

Chemical Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

	TIMES HIGHER EDUCATION WORLD UNIVERSITY RANKINGS-2023	CURR		STRUC	TURE	
99 NIRF RANKING IN ENGINEERING (2024)	1501+ TIMES HIGHER EDUCATION WORLD UNIVERSITY RAIKINGS-2003 (ASIA) 501-600	61 CREE PROFESSIO CORES (PC)	NAL		3 CREDITS	
	BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) by zee digital	22 ENGINEERING SCIENCE	18 PROJECT INTERNS		12 OTHER ELECTIVES & AEC	
1001+ SUBJECT RANKING (ENGINEERING)	801+ SUBJECT RANKING (COMPUTER SCIENCE)	12 CREDITS PROFESSIONAL ELECTIVES	12 HUMANITIE SOCIAL SC		160	
IIRF 2023 ENGINEERING RANKING INDIA NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)	*ABILITY ENHANCEN UNIVERSAL HUMAN INDIAN KNOWLEDG	MENT COURSE	S (AEC),),	CREDITS TOTAL	
T7 Centers of Excellence	Centers of Competence	MOUS: 90 INSDUSTF INSTITUTI	RIES / AC		1IC & ABROAD	
212 Publications On Web Of Science	669 Publications Scopus (2023 - 24)					
1093 Citations	70 Patents Filed	EXECUTED MORE THAN RS.40 CRORES WORTH SPONSORED RESEARCH PROJECTS				
Skill Based Laboratories Across Four Semesters	Patents Granted 61 Published Patents	CONSU SINCE 3	/ORKS			

Chemical Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

DEPARTMENT VISION

Imparting quality technical education in Chemical Engineering to promote leadership in research, innovation and sustainable technology through teamwork.

DEPARTMENT MISSION

- Impart quality education in basic and applied areas of Chemical Engineering.
- Enable students and faculty to achieve proficiency in the areas of Chemical Processes, Energy, Unit Operations and Computational Chemical Engineering using state-of-art laboratories and modern infrastructure.
- Encourage faculty and students to make career in research and contribute towards innovative processes and products.
- Develop inclusive technologies with a focus on new materials and sustainability.
- Collaborate with industries and research Institutes for academics and research.
- Inculcate leadership qualities, entrepreneurial skills, societal and ethical values in students and faculty.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1**: Exhibit knowledge of basic sciences, concepts and principles of Chemical Engineering.
 - **PEO 2**: Comprehend, analyze, design and implement engineering systems with a focus on research, innovation and sustainability.
 - **PEO 3**: Work in multidisciplinary team and cater to the needs of process industries with appropriate safety, health and environmental regulations.
 - **PEO 4**: Demonstrate effective communication skills, leadership qualities and develop into successfulentrepreneurs.

PSO	Description
PSO1	Gain knowledge of Chemical Engineering fundamentals and demonstrate problem formulation capabilities
	Analyze and solve engineering problems with a focus on environment and sustainability
PSO3	Contribute to multidisciplinary research using relevant Chemical Engineering tools

PROGRAM SPECIFIC OUTCOMES (PSOs)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	CH	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	AEC	Ability Enhancement Courses

INDEX

	THIRD YEAR COURSES						
SI. No.	Course Code	Course Code Name of the Course					
	V Semester						
1.	HS351TA	Entrepreneurship and Intellectual Property Rights	1				
2.	CH352IA	Process Dynamics and Control	4				
3.	CH353IA	Transport Phenomena	6				
4.	CH354TA	Mass Transfer-I	9				
5.	CH255TBX	Professional Core Elective-I (Group-B)	11-18				
6.							
		VI Semester					
7.	HS261TA	Principles of Management and Economics	19				
8.	CH362IA	Process Modeling and Simulation	21				
9.	CH363IA	Mass Transfer-II	23				
10.	CH364TA	Heterogeneous Reaction Systems	25				
11.	CH365TDX	Professional Core Elective-III (Group- D)	27-34				
12.	XX366TEX	Institutional Electives – I (Group E)	35-74				
13.	CH367P	Interdisciplinary Project	75				

Go, change the world

Bachelor of Engineering in CHEMICAL ENGINEERING

	V Semester												
SI. No.	Course Code	Course Title		Credit Allocation			BoS	Category	Max Marks CIE		SEE Duration	Max Marks SEE	
190.			L	Т	P	Total			Theory	Lab	(H)	Theory	Lab
1	HS351TA	Entrepreneurship and Intellectual Property Rights	3	0	0	3	HS	Theory	100	***	3	100	***
2	CH352IA	Process Dynamics and Control	3	0	1	4	СН	Theory + Practice	100	50	3	100	***
3	CH353IA	Transport Phenomena	3	0	1	4	CH	Theory + Practice	100	50	3	100	50
4	CH354TA	Mass Transfer-I	3	1	0	4	СН	Theory	100		3	100	50
5	CH255TBX	Professional Core Elective-I (Group-B)	3	0	0	3	СН	Theory	100	***	3	100	***
6	CH256TCX	Professional Core Elective-II (Group C)	2	0	0	2	СН	NPTEL	50	***	3	50	***
		Total				20							

	ELECTIVES						
	GROUP-B						
Sl.No	Sl.No Course code Course Title						
1	CH255TBA	Processing of polymers and polymer composites					
2	CH255TBB	Pilot Plant and Scale up Studies					
3	CH255TBC	Design of Piping Systems					
4	CH255TBD	Chemical Plant Utilities					
		GROUP-C (NPTEL)					
		ject to change based on the availability of the course on the					
NPTEL P	í í						
Sl. No.	Course Code	Course Title					
1	CH256TCA	Electrochemical Technology in Pollution Control					
2	CH256TCB	Rheology and Processing of Paints, Plastic, and Elastomer Based Composites					
3	CH256TCC	Computational Process Design					
4	CH256TCD	Physical and Electrochemical Characterizations in Chemical Engineering					
5	CH256TCE	Adsorption Science and Technology: Fundamentals and Applications					
6	CH256TCF	Soft Nano Technology					
7	CH256TCG	Interfacial Engineering					
8	СН256ТСН	Surface Engineering Of Nanomaterials					
9	AS256TCD	Manufacturing Guidelines for Product Design					
10	CH256TCJ	Nanotechnology in Agriculture					

Go, change the world

Bachelor of Engineering in CHEMICAL ENGINEERING

	VI SEMESTER													
Sl. No.	Course Code	Course Title	Credit Allocation		Credit Allocation BoS		Credit Allocation		Category	Max Marks CIE		SEE Duration (H)	Max N SE	
			L	Т	Р	Total			Theory	Lab		Theory	Lab	
1	HS261TA	Principles of Management and Economics	3	0	0	3	HS	Theory	100	***	3	100	***	
2	CH362IA	Process Modeling and Simulation	3	0	1	4	СН	Theory + Practice	100	50	3	100	50	
3	CH363IA	Mass Transfer-II	3	0	1	4	CH	Theory + Practice	100	50	3	100	50	
4	CH364TA	Heterogeneous Reaction Systems	3	1	0	4	СН	Theory	100	***	3	100	***	
5	CH365TDX	Professional Core Elective-III (Group- D)	3	0	0	3	СН	Theory	100	***	3	100	***	
6	XX266TEX	Institutional Electives – I (Group E)	3	0	0	3	Resp. BoS	Theory	100	***	3	100	***	
7	CH367P	Interdisciplinary Project	0	0	3	3	СН	Project	***	100	3	***	100	
		Total				24								

	ELECTIVES							
	GROUP-D Professional Core Elective							
Sl.No	Course co	ode	Course Title					
1	CH365TI	DA	Food Engineering					
2	CH365TI	OB	Fuel Cell Technology					
3	CH365TI		Process Engineering and Economics					
4	CH365TI		Energy Storage Technology					
			ROUP-F Institutional Electives – I					
Sl. No.	Course Code	BoS	Course Title					
1	AS266TEA	AS	Fundamentals of Aerospace Engineering					
2	BT266TEB	BT	Healthcare Analytics					
3	CH266TEC	СН	Industrial Safety Engineering					
4	CS266TED	CS	Robotics Process Automation					
5	CV266TEE	CV	Intelligent Transport Systems					
6	CV266TEF	CV	Integrated Health Monitoring of Structures					
7	CM266TEG	CM	Advanced Energy Storage for E-Mobility					
8	EC266TEH	EC	Human Machine Interface (HMI)					
9	EE266TEJ	EE	Energy Auditing and Standards					
10	EI266TEK	EI	Biomedical Instrumentation					
11	ET266TEM	ET	Telecommunication Systems					
12	ET266TEN	ET	Mobile Communication Networks and Standards					
13	IS266TEO	IS	Mobile Application Development					
14	IM266TEQ	IM	Elements of Financial Management					
15	IM266TER	IM	Optimization Techniques					
16	ME266TES	ME	Automotive Mechatronics					
17	MA266TEU	MA	Mathematical Modelling					
18	MA266TEV	MA	Mathematics of Quantum Computing					
19	HS266TEW	HS	Applied Psychology for Engineers					
20	HS266TEY	HS	Universal Human Values					

V Semester						
ENTREPRENEURSHIP & INTELLECTUAL PROPERTY RIGHTS						
		Category:	Professional Core			
(Theory)						
Course Code	:	HS351TA	CIE	:	100 Mar	ks
Credits: L: T:P	:	3:0:0	SEE	:	100 Mar	ks
Total Hours	Total Hours : 42 L SEE Duration : 3 Hours					
					1	
Unit-I 08						08Hrs

Introduction to Entrepreneurship: Definition and Scope of Entrepreneurship, Importance of Entrepreneurship in Engineering Innovation and Economic Growth, Techniques for Identifying Entrepreneurial Opportunities, Types of Entrepreneurs: Innovative, Imitative, Fabian, Characteristics and Traits of Successful Entrepreneurs.

Role in economic development- Emerging Trends in Entrepreneurship, Entrepreneur and Entrepreneurship, characteristics of Entrepreneur, Myths about Entrepreneurship, Entrepreneur vs Intrapreneur, Role of Entrepreneurial Teams

Activities: Case study on Entrepreneurship in Indian Scenario, Ideation Workshops and Hackathons,

Unit – II					
Entrepreneurial Opportunity Evaluation: Identifying Market Opportunities an	nd Trends,				
Integration of Engineering Principles in Ideation Process, Cross-Disciplinary Collab	oration for				
Technological Innovation, Assessing Market Feasibility and Demand Analysis,	Evaluating				
Technical Feasibility: Prototype Development, Proof of Concept, Financial Feasibility Analysis:					
Cost Estimation, Revenue Projection, Break-Even Analysis.					

Business Planning and Strategy Development: Elements of a Business Plan, Executive Summary, Company Description, Market Analysis, writing a Business Plan: Structure and Components, Strategic Planning: Vision, Mission, Goals, Objectives, SWOC Analysis, Competitive Strategy: Porter's Generic Strategies, Differentiation, Cost Leadership, Focus Strategy, Growth Strategies: Organic Growth, Mergers and Acquisitions, Strategic Alliances

Activities: Writing a Business Plan on given templates, Developing Business Models and Prototypes Based on Generated Ideas

	Unit –II	Ι			08Hrs	
Entrepreneurial Marketing	Entrepreneurial Marketing and Sales: Basics of Marketing: Product, Price, Place, Promotion					
(4Ps), Market Segmentation, T	argeting, and Pos	sitioning (STP)), Branding a	and Product D	Development	
Strategies, Creating a Uniq	ue Value Propo	osition (UVP)	Digital M	larketing: So	ocial Media	
Marketing, Content Marketi	ng, SEO, SEM	, Sales Tech	niques and	Customer]	Relationship	
Management (CRM).						
E 1 1 1 1 1 1 1 1 1	14		с г	F ·/ F ·	· D1/	

Entrepreneurial Finance and Resource Management: Sources of Financing: Equity Financing, Debt Financing, Venture Capital, Angel Investors, Crowdfunding, Financial Management: Budgeting, Cash Flow Management, Financial Statements Analysis, Risk Management and Insurance, Human Resource Management: Recruitment, Training, Performance Evaluation, Legal and Ethical Issues in Entrepreneurship: Intellectual Property Rights, Contracts, Corporate Governance Activities:Case Studies and Practical Applications

appine	ations
Unit	_IV

09 Hrs

Introduction to IP : Types of Intellectual Property

Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; protection of traditional knowledge, Infringement of patents and remedy, Case studies, Patent Search and Patent Drafting, Commercialization and Valuation of IP.

Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of Trade Mark; Deceptive similarity; Transfer of Trade Mark, ECO Label, Passing off, Infringement of Trade Mark with Case studies and Remedies. s

Unit –V	09 Hrs

Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. **Industrial Design:** Introduction of Industrial Designs Features of Industrial, Design. Procedure for

obtaining Design Protection, Revocation, Infringement and Remedies, Case studies.

Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Exceptions of Copy Right, Infringement of Copy Right with case studies.

Course Outcomes: After going through this course, the student will be able to					
CO1	Understand the concepts of entrepreneurship and cultivate essential attributes to become				
	an entrepreneur or Intrapreneur and demonstrate skills such as problem solving, team				
	building, creativity and leadership.				
CO2	Comprehend the process of opportunity identification of market potential and customers				
	while developing a compelling value proposition solution.				
CO3	Analyse and refine business models to ensure sustainability and profitability and build a				
	validated MVP of their practice venture idea and prepare business plan, conduct				
	financial analysis and feasibility analysis to assess the financial viability of a venture.				
CO4	Apply insights into the strategies and methods employed to attain a range of benefits				
	from these IPs and deliver an investible pitch deck of their practice venture to attract				
	stakeholders				
CO5	Knowledge and competence related exposure to the various Legal issues pertaining t				
	Intellectual Property Rights with the utility in engineering perspectives				

Refere	Reference Books			
1.	Donald F. Kuratko ,"Entrepreneurship: Theory, Process, and Practice", South-Western Pub publishers, 10th edition, 2016,978-ISBN-13: 1305576247			
2.	Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses", Crown Currency Publishers,1 st Edition, 2011, ISBN-13: 978-0307887894.			
3.	Dr B L Wadehra, Law Relating to Intellectual Property, universa Law publishers 05th edition, ISBN : 9789350350300.			
4	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20) ADDING UPTO 40 MARKS.	40			
MAX	KIMUM MARKS FOR THE CIE	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS MARKS					
	PART A					
1	Objective type questions covering entire syllabus	20				
(Maximu topics)	PART B m of TWO Sub-divisions only; wherein one sub division will be a	a caselet in the related				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
ГОТАL 100						

				Semester: V				
	PROCESS DYNAMICS AND CONTROL							
	Category: Professional Core							
Course	Code	•	(1 CH352IA	Theory and Practice) CIE Marks	· 10	0 + 50		
	s: L:T:P		3:0:1			0 + 50		
Total H			45L+30P			Iours		
L		-						
			U	init-I		09 Hrs		
				ons, transient response, Forcing function				
			•	mercury in glass thermometer, liquid l				
1°				Linearization of non-linear first order sy		18.		
Respon	ise of first o	rde		: Interacting and non-interacting systems	<u>s.</u>	00.11		
	1 0			nit – II		09 Hrs		
				econd order systems: U-tube manomete s for second order under damped process				
Overda	inpeu, critic	any	1	1 1	, 118	1 0		
			Un	it –III		09 Hrs		
Contro	llers: Cont	roll	ers, components c	of a control system, closed loop and	oper	n loop systems,		
				oportional, Proportional +Reset (P+I),	Prop	ortional + Rate		
N 77			Reset +Rate contro	. ,				
Final C	Control elen	nen		body, valve characteristics		00 11		
	Unit –IV 09 Hrs							
				servo and regulator problem, Overall				
load cha		s ar	ia multi loop contr	ol system, overall transfer function for s	set-p	oint change and		
	-	ofs	simple control syste	ems				
Transfer		011		nit –V		09 Hrs		
Stabilit	v: Concept	of S	Stability. Stability of	criterion, Routh Herwitz test for stability	. Ro	ot Locus		
method	• •			,	,			
Freque	ncy Respor	se:	Bode diagrams for	or first, second order systems and control	oller	s, Bode stability		
criteria,	Ziegler-Nie	cho	ls tuning method.					
]	Laboratory Component				
				List of experiments				
1	Time cons	tant	t determination and	response to step change of thermometer	r: Fir	st order		
2	<u> </u>	~	stem: First order					
3	Non interacting First order elements in series							
4		Interacting First order elements in series						
6	Level Con		rst order elements i			Level Controller (P, I, D, PID controllers)		
_	Flow controller (P, I, D, PID controllers							
7		trol ollo	rst order elements i ller (P, I, D, PID co er (P, I, D, PID con	ntrollers) trollers				
8	Pressure c	trol ollo	rst order elements i ller (P, I, D, PID co er (P, I, D, PID con roller (P, I, D, PID	ntrollers) trollers controllers)				
	Pressure co Temperatu	trol colle onti ire e	rst order elements i ller (P, I, D, PID co er (P, I, D, PID con	ntrollers) trollers controllers)				

Course	Course Outcomes: After completing the course, the students will be able to				
CO 1	Recall the concepts of Laplace transforms and first & second order systems				
CO 2	Compute transfer functions for first, second order and control systems				
CO 3	Analyze the response of first & second order systems and controllers for various inputs				
CO 4	Determine the overall transfer function of single and closed loop control system and				
	evaluate the stability of control systems				

Reference Books

Controller Tuning

11

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

1 Process system Analysis and Control: Steven E. LeBlanc, Donald R. Coughanowr, Third Edition, 2017, McGraw Hill, ISBN- 978-1259098437

- 2 Chemical Process Control: George Stephanopoules, First Edition, 2015, Pearson Education, ISBN- 978-9332549463
- 3 Coulson and Richardson's Chemical Engineering: Richardson J. F. Et. Al, 4th Edition,2006, Elsevier, ISBN 978-8131204528
- Process modeling, simulation and Control for Chemical Engineers: Luyben, 2nd Edition, 2013, McGraw Hill Education, 978-9332901681

Process Dynamics and Control; Seborg, Edgar, Mellichamp, Doyle; 3rd Edition, Wiley, 2013, ISBN- 978-8126541263

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50		
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS MAR				
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	30		
3	Viva	10		
	TOTAL	50		

			Semester: V			
TRANSPORT PHENOMENA						
Category: Professional Core						
			eory and Pract			
Course Code	:	CH353IA		CIE	:	100 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 Marks
Total Hours	:	45L+30P	5	SEE Duration	:	3.00 Hours
			T T • / T			00.11
			Unit-I			09 Hrs
Shell momentum h						and a Carta 1 d d
				ion of motion, Develo		
and solution of thes		1	pproach for fall	ing film, pipe, annulus	, w	retted wall column
and solution of thes	e m		J nit – II			09 Hrs
Equations of chan	~~•	ι	J nit – 11			09 Hrs
		ange their modifier	ations simplified	ations. Application of e		ations of change to
				opipe, wetted wall colur		
		1	· 1	npe, welled wall colui	····,	Tanning Tinni, How
through narrow slit, Couette flow, rotating cylinder. Unit –III 09 Hrs						
Heat Transfer mo	dels	-				071113
			an annulus (va	rying k), models for e	elec	trical heat source
viscous heat source			un unnunus (vu	a ying k), models for v	0100	difeat field source,
Unit –IV 09 Hrs						
Mass Transfer Mo	del					
Shell mass balance	and	l boundary condition	ons, Application	of shell mass balance	to s	simple steady state
				determination of diffu		
				and reaction in porous		•
0			Unit –V	*		09 Hrs
Turbulent Flow: Ir	ntro	duction to turbulen	nt flow, Compa	arison of Laminar and	ł tu	rbulent flow (For
				ations of change-Rey		
				ive treatment). Boussi		
concept of free and			•	<i>,</i>		
▲		•				
Laboratory Comp	one	ent:				

Flow visualization and analysis using CFD simulations are to be performed on the following systems using ANSYS package.

SI No	Details of the experiment	
Velocity Profile, shear stress distribution, Pressure distribution, Streamlines in		
1	Circular Conduits	
2	Non-circular conduits	
3	Expansion and contraction	
4	Annulus	
Temperature Profile,	flux distribution in	
5	Flow through heated pipe	
6	Composite wall	
7	Natural Convection	
Targeted effect studie	s in	
8	Simulation of Orifice meter	
9	Simulation of Venturi-meter	
10	Effect of roughness	
11	Boundary layer	
12	Reacting flows	

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Course Outcomes: After completing the course, the students will be able to

CO	1: Apply fundamentals of science to arrive at force, momentum, heat and mass balance				
	equations.				
CO	CO2: Develop and solve the models for steady state heat, mass and momentum transfer systems.				
CO	3: Analyze and interpret the solutions of the models.				
CO	4: Use equations of change to formulate and solve steady state models				
Ref	Reference Books				
1	R. Byron Bird et al, Transport Phenomena, 2nd Ed., Wiley, 2013, ISBN: 978-81-265-080082				
2	Harry C. Hershey (Author), Robert S. Brodkey Transport Phenomena: A Unified Approach: A				
2	Unified Approach, Vol 1, Bordkey Publishing, 2013, ISBN 0-9726635-9-2.				

- **3** Fundamentals of Momentum, Heat and Mass Transfer, James R. Welty et al., 4th Ed., Wiley India, 2007, ISBN: 978-81-265-1526-4.
- 4 Introduction to transport phenomena: momentum, heat and mass, Bodh Raj, PHI Learning Private Ltd, New Delhi, 2012, ISBN-978-81-203-4518-8

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS	

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

1	Write Up	10
2	Conduction of the Experiments	30
3	Viva	10
	TOTAL	50

	V Sem	nester			
	MASS TRA				
	Category: Prof	fessional Core			
	(The	ory)			
Course Code	: CH354TA	C	IE Marks	:	100 + 50
Credits: L:T:P	: 3:1:0	SI	EE Marks	:	100 + 50
Total Hours	: 45L+30T	SI	EE Duration	:	3 Hours
	Unit-I				09 Hrs
Molecular and Edand calculation of	ddy Diffusion in Fluids: dy Diffusion in Fluids: Fick's La of diffusivities in stationary flui ies of mass transfer.				
	Unit – II				09 Hrs
current. processes, Crystallization: S	fer co-efficients, Material balanc NTU and HTU concepts. Solubility and Equilibrium curve walker and vacuum crystallizers.	e, theories of o			
	Unit –III	-			09 Hrs
	otion in wetted wall columns, va ower, calculation of HETP, HTU				
	Unit –IV				09 Hrs
	rate curves, batch and continuoung period for batch and continuou		pments, mech	nani	sm of drying, and
	Unit –V				09 Hrs
	ption, industrial adsorbents, sin ons and calculations.	gle and multi	stage cross c	curre	ent and fixed bec
Course Outcomes	s: After completing the course, the	e students will	be able to		
	and the basic concepts of the mass				
	ne principles of mass transfer for t		systems		
CO 3 Identify	the factors that influence the mass	s transfer opera	ations		
CO 4 Estimate	e factors governing the transfer op	eration			
Dofeson co Docho					
Reference Books	r Operations, Robert Treybal, 3rd	Edition 2017	Mc Graw Hi	11 F/	lucation ISBN:
1 101055 11011510	r operations, Robert Heybal, Slu	Lanon, 2017,	The Graw III		

- 1259029158
- 2 Mc Cabe and Smith W L, "Unit Operations in Chemical Engineering", Mc Graw Hill, New York, 7th edition, 2007, ISBN: 0072848235.
- 3 Coulson and Richardson, "Chemical Engineering Volume 1", Elsevier (Indian reprint), New Delhi, 6th edition, 2006, ISBN: 0750625570.

