

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

CHEMICAL ENGINEERING

Department Vision

Imparting quality technical education in Chemical Engineering to promote leadership in research, innovation and sustainable technology through team work.

Department Mission

- Impart quality education in basic and applied areas of Chemical Engineering.
- .Enable students and faculty to achieve proficiency in Chemical Engineering through innovative teaching and state of the art laboratories.
- Encourage faculty and students to make career in research through development of novel process and products.
- Develop inclusive technologies with a focus on sustainability.
- Collaborate with industries and research institute to cater social needs.
- Inculcate leadership qualities, entrepreneurial skills, societal and ethical vaues in students and faculty.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1: Exhibit knowledge of basic sciences, concepts and principles of Chemical Engineering.

PEO 2: Comprehend, analyze, design and implement engineering systems with a focus on research, innovation and sustainability.

PEO 3: Work in multidisciplinary team and cater to the needs of process industries with appropriate safety, health and environmental regulations.

PEO 4: Demonstrate effective communication skills, leadership qualities and develop into successful entrepreneurs.

PSO	Description				
PSO1	Gain knowledge of Chemical Engineering fundamentals and demonstrate				
	problem formulation capabilities				
PSO2	Analyse and solve engineering problems with a focus on environment				
	and sustainability				
PSO3	Contribute to multidisciplinary research using relevant Chemical				
	Engineering tools				

PROGRAM SPECIFIC OUTCOMES (PSOs)

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road

Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

CHEMICAL ENGINEERING

SL. NO.	ABBREVIATION	MEANING
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	CHY	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	PHY	Engineering Physics
13.	SEE	Semester End Examination
14.	MAT	Engineering Mathematics
15.	PCE	Professional Core Elective
16.	GE	Global Elective

ABBREVIATIONS

INDEX

	V Semester					
Sl. No.	Course		Course Title	Page No.		
	Code					
1.	16HEM51	Foundations of	of Management and Economics	01		
2.	16CH52	Chemical Rea	ction Engineering	03		
3.	16CH53	Mass transfer-	-II	06		
4.	16CH54	Chemical Plan	nt utilities and safety systems	09		
5.	16CH55	Chemical Pro	cess Integration	11		
	·	GROUP A: PH	ROFESSIONAL CORE ELECTIVES			
1.	16CH5A1	Nanotechnol	ogy	13		
2.	16CH5A2	Renewable E	Energy Technologies	15		
3.	16CH5A3	Applied mat	hematics for chemical Engineering	17		
4.	16CH5A4	Piping Engir	neering Design	19		
		GROU	JP B: GLOBAL ELECTIVES			
Sl. No.	Course	Host Dept	Course Title	Page No.		
	Code					
1.	16G5B01	BT	Bioinformatics	21		
2.	16G5B02	СН	Fuel Cell Technology	24		
3.	16G5B03	CV	Geoinformatics	26		
4.	16G5B04	CSE	Graph Theory	28		
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	30		
6.	16G5B06	EEE	Hybrid Electric Vehicles	32		
7.	16G5B07	IEM	Optimization Techniques	34		
8.	16G5B08	E&I	Sensors & Applications	36		
9.	16G5B09	ISE	Introduction To Management Information	38		
		151	Systems			
10.	16G5B10	ME	Industrial Automation	40		
11.	16G5B11	TCE	Telecommunication Systems	42		
		_				
12.	16G5B12	MAT	Computational Advanced Numerical Methods	44		

	VI Semester				
Sl. No.	Course Code	Course Title	Page No.		
1.	16HSI61	Intellectual Property Rights and Entrepreneurship	48		
2.	16CH62	Chemical Equipment Design and Drawing	51		
3.	16CH63 Process Simulation and Modeling		53		
4.	16CH64	Heterogeneous Reaction Systems	56		
	(GROUP C: PROFESSIONAL CORE ELECTIVES			
1.	1.16CH6C1Nanofabrication58				
2.	16CH6C2	Fuel cell Technology	60		
3.	16CH6C3	Computational methods for chemical Engineers	62		
4.	16CH6C4	Pilot plant and scale up studies	64		
	(GROUP D: PROFESSIONAL CORE ELECTIVES	•		
1.	16CH6D1	Biochemical Engineering	66		
2.	16CH6D2	Pollution control Engineering	68		
3.	16CH6D3 Novel separation Techniques		70		
4. 16CH6D4		Polymer Science and Technology	72		
		GROUP E: GLOBAL ELECTIVES			
1.	16G6E01	Bioinspired Engineering	74		
2.	16G6E02	Green Technology	76		
3.	16G6E03	Solid Waste Management	78		
4.	16G6E04	Introduction to Web Programming	80		
5.	16G6E05	Automotive Electronics	82		
6.	16G6E06	Industrial Electronics	84		
7.	16G6E07	Project Management	86		
8.	16G6E08	Virtual Instrumentation	88		
9.	16G6E09	Introduction to Mobile Application Development	90		
10.	16G6E10	Automotive Engineering	92		
11.	16G6E11	Mobile Network System and Standards	94		
12.	16G6E12	Applied Partial Differential Equations	96		
13.	16G6E13	Aircraft Systems	98		

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF CHEMICAL ENGINEERING

FIFTH SEMESTER CREDIT SCHEME								
SI.	Course	Course Title	BOG	Credit Allocation				Total
No.	Code	Course The	005	L	Т	Р	S	Credits
1.	16HEM51	Foundations of Management and Economics	HSS	2	0	0	0	2
2.	16CH52	Chemical Reaction Engineering	СН	3	0	1	1	5
3.	16CH53	Mass transfer-II	СН	3	0	1	1	5
4.	16CH54	Chemical Plant utilities and safety systems	СН	3	0	0	0	3
5.	16CH55	Chemical Process Integration	СН	3	1	0	0	4
6.	16CH5AX	Elective A	СН	3	0	0	1	4
7.	16G5BXX	Elective B	Respective BoS	4	0	0	0	4
	Τα	otal number of Credits						27
	Total	Number of Hours / Week	Z C	21	2	4	12**	

SIXTH SEMESTER CREDIT SCHEME									
SI.	Course Course Title BOS Credit Allocation					Credit Allocation Tota			
No.	Code	Course Thie	DOD	L	Т	Р	S	Credits	
1.	16HSI61	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	0	3	
2.	16CH62	Chemical Equipment Design and Drawing	CH	3	0	1	1	5	
3.	16CH63	Process Simulation and Modeling	СН	3	1	1	0	5	
4.	16CH64	Heterogeneous Reaction Systems	СН	3	0	0	1	4	
5.	16CH6CX	Elective C	СН	3	0	0	1	4	
6.	16CH6DX	Elective D	СН	4	0	0	0	4	
7.	16G6XX	Elective E	СН	3	0	0	0	3	
8.	16HS68	Professional Practice-III (Employability Skills and Professional Development of Engineers)	HSS	0	0	1	0	1	
	Tota	al number of Credits						29	
	Total N	umber of Hours / Week		22	2	6	12**		

** Non-contact hours

	V Sem				
	GROUP A: PROFESSIONAL CORE ELECTIVES				
Sl. No.	Sl. No. Course Code Course Title				
1.	16CH5A1	A1 Nanotechnology			
2.	2. 16CH5A2 Renewable Energy Technologies				
3.	16CH5A3	Applied mathematics for chemical Engineering			
4.	16CH5A4	Piping Engineering Design			

	GROUP B: GLOBAL ELECTIVES					
Sl. No.	Host Dept	Course Code	Course Title	Credits		
1.	BT	16G5B01	Bioinformatics	4		
2.	СН	16G5B02	Fuel Cell Technology	4		
3.	CV	16G5B03	Geoinformatics	4		
4.	CSE	16G5B04	Graph Theory	4		
5.	ECE	16G5B05	G5B05 Artificial Neural Networks & Deep Learning			
6.	EEE	16G5B06	Hybrid Electric Vehicles	4		
7.	IEM	16G5B07	Optimization Techniques	4		
8.	E&I	16G5B08	Sensors & Applications	4		
9.	ISE	16G5B09	Introduction To Management Information Systems	4		
10.	ME	16G5B10	Industrial Automation	4		
11.	TCE	16G5B11	Telecommunication Systems	4		
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4		
13.	AE	16G5B13	Basics of Aerospace Engineering	4		
14.	HSS			4		

VI Sem					
	GROUP C: PROFESSIONAL CORE ELECTIVES				
Sl. No.	Course Code	Course Title			
1.	16CH6C1	Nanofabrication			
2.	2. 16CH6C2 Fuel cell Technology				
3.	3. 16CH6C3 Computational methods for chemical Engineers				
4.	4. 16CH6C4 Pilot plant and scale up studies				
		GROUP D: PROFESSIONAL CORE ELECTIVES			
1.	1. 16CH6D1 Biochemical Engineering				
2.	2. 16CH6D2 Pollution control Engineering				
3.	16CH6D3	Novel separation Techniques			
4.	16CH6D4	Polymer Science and Technology			

	GROUP E: GLOBAL ELECTIVES					
Sl. No.	Host Dept	Course Code	Course Title	Credits		
1.	BT	16G6E01	6G6E01 Bioinspired Engineering			
2.	2. CH 16G6E02 Green Technology		3			
3.	CV	16G6E03	Solid Waste Management	3		
4.	CSE	16G6E04	Introduction to Web Programming	3		
5.	5. ECE 16G6E05 Automotive Electronics		3			
6.	EEE	EEE 16G6E06 Industrial Electronics		3		
7.	IEM	16G6E07	Project Management	3		

8.	E&I	16G6E08	Virtual Instrumentation	3
9.	ISE	16G6E09	Introduction to Mobile Application Development	3
10.	ME	16G6E10	Automotive Engineering	3
11.	TCE	16G6E11	Mobile Network System and Standards	3
12.	MAT	16G6E12	Applied Partial Differential Equations	3
13.	AE	16G6E13	Aircraft Systems	3

	V	SEMESTER				
	FOUNDATIONS OF MA	ANAGEMENT AND ECONOMICS				
		(Theory)				
	(Common to BT,	CHE, CV, E&I, IEM, ME)				
Cour	rse Code: 16HEM51	CIE Marks: 50				
Cred	lits: L:T:P:S: 2:0:0	SEE Marks: 50				
Hou	rs: 23L	SEE Duration: 02Hrs				
Course Learning Objectives: The students will be able to						
1 Understand the evolution of management thought.						
2	Acquire knowledge of the functions of	Management.				
3	Gain basic knowledge of essentials of N	Aicro economics and Macroeconomics.				
4	Understand the concepts of macroecond	omics relevant to different organizational context	ts.			
-		UNIT-I				
Intro	oduction to Management: Manageme	ent Functions, Roles & Skills, Management	04 Hrs			
Histo	ory – Classical Approach: Scientific	c Management & Administrative Theory,				
Quan	ititative Approach: Operations Research	h, Behavioural Approach: Hawthorne Studies,				
Cont	emporary Approach: Systems & Conting	ency Theory.				
-		UNIT-II				
Four	idations of Planning: Types of Goals &	2 Plans, Approaches to Setting Goals & Plans,	02 Hrs			
Strate	egic Management Process, Corporate & C	Competitive Strategies.	00 TT			
Orga	inizational Structure & Design: Over	rview of Designing Organizational Structure:	03 Hrs			
Work	Specialization, Departmentalization,	Chain of Command, Span of Control,				
Cent	ralization & Decentralization, Formalizat	tion, Mechanistic & Organic Structures.				
3.5.4			0.2 11			
Moti	vating Employees: Early Theories of	Motivation: Maslow's Hierarchy of Needs	03 Hrs			
Theo	ry, McGregor's Theory X & Theory Y,	Herzberg's Two Factor Theory, Contemporary				
Theo	ries of Motivation: Adam's Equity & Vr	oom's Expectancy Theory.	0.2 11			
Man	agers as Leaders: Benavioural Theorem	ries: Unio State & University of Michigan	03 Hrs			
	es, Blake & Mouton's Managerial Grid	, Contingency Theories of Leadership: Hersey				
& BI	anchard's Situational Leadership, Conter	nporary views of Leadership: Transactional &				
Iran	stormational Leadership.					
T 4			04 11			
Intro	duction to Economics: Concept of Ec	onomy and its working, basic problems of an	04 Hrs			
Econ	omy, Market mechanism to solve econor	nic problems, Government and the economy,				
Esse:	ntials of Micro Economics: Concept an	nd scope, tools of Microeconomics, themes of				
micro	beconomics, Decisions: some central the	emes, Markets: Some central themes, Uses of				
Micr	oeconomics.					
Face	tials of Magnaganamias Drives on	UNII-V	04 11			
Esse	nuals of Macroeconomics: Prices an	d inflation, Exchange rate, Gross domestic	04 Hrs			
prod	ict(GDP), components of GDP, the La	bour Market, Money and banks, Interest rate,				
Maci	oeconomic models- an overview, Growi	The complete Kernesien model. The res				
mode	model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-					
Class	ical synthesis, Exchange rate determination	on and the Munden-Flemming model				
	• Explain the principles of manage	amont theory & recognize the characteristic	cs of an			
	organization	chem meory & recognize the characteristi				
CO	Demonstrate the importance of low	narformance areas in stratagic management a	nd design			
002	appropriate organizational structures	and possess an ability to conceive various orga	nu ucsign			
	dynamics	and possess an ability to concerve various orga	mzauollal			
CO2	• Select & Implement the right leader	ship practices in organizations that would enable	A systems			
	orientation	sing practices in organizations that would ellabl	ic systems			
CO4	 Understand the basic concepts and pr 	inciples of Micro economics and Macroscopom	ics			

Chemical Engineering

Refe	erence Books
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5th Edition, 2009, TMH Pub. Co.
	Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, (<u>www.bookboon.com</u>), Peter Jochumzen, 1 st Edition. 2010, e-
	book, ISBN:978-87-7681-558-5.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

Low-1 Medium-2 High-3

	Semester: V						
	CHEMICAL REACTION ENGINEERING						
	(Theo	ory & Practice)					
Cou	Course Code: 16CH52 CIE Marks: 100+50						
Cree	Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50						
Hou	Hours: 37L SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students	will be able to					
1	1 Understand the scope and purpose of reaction engineering						
2	Learn the methods of analysis of kinetics of single and multiple reactions						
3	3 Understand the procedure for design of reactors						
4	4 Plan experimental work to get design data						
5	Understand and model non-ideality in reactors						

UNIT-I Introduction: classification of reactions, rate, order, molecularity. Single reactions: Integral 08Hrs method, differential method of analysis, constant volume, variable volume reactions, halflife, total pressure method. Temperature dependent term and kinetic modelling. UNIT-II Reactor Design: Type of reactors, Design of batch, plug flow and mixed flow ideal reactors 07Hrs both constant volume and variable volume reactions, space time, mean residence time. UNIT-III Multiple reactor systems: Size comparison of reactors, Analysis of different types of ideal 08Hrs reactors in series and parallel combination, Design of combination of reactors, optimum combination of reactors. UNIT-IV Multiple reactions: Kinetics of series, parallel, series-parallel combination and reversible 08Hrs reactions, Design of ideal batch, plug flow and mixed flow reactors for series and parallel reactions. UNIT-V Residence Time Distribution: Non-ideality and its causes, Residence Time Distribution 06Hrs studies, E and F curves, mean residence time, segregated model, tanks in series model, axial dispersion model.

Laboratory Component

List of e	List of experiments:			
1.	Batch reactor			
2.	Plug flow			
3.	Reactor			
4.	RTD in plug flow reactor			
5.	Semi batch reactor			
6.	Temperature effect on kinetics			
7.	Multiple reactors- PFR followed by MFR			
8.	Multiple reactors-MFR followed by PFR			
9.	Bio chemical reactor			
10.	RTD in packed bed reactor reactor			

Chemical Engineering

11.	Mixed flow reactor
12.	RTD in mixed flow
13.	Adiabatic reactor
14.	Sonochemical reactor

Cour	Course Outcomes: After completing the course, the students will be able to				
CO1	Recall the fundamentals, terminology and basic principles in reaction engineering				
CO2	Analyze batch, plug flow and mixed flow reactors				
CO3	Interpret reactor data for kinetics and for reactor design				
CO4	Design ideal reactors for single and multiple reactions				

Reference Books					
1.	Chemical Reaction Engineering, Octave Levenspiel, 3rd Edition, 2004, ISBN 9780471254				
2.	Elements of Chemical Reaction Engineering, H.Scott Fogler, 5 th Edition, 2016, ISBN 9780133887822				
3.	Chemical Engineering Kinetics, J M Smith, 3rd Edition, 1981, ISBN 9780070587106				

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1								
CO2	3	3	1	2								
CO3	2	2	1	3							1	
CO4	3	3	3	2		2						

Low-1 Medium-2 High-3

	Semester: V						
	MASS TRANSFER – II						
	(Theory	y & Practice)					
Cou	rse Code: 16CH53	CIE Marks: 100+50					
Cree	Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50						
Hou	Hours: 36L SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students wi	ll be able to					
1	1 Identify suitable equipment for Vapor-liquid, gas solid and liquid-solid contacts						
2	2 Understand the concepts of stage operations						
3	3 Understand the working principles and constructional details of mass transfer equipment's						
4	Design equipment's for mass transfer operations						

UNIT-I

Gas liquid contacting systems: Types, construction and working of plate and packed	
columns. Types and properties of industrial packing, plate efficiencies. HTU and NTU	07 Hrs
concepts, HETP.	
Packed tower absorption: Liquid phase holdup and pressure drop in absorption towers.	
Design of packed towers-height and diameter. Problems encountered in packed towers	
UNIT-II	
Distillation: Introduction, vapor liquid equilibria, relative volatility, prediction of VLE from	
vapor pressure data using Raoult's law, VLE for multi-component systems, Non-ideal	07 Hrs
systems, Azeotropes, Immiscible systems, Steam distillation,	
Flash and simple distillation.	
UNIT-III	
Distillation: Multi-stage rectification column. Design using MicCabe Thiele method for	0611
binary mixtures. Side stream in distillation columns, Multiple feed to distillation columns.	06 Hrs
Plate to plate calculations.	
Ponchon-Savarit method. Extractive, azeotropic distillations. Molecular, vacuum	
distillations.	
UNIT-IV	
Liquid-liquid Extraction: Ternary equilibrium, solvent selection, single stage, multistage	
cross current, counter current extraction. Equipment for liquid-liquid extraction. Numerical	08 Hrs
problems on miscible and immiscible systems of extraction.	
UNII-V	
Leaching operation: Equipment for leaching, preparation of solids for leaching,	
equilibrium and phase diagrams. Calculations for single stage and multistage leaching	08 Hrs
operations. Numerical problems	

Laboratory Component

Lussing component					
List of experiments:					
1. Diffusion of Organic vapors in Air					
2. Simple /Differential Distillation					
3. Packed Column distillation					
4. Steam Distillation					
5. Solid Liquid Leaching					
6. Surface Evaporation					
7. Tray Dryer					
8. Adsorption Studies					

9. Liquid Liquid/Vapor Liquid Equilibrium
10. Liquid Extraction (Cross Current: Single and multi-Stages)
11. Holdup Studies in Packed Columns
12. Rotary/Vacuum Dryers
13. Wetted Wall Column/Mass Transfer Coefficient Estimation

Cour	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand the concepts of equilibrium, stage operations and carryout material balance							
CO2	Explain the working principles and construction of mass transfer equipment's							
CO3	Analyze separation in various mass transfer equipment's and their graphical representations							
CO4	Process design of various mass transfer equipment's and evaluate the performance of mass							
	transfer equipment's							

Reference Books

1.	Mass Transfer Operations, Robert E Trebal, 3 rd Edition, 1981, McGraw Hill,									
	ISBN:978007065760									
2.	Unit Operations in Chemical Engineering, McCabe & Smith, 6th Edition, 2001, McGraw									
	Hall, ISBN:9780072848236									
3.	Chemical Engineering, Volume 1 and Volume 2, Coulson and Richardson, 4th Edition,									
	Pergemen Press, 1998. ISBN: 0750644451.									
4.	Introduction to Chemical Engineering, Badger and Banchero, 3 rd Edition 1997, Tata McGraw									
	Hill, ISBN:9780070850279.									
5.	Principles of Unit Operations, Alan S. Foust, Leonard A. Wenzel, Curtis W. Clump and L.									
	Brice Anderson, 2nd Edition, 1994, John Wiley, ISBN: 9780471268963									

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Chemical Engineering

	CO - PO Mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	-	-	-	-	-	-	1
CO2	3	2	2	1	-	-	-	-	-	-	-	1
CO3	3	3	3	2	1	-	-	-	-	-	-	2
CO4	3	3	3	2	1	-	-	-	-	-	-	2

Low-1 Medium-2 High-3

	Semester: V									
	CHEMICAL PLANT UTILITIES AND SAFETY SYSTEMS									
	(Theory)									
Course Code: 16CH54 CIE Marks: 100										
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100										
Hou	Hours: 35L SEE Duration: 3Hrs									
Cou	rse Learning Objectives: The students	will be able to								
1	Understand the need for various utilitie	s in a chemical plant.								
2	Elaborate the processes for usage of ut	lities.								
3	Provide the concepts of safety in a chemical plant.									
4	4 Explain the importance of utilities and safety devices for a given chemical plant,									
5	Describe the functions of each utility in	n a plant.								

