Library- Part I

ML Core, PBblas- Parallel Block Linear Algebra Subsystem, Supervised Learning Bundles- Linear Regression, Logistic Regression, Support Vector Machines, Learning Trees

> Unit – V 07Hrs

HPCC Systems Machine Learning Library- Part II

Supervised Learning Bundles- GLM, Generalized Neural Network, Unsupervised Learning Bundles-K-Means, DBSCAN, Natural Language Processing Bundles- TextVectors

Course	Course Outcomes: After completing the course, the students will be able to										
CO 1:	Understand and explore the concepts of data processing, distributed systems, HPCC systems,										
	ECL programming language and HPCC machine learning library.										
CO 2:	Apply ECL programming language & structures, Machine Learning Algorithms on HPCC										
	Systems Platform										
CO 3:	Analyse Machine Learning Algorithms on HPCC platforms										
CO 4:	Implement Machine Learning Algorithms on HPCC Platform.										

Referen	nce Books:
1.	Detailed handouts with references to material available on the web will be handed
	out every week.
	https://hpccsystems.com/training/documentation/learning-ecl
	https://github.com/hpcc-systems/Solutions-ECL-Training,
2.	Data Mining – Concepts and Techniques, Jiawei Han and Micheline Kamber, Jian
	Pei, 3 rd Edition, 2012, Morgan Kaufmann, ISBN 978-0-12-381479-1.
3.	Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar:,
	2007, Pearson Education, ISBN 978-81-317-1472-0.
4.	Big Data and Analytics, Seema Acharya and Subhashini C, 1st Edition, 2015, Wiley
	India Private Limited, ISBN 978-8126554782.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2			2	2	2		2	2		3	
CO2	2	2	2		3								
CO3			2									2	
CO4	1	2		3	2	2			2			2	

High-3: Medium-2: Low-1

	Semester: VI											
	WEB TECHNOLOGY											
	(Group D: Professional Elective)											
				(Common to CS & 1	IS)							
Cou	rse Code	:	18IS6D1		CIE Marks	:	100					
Credits: L:T:P		:	3:0:0		SEE Marks	:	100					
Total Hours : 39L SEE Duration : 3 Hrs							3 Hrs					
Cou	rse Learning	g Obj	ectives: The stu	idents will be able to								
1.	Understand	the s	standard structur	e of HTML/XHTML	and its differences.							
2.	Adapt HTM	/IL ar	nd CSS syntax &	semantics to build we	eb pages.							
3.	Learn the	defin	itions and synta	ax of different web p	programming tools	suc	h as JavaScript,					
	XML, Ajax, Angular JS and Node.js to design web pages.											
4.	Design and	d de	velop interactive	e, client-side, server-	side executable we	eb	applications using					
	different ted	chniq	ues such as CSS	S, JavaScript, XML, A	jax, Angular JS and	No	de.js.					

Unit-I 08Hrs

Introduction to Web, HTML and XHTML:

Fundamentals of Web, XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links, Lists, Tables, Forms, Frames.HTML 5: The audio Element; The video Element; Organization Elements; The time Element, Syntactic Differences between HTML and XHTML.

CSS (Cascading Style Sheet):Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

Unit – II 08Hrs

The Basics of JavaScript:

Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements.

JavaScript (continued):Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts.

Unit –III 08 Hrs

JavaScript and HTML Documents:

The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object.

Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements and Introduction to jQuery.

Unit –IV 08Hrs

Introduction to PHP:

Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling; Cookies; Session Tracking.

XML:Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets.

Unit –V 07 Hrs

Ajax: Overview of Ajax; History of Ajax; Ajax Technology; Implementing Ajax, Basics of Ajax: The Application; The Form Document; The Request Phase; The Response Document; The Receiver Phase; Cross-Browser Support.

Database Access through the web: Architectures for Database Access: Client Server Architecture; The Microsoft open Database Connectivity; PHP and Database Access; The Java JDBC Architecture; The MySQL Database System, Database Access with PHP and MySQL.

Course C	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the basic syntax and semantics of HTML/XHTML.									
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading									
	Style Sheet.									
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and									
	utilize the concepts of XML & Ajax to design dynamic web pages.									
CO4:	Develop web based applications using PHP, XML and Ajax.									

Refere	Reference Books									
1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education,									
1	2013, ISBN-13:978-0132665810.									
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India,									
2	2006, ISBN: 978-81-265-1290-4.									
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg,									
3	3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4									
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata									
4	McGraw Hill, 2003, ISBN: 978-0-07-222942-4.									
5	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education,									
3	2013, ISBN-13:978-0132665810.									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

High-3: Medium-2: Low-1

Semester: VI											
QUANTUM COMPUTING											
(Group D: Professional Elective)											
Course Code	:	18CS6D2		CIE Marks	:	100					
Credits: L:T:P	:	3:0:0		SEE Marks	:	100					
Total Hours	:	39L		SEE Duration	:	3 Hrs					

Cou	Course Learning Objectives: The students will be able to									
1.	Explain the basic concepts of quantum computation and its physics									
2.	Use various operators of quantum computation and work on quantum transformation									
3.	Illustrate the working of some standard quantum algorithms									
4.	Analyse the complexities involved in working of quantum algorithms									

Unit – I 8 Hrs

QUANTUM BUILDING BLOCKS: Quantum mechanics of Photon Polarization, Single Quantum bits, Single Qubit Measurement, A Quantum key Distribution Protocol, State Space of a Single-Qubit System, Direct Sums and Tensor Products of Vector Spaces, State Space of an n-Qubit System, Entangled States, Multi-Qubit Measurement, QKD using Entangled states

Unit – II 8 Hrs

MULTIPLE-QUBIT STATES MEASUREMENTS: Dirac's bra/ket Notation for Linear transformations, Projection operators, Hermitian OperatorFormalism, Bell's Theorem

Unit – III 8 Hrs

QUANTUM STATE TRANSFORMATIONS: Unitary transformations, Simple Quantum Gates, Pauli transformations, Hadamard Transformations, Multiple-Qubit Transformations, Controlled-NOT and other singly controlled gates, Applications of Simple Gates, Dense coding, Quantum teleportation

Unit – IV 8 Hrs

QUANTUM ALGORITHMS: Computing with Superpositions, Walsh-Hadamard transformation, Quantum Parallelism, Notions of Complexity, Query Complexity, Communication Complexity, Simple Quantum Algorithm

Unit – V 7 Hrs

SHOR'S AND GROVER'S ALGORITHM: Classical reduction to Period-Finding, Shor's factoring Algorithm, Example illustrating Shor's Algorithm, DLP and Hidden Subgroup Problems, Grover's Algorithm, Amplitude amplification

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Explain the various essentials of quantum computation, Qubits, and Quantum operators									
CO 2:	Analyse working of quantum transformations and quantum gates									
CO 3:	Describe principle of working of some of the standard quantum algorithms and their									
	applications									
CO 4:	Investigate the applications of quantum computing and quantum cryptography									

Text	Book:									
1.	Quantum Computing: A Gentle Introduction, Eleanor Rieffel and Wolfgang Polak, 2011,									
	The MIT Press, ISBN 9780262015066.									
Reference Books:										
1 <u>.</u>	An introduction to Quantum Computing, Phillip Kaye, Raymond Laflamme, Muchele									
	Mosca, Oxford University Press, 2007, ISBN-13: 978-0198570493, ISBN-10: 019857049X									
2.	Quantum Computing for Computer Scientists, 1st Edition, Noson S. Yanofsky and Mirco A.									
	Mannucci, Cambridge University Press, 2008, ISBN 978-0-521-879965.									
3.	Quantum Computing for Everyone, Chris Bernhardt, MIT Press, 2019, ISBN:									
	9780262039253									
4.	Mathematics of Quantum Computing: An Introduction, Wolfgang Scherer, Springer, 2019,									
	ISBN-10: 303012357X.									