4 Geankoplis C J, "Transport Processes and Unit Operations", Prentice Hall, New Delhi, 4th edition, 2000. ISBN: 8120326148.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

		ester: V	
PI	ROCESSING OF POLYMERS		SITES
		sional Core Elective	
Course Code	(In CH255TBA	eory) CIE Marks:	100
Credits: L:T:P	3:0:0	SEE Marks:	100
Total Hours	45 L	SEE Duration:	3 Hrs
Total Hours	43 L	SEE Duration:	5 118
	UNIT-I		09 Hi
Introduction of	Processing of polymers and po	lymer composites	I
	olymer composites: definition, ty		ions Fundamentals of
	ing techniques: extrusion, injection		
	UNIT-II		09 Hrs
Polymer Proces	sing Techniques		•••••••••
	ples, types, equipment, and appli	ications. Injection molding: pr	ocess steps.
. .	l design, and applications, Compr		1 /
	limitations, Blow molding: princ		
applications.			
	UNIT-III	[09 Hrs
Fiber reinforcem	ent: types of fibers (glass, carbor UNIT-IV	/ A A	ection criteria.
			09 1115
Advanced Proce	essing Technologies		09 1118
	e <mark>ssing Technologies</mark> acturing (3D printing) of polym	ers and polymer composites:	
Additive manufa applications,	acturing (3D printing) of polym		principles, material
Additive manufa applications, Smart processing	acturing (3D printing) of polym g techniques for polymers and con		principles, material
Additive manufa applications,	acturing (3D printing) of polym g techniques for polymers and con rs	mposites: self-healing, self-rep	principles, material
Additive manufa applications, Smart processing memory polymen	acturing (3D printing) of polym g techniques for polymers and con rs UNIT-V	mposites: self-healing, self-rep	principles, material
Additive manufa applications, Smart processing memory polymen Processing Opti	acturing (3D printing) of polym g techniques for polymers and con rs UNIT-V imization and Quality Control	mposites: self-healing, self-rep	principles, material pair, and shape 09 Hrs
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza	acturing (3D printing) of polym g techniques for polymers and con rs UNIT-V mization and Quality Control ation techniques: Design of Exp	mposites: self-healing, self-rep periments (DOE), statistical p	principles, material pair, and shape 09 Hrs process control (SPC
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control	acturing (3D printing) of polym g techniques for polymers and con rs UNIT-V imization and Quality Control ation techniques: Design of Exp measures in polymer proces	periments (DOE), statistical p sing: inspection methods, o	principles, material pair, and shape 09 Hrs process control (SPC defect detection, ar
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envir	acturing (3D printing) of polym g techniques for polymers and con rs UNIT-V mization and Quality Control ation techniques: Design of Exp measures in polymer proces ronmental and sustainability cons	periments (DOE), statistical p sing: inspection methods, o siderations in polymer process	principles, material pair, and shape 09 Hrs process control (SPC defect detection, ar sing.
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envir	acturing (3D printing) of polym g techniques for polymers and con rs UNIT-V imization and Quality Control ation techniques: Design of Exp measures in polymer proces	periments (DOE), statistical p sing: inspection methods, o siderations in polymer process	principles, material pair, and shape 09 Hrs process control (SPC defect detection, ar sing.
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envin Case studies and	acturing (3D printing) of polym g techniques for polymers and corres UNIT-V mization and Quality Control ation techniques: Design of Exp measures in polymer proces ronmental and sustainability cons industrial applications demonstra	periments (DOE), statistical p sing: inspection methods, o siderations in polymer process ating optimized processing and	principles, material pair, and shape 09 Hrs process control (SPC defect detection, ar sing. d quality control
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envin Case studies and Course Outcom	acturing (3D printing) of polym g techniques for polymers and con rs UNIT-V mization and Quality Control ation techniques: Design of Exp measures in polymer proces ronmental and sustainability cons	periments (DOE), statistical p sing: inspection methods, o siderations in polymer process ating optimized processing and	principles, material pair, and shape 09 Hrs process control (SPC defect detection, ar sing. d quality control
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envir Case studies and Course Outcom 1 Understandin	acturing (3D printing) of polym g techniques for polymers and corres UNIT-V mization and Quality Control ation techniques: Design of Exp measures in polymer proces ronmental and sustainability cons industrial applications demonstration tes: After completing the course g of Polymer Fundamentals	mposites: self-healing, self-rep beriments (DOE), statistical p sing: inspection methods, o siderations in polymer process ating optimized processing and e, the students will be able to	principles, material pair, and shape 09 Hrs process control (SPC defect detection, ar sing. d quality control
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envir Case studies and Course Outcom 1 Understandin 2 Apply the pri 3 Apply the pri	acturing (3D printing) of polym g techniques for polymers and con- rs UNIT-V imization and Quality Control ation techniques: Design of Exp measures in polymer proces ronmental and sustainability cons- industrial applications demonstra- tes: After completing the course	mposites: self-healing, self-rep periments (DOE), statistical p sing: inspection methods, o siderations in polymer process ating optimized processing and e, the students will be able to nd its Applications in polymer	principles, material pair, and shape 09 Hrs process control (SPC defect detection, an sing. d quality control
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envir Case studies and Course Outcom 1 Understandin 2 Apply the print 3 Apply the print composites	acturing (3D printing) of polym g techniques for polymers and corres UNIT-V mization and Quality Control ation techniques: Design of Exp measures in polymer process ronmental and sustainability cons industrial applications demonstra- es: After completing the course g of Polymer Fundamentals nciples, of Polymer processing an	mposites: self-healing, self-rep beriments (DOE), statistical p sing: inspection methods, of siderations in polymer process ating optimized processing and e, the students will be able to nd its Applications in polymer rocessing and its Applications	principles, material pair, and shape 09 Hrs process control (SPC defect detection, and sing. d quality control matrix composites in polymer matrix
Additive manufa applications, Smart processing memory polymen Processing Opti Process optimiza Quality control prevention, Envir Case studies and Course Outcom 1 Understandin 2 Apply the print 3 Apply the print composites	acturing (3D printing) of polym g techniques for polymers and con- rs UNIT-V mization and Quality Control ation techniques: Design of Exp measures in polymer process ronmental and sustainability cons- industrial applications demonstra- es: After completing the course g of Polymer Fundamentals nciples, of Polymer processing an nciples, of Advanced Polymer p timization techniques and Quality	mposites: self-healing, self-rep beriments (DOE), statistical p sing: inspection methods, of siderations in polymer process ating optimized processing and e, the students will be able to nd its Applications in polymer rocessing and its Applications	pair, and shape 09 Hrs 09 Hrs 09 control (SPC defect detection, ar sing. d quality control control control control control

1.	K. K. Chawla and Jitendra K. Pandey "Handbook of Polymer Nanocomposites: Processing, Performance and Application".
2.	Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications, and Markets" by Mark A. Spalding and Ananda Chatterjee
3.	Rainer Albrecht and Thomas Gries Manufacturing Techniques for Polymer Matrix Composites (PMCs)"

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

- **4.** M.H.Ferry, A.V.Becker, "Hand book of Polymer science and Technology", CBS Publishers and Distributors. ISBN: 81-239-1132-7
- 5. V.R.Gowarikar, N.V.Viswanathan, Jayadev Sreedhar, "Polymer Science", New Age International Pvt.Ltd, 2012: ISBN: 0-85226-307-4

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & each quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			ster: V			
PI	PILOT PLANT STUDIES AND SCALE UP METHODS					
Category: Professional Core Elective						
		· · · · · · · · · · · · · · · · · · ·	eory)		1	
Course Code	:	CH255TBB	C		:	100
Credits: L:T:P	:	3:0:0		EE	:	100
Total Hours	:	45L	SE	EE Duration	:	3 Hours
		Unit-I				09 Hrs
Introduction: Process			ot plants	, Scale-up procedure	s, bas	ic terminologies-
prototypes, models, sca						
Principles of Similari	ty: G	eometric, Static, dyn	iamic, ki	inematics, thermal an	nd ch	emical similarity
with examples						1
		Unit – II				09 Hrs
Dimensional Analysis:	•					
equations from Differen					ystem	s, mass transfer
processes, Homogeneou	is and	l heterogeneous chem	ical proc	cesses.		1
	Unit –III 09Hrs					
Regimes: Concept of st	,	•		e		
Similarity criteria ar						
Dynamic-Viscosity, gra						
Convection and Radia				ass transfer control	led,	Surface reaction
controlled and mixed, e	xtrap	olation and boundary	effects.			1
		Unit –IV				09 Hrs
	Scale-up of Mixing Equipment – Scale-up based on Power number, Scale-up based on Peripheral			ed on Peripheral		
speed, Scale-up of baff						
Scale-up of Heat Tra						
Scale-up of Overall hea	t tran		/ilson's 1	method and Regression	on An	1
	Unit –V 09Hrs					
Scale-up of Chemica		ĩ	•		ules	for homogenous
· · · ·	reactions, Scale-up rules for heterogeneous reaction systems.					
Scale-up of Mass Tr						
Analysis of parameters		1		e i		
Packing ; Scale-up of Distillation systems, Absorption systems, Liquid Extraction systems						
				danta will be able to		

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Identify the need for pilot plant.			
CO2	Explain the concept of Similitude and compare the regimes			
CO3	Perform Dimensional analysis on flow, heat and mass transfer processes			
CO4	Establish Similarity criteria and develop the scale equations for chemical processes			

Reference Books

-	
1.	Dimensional Analysis and Scale-up in Chemical Engineering, Marko Zlokarnik, 1991, Springer-
	Verlag, ISBN 9783540541028
2	Scale up of Chemical Processes, Scale up of Chemical Processes, 1985, John Wiley & Sons,
<i>∠</i> .	ISBN 0471057479
2	Pilot Plants Models and scale up method in Chemical Engineering, Johnstone and Thring, 1957,
5.	McGraw Hill, ISBN: 978-0071422949
4.	Scale-up in Chemical Engineering, Marko Zlokarnik, 2006, Wiley-VCH, ISBN 9783527314218
1	

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & each quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semeste	vr• V		
			DESIGN OF PIPI			
			Category: Profession			
			(Theo			
Course (Code	:	CH255TBC	CIE	:	100
Credits:	L:T:P	:	3:0:0	SEE	:	100
Total Ho	ours	:	40L	SEE Duration	:	3 Hours
			Unit-I		·	08 Hrs
Fundam	entals for p	ipin	g design: Pipes and t	ubes, Euler's equation	n of mot	on, continuity
equation,	, Bernoulli's ea	quati	on, gas laws.			
Hydraul	ic Design Cor	nside	rations: Pipe sizing, Pres	ssure drop in pipes, Ca	lculation of	f pump head
Material	ls of Constru	ction	in Pipes and tubes: Sel	ection of piping materi	ials, physic	al properties of
			ed piping materials.		·····, F-·)	
<u> </u>	,		Unit – II			08 Hrs
Pipe Fitt	tings: Branch	ing,	Tees, Reducers, Elbows,	Swage, Caps, Couplin	ngs, Socke	
	Screwed Fitti		, , ,		U /	
Valves a	nd allied Fitt	ings:	Valves, functions of valv	ves, valve materials and	methods of	of construction,
pressure	drop in valves	, val	ve size, types of valves, v	alve fittings		
			Unit –III			08 Hrs
			oort, Hanger Support, A		ny Leg Su	pport, Guides,
braces ar	nd spans, stiff	ening	g ribs, pipe clamping, flex	ible hanger supports		
			Piping design : American	Standards - ASTM, A	NSI, API,	ASME, British
			Indian Standards.			
Fundam	entals of Pipi	ng L	ayout : Terminologies of	piping layout , Consid	erations fo	
			Unit –IV			08 Hrs
			g fabrication, welding j			
			tion of pipe edges, wel			of weld joints,
inspectio	n of weld join	ts, re	pair of defective weld joi	nts, acceptance standar	ds.	
. .			~	D	.1 1 0	
			Compensating Methods			
			methods of compensati			
			pansion devices calculati	on of anchor force usin	ig a bellow	below material
and me,	use of hinged	com	Unit –V			08 Hrs
Thormol	Ingulation	Euro	tions of thermal insulate	ma madaa of haat too	afon in aul	
			ne, application of insulation	-	· · ·	U I
				1 in a critical task as	nosion pre	
abrasion.		rrogic	on ontroprogram protoct	l in a critical task, con	protectio	
		rrosic	on, anticorrosive protect	l in a critical task, con ive coatings, cathodic	protectio	
Safety ar	alvsis and col		-		protectio	
Safety ar	alysis and col		on, anticorrosive protect protect oding in Piping design.		protectio	
•	•	our c	oding in Piping design.	ive coatings, cathodic		
Course (Outcomes: Af	our c ter c	oding in Piping design.	ive coatings, cathodic		
Course (CO1 F	Dutcomes: Af Recollect the f	our c 'ter c unda	oding in Piping design. ompleting the course, th mentals of fluid transport	ive coatings, cathodic		
Course (CO1 F CO2 (Dutcomes: Af Recollect the f	our c ter c unda oriate	oding in Piping design.	ive coatings, cathodic ne students will be able for piping.		