	UNIT-I				
Introduction	: Different utilities, Role of utilities in process plant operations and criteria	07 Hrs			
for selection	and estimation of suitable utilities.				
Water: Wate	er resources, process water, Cooling water, Drinking water and boiler feed				
water quality	standards, Types and selection of pumps, piping and accessories.				
Air: Compre	ssed air, Blower air, Fan air. Types of compressor and vacuum pumps and				
selection, Po	wer requirements, Performance and related calculations.				
	UNIT-II				
Steam and I	Power: Steam generation in chemical plants. Types of boilers and waste heat	07 Hrs			
boilers. Fuel	s – types and characteristics, Calorific value, Proximate and ultimate				
analysis, HH	V, LHV and related calculations, Cogeneration power plants, Combine heat				
of power and	Boiler performance related calculations. Economy of steam generation with				
different fuel	s, related calculation.				
	UNIT-III				
Refrigeratio	n: Different refrigeration systems and their characteristics, Air conditioning	07 Hrs			
systems. Co	efficient of performance. Power requirements and refrigeration effect –				
related calculations for each types of refrigeration – system. Refrigerant properties and					
selection.					
Insulation: Insulation materials, selection, economics of insulation, Insulating factors,					
Properties an	d classification, Cold insulation and cryogenic insulation.				
	UNIT-IV				
Process Safe	ty Devices: Intrinsic and Extrinsic Safety, Hazards, Toxicity, Flammability,	07 Hrs			
Fire, Explos	ons, sources of ignition, Pressure. Pressure relief valves, Ruptures discs,				
Blow down s	ystems, Flare systems, Flame arrestors,				
Deflagration	arrestors and explosion suppression.				
	UNIT-V				
Hazardous 1	Material: Hazard and HAZOP comparison, Sources of Reactive Chemicals	07 Hrs			
Data. Unsta	ble Compounds, Combustion and Flammability, Hazards Products of				
Combustion,	combustible Dusts. Transparent Flames, Flame Quenching, Explosions in				
the Absence	of Air, Gas Explosions, Explosion. Explosion Pressure, Vapor Explosions				
and types, Du	st Explosions, Explosion Suppression.				
Course Out	comes: After completing the course, the students will be able to				
CO1: Recal	1 the utilities necessary for chemical plant				
CO2: Calcu	late the economy of various utilities required for the chemical plant.				
CO3: Relat	e safety devices and its design parameter for a chemical plant				
CO4: Ident	fy the methods for accident mitigation				

Chemical Engineering

Refe	erence Books
1.	Chemical Engineer's Handbook, Robert H. Perry and DON W. Green. 7 th Edition, 2005, McGraw Hill, New York, ISBN: 10: 0071422943
2.	Mine Safety technology and Management Utility Textbook, Duan X. H., Duan A. Q., Li S. Z., Edition: 2003, Coal Industry Press, ISBN: 10:7502027130
3.	Fundamental principles of occupational health and safety, Benjamin O. Alli, 2 nd Edition, 2008, ISBN: 9221204545
4.	Securing Utility and Energy Infrastructures, Larry N, 2006, Wiley – Inter science, ISBN: 978 0471705253

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	1	-	-	-	-	-	-	-
CO2	-	2		1-	-	-	-	-	-	-	-	2
CO3			3	-	-	-	-	-	1	-	-	2
CO4	-	-	-	2	-	-1	-	-	-	-	-	3

	Semester: V								
	CHEMICAL PROCESS INTEGRATION								
		(Theory)							
Cou	rse Code: 16CH55		CIE Marks: 100						
Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100									
Hou	Hours: 36L+24T SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Identify the possibilities of mass and en	nergy integration							
2	Carry out quantification of a specific task using the concept of targeting								
3	Synthesize alternative routes for integration								
4	Analyze the alternatives and generate of	optimal solution							

UNIT-I					
Introduction to Process Integration: Process Synthesis, Process Analysis, Targeting	07 Hrs				
minimum waste, minimum purchase, strategies for targets					
UNIT-II					
Overall Mass Targeting: Sources, Sinks, Direct-Recycle, Material Recycle Pinch Diagram, and Multi Component Mapping Diagram	07 Hrs				
UNIT-III					
Mass Integration: Design of individual Mass Exchangers, Cost Optimization, Mass					
Exchange Pinch Diagram and Algebraic approach to targeting mass exchange networks					
UNIT-IV					
Heat Integration: Synthesis of Heat Exchange Networks, Heat Exchange Pinch Diagram, Minimum Utility Targeting through Algebraic Approach, Screening of multiple Utilities using Grand Composite Curve	07 Hrs				
UNIT-V					
Combined Heat and Power Integration: Heat engines, heat pumps, placement of heat engines and pumps in heat exchange networks and cogeneration targeting	07 Hrs				

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the fundamentals, strategies and approaches of process integration.									
CO2:	Apply process integration strategies on chemical engineering systems for mass and utility targeting.									
CO3:	Analyze chemical engineering processes to identify limits on process integration.									
CO4:	Evaluate purchase/waste/energy minimization in chemical engineering processes									

Refe	erence Books
1.	Process Integration, Mahmoud M El-Halwagi, 1 st Edition, 2006, Elsevier Academic Press, ISBN – 13: 978 0 12 370532 7
2.	Chemical Process Design and Integration, Robin Smith, 2^{nd} Edition, 2005, John Wiley & Sons, ISBN – 0 471 48681 7
3.	Pinch Analysis and Process Integration, Ian C. K., 2 nd Edition, 2007, Elsevier BH, ISBN – 13: 978 0 75068 260 2
4.	Heat Exchanger Network Synthesis, Shenoy U. V., 1 st Edition, 1995, Gulf Professional Publishing, ISBN – 0 884 15391 6
	Publishing, ISBN – 0 884 15391 6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	-	-
CO2	-	2	2	-	-	-	-	-	-	-	-	2
CO3	2	2	2	-	-	-	-	-	-	-	-	2
CO4	3	-	3	-	3	-	-	-	-	-	-	3

	Semester: V						
	NANOTECH	NOLOGY					
	(Group A: Professio	nal Core Elective)					
Cou	Course Code: 16CH5A1 CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hours: 37L SEE Duration: 3Hrs		SEE Duration: 3Hrs					
Cour	se Learning Objectives:						
1	Understand basics of nanomaterials and their properties.						
2	Describe synthesis of nanomaterials by chemical techniques.						
3	Learn to analyze and assess parameters involved in synthesis and characterization.						
4	Compare models involved in synthesis of nanostructures.						

UNIT-I

Introduction: introduction to nanoscience and nanotechnologies, Nanotechnology, importance and scope of nanotechnology, natural nanomaterials, properties at nanoscale (physical, chemical, surface, electrical. magnetic, optical, mechanical), Nanomaterials: Biomimetic07Hrs nanomaterials, Self-assembled nanomaterials, Nanostructured metals and alloys, Polymers, Semiconductors, Ceramic and glassy materials, Carbon-based materials, composites, nanocoatings

UNIT-II

Synthesis of Nano materials:

Synthesis of Nanomaterials- top down and bottom up approach, Ball Milling, laser ablation, Electrodeposition, vapor phase Sputtering, DC/RF Magnetron Sputtering, Thermal Evaporation, sol-gel method, , microwave synthesis route, gas, microemulsion method, 08 Hrs hydrothermal / Solvothermal Synthesis, ultrasonic method. Photochemical Synthesis, Sonochemical Routes, Chemical Vapor Deposition(CVD) Spray Pyrolysis, Flame Pyrolysis, Molecular Beam Epitaxy

UNIT-III

Characterization of Nano materials:

Microscopy-Scanning tunnelling microscope, Atomic force microscope, scanning electron microscopy, Field Emission Scanning Electron Microscopy, transmission electron microscopy, Environmental Scanning Electron Microscopy (ESEM) High Resolution07Hrs Transmission Electron Microscope (HRTEM), Surface enhanced Raman Spectroscopy, X-ray diffraction technique, X ray Photoelectron Spectroscopy Surface area analysis, particle size analysis, gravimetric analysis

UNIT-IV

Nanoscale Manufacturing: Nanomanipulation, Nanolithography- Optical lithography, Photolithography, Dip pen nanolithography, Extreme UV Lithography, Electron beam (e-beam) lithography, Epitaxial Growth: classical growth modes, techniques for epitaxy:.Liquid Phase Epitaxy (LPE), Physical 08Hrs Vapor Deposition (PVD),Molecular Beam Epitxay (MBE). Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD), Self Assembly UNIT-V

Application of Nanotechnology:

Environment: remediation and mitigation using metal oxide nano particles, magnetic particles, Nanomembranes and nanofilters, Pollution prevention: nanocatalysis, environmental sensors Medicine and healthcare: diagnosis, biosensors, drug delivery, therapy Energy: Solar energy-Photovoltaics, Dye-sensitised solar cell, Quantum-dot- sensitized solar cells. Hydrogen energy-Hydrogen production and Hydrogen storage, hydrogen fuel cell, Energy savings-Insulators and smart coatings, Energy- harvesting materials, Information and communication technologies: Integrated circuits, Data storage, Photonics, Displays, Information storage devices, Wireless sensing and communication

Chemical Engineering

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Identify various nano materials and recall nano materials synthesis, characterization and				
	application.				
CO2:	Explain the methods of nanomaterial synthesis and characterization				
CO3:	Apply principles of nano materials in interdisciplinary areas				
CO4:	Analyze and select synthesis and characterization techniques				

Reference Books

1A Textbook of Nanoscience and Nanotechnology, Pradeep T, 2012, Tata McGraw Hill Education Pvt. Ltd. ISBN: 97812590073232Nano-structured Materials and Nanotechnology, Hari Singh Nalwa, 2002, Gulf Professional Publishing, Academic Press, ISBN:0-12-513920-93Nanotechnologies Principles, Applications, Implications and Hands-on Activities, A Luisa Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate- General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-04Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5		
 2 Nano-structured Materials and Nanotechnology, Hari Singh Nalwa, 2002, Gulf Professional Publishing, Academic Press, ISBN:0-12-513920-9 3 Nanotechnologies Principles, Applications, Implications and Hands-on Activities, A Luisa Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate- General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 4 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 	1	A Textbook of Nanoscience and Nanotechnology, Pradeep T, 2012, Tata McGraw Hill Education Pvt. Ltd. ISBN: 9781259007323
 2 Nano-structured Materials and Nanotechnology, Hari Singh Nalwa, 2002, Gulf Professional Publishing, Academic Press, ISBN:0-12-513920-9 3 Nanotechnologies Principles, Applications, Implications and Hands-on Activities, A Luisa Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate-General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 4 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 		
 Publishing, Academic Press, ISBN:0-12-513920-9 Nanotechnologies Principles, Applications, Implications and Hands-on Activities, A Luisa Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate-General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 	•	Nano-structured Materials and Nanotechnology, Hari Singh Nalwa, 2002, Gulf Professional
 Publishing, Academic Press, ISBN:0-12-513920-9 Nanotechnologies Principles, Applications, Implications and Hands-on Activities, A Luisa Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate-General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 	2	Debliching Assignment BDN 0.12.512020.0
 Nanotechnologies Principles, Applications, Implications and Hands-on Activities, A Luisa Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate-General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 		Publishing, Academic Press, ISBN:0-12-513920-9
 3 Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate-General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 4 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 		Nanotechnologies Principles Applications Implications and Hands-on Activities A Luisa
 Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate-General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 		Tunoteennoises Timeipies, Tippieutons, Impieutons and Tunes on Teervities, Tipbieutons
 General for Research and Innovation Industrial technologies (NMP) programme Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 	3	Filipponi and Duncan Sutherland, 2013, Edited by the European Commission Directorate-
4 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5		General for Research and Innovation Industrial technologies (NMP) programme
 Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5 		General for Research and innovation industrial technologies (1011) programme
4 Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition; ISBN:0-13-101400-5		Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0
4 ISBN:0-13-101400-5	4	Nano Materials, K. Bandyonodhyay, 2007, Naw Ago International Publishers: First adition:
ISBN:0-13-101400-5		Nano Materiais, K. Bandyopadnyay, 2007, New Age international Fublishers, First edition,
		ISBN:0-13-101400-5

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	3	2	-	-	-	-	-	-	-	
CO2		3	1	3	-	-	-	-	-	-	-	
CO3			3		-	-	-	-	-	-	-	
CO4		3	1	2	-	-	-	-	-	-	-	

	Semester: V							
	RENEWABLE ENER	GY TECHNOLOGIES						
	(Group A: Professional Core Elective)							
Cou	Course Code: 16CH5A2 CIE Marks: 100							
Cre	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Ho	irs: 34L	SEE Duration: 3Hrs						
Cou	Course Learning Objectives:							
1	1 Understand the fundamentals and characteristics of renewable energy sources							
2	2 Distinguish various technologies available to harvest renewable energy							
3	3 Assess the applicability of renewable energy technology							
4	Integrate renewable energy systems with conventional energy							

Unit-I	
Solar Energy : Solar Radiation at Earth's Surface and Solar Radiation Measurements.	07Hrs
Principles of conversion of solar radiation into heat, Solar Energy Collectors – Flat plate	
and concentrating collectors. Solar Energy Storage - Thermal Storage, Electrical Storage,	
Chemical Storage and Mechanical Storage, Solar Pond, Solar cells - Photovoltaic cells.	
applications of solar energy.	
Unit – II	
Wind Energy: Introduction to wind energy harvesting, basic Components of Wind Energy	07 Hrs
Conversion system (WECS), Classification of WEC Systems, Types of Wind Machines	
(Wind Energy Collectors) - horizontal axis machines, vertical axis machines.	
Unit -III	
Bio – Energy (Energy from biomass): Introduction to biomass conversion systems – wet	08 Hrs
process, dry processes, Biogas generation – affecting factors, classification of biogas	
plants, advantages and disadvantages of various biogas plants.	
Unit –IV	
Tidal Energy: Introduction to ocean thermal electric conversions and Tidal energy,	07 Hrs
methods of utilization of Tidal energy, Components of Tidal Power Plants, advantages and	
limitations of Tidal Power Generation, Wave Energy, Different types of Wave Machines.	
Unit –V	
Geothermal Energy: Introduction to geothermal energy, estimation of geothermal power,	07Hrs
nature of geothermal fields, advantages and disadvantages of geothermal energy and its	
applications - geothermal well drilling.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the importance of various renewable energy sources
CO2:	Apply the principles of existing and emerging technologies to harness renewable energy
CO3:	Analyze the performance of renewable energy systems
CO4:	Develop power generation schemes using renewable energy systems

1Non-Conventional Energy Sources, Rai, G.D, 5th Edition, 2016, Khanna Publications, ISBN: 8174090738.2Principles of Solar Engineering, D. Y. Goswami, F. Kreith and J. F. Kreider, Taylor and Francis, Philadelphia 2000, ISBN: 9781560327141.3Wind Energy Conversion Systems, Freris, L.L, Prentice Hall, 1990, ISBN:9780139605277.4Solar Energy Utilization", S.P. Sukhatme, 2nd Edition, 2005, Tata Mc. Graw Hill, ISBN:978-	Refere	ence Books
 Principles of Solar Engineering, D. Y. Goswami, F. Kreith and J. F. Kreider, Taylor and Francis, Philadelphia 2000, ISBN: 9781560327141. Wind Energy Conversion Systems, Freris, L.L, Prentice Hall, 1990, ISBN:9780139605277. Solar Energy Utilization", S.P. Sukhatme, 2nd Edition, 2005, Tata Mc. Graw Hill, ISBN:978- 	1	Non-Conventional Energy Sources, Rai, G.D, 5 th Edition, 2016, Khanna Publications, ISBN: 8174000738
 2 Principles of Solar Engineering, D. Y. Goswann, F. Kreith and J. F. Kreiter, Taylor and Francis, Philadelphia 2000, ISBN: 9781560327141. 3 Wind Energy Conversion Systems, Freris, L.L, Prentice Hall, 1990, ISBN:9780139605277. 4 Solar Energy Utilization", S.P. Sukhatme, 2nd Edition, 2005, Tata Mc. Graw Hill, ISBN:978- 		Dringing of Color Engineering D. V. Cognomi E. Kreith and I. E. Kreither Teylor and
 Francis, Philadelphia 2000, ISBN: 9781560327141. Wind Energy Conversion Systems, Freris, L.L, Prentice Hall, 1990, ISBN:9780139605277. Solar Energy Utilization", S.P. Sukhatme, 2nd Edition, 2005, Tata Mc. Graw Hill, ISBN:978- 	2	Principles of Solar Engineering, D. Y. Goswanii, F. Kreith and J. F. Kreither, Taylor and
 Wind Energy Conversion Systems, Freris, L.L, Prentice Hall, 1990, ISBN:9780139605277. Solar Energy Utilization", S.P. Sukhatme, 2nd Edition, 2005, Tata Mc. Graw Hill, ISBN:978- 		Francis, Philadelphia 2000, ISBN: 9781560327141.
4 Solar Energy Utilization", S.P. Sukhatme, 2 nd Edition, 2005, Tata Mc. Graw Hill, ISBN:978-	3	Wind Energy Conversion Systems, Freris, L.L, Prentice Hall, 1990, ISBN:9780139605277.
4	4	Solar Energy Utilization", S.P. Sukhatme, 2 nd Edition, 2005, Tata Mc. Graw Hill, ISBN:978-
0070260641.	4	0070260641.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	2	2	-	-	-	-	-
CO2	2	2	2	1	-	2	2	-	-	-	-	2
CO3	2	2	2	2	-	2	2	-	-	-	-	2
CO4	3	3	3	3	-	3	3	-	-	-	-	3

	Semester: V					
	APPLIED MATHEMATIC	S FOR CHEMICAL ENGINEERING				
-	(Group A: Pro	ofessional Core Elective)				
Cou	rse Code: 16CH5A3	CIE Marks: 100				
Cree	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	rs: 37L	SEE Duration: 3Hrs				
Cou	rse Learning Objectives: The students	will be able to				
1	Understand the fundamentals and backg	ground of numerical methods				
2	Know the methods of solving linear sys	tem of equations and algebraic equations				
3	Use least square method to carry out reg	gression analysis.				
4	Carry out numerical differentiation and	integration				
5	Know the methods to solve ODE using	numerical methods				
		UNIT-I				
Intro	oduction, Computation and Error Ana	lysis	07Hrs			
Acci	iracy and precision; Truncation and rol	und-off errors; Error propagation. Linear				
Syste Mote	ins and Equations	Nuce Elimination, Matrix Invession, III				
Door	ix representation; Cramer's rule; Ga	tion Matheda: Eigen Values Application				
nroh	lome	tion Methods, Eigen Values. Application				
proo						
		UNII-II	00 XX			
Alge	braic Equations		08 Hrs			
Brac	Bracketing methods: Bisection, Reguli-Falsi; Open methods: Secant, Fixed point					
itera	tion, Newton-Raphson; Multivariate Ne	wton's method. Application problems and				
com	putational tools.					
D			0.011			
Regi	ression and Curve Fitting		08Hrs			
Linear regression; Least squares; I otal Least Squares; Interpolation; Newton's						
Diffe	Difference Formulae; Cubic Splines. Problems and computational tools.					
Num	Numerical Differentiation and Integration 07H					
Num	Numerical differentiation; nigher order formulae. Trapezoidal rules; Simpson's rules;					
Quadrature, Applications and computational.						
	UNIT-V					
ODEs: Initial Value Problems						
Eule	rs methods; Runge-Kutta methods; B	oundary Value Problems Shooting				
meth	method; Finite differences; Over/Under Relaxation (SOR).					