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	-	2	-	-	-	-	-	-	-	-	-	-
CO4	-	2	1	1	2	-	-	-	2	-	-	-

High-3: Medium-2: Low-1

Semester: VI							
ARTIFICIAL NEURAL NETWORKS							
	(Group D: Professional Elective)						
Course Code	:	18CS6D3		CIE Marks	:	100	
Credits: L:T:P	:	3:0:0		SEE Marks	:	100	
Total Hours	:	39L		SEE Duration	:	3 Hrs	

Cou	Course Learning Objectives: The students will be able to							
1	Perceive the basic theory of ANN, applications and learning techniques							
2	Explain the working of perceptron, adaptive filters, and unconstrained optimization techniques							
2	Gain essential knowledge on back propagation algorithm with respect to multilayer perceptron,							
3	along with various related concepts							
4	Explore the significance of support vector machines in ANN							

UNIT-I 08 Hrs

ARTIFICIAL NEURAL NETWORKS INTRODUCTION AND LEARNING PROCESSES- I:What is a Neural Network? Human Brain, Models of a Neuron, Neural Networks Viewed as DG, Feedback, Network Architectures, Error-correction learning, Memory-based learning, Hebbian Learning, Competitive learning, Boltzmann Learning

UNIT-II 08 Hrs

LEARNING PROCESSES– II& STATSTICAL LEARNING THEORY: Learning with a teacher, Learning without a teacher, Learning tasks (includes Function approximation, Control, Filtering) Memory, Adaptation. Statistical Learning Theory: Model of the supervised learning process, VC dimension with examples, Probably approximately correct model of learning

UNIT-III 08 Hrs

SINGLE-LAYER PERCEPTRON: Adaptive filtering problem, Unconstrained optimization techniques: Steepest Descent, Newton's, Gauss-Newton; Linear Least-Squares Filter, Weiner Filter, LMS algorithm (includes Signal-Flow Graph Representations, Convergence Considerations), Learning curves, Learning rate annealing techniques, Perceptron and Convergence theorem

UNIT-IV 08 Hrs

MULTILAYER PERCEPTRON: Back Propagation algorithm, Two passes of computation, Sequential and Batch Modes of training, Stopping Criteria, XOR problem, Heuristics for BP algorithm to perform better, Output representation and Decision rule, Generalization, Universal approximation theorem, Curse of Dimensionality, Cross-validation (includes Early stopping method of training and Variants)

UNIT-V 07 Hrs

SUPPORT VECTOR MACHINES: Optimal hyperplane for linearly separable patterns, Optimal hyperplane for non-separable patterns, Building a support vector machine for pattern recognition, XOR Problem, SVM for nonlinear regression

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Describe basic concepts, theory of artificial neural network, applications and various							
001	learning models and techniques							
CO 2:	Analyze and applyArtificialNeural Network Architectures, learning tasks, adaptive filters,							
002.	and techniques for optimization							
CO 3:	Explore modelling aspects of BP algorithm, SVM, Generalization, and Cross-validation							
CO 4:	Investigate and apply neural networks model and learning techniques to solve problems							
	related to society and industry, and demonstrate a prototype application developed using any							
	NN tools and APIs							

Text	Books
-------------	--------------

1. Neural Networks – A Comprehensive Foundation, Simon Haykin, 2nd Edition, 2005, PHI. (Units I to III)

Reference Books

- 1. Introduction to Artificial Neural Networks, Gunjan Goswami, S.K. Kataria & Sons, 2012 Edition, ISBN-13: 978-9350142967.
- 2. Neural Networks Design, M T Hagan, H B Demoth, M Beale, Thomson Learning, Edition, 2009, ISBN-13: 978-0-9717321-1-7.
- 3. Fundamentals of Artificial Neural Networks, M H Hassoun, MIT Press, 2010, ISBN-13: 978-0262514675.
- 4. Principles of Artificial Neural Networks: Basic Designs To Deep Learning, Graupe Daniel, 4th Edition, 2019, World Scientific.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-P	О Мар	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	2	2	-	-	-	-	-	-	-	2	-	3
CO2	-	2	2	-	-	-	-	-	-	-	-	3
CO3	2	3	3	2	-	-	-	1	2	-	-	-
CO4	2	2	3	3	-	-	-	-	3	2	2	-

High-3: Medium-2: Low-1

Semester: VI							
PROBABILITY, STATISTICS AND QUEUING THEORY							
	(Group D: Professional Elective)						
Course Code	:	18CS6D4	C	CIE Marks	:	100	
Credits: L:T:P	:	3:0:0	S	EE Marks	:	100	
Total Hours	:	39L	S	EE Duration	:	3 Hrs	

Course Learning Objectives: The students will be able to

Understand the basics of Probability, Statistics and Queuing theory.

Evaluate probability bounds, basic statistical measures and demonstrate their significance.

Design and perform hypothesis tests and other evaluative tests.

Develop probability models for solving real world problems.

UNIT-I 08Hrs

Introduction of Probability and Random Variables: Axioms of probability, Conditional probability, Baye's theorem, Discrete Random variable and Continuous Random variable,pmf, pdf of some well-known distributions, Moment Generating Functions, Two-dimensional Random variables, Joint pmf and Joint pdf and their properties, Conditional distributions and conditional expectations, Covariance.

UNIT-II 09Hrs

Probability bounds, Approximations, Testing Hypothesis and Regression: Probability inequalities - Markov's inequality, Chernoff bounds, Jensen's inequality, Chebyshev's inequality, Bienayme's inequality, Schwartz inequality, Cauchy-Schwartz inequality, sampling theory, Confidence intervals and Testing Hypothesis (Mean σ known and σ unknown, Standard deviation), Simple linear regression, Multiple linear regression,-assumptions, estimation of coefficients, coefficient of determination and adjusted coefficient of determination.

UNIT-III 08Hrs

Random Processes: Classification, Methods of description, Special classes, Average values of Random Processes, Analytical representation of Random Process, Autocorrelation function, Cross-correlation function and their properties, Ergodicity, Poisson process, Counting processes, Inter-arrival and waiting time distributions, Markov Process, Markov chain.

UNIT-IV 07Hrs

Queuing Theory: Symbolic Representation of a Queuing Model, Poisson Queue system, Little Law, Types of Stochastic Processes, Birth-Death Process, The M/M/1 Queue, M/M/m Queue, M/M/m/B Queue with Finite Buffers.

UNIT-V 07Hrs

Random Number Generation: Desired Properties of a Good Generator, Linear-Congruential Generators, Tausworthe Generators, Extended Fibonacci Generators, Combined Generators, Testing Random Number Generators: Chi-Square Test, Kolmogorov-Smirnov.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1.	Identify basic tools of Probability and queuingin the fields where uncertainty and imprecision								
	are involved.								
CO2.	Apply random process, sampling theory, stochastic process and queuing models to the field of								
	computer science.								
CO3.	Apply probability models using modern tools of probability for synthesizing information to								
	use effectively.								
CO4.	Analyze and design probability models for various real world problems involving								
	randomness.								

Reference Books

1. Probability & Statistics with Reliability, Queuing and Computer Applications, Kishor S Trivedi, Eastern Economy Edition, 2nd Edition, 2008, Prentice Hall India, ISBN: 81-203-0508-6.

2.	Probability, Statistics and Random Processes, T Veerarajan, 3 rd Edition, 2008, Tata McGraw
	Hill Education Private Limited, ISBN:978-0-07-066925-3.
3.	Probability and Statistics for Computer Scientists, Michael Baron, 3 rd Edition, 2006, CRC Press,
	ISBN: 978-1138044487
4.	The Art of Computer Systems Performance Analysis, Raj Jain, 1st Edition, 2009, Wiley India
	Private Limited, ISBN:978-81265-1905-7.
5.	Probability and statistics for Engineers, Miller and Freund's, Richard .A. Johnson, C. B. Gupta,
	Second impression 2007, Pearson Education, ISBN: 978-0-12-051051-1.
6.	Introduction to Probability, Statistics and Random Processes, Kappa Research, Hossein Pishro-
	Nik. LLC. 2014. ISBN-978-0990637202

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	2	-	1	1	2	1	1
CO2	3	3	2	2	2	2	-	1	1	2	1	2
CO3	2	3	2	2	3	2	-	1	1	2	1	2
CO4	3	2	2	2	3	2	-	1	1	2	1	2

High-3: Medium-2: Low-1

	Semester: VI							
	ROBOTIC PROCESS AUTOMATION DESIGN & DEVELOPMENT							
			(Gro	up D: Professional 1	,			
				(Industry Offered	d)			
Cou	rse Code	:	18CS6D5		CIE Marks		100	
Credits: L:T:P		:	3:0:0		SEE Marks		100	
Total Hours		:	39L		SEE Duration		3 Hrs	
Cou	rse Learning	Obj	ectives: The stu	dents will be able to				
1.	1. To understand Basic Programming concepts and the underlying logic/structure							
2.	2. To Describe RPA, where it can be applied and how its implemented							
3.	3. To Describe the different types of variables, Control Flow and data manipulation techniques							
4.	4. To Describe automation to Email and various types of Exceptions and strategies to handle							

Unit – I 8 Hrs

PROGRAMMING BASICS &RECAP:Programming Concepts Basics - Understanding the application - Basic Web Concepts - Protocols - Email Clients -. Data Structures - Data Tables - Algorithms - Software Processes - Software Design - Scripting - .Net Framework - .Net Fundamentals - XML - Control structures and functions - XML - HTML - CSS - Variables & Arguments.