CO4 Determine the specific need and choose pipes/pipe fittings, supports, expansion devices for various processes.

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Reference Books

1.	G K. Sahu, "Handbook of Piping Design", 1 st Edition, New Age Publishers, 1998. ISBN: 9788122424560
2.	Mohinder L. Nayyar, "Piping Hand Book", 7 th Edition, Mc. Graw Hill Publication, 1996. ISBN 0-07-047106-1
3.	Don W. Green; Robert H. Perry. Perry's Chemical Engineers' Handbook, Eighth Edition (McGraw-Hill: New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto, 2008, 1997, 1984, 1973, 1963, 1950, 1941, 1934)

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & each quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

		Semester: V			
	CHEN	AICAL PLANT UTILITIES			
		ry: Professional Core Elective			
	currego	(Theory)			
Course Code	: CH255TBD		:	100 Marks	
Credits: L:T:P	: 3:0:0	SEE		100 Marks	
Total Hours	: 45L	SEE Duration		3 Hours	
i otur mours	. 102		•		
		Unit-I		09 F	Irs
Introduction IIt	ilities: Different utilit	ies, Role of utilities in process	nlant o	perations and crit	oric
		le utilities. Water: Water resour	•		
			ices, Pl	rocess water, Coo	nng
water, Drinking	water and boller leed	water quality standards. Unit – II		09 1	Two
	<u> </u>		•1		
		n chemical plants. Types of bo	ilers ai	nd waste heat boi	lers
	l characteristics, cogen				
		ns. Economy of steam generati	on wit	h different fuels,	
related calculati	on.	TT •/ TTT		0.0 1	T
		Unit –III		09 I	
•		ent refrigeration systems and			
		performance, Power requirement			
related calculation	ions for each type of	refrigeration system, Refrigeran	nt prop	perties and selecti	on.
Insulation mate	erials, selection, ecor	nomics of insulation, Insulatin	ng fact	tors, Properties a	ind
classification, C	Cold insulation,				
and cryogenic ir	sulation.				
		Unit –IV		09 I	
Compressors a	nd Vacuum Pumps	Types of compressors and	vacuu	m pumps and t	hei
performance ch	aracteristics. Method	s of vacuum generation and	their	limitations, mater	rial
handling under		C C			
vacuum, piping	for vacuum systems	, lubrication and oil removal i	n com	pressors and vacu	uun
pumps.	•			•	
		Unit –V		09 I	Irs
Air and Water (Cooling Types of air c	oolers, construction and working	g of air	r coolers, cooling	
towers	*			C C	
working princip	ple, operating princip	bles of cooling towers, types	of coo	ling tower and t	hei
• •		ms, air flow distribution system		c	
. ,	5				
Course Outcom	es: After completing	the course, the students will be a	able to		
	he utilities necessary for				
		irement and material properties t	to asfe		

CO2	Explain the energy utility requirement and material properties to safeguard chemical plants.
CO3	To gain knowledge on heating, cooling and air conditioning systems.
CO4	Identify and use utility equipment in process industries.

Reference Books

INCI	the books
1.	Industrial Hazards and Plant Safety, Banerjee S, 1st Edition, 2002, CRC press, ISBN:560320699
2.	Basic Refrigeration and Air Conditioning, P N Ananthanarayanan, 4 th Edition, 2013, McGraw Hill Education (India) Private Limited, ISBN: 9383286563
3.	Mass Transfer Operations, Robert Treybal, 3 rd Edition, 2017, McGraw Hill Education, ISBN: 1259029158
4.	Securing Utility and Energy Infrastructures, Larry Ness, 1 st Edition, 2006, Wiley-Inter science, ISBN: 047170525X.

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks.	40
	FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20)	40
	Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (1	THEORY)
CONTENTS	MARKS
PART A	
Objective type questions covering entire syllabus	20
PART B	
(Maximum of TWO Sub-divisions only)	
Unit 1 : (Compulsory)	16
Unit 2 : Question 3 or 4	16
Unit 3 : Question 5 or 6	16
Unit 4 : Question 7 or 8	16
Unit 5: Question 9 or 10	16
	TOTAL 10

		VI	Semester		
	PRI	NCIPLES OF MAN	AGEMENT & ECONOM	IICS	
		()	Theory)		
Course Code	:	HS261TA	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45 Hrs	SEE Duration	:	3.00 Hours
		Unit-I			06 Hrs
levels & Skills, Ma Theory, Quantitati	nageme ve App	ent History - Classica proach: Operations	Functions – POSDCORB – al Approach: Scientific Ma Research, Behavioral Appr Contingency Theory. Caselet	anagemer roach: H	nt, Administrative Iawthorne Studies
<u> </u>	F	Unit – II			10 Hrs
Foundations of Pla	anning		Plans, Approaches to Settin	g Goals	
Strategies – Porters Organizational St Specialization, De	Five for ructure partmen	rce Model, types of (e & Design: Overv ntalization, Chain (ppes of corporate strategies, Competitive Strategies. Cas view of Designing Organiz of Command, Span of C	elets / C zational Control,	ase studies Structure - Wor Centralization &
Decentralization, Fo	ormaliz		COrganic Structures. Casele	ts / Case	
		Unit –III			10 Hrs
•			Maslow's Hierarchy of N		•
•	•	•	ctor Theory. Contemporary		ies of Motivation
			neory. Caselets / Case studi		T 1 .
			Mouton's Managerial Grid,		
			al Leadership, Contempora	ary View	vs of Leadership
Transactional & Tra	instorm	Unit –IV	Caselets / Case studies		10 Hrs
Introduction to 1	Faaman		ics and Macroeconomics,	Circula	
economics, An Ove Essentials of Mic Services, Price El Numericals on dete	rview c roecon asticity erminin	of Economic Systems omics: Demand, Su of Demand and g price elasticity of		Market y, Elasti	ts for Goods and icity and Pricing
		Unit –V			09 Hrs
Market, Money an Measures of GDP: Calculations, ESG a Macroeconomic m	d bank Outcon an overv aodels-	s, Interest rate. Gro ne Method, Income r view. The classical growt	ation, Consumer Price Ind oss Domestic product (GDI method and Expenditure me h theory, Keynesian cross del, The neo-classical synt	P) - con ethod, N model, I	nponents of GDP umericals on GDI S-LM-model, The
process in mula					
*					
•	s. Afta	r completing the	course, the students will	he ahla	to-

- CO1 Elucidate the principles of r organization.
- CO2 Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.
- CO3 Compare and contrast early and contemporary theories of motivation and select and implement the right leadership practices in organizations that would enable systems orientation.
 CO4 Demonstrate an understanding on the usage and employed enables.
- CO4 Demonstrate an understanding on the usage and application of basic economic principles.CO5 Appreciate the various measures of macro-economic performance and interpret the prevailing

economic health of the nation.

Re	Reference Books:		
	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 15th Edition, 2021, Pearson		
	Education Publications, ISBN: 13: 978-0-13-558185-8		
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6th Edition, 2009, PHI, ISBN:		
	81-203-0981-2.		
2	Principles of Microeconomics, Steven A. Greenlaw, David Shapiro, 2nd Edition, 2017, ISBN:978-		
3.	1-947172-34-0		
4.	Macroeconomics: Theory and Policy, Dwivedi D.N, 5 th Edition, 2021, McGraw Hill Education;		
	ISBN : 9789353163334		

RU	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3.	EXPERIENTIAL LEARNING: Some of the Experiential learning topics may include Reading Leadership books and summarizing, Analysis and interpretation of various economic reports, Visit to various organizations to understand organizational mechanics. Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .		
MA	AXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
(Maximu	m of TWO Sub-divisions only; wherein one sub division will be	a caselet in the related		
topics)				
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
TOTAL		100		

			ster: VI		
	PROCESS MODELING AND SIMULATION				
		U 1	ofessional Core		
			nd Practice)		L
Course Code	:	CH362IA	CIE	:	100 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 Marks
Total Hours	:	42L+30P	SEE Duration	:	3Hours
		Unit-I			8 Hrs
Modeling in Chemical Engineering : Introduction, Fundamental laws, scope of coverage, principles of formulation, modeling aspects, classification of models. Continuity equation, equations of motion, transport equations, equations of state, equilibrium, and chemical kinetics with examples.					
		Unit – II			8 Hrs
Models in Separation processes : Steady state single and multiple stage solvent extraction, unsteady state single stage solvent extraction, multistage gas absorption, single component vaporizer and ideal binary distillation column, batch distillation, multi-component flash drum.					
		Unit –III			9 Hrs
Models in reactors: S	Series	of Isothermal, consta	ant hold-up CSTRs, C	CSTRs with varia	ble hold-ups,
Non-isothermal CSTR	, Batch	reactor and reactor	with mass transfer, gas	s phase pressurize	d CSTR.
		Unit –IV			9 Hrs
Models in heat trans unsteady state steam he Models in fluid flow of	eating	of Liquid.		-	
circular tube, Basic tank model -Level V/s time, Two-heated tanks.					
		Unit –V			8 Hrs
Numerical methods: simulation, iterative of position, Wegstein and	conver	gence methods – i	nterval halving, New	vton-Raphson me	ethod, False-

List of experiments:

1. Simulation of Shell and Tube Heat Exchanger
2. Simulation of Centrifugal Pump/Compressor
3. Simulation of Flash drum/Separator
4. Simulation of single stream gas heater/cooler
5. Simulation of CSTR
6. Simulation of Distillation Column
7. Simulation of Atmospheric distillation of crude oil
8. Simulation of aromatic stripper with recycling
9. Simulation of Benzene production
10. Simulation of methanol-water separation using RADFRAC
11. Simulation of various reactor types to model a single reaction
12. Simulation of cyclo hexane production

Course	Course Outcomes: After completing the course, the students will be able to		
CO1:	Recall the fundamental laws in modeling chemical engineering systems		
CO2:	Explain modeling and simulation of simple chemical engineering systems		
CO3:	Apply mathematical tools to solve model equations		
CO4:	Analyze chemical engineering systems for model development		

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Reference Books

1	Process Modeling, Simulation and Control for Chemical Engineers, William L. Luyben
	McGraw Hill 2 nd Edition, 1999, ISBN: 978-0070391598.
2	Process Plant Simulation, B V Babu, 1st Edition, 2004, Oxford University Press, ISBN: 978-
	0-19-566805-6.
2	Elements of Chemical Reaction Engineering, H Scott Fogler, 3 rd Edition, Prentice Hall of
3	India, 2004, ISBN: 7502741003.
4	Process Heat Transfer, D.Q.Kern, 1st Edition, 2012, Tata McGraw Hill, ISBN: 007034190.