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Recall the fundamentals of Numerical methods.				
CO2	Explain the algorithm for various Numerical Methods.				
CO 3	Choose appropriate numerical method to solve problems.				
CO 4	Solve chemical engineering problems using numerical methods.				
CO 5	Use computational tools to set up and solve the problems				

Reference Books

 Numerical Methods for Engineers, Gupta S.K, 2nd Edition, 2012, New Age International,1995 ISBN:9788122406511

2.	Chapra S.C. and Canale R.P., Numerical Methods for Engineers,7 th Edition, 2006, McGraw Hill Education India Private Limited, ISBN: 978-9352602131
3.	Introduction to Chemical Engineering Computing, Norman W. Loney, CRC Press, ISBN 9780849397783

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					C) - P) Mar	oping				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	1											
CO3	1								2			
CO4			3									
CO5					3							

Low-1 Medium-2 High-3

	Semester: V					
	PIPING ENGINEERING DESIGN					
	(Group A	: Professional Core Elective)				
Cou	rse Code: 16CH5A4	CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:1		SEE Marks: 100				
Hours: 36L		SEE Duration: 3Hrs				
Cou	Course Learning Objectives:					
1	Understand piping layout and pipe fitting requirements in a process industry					
2	2 Estimate pipe sizing and pressure loss in pipes					
3	3 Select material of construction of piping systems					
4	4 Identify methods of corrosion protection for the piping					
5	Suggest different methods of compensation for expansion of pipes					

Unit-I				
Fundamentals of Fluid Mechanics: Types of fluid flow, Continuity equation, Bernoulli's	07 Hrs			
equation, and Gas laws.	l			
Hydraulic Design Considerations: Design considerations for liquid and gas pipelines,				
Determination of pipe size, economic pipe sizing, pressure losses, measurement of flow in	l			
pipes, thrusts in pipe lines	l			
Metallurgy of Piping Materials: Selection of piping materials, physical properties of pipe	l			
materials, recommended piping materials	I			
Unit – II				
Pipes and Pipe Fittings: Codes and Standards, Types of pipe fittings- elbows, crosses,	07 Hrs			
tees, returns, flanges, ends, stubs, reducers, joints, gaskets	l			
Valves and Allied Fittings: Functions of valves, valve materials and methods of	l			
construction, pressure drop in valves, valve size, types of valves, safety relief valve, rupture	l			
disks, fire hydrants, and valve operators	L			
Unit -III				
Pipe Supports: Load on supports, primary and secondary supports, types of pipe supports:	07 Hrs			
hangers, anchors, racks, trestles, brackets, trunnion, stiffening ribs, pipe clamping, flexible				
hanger supports, supporting span of pipelines				
Unit –IV				
Piping Fabrication: Codes and standards, types of piping fabrication, welding joints in	08 Hrs			
pipe lines, welding processes used in piping fabrication, preparation of pipe edges, heat	l			
treatment of weld joints, inspection of weld joints, repair of defective weld joints	1			
Corrosion Erosion in Pipelines: Corrosion control, corrosion reaction, types of corrosion,	l			
anticorrosive protective coatings, cathodic protection of pipelines, abrasion.	l			
Unit –V				
Expansion effects and Compensating Methods: Pipe expansions, methods of	07 Hrs			
compensation, thermal force calculation, methods of compensation, permissible	1			
equivalent stresses caused by additional external loads expansion devices calculation of				
anchor force using a bellow material and life, use of hinged compensators.				
Thermal Insulation: Functions of thermal insulators, modes of heat transfer, insulating				
materials, temperature drop in a pipeline, application of insulation, calculation of				
condensate, de-superheaters				

Cours	Course Outcomes: After completing the course, the students will be able to			
CO 1	Recall the fundamentals of fluid flow, heat transfer, insulation and corrosion.			
CO 2	Calculate pressure losses in pipe and valves, determine supporting span of pipelines and weld efficiency			

CO 3	Apply the codes and standards for pipe sizing, valves, pipe fabrication, corrosion
	protection and insulation
CO 4	Compare and distinguish amongst materials of construction, pipe fittings, supports,
	corrosion protection methods and materials of insulation
CO 5	Analyze hydraulic design considerations, losses in valves and fittings, loads on supports,
	corrosion and insulation considerations

Ref	erence Books
1.	Piping Hand Book, Mohinder L. Nayyar, 7 th Edition, 1999, McGraw Hill Professional, ISBN 978-0070471061
2.	Handbook of Piping Design, G. K. Sahu, 2 nd Edition, 1999, New Age International Publishers, ISBN 978-8122424560
3.	Chemical Engineers Handbook, R.H.Perry, D.W.Green, 8 th Edition, 2007, McGraw Hill Education, ISBN: 978-0071422949
4.	Fundamentals of piping Design, Peter Smith, 2007, Gulf Publishing Company, ISBN 978- 1933762043

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	2							
CO2	3	1	1	3	3							
CO3	1				3							
CO4				3	3	2						
CO5	3	2	2	3	3	2						

		Semester: V				
	BIOINFORMATICS					
		(Group B: Global Elective)				
Cour	rse Code: 16G5B01		CIE Marks: 100			
Cred	its :L:T:P:S: 4:0:0:0		SEE Marks: 100			
Hour	rs:04		SEE Duration: 3Hrs			
Cou	rse Learning Objectives:					
1	1 Understand the underlying technologies of Bioinformatics and Programming					
2	Explore the various algorithm	ns behind the computational geno	mics and proteomic structural			
	bioinformatics, modeling and simulation of molecular systems.					
3	3 Apply the tools and techniques that are exclusively designed as data analytics to investigate the					
	significant meaning hidden behind the high throughput biological data.					
4	4 Analyze and evaluate the outcome of tools and techniques employed in the processes of					
	biological data preprocessing and data mining.					

Unit-I

Umt-1		
Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of	09 Hrs	
Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon		
degeneracy, Genes and Genomes. Bioinformatics & Biological Databases:		
Introduction to Bioinformatics, Goals, Scope, Applications in biological science		
and medicine. Biological databases - Sequence, structure, Special Databases and		
applications - Genome, Microarray, Metabolic pathway, motif, and domain		
databases. Mapping databases - genome wide maps. Chromosome specific		
human maps.		
Unit – II		
Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and	09 Hrs	
Multiple sequence alignment, Alignment algorithms (Needleman & Wunch,		
Smith & Waterman and Progressive global alignment). Database Similarity		
Searching- Scoring matrices – BLOSSUM and PAM, Basic Local Alignment		
Search Tool (BLAST), and FASTA. Next Generation Sequencing – Alignment		
and Assembly. Molecular Phylogenetics: Introduction, Terminology, Forms of		
Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based		
& Character-Based Methods and Phylogenetic Tree evaluation.		
Unit -III		
Predictive methods: Predicting secondary structure of RNA, Protein and Genes -	09 Hrs	
algorithms to predict secondary structure of RNA, Protein and Gene. Prediction of		
Tertiary structure of Protein, Protein identity and Physical properties of protein.		
Molecular Modeling and Drug Designing: Introduction to Molecular Modeling.		

Methods of Molecular Modeling and Force Fields used in Molecular Modeling. Drug designing process - deriving Pharmacophore, Receptor Mapping, Estimating Receptor-Ligand interactions and Molecular Docking.

Unit –IV

Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions (REGEX), Components of REGEX - Operators, Metacharacters and Modifiers. Subroutines – types of functions, defining and calling functions in Perl, calling function - call by value and call by reference. Object Oriented Programming in Perl–Class and object, Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package. Perl Module – writing and calling module.

Unit –V	
BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl -	09 Hrs
Sequence retrieval from Database and submission of sequence to online Database,	
Indexing and accessing local databases, Transforming formats of database record,	
Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple	
sequence alignment, Restriction mapping. Identifying restriction enzyme sites, acid	
cleavage sites, searching for genes and other structures on genomic DNA, Parsing	
BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and	
Phylogenetic tree manipulation, creating graphics for Sequence display and	
Annotation.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the Architecture and Schema of online databases including structure of
	records in these databases.
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in
	Biology, Chemical Engineering, and Medicine.
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to
	process simulation and process engineering in Biological system.
CO4:	Use Bioinformatics tools and Next Generation Technologies to model and simulate
	biological phenomenon.

Refer	ence Books
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text processing and scripting, O'Reilly Media, Inc., 4 th edition, 2012, ISBN-13:
	978-0596004927
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary
	Approach, new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624
2	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R
5	and MySQL, Oxford University Press, 1st edition, 2009, ISBN
4	D. C. Young. Computational Drug Design: A Guide for Computational and
	Medicinal Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-
	0470126851.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

R V College of Engineering- Bengaluru-59

	Semester: V						
	FUEL CELL TECHNOLOGY						
	(Group B: Glo	bal Elective)					
Course Code: 16G5B02 CIE Marks: 100		CIE Marks: 100					
Credits: L:T:P:S:: 4:0:0:0		SEE Marks: 100					
Hours: 45L		SEE Duration: 3Hrs					
Cour	Course Learning Objectives: The students will be able to						
1	1 Recall the concept of fuel cells						
2	2 Distinguish various types of fuel cells and their functionalities						
3	3 Know the applications of fuel cells in various domains						
4	Understand the characterization of fuel cells						

UNIT-I

Introduction: Fuel cell definition, historical developments, working principle of fuel cell, 09Hrs components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties. UNIT-II Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel 09Hrs cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each . UNIT-III Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum 09Hrs efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation. **UNIT-IV** Fuel Cell Characterization: current - voltage curve, in-situ characterization, current -09Hrs current interrupt voltage measurement, measurement, cyclic voltammetry, electrochemical impedance spectroscopy and ex-situ characterization techniques. **UNIT-V**

Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen 09 Hrs production, storage, handling and safety issues.

Cou	Course Outcomes: After completing the course, the students will be able to				
1	Understand the fundamentals and characteristics of fuel cells				
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems				
3	Analyze the performance of fuel cells using different characterization techniques				
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems				

Ref	erence Books
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

Semester: V							
	GEOINFORMATICS						
	(Group B: Global Elective)						
Cou	rse Code:16G5B03	CIE Marks: 100					
Hrs/	/Week: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Cree	dits: 48L	SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to						
1	To understand concept of using ph	otographic data to determine relative positions of					
I	points						
2	To study the use of electromagnetic energy for acquiring qualitative and quantitati						
4	² land information						
3	3 To analyze the data gathered from various sensors and interpret for various applications						
4	To understand the various application	ns of RS, GIS and GPS					

UNIT-I

UNIT-I	
Remote Sensing- Definition, types of remote sensing, components of remote	10 Hrs
sensing, Electromagnetic Spectrum, Black body, Atmospheric windows, energy	
interaction with earth surface features. spectral reflectance curve- physical basis	
for spectra reflectance curve, false color composite. Platforms and sensors. Sensor	
resolutions. Types of satellites- Indian and other remote sensing satellites (IRS,	
IKONS and Landsat). Concept of image interpretation and analysis - Principle of	
visual interpretation, recognition elements. Fundamentals of image rectification.	
Digital Image classification - supervised and unsupervised	
UNIT-II	
Photogrammetry: Introduction types of Photogrammetry, Advantages of	10 Hrs
Photogrammetry, Introduction to digital Photogrammetry. Locating points from	
two phases determination of focal length.	
Aerial Photogrammetry: Advantages over ground survey methods - geometry of	
vertical phographs, scales of vertical photograph. Ground coordination- relief	
displacement, scale ground coordinates – flight planning	
UNIT-III	1
Geographic Information System- Introduction, Functions and advantages,	10 Hrs
sources of data for GIS. Database – Types, advantages and disadvantages. Data	
Management – Transformation, Projection and Coordinate systems. Data input	
methods, Data Analysisoverlay operations, network analysis, spatial analysis.	
Outputs and map generation Introduction to GPS- components and working	
principles	
UNIT-IV	
Applications of GIS, Remote Sensing and GPS: Case studies on Water	09 Hrs
Resources engineering and management (prioritization of river basins, water	
perspective zones and its mapping), Case studies on applications of GIS and RS	
in highway alignment, Optimization of routes, accident analysis, Environmental	
related studies. Case studies on applications of GIS and RS in Disaster	
Management (Case studies on post disaster management - Earthquake and tsunami	
and pre disaster management - Landslides and floods) Urban Planning &	
Management - mapping of zones, layouts and infrastructures.	

	UNIT-V					
Ар	Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) 09 Hrs					
map	mapping. Case studies on infrastructure planning and management- Case studies					
on	urban sprawl. Change detection studies - case studies on forests and urban					
area	area. Case studies on agriculture. Applications of geo-informatics in natural					
reso	resources management: Geo Technical case Studies, site suitability analysis					
for	for various applications.					
Cou	Course Outcomes: After completing the course, the students will be able to					
1	1 Understand the principle of Remote Sensing (RS) and Geographical Information					
	Systems (GIS) data acquisition and its applications.					
2	2 Apply RS and GIS technologies in various fields of engineering and social needs.					
3	3 Analyze and evaluate the information obtained by applying RS and GIS technologies.					
4	4 Create a feasible solution in the different fields of application of RS and GIS.					

Reference Books

1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3rd Edition,
	Wiley India Pvt. Ltd. New Delhi, 2009.
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5th
	Edition, John Wiley Publishers, New Delhi, 2007.
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New
	Delhi, 2009

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

Low-1 Medium-2 High-3

Semester: V					
GRA	APH THEORY				
(Group B : Global Elective)					
Course Code:16G5B04		CIE Marks: 100			
Credits: L:T:P:S: 4:0:0:0		SEE Marks: 100			
Hours: 45L		SEE Duration: 3 Hrs			

Cou	rse Learning Objectives: The students will be able to
1	Understand the basics of graph theory and their various properties.
2	Model problems using graphs and to solve these problems algorithmically.
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.
4	Optimize the solutions to real problems like transport problems etc

UNIT-I	
Introduction to graph theory	09 Hrs
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees	
and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	
in digraphs.	
UNIT-II	
Graph representations, Trees, Forests	09 Hrs
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	
properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes,	
Spanning trees and forests, Spanning trees of complete graphs, An application to	
electrical networks, Minimum cost spanning trees.	
UNIT-III	
Fundamental properties of graphs and digraphs	09 Hrs
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted	
graphs, Eulerian digraphs.	
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	
theorem, Dual of a planar graphs.	
UNIT-IV	
Matchings and Factors	09 Hrs
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite	
matching.	
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynomial	
of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs,	
Edge coloring of graphs	
UNIT-V	
Graph algorithms	09Hrs
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path	
algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms,	
Algorithm of Kruskal's and Prim's.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the basics of graph theory.	
CO2. Analyse the significance of graph theory in different engineering disciplines	
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.
------	--
CO4.	Evaluate or synthesize any real world applications using graph theory.

Reference Books 1. Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003 ISBN-0130144002.
 Introduction to graph theory, Douglas B. West, 2nd Edition, 2001, PHI, ISBN- 9780130144003 ISBN-0130144002. Crearly Theorem modeling Applications and Algorithms Cain Agreement Computer Statement Statemen
ISBN-0130144002.
2 Create Theory modeling Applications and Algorithms, Coin Assessor, Dermand Creations
2. Graph Theory, modeling, Applications and Algorithms, Gelf Agnarsson, Raymond Greeniaw
Pearson Education, 1 st Edition,2008, ISBN- 978-81-317-1728-8.
3. Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3 rd Edition,
2010,PHI, ISBN:9780262033848

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

Low-1 Medium-2 High-3

	Semester: V									
	ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING									
	(Group B: Global Elective)									
Cou	rse Code: 16G5B05		CIE Marks: 100							
Crea	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100							
Hou	rs: 46L		SEE Duration: 3Hrs							
Cou	rse Learning Objectives: 7	The students will be able to								
1	Define what is Neural Network and model a Neuron and Express both Artificial Intelligence									
1	and Neural Network									
2	Analyze ANN learning, l	Error correction learning, Memory-	based learning, Hebbian learning,							
4	Competitive learning and Boltzmann learning									
	Implement Simple perception, Perception learning algorithm, Modified Perception learning									
3	3 algorithm, and Adaptive linear combiner, Continuous perception, learning in continue									
	perception.									
	Analyze the limitation o	f Single layer Perceptron and Dev	velop MLP with 2 hidden layers,							
4	Develop Delta learning r	rule of the output layer and Multil	ayer feed forward neural network							
	with continuous perceptio	ons,								

UNIT-I					
Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,	08 Hrs				
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,					
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical					
notes.					
UNIT-II					
Learning Processes: Introduction, Error correction learning, Memory-based learning,	10 Hrs				
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,					
learning with and without teacher, learning tasks, Memory and Adaptation.					
UNIT-III					
Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple perception, Perception learning algorithm, Modified Perception learning algorithm, Adaptive linear combiner, Continuous perception, Learning in continuous perception. Limitation of Perception.	10 Hrs				
UNIT-IV					
Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers, Simple layer of a MLP, Delta learning rule of the output layer, Multilayer feed forward neural network with continuous perceptions. Generalized delta learning rule. Back propagation algorithm	10 Hrs				
INIT-V					
Introduction to Deep learning : Neuro architectures as necessary building blocks for the DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks, Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and examples (Google, image/speech recognition)	08 Hrs				

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.								
CO2:	Perform Pattern Recognition, Linear classification.								
CO3:	Develop different single layer/multiple layer Perception learning algorithms								
CO4:	Design of another class of layered networks using deep learning principles.								

Refe	erence Books
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson
	Prentice Hall, ISBN-13: 978-0-13-147139-9
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing
	Company, ISBN: 9780534954604
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-
	262-11255-8
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	I	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

	Semester: V										
	HYBRID ELECTRIC VEHICLES										
(Group B: Global Elective)											
Cou	Course Code : 16G5B06 CIE Marks : 100										
Crec	lits : L:T:P:S 4:0:0:0	SEE Marks : 100									
Hou	rs : 45L	SEE Duration : 3Hrs									
Cou	rse Learning Objectives: The students	will be able to,									
1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies										
1	fundamentals.										
C	Explain plug – in hybrid electric vehi	cle architecture, design and component sizing and the power									
Z	electronics devices used in hybrid electronic	ric vehicles.									
2	Analyze various electric drives suitable for hybrid electric vehicles and Different energy storage										
3	⁵ technologies used for hybrid electric vehicles and their control.										
	Demonstrate different configurations of electric vehicles and its components, hybrid vehicle										
4	configuration by different techniques,	sizing of components and design optimization and energy									
	management.										