Unit – II 8 Hrs

RPA Concepts: RPA Basics - History of Automation - What is RPA - RPA vs Automation - Processes & Flowcharts - Programming Constructs in RPA - What Processes can be Automated - Types of Bots - Workloads which can be automated - RPA Advanced Concepts - Standardization of processes - RPA Development methodologies - Difference from SDLC - Robotic control flow architecture - RPA business case - RPA Team - Process Design Document/Solution Design Document - Industries best suited for RPA - Risks & Challenges with RPA - RPA and emerging ecosystem.

Unit – III 8 Hrs

RPA TOOL INTRODUCTION & BASICS:Introduction to RPA Tool - The User Interface - Variables - Managing Variables - Naming Best Practices - The Variables Panel - Generic Value Variables - Text Variables - True or False Variables - Number Variables - Array Variables - Date and Time Variables - Data Table Variables - Managing Arguments - Naming Best Practices - The Arguments Panel - Using Arguments - About Imported Namespaces - Importing New Namespaces-Control Flow - Control Flow Introduction - If Else Statements - Loops - Advanced Control Flow - Sequences - Flowcharts - About Control Flow - Control Flow Activities - The Assign Activity - The Delay Activity - The Do While Activity - The If Activity - The Switch Activity - The While Activity - The For Each Activity - The Break Activity - Data Manipulation - Data Manipulation Introduction - Scalar variables, collections and Tables - Text Manipulation - Data Manipulation - Gathering and Assembling Data

Unit – IV 8 Hrs

ADVANCED AUTOMATION CONCEPTS AND TECHNIQUES:

Recording and Advanced UI Interaction - Recording Introduction - Basic and Desktop Recording - Web Recording - Input/output Methods - Screen Scraping - Data Scraping - Scraping advanced techniques - Selectors - Selectors - Defining and Assessing Selectors - Customization - Debugging - Dynamic Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix Automation - Introduction to Image & Text Automation - Image based automation - Keyboard based automation - Information Retrieval - Advanced Citrix Automation challenges - Best Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA - Excel and Data Table basics - Data Manipulation in excel - Extracting Data from PDF - Extracting a single piece of data - Anchors - Using anchors in PDF

Unit – V	7 Hrs

EMAIL AUTOMATION & EXCEPTIONAL: Email Automation - Email Automation - Incoming Email automation - Sending Email , automation - Debugging and Exception Handling - Debugging Tools - Strategies for solving issues - Catching errors.

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Understand RPA principles, its features and applications.							
CO 2:	Demonstrate proficiency in handling several types of variables inside a workflow and data							
	manipulation techniques							
CO 3:	Gain insights into Desktop, Web, Citrix, Email Automation and exception handling.							
CO 4:	Analyze and design a real-world automation project and debug the workflows.							

Referen	nce Books:
1.	Learning Robotic Process Automation, Alok Mani Tripathi, March 2018, Packt Publishing, Release ISBN: 9781788470940
2.	Introduction to Robotic Process Automation: a Primer, Frank Casale, Rebecca Dilla, Heidi Jaynes, Lauren Livingston, Institute of Robotic Process Automation.
3.	Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant, Richard Murdoch.
4.	Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation, Srikanth Merianda
5.	https://www.uipath.com/rpa/robotic-process-automation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	1	1	3	2	-	-	-	1	-	-	
CO2	2	1	1	1	3	2	-	-	-	-	-	-	
CO3	2	3	3	3	3	3	2	-	2	-	2	2	
CO4	2	3	3	3	3	3	2	-	3	2	2	2	

High-3: Medium-2: Low-1

	Semester: VI											
	AIRCRAFT SYSTEMS											
	(GROUP E: GLOBAL ELECTIVE)											
				(Theory)								
Cou	rse Code	:	18G6E01		CIE	••	100 Marks					
Cred	Credits: L:T:P		3:0:0		SEE		100 Marks					
Hou	rs	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning O	bje	ectives: To ena	ble the students to:								
1	List the variou	ıs s	ystems involve	d in the design of an aircraft								
2	Demonstrate t	he 1	technical attrib	utes of all the subsystems of a	an aircraft							
3	Explain the sig	gnif	ficance of each	systems and its subsystems f	or developing ar	ı ai	rplane					
4	Demonstrate t	he i	integration of t	he systems with the airplane								

-	
Unit-I	07Hrs
Flight Control Systems: Primary and secondary flight controls, Flight control linkage	e system,
Conventional Systems, Power assisted and fully powered flight controls.	
Unit – II	10Hrs
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	Vorking or
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Us	e of bleed
air, Landing gear and braking, Shock absorbers-Retraction mechanism.	
Unit -III	08Hrs
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its co	mponents,
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.	-
Unit -IV	07Hrs
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-
icing system, Fire detection- warning and suppression. Crew escape aids.	
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and	l a typical
lubricating system.	
Unit -V	07Hrs

Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments.

Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.

Course	Course Outcomes:								
At the	At the end of this course the student will be able to:								
CO1:	Categorise the various systems required for designing a complete airplane								
CO2:	Comprehend the complexities involved during development of flight vehicles.								
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle								
CO4:	Demonstrate the different integration techniques involved in the design of an air vehicle								

Ref	ference Books
1	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A.,3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

High-3: Medium-2: Low-1

	Semester: VI											
	BIO INSPIRED ENGINEERING											
(GROUP E: GLOBAL ELECTIVE) (Theory)												
Course Code : 18G6E02 CIE : 100 Marks												
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39 L		SEE Duration : 3.00							
Cou	rse Learning ()bj	ectives: The studen	nts will be able to								
1	To familiarize	e er	ngineering students	with basic biologica	l concepts							
2	Utilize the si	mil	larities noted in na	ture for a particular	problem to bring i	nsp	iration to the					
	designer.											
3	Explain appli	cat	ions such as smart	structures, self-heali	ing materials, and ro	bot	ics relative to					
	their biologic	al a	ınalogs									
4	To gain an u	nde	rstanding that the c	lesign principles from	m nature can be tran	ıslat	ed into novel					
	devices and s	truc	ctures.									

Unit-I 08 Hrs

Introduction to biological systems: General and Special biomolecules, Plant, animal and microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural networks, Neuron models—Signal encoding architecture, Synaptic plasticity—Supervised, unsupervised and reinforcement learning, Evolution of artificial neural networks—Hybrid neural systems with case study Harvesting Desert Fog.

Unit – II 08 Hrs

Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and physical functions of biological composites of engineering – related case study: Camera from eyes, clothing designs and hooks from Velcro Criteria for future materials design and processing. Computation Cellular systems: Cellular automata – modelling with cellular systems with cellular systems – artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.

Unit –III 08 Hrs

Engineering of synthetic organs: Growth, development and principle of artificial skins, hearing aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pacemaker, Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Application of Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods

Unit –IV 07 Hrs

Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequivalence, Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, Issues on Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar Products, Challenges involved in Biosimilars.

Unit –V 08 Hrs

Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural systems, learning in behavioural systems – co evolution of body and control. Behaviour in cognitive science and artificial intelligence. Biological inspiration for robots, Robots as biological models and robotics behaviour, Application of sleek scale of shark skin.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Remember and explain the concepts of biological and physiological processes									
CO2:	Elucidate the basic principles for design and development of biological systems.									
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems									

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Refere	ence Books
	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C.
1	Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714,
	9781420037715.
2	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI
2	Global, 2016. ISBN: 1466698128, 9781466698123.
2	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN:
3	1606502255, 9781606502259.
4	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature -
4	Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	-	-	1	3	2	-	1	1	1	-	
CO2	3	3	2	3	2	-	1	2	-	1	2	-	
CO3	2	2	2	3	3	3	2	2	-	1	2	2	
CO4	2	2	3	3	2	-	1	2	1	-	-	-	

High-3: Medium-2: Low-1

	Semester: VI								
	SUSTAINABLE TECHNOLOGY (GROUP E: GLOBAL ELECTIVE)								
				(Theory)					
Course Code : 18G6E03 CIE : 100 Mark						100 Marks			
Credits: L:T:P		:	3:0:0		SEE		100 Marks		
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bje	ectives: The student	s will be able to					
1	1 Understand the fundamental concepts related to interaction of industrial and ecological systems.								
2	2 Understand the basic concepts of life cycle assessment.								
3									
4									

Unit-I	08 Hrs
Introduction to sustainability:	
Introduction to Sustainability Concepts and Life Cycle Analysis, Material flow as	nd waste
management, Chemicals and Health Effects, Character of Environmental Problems	
Unit – II	07 Hrs
Environmental Data Collection and LCA Methodology:	
Environmental Data Collection Issues, Statistical Analysis of Environmental Data,	Common
Analytical Instruments, Overview of LCA Methodology. – Goal, Definition.	
Unit –III	08 Hrs
Life Cycle Aggeggment	

Life Cycle Assessment:

Life Cycle Impact Assessment, Life Cycle Interpretation, LCA Benefits and Drawbacks.