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

			Semester: VI	· · · · · · · · · · · · · · · · · · ·		
			MASS TRANSFE	CR-II		
		Cat	egory: Profession			
~ ~ ~ ~	1		(Theory and Prac		1	
Course Code	:	CH363IA		CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 + 50 Marks
Total Hours	:	45L + 30P	TT •4 T	SEE Duration	:	3 Hours
Dealed Towar A	haa	untion Liquid al	Unit-I	agging drag in also		09 Hrs tion towers. Design of
			roblems on packed		orpi	ion towers. Design o
packed towers (in	/ign		Unit – II			09Hrs
Distillation: Flas	hΙ			active Distillation.	A	zeotropic Distillation
Molecular Distilla					,	
		· · · · · · · · · · · · · · · · · · ·	Unit –III			09 Hrs
Distillation: Mu	lti-s	tage rectification	column. Design	using McCabe T	hiel	e method for binary
				feed to distillation	n co	olumns. Plate to plate
calculations using	Le					
			Unit –IV			09 Hrs
				selection, single st	age	extraction, multistage
cross-current and	cou		Unit –V			09 Hrs
Leaching: Introd	ucti			Calculations for si	nal	e stage and multistage
leaching operation					ingi	e stage and munistage
č ,		•	ns on reaching.			
Laboratory Ex						
1. Diffusion of On						
2. Simple /Differe						
 Packed Column Steam Distillation 		stillation				
 Solid Liquid Le 		ina				
7. Surface Evapor						
8. Tray Dryer	unc					
9. Adsorption Stu	dies	5				
		por Liquid Equilil	brium			
			Single and multi-Sta	ages)		
12. Holdup Studie						
13. Wetted Wall (Colı	umn/Mass Transfe	r Coefficient Estim	ation		
Course Outcome	s: /	After completing	the course, the stu	dents will be able	to	
		×	mass transfer opera			
	<u> </u>	A	f the equilibrium an		ılcu	lations
CO3 Apply design principles to design the mass transfer equipment						
CO4 Analyze th	ne e	fficiency of multis	stage crosscurrent a	and countercurrent	ope	rations
Reference Books						
	er (Operations, Rober	t E Treybal, McGr	aw Hill, 3rd Editio	on, İ	2017, ISBN:978 0070
651760						
^{2.} ISBN:978 00)72	848236				Iill, 7 th Edition, 2022
2 Coulson and	Ri	chardson, Chemic	al Engineering Vo	lume 1 and Volun	ne 2	2, Pergemen Press, 6 ^t

3. Coulson and Richardson, Chemical Engineering Volume 1 and Volume 2, Pergemen Press, 6th Edition, 2017, ISBN: 0750644451

4. Badger and Banchero, Introduction to Chemical Engineering, Tata McGraw Hill, 1st Edition 1997, ISBN:9780070850279.

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

			Semester: V	[
		HETER	OGENEOUS REAC	TION SYSTEM			
		(Category: Professio	nal Core			
			(Theory)				
Course Code		CH364TA		CIE	:		Marks
Credits: L:T:	P :	3:1:0		SEE	:	100	Marks
Total Hours	:	40L		SEE Duration	:	3Ho	
			Unit-I				08 Hrs
		-	eaction Systems: Exa				
•		•	ctions, contacting pat	· · ·	ystei	ns, R	ate equations fo
heterogeneous	s reaction	ons, Overall rat	es for linear and nonli	inear process.			
Fluid Particl	e Read	tion Kinetics:	Selection of a mode	el, Rate of reaction	n fo	r shr	inking Spherica
Particles, Dete	erminat	ion of rate cont	rolling mechanism				
			Unit – II				08 Hrs
Catalysis: Int	roducti	on to catalyst.	Promoters, inhibitors.	Properties of cata	lyst	s, cha	racterization of
			catalyst preparation, o				
			gmuir adsorption Is				
			on, surface reaction a	and desorption. W	heel	ers n	nodel, Types of
diffusion in po	brous c	atalysts, effecti	veness of catalyst.				
			Unit –III				08 Hrs
Catalyst Cha	racter	isation: Deterr	nination of the surface	ce area of the cata	ılyst	(BE	T method), Por
							,,
volume distrib	oution,	Scanning Elect	ron Microscopy, X-Ra	ay Diffraction Tech	miq	· ·	
						ue	
			ron Microscopy, X-Ra of deactivation, activ Unit –IV			ue	
Catalyst Dea	ctivatio	on: Mechanism	of deactivation, activ Unit –IV	ity, rate equations	for c	ue leacti	vation reactions
Catalyst Dea	ctivatio Reacti	on: Mechanism	of deactivation, activ Unit –IV regimes for mass t	ity, rate equations ransfer and rea	for c	ue leacti n, ra	vation reactions 08 Hrs te equation for
Catalyst Dead Fluid-Fluid Instantaneous	ctivatio Reaction reaction	on: Mechanism ons: Kinetic on, Fast react	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat	ity, rate equations ransfer and rea e, Rate equation	for c ctio	ue leacti n, ra slow	vation reactions 08 Hrs te equation for reaction, Filr
Catalyst Dea Fluid-Fluid Instantaneous conversion pa	ctivation Reaction reaction ramete	on: Mechanism ons: Kinetic on, Fast react	of deactivation, activ Unit –IV regimes for mass t	ity, rate equations ransfer and rea e, Rate equation	for c ctio	ue leacti n, ra slow	vation reactions 08 Hrs te equation for reaction, Filr
Catalyst Dea Fluid-Fluid Instantaneous conversion pa	ctivation Reaction reaction ramete	on: Mechanism ons: Kinetic on, Fast react	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry rea	ity, rate equations ransfer and rea e, Rate equation	for c ctio	ue leacti n, ra slow	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions	Reaction reaction reaction ramete	on: Mechanism ons: Kinetic on, Fast react r, clues for kine	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V	ity, rate equations ransfer and rea e, Rate equation action kinetics, De	for c ctio for sign	ue leacti n, ra slow of to	vation reactions 08 Hrs te equation fo 7 reaction, Film wers for fast and 08 Hrs
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta	ctivatio Reaction reaction ramete s. I Meth	on: Mechanism ons: Kinetic on, Fast react r, clues for kine	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry rea	ity, rate equations ransfer and rea e, Rate equation action kinetics, De	for c ctio for sign	ue leacti n, ra slow of to	vation reactions 08 Hrs te equation for reaction, Filr wers for fast an 08 Hrs
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions	ctivatio Reaction reaction ramete s. I Meth	on: Mechanism ons: Kinetic on, Fast react r, clues for kine	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V	ity, rate equations ransfer and rea e, Rate equation action kinetics, De	for c ctio for sign	ue leacti n, ra slow of to	vation reactions 08 Hrs te equation fo 7 reaction, Film wers for fast and 08 Hrs
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys	Reacti reacti reacti ramete s. I Meth sis.	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re	for c ctio for sign	ue leacti n, ra slow of to or. Di	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re	ctivation Reaction reaction ramete s. I Meth sis. actors:	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V ing Rates: Differenti	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re lesign, Slurry Read	for c ctio for sign	ue leacti n, ra slow of to or. Di	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re	ctivation Reaction reaction ramete s. I Meth sis. actors:	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V ing Rates: Differenti , fluid- fluid reactor of	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re lesign, Slurry Read	for c ctio for sign	ue leacti n, ra slow of to or. Di	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trick	ctivation Reaction reaction ramete s. I Methodisis. actors: le bed r	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find Fluid-particle, eactor, Three p	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry rea Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re lesign, Slurry Read actor.	for c ctio for sign actc	n, ra slow of to r. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and
Catalyst Dea Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trick Course Outco	Reaction reaction reaction ramete s. I Meth sis. actors le bed r pomes : 2	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find ods For Find eactor, Three p	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu	ity, rate equations ransfer and rea e, Rate equation action kinetics, Dea al and Integral Re design, Slurry Read actor. Idents will be able	for c ctio for sign actc	n, ra slow of to r. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trickl Course Outco CO1 Define	Reacti reactir ramete s. I Meth sis. actors : le bed r omes: <i>a</i>	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find e Fluid-particle reactor, Three p After completi te equations for	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction	ity, rate equations ransfer and rea e, Rate equation action kinetics, Dea al and Integral Re design, Slurry Read actor. Idents will be able	for c ctio for sign actc	n, ra slow of to r. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trickl Course Outco CO1 Define CO2 Predic	ctivation Reaction re	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find eactor, Three p After completing te equations for te controlling n	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry rea Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction mechanism	ity, rate equations ransfer and rea e, Rate equation action kinetics, Dea al and Integral Re design, Slurry Read actor. Idents will be able ons	for c ctio for sign actc	n, ra slow of to r. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trick Course Outco CO1 Define CO2 Predic CO3 Analys	ctivation Reaction re	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find eactor, Three p After completi te equations for te controlling n rption isotherm	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rate etic regimes, slurry reactive Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction heterogeneous reaction by conducting adsor-	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re lesign, Slurry Read actor. Idents will be able ons	for c ctio for sign actor, ctor,	n, ra slow of to or. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and xed bed catalyti
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trick Course Outco CO1 Define CO2 Predic CO3 Analys CO4 Interpr	ctivation Reaction re	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find e Fluid-particle, reactor, Three p After completi te equations for te controlling n rption isotherm erimental data	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry rea Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction mechanism	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re lesign, Slurry Read actor. Idents will be able ons	for c ctio for sign actor, ctor,	n, ra slow of to or. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and xed bed catalyti
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trick Course Outco CO1 Define CO2 Predic CO3 Analys CO4 Interpr	ctivation Reaction reaction rameter s. I Methesis. actors: be bed r be the rate t the rate t the rate c adsource to the rate reaction of the rate t the rate reaction of the rate t the rate reaction of the reaction of the rate reaction of the rate reaction of the reaction of the rate reaction of the reaction	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find eactor, Three p After completi te equations for te controlling n rption isotherm	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rate etic regimes, slurry reactive Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction heterogeneous reaction by conducting adsor-	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re lesign, Slurry Read actor. Idents will be able ons	for c ctio for sign actor, ctor,	n, ra slow of to or. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and xed bed catalyti
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trick CO1 Define CO2 Predic CO3 Analys CO4 Interpr and fh	ctivation Reaction reaction reaction ramete s. I Methesis actors: actors: be bed for the rand t the rand t the	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find e Fluid-particle, reactor, Three p After completi te equations for te controlling n rption isotherm erimental data	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rate etic regimes, slurry reactive Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction heterogeneous reaction by conducting adsor-	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re lesign, Slurry Read actor. Idents will be able ons	for c ctio for sign actor, ctor,	n, ra slow of to or. Di Pacl	vation reactions 08 Hrs te equation for 7 reaction, Filt wers for fast an 08 Hrs fferential and xed bed catalyti
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trick CO1 Define CO2 Predic CO3 Analys CO4 Interpri and flu Reference Bo	ctivation Reaction re	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find ods For Find cods For Find te controlling n rption isotherm erimental data d reactions	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry rea Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction heterogeneous reaction in by conducting adsor- and determine rate e	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re design, Slurry Read actor. Idents will be able ons rption studies quations, design th	for c ctio for sign actor, ctor, e to:	n, ra slow of to or. Di Pack	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and xed bed catalyti rs for fluid-soli
Catalyst DealFluid-FluidInstantaneousconversion paslow reactionsExperimentaintegral analysDesign of Rereactor, TrickCourse OutcoCO1DefineCO2PredicCO2PredicCO2PredicCO3AnalysCO4Interpresentationand flueReference Bo1Chemica	ctivation Reaction re	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find ods For Find eactor, Three p After completing te equations for te controlling n rption isotherm erimental data d reactions	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rate etic regimes, slurry reactive Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction heterogeneous reaction by conducting adsor-	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re design, Slurry Read actor. Idents will be able ons rption studies quations, design th	for c ctio for sign actor, ctor, e to:	n, ra slow of to or. Di Pack	vation reactions 08 Hrs te equation for 7 reaction, Filr wers for fast an 08 Hrs fferential and xed bed catalytic rs for fluid-soli
Catalyst Deat Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trickl CO1 Define CO2 Predic CO3 Analyz CO4 Interprint and flue Reference Bo 1. Chemica 1999, ISI	ctivation Reaction reaction ramete s. I Methesis. actors: actors: be bed r comes: 4 c the rast t the rast t the rast t t the rast t t the rast t t the rast t t the rast t t t t t t t t t t t t t t t t t t	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find ods For Find eactor, Three p After completing te equations for te controlling n rption isotherm erimental data d reactions	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry res Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction nechanism is by conducting adsor- and determine rate e	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re design, Slurry Read actor. Idents will be able ons rption studies quations, design th e, 3 rd Edition, 200	for c ctio. for sign actor ctor, e to: he r 6, J	ue leaction n, ra slow of to of r. Di Pacl 	vation reactions 08 Hrs te equation for v reaction, Filr wers for fast an 08 Hrs fferential and ced bed catalytic rs for fluid-soli Wiley and Sons
Catalyst Dear Fluid-Fluid Instantaneous conversion pa slow reactions Experimenta integral analys Design of Re reactor, Trickl CO1 Define CO2 Predic CO3 Analys CO4 Interpr and flu Reference Bo 1. Chemica 1999, ISI	ctivation Reaction reaction ramete s. I Methesis. actors: acto	on: Mechanism ons: Kinetic on, Fast react r, clues for kine ods For Find ods For Find eactor, Three p After completing te equations for te controlling n rption isotherm erimental data d reactions	of deactivation, activ Unit –IV regimes for mass t ion, Intermediate rat etic regimes, slurry rea Unit –V ing Rates: Differenti , fluid- fluid reactor of hase fluidized bed Re ng the course, the stu- heterogeneous reaction heterogeneous reaction in by conducting adsor- and determine rate e	ity, rate equations ransfer and rea e, Rate equation action kinetics, Des al and Integral Re design, Slurry Read actor. Idents will be able ons rption studies quations, design th e, 3 rd Edition, 200	for c ctio. for sign actor ctor, e to: he r 6, J	ue leaction n, ra slow of to of r. Di Pacl 	vation reactions 08 Hrs te equation for reaction, Fili wers for fast an 08 Hrs fferential and ced bed catalytic rs for fluid-soli Wiley and Son