Unit-I

Unit-I					
Introduction: Sustainable Transportation, A Brief History of HEVs, Why EVs Emerged and	07 Hrs				
Failed, Architectures of HEVs, Interdisciplinary Nature of HEVs, State of the Art of HEVs,					
Challenges and Key Technology of HEVs.					
Hybridization of the Automobile: Vehicle Basics, Basics of the EV, Basics of the HEV, Basics					
of Plug-In Hybrid Electric Vehicle (PHEV), Basics of Fuel Cell Vehicles (FCVs).					
Unit-II					
HEV Fundamentals: Introduction, Vehicle Model, Vehicle Performance, EV Powertrain	10 Hrs				
Component Sizing, Series Hybrid Vehicle, Parallel Hybrid Vehicle, Wheel Slip Dynamics.					
Plug-in Hybrid Electric Vehicles: Introduction to PHEVs, PHEV Architectures, Equivalent					
Electric Range of Blended PHEVs, Fuel Economy of PHEVs, Power Management of PHEVs,					
Component Sizing of EREVs, Component Sizing of Blended PHEVs, Vehicle-to-Grid					
Technology.					
Unit-III					
Power Electronics in HEVs: Power electronics including switching, AC-DC, DC-AC	10 Hrs				
conversion, electronic devices and circuits used for control and distribution of electric power,					
Thermal Management of HEV Power Electronics.					
Batteries, Ultracapacitors, Fuel Cells, and Controls: Introduction, Different batteries for EV,					
Battery Characterization, Comparison of Different Energy Storage Technologies for HEVs,					
Battery Charging Control, Charge Management of Storage Devices, Flywheel Energy Storage					
System, Hydraulic Energy Storage System, Fuel Cells and Hybrid Fuel Cell Energy Storage					
System and Battery Management System.					
Unit-IV					
Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor Drives,	10Hrs				
Permanent Magnet Motor Drives, Switched Reluctance Motors, Doubly Salient Permanent					
Magnet Machines, Design and Sizing of Traction Motors, Thermal Analysis and Modelling of					
Traction Motors. (only functional treatment to be given)					

Unit-V								
Integration of Subsystems: Matching the electric machine and the interr	1 combustion engine 08Hrs							
(ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage								
technology, Communications, supporting subsystems.								
Energy Management Strategies: Introduction to energy management strategies	egies used in hybrid							
and electric vehicle, classification of different energy management stra	gies, comparison of							
different energy management strategies, implementation issues of energy str	regies.							
Course Outcomes: After completing the course, the students will be abl	to							
1 Explain the basics of electric and hybrid electric vehicles, their	architecture, technologies and							
fundamentals.	C C							
2 Evaluate the performance of electrical machines and power electronics	converters in HEVs.							
3 Analyse the different energy storage devices used for hybrid electric v	hicles, their technologies and							
control and select appropriate technology	C C							
4 Design and evaluate the sizing of subsystem components and Energy	anagement strategies in HEVs.							
Reference Books:								
1 Hybrid Electric Vehicle: Principles and Applications with Practical	Perspectives Mi Chris Masrur							
A and Gao D W Wiley Publisher 1 st Edition 2011 ISBN:0-824-776	3_5							
2 Ali Modern Electric Hybrid electric and Eucl Cell Vehicles Ebsa	Mehrdad Gao Vimin E Gay							
2. All, Wodelli Electric, Hybrid electric and Fuel Cert Veneres, Elisa Sabastian Emadi CRC Prass 1st Edition 2005 ISBN: 0.8403-3154	Λ							
2 Modern Electric Vehicle Technology Chen. C.C. Chen. V.T. Owfer	t. University Dress							
5. Wodern Electric venicle rechnology, Chan, C.C., Chau, K.T. Oxford University Press,								
2001, ISBN 0-19-850410-0.								
4. Hybrid Electric Vehicles: Energy Management Strategies, Simona	Onori, Lorenzo Serrao, Giorgio							
Rizzoni, <i>ISBN</i> : 978-1-4471-6779-2.								

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3 : Medium-2 : Low-1

Chemical Engineering

V Semester									
OPTIMIZATION TECHNIQUES									
(Group B: Global Elective)									
Course Code : 16G5B07 CIE Marks : 100									
Credits : L: T: P: S:4:0:0:0 SEE Marks : 100									
Hours: 44L SEE Duration: 03 Hrs									
Course Learning Objectives: The students will be able to									
1. To understand the concepts behind optimization techniques.									
2. To explain the modeling frameworks for solving problems using optimization techniques.									
3. To design and develop optimization models for real life situations.									
4. To analyze solutions obtained using optimization methods.									
5. To compare models developed using various techniques for optimization.									
UNIT – I									
Introduction: OR Methodology, Definition of OR, Application of OR to Engineering and	09 Hrs								
Managerial problems, Features of OR models, Limitations of OR.									
Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution									
Space, Types of solution – Feasible, Basic Feasible, Degenerate, Solution through									
Graphical Method. Problems on Product Mix, Blending, Marketing, Finance, Agriculture									
and Personnel.									
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables.									
UNIT – II									
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes in RHS, Changes in objectives, Primal-Dual relationships, Economic									
interpretation of duality, Post optimal analysis - changes affecting feasibility and									
UNII – III Transmentation Ducklam: Formulation of Transmentation Model Davis Forsible Solution	00 II								
Iransportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North West corner. Least Cost, Vegel's Approximation Method. Optimality Methods	UO HIS								
Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants, in									
Transportation Problems									
Assignment Problem: Formulation of the Assignment problem solution method of									
assignment problem-Hungarian Method. Variants in assignment problem. Travelling									
Salesman Problem (TSP).									
UNIT – IV									
Oueuing Theory : Oueuing system and their characteristics. The M/M/I Oueuing system.	09Hrs								
Steady state performance analyzing of M/M/1 queuing models. Introduction to M/M/C and									
M/Ek/1 queuing models									
Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without									
saddle point - Arithmetic method, Graphical Method, The rules of dominance									
UNIT – V									
Markov chains: Definition, Absolute and n-step transition probabilities, Classification of									
the states, Steady state probabilities and mean return times of ergodic chains, First passage									
times, Absorbing states. Applications in weather prediction and inventory management.									
Over view of OR software's used in practice.									

Course Outcomes: After going through this course the student will be able to

R V College of Engineering- Bengaluru-59

CO1	Understand the various optimization models and their areas of application.
CO2	Explain the process of formulating and solving problems using optimization methods.
CO3	Develop models for real life problems using optimization techniques.
CO4	Analyze solutions obtained through optimization techniques.
CO5	Create designs for engineering systems using optimization approaches.

Reference Books:

1.	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw
	Hill, ISBN 13: 978-0-07-133346-7
4.	Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education
	Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

	V Semester								
	SENSORS & APPLICATIONS								
	(Group B: Global Elective)								
Cou	rse Code:16G5B08	CIE Marks: 100							
Cred	lits/Week: L:T:P:S:4:0:0:0	SEE Marks: 100							
Hou	Hours:44L SEE Duration: 3Hrs								
Cou	Course Learning Objectives: The students will be able to								
1	Impart the principles and working mode	es of various types of Resistive, Inductive, Capacitive,							
	Piezoelectric and Special transducers.								
2	2 Give an idea about the applications of various transducers and selection criteria of a transducer								
	for a particular application.								
3	Give an insight into the static and dynam	ic characteristics of different orders of instruments.							
4	Describe different data conversion techn	iques and their applications.							

UNIT-I	
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs
Advantages of Electrical transducers.	
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, Applications and Problems.	L
UNIT-II	
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs
compensation, advantages and disadvantages of thermocouple.	
LVDT: Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	
between plates and change of dielectric constants, Applications of Capacitive Transducers	
and problems.	
UNIT-III	
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs
electric materials, equivalent circuit, loading effect, and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic	
of the design of sensor, applications.	
UNIT-IV	
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs
potential sensor.	
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled	
device.	
Tactile sensors: Construction and operation, types.	
UNIT-V	r
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary	07 Hrs
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and	
Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain	
Amplifier.	l

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Remember and understand the basic principles of transducers and smart sensors.								
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation								
	systems.								
CO3:	Analyze and evaluate the performance of different sensors for various applications.								

Chemical Engineering

CO4: Design and create a system using appropriate sensors for a particular application

Referen	nce Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3 rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

	Semester: V						
INTRODUCTION TO MANAGEMENT INFORMATION SYSTEMS							
Course Code: 16C5B00	Group B: Global Elective) CIE Morkey 100						
Course Coue: 10G5D09	SEE Marks: 100						
Hours :451	SEE Marks: 100 SEE Duration: 3Hrs						
Course Learning Objectives: The st	udents will be able to						
1 To understand the basic principle	s and working of information technology.						
2 Describe the role of information t	echnology and information systems in business.						
3 To contrast and compare how	internet and other information technologies suppor	t business					
processes.							
4 To give an overall perspective	of the importance of application of internet techn	ologies in					
business administration.		U					
· ·	UNIT I						
Information Systems in Global Bu	siness Today: The role of information systems in	09 Hrs					
business today, Perspectives on in	formation systems, Contemporary approaches to						
information systems, Hands-on MIS	projects. Global E-Business and Collaboration :						
Business process and information	systems, Types of business information systems,						
Systems for collaboration and team v	vork, The information systems function in business.						
A Case study on E business.							
	UNIT II						
Information Systems, Organizatio	ns and Strategy: Organizations and information	09 Hrs					
systems, How information systems	impact organization and business firms, Using						
information systems to gain compe	itive advantage, management issues, Ethical and						
Social issues in information System	s: Understanding ethical and Social issues related to						
information society A Case study on	husiness planning						
Information society. A Case study on							
IT Infrastructure and Emerging	Technologies · IT infrastructure Infrastructure	A0 Hrs					
components Contemporary hardware	a platform trends. Contemporary software platform	09 1115					
trends Management issues. Securin	g Information Systems: System vulnerability and						
abuse Business value of security an	d control Establishing framework for security and						
control. Technology and tools for t	protecting information resources. A case study on						
cybercrime.							
UNIT IV							
Achieving Operational Excellence and Customer Intimacy: Enterprise systems							
Supply Chain Management (SCM) s	ystems, Customer relationship management (CRM)						
systems, Enterprise application. E-commerce: Digital Markets Digital Goods: E-							
commerce and the internet, E-commerce-business and technology, The mobile digital							
platform and mobile E-commerce, Building and E-commerce web site. A Case study on							
ERP.							
Managing Knowledge: The kno	wledge management landscape, Enterprise-wide	09 Hrs					
knowledge management system, k	nowledge work systems, Intelligent techniques.						
Enhancing Decision Making: Dec	ision making and information systems, Business						
intelligence in the enterprise. Busines	s intelligence constituencies. Building Information						
Systems: Systems as planned organiz	ational change, Overview of systems development.						

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand and apply the fundamental concepts of information systems.
CO2:	Develop the knowledge about management of information systems.
CO3:	Interpret and recommend the use information technology to solve business problems.
CO4:	Apply a framework and process for aligning organization's IT objectives with business
	strategy.
Referer	ace Books
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane
	P. Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10 th Edition,
	2011, Global McGraw Hill, ISBN: 978-0072823110
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson
	Education, ISBN:978-0130617736
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:
	9780070616349

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

INDUSTRIAL AUTOMATION (Group B: Global Elective)Course Code: 16G5B10CIE Marks: 100Credits: L:T:P:S : 4:0:0:0SEE Marks: 100Hours: 44LSEE Duration: 3 HrsCourse Learning Objectives: The students should be able to:11Identify types of actuators, sensors and switching devices for industrial automation2Explain operation and controls of Hydraulic and Pneumatic systems3Understand fundamentals of CNC, PLC and Industrial robots4Define switching elements and sensors which are interfaced in an automation system5Describe functions of Industrial switching elements and Inspection technologies for automation6Select sensors to automatically detect motion of actuators7Develop manual part programs for CNC and Ladder logic for PLC					
(Group B: Global Elective)Course Code: 16G5B10CIE Marks: 100Credits: L:T:P:S : 4:0:0:0SEE Marks: 100Hours: 44LSEE Duration: 3 HrsCourse Learning Objectives: The students should be able to:1Identify types of actuators, sensors and switching devices for industrial automation2Explain operation and controls of Hydraulic and Pneumatic systems3Understand fundamentals of CNC, PLC and Industrial robots4Define switching elements and sensors which are interfaced in an automation system5Describe functions of Industrial switching elements and Inspection technologies for automation6Select sensors to automatically detect motion of actuators7Develop manual part programs for CNC and Ladder logic for PLC					
Course Code: 1003B10CHE Marks: 100Credits: L:T:P:S : 4:0:0:0SEE Marks: 100Hours: 44LSEE Duration: 3 HrsCourse Learning Objectives: The students should be able to:11Identify types of actuators, sensors and switching devices for industrial automation2Explain operation and controls of Hydraulic and Pneumatic systems3Understand fundamentals of CNC, PLC and Industrial robots4Define switching elements and sensors which are interfaced in an automation system5Describe functions of Industrial switching elements and Inspection technologies for automation6Select sensors to automatically detect motion of actuators7Develop manual part programs for CNC and Ladder logic for PLC					
Hours: 44LSEE Marks. 100Hours: 44LSEE Duration: 3 HrsCourse Learning Objectives: The students should be able to:1Identify types of actuators, sensors and switching devices for industrial automation2Explain operation and controls of Hydraulic and Pneumatic systems3Understand fundamentals of CNC, PLC and Industrial robots4Define switching elements and sensors which are interfaced in an automation system5Describe functions of Industrial switching elements and Inspection technologies for automation6Select sensors to automatically detect motion of actuators7Develop manual part programs for CNC and Ladder logic for PLC					
Induits: 442Ourse Learning Objectives: The students should be able to:1Identify types of actuators, sensors and switching devices for industrial automation2Explain operation and controls of Hydraulic and Pneumatic systems3Understand fundamentals of CNC, PLC and Industrial robots4Define switching elements and sensors which are interfaced in an automation system5Describe functions of Industrial switching elements and Inspection technologies for automation6Select sensors to automatically detect motion of actuators7Develop manual part programs for CNC and Ladder logic for PLC					
 Identify types of actuators, sensors and switching devices for industrial automation Explain operation and controls of Hydraulic and Pneumatic systems Understand fundamentals of CNC, PLC and Industrial robots Define switching elements and sensors which are interfaced in an automation system Describe functions of Industrial switching elements and Inspection technologies for automation Select sensors to automatically detect motion of actuators Develop manual part programs for CNC and Ladder logic for PLC 					
 2 Explain operation and controls of Hydraulic and Pneumatic systems 3 Understand fundamentals of CNC, PLC and Industrial robots 4 Define switching elements and sensors which are interfaced in an automation system 5 Describe functions of Industrial switching elements and Inspection technologies for automation 6 Select sensors to automatically detect motion of actuators 7 Develop manual part programs for CNC and Ladder logic for PLC 					
 3 Understand fundamentals of CNC, PLC and Industrial robots 4 Define switching elements and sensors which are interfaced in an automation system 5 Describe functions of Industrial switching elements and Inspection technologies for automation 6 Select sensors to automatically detect motion of actuators 7 Develop manual part programs for CNC and Ladder logic for PLC 					
 4 Define switching elements and sensors which are interfaced in an automation system 5 Describe functions of Industrial switching elements and Inspection technologies for automation 6 Select sensors to automatically detect motion of actuators 7 Develop manual part programs for CNC and Ladder logic for PLC 					
 5 Describe functions of Industrial switching elements and Inspection technologies for automation 6 Select sensors to automatically detect motion of actuators 7 Develop manual part programs for CNC and Ladder logic for PLC 					
 6 Select sensors to automatically detect motion of actuators 7 Develop manual part programs for CNC and Ladder logic for PLC 					
7 Develop manual part programs for CNC and Ladder logic for PLC					
8 Develop suitable industrial automation systems using all the above concepts					
UNIT-I					
Automation in Production Systems:08 Hrs					
Manufacturing support systems, Automation principles and strategies, Levels of Automation,					
Production Concepts and Mathematical models, Numericals					
Automated Production Lines:					
INIT_II					
Switching theory and Industrial switching elements					
Binary elements, binary variables, Basic logic gates, Theorems of switching algebra, Algebraic					
simplification of binary function, Karnough maps, Logic circuit design, problems.					
Electromechanical relays, Moving part logic elements, Fluidic elements, Timers, Comparisons					
between switching elements, Numericals					
Industrial Detection Sensors and Actuators:					
Introduction, Limit switches, Reed switches, Photoelectric sensors- methods of detection, Hall					
effect sensors, Inductive proximity sensors, Capacitive proximity sensors, Pneumatic back					
pressure sensors, Absolute encoder, Incremental encoder, Pressure switches and temperature					
switches; their working principles and applications, Brushless DC motors, Stepper motors and					
Servo motors					
UNIT-III UNIT-III UNIT-III					
Hydraulic Control circuits IV Hrs					
Regenerative Circuit application Pump unloading circuit Double Pump Hydraulic System speed					
control circuits accumulator circuits					
Pneumatic Control circuits					
Components. Symbolic representations as per ISO 5599. Indirect control of double acting					
cylinders, memory control circuit, cascading design, automatic return motion, quick exhaust valve					
circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits.					
UNIT-IV					
Introduction to CNC 08 Hrs					
Numerical control, components of CNC, classification, coordinate systems, motion control					
strategies, interpolation, programming concepts					
Industrial Robotics					
Components of Robots, base types, classification of robots, end of arm tooling, robot precision of					
movement, programming, justifying the use of a robot, simple numericals					
UN11-V Drogrommable logic control systems					

Difference between relay and PLC circuits, PLC construction, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic.

Programming exercises on PLC with Allen Bradley controller

Programming exercises on motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course Outcomes: After completing the course, the students will be able to

1	Illustrate applications of sensors actuators, switching elements and inspection technologies in industrial
	automation
2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its application
	areas
3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres

- 3 Evaluate CNC programs for 2D complex profiles performed on machining and turning centres interfaced with Robots
- 4 Develop suitable industrial automated system integrating all of the above advanced automation concepts

Reference Books

1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls, Joji P, 1st Edition, Wiley India, ISBN – 978–81–265–1542–4
3.	Fluid Power with Applications, Anthony Esposito, 7 th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

	Semester: V					
	TELECOMMUNICATION SYSTEMS					
	(Group B: Glob	oal Elective)				
Cou	Course Code: 16G5B11 CIE Marks: 100					
Crea	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100					
Hou	Hours: 46L SEE Duration: 03Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Represent schematic of communication system and identify its components.					
2	2 Classify satellite orbits and sub-systems for communication.					
3	3 Analyze different telecommunication services, systems and principles.					
4	4 Explain the role of optical communication system and its components.					
5	5 Describe the features of wireless technologies and standards.					

UNIT-I				
Introduction to Electronic Communication: The Significance of Human	09 Hrs			
Communication, Communication Systems, Types of Electronic Communication,				
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of				
Communication Applications.				
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.				
UNIT-II				
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	10 Hrs			
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.				
Wideband Modulation: Spread spectrum, FHSS, DSSS.				
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time				
division multiplexing				
Multiple Access: FDMA, TDMA, CDMA, Duplexing.				
UNIT-III				
Satellite Communication:	09 Hrs			
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,				
Satellite Applications, Global Positioning System.				
UNIT-IV				
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-	09 Hrs			
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division				
Multiplexing, Passive Optical Networks.				
UNIT-V				
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.	09 Hrs			
Advanced Mobile Phone System (AMPS)				
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell				
Phones.				
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless				
Networks, WiMAX and Wireless Metropolitan-Area Networks.				
A				
Course Outcomes: After completing the course, the students will be able to				
CO1 Describe the basics of communication systems.				

COI	Describe the basics of communication systems.
CO2	Analyze the importance of modulation and multiple access schemes for communication
	systems.
CO3	Compare different telecommunication generations, wired and wireless communication.
004	

CO4 Justify the use of different components and sub-system in advanced communication systems.