Wet Biomass Gasifiers:

Introduction, Classification of feedstock for biogas generation, Biomass conversion technologies: Photosynthesis, Biogas generation, Factors affecting bio-digestion, Classification of biogas plants, Floating drum plant and fixed dome plant their advantages and disadvantages.

> Unit -IV 08 Hrs

Design for Sustainability:

Green Sustainable Materials, Environmental Design for Sustainability.

Dry Biomass Gasifiers:

Biomass energy conversion routes, Thermal gasification of biomass, Classification of gasifiers, Fixed bed systems:

Unit -V 08 Hrs

Case Studies:

Odor Removal for Organics Treatment Plant, Bio-methanation, Bioethanol production. Bio fuel from water hyacinth.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the sustainability challenges facing the current generation, and systems-based							
	approaches required to create sustainable solutions for society.							
CO2:	Identify problems in sustainability and formulate appropriate solutions based on scientific							
	research, applied science, social and economic issues.							
CO3:	Apply scientific method to a systems-based, trans-disciplinary approach to sustainability							
CO4:	Formulate appropriate solutions based on scientific research, applied science, social and							
	economic issues.							

Refere	nce Books									
1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge
1	University P	ress, ISBN - 9	9781108333	726.						

2	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked, Alexandre Jolliet, Pierre Crettaz, 1 st Edition, CRC Press, ISBN: 9781439887660.							
3	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy, Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938							

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

Semester: VI								
	GRAPH THEORY							
		(GROUP E: GI	LOBAL ELECTIVE)					
		(7)	Theory)					
Course Code	:	18G6E04	CIE Marks	:	100 Marks			
Credits: L:T:P	:	3:0:0	SEE Marks	:	100 Marks			
Total Hours	:	39L	SEE Duration	:	3.00 Hours			

Cou	Course Learning Objectives: The students will be able to						
1	Understand the basics of graph theory and their various properties.						
2	Model problems using graphs and to solve these problems algorithmically.						
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.						
4	Optimize the solutions to real problems like transport problems etc.,						

UNIT-I	07 Hrs
U1111-1	0/1115

Introduction to graph theory

Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.

Basic concepts in graph theory

Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs.

UNIT-II 09 Hrs

Graph representations, Trees, Forests

Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees.

UNIT-III 09 Hrs

Fundamental properties of graphs and digraphs

Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.

Planar graphs, Connectivity and Flows

Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.

UNIT-IV 07 Hrs

Matchings and Factors

Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.

Coloring of graphs

The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs

UNIT-V 07Hrs

Graph algorithms

Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.

Course Outcomes: After completing the course, the students will be able to						
CO1.	Understand and explore the basics of graph theory.					
CO2.	Analyse the significance of graph theory in different engineering disciplines					
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.					
CO4.	Evaluate or synthesize any real world applications using graph theory.					

Refe	erence Books
1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3 rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	-	-	-	-	-	-	1	1	-	-	
CO2	2	3	2	1	-	-	-	-	2	2	-	1	
CO3	2	2	3	2	-	-	-	-	2	2	-	1	
CO4	2	2	3	2	-	1	-	-	2	2	-	1	

High-3: Medium-2: Low-1

	Semester: VI DISASTER MANAGEMENT (GROUP E: GLOBAL ELECTIVE)										
				(Theory)							
Cot	ırse Code	:	18G6E05		CIE	:	100 Marks				
Cre	edits: L:T:P	:	3:0:0		SEE		100 Marks				
Tot	al Hours	:	39L		SEE Duration		3.00 Hours				
Cot	rse Learning	Ob	jectives: The studen	its will be able to							
1	Study the envi	iror	mental impact of na	ntural and manmade c	alamities						
2	Learn to analy	ze	and assess risk invo	lved due to disasters.							
3	·										
4	Learn the man	age	ement tools and miti	gation techniques.							

Unit-I	08 Hrs

Natural disasters and Disaster management

Introduction to natural and Industrial Hazards- floods, landslides, earthquakes, volcanoes, avalanche, cyclones, drought, fire, release of effluents, harmful gases, Blast etc. Prediction and perception.

Environmental risk due to project activities. Preparation of on-site and off-site disaster management plans - Pre disaster, actual disaster, Post disaster plans. Relief camp organization. Role of voluntary organization and armed forces during disasters.

Unit – II 07 Hrs

Risk analysis and assessment

Basic concept. Purpose of risk analysis. Analytical techniques and tools of risk assessment. Toxicology. Significance of risk. Risk characterization. Risk communication and Management, AI in emergency responses.

Unit –III 08 Hrs

Environmental Impact Assessment (EIA)

Definition, Basic concepts and principles of EIA. Regulatory framework in India. Environmental inventory. Base line studies. Over view of EIA studies.

Unit –IV 08 Hrs

Assessment and Methodologies

Physical, Biological, Natural resources, Socio economic and cultural environmental assessment. EIA methodologies- Adhoc, Matrix, Checklist approaches. Economic evaluation of impacts- cost benefits of EIA. Public participation in environmental decision making. Procedures for reviewing EIA analysis and statement. Decision methods for evaluation of alternatives.

Unit -V 08 Hrs

Disaster Mitigation and Management

Introduction, types, modes of disaster management, tools and techniques, primary and secondary data. Natural disasters its causes and remedies-Earthquake hazards-Causes and remedies, Flood and Drought assessment, causes and remedies, Landslides-causes and remedies. Fire hazards in buildings, Fire hazard management, Traffic management, Cyclones and hurricanes, inter department cooperation. Regional and global disaster mitigation.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Explain the different types of disasters and manage the pre and post disaster situation.									
CO2:	Estimate and communicate the risk by conducting the risk assessment and Environmental									
	Impact Assessment									
CO3:	Identify the methods of disaster mitigation based on the basis of the risk assessment.									

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	rence Books										
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013,										
1	ISBN: 978-0070512177.										
	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew										
2	Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing										
	House, New Delhi.										
2	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance										
3	Publishing House, New Delhi,										
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition,										
4	2002, John Wiley, ISBN:9780470052457.										

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	1	1	-	-	1	1	-	-	-	-	-	
CO2	-	2	1	-	-	2	1	1	-	-	-	-	
CO3	-	2	1	-	-	2	1	3	-	-	-	-	
CO4	-	1	1	-	-	3	2	1	-	-	-	-	

High-3: Medium-2: Low-1

				Semester: VI								
	WEARABLE ELECTRONICS											
			(GRO	OUP E: GLOBAL ELECTIV	/E)							
				(Theory)								
Cou	rse Code	:	18G6E06		CIE		100 Marks					
Cred	dits: L:T:P	:	3:0:0	S	SEE		100 Marks					
Tota	l Hours	:	39L	S	SEE Duration		3.00 Hours					
Cou	rse Learning (Эbj	ectives: The st	udents will be able to								
1	Explain the ty	pes	and application	on of wearable sensor.								
2	Describe the	woı	king of sensitiv	vity, conductivity and energy gen	neration in wear	abl	e devices.					
3	Explain the v	aric	ous facets of we	earable application, advantage &	challenges.							
4	Understand d	iffe	rent testing and	l calibration in wearable devices.								

Unit-I	08 Hrs
--------	--------

Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of Big Data, The Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes of Wearables, Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications of Wearables. [Ref 1: Chapter 1.1]

Unit – II 08 Hrs

Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III 07 Hrs

Smart Textile: Conductive fibres for electronic textiles: an overview, Types of conductive fibre, Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive polymer yarn, Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case studies, Hands on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &. [Ref 3: Chapter 6,9]

Unit –IV 08 Hrs

Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradient, Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ultra-Low Input Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Transmission, Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]

Unit –V 08 Hrs

Wearable antennas for communication systems: Introduction, Background of textile antennas, Design rules for embroidered antennas, Integration of embroidered textile surfaces onto polymer substrates, Characterizations of embroidered conductive, textiles at radio frequencies, RF performance of embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna									
CO2:	Analysis measurable quantity and working of wearable electronic devices.									
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges									
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem									
	statement.									

Refer	ence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
1	Neuman Academic Press, 1st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
4	1 st Edition, ISBN-13: 978-0081002018.
3	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
4	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
5	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

High-3: Medium-2: Low-1

	Semester: VI							
	ENERGY AUDITING AND MANAGEMENT							
	(GROUP E: GLOBAL ELECTIVE)							
				(Theory)				
Co	ourse Code	:	18G6E07		CIE			
Cı	edits: L:T:P	:	3:0:0		SEE	:	100 Marks	
To	Total Hours		39L	SEE Duration			3.00 Hours	
Co	ourse Learning	g O	bjectives: The stud	ents will be able to				
1	Understand th	ne n	need for energy audi	t, energy managemen	nt and the concepts	of b	oth.	
2	2 Explain Processes for energy audit of electrical systems.							
3	3 Design and develop processes for energy audit of mechanical systems.							
4	Prepare the fo	orm	at for energy audit of	of buildings and light	ting systems.			