3. Elements of Chemical Reaction Engineering, 5th Edition, 2016, H. Scott Foggler, Prentice Hall, ISBN 978-8126510009

4. Chemical and Catalytic Reaction Engineering, James J. Carberry, Dover Publications; Dover ed edition, 2001, ISBN-13: 978-0486417363

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

				Semester: VI			
				FOOD ENGINEERING			
			Categ	ory: Professional Core Ele	ective		
<u> </u>				(Theory)	CIT.	1	100361
Course Co		:	CH365TDA		CIE	:	100 Marks
Credits: L:		:	3:0:0		SEE	:	100 Marks
Total Hour	ſS	:	40L		SEE Duration	:	3 Hours
Introductio	on to	Foo	d Enginaaring	UNIT-I : Introduction: general asp	verts of food ind	notra	08 Hrs
				cal properties of food ma			
				sing: Liquid Transport System			
Pumps for t				sing. Equili Transport Sy	stems, ripes for	11000	soning i lanto,
1	ree pr			UNIT-II			08 Hrs
Food pro	cessing	y an	d preservati	on: Food deterioration –	Causes. Aims	and	
preservatio		_	-		,		
High-temp		•	•	Introduction to The	rmal Processing	: P	asteurization
8			•	of Microbial Death; Ther	-		
				alue; Batch & continuous F			
		-	-	terilization: Gamma irradia			-
Pulsed Ele	ctric F	ield,	High Pressure	Processing	·		C
				UNIT-III			08 Hrs
Low-temp	eratui	e p	reservation:	Principles of low tempera	ture preservation	: fre	ezing rate &
-		-		of frozen food; food qual	-		-
• •		•	· ·	· •	•		•
· · ·	-			zer, fluidized bed freezer,	A		
	rsion	freez	zing; predictio	on of freezing time usin	g Plank's equat	ion d	& Nagaoka's
equation.							
				ration: Types of adultera			
				nd its effects, food laws a			•
critical con	trol po	oints	or HACCP, F	ood Safety and Standards A	Authority of India	(FSS	´
				UNIT-IV			08 Hrs
				d for food additives. Types of			, U
•	•	•		ts, emulsions, flavors and			· ·
				avening agents, nutrient sup			e sweeteners,
pH control	agents,	, stab	oilizers and thic	keners, other additives. Add	itives and food saf	ety	
				UNIT-V			08 Hrs
Extrusion	proces	ses:	Introduction to	Extrusion, Basic Principles	, Extrusion Syster	ns, C	
				ruders, Twin-Screw Extrude	· •	,	
			•	packaging, food protection		nent.	commutation
		_		ging materials, and permea	-		
			-	passive packaging, active p		-	
•				ances in aseptic processing			
r anna guird a	pro				pueriuging, nu		· ····································
Course Ou	tcome	s: Af	ter completing	the course, the students w	vill be able to		
				ants, adulterants and hazard		e the	safe food
	rocessi			iuno, udunorunto and nazare			Juie 1000
			the engineerin	g solutions involved in the p	ackaging improve	ment	s for
			levelopment of		acting inprove		
				ves and packaging for food p	products		
	-rr-j 0						

Ref	erence Books
1	R.Paul Singh and Dennis R. Introduction to Food Engineering, Elsevier Science &
1	Technology, 5th Edition, ISBN: 9780123985309, 2013.
2	P.G. Smith, Introduction to Food Process Engineering Second Edition, Springer Press, ISBN
2	978-1-4419-7661-1, 2009
3	Subbulakshmi G. and Shobha A. Udupi, Food Processing and Preservation, New Age
3	International Pvt. Ltd., ISBN: 8122412831, 2001
1	Food Engineering 1, Gustavo V. Barbosa-Canovas & Pablo Juliano
4	http://www.eolss.net/ebooklib/ebookcontents/e5-10-themecontents.pdf (ebook)

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

		Semester: VI				
	FUI	EL CELL TECHN				
	Catego	ory: Professional C	Core Elective			
	5	. (Theory)				
Course Code	: CH365TDB		CIE	:	100 Mar	ks
Credits: L:T:P	: 3:0:0		SEE	:	100 Mar	ks
Total Hours	: 45L		SEE Duration	:	3Hours	
		Unit-I				09 Hrs
	Fuel cell definition,					
components of fu	uel cell, EMF of the ce		ons, fuels for cells	and	their prop	
	es: Classification of	Unit – II				09 Hrs
	l fuel cell, molten o	carbonate fuel cel				ntages and
		Unit –III	• • • •			<u>09Hrs</u>
	ion Kinetics: activation					
voltage efficienc	y, Faradaic efficiency,		over-voltages and	Taf	el equation	
Eval Call Char		Unit –IV				09 Hrs
	cacterization : current					
	d ex-situ characterizati		voltaininetry, elec	uo		mpedance
speedoseopy and		Unit –V				09 Hrs
Applications an	d fueling: application		rious sectors, hydr	oge	n production	
handling and safe	ety issues.		-			-
Course Outcom	es: After completing	the course the stu	dents will be able	to		
	the fuel cell componen					
	end the efficiencies an		<u> </u>			
1	acterization techniques			cel	[
	ne suitability of a fuel	· · · · ·				
		• •	•			
Reference Book		1 1 1 1 1 1	· · 1 A T D 1	т 1	W 7'1 (a ard
¹ Edition, 201	Systems Explained, A 18, ISBN 978 1118 61	3528			-	
	undamentals, O 'Hayr , 2016, ISBN 978 11		. Colella, F. B. Pri	nz,	John Wil	ey & Sons,
3 Fuel Cells I	Principles and Applica 2009, ISBN 13: 978 1	ations, Viswanathar	and M Aulice Sc	ibic	oh, Univers	sities Press,
	nds in Fuel Cell Scien		Basu, S. Springer.	. 1s	t Edition. 2	2007. ISBN

4. Recent Trends in Fuel Cell Science and Technology, Basu. S, Springer, 1st Edition, 2007, ISBN 978 0387 688152

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning	40

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

(10), specific (10), Video based Program requirements seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7 & 8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

			Semester: VI	[
		PROCESS	ENGINEERING	ECONOMICS			
	Category: Professional Core Elective						
			(Theory)				
Course Code	:	CH365TDC		CIE	:	100 Ma	
Credits: L:T:P	:	3:0:0		SEE	:	100 Ma	
Total Hours	:	45L		SEE Duration	:	3 Hours	
			Unit-I				00 11.02
							09 Hrs
•		A	ess development	•			•••
			ction, Analysis of	Process flow sh	leet	, Plant lo	ocation and
layout, Factors at	ffec	cting plant design					
			Unit – II				09 Hrs
			Elements of proj				
			peration cost, in			cing, cost	estimation,
investment costs,	, ta	xes and insurance	e, depreciation, tir	ne value of mone	y.		
			Unit –III				09 Hrs
• •			ts and Replacem	•	·		U i
		· ·	ocess profitability			-	•
1		· · · · · · · · · · · · · · · · · · ·	counted cash flo				· ·
		italized costs, P	ayout period, S	implified model	foi	econom	ic analysis
of process desig		1 0 1					
Alternative invest	tme	ints and Replacem	ient. Unit –IV				09 Hrs
Ontinuum design		d design strate ar					
			: Procedures for				
			nical and analytic				
			um rate of produ				
selection and fab			uct and case of 1	naximum profit.	EC	onomics	of material
selection and lat	oric	ation					
			Unit –V				09 Hrs
Equipment cost:	H	eat transfer equi	pment costs, Ma	ss transfer equip	me	nt costs.	
			n for reactor equip				
report: types of re				pentente	., •	o- pipi	
	r or	.,					

	se Outcomes: After completing the course, the students will be able to:-
CO1	Define the basic terminologies of process development and economics.
CO2	Explain concepts of process development, elements of project costing
CO3	Calculate various cost elements and draw cash flow diagrams and determine optimum cost.
CO4	Analyze process flow sheets, design reports and do break even analysis.