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

	Semester: V						
	COMPUTATIONAL ADVANCED NUMERICAL METHODS						
		(Group B: Global Elective)					
Cou	Course Code:16G5B12 CIE Marks: 100						
Cred	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hours: 44L SEE Duration: 3Hrs							
Cou	rse Learning Objectives:						
1	Adequate exposure to learn	n alternative methods and analyze mathematical pro	blems to				
	determine the suitable numer	ical techniques.					
2	Use the concepts of interpola	ation, eigen value problem techniques for mathematical	problems				
	arising in various fields.						
3	3 Solve initial value and boundary value problems which have great significance in engineering						
	practice using ordinary differential equations.						
4	4 Demonstrate elementary programming language, implementation of algorithms and computer						
	programs to solve mathematical problems.						
	Unit-I						
Algebraic and Transcendental equations:							
Roots of equations in engineering practice, Polynomials and roots of equations, Fixed point							
iterative method, Aitken's process, Muller's method, Chebychev method.							
	Unit – II						

Interpolation: 08 Hrs Introduction to finite differences, Finite differences of a polynomial, Divided differences and Newton's divided difference interpolation formula, Hermite interpolation, Spline interpolation–linear, quadratic and cubic spline interpolation. 08 Hrs

Unit –III	
Ordinary Differential Equations:	09 Hrs
Solution of second order initial value problems-Runge-Kutta method, Milne's method,	
Boundary value problems (BVP's)-Shooting method, Finite difference method for linear	
and nonlinear problems, Rayleigh-Ritz method.	
Unit –IV	
Eigen value problems:	09 Hrs
Eigen values and Eigen vectors, Power method, Inverse Power method, Bounds on Eigen	
values, Greschgorin circle theorem, Jacobi method for symmetric matrices, Givens method.	
Unit –V	
Computational Techniques:	10 Hrs
Algorithms and Matlab programs for Fixed point iterative method, Aitken's-process,	
Muller's method, Chebychev method, Newton's divided difference method, Hermite	
interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta	

interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta method, Milne's method, Shooting method, Rayleigh-Ritz method, Jacobi method and Givens method.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen					
	value problems, Differential equations and corresponding computational techniques.					
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and					
	transcendental equations, Ordinary differential equations and eigen value problems.					
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,					
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems					
	numerically using computational techniques.					
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the					
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value					

	problems arising in engineering practice.
Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9 th Edition, 2012, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4 th Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill, 5 th Edition, 2011, ISBN-10: 0-07-063416-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

Semester: V									
BASICS OF AEROSPACE ENGINEERING									
	(Group B: Global Elective)								
Course Code: 16GE5B13		CIE Marks: 100							
Credits: L:T:P:S: 4:0:0:0		SEE Marks: 100							
Hours: 44L		SEE Duration: 3Hours							

Course Learning Objectives:

To enable the students to:

- 1 Understand the history and basic principles of aviation
- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I						
Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships,	08 Hrs					
Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions. Introduction to Unconventional and Autonomous Air vehicles						
Unit II						
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.						
Unit –III						
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types						
of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines, Introduction to ramjets and scramjets, Comparative merits and demerits of different types Engines.	07 Hrs					

Unit –IV					
Introduction to Space Flight : History of space flight, Evolution of Indian Space Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories. Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets, Types of rockets.	08 Hrs				
Unit –V					
Aerospace Structures and Materials : Introduction, General types of construction,					
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage					
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum	07 Hrs				
alloy, titanium, stainless steel and composite materials, Low temperature and high					
temperature materials.					

Cot	irse Outcomes:								
At t	At the end of this course the student will be able to :								
1	Appreciate and apply the basic principles of aviation								
n	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and								
2	aircraft materials during the development of an aircraft								
3	Comprehend the complexities involved during development of flight vehicles.								

4 Evaluate and criticize the design strategy involved in the development of airplanes

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York, ISBN:1118174208, 9781118174203.
3	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

VI SEMESTER							
INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP							
(Theory)							
(Common to BT, CHE, CV, E&I, IEM, ME)							
Course Code: 16HS161 CIE Marks: 100							
Cred	its: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hour	S: 30L	will be able to	SEE Duration: 03Hrs				
Cour	To build awareness on the various for	will be able to ms of IPR and to buil	d the perspectives on the	concents			
1	and to develop the linkages in technolo	gy innovation and IPR	u une perspectives on the	concepts			
•	To equip students on the need to pr	otect their own intell	ectual works and develo	p ethical			
2	standards governing ethical works.			1			
2	To motivate towards entrepreneurial	careers and build str	rong foundations skills t	to enable			
3	starting, building and growing a viable	as well as sustainable	venture.				
4	Develop an entrepreneurial outlook ar	nd mind set along wit	h critical skills and know	vledge to			
-	manage risks associated with entrepren	eurs.					
-		UNIT-I					
Intro	duction: Types of Intellectual Property,	WIPO, WTO, TRIPS.	able and non-notantable	07 Hrs			
inven	tions Patent Procedure Overview Tra	neter of Patent, patent	Biotechnology patents				
prote	ction of traditional knowledge Infringen	nent of patents and ren	hedy Case studies				
Trad	e Secrets: Definition. Significance. Too	ls to protect Trade sec	rets in India.				
		UNIT-II					
Trad	e Marks: Concept, function and di	fferent kinds and for	orms of Trade marks,	04 Hrs			
Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity;							
Assig	nment and transmission; ECO Lab	el, Passing off; O	ffences and penalties.				
Infrin	gement of trade mark with Case studies						
		UNIT-III					
Indu	strial Design: Introduction, Protection	on of Industrial De	esigns, Protection and	09 Hrs			
Requ	action Infringement and Remedies Case	ocedure for obtaining	ig Design Protection,				
Conv	Right: Introduction Nature and scope	e Rights conferred by	conv right Conv right				
prote	ction, transfer of copy rights, right of	broad casting organiz	zations and performer's				
rights	, Case Studies.		F				
Intel	ectual property and cyberspace: Er	nergence of cyber-cri	me; Grant in software				
paten	t and Copyright in software; Software pi	racy; Data protection i	in cyberspace				
		UNIT-IV					
Intro	duction to Entrepreneurship – Learn	how entrepreneurship	has changed the world.	08 Hrs			
Ident	ity six entrepreneurial myths and uncove	er the true facts. Exploi	re E-cells on Campus				
Liste	n to Some Success Stories: - Global leg	ends Understand how	ordinary people become				
successful global entrepreneurs, their journeys, their challenges, and their success stories.							
entrepreneurs							
Characteristics of a Successful Entrepreneur Understand the entrepreneurial journey and							
learn	the concept of different entrepreneuria	al styles. Identify you	r own entrepreneurship				
style	based on your personality traits, stren	ngths, and weaknesse	s. Learn about the 5M				
Mode	el, each of the five entrepreneurial styles	s in the model, and ho	w they differ from each				
other	Communicate Effectively: Learn h	ow incorrect assump	tions and limiting our				
opini	ons about people can negatively impa	ict our communicatio	n. Identify the barriers				
willCl learn	how to overcome them	i as miscommunication	and poor listening, and				
Tearn							

Con	munication Best Practices. Understand the importance of listening in communication	
and	learn to listen actively. Learn a few body language cues such as eye contact and	
hand	Ishakes to strengthen communication. (Practical Application)	
	UNIT-V	
Desi	gn Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs
solv	ing process. Describe the principles of Design Thinking. Describe the Design Thinking	
proc	ess.	
Sale	s Skills to Become an Effective Entrepreneur: - Understand what is customer focus	
and	how all selling effort should be customer-centric. Use the skills/techniques of personal	
selli	ng, Show and Tell, and Elevator Pitch to sell effectively.	
Mar	naging Risks and Learning from Failures: - Identify risk-taking and resilience traits.	
Und	erstand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical	
App	lication) Appreciate the role of failure on the road to success, and understand when to	
give	up. Learn about some entrepreneurs/risk-takers. (Practical Application).	
Are	You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real	
pictu	are of the benefits and challenges of being an entrepreneur. Identify the reasons why	
peop	ble want to become entrepreneurs. Help participants identify why they would want to	
becc	ome entrepreneurs.	
Cou	rse Outcomes: After completing the course, the students will be able to	
CO	: Comprehend the applicable source, scope and limitations of Intellectual Property v	within the
	purview of engineering domain.	
CO	2: Knowledge and competence related exposure to the various Legal issues pert	aining to
0.00	Intellectual Property Rights with the utility in engineering perspectives.	C 11 1
COS	Enable the students to have a direct experience of venture creation through a	tacilitated
00	learning environment.	
CO ₂	It allows students to learn and apply the latest methodology, frameworks and tools that	t
	entrepreneurs use to succeed in real life.	
Refe	erence Books	
1.	Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law	Pub Co.
	LtdDelhi, ISBN: 9789350350300	
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1s	^t Edition,
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.	
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K	., ISBN:
	8180380025, 9788180380020.	
4.	Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delh	ni, ISBN:
	9780198072638.	

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

R	V College	of Engine	eering- B	engaluru-59
	<u> </u>	<u> </u>		0

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

Low-1 Medium-2 High-3

	Semester: VI								
CHEMICAL EQUIPMENT DESIGN AND DRAWING									
	(Theory & Practice)								
Cou	rse Code: 16CH62	CIE Marks: 100							
Cree	Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs								
Cou	rse Learning Objectives:								
1	Understand the chemical engineering principles ap	pplicable to design chemical							
	engineering equipment.								
2	Apply standard codes for design of chemical plant equip	ment.							
3	Develop skill to design process equipment used widely i	n the chemical industry.							
4	4 Impart practical knowledge on the shape and drawing of the process equipment.								
	Unit-I								

Process and Mechanical Design and Drawing of Heat Exchanger: Types of Heat	08 Hrs						
exchanger, process design of Double pipe heat exchange and shell and tube heat							
exchanger. (The detailed dimensional drawings shall include sectional front view,							
Full Top/side view).							
Unit – II							
Process and Mechanical Design and Drawing of Condenser: Types of condensers							
process design of horizontal and vertical condensers. (The detailed dimensional							
drawings shall include sectional front view, Full Top/side view)							
Unit -III							
Process and Mechanical Design of evaporator: Introduction, types of evaporators,	07 Hrs						
methods of feeding of evaporators, general design consideration of Single Effect							
evaporator. (The detailed dimensional drawings shall include sectional front view, Full							
Top/side view)							
Unit –IV							
Process design of distillation column: Design of bubble cap distillation column. (The 07							
detailed dimensional drawings shall include sectional front view, Full Top/side view							
and bubble cap view).							
Unit –V							
Process design of absorption column: Design of packed bed absorption column.	07Hrs						
(The detailed dimensional drawings shall include sectional front view, Full Top/side							
view)							
Course Outcomes: After completing the course, the students will be able to	·						
CO1: Understand design procedure of process equipments.							
CO2: Apply chemical engineering principles to design process equipments.							
CO3: Estimate physical dimensions of various parts of chemical process equ	ipments and						
accessories	•						
CO4: Analyze various design options at all design stages							

Refere	ence Books
1	Chemical Engineers Handbook, R.H.Perry and D.W.Green, 7th Edition, 1998, McGraw
I	Hill, ISBN: 0-07-115982-7.
2	Chemical Engineering, J.M.Coulson and J.F.Richardson, Vol.6, 3rd Edition 1993, Pregman
	Press, ISBN: 0750641428.
3	Process Equipment Design, Brownell and Young, 1st Edition, 1959, Wiley publications,
	ISBN: 0471113190.

4	Process Equipment Design, M.V.Joshi, 3rd Edition, Reprint 1998, Macmillan and Co.
4	India, Delhi, ISBN 023-063-8104.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of two questions carrying 80 marks for the design and sketch of equipment. Student is required to answer any one. There shall not be split of equipments among the questions.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	-	-	-	-	1	-	-
CO2	3	3	2	2	1	1	-	-	1	-	-	-
CO3	1	1	2	2	2	1	2	-	-	-	-	-
CO4	3	3	2	3	2	2	3	1	1	1	1	-

	Semester: VI								
	PROCESS SIMULATION AND MODELING								
	(Theory & Practice)								
Coi	Course Code: 16CH63 CIE Marks: 100+50								
Cre	Credits: L:T:P:S: 3:1:1:0 SEE Marks: 100+50								
Hou	Hours: 38L+24T SEE Duration: 3Hrs								
Cou	Course Learning Objectives:								
1	Apply numerical techniques to solve chemi	cal engineering problems							
2	Analyze chemical engineering system in ter	m of modeling principle							
3	Distinguish simulation from design of equipment								
4	Develop algorithm for modeling & solve the model								
5	Develop simple chemical engineering mode	els							

Unit-I					
Modeling in Chemical Engineering: Introduction, Fundamental laws, scope of coverage,	08 Hrs				
principles of formulation, modeling aspects, classification of models. Continuity equation,					
equations of motion, transport equations, equations of state, equilibrium, and chemical					
kinetics with examples.					
Unit – II					
Mathematical Modeling: Basic tank model –Level V/s time, Two-heated tanks Models in					
Fluid Flow Operations: Flow through Packed bed column, Laminar Flow in narrow Slit,					
Flow of film on the outside of circular tube, Momentum fluxes for creeping flow in to slot.					
Unit -III					
Models in Separation processes: Steady state single and multiple stage solvent extraction,	07 Hrs				
unsteady state single stage solvent extraction, multistage gas absorption, single component					
vaporizer and ideal binary distillation column, batch distillation, multi-component flash					
drum.					
Unit –IV					
Models in reactors: Series of Isothermal, constant hold-up CSTRs, CSTRs with variable	07 Hrs				
hold-ups, Non-isothermal CSTR, Batch reactor and reactor with mass transfer, gas phase					
pressurized CSTR.					
Unit –V					
Numerical analysis for simulation: Introduction to simulation, Role of computers and	08 Hrs				
numerical methods in simulation, iterative convergence methods - interval halving,					
Newton-Raphson method, False-position, Wegstein and Muller methods, numerical					
integration of ODEs – Euler and Runge-Kutta.					

List of experiments:

1. Simulation of Shell and Tube Heat Exchanger
2. Simulation of Centrifugal Pump/Compressor
3. Simulation of Flash drum/Separator
4. Simulation of single stream gas heater/cooler
5. Simulation of CSTR
6. Simulation of Distillation Column
7. Simulation of Atmospheric distillation of crude oil
8. Simulation of aromatic stripper with recycling

9. Simulation of Benzene production
10. Simulation of methanol-water separation using RADFRAC
11. Simulation of various reactor types to model a single reaction
12. Simulation of cyclo hexane production

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Recall the fundamental laws in modeling chemical engineering systems								
CO2:	Explain modeling and simulation of simple chemical engineering systems								
CO3:	Apply mathematical tools to solve model equations								
CO4:	Analyze chemical engineering systems for model development								

Reference Books

1	Process Modeling, Simulation and Control for Chemical Engineers, William L. Luyben McGraw Hill 2 nd Edition, 1999, ISBN: 978-0070391598.
2	Process Plant Simulation, B V Babu, 1st Edition, 2004, Oxford University Press, ISBN: 978-0-19-566805-6.
3	Elements of Chemical Reaction Engineering, H Scott Fogler, 3 rd Edition, Prentice Hall of India, 2004, ISBN: 7502741003.
4	Process Heat Transfer, D.Q.Kern, 1 st Edition, 2012, Tata McGraw Hill, ISBN: 007034190.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1					2
CO2	3	3	3	3	2	1	1			1		1
CO3	3	3	3	2	3	1	1	1	1	1	1	2
CO4	3	3	3	2	3	1	1	2	1	1		1

R V College of Engineering- Bengaluru-59

	Semester: VI							
	HETEROGENEOUS REACTION SYSTEM							
		(Theory)						
Cou	rse Code: 16CH64	CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hours: 39L+ 4S SEE Duration: 3Hrs								
Cou	Course Learning Objectives:							
1	1 Prepare the catalyst, and understand how a promoter or an inhibitor works							
2	The methods to find the surface area, effectiveness of the catalyst.							
3	The kinetics and Design fluid – fluid reaction systems: Packed bed, trickle bed slurry reactors							
	and 3 phase fluidized beds.							
4	The kinetics and Design of fluid – partic	le reaction systems						

UNIT-I Introduction to Heterogeneous Reaction Systems: Examples for heterogeneous catalytic 08 Hrs reactions and heterogeneous non-catalytic reactions, contacting patterns for 2 phase systems, Rate equations for heterogeneous reactions, Overall rates for linear and nonlinear process. Fluid Particle Reaction Kinetics: Selection of a model, Rate of reaction for shrinking Spherical Particles, Determination of rate controlling mechanism **UNIT-II** Catalysis: Introduction to catalyst, Promoters, inhibitors. Properties of catalysts, **08 Hrs** characterization of catalyst, mechanisms of catalysis, catalyst preparation, catalyst poisoning. Catalyst Characterisation: Determination of the surface area of the catalyst (BET method), Pore volume distribution, Scanning Electron Microscopy, X-Ray Diffraction Technique. Rate Controlling Steps and Adsorption Isotherms: Langmuir adsorption Isotherms, Eliey-Rideal mechanism. Rate controlling steps, rates of adsorption, surface reaction and desorption. Wheelers model, Types of diffusion in porous catalysts, effectiveness of catalyst. UNIT-III Basics of NonIdeal Flow: E, the Age Distribution, the RTD, Conversion in Non-Ideal Flow **08 Hrs** Reactors, Axial Dispersion Model, Tanks in series Model Catalyst Deactivation: Mechanism of deactivation, activity, rate equations for deactivation reactions. UNIT-IV Fluid-Fluid Reactions: Kinetic regimes for mass transfer and reaction, rate equation for 08Hrs Instantaneous reaction, Fast reaction, Intermediate rate, Rate equation for slow reaction, Film conversion parameter, clues for kinetic regimes, slurry reaction kinetics, Design of towers for fast and slow reactions. **UNIT-V** Experimental Methods For Finding Rates: Differential and Integral Reactor. **07 Hrs** Differential and integral analysis. Design of Reactors: Fluid-particle, fluid- fluid reactor design, Slurry Reactor, Packed bed catalytic reactor, Trickle bed reactor, Three phase fluidized bed Reactor.