Unit-I 06 Hrs

Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training.

Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Speed Measurement, Data Logger and Data Acquisition System,

Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of Power Plants, Energy Audit of Power Plant.

Unit – II 10 Hrs

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III 10 Hrs

Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of excess Air in Boiler Efficiency, Energy Saving Methods.

Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency

Energy Audit of Steam-Distribution Systems: S team as Heating Fluid, Steam Basics, Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy Conservation Methods

Unit –IV 07 Hrs

Compressed Air System: Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System.

Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Conditioning Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cycle, Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Saving Measures in HVAC, Star Rating and Labelling by BEE.

Unit -V 06 Hrs

Energy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities.

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments						
	needed.						
CO2:	Design and perform the energy audit process for electrical systems.						
CO3:	Design and perform the energy audit process for mechanical systems						
CO4:	Propose energy management scheme for a building						

Refe	Reference Books					
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348					
2	Energy management handbook, Wayne C Turner and Steve Doty, 6 th Edition, 2015, CRC Press, ISBN: 0-88173-542-6					
3	Energy management, Sanjeev Singh and Umesh Rathore, 1st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014					
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press ISBN: 9781439828717					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

High-3: Medium-2: Low-1

	Semester: VI							
	VIRTUAL INSTRUMENTATION & APPLICATIONS							
	(GROUP E: GLOBAL ELECTIVE)							
				(Theory)				
Course Code		:	18G6E08	CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Tota	l Hours	:	39L	SEE Duration	:	3.00 Hours		
Cou	rse Learnin	g O	bjectives: Th	e students will be able to				
1	Understand	ling	the difference	e between conventional and graphical programmin	g			
2	Differentiating the real time and virtual instrument.							
3	3 Analyzing the basics of data acquisition and learning the concepts of data acquisition with							
	LabVIEW							
4	Developing a real time application using myRIO and myDAQ programming concepts.							

Unit-I	07 Hrs
()IIIL-I	1 0 / 111 5

Basic of Virtual Instrumentation, Introduction to Lab VIEW, Components of LabVIEW and Labels., Controller, Indicators data types, wiring tool, debugging tools, Creating Sub-Vis, Boolean, - Mechanical action- switch, and latch actions, Enum, Text, Ring, Type Def, Strict Type Def.

Unit – II 09 Hrs

For Loop, While Loop, Shift registers, stack shift register, feedback node, and tunnel, elapsed time, wait function, Case structures, formula node, Sequence structures, Local and Global variables.

Unit –III 09 Hrs

Arrays and clusters, Visual display types- graphs, charts, XY graph, Introduction to String Functions, LabVIEW String Functions, Typical examples, File Formats, File I/O Functions, File operation

Unit –IV 07 Hrs

Design Pattern- Producer-Consumer Model, Event Structure Model, Master-Slave Model, State Machine Model, Synchronization using Semaphore, Introduction to DAQ System, Measurement and Automation Explorer, DAQ Assistants, Analysis Assistants, Instrument Assistant, Real time application using myDAQ Configured it as Virtual labs, Counters, Low level Lab-VIEW Program,

Unit –V 07 Hrs

Signal Processing Application-Fourier transforms, Power spectrum, Correlation methods, windowing & flittering, Real time application using myRIO, Communication protocol (SPI, I2C, UART) for Embedded Applications, Configure myRIO for speed control of DC Motor using encoder, Keypad application, LCD, IR Sensor, , and onboard sensors. Development of control system, Image acquisition and processing

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.						
CO2:	Apply the theoretical concepts to realize practical systems.						
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.						
CO4:	Create a VI system to solve real time problems using data acquisition.						

Refere	Reference Books								
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning								
1	Pvt.Ltd , ISBN: 978-8120340305								

	2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017,
		Tata McGraw Hill Publisher Ltd, ISBN: 978-0070700284
	2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN:
	3	978-013185672
	4	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4th Edition , 2017,
	4	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	-	-	1	1	-	1
CO2	1	3	2	1	2	-	-	-	1	1	-	1
CO3	2	2	3	3	3	-	-	-	1	1	-	2
CO4	1	2	2	3	3	1	0	2	3	2	1	2

High-3: Medium-2: Low-1

	Semester: VI						
	SYSTEMS ENGINEERING						
			(GROUP F	E: GLOBAL ELI	ECTIVE)		
		1	Г	(Theory)	Τ	1	T = = =
Cour	rse Code	:	18G6E09		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	ration : 3.00 Hour	
Cour	rse Learning O	bje	ectives:				
1.	Understand th	e L	ife Cycle of System	s.			
2.	Explain the ro	le o	of Stake holders and	their needs in org	anizational systen	ns.	
3.	3. Develop and Document the knowledge base for effective systems engineering processes.						
4.	4. Apply available tools, methods and technologies to support complex high technology systems.						
5.	Create the frameworks for quality processes to ensure high reliability of systems.						

UNIT-I 06 Hrs

System Engineering and the World of Modem System: What is System Engineering?, Origins of System Engineering, Examples of Systems Requiring Systems Engineering, System Engineering viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.

Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions.

The System Development Process: Systems Engineering through the system Life Cycle, Evolutionary Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II 10 Hrs

Systems Engineering Management: Managing systems development and risks, Work breakdown structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization of Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineering standards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III 10 Hrs

Concept Definition: Selecting the system concept, Performance requirements analysis, Functional analysis and formulation, Concept selection, Concept validation, System Development planning, System Functional Specifications, problems

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV 07 Hrs

Engineering Design: Implementing the System Building blocks, requirements analysis, Functional analysis and design, Component design, Design validation, Configuration Management, problems.

Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and preparation, System integration, Developmental system testing, Operational test and evaluation, problems.

UNIT – V 06 Hrs

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the Life Cycle of Systems.					
CO2:	Explain the role of Stake holders and their needs in organizational systems.					
CO3:	Develop and Document the knowledge base for effective systems engineering processes.					
CO4:	Apply available tools, methods and technologies to support complex high technology systems.					
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.					

Ref	erence Books:
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO							PO12					
CO1	1	-	-	-	-	1	-	-	-	-	-	1
CO2	-	2	3	-	1	-	-	1	-	-	2	-
CO3	-	3	-	-	-	2	2	1	-	3	2	-
CO4	-	-	2	1	-	-	-	-	-	-	-	-
CO5	1	1	-	2	-	1	2	-	3	-	-	-

High-3: Medium-2: Low-1

	IN	TR	CODUCTION TO MOBIL (GROUP E: G	mester: VI LE APPLICATION I LOBAL ELECTIV Theory)		ΙΤ	
Course	e Code	:	18G6E10		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE		100 Marks
Total Hours			39L		SEE Duration	:	3.00 Hours
Course	e Learning Ol	ojeo	tives: The students will be	able to			
1	Comprehend	l the	e knowledge on essentials of	of android application	development.		
2	Demonstrate	the	basic and advanced featur	es of android technolo	ogy.		
3	Develop the skills in designing and building mobile applications using android platform.						
4	Create. debug and publish innovative mobile applications using android Platform.						
5	Comprehend	the	knowledge on essentials of	of android application	development.		

Unit-I 08 H	rs
-------------	----

Introduction:

Smart phone operating systems and smart phones applications. Introduction to Android, Installing Android Studio, creating an Android app project, deploying the app to the emulator and a device. UI Design: Building a layout with UI elements, Layouts, Views and Resources, Text and Scrolling Views.

Activities and Intents, The Activity Lifecycle, Managing State, Activities and Implicit Intents, Testing, debugging, and using support libraries, The Android Studio Debugger, Testing android app, The Android Support Library.

Unit – II 08 Hrs

User experience:

User interaction, User Input Controls, Menus, Screen Navigation, Recycler View, Delightful user experience, Drawables, Styles, and Themes, Material Design, Providing Resources for Adaptive Layouts, Testing app UI, Testing the User Interface

Unit –III 08 Hrs

Working in the background:

Background Tasks, AsyncTask and Async Task Loader, Connect to the Internet, Broadcast Receivers, and Services. Triggering, scheduling and optimizing background tasks – Notifications, Scheduling Alarms, and Transferring Data Efficiently

Unit –IV 08 Hrs

All about data:

Preferences and Settings, Storing Data, Shared Preferences, App Settings. Storing data using SQLite - SQLite Primer, SQLite Database. Sharing data with content providers. Loading data using loaders.

Using Selection Widgets and Debugging, Displaying and Fetching Information, Using Dialogs and Fragments, Advanced Android Programming: Internet, Entertainment, and Services, Implementing drawing and animations. Displaying web pages and maps, communicating with SMS and emails. Creating and consuming services - Location based services, Sensors.