Course Outcomes: After completing the course, the students will be able to

CO1: Define the rate equations for heterogeneous reactions

CO2: Predict the rate controlling mechanism

R V College of Engineering- Bengaluru-59

CO3:	Analyze adsorption isotherms by conducting adsorption studies
CO4:	Interpret experimental data and determine rate equations, design the reactors for fluid-solid
	and fluid-fluid reactions

Refere	nce Books
1	Chemical Reaction Engineering, Levenspiel Octave, 3 rd Edition, 2006, John Wiley and Sons, 1999, ISBN 978-812651000
2	Chemical Engg Kinetics, J. M. Smith, 7 th Edition, 2004, Mc Graw Hill, , ISBN 978-0070145870
3	Elements of Chemical Reaction Engineering, 5th Edition, 2016, H. Scott Foggler, Prentice Hall, ISBN 978-8126510009
4	Chemical and Catalytic Reaction Engineering, James J. Carberry, Dover Publications; Dover ed edition, 2001, ISBN-13: 978-0486417363

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	1	-	-	-	-	-	-	-	1
CO2	3	2	-	1	-	-	-	-	-	-	-	1
CO3	3	2	2	-	-	-	-	-	-	-	-	1
CO4	2	1	1	2	-	-	-	-	-	-	-	1

	Semester:VI							
	NANO FABRICATION							
	(Group C: Professional Core Elective)							
Co	Course Code: 16CH6C1 CIE Marks: 100							
Cr	edits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Ho	urs: 39L	SEE Duration: 3Hrs						
Co	Course Learning Objectives: The students will be able to							
1	Understand the process of fabrication techniques.							
2	Fabricate layers on substrates using physical or chemical methods.							
3	Analyze the performance of fabricated structures							

UNIT-I

UNIT-I	
Introduction to microelectronics fabrication and Moore's empirical law - Limitations - Si	08Hrs
processing methods: Cleaning/etching, oxidation, Gettering, doping, epitaxy-	
semiconductor device road map –gate dielectrics, poly Si, high k dielectrics.	
Diffusion and Oxidation: Junction depth, Concentration profile, interstitial and	
substitutional diffusion. Constant source and limited source diffusion, dopant	
redistribution, Lateral diffusion, Rapid thermal annealing, Gettering. Native oxide, Wet and	
dry oxidation, Electro-chemical oxidation, solubility and diffusion of various species in	
oxide	
UNIT-II	
Top-down Lithography techniques: Necessity of clean a room, different types of clean	08Hrs
rooms, maintenance, Importance of Lithography techniques Lithography techniques	
Necessity of clean a room, different types of clean rooms, maintenance, Importance of	
Lithography techniques. Photolithography, Electron Beam lithography, Extreme UV	
lithography, X-ray Lithography, Focused ion beam Lithography (FIB).	
Bottom - up approach: Self-assembly and Lithography: self-assembly, self- assembled	
mono layers, directed assembly, layer-by layer assembly, patterned growth, control of	
position and diameter	
UNIT-III	
Combinations of top-down and bottom-up techniques: current state of the art DNA self-	08Hrs
assembly Chemical vapor deposition of Nanostructures: Nanocrystals Nanowires by	
catalytic (Au, Ni and Ag) and non- catalytic VLS approach. Patterned growth Nanoimprint	
lithography (NIL), soft polymer photo resistive, moulding /replica, printing with stamp pads,	
RIE etching, patterned growth, control of position, size and density. Dip-pen lithography,	
setup,	
working principle	
UNIT-IV	
Dry Etching: Plasma, anisotropic etch, equipment details and operation. Reactive ion	08Hrs
etching (RIE), veil formation and de-veil, electrostatic discharge (ESD), aluminum etch,	
Chemical Mechanical planarization (CMP) basics, Dishing, Erosion, Issues in Shallow	
Trench Isolation., Oxide Polish and Copper Polish, Dummy fill, slotting.	
Wet Etching: Isotropic etch, selectivity, anisotropic Si etch in KOH, cleaning, micro	
loading and process proximity correction (ppc)., Chemicals for oxide and nitride removal,	
effect of dopants, photoresist development.	
UNIT-V	
Chip Production: Introduction to atomic layer deposition (ALD) and molecular	07 Hrs

beam epitaxy (MBE). Electrochemical deposition, Electro-migration vs grain size, conformal, anti conformal and super fill. Suppressor, accelerator, levelers, effect of seed layer, spin on coating. Vapour Deposition: Chemical vapor deposition (CVD) basics, Atmospheric pressure chemical vapor deposition (APCVD), Low pressure chemical vapor deposition (LPCVD), Plasma enhanced chemical vapor deposition (PECVD), mass transfer control and reaction kinematics control. Reactor description and operation, deposition of silicon, poly silicon, oxide,

nitride and tungsten

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Recall the fundamentals of fabrications				
CO2	Explain the various deposition techniques				
CO3	Analyze the performance of the fabricated structures				
CO4	Justify the selection of process of fabrication				

Refe	rence Books
1.	Nanofabrication - Principles, Capabilities and Limits, Cui Z, 2008, Springer, ISBN- 978 0387 755762
2.	Nanofabrication- Fundamentals and Applications, Tseng A A, 2008, World Scientific, SBN- 978 9812 705426
3.	The Science and Engineering of Microelectronic Fabrication, Stephen & Campbell, 2 nd Edition, 2001, Oxford university press, ISBN- 019 5136 055
4.	Fundamentals of microfabrication, M. Madou, 2 nd edition, 2007, CRC press, ISBN- 084 9308 267

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO M	apping	g				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	1	-	1	-	-	-	-	-	
CO2	3	1	1	2	-	2	-	-	-	-	-	
CO3	3	2	2	1	1	1	2	-	-	-	-	
CO4	3	2	2	2	1	2	2	-	1	-	1	

	Semester: VI							
	FUEL CELL	TECHNOLOGY						
	(Group C: Profes	sional Core Elective)						
Cou	rse Code: 16CH6C2	CIE Marks: 100						
Crec	lits: L:T:P:S:: 3:0:0:1	SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students will	be able to						
1	1 Recall the concept of fuel cells							
2	Distinguish various types of fuel cells and their functionalities							
3	3 Know the applications of fuel cells in various domains							
4	Understand the characterization of fuel cells							

UNIT-I	
Introduction: Fuel cell definition, historical developments, working principle of fuel cell,	07Hrs
properties	
UNIT-II	
Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel	07Hrs
cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages	
and disadvantages of each	
UNIT-III	
Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum	08Hrs
efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and	
UNIT-IV	
Fuel Cell Characterization: current - voltage curve, in-situ characterization, current -	07Hrs
voltage measurement, current interrupt measurement, cyclic voltammetry,	
electrochemical impedance spectroscopy and ex-situ characterization techniques.	
UNIT-V	
Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen	07Hrs
production, storage, handling and safety issues.	

Cot	urse Outcomes: After completing the course, the students will be able to
1	Understand the fundamentals and characteristics of fuel cells
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems
3	Analyze the performance of fuel cells using different characterization techniques
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems

Refe	erence Books
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579

3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN
	- 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO - PO Mapping											
	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12											PO 12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

Semester: VI						
	COMPUTATIONAL M	1ETHODS FOR CHEMICAL ENGINEERS				
	(Group C: Professional Core Elective)					
Course (urse Code: 16CH6C3 CIE Marks: 100					
Credits:	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100					
Hours: 3	Hours: 39L SEE Duration: 3Hrs					
Course Learning Objectives: The students will be able to						
1	Understand the development of algorithms for Design of equipment					
2	Identify suitable computational methods for design procedure					

UNIT-I	
Computational methods to solve material and energy balance problems with and without	08Hr s
reactions, Flow in Pipes, Fluid Flow in Pumps	
UNIT-II	
Development of algorithms and solution for Boiling Point, Dew Point, Vapor Pressure	08Hrs
Correlations, Relative Volatility, Equations of State	
UNIT-III	
Development of algorithms and solution for Plug Flow Reactor, Continuous Stirred Tank	08Hrs
Reactors, Design of shell and tube heat exchanger	
UNIT-IV	
Computations for the design of binary distillation column, column diameter and liquid-	08Hrs
liquid extractor.	
UNIT-V	
Computational methods for absorbers, Number of Theoretical Stages Packed-Bed	07Hrs
Absorber, column diameter, packed tower height, sizing of plate tower	
Course Outcomes: After completing the course, the students will be able to	
CO1 Recall chemical engineering principles involved in material balance, thermodynamics	s, reactor
and equipment design	
CO2 Analyze simple chemical engineering systems	
CO3 Develop algorithms for simple chemical engineering systems	
CO4 Follow algorithm and obtain solution for chemical engineering problems	

Refe	erence Books
1	Computer Methods in Chemical Engineering, Nayef Ghasem, 2011, CRC Press, ISBN: 9781439849996
2	Numerical Methods for Chemical Engineers Using Excel, VBA, MATLAB, Victor J. Law, ISBN 9781466575349, CRC Press, 2013
3.	Gupta S.K. (1995) Numerical Methods for Engineers, New Age International.
4.	Chapra S.C. and Canale R.P. (2006) Numerical Methods for Engineers, 5th Ed; McGraw Hill.
5	Introduction to Chemical Engineering Computing, Bruce A. Finlaysen, John Wiley &Sons, 2014, ISBN 978-1-118-88831-5

R V College of Engineering- Bengaluru-59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO - PO Mapping											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO11 PO12											
CO1	1		1	2						-	-	
CO2	2	3	2							-	-	
CO3	3	1	3							-	-	
CO4	3	3	3							-	1	

	Semester: VI						
	PILOT PLANT AND SCALE UP METHODS						
	(Group C	Professional Core Elective)					
Cou	rse Code: 16CH6C4	CIE Marks: 100					
Cred	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hou	Hours: 36L SEE Duration: 3Hrs						
Cou	rse Learning Objectives:						
1	Identify the need for pilot plants						
2	Understand the principles of similarity and relate to scale up studies						
3	Perform dimensional analysis on differential equations defining the system						
4	Establish similarity criteria and check for their correctness						
5	Scale-up various process equipment						

Unit-	I

Introduction: Process development, Need for pilot plants, Scale-up procedures	s, basic 07 Hrs				
terminologies- prototypes, models, scale ratios and elements					
Principles of Similarity: Geometric, Static, dynamic, kinematics, thermal and chemical					
similarity with examples					
Economic evaluation: Cost estimate by Rigorous and Approximate methods					
Unit – II					
Dimensional Analysis: Significance of Dimensionless Numbers, Gen	eralized 07 Hrs				
dimensionless equations from Differential equation for static systems, flow s	systems,				
thermal systems, mass transfer processes, Homogeneous and heterogeneous c	hemical				
processes.					
Unit -III					
Regimes: Concept of static, dynamic, thermal, chemical and mixed regimes	07 Hrs				
Similarity criteria and scale equations : Static-Load and Mass controlling,	, mixed				
regimes; Dynamic-Viscosity, gravity and surface tension controlled dynamic	regime;				
Thermal-Conduction, Convection and Radiation controlled; Chemical - Mass	transfer				
controlled, Surface reaction controlled and mixed, extrapolation and boundary effect	ts.				
Unit –IV					
Scale-up of Mixing Equipment – Scale-up based on Power number, Scale-up based on					
Peripheral speed, Scale-up of baffled and un-baffled mixers.					
Scale-up of Heat Transfer Systems - Scale -up for Forced Convection and	Natural				
Convection, Scale-up of Overall heat transfer coefficients by Wilson"s meth	od and				
Regression Analysis methods.					
Unit –V					
Scale-up of Chemical Reaction systems - Equality of RTD, Scale-up rul	les for 07 Hrs				
homogenous reactions, Scale-up rules for heterogeneous reaction systems.					
Scale-up of Mass Transfer Systems – Scale-up rules for overall-Mass – Scale-up rules for overall-Mass – Scale-up rules for overall-Mass – Scale-up rules – Scale-up rules for overall-Mass – Scale-up rules – Scal	ransfer				
Coefficients, Analysis of parameters like Liquid distribution, Flooding Velo	ocities,				
Pressure Drop and height of Packing ; Scale-up of Distillation systems, Abso	orption				
systems, Liquid Extraction systems					
Course Outcomes: After completing the course, the students will be able to					
CO 1 Recollect Dimensionless numbers and describe models and prototypes					
CO 2 Explain the concept of Similitude and compare the regimes					
CO 3 Perform Dimensional analysis on flow, heat and mass transfer processes					
CO 4 Establish Similarity criteria and develop the scale equations					
CO 5 Create scale-up rules for chemical process equipment					
Ref	erence Books				
-----	---				
1.	Dimensional Analysis and Scale-up in Chemical Engineering, Marko Zlokarnik, 1991, Springer-				
	Verlag, ISBN 9783540541028				
2.	Scale up of Chemical Processes, Scale up of Chemical Processes, 1985, John Wiley & Sons, ISBN				
	0471057479				
3.	Pilot Plants Models and scale up method in Chemical Engineering, Johnstone and Thring, 1957,				
	McGraw Hill, ISBN: 978-0071422949				
4.	Scale-up in Chemical Engineering, Marko Zlokarnik, 2006, Wiley-VCH, ISBN 9783527314218				

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	-	-	-	-	-	-	-
CO2		1	-	-	-	-	-	-	-	-	-	-
CO3	1	2	1	-	-	-	-	-	-	-	-	-
CO4	1	2	3	-	-	-	-	-	-	-	-	-
CO5	-	3	2	2	-	-	-	-	-	-	-	-

High-3 : Medium-2 : Low-1

	Semester: VI							
	BIOCHEMICAL ENGINEERING							
	(Grou	up D: Professional Core Elective)						
Cour	Course Code: 16CH6D1 CIE Marks: 100							
Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100								
Hou	Hours: 40L SEE Duration: 3Hrs							
Cou	rse Learning Objectives:							
1	Identify various microorganis	sm and its effect on nutrients or culture.						
2	2 Select suitable enzyme kinetics for a process industry.							
3	3 Relate stoichiometry cell growth and microbial kinetics.							
4	Carry out unit operation proce	ess in fermentation technology and product recovery						

UNIT-I					
Microbiology: Scope, Classification of microorganisms, Whitaker's 5-Kingdom concept.	08Hrs				
Prokaryotic cells: structure, Classification and reproduction in bacteria. Eukaryotic cells:					
structure, Classification and reproduction in Fungi, Yeasts, molds.					
Biochemistry: Cell construction, Amino acids and proteins, Carbohydrates: Mono and					
polysaccharides, Nucleic acids, RNA and DNA, Lipids, fats, steroids, Cell nutrients.					
UNIT-II					
Enzyme Catalyzed Reactions: Introduction, Enzyme kinetics, MM, BH approach,	08Hrs				
evaluation of kinetic parameters.					
Enzyme Inhibitors: Types of inhibitors, Effects of temperature and pH, Enzyme					
immobilization, methods of immobilization					
UNIT-III					
Stoichiometry of Cell Growth and Product Formation: Elemental balances, available	08Hrs				
electron balances, degrees of reduction; yield coefficients of biomass and product formation,					
maintenance coefficients. Growth media formulation, Oxygen consumption and heat evolution					
in aerobic cultures.					
Sterilisation Techniques: Continuous and batch sterilization, sterilization of Air.					
UNIT-IV					
Kinetics of Microbial Growth and Product Formation: Phases of cell growth and	08Hrs				
kinetics in batch cultures, Monod and Leudeking-Piret equations, unstructured nonsegrated					
models to predict specific growth rate, substrate limited growth, models with growth					
inhibitors. Introduction to structured models, Ideal Bioreactors, Batch reactor, Ideal					
Chemostat					
UNIT-V					
Recovery and purification of products : Removal of microbial cells and other solid matter,	08Hrs				
foam separation, precipitation, filtration, centrifugation, cell disruption, chemical methods,					
liquid-liquid extraction, chromatography, membrane separation, drying.					
Course Outcomes: After completing the course, the students will be able to					
CO1: Recall the basics of microbiology and enzymes					
CO2: Explain the various product recovery operations					
CO3: Analyze the enzyme kinetics and the factors affecting enzyme kinetics					
CO4: Predict appropriate sterilization Techniques and Design Bioreactors					

Refere	ence Books
1	Bio-Process Engineering, Shuler and Khargi, 3 rd edition, 2017, PrenticeHall, ISBN-13: 978
1	0137062706
2	Fundamentals, Bailey and Ollis, 2 nd edition, 1986, McGraw-Hill, Chemical Engineering
2	Series ISBN-13: 978-0070032125
2	Bioprocess Engineering Principles, Pauline M Doron, 1995, Elsevier Science & Technology
5	Books, ISBN: 0122208552
4	Biochemical Engineering, Mukesh Doble, Sathyanarayana N Gumaadi, First Edition, 2101,
4	PHI Learning 0 ISBN: 9788120330528

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	-	-	-	-	-	-	-	1
CO2	-	3	3	3	-	-	-	-	-	-	-	1
CO3	-	2	2	1	-	-	-	-	-	-	-	1
CO4	3	3	2	1	-	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

	Semester: VI						
	POLLU	JTION CONTROL ENGINEE	RING				
Соц	(Grain (G	oup D: Professional Core Electr	IVE) CIF Marks: 100				
Cou			SFE Marks: 100				
Hou	rs: 411		SEE Duration: 3Hrs				
Cou	rse Learning Objectives:		SEL Duration: 51115				
1	To inculcate awareness on e	nvironmental, societal, ethical,	health and safety issues	s and their			
-	relevance in engineering.						
2	To understand different types	of pollutions.					
3	To encourage for optimal reso	ource utilization and sustainable	life styles.				
4	To promote environmental de	esign					
		<u> </u>					
		Unit-I					
Int	roduction: Environment, Mul	tidisciplinary nature of environr	mental studies, impact	08Hrs			
of ł	numan being on environment:	collution, resource depletion and	global environmental				
issu	ies, Environment and environ	mental pollution from chemic	al process industries,				
cha	racterization of emission and e	effluents, environmental Laws a	nd rules, standards for				
aml	bient air, noise emission	and effluents standards , E	nvironmental Impact				
Ass	sessment.ISO14000.	······,	· · · · · · · · · · · · · · · · · · ·				
		Unit – II					
Pol	lution Prevention: Process mo	odification, alternative raw mater	rial recovery of by co-	10Hrs			
pro	duct from industrial emission	effluents, recycle and reuse of w	vaste, energy recovery				
and	waste utilization. Material and	l energy balance for pollution mi	nimization. Water use				
mir	imization. Fugitive emission/e	fluents and leakages and their	control- housekeeping				
and	maintenance	ind realizes and near	ondor nouseneeping				
Noi	ise Control: Noise control crite	eria, administrative and engineer	ing controls, acoustic				
abs	orptive materials.		g • on a ons, a• o as a•				
		Unit -III					
Air	Pollution Control: Types of	f air pollutants. Ambient air sa	mpling: collection of	08Hrs			
gas	eous air pollutants, collection	of particulate air pollutants. Stac	k sampling: Sampling				
svs	tem, particulate sampling, and	1 gaseous sampling. Movement	t of pollutants in the				
atm	osphere. Source collection m	ethods: raw material changes.	process changes, and				
eau	ipment modification. Particul	ate emission control by mech	anical separation and				
elec	ctrostatic precipitation, wet ga	s scrubbing, gaseous emission	control by absorption				
and	adsorption, Cyclones, ESP, f	Fabric filters and absorbers. Ca	se Studies of thermal				
pov	ver plant and mining industries						
	1 0	Unit –IV					
Wa	ter Pollution Control: Char	acteristics of waste water. Phy	vsical treatment, pre-	08Hrs			
trea	tment, solids removal by s	etting and sedimentation, filt	ration centrifugation.				
coa	gulation and flocculation. Bio	ological Treatment: Anaerobic	and aerobic treatment				
bio	chemical kinetics, trickling fi	ter, activated sludge and lago	ons. aeration systems.				
sluc	sludge senaration and drying						
	Unit_V						
Sol	ids waste management:			07 Hrs			
	nes of solid waste composit	ion and properties of solids w	vaste collection and	V/ 1110			
trar	sport methods Material and	d energy recovery from solid	d waste disposal -				
u al	aport incurous, material all	a energy recovery from solid	F-waste management				
N	alear wastes boolth and an	gasification and inclicitation.	disposal methods				
Ch	mical wastes, health and environ	ronmontal offacts, sources and	d disposale tractment				
	ennical wastes: nealth and envi	nonmental effects, treatment an	u disposai: treatment				

and disposal by industry, off site treatment and disposal, treatment practices in various						
countries. Biomedical wastes: types of wastes and their control.						
Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Define environment and its pollution.					
CO2:	Explain the various technologies to address the pollution problem.					
CO3:	Select the suitable pollution control and prevention methods for the given scenario.					
CO4:	Apply the engineering knowledge to prevent, mitigate and control the environmental					
	Pollution.					