Unit –V 07 Hrs

Hardware Support & devices:

Permissions and Libraries, Performance and Security. Firebase and AdMob, Publish and Polish, Multiple Form Factors, Using Google Services.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the basic features of android platform and the application development process.
	Acquire familiarity with basic building blocks of Android application and its architecture.
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating
	Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting
	tools.
CO4:	Create innovative applications, understand the economics and features of the app marketplace by
	offering the applications for download.

Refere	ence Books
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,
1	2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
2	Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1st Edition,
4	2012, ISBN-13: 9788126525898
_	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1 st Edition, 2011, ISBN-13:
5	978-1-4302-3297-1
6	Android Developer Training - https://developers.google.com/training/android/
	Android Testing Support Library - https://google.github.io/android-testing-support-library/

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	3	-	-	-	-	-	-	2
CO2	3	-	-	-	3	-	-	-	-	-	1	2
CO3	-	3	3	-	3	_	1	-	-	2	1	3
CO4	3	3	3	1	3	2	1	2	2	1	1	3

High-3: Medium-2: Low-1

	Semester: VI								
	INDUSTRIAL AUTOMATION								
			•	OBAL ELECTIVE)					
		,	(TH	OERY)					
Cou	rse Code	:	18G6E11	CIE	:	100 Marks			
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks			
Tota	Total Hours : 39 L SEE Duration : 3.00 Hours								
Cou	rse Learning (Obje	ectives: The students will	be able to					
1	Identify the v	ario	ous types of Actuators, sen	sors and switching devices u	sed ii	n industrial			
	automation.								
2	Understand the fundamentals of CNC, PLC and Industrial robots.								
3	3 Describe the functions of hardware components for automation								
4	Prepare simple manual part programs for CNC and Ladder logic for PLC.								
5	Demonstrate	the	ability to develop suitable	industrial automation systen	ıs usi	ng all the concepts			

Unit-I	06 Hrs
Unit-I	06 Hr

Overview of Automation in Industry

Basic kinds of Industrial type equipment, automation and process control, mechanization vs automation, continuous and discrete control, basic elements of an automated system, advanced automation functions, levels of automation, basic automation circuits.

Unit-II 10 Hrs

Sensors and Industrial Switching elements.

Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature sensors, Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders, Relays, Solenoids, moving part logic elements, fluidic elements, timers, comparisons between switching elements.

Industrial Automation Synthesis

Introductory principles, basic automation examples, meaning of the electrical and mechanical latch, automation circuits with sensors, design regulations and implementation.

Unit-III 10 Hrs

Logical Design of Automation Circuits

Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sensors, step by step transition due to discrete successive signal, state diagram with time relays, components state diagram method, state diagrams and minimum realisations, sequential automation systems, Applications – Bi directional lead screw movable worktable with two speeds, Palindromic movement of a worktable with memory.

Elements of electro pneumatic actuation

Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneumatic and electrical switching devices, Indirect control of double acting cylinders, memory control circuit, cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Separating similar balls, Stamping device.

Unit-IV 06 Hrs

Numerical Control and Robotics

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 1	Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection					
	technologies in industrial automation.					
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and					
	identify its application areas.					
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning					
	centres interfaced with Robots.					
CO4:	Develop a suitable industrial automated system integrating all of the above advanced					
	automation concepts					

Refere	Reference Books						
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0						
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st Edition, 2011, ISBN -13-978-8126529889.						
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.						
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4 th Edition, 2013, ISBN-13: 978-0-07-351088-0						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PO12	
CO1	-	2	2	-	3	1	-	-	-	1	-	1	
CO2	2	2	3	2	2	-	-	-	1	2	-	1	
CO3	2	2	3	3	2	-	-	-	-	2	-	-	
CO4	3	3	3	2	2	-	-	-	-	2	-	1	

High-3: Medium-2: Low-1

	Semester: VI									
	MOBILE NETWORK SYSTEM AND STANDARDS									
			(GI	ROUP E: GLOBAL ELECT	TIVE)					
			ı	(Theory)						
Cou	rse Code	:	18G6E12	CIE		:	100 Marks			
Cred	dits: L:T:P	:	3:0:0	SEF	E	:	100 Marks			
Hrs/	Week	:	40L	SEI	E Duration	:	3.00 Hrs			
Cou	rse Learning	Ol	ojectives: The	students will be able to						
1	Understand	the	e essential prin	ciples of cellular communic	cation and factors tl	hat	might degrade			
	the perform	anc	e.							
2	Describe the	e se	cond-Generati	on pan-European digital mob	oile cellular commu	nic	ation standards.			
3	3 Analyze the 3G cellular technologies including GPRS and UMTS.									
4	Compare the	e ex	kisting and fut	are trends in Wireless techno	logies.					

Unit-I	07 Hrs

Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, Frequency Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, Frequency Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference Reduction Methods.

Unit – II 08 Hrs

Basic Cellular system: Consideration of components of a cellular system- A basic cellular system connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular system, Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of FDMA and TDMA systems.

Unit –III 09 Hrs

Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers used in GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedure, GSM Hand-off Procedures.

IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.

Unit –IV 08 Hrs

3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architecture, GPRS signalling, Mobility Management in GPRS.

UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specifications, UMTS Channels.

Unit –V 08 Hrs

Wireless Personal Area Networks: Network architecture, components, Bluetooth, Zigbee, Applications. Wireless Local Area networks: Network Architecture, Standards, Applications.

Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN Network architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1 Describe the concepts and terminologies for Cellular Communication.									
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.								
CO3	Compare the performance features of 2G and 3G Cellular Technologies.								
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.								

Refere	ence Books							
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education							
1	Private Limited, ISBN: 978-0-07-068178-1.							
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,							
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.							
3	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education,							
3	ISBN-13:978-0-19-806066-6.							
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,							
4	Pearson, ISBN 97881-317-3186-4.							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	-	-	2	-	-	-		-	-			
CO2	3	2	3	-	2	-	-	-	2	-	-			
CO3	3	3	-	2	2	-	-	-	2	-	-	3		
CO4	3	2	2	-	2	-	-	-	2	-	-	3		

High-3: Medium-2: Low-1

	Semester: VI									
	THIN FILM NANO DEVICE FABRICATION TECHNOLOGY									
	(GROUP E: GLOBAL ELECTIVE) (Theory)									
Cou	rse Code	:	18G6E13		CIE	:	100 Marks			
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours			
Cour	rse Learning C)bje	ectives: The students	s will be able to						
1	Basic understa	and	ing of vacuum and r	elated technology						
2	Knowledge of	gre	owth, optimization a	and characterization o	of thin films and nan	ostrı	uctures			
3	3 Design appropriate growth technique for desired application									
4	Fabricate and	Eva	aluate thin film nanc	devices for advance	d applications					

Unit-I	08 Hrs
--------	--------

Vacuum Technology:

Introduction (KTG, classification of Vacuum), Gas transport and pumping, Q-rate calculation, Basics of Vacuum - Principles of different vacuum pumps: Rotary, Roots, Diffusion, Turbo molecular, and Cryogenic pumps, getter pumps (NEG), sublimation pump (TSP); differential pumping, Measurement of vacuum - Concept of Capacitance Manometer, Pirani and Penning gauges.

Unit – II 08 Hrs

Substrate Surfaces& Thin Film Nucleation:

Atomic view of substrate surfaces, Thermodynamic aspects of nucleation, Kinetic processes in nucleation and growth, experimental studies of nucleation and growth (Brief)

Defects in Thin Films:

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

Unit –III 08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV 07 Hrs

Characterization Techniques

Surface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction (SXRD), **Vacancy type defects and interfacial surface chemistry**: Positron Annihilation Lifetime Spectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, **line defects**, **grain boundary studies**: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)

Unit -V 08 Hrs

Silicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solar cells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous (a-Si) silicon

Thin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triple junction solar cell - Cell configuration – techniques used for the deposition of each layer- cell characteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1: Choose the right choice of material for the desired application							
CO2:	Improve the desired nanostructures and their properties						
CO3:	Fabricate appropriate Nanodevices						
CO4:	Optimize the nanodevice fabrication process for repeatability.						