Refere	ence Books
1	Environmental Pollution Control Engineering, C.S. Rao, 2 nd Edition (Reprint), 2015, New
L	Age International, ISBN:978-81-224-1835-4.
2	Waste Water Engineering Treatment Disposal Reuse, Metcalf and Eddy, 4th Edition, 2003,
	Tata McGraw Hill, ISBN: 978-0071241403.
2	Pollution Control in Process Industries, S.P. Mahajan, 27th Edition, 2012, Tata McGraw Hill,
5	ISBN: 9780074517727.
4	Waste Management Practices: Municipal, Hazardous and Industrial, Pichtel J, 1 st Edition,
4	2005,CRC, ISBN: 9780849335259.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	3	3	3	3	2	-	-	-	-	1
CO2	3	3	3	3	1	1	1	-	-	-	-	1
CO3	3	3	3	2	2	1	3	-	-	-	-	1
CO4	3	3	3	2	1	2	3	-	-	-	-	1

High-3 : Medium-2 : Low-1

	Semester:VI						
	Novel Separation Techniques						
	(Group D: Pro	ofessional Core Elective)					
Cou	Course Code: 16CH6D3 CIE Marks: 100						
Crea	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hou	Hours: 48L SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students	will be able to					
1	1 Explain various separation techniques based on their applications						
2	2 Apply chemical engineering principles to novel separation techniques						
3	Apply novel separation techniques in co	onventional chemical processes					

UNIT-I	
Adsorptive Separations: Review of fundamentals. Models of adsorptive column, pressu and thermal swing adsorption, ion-exchange, affinity chromatography, Chromatograph separations : Principles of chromatographic separation, criteria for effective separation supports and methodology, gradient chromatography	re 10Hrs iic on,
UNIT-II	
Membrane Separation Processes: Classification, structure and characteristics of +*membrane, membrane modules, concentration polarization. Thermodynamic and mas transfer considerations, Reverse Osmosis, Ultra Filtration, pervaporation, gas separation liquid membranes	+ 09Hrs s 1,
UNIT-III	
Surfactant Based Separations : Fundamentals of surfactants at surfaces and in solutions, liquid membrane permeation, foam separations, micellar separations. Super Critical Fluid Extraction: Physico-chemical principles, thermodynamics, process synthesis and energy analysis.	10Hrs
UNIT-IV	
External field induced separations : Electric & magnetic field separations. Centrifuga separations.	ul 09Hrs
Osmatic distillation : Working principle and various applications Wet Etching:Isotropi etch, selectivity, anisotropic Si etch in KOH, cleaning, micro loading and process proximity correction (ppc)., Chemicals for oxide and nitride removal, effect of dopants photoresist development	с 18 3,
UNIT-V	I
Chip Production : Introduction to atomic layer deposition (ALD) and molecular bear epitaxy (MBE). Electrochemical deposition, Electro-migration vs grain size, conforma anti conformal and super fill. Suppressor, accelerator, levelers, effect of seed layer, spi on coating. Vapour Deposition: Chemical vapor deposition (CVD) basics, Atmospheri pressure chemical vapor deposition (APCVD), Low pressure chemical vapor depositio (LPCVD), Plasma enhanced chemical vapor deposition (PECVD), mass transfer control and reaction kinematics control. React/5t or description and operation, deposition cillicon, poly silicon, oxide, nitrid/e and tungsten	n 10 Hrs l, n c n n of
Course Outcomes: After completing the course, the students will be able to	1
1 Recall the principles of various separation techniques	
2 Analyze the mechanism of separation.	
3 Estimate the extent of separation in novel techniques	

4 Select separation equipment for specific applications

Ref	erence Books
1	Lg Scale Adsorption & Chromatography SET: Lg Scale Adsorption & Chromatography Vol 1,
	Phillip C. Wankat,, 1986, CRC Press, 978-0849355974
2	Rousseu R.W;Handbook of Separation Process Technology; John Wiley and Sons; 1987;
	ISBN:978047189558

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	2	2	2	1		1		1
CO2	3	3	1	1	2	1	1	1		1		1
CO3	3	3	3	1	3	1	1	1		1		1
CO4	3	3	3	2	3	3	2	1		1		1

	Semester:VI								
	Polymer Science and Technology								
	(Group D: Professional Core Elective)								
Course Code: 16CH6D4CIE Marks: 100									
Crea	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100							
Hours: 48L SEE Duration: 3Hrs									
Cou	rse Learning Objectives: The students will be	able to							
1	Study the basic concepts of polymers								
2	2 Learn the advanced polymers								
3	Understand the experimental techniques in Pol	ymer science							

UNIT-I **INTRODUCTION TO POLYMERS** with emphasis on important concepts such as 09Hrs polymer, monomers, oligomer, Repeating units, End groups, Polymerization, addition and condensation polymerization, functionality, Latent functionality, Classification of polymers on the basis of polymerization mechanism. Thermoplastics and Thermosets. Basic Principles of Molecular Weight, Importance of molecular weight control. Number Average molecular weight (Mn), Weight average molecular weight (Mw), Viscosity Average Molecular weight (Mv), Practical Significance of polymer molecular weight, problems. UNIT-II CHEMISTRY OF **POLYMERISATION** : 09Hrs Ring opening Polymerisation, Polymerisation, Metathetical Polymerisation, Group Transfer Electrochemical Polymerisation, Copoly condensation, Cationic and Anionic Polymerisation. UNIT-III SPECIALITY POLYMERS: Preparation, Properties and application of Polysulphone, 09Hrs Polyimides, Polyvinylidene chloride, Poly vinyl Pyrrolidone, Poly sulphides, Epoxies, Ladder polymers, Organo tin polymers, Organo titanium polymers, Poly Benzyl Ether Dendrimers. **UNIT-IV EXPERIMENTAL METHODS**: Monomer purification, Precipitation polymerization of 09Hrs Acrylonitrile, Suspension polymerization of Methyl Methacrylate, Interfacial poly condensation of Terephthaloyl chloride and Ethylene diamine. Plastic welding. UNIT-V CHARACTERISATION TECHNIQUES: Number Average Molecular weight- Gel 10 Hrs permeation chromatography technique .Weight Average Molecular Weight - Light Scattering method., End group analysis, Vapour phase Osmometry, Glass Transition Temperature using DSC. Course Outcomes: After completing the course, the students will be able to CO1 Recall the basic concepts in Polymer science CO2 Understanding the processes in Polymers CO3 Demonstrate the advanced polymer materials

CO4 | Experimental techniques and evaluation of polymers

Reference Books

1.	Hand book of Polymer science and Technology V-I. M.H.Ferry/A.V.Becker, CBS Publishers and
	Distributors. ISBN: 81-239-1132-7.

R V College of Engineering- Bengaluru-59

2.	V.R.Gowarikar,	N.V.Viswanathan,	Jayadev	Sreedhar,	"Polymer	Science",	New	Age
	International Pvt.	Ltd, 2012: ISBN: 0-8	85226-307-	4.				
3.	Fried W.Billmeye ISBN:0471-8283	er, J.R, "Text Book o 4.	of Polymer	Science, Wi	iley Inter Sc	ience", 3 rd E	dition:	2005.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2						1	-	-	-	1
CO2		1					2	-	-	-	-	1
CO3			1	2	3	2	3	-	-	-	-	1
CO4		2		1	3	4		-	-	-	-	1

	Semester: VI							
	BIOINSPIRED ENGINEERING							
	(Group E: Globa	l Elective)						
Cou	urse Code: 16G6E01	CIE Marks: 100						
Cre	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hours: 36L SEE Duration: 3H								
Cou	rse Learning Objectives:							
1	To familiarize engineering students with basi	c biological concepts						
2	Utilize the similarities noted in nature for a	a particular problem to bring inspiration to						
	the designer.							
3	Explain applications such as smart struct	ures, self-healing materials, and robotics						
	relative to their bio logical analogs							
4	To gain an understanding that the design pr	inciples from nature can be translated into						
	novel devices and structures and an appreciation	iation for how biological systems can be						
	engineered by human design							

Unit-I	
Introduction to Biology: Biomolecules-Proteins, carbohydrates, lipids and Nucleic	06
acids. Cell types- Microbial, plant, animal.Organ system- Circulatory, digestive,	Hrs
respiratory, excretory and nervous system. Sense organs. Plant process-	
Photosynthesis.	
Unit – II	
Introduction to Biomimetics: Wealth of invention in nature as inspiration for	08
human innovation: Mimicking and inspiration of nature- synthetic life. Nature as a	Hrs
model for structure and tools: Biological clock, honey comb as strong light weight	
structure. Materials and processes in biology- Spider web, honey bee as a multi-	
material producer, fluorescent materials in fire flies. Bird and insect as source of	
inspiring flight. Robotics as beneficiary for biomimetic technologies.	
Unit -III	
Biological materials in Engineering mechanisms: Introduction, Comparison of	08
biological and synthetic materials: Silk processing and assembly by insects and	Hrs
spiders- High performance fibers from nature, Seashells- High performance organic	
and inorganic composites from nature. Shark skin- Biological approaches to	
efficient swimming via control of fluid dynamics, Muscles- Efficient biological	
conversion from chemical to mechanical engineering.	
Unit –IV	
Biological inspired process and products: Artificial neural networks, genetic	08
algorithms, medical devices. Biosensors. Plant as Bioinspirations: Energy	Hrs
efficiency, Biomimetic super hydrophobic surfaces- lotus leaf effect. Bionic leaf	
and Photovoltaic cells.	
Unit –V	
Implants in Practice: Artificial Support and replacement of human organs-	07 Hrs
Introduction, Artificial kidney, liver, blood, lung, heart, skin and pancreas. Total	
joint replacements- Visual prosthesis -artificial eye. Sense and sensors: Artificial	
tongue and nose, Biomimetic echolation. Limitations of organ replacement	
systems.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and explain the fundamentals of Biology							
CO2:	Describe the basic principles of design in biological systems.							
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design							
	problems							
CO4:	Create engineered solutions to customer needs utilizing a variety of bio-inspiration							
	techniques.							

Refer	ence Books
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN:
1	97816066502259
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10:
2	<u>8123928726</u> / ISBN 13: <u>9788123928722</u>
2	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press,
3	ISBN: 9780849331633
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student
4	Version. Wiley John and Sons, 2012. ISBN: 1118092449.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3 : Medium-2 : Low-1

Semester: VI						
		GREEN TECHNOLOGY				
(Group E: Global Elective)						
Cou	rse Code: 16G6E02	CIE Marks: 100				
Cree	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Hou	rs: 36L	SEE Duration: 3Hrs				
Cou	rse Learning Objectives:	· · · ·				
1	Learn the tools of green technol	ogy				
2	Know various forms of renewal	ole energy				
3	Study the environmental consec	uences of energy conversation				
4	Understand energy audits and re	esidential energy audit				
5	Understand the application of g	reen technology in various industries				
		Unit-I				
Cur	rent Practices and Future Sust	ainability: Need for green technology, fundamentals	07 Hrs			
of er	nergy and its impact on society	and the environment, the mechanics, advantages and				
disad	lvantages of renewable energy	sources, energy conservation and audits, zero waste				
techi	nology, life cycle assessment,	extended product responsibility, concept of atom				
econ	omy, tools of Green technology					
Clea	ner Production: Promoting cle	eaner production, benefits and obstacles of cleaner				
prod	uction, cleaner production techno	logies.				
Sala	n Dadiation and Its Massura	Unit – II monte Solor constant solor radiation at the corth's	00 II.ma			
Surfa	r Kaulation and its Measure	r radiation measurements	Uð HIS			
Ann	lications of Solar Energy: Intro	duction solar water heating space-heating (or solar				
heati	ng of buildings) space cooling	(or solar cooling of building) solar thermal electric				
conv	rersion agriculture and industrial	process heat solar distillation solar numping solar				
cook	ing	process near, solar distination, solar pumping, solar				
Geot	thermal Energy: Resource id	entification and development, geothermal power				
gene	ration systems, geothermal poy	ver plants case studies and environmental impact				
asses	ssment.	I I I I I I I I I I I I I I I I I I I				
		Unit -III				
Ener	rgy From Biomass (Bio-Energy	: Introduction, biomass conversion technologies, wet	07 Hrs			
Proc	esses, dry Processes, biogas gene	ration, factors affecting biodigestion, types of biogas				
plant	s (KVIC model & Janata model)	selection of site for biogas plant				
Bio	Energy (Thermal Conversion):	Methods for obtaining energy from biomass, thermal				
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification						
process, applications of the gasifiers.						
Unit –IV						
Win	d Energy: Introduction, basic	components of WECS (Wind Energy Conversion	07 Hrs			
syste	m), classification of WEC system	ns, types of wind machines (Wind Energy Collectors),				
horiz	contal-axial machines and vertical	axis machines.				
Ocea	an Thermal Energy: OTEC-Intr	oduction, ocean thermal electric conversion (OTEC),				
meth	ods of ocean thermal electric po	wer generation, open cycle OTEC system, the closed				

or Anderson, OTEC cycle, Hybrid cycle **Energy from Tides**: Basic principles of tidal power, components of tidal power plants, operation methods of utilization of tidal energy, advantages and limitations of tidal power generation

Unit –V	
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles	07 Hrs
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for	
motor vehicle, safety and management, hydrogen technology development in India	
Application of Green Technology: Electronic waste management, bioprocesses, green	
composite materials, green construction technology	
Sustainability of industrial waste management: Case studies on cement industry, iron	
and steel industry, petroleum sectors, marble and granite industry, sugar industry	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Recall the fundamentals of various forms of energy
CO2:	Explain the principles of various forms of renewable energy
CO3:	Apply the concept of zero waste, atom economy for waste management
CO4:	Create a waste management plan incorporating tools of green technology in various industries

Refere	nce Books
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1				1	2	1		1		
CO2	2	1				1	2					
CO3	1	2	1	2	1	3	3	3	2	1	1	
CO4	2	1	2	2			2			1	3	1

High-3 : Medium-2 : Low-1

		Semester: VI			
	SOLID	WASTE MANAGEM	IENT		
	(Group E: Global Elective)				
Cou	rse Code:16G6E03		CIE Marks: 100		
	nts: L:T:P:S: 3:0:0:0 		SEE Marks: 100		
Corr	18: JOL rso Loorning Objectives: The students	will be able to	SEE DURATION: SHI'S		
Cou	Impart the knowledge of present me	thods of solid waste	management system and to ar	alvze the	
1	drawbacks.	mous or solid waste	management system and to a	aryze the	
2	Understand various waste management	statutory rules.	·		
3	Analyze different elements of solid	waste management, d	esign and develop recycling o	ptions for	
-	biodegradable waste by composting.	tio waste and his me 1	and wante and their management	avatorea	
4	Identify nazardous waste, e-waste, plas	tic waste and bio medi	cal waste and their management	systems.	
		IINIT_I]	
Inter	duction Land Dollution Score and in	UINII-I	sta managamant Drasant astid	08 Ura	
waste pyro mana Sour gene Colle syste Site	 Introduction: Land Pollution. Scope and importance of solid waste management. Present solid waste disposal methods. Merits and demerits of open dumping, feeding to hogs, incineration, pyrolysis, composting, sanitary landfill. Definition and functional elements of solid waste management. Sources: Sources of Solid waste, types of solid waste, composition of municipal solid waste, generation rate, Numerical Problems. Collection and transportation of municipal solid waste: Collection of solid waste - services and systems, Municipal Solid waste (Management and Handling) 2000 rules with 2016 amendments. 				
	Ÿ	UNIT-II			
Com	posting Aerobic and anaerobic compo	osting - process descr	ription, process microbiology,	08 Hrs	
Vermicomposting, Site visit to compost plant, Numerical problems. Sanitary land filling : Definition, advantages and disadvantages, site selection, methods, reaction occurring in landfill. Gas and Leachate movement. Control of gas and leachate movement. Site					
visit	to landfill site.				
		UNIT-III			
Hazardous waste management:Definitions, Identification of hazardous waste, Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site06 Hrs					
		UNIT-IV			
Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant.			06 Hrs		
F-1174	aste management. Definition Comm	onents Materials used	d in manufacturing electronic	06 Hrs	
good 2011 plast amer	s, Recycling and recovery integrated and Site visit to e- waste processing facility. ic with norms. Plastic waste management adments.	proach. E- waste (ma Plastic waste ma at. Plastic manufacture	inagement: Manufacturing of , sale & usage rules 2009 with		
Cou	rse Outcomes: After completing the co	urse, the students wil	l be able to		
1	Understand the existing solid waste man	agement system and to	o identify their drawbacks.		
2	Analyze drawbacks in the present syste waste.	m and provide recycli	ng and disposal options for each	h type of	
3	Distinguish Hazardous waste, Biomedic	al waste, E waste and t	o provide scientific managemen	t system.	

4 Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal waste management as per the rules laid by Ministry of Environment & Forest.

Reference Books 1. Integrated Solid Waste Management : Engineering principles and management issues George Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education . Indian edition 2014. ISBN - 13: 978- 9339205249, ISBN-10: 9339205243 2. Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous, Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263. Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC 3. Publication, 2009, ISBN 9780854041121 Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment & 4. Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments. Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest 5. Notification, New Delhi, 25th February 2009.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

S	emester :VI			
INTRODUCTION TO WEB PROGRAMMING				
(Group E : Global Elective)				
Course Code:16G6E04	CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hours: 36L	SEE Duration: 3 Hrs			

Cou	rse Learning Objectives: The students will be able to
1	Understand the basic concepts used in web programming.
2	Learn the definitions and syntax of different web technologies.
3	Utilize the concepts of JavaScripts, XML and PHP.
4	Design and develop web pages which are quick, easy and well-presented using different techniques such as CSS,XML and JavaScripts.

UNIT-I

Introduction to Web Concepts	07 Hrs
Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and	
breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules,	
block-level elements, text-level elements, XHTML – 1: Internet, WWW, Web Browsers	
and Web Servers URL's MIME HTTP Security the Web Programmers Toolbox	
XHTMI · Basic syntax Standard structure Basic text markun Images Hypertext	
Links XHTMI (continued): Lists Tables Forms Frames	
Links. ATTT Will (continued). Lists, Tuoles, Tornis, Tunies.	
UNIT-II	
Cascading Style Sheets (CSS):	09 Hrs
Introduction, Levels of style sheets. Style specification formats. Selector forms. Property	
value forms Font properties List properties Color Alignment of text The box model	
Background images The <snan> and <div> tags Conflict resolution</div></snan>	
The Basics of JavaScrint:	
Overview of JavaScript.	
characteristics: Primitives operations and expressions: Screen output and keyboard	
input Control statements	
input; Control statements	
LINIT-III	L
JavaScript (continued):	09 Hrs
Object creation and modification: Arrays: Functions: Constructor: Pattern matching using	07 m
regular expressions: Errors in scripts	
InvoSprint and HTML Documents:	
The JavaScript and HTIVIL Documents.	
Ine JavaScript execution environment, The Document Object Model, Element access in	
JavaScript; Events and event handling; Handling events from the Body elements, Button	
elements, Text box and Password elements; The DOM 2 event model; The navigator	
object; DOM tree traversal and modification.	
	L
UNIT-IV	
Dynamic Documents with JavaScript:	06 Hrs
Introduction to dynamic documents; Positioning elements; Moving elements; Element	
visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging	
and dropping elements.	
Introduction to PHP:	
Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives,	
Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern	
Matching: Form Handling: Files: Cookies: Session Tracking.	

UNIT-V	
XML:	05 Hrs
Introduction; Syntax; Document structure; Document Type definitions; Namespaces;	
XML schemas; Displaying raw XML documents; Displaying XML documents with CSS;	
XSLT Style sheets; XML processors; Web services.	

Cours	e Outcomes: After completing the course, the students will be able to
CO1.	Understand and explore internet related concepts that are vital for web development.
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.
CO4.	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.

Ref	erence Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications, Chris Bates, 3 rd Edition, 2006, Wiley India,
	ISBN : 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4 th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	-	2	-	1	1	1	-	-	-	-	1	
CO2	-	-	2	-	1	1	-	-	-	-	-	-	
CO3	-	-	-	-	2	-	-	-	2	-	-	2	
CO4	-	-	3	-	2	-	-	-	2	-	-	2	

	Semester: VI										
	AUTOMOTIVE ELECTRONICS										
	(Group E: Global Elective)										
Cou	rse Code: 16G6E05	CIE Mark	ks: 100								
Crea	lits: L:T:P:S: 3:0:0:0	SEE Marl	ks: 100								
Hours: 36L SEE Duration: 3Hrs											
Cou	rse Learning Objectives: The students	will be able to									
1	Understand the application of principles	s of sensing technology in automo	tive field								
2	Apply control systems in the automotive domain										
3	Understand automotive specific commu	nication protocols / techniques									
4	Analyze fault tolerant real time embedd	ed systems									

UNIT-I

Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol, **08 Hrs** diesel and gas engines, electric motors and control systems. Basic Automotive System, System Components, Evolution of Electronics in Automotive. Alternators and charging, battery technology, Ignition systems. Working principles of various electronic components and accessories used in Automotive. Developments in existing engine forms and alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic Transmission systems. UNIT-II In-vehicle sensors: **07 Hrs** Sensor Technologies in Automotive: Working principles, Characteristics, limitations and use within the automotive context of the following: Temperature sensing e.g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate. Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel injection. Interfacing principles: Operation, topologies and limitations of all sensors covered in the above to in-vehicle processing or communications nodes. Use of Actuators: Types, working principle, Characteristics, limitations and use within the automotive context of each type. UNIT-III Automotive Control Systems: Control system approach in Automotive: Analog and **07 Hrs** Digital control methods, stability augmentation, control augmentation. Transmission control, System components and functions. Cruise control, traction control, actuator limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle braking fundamentals, Antilock systems. Variable assist steering and steering control. Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Antitheft System, Emission Course-system control. Control techniques used in hybrid system. Electronic Engine control: Motion equations, modeling of linear and non-linear systems,

numerical methods, system responses Objective of Electronic Engine control. Spark Ignition and Compression Ignition Engines and their electronic controls. Engine management testing: Engine management system strategies and implementation. Simulation and implementation methods. Methods of improving engine performance and efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and Architecture.