Refer	rence Books
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-
1	0030839931
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1 st Edition, 2010, ISBN 9781420076745.
	Microfabrication for Industrial Applications, Regina Luttge, 1st Edition, William Andrew, 2011,
3	ISBN: 9780815515821.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1											PO12		
CO1	2	2	1	-	-	-	-	-	-		-	2	
CO2	3	2	2	2	-	-	-	-	-		-	2	
CO3	2	3	3	2	2	1	1	1	-	1	-	2	
CO4	2	3	3	2	2	2	2	2	2	2	-	2	

High-3: Medium-2: Low-1

	Semester: VI									
	CHEMISTRY OF ADVANCED ENERGY STORAGE DEVICES FOR E-MOBILITY									
			(GROU	P E: GLOBAL ELE	CTIVE)					
				(Theory)						
Cou	rse Code	••	18G6E14		CIE	:	100 Marks			
Cred	Credits: L:T:P		3:0:0		SEE	:	100 Marks			
Tota	l Hours	••	39L		SEE Duration	:	3.00 Hours			
Cou	rse Learning O	bje	ectives: The student	s will be able to						
1	Understand th	e b	asic concepts of adv	anced storage device	S.					
2	Apply the bas	ic c	oncepts of storage d	levices for E-mobility	in the area of auton	noti	ve engineering.			
3	3 Impart knowledge of electrochemistry to analyze the problems associated with electric/hybrid									
	vehicles.									
4	Develop know	led	ge of battery manag	gement system and re	cycling of storage de	evice	es.			

Unit-I	07 Hrs

Introduction of Energy Storage Systems in Electric vehicles:

Background of alternative energy sources and sustainability. Introduction of E-mobility: Overview of land, marine and space vehicle electrification. Vehicle performance and fuel economy and characteristics. Electric vehicles configuration, energy and power requirements for various HEVs and EVs Vehicles. Fundamentals of battery technology in hybrid vehicles.

Unit – II 08 Hrs

Advanced Lithium ion Battery Technology for Electric-vehicles:

Basic concepts of lithium batteries, Advanced Lithium batteries for E-mobility: Cell construction, battery components, principle of operation, electrode fabrication, electrolytes, battery modules and packs. Construction, working and future applications of Li-polymer batteries, Li-S battery, Li-Air battery, Li-iron sulfide cells and solid-state batteries.

Unit –III 08 Hrs

Future Scope in non- Lithium Batteries:

Limitations of lithium batteries. Construction, components, working and applications of Non-Lithium batteries: Sodium-battery, Magnesium battery, Nickel Metal Hydride Battery, Zebra cells, Vanadium and iron-based batteries, Ni-Hydrogen batteries. Advanced batteries for transportation: Ni-MH battery, horizontal plate Pb-Acid batteries. Advantages and applications of non-lithium batteries.

Unit –IV 08 Hrs

Chemistry of Alternative Storage Devices:

Introduction to super capacitor, material characteristics. Construction, working and applications of Super capacitors and Ultra capacitor for E mobility: Double layer Super capacitors, Aqueous super capacitor, organic based super capacitors, asymmetric super capacitors and Ultra capacitors. Advanced battery-super capacitor hybrids for large vehicles, Battery-Fuel cell hybridization for transportation applications, Battery-Solar Cell (Photovoltaic) hybridization, and advanced energy storage devices for back-up of solar energy.

Unit –V 08 Hrs

Battery Maintenance and Recycling:

Battery Management Systems (BMS), Fundamentals of battery management systems and controls.

Battery Thermal Management: Passive cooling – PCM systems, Active cooling – Liquids & air systems. Battery Recycling Technologies: Technology and economic aspects of battery recycling. Environmental safety in battery recycling process. Regulations and safety aspects of high voltage batteries: battery standards, safe handling of lithium batteries.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric
	vehicles.
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion
	devices for vehicle electrification.
CO3:	Analyses of battery management, safety, global market trends for large format batteries.
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy
	consumption, reuse and recycling.

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
_	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	-	-	-	1	-	1
CO2	3	3	2	2	2	-	-	-	1	1	-	1
CO3	2	2	3	3	2	-	-	-	3	1	2	1
CO4	3	3	2	3	2	-	-	-	2	1	3	1

High-3: Medium-2: Low-1

	Semester: VI						
	ADVANCED STATISTICAL METHODS						
			(GROU	JP E: GLOBAL ELE	CTIVE)		
			T	(Theory)		-	_
Cou	rse Code	:	18G6E15		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bje	ectives: The studen	ts will be able to			
1	Adequate exp	osu	re to understand th	e basic knowledge on	classification and re	egres	ssion trees that form
	the foundation	n fo	r analyzing data.				
2	2 Use the concepts of cluster analysis and conjoint analysis techniques arising in various fields.						
3	3 Apply the concepts of discriminant analysis and factor analysis which have great significance in						
	engineering practice.						
4	Demonstrate	the	practical importanc	e of regression and lo	glinear models.		

4 Demonstrate the practical importance of regression and logithear models.	
Unit-I	07 Hrs
Classification and Regression Trees:	
Introduction, the Basic Tree Model, Categorical or Quantitative Predictors, Regression Trees, Cla	ssification
Trees, Stopping Rules, Pruning and Cross-Validation, Loss functions, Geometry.	
Unit – II	07 Hrs
Cluster Analysis:	
Introduction, Types of Clustering, Correlations and Distances, Hierarchical Clustering, Partition	ng via K-
means, Additive Trees.	
Unit –III	08 Hrs
Conjoint Analysis:	
Introduction, Additive Tables, Multiplicative Tables, Computing Table Margins based on an	Additive
Model, Applied Conjoint Analysis.	
Unit –IV	08 Hrs
Discriminant Analysis and Factor Analysis	

Discriminant Analysis and Factor Analysis:

Introduction, Linear Discriminant Model, Linear discriminant function, Discriminant analysis, Principal Component, Factor Analysis, Principal Components versus Factor Analysis, Applications and Caveats.

Unit –V 09 Hrs

Logistic Regression and Loglinear Models:

Introduction, Binary Logit, Multinomial Logit, Conditional Logit, Discrete Choice Logit, Stepwise Logit, Fitting a Loglinear Model.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explore the fundamental concepts of statistical methods arising in various fields engineering.
CO2:	Apply the knowledge and skills of statistical techniques to understand various types of analysis.
CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4:	Distinguish the overall knowledge gained to demonstrate the problems arising in many practical
	situations.

Reference Books							
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.						
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4 th Edition, 2003, Marcel						
2	Decker, New York. ISBN: 0-8247-4052-1.						

Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.

An Introduction to Multivariate Analysis, T. W. Anderson, 3rd Edition, 2003, John Wiley & Sons, New Jersey, ISBN: 0-471-36091-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	Semester: VI						
			MATH	EMATICAL MOD	ELING		
			(GROUP	E: GLOBAL EL	LECTIVE)		
				(Theory)			
Cou	rse Code	:	18G6E16		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning C	bje	ectives: The student	s will be able to			
1	Adequate exp	osu	re to understand the	basic knowledge of	mathematical model	ing.	
2	Use the conce	pts	of discrete process	models arising in var	ious fields.		
3	3 Apply the concepts of modeling of nano liquids which have great significance in engineering						
	practice.						
4	4 Demonstrate the practical importance of graph theoretic models, variational problem and dynamic						
	programming.						

Unit-I	07	Hrs

Elementary Mathematical Modeling:

Basic concepts. Real world problems, (Science and Engineering), Approximation of the problem, Steps involved in modeling. Linear growth and decay model, Logistic model, Model of mass-spring-dashpot (present in shock absorbed, mechanical engineering problems), Chemical reaction, Drug absorption from blood stream. Motion of a projectile, Current flow in electrical circuits (LCR).

Unit – II 07 Hrs

Discrete Process Models:

Introduction to Difference equations, Introduction to discrete models-simple examples, Mathematical modeling through difference equations in economics, finance, population dynamics and genetics and probability theory.

Unit –III 08 Hrs

Modeling of Nano Liquids:

Nano liquids-Basic concepts, Mathematical modeling of nano liquids-Buongiorno Model (Two phase model): Relative importance of the nanoparticle transport mechanisms. Conservation equation for two phase nano liquids: The Continuity equation, Momentum equation and Energy equation.

Unit –IV 08 Hrs

Graph Theoretic Models:

Mathematical modeling through graphs-Models in terms of undirected graphs, directed graphs, signed graphs and weighted graphs. Problems with engineering applications.

Unit –V 09 Hrs

Variational Problem and Dynamic Programming:

Optimization principles and techniques, Mathematical models of variational problem and dynamic programming, Problems with engineering applications.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explore the fundamental concepts of mathematical models arising in various fields engineering.
CO2:	Apply the knowledge and skills of discrete and continuous models to understand various types of
	analysis.
CO3:	Analyze the appropriate mathematical model to solve the real-world problem and to optimize the
	solution.
CO4 :	Distinguish the overall knowledge gained to demonstrate the problems arising in many practical
	situations.