UNIT-IV

Automotive Communication Systems: Communication interface with ECU's: Interfacing 07 Hrs techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in

Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS), for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

Course Outcomes: After completing the course, the students will be able to

CO1:	Acquire	the	knowledge	of	automotive	domain	fundamentals	and	need	of	electronics	in
	Automot	ive s	systems									
CO2:	Apply va	iriou	s sensors and	1 ac	tuators for A	utomotiv	e applications					

CO3: Analyze different control systems and communication interfaces used in automotive systems.

CO4: Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier										
	science, Newness publication, ISBN-9780080481494.										
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,										
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial										
	Information Technology Series, CRC press.										
4.	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,										
	Springer, 2 nd Edition, 2005, ISBN 0-387-95368X										

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	1	-	-	1	-	-	-	-	1	
CO2	3	2	2	1	-	1	-	-	-	1	-	1	
CO3	3	2	2	1	-	1	-	-	2	-	1	1	
CO4	3	1	2	1	2	1	-	-	1	-	-	-	

		SEMESTER – VI										
		INDUSTRIAL ELECTRONIC	S									
	(Group E: Global Elective)											
Course Code: 16G6E06			CIE Marks: 100									
Credits: L:T:P:S: 3:0:0:0			SEE Marks: 100									
Hours	s: 36L		SEE Duration: 3Hrs									
Course Learning Objectives: The students will be able to												
1	Explain the working of	the devices used in power electron	ic circuits in industrial applications									
2	Analysing and designing and economically and Id	power electronic circuits which har entify the typical practical problems	ndle the electrical energy efficiently with industrial exposure acquired									
3	Use basic concepts of de electrical energy.	sign and working of electronic circu	its for conversion and control of									
4	Apply the knowledge to work as part of teams on multidisciplinary projects and to discuss industrial problems with regard to application of Power Electronics											

Unit-I	
Power semi-conductor Devices and static characteristics:	08 Hrs
Construction, working & characteristics of MOSFET, SCR, IGBT. Comparison of Power	
BJT, MOSFET, SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design	
of R, R-C, and UJT (pulse train) Gate triggering methods of SCR.	
Unit-II	
Thyristor Dynamic characteristics, Specifications and Protection:	07 Hrs
Gate characteristics of SCR, Dynamic characteristics of SCR. Design of Snubber circuit	
for SCR, Line Commutation and Forced Commutation circuits with design, Gate	
protection & overvoltage protection of SCR.	
Unit-III	
Converters: Single Phase Controlled Convertor- Full wave Half and Fully controlled line	06 Hrs
commutated bridge converters, Derivation of average load voltage and current. Three phase	
converters –Six pulse converters- with R load- Active inputs to the convertors with and	
without Freewheeling diode, Derivation of average load voltage and current.	
Converter applications: Industrial Applications of Half and Fully controlled converters to	
DC drives (Control of DC drives)	
Unit-IV	
Choppers - Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and	07 Hrs
Current limit control strategies -Derivation of load voltage and currents with R, RL of Step	
down, Step up Chopper, Step up/Down Chopper - load voltage expression.	
Application of choppers to subway cars, Industrial drives, battery operated vehicles.	
Unit-V	
Classification of Choppers and Applications:	08 Hrs
Type A, Type B, Type C, Type D, Type E choppers and their industrial Applications, AC	
Chopper –phase control type.	
Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter,	
bridge inverter(single phase) - Voltage control techniques for inverters Pulse width	
modulation techniques UPS-online, offline (Principle of operation only	

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the comprehensive working of different devices and their applications.									
CO2:	Analyze the application of skills in controlling and conversion of electrical energy.									
CO3:	Evaluate and distinguish the performance of converters and inverters.									
CO4:	Ability to implement their knowledge and skills in design of applications.									

Chemical Engineering

Refe	erence Books
1.	"Power Electronics", M. D. Singh & K. B. Kanchandhani, Tata Mc Graw - Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
2.	"Power Electronics : Circuits, Devices and Applications", M. H. Rashid, Prentice Hall of India, 2 nd
	Edition, ISBN : 0131228153, 9780131228153, 2004
3.	"Power Electronics", P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	"Power Electronics" P S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th
	Edition.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	2	2	1	1	2	0	1	3	2	2
CO2	3	2	2	3	3	0	1	0	0	0	2	1	3	2	2
CO3	3	2	2	3	2	2	0	1	0	0	1	2	3	2	2
CO4	3	3	3	3	2	3	2	0	1	0	0	1	3	3	3

High-3: Medium-2: Low-1

VI Semester								
PI	ROJECT MANAGEMENT							
(Group E: Global Elective)							
Course Code : 16G6E07		CIE Marks : 100						
Credits : L: T: P: S:3:0:0:0		SEE Marks : 100						
Hours : 33L		SEE Duration : 03 Hrs						
Course Learning Objectives: The students will be able to								
1. To understand the principles and components of project management.								
2. To appreciate the integrated approa	ch to managing projects.							
3. To explain the processes of managi	ng project cost and project pr	cocurements.						
	Unit – I							
Introduction: What is project, what is management, program management, management, relationship between porganizational strategy, business valu body of knowledge.	s project management, relation project management, and project management, operate e, role of the project manage	onships among portfolio organizational project ions management and er, project management	06 Hrs					
UNIT – II								
Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle. Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated change control, close project or phase.								
	UNIT – III							
Project Scope Management: Project scope management, collect requirements define scope, create WBS, validate scope, control scope. Project Time Management: Plan schedule management, define activities, sequence activities, estimate activity resources, estimate activity durations, develop schedule, control schedule.								
	UNIT – IV							
Project Cost management: Project of control costs.Project Quality management: Plan control quality.	Cost management, estimate on quality management, perfo	cost, determine budget, orm quality assurance,	06 Hrs					
	UNIT – V	0 11 1 1 1	0.4 ••					
Project Risk Management: Plan risk analysis, perform quantitative risk ana Project Procurement Managemen procurements, control procurements, c	management, identify risks, lysis, plan risk resources, cor nt: Project Procurement close procurement.	perform qualitative risk atrol risk. Management, conduct	06 Hrs					
Course Outcomes: After going throu	ugh this course the student	will he able to						
CO1 Understand the concepts, tools a	and techniques for managing	large projects.						

CO2 Explain various sub processes in the project management frameworks.

CO3 Analyze and evaluate risks in large and complex project environments.

CO4 Develop project plans for various types of organizations.

Reference Books:

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2												
CO2	2	2		1	1								
CO3							1	1					
CO4	2		3		1								

	VI Semester						
	VIRTUAL INSTRUMENTATION						
	(Group E: Global Elective)						
Cours	se Code:16G6E08	CIE Marks: 100					
Credits/Week: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hours: 35L SEE Duration: 3Hrs							
Cours	Course Learning Objectives: The students will be able to						
1	1 Understand the difference between conventional and graphical programming, basic data						
	acquisition concepts.						
2	2 Differentiate the real time and virtual instrument.						
3	3 Develop ability for programming in LabVIEW using various data structures and program						
	structures.						
4	Analyze the basics of data acquisition and learn	ing the concepts of data acquisition with					
	LabVIEW.	_					

UNIT-I					
Graphical Programming Environment:	06 Hrs				
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction					
to LabVIEW, Components of LabVIEW and Labels.					
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code					
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch					
actions, String data types, enum, ring, Dynamics.					
UNIT-II					
Fundamentals of Virtual Instrumentation Programming:	09 Hrs				
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.					
Timing function: Timing VI, elapsed time, wait function.					
Case structures, formula node, Sequence structures, Arrays and clusters, visual display					
types- graphs, charts, XY graph. Local and Global variables.					
UNIT-III					
Error Handling- error and warning, default error node, error node cluster, automatic and	08 Hrs				
manual error handling.					
String Handling: Introduction, String Functions, LabVIEW String Formats.					
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.					
Design patterns: Producer/consumer, event handler, derived design pattern, Queued					
message handler, Producer/consumer (events), Producer/consumer (state machine).					
UNIT-IV					
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal	06 Hrs				
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.					
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,					
DAQ Assistants, Analysis Assistants.					
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,					
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.					
UNIT-V					
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs				
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process					
Communication, Notifier, Semaphore, Data Sockets.					
Simulation of systems using VI: Development of Control system, Image acquisition and					
processing.					

Course Outcomes: After completing the course, the students will be able to

R V College of Engineering- Bengaluru-59

CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.
CO2:	Apply the theoretical concepts to realize practical systems.
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.
CO4:	Create a VI system to solve real time problems using data acquisition.

Reference Books

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1 st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

Semester: VI							
	INTRODUCTION TO) MOBILE APPLICATION DEVELOPMENT					
	(Theory) (Crown Ex Clobal Elective)						
Co	urse Code: 16G6E09	CIE Marks: 100					
Cr	edits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Ho	ours : 36L	SEE Duration: 3Hrs					
Co	urse Learning Objectives: The s	tudents will be able to					
1	Learn Android application develo	opment platform for mobile devices and use it.					
2	Understand mobile application an	chitecture and its components.					
3	Define Android specific program	nming concepts such as activities, intents, fragments	s, services,				
	broadcast receivers and content p	roviders.					
4	Describe sensors like motion s	sensors, environmental sensors, and positional sen	sors; most				
	commonly embedded in Android	devices along with their application programming int	erface.				
			0				
Ov	erview of Software platforms ar	ad Development: Mobile OS: Android development	07 Hrs				
pia	tiorm and tools, Programming	g language, Emulator, SDK and Development					
	esting Applications and Activ	ities. Introducing the Application Manifest File:					
Creating Applications and Activities: Architecture Patterns (MVC): Android Application							
Lifecycle							
UNIT II							
Us	er Interface Design: Fundame	ntal Android UI Design; Introducing Layouts;	07 Hrs				
Introducing Fragments.							
Intents and Broadcasts: Introducing Intents; Creating Intent Filters and Broadcast							
Receivers.							
D							
Database and Content Providers: Introducing Android Databases; Introducing SQLite; 0							
	ntent values and Cursors; wo	rking with SQLite Databases; Creating Content					
PIC	Providers; Using Content Providers; Case Study: Native Android Content Providers.						
Ιo	antion Road Somilars Talanhan	UNIT IV	09 Um				
the	Emulator with Location-Based	Services: Selecting a Location Provider: Using	00 1115				
Pro	ximity Alerts: Using the Geocode	r. Example: Man-based activity: Hardware Support					
for Telephony: Using Telephony: Introducing SMS and MMS							
101	reception, comg reception, m	LINIT V					
Ha	rdware Sunnort and Devices (A	VIDIO VIDEO AND USING THE CAMERA).	07 Hrs				
Us	ing Sensors and the Sensor N	Janager: Monitoring a Device's Movement and	J/ 1115				
Ori	entation: Introducing the Enviro	mental Sensors: Playing Audio and Video: Using					
Audio Effects: Using the Camera: Recording Video							

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Assess the basic framework and usage of SDK to build GUI and apply advanced						
	technologies in developing Android mobile applications.						
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file						
	systems (internal and external storage), and SQLite database						
CO3:	Articulate the communication programming features and capabilities of Android platforms.						
CO4:	Design and create innovative, sophisticated mobile applications using Android platform.						

Reference Books

1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace
	Independent Publishing Platform, ISBN: 9781519722089

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

	Semester: VI							
	AUTOMOTIVE ENGINEERING							
	(Group E: Global Elective)							
Course Code: 16G6E10 CIE Marks: 100								
Credits: L:T:P:S		3:0:0:0	SEE Marks: 100					
Hou	rs:	36L	SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to							
1	1 Identify the different sub-systems in automobiles.							
2	2 Describe the functions of each of the sub-systems and its effect.							
2	Discuss fuel injection, transmission, braking, steering, suspension, air intake and exhaust							
3	systems.							
4	Explain the im-	portance of selection of suitable	sub-system for a given performance					
4	requirement.	-						

UNIT-I

Automobile Engines	06 Hrs				
Classifications of Internal Combustion Engines based on no. of cylinders, Arrangement					
of cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.					
Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine.					
Direct and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel,					
LPG and Natural Gas For automotive applications. Fuel properties- Octane number and					
Cetane number. Pollutants and Emission norms- Regulated pollutants and its effects,					
Regulations as per emission norms.					
UNIT-II					
Engine Auxiliary Systems:	08 Hrs				
AirIntake and Exhaust System- Working principle of Air filters, Intake manifold,					
Turbocharger, Intercooler, Exhaust manifold, Catalytic convertor, Exhaust Gas					
Recirculation system, Muffler.					
Cooling system- Components, working principle, Coolant.					
Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.					
Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter.					
Working of ignition system, Battery, Immobilizer.					
UNIT-III	UNIT-III				
Transmission:	08 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh	08 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential	08 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing	08 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless.	08 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV	08 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems:	08 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs.	08 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake,	08 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems.	08 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering.	08 Hrs 06 Hrs				
Transmission:Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless.UNIT-IVVehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV.	08 Hrs 06 Hrs				
Transmission:Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless.UNIT-IVVehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic	08 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic Stability Program, Air bags, Crash testing methods.	08 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic Stability Program, Air bags, Crash testing methods. UNIT-V	08 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic Stability Program, Air bags, Crash testing methods. UNIT-V Demonstrations of Automobile Systems: Engine performance measurement in terms of	08 Hrs 06 Hrs 06 Hrs				
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless. UNIT-IV Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic Stability Program, Air bags, Crash testing methods. UNIT-V Demonstrations of Automobile Systems: Engine performance measurement in terms of Brake power, Emission measurement and principle, Drawing Valve Timing Diagram for	08 Hrs 06 Hrs 06 Hrs				

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Describe the different types of automotive systems. (L1-L2)					
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)					
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)					
4	Evaluate the performance of engines by determining Brake Power. (L6)					

Reference Books

1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,
	SAE International, ISBN: 0768009871
2.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527.
3.	Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,
	1 st Edition, 2009, ISBN: 9781856175784.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

	Semester: VI					
	MOBILE NETWORK SYSTEMS AND STANDARDS					
	(Group	• E: Global Elective)				
Cou	rse Code: 16G6E11		CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:0 SEE Marks		SEE Marks: 100				
Hours: 34L			SEE Duration: 03Hrs			
Cou	Course Learning Objectives: The students will be able to					
1	Understand land mobile concepts, radio link design and cellular network.					
2	Compare the standards of WPAN, WLAN and WMAN.					
3	Analyze WPAN, WLAN and WMAN standards and their architecture.					
4	Design and demonstrate wireless networks for various applications.					

UNIT-I

 Cellular Wireless Networks: Principles of cellular Networks, cellular system
 06 Hrs

 components and Operations, channel assignment, Attributes of CDMA in cellular system.
 06 Hrs

 UNIT-II
 UNIT-II

Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE. 08 Hrs UNIT-III

Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in
the network.06 Hrs

UNIT-IV					
Wireless Personal Area Networks: Network architecture, components	, 08 Hrs				
Applications, Zigbee, Bluetooth.					
Wireless Local Area networks: Network Architecture, Standards, Applications.					
UNIT-V					
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages	5,				
WMAN Network architecture, Protocols, Applications.					

	Course Outcomes: After completing the course, the students will be able to
CO1	Describe the architectures and characteristics of different mobile networks. (L1-L2)
CO2	Apply the Network standards to a suitable application (L3)
CO3	Analyze the operation of various network technologies and standards (L4)
CO4	Evaluate the performance of various network technologies (L5)

Refere	ence Books
1	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,
	ISBN-13:978-0-19-806066-6.
2	Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010,
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
	Pearson, ISBN 97881-317-3186-4.

R V College of Engineering- Bengaluru-59

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

Low-1 Medium-2 High-3

	Semester: VI					
	APPLIED PARTIAL DIFFERENTIAL EQUATIONS					
	(Group E: Global Elect	ive)				
Cou	rse Code:16G6E12	CIE Marks: 100				
Cred	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Hou	irs: 35L	SEE Duration: 3Hrs				
Cou	Course Learning Objectives:					
1	Adequate exposure to learn basics of partial differential equations and analyze mathematical					
	problems to determine the suitable analytical technique.					
2	Use analytical techniques and finite element technique for the solution of elliptic, parabolic and					
	hyperbolic differential equations.					
3	3 Solve initial value and boundary value problems which have great significance in engineering					
	practice using partial differential equations.					
4	4 Identify and explain the basics of partial differential equations and use the same to analyze the					
	behavior of the system.					

Unit-I			
Partial Differential Equations of first order:	07 Hrs		
Introduction to formation of partial differential equations, Cauchy problem, Orthogonal			
surfaces, First order non-linear partial differential equations-Charpit's method,			
Classification and canonical forms of partial differential equations.			
Unit – II			
Elliptic Differential Equations:	07 Hrs		
Derivation of Laplace and Poisson equation, Separation of variable method, Dirichlet			
problem, Neumann problem, Solution of Laplace equation in cylindrical and spherical			
coordinates.			
Unit -III	•		
Parabolic Differential Equations:	07 Hrs		
Formation and solution of Diffusion equation, Dirac-Delta function, Separation of variable			
method, Solution of Diffusion equation in cylindrical and spherical coordinates.			
Unit –IV			
Hyperbolic Differential Equations:	07 Hrs		
Formation and solution of one dimensional wave equation, D'Alembert's solution,			
vibrating string, Forced vibration, Periodic solution of one dimensional wave equation in			
cylindrical and spherical coordinates, Vibration of Circular membrane.			
Unit –V			
Numerical solutions of Partial Differential Equations:			
Finite difference method for Elliptic, Parabolic and Hyperbolic partial differential			
equations, Introduction to the finite element method-simple problems.			

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,
	hyperbolic and elliptic differential equations using analytical and numerical methods.
CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,
	hyperbolic and elliptic differential equations arising in the field of science and engineering.
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to
	solve and optimize the solution using the appropriate governing equations.
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012,
	ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978-
4	81-265-5423-2.
3	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar,
	R. K. Jain, New Age International Publishers, 6th Edition, 2012, ISBN-13: 978-81-224-2001-
	2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005,
	ISBN 13: 9780072466850.

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	Semester: VI	
	AIRCRAFT SYSTEMS	
	(Group E: Global Elective)	
Course Code: 16GE6B13		CIE Marks: 100
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100
Hours: 36L		SEE Duration: 3Hrs

Course Learning Objectives:

To enable the students to:

- 1 List the various systems involved in the design of an aircraft
- 2 Demonstrate the technical attributes of all the subsystems of an aircraft
 - 3 Explain the significance of each systems and its subsystems for developing an airplane
- 4 Demonstrate the integration of the systems with the airplane

Unit-I						
Flight Control Systems : Primary and secondary flight controls, Flight control linkage	07 IIma					
system, Conventional Systems, Power assisted and fully powered flight controls.	U/ Hrs					
Unit – II						
Aircraft Hydraulic & Pneumatic Systems : Components of a typical Hydraulic system,						
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and						
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction						
mechanism.						
Unit -III						
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its						
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel	07 Hrs					
control unit.						

Unit -IV					
 Environmental Control Systems : Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 	07 Hrs				
Unit -V					
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.	07 Hrs				

Cou At t	urse Outcomes: he end of this course the student will be able to :
1	Categorise the various systems required for designing a complete airplane
2	Comprehend the complexities involved during development of flight vehicles.
3	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
4	Demonstrate the different integration techniques involved in the design of an air vehicle

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

High-3 : Medium-2 : Low-1

Curriculum Design Process

Academic Planning and Implementation
R V College of Engineering- Bengaluru-59

PROCESS FOR COURSE OUTCOME ATTAINMENT

At the end of the course

Chemical Engineering

Course end

survey mapped to COs

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

R V College of Engineering- Bengaluru-59

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.