Refere	ence Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
_	81-224-0006-X.
	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
2	Cheltonham, ISBN: 0470271779, 9780470271773.
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
_	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
4	Hall/CRC Textbook, ISBN 9781439854518.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	VI Semester										
	FOUNDATIONAL COURSE ON ENTREPRENEURSHIP										
	(GROUP E: GLOBAL ELECTIVE)										
	(Theory)										
	urse Code	:			CIE Marks	:	100 Marks				
	edits: L:T:P	:			SEE Marks	:	100 Marks				
Tot	tal Hours	:	39L		SEE Duration	:	3.00 Hours				
Co	urse Learning ()bį	jectives:								
1	To make partic	ipa	nts self-discove	er their innate flow, entrepreneurial	style, and identif	y pı	oblems				
	worth solving thereby becoming entrepreneurs										
2	To handhold participants on lean methodology to craft value proposition and get ready with lean										
	canvas										
3	To create soluti	on	demo by condu	acting customer interviews and find	ing problem-solu	tio	n fit for				
	building Minim	nun	n Viable Produc	et (MVP)							
4	To make partic	ipa	nts understand	cost structure, pricing, revenue type	es and importance	e of	adopting				
	shared leadersh	ip	to build good te	eam							
5	To help participants build a strong brand and identify various sales channels for their products and										
	services										
6	To take particip	oan	ts through basic	es of business regulations and other	legal terms along	g-W	ith				
	understanding of	of l	Intellectual Prop	perty Rights							

Unit-I	08 Hrs

Self-Discovery and Opportunity Discovery

Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identifying Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Identifying the Entrepreneurial Style.

Unit – II 08 Hrs

Customer, Solution and Lean Methodology

Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Early Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Model and Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.

Unit – III 07 Hrs

Problem-Solution Fit and Building MVP

Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce-Raise-Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interviews; Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.

Unit – IV 07 Hrs

Financial Planning & Team Building

Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Identifying Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping and Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and Responsibilities.

Unit – V 09 Hrs

Marketing, Sales, Regulations and Intellectual Property

Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Showcase the ability to discern distinct entrepreneurial traits						
CO2	Know the parameters to assess opportunities and constraints for new business ideas						
CO3	Understand the systematic process to select and screen a business idea						
CO4	Design strategies for successful implementation of ideas						
CO5	Create Business Model and develop Minimum Viable Product						

Refer	eference Books:						
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.						
2	Entrepreneurship. Roy, R., 2012. Oxford University Press						
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International						
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial						
4	Modern Classics						
_	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar						
٥	Publishing Ltd.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

High-3: Medium-2: Low-1

Course Learning Objectives: The students will be able to

- 1 Improve qualitative and quantitative problem solving skills.
- 2 Apply critical and logical thinking process to specific problems.
- Ability to verbally compare and contrast words and arrive at relationships between concepts, based on verbal reasoning.
- 4 Applying good mind maps that help in communicating ideas as well as in technical documentation

V Semester UNIT-I 06 Hrs

Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc.

Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning.

UNIT-II 06 Hrs

Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude.

Group Discussion- Theory & Evaluation: Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD.

UNIT-III.A 06 Hrs

Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.

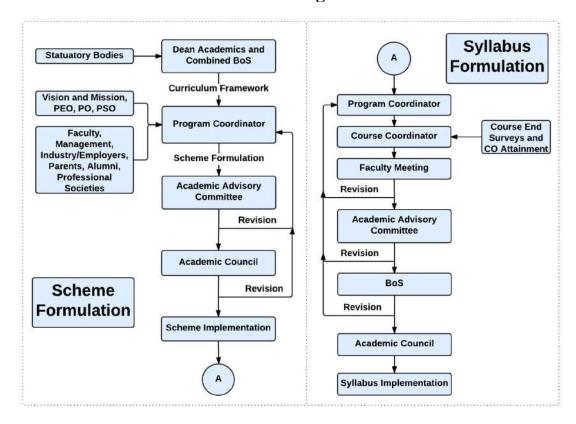
VI Semester UNIT-III.B 06 Hrs

Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.

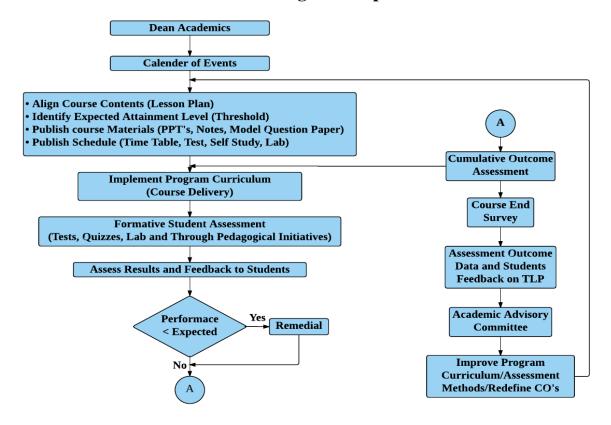
UNIT-IV 06 Hrs

Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.

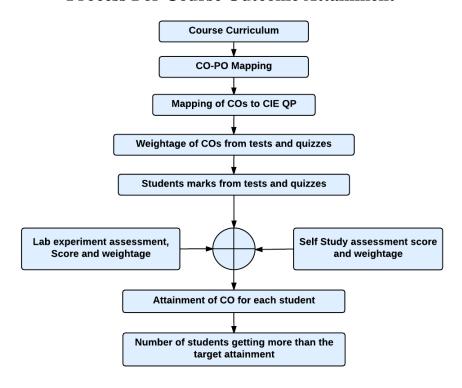
UNIT-V 06 Hrs

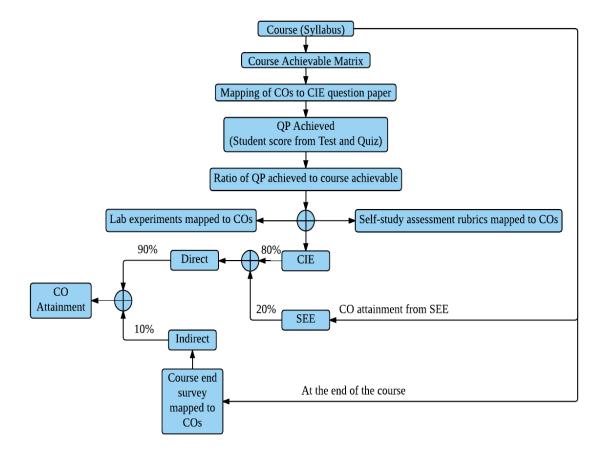

Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.

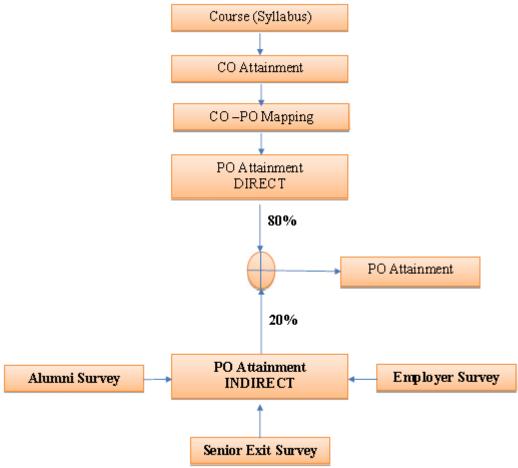
Cou	rse Outcomes: After completing the course, the students will be able to
CO1	: Inculcate employability skill to suit the industry requirement.
CO2	: Analyze problems using quantitative and reasoning skills
CO3	Exhibit verbal aptitude skills with appropriate comprehension and application.
CO4	: Focus on Personal Strengths and Competent to face interviews and answer
Refe	rence Books
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN: 0743272455
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN: 9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738


Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage					
Phase I	CIE will be conducted during the 5 th semester and evaluated for 50	50%					
V Sem	marks. The test will have two components. The Quiz is evaluated for						
	15 marks and second component consisting of questions requiring						
	descriptive answers is evaluated for 35 marks. The test & quiz will						
	assess the skills acquired through the training module.						
	SEE is based on the test conducted at the end of the 5 th semester The						
	test will have two components a Quiz evaluated for 15 marks and						
	second component consisting of questions requiring descriptive						
	answers is evaluated for 35 marks.						
Phase II	During the 6 th semester a test will be conducted and evaluated for 50	50%					
VISem	marks. The test will have two components a Short Quiz and Questions						
	requiring descriptive answers. The test & quiz will assess the skills						
	acquired through the training module.						
	SEE is based on the test conducted at the end of the 6 th semester The						
	test will have two components. The Quiz evaluated for 15 marks and						
	second component consisting of questions requiring descriptive						
	answers is evaluated for 35 marks						
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consoli	dated for 50					
At the	marks (Average of Test1 and Test 2 (CIE 1+CIE2)/2.						
end of	At the end of the VISem Marks of SEE (5 th Sem and 6 th Sem) is consolidated for 50						
VISem	marks (Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.						


Curriculum Design Process


Academic Planning And Implementation


Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.