Reference Books 1. Plant Design and Economics for Chemical Engineers, M.S. Peters and K.D. Timmerhaus – 4th Edition, 2003, McGraw Hill, ISBN: 0072392665. 2. Industrial Organization and Engineering Economics, T.R.Banga and S.C. Sharma, 22nd Edition, 2007, Khanna Publishers, ISBN: 81-7409-078-9. 3. Chemical Process Economics, J. Happel and D.J. Jordan, 2005, Marcal Dekker Inc., ISBN: 0824761553

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

			Semester: VI			
			Y STORAGE TEC			
		Catego	ry: Professional C	ore Elective		
			(Theory)			
Course Code	:	CH365TDD		CIE	:	100
Credits: L:T:P	:	3:0:0		SEE	:	100
Total Hours	:	40L		SEE Duration	:	3 Hours
			Unit-I			06 Hrs
						necessity of energy
	Cl	assification of e	nergy storage sys	tems -physical, t	emj	poral and economic
classification.						
			U nit – II			09 Hrs
		0	1			iple of double layer
capacitor, concept	of	charging and disc	harging, pseudo-caj	pacitance, process	of c	harging and
discharging.						
Super capacitor m	ater	rials for energy sto	orage, distinction be	etween energy and	pov	ver Storage,
application of Sup	erc	apacitors, concept	of efficiency, losse	es and ageing		
		I	Unit –III			08 Hrs
Electrochemical	ene		ox reactions in batt	oriog Normat aqua	tion	current and canacit
			l batteries, Li-ion	batteries - reacti	ons,	electrode materials
				batteries - reacti	ons,	electrode materials
electrode and elec	trol	yte requirements,	l batteries, Li-ion ageing an degradat U nit –IV	batteries – reacti ion of Li-ion batter	ons, ries.	electrode materials
electrode and elec	trol	yte requirements,	l batteries, Li-ion ageing an degradat U nit –IV	batteries – reacti ion of Li-ion batter	ons, ries.	electrode materials
electrode and elec Chemical Energy production method	trol v St ds –	yte requirements, orage: Carbon no electric methods	l batteries, Li-ion ageing an degradat Unit –IV eutral chemical fue steam reforming, §	batteries – reacti ion of Li-ion batter ls, hydrogen for er gasification, thermo	ons, ries. nerg	electrode materials 09 Hrs y strorage, Hydroge emical water splitting
electrode and elec Chemical Energy production method	trol v St ds –	yte requirements, orage: Carbon no electric methods, lytic methods, Fu	l batteries, Li-ion ageing an degradat Unit –IV eutral chemical fue , steam reforming, g el cell – basics and	batteries – reacti ion of Li-ion batter ls, hydrogen for er gasification, thermo	ons, ries. nerg	electrode materials 09 Hrs y strorage, Hydroge
electrode and elec Chemical Energy production method	trol v St ds –	yte requirements, orage: Carbon no electric methods, lytic methods, Fu	l batteries, Li-ion ageing an degradat Unit –IV eutral chemical fue steam reforming, §	batteries – reacti ion of Li-ion batter ls, hydrogen for er gasification, thermo	ons, ries. nerg	electrode materials 09 Hrs y strorage, Hydroge emical water splitting
electrode and elec Chemical Energy production method photolytic and elec	trol v St ds – ctro	yte requirements, orage: Carbon no electric methods, lytic methods, Fu	l batteries, Li-ion ageing an degradat Unit –IV eutral chemical fue , steam reforming, g el cell – basics and Unit –V	batteries – reacti ion of Li-ion batter ls, hydrogen for en gasification, thermo- types, Hydrogen s	ons, ries. nerg oche tora	electrode materials 09 Hrs y strorage, Hydroge emical water splitting ge, biomethanation.
electrode and elec Chemical Energy production method photolytic and elec Thermal Energy	trol v St ds – ctro St	yte requirements, orage: Carbon no electric methods, lytic methods, Fu orage: Thermal	l batteries, Li-ion ageing an degradat Unit –IV eutral chemical fue , steam reforming, g el cell – basics and Unit –V energy storage - p	batteries – reacti ion of Li-ion batter ls, hydrogen for er gasification, thermo- types, Hydrogen s rinciples and type	ons, ries. nerg oche tora	electrode materials 09 Hrs y strorage, Hydroge emical water splitting ge, biomethanation. 08 Hrs
electrode and elec Chemical Energy production method photolytic and elec Thermal Energy thermal storage ar	trol v St ds – ctro St nd r	yte requirements, corage: Carbon no electric methods, lytic methods, Fu orage: Thermal naterials used, pri	l batteries, Li-ion ageing an degradat Unit –IV eutral chemical fue , steam reforming, g el cell – basics and Unit –V energy storage - p	batteries – reacti ion of Li-ion batter ls, hydrogen for en gasification, thermo- types, Hydrogen s rinciples and type rmal storage and r	ons, ries. nerg oche tora	electrode materials 09 Hrs y strorage, Hydroge emical water splitting ge, biomethanation. 08 Hrs principle of sensibl

	Course Outcomes: After completing the course, the students will be able to:-		
CO1	Define the basic terminologies of process development and economics.		
CO2	Explain concepts of process development, elements of project costing		
CO3	Calculate various cost elements and draw cash flow diagrams and determine optimum cost.		
CO4	Analyze process flow sheets, design reports and do break even analysis.		

Ref	erence Books
i.	Energy Storage- Fundamentals, Materials and Applications, Robert Huggins, 2016, Springer
	International Publishing, ISBN- 978-3-319-33108-9, https://doi.org/10.1007/978-3-319-21239-5
2.	Energy Storage Technologies and Applications, C. Michael Hoff, 2022, Artech House, ISBN-
	9781630819095
3.	Energy Storage Systems - Volume 1, EOLSS- UNESCO, ISBN: 978-1-84826-162-4
4.	Energy Storage Systems - Volume 2, EOLSS- UNESCO, ISBN: 978-1-84826-163-1

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)

1

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & each quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI FUNDAMENTALS OF AEROSPACE ENGINEERING Category: Institutional Elective Course-I (Theory)

Course Code	:	AS266TEA	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3.00 Hours

Unit-I	09 Hrs
Basics of Flight Vehicles: History of aviation, International Standard atmosp	here (ISA),
Temperature, pressure and altitude relationships, Simple Problems on Standard	Atmospheric
Properties, Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic com	ponents and
their functions.	_

Unit – II	10 Hrs	
Aircraft Aerodynamics: Bernoulli's theorem, Centre of Pressure, Lift and Drag, Types of Drag,		
Aerodynamic Coefficients, Aerodynamic Centre, Wing Planform Geometry, Airfoil Nomenclature,		
Basic Aerodynamic characteristics of Airfoil, Simple Numericals on Lift and Drag.		
Unit –III	12 Hrs	
Aerospace Propulsion: Introduction, Turbine Engines: Brayton Cycle, Operation	of Turbojet,	
Turboprop, Turbofan, Turboshaft, RAMJET and SCRAMJET Engines, Rocket Engines: Principles of		
operation of Solid, Liquid, Hybrid, Nuclear and Electric Rockets.		
Introduction to Space Mechanics: Basic Orbital Mechanics-Types of Trajectories,	Escape and	
Orbital Velocities, Kepler's Laws of Planetary Motion, Simple Numericals.		
Unit –IV	06 Hrs	
Aerospace Structures and Materials: General types of construction-Monocoque, Semi-Monocoque		
& Geodesic, Structure of Wing and Fuselage, Metallic and Composite Materials.	_	
Unit –V	08 Hrs	
Aircraft Systems & Instruments: Instrument Displays, Basic Air data systems & Pitot Probes-		
Mach meter, Air speed indicator, Vertical speed indicator, Altimeter.		
Basics of Aircraft Systems: Hydraulic and pneumatic systems, Electrical System, Aircraft Fuel		
System, Environmental Control System.		

Cours	Course Outcomes: At the end of this course the student will be able to				
CO1	Identify the fundamental nuances of Aerospace Engineering and appreciate their significance				
	on the Flight Vehicles design and performance				
CO2	Interpret the design parameters that influence the design of the Aerospace Vehicles systems				
02	and its sub-systems				
CO3	Evaluate critically the design strategy involved in the development of Aerospace vehicles				
CO4	Categorically appraise the operation of the Aerospace Vehicles for different operating				
	conditions				

Reference Books

1	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Fundamentals of Aerodynamics, Anderson J .D, 5 th Edition, 2011, McGraw-Hill International
	Edition, New York ISBN: <u>9780073398105</u> .
3	Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:
	1118174208, 9781118174203.
4	Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
	978-1-85617-932-4
5	Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", John Wiley & Sons, 3rd edition, 2011, ISBN: 9781119965206
	Integration", John Wiley & Sons, 3rd edition, 2011, ISBN: 9781119965206

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY	()
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100
	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

	Semo	ester: VI		
	HEALTHCA	RE ANALYTICS		
	<u> </u>	tutional Elective -I		
	, , , , , , , , , , , , , , , , , , ,	heory)		
Course Code	: BT266TEB	CIE	:	100 Marks
Credits: L:T:P	: 3:0:0	SEE	:	100 Marks
Total Hours	: 45 Hrs	SEE Duration	:	3.00 Hours
	Unit-I			09 Hrs
Introduction to tools an			,	1 1 1 1
Sequence databases, Struc				
these databases, examples				
Heuristic Database Search			Г), FA	STA, Comparison of
FASTA and BLAST, Data		mith-Waterman Method		
	Unit – II			09 Hrs
Sequence Analysis: Typ			.	
Alignment algorithms, So				
Sequence Alignment: Sco				
Hidden Markov Models:			larkov	Model and Hidden
Markov Model, Scoring m				
Molecular Phylogenetics				
Tree Construction Metho	ods - Distance-Based,	Character-Based Method	ls and	l Phylogenetic Tree
evaluation.				
	Unit –III			09 Hrs
Processing reads using c automation in NGS analys			s of j	processing of reads,
	Unit –IV			09 Hrs
Structural analysis & Sy	stems Biology: Gene	prediction programs – ab	initio	and homology-based
approaches. ORFs for ge Predicting RNA secondary classification. Protein stru composition. Structure pr methods, Scope, Applicati Systems biology, Flux Bal	y structure, Protein structure predictive metho ediction - Prediction ions. Concepts, implem	acture basics, structure vis ds using protein sequence of secondary structure, te	ualizat , Prote ertiary	tion, comparison and ein identity based on structure prediction
	Unit –V			09 Hrs
Drug Screening: Introduc	tion to Computer-aide	d drug discovery, target se	electio	n, ligand preparation
and enumeration, molecu	ılar docking, post-doc	king processing, molecu	lar dy	mamics simulations,
applications and test cases	, AI/ML in Drug discov	very		
Course Outcomes: After	completing the course	e, the students will be abl	e to:-	
CO1 Gain proficiency in	utilizing a range of bi	oinformatics tools and da	tabase	s for comprehensive
sequence and structur	ral analysis.			
CO2 Investigate and app complex biological q		ing technologies and an esearch in genomics and n		
CO3 Demonstrate expertis		_		
CO4 Apply bioinformatics		nd simulating historical	arocac	see with a facus on
gene prediction using			proces	ses, with a locus of

Reference Books

INUI	cience books
1.	Xiong J. Essential bioinformatics. Cambridge University Press; 2006 Mar 13.
2.	Buehler LK, Rashidi HH, editors. Bioinformatics basics: applications in biological science and medicine. CRC Press; 2005 Jun 23.
3.	Ghosh Z, Mallick BM. Bioinformatics principles and Applications. Oxford University Press; 2018 Jun 13.
4.	Low L, Tammi MT. Introduction to next generation sequencing technologies. Bioinformatics. WORLD SCIENTIFIC. 2017 Jul 26:1-21.
5.	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
	Computational Systems Biology: A Kriete and R Fils: 2006: A cademic Press: Illustrated edu:

6. Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A	-				
1	Objective type questions covering entire syllabus	20				
(May	PART B (Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)					
2	2 Unit 1 : (Compulsory) 16					
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	Semest	er: VI		
	INDUSTRIAL SAFE			
	Category: Institution: (The			
Course Code	: CH266TEC	CIE	•	100 Marks
Credits: L:T:P	: 3:0:0	SEE	:	100 Marks
Total Hours	: 40L	SEE Duration	:	3.00 Hours
	Unit-I	L		08 Hrs
	dustrial safety engineering, major ninologies, Hazard theory, Hazar			
	Unit – II			08 Hrs
present value, inter Hazard Identific Preliminary Hazar	and control: Risk assessment, I rmal rate of return, payback period cation Methods: Preliminary rd Analysis (PHA), Fault tree and the tree for high pressure reactor sys-	d concepts including real life Hazard List (PHL), wor d Event tree analysis. Desig	ex ksł	amples. neets, case stud
	Unit –III			08 Hrs
	on reactors, heat exchanger, desi concept, methodology, problems Unit –IV	•	re	Modes and Effec
equivalent approad	capital budgeting: Risk adjuct, scenario analysis, probability sociated problems.			
<u> </u>	Unit –V			08 Hrs
glasses, face shield	s industries and case studies: I ds, welding helmets, absorptive I ly PPE. Bhopal gas tragedy, Che	enses, hard hats, types of ha	ind	PPE, types of foo
Course Outcomes	s: After completing the course, t	the students will be able to:	-	
	the risk assessment techniques us			
CO2 Interpret the	e various risk assessment tools.			
CO3 Use hazard	identification tools for safety man	nagement.		
CO4 Analyze too	ols and safety procedures for prote	ection in process industries.		
Reference Books				

Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William
 M., 2005, Pensulvania ISA publication, ISBN:155617909X.

3. Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.

4. ndustrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	2 Unit 1 : (Compulsory)				
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8		16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI					
	ROBOTIC PROCESS AUTOMATION				
	Category : Institutional Elective Course-I				
	(Theory)				
Course Code	:	CS266TED	CIE	:	100
Credits: L:T:P	:	3:0:0	SEE	:	100
Total Duration	:	36L	SEE Duration	:	3.00 Hrs

Unit – I	8 Hrs
RPA Concepts: RPA Basics, History of Automation, what is RPA? RPA vs Automati	on, Processes &
Flowcharts, Programming Constructs in RPA, What Processes can be Automated?	Types of Bots,
Workloads that can be automated.	
RPA Advanced Concepts: Standardization of processes, Setting up the Centre of E	Excellence, RPA
Development methodologies, Difference from SDLC, RPA journey, RPA business ca	ase, RPA Team,
Process Design Document/Solution Design Document, Industries best suited for	RPA, Risks &
Challenges with RPA, RPA and emerging ecosystem.	

Unit – II	7 Hrs
RPA Tool Introduction: Introduction to UiPath - the User Interface, Types of Variab	les, Variables in
UiPath, Managing Arguments, The Arguments Panel, Namespaces; Control flow	v statements in
UiPath, Sequences and Flowcharts, Control Flow Activities	

Data Manipulation Introduction, Data Manipulation Operations, Types of data storing variables, Text Manipulation, main string methods.

UiPath Recording: Basic, Desktop and Web Recording, Image and Native Citrix Recording, Input/output methods, Types of OCR, Data Scraping, Advanced Scraping techniques.

Advanced Automation Concepts: Selectors, Types of Selectors (Full, partial, dynamic), Defining and Assessing Selectors, Customization, Debugging.

Image, Text & Advanced Citrix Automation - Introduction, Keyboard based automation, Information **Retrieval**, Best Practices

Excel Data Tables & PDF, Data Tables in RPA, Excel and Data Table, Extracting Data from Data Table, Anchors, Using anchors in PDF

Unit – IV	7 Hrs	
Email Automation, Exceptions and Deploying Bots: Introduction to Email A	utomation, Key	
concepts of email, email protocols, email automation in UiPath, email as input and out	put.	
Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for solving		
issues, Catching errors.		
Overview of orchestration Server, orchestrator functionalities, Connecting Bot to orchestrator		
Unit – V	7 Hrs	

Hyperautomation: Components and application of Hyperautomation, Automation versus hyperautomation, Benefits and challenges of hyperautomation, use cases, Phases (Integration, Discover, Orchestration and Governance), Trends in Hyperautomation (low-code/no-code platform, HaaS)

	Course Outcomes: After completing the course, the students will be able to
CO1	Understand RPA principles, its features and applications
CO2	Demonstrate proficiency in handling variables and decision making inside a workflow and data
	manipulation techniques
CO3	Gain insights into recording, Email Automation and exception handling and orchestrator.
CO4	Analyze the trends in automation and chose business strategy to design a real-world automation
	workflow.

7 Hrs

Reference Books:

- Alok Mani Tripathi, "Learning Robotic Process Automation, Publisher: Packt Publishing, Release Date: March 2018 ISBN: 9781788470940
 Decent Documentation and the second seco
- PASCAL BORNET, Intelligent automation: Welcome to the world of hyperautomation, World Scientific Publishing Company, ISBN-13: 978-9811235481 December 2020
- **3.** UiPath pdf manuals
- 4. https://www.uipath.com/rpa/robotic-process-automation
- 5. https://www.ibm.com/topics/hyperautomation
- 6. https://www.pega.com/hyperautomation

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

			0	171		
			Semest	er: VI PORTATION SYSTEMS		
				al Elective Course-I		
		Categ	(The			
Course Code	:	CV266TEE		CIE	:	100 Marks
Credits: L:T:I			·	SEE	:	100 Marks
Total Hours				SEE Duration		3.00 Hours
10001 Hours		102	Unit-I		•	08 Hrs
Introduction	o Int	telligent Tran		ems (ITS): Historical backs	ground.	
		0	•	Fransport problems and iss	-	
				, ITS training and educati		
				stem and opportunity for sect		
			Unit – II			08 Hrs
ITS Architect	ure:	introduction,	Functionalities	required for User service,	Logica	l architecture,
•	ecture	e, Equipment a	and Market pack	ages, Need of ITS Architect	ire to s	solve problems
in Urban area.						
				n, Data acquisition, Comm		
analysis and Tr	avelle	er information.		on, Identification and collection	on metl	
			Unit –III			08 Hrs
				TS: Introduction, objectives		
				opment of traffic managem		
				t System, Advanced Traveller		
		•		Public Transport System,	Comme	ercial Vehicle
Operations, 113	For	Intermodal Fre	eight Transport. Unit –IV			00 11
ITS Evoluatio	D	raiaat calaatia		level, Deployment Tracking	Impo	08 Hrs
				lines. ITS for Law Enforce		
				nd regulations, ITS Funding		
	ppor		Unit –V		<u>puono</u>	08 Hrs
ITS Standards-	Stand	lard developme		onal ITS architecture and star	ndards.	
				nications for ITS Protocol, S		
for smart cities						e
Course Outco	nes:	After complet	ing the course,	the students will be able to:-		
CO1 Identify	and a	apply ITS appl	ications at differ	ent levels		
			or planning proce			
CO3 Examin	e the	significance of	f ITS for various	levels		
CO4 Compo	e the	importance of	TTS in impleme	ntations		
·			²			
Reference Boo	ks					
				, "Intelligent Transport Sys	tems",	PHI Learning
Private Li			SBN-978938747			
				s of Intelligent Transportatio	n Syst	ems Planning"
Artech House publishers (31 March 2003); ISBN-10: 1580531601			1 2000			
1	Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2		ransportation sv		ouse.]	ondon 2008
··· ISBN-13:		e	iunsportation sy	stems standards", Artech H	,	20000.
		1-59693-291-3			-	
Asier Pera		1-59693-291-3		stems standards", Artech H	-	
4. Transport	llos, Sy	1-59693-291-3 Unai Hernande stems: Tech	ez-Jayo, Enrique nnologies and	Onieva, Ignacio Julio García	-	ola "Intelligent
4. Transport	llos, Sy	1-59693-291-3 Unai Hernando	ez-Jayo, Enrique nnologies and	Onieva, Ignacio Julio García	a Zuazo	ola "Intelligent

5 R.P Roess, E.S. Prassas, W.R. McShane. Traffic Engineering, Pearson Educational International, Third Edition, 2004, ISBN-13: 978-0-13-459971-7.

RUBRIC FOR THE CONTINUC SEGNERERNAL EVALUATION (THEORY)	
# INTEGRATED HEAKTUMMONENCES M	IARKS
	IANNS
	• •
will be conducted & Each Quiz will 67 bearva ted for 10 Marks. THE SUM OF	20
Course Godo QUIZZENS200 FEFBE THE FINAL QUIZGHARKS. : 100 Marks	
Credits: TEE:PS: Students: will be evaluated in test, descriptive questions with tother thanks	
Total Hourisplexity 122 (Revised Bloom's Taxon SEE Duration Remeathering,	
	8 ligrs
Structural Headther EncEarchaffectury Health laft Structures Markes adi Fisters, 180 gulark Mainte	enance,
Importante Nama international WILL BE REDUCED TO 40 MARKS.	
	ructures
using remote structural health manitoring Structural Safety in Alteration teaching learning	
(10), Program specifienit – Hauirements (10), Video based 08	8 Ha rs
(10), Program specific nit – Lequirements (10), Video based 08 Materialsen Rigze/presentiationa/agialsen and nother 2011 part and 2011 parts of the competition of th	e (EMI)
technique adaptorions of FMI technique. Sensar technologier unserving HMD VS	
Structural Audit: Assessment of Health af Structure, Collapse and Investigation, Investigation	ⁿ 100
Management, SHM Procedures, SHM using Artificial Intelligence	

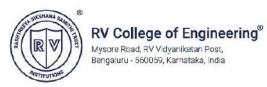
	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Unit –III	08 Hrs	
Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sense	or systems and	
hardware requirements, Static Response Measurement.		
Unit –IV	08 Hrs	
Dynamic Field Testing: Types of Dynamic Field Test, Stress History Data, Dyna	mic Response	
Methods, Hardware for Remote Data Acquisition Systems, Remote Structural Health M	onitoring.	
Unit –V	08 Hrs	
Remote Structural Health Monitoring: Introduction, Hardware for Remote Data Acquisition		
Systems, Advantages, Case studies on conventional and Remote structural health monitoring		
Case studies: Structural Health Monitoring of Bridges, Buildings, Dams, Applications of SHM in offshore		
Structures- Methods used for non-destructive evaluation (NDE) and health monitorin components	g of structural	

Cours	e Outcomes: After completing the course, the students will be able to:-
CO1	Diagnose the distress in the structure understanding the causes and factors.
CO2	Understand safety aspects, components and materials used in Structural Health Monitoring.
CO3	Assess the health of structure using static field methods and dynamic field tests.
CO4	Analyse behavior of structures using remote structural health monitoring
Refer	ence Books
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes,2006, John Wiley and Sons, ISBN: 978-1905209019
2	Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, 2007, John Wiley and Sons, ISBN:9780470033135
3	Structural Health Monitoring and Intelligent Infrastructure, J. P. Ou, H. Li and Z. D. Duan, Vol1,2006,Taylor and Francis Group, London, UK. ISBN: 978-0415396523
4	Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, 2007, Academic Press Inc, ISBN: 9780128101612

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
PART A				
1	Objective type questions covering entire syllabus	20		


	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

		Semes			
	AI	DVANCED ENERGY STO	ORAGE FOR E-MOBILI	TY	
		Category: Institu	tional Electives - I		
		(The	eory)		
Course Code	:	CM266TEG	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3.00 Hours
		Unit-I			07 Hrs
electric vehicles a	mobi nd tl	lity, background of alterna neir salient features along blogy. Battery characteristic Unit – II	with their energy require	ment. F	undamentals o
Advanced lithium	_ion				00 111 5
		ruction, working and future lithium sulfur and lithium p			ement in vehicle
		Unit –III			09 Hrs
lithium batteries. P infrastructure.	erfor	mance comparison with lith Unit –IV	nium-ion batteries. Battery	requirem	ent in charging
Chemistry of alter					09 Hrs
Introduction to sup the materials used regenerative braking	er ca in ele 1g.	pacitor. Construction, work ectrodes. Types of advanced Advancement in battery-su l electric vehicles with their	l supercapacitors. Applicati percapacitor hybrid, Batte	on of su ry-fuel c	percapacitors in cell hybrid, and
		Unit –V			09 Hrs
State-of-charge (So Battery Thermal I runaway and therm	ent sy oC), s Mana nal ma	vstems (BMS): Fundament state-of-health (SoH) and Co gement: Passive and activ	ell balancing techniques. ve cooling systems. Safet	y mecha	nisms, therma
Course Outcomes	: Aft	er completing the course,	the students will be able t	0	
		fundamentals of chemist			and conversio

	devices.
CO2	Apply the chemistry knowledge used for hybridization of various energy storage and
	conversion devices.
CO3	Analyze the different battery system for achieving maximum energy storage for vehicle
	electrification
CO4	Evaluation of efficiency of a battery with respect to cost, environmental safety, material,
	energy consumption and recycling.

Reference Books

1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
3	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher, 2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494 9780824742492.
5	Electric Vehicle Technology Explained, James Larminie and John Lowry. 2nd Edition, Wiley, ISBN-13: 978-1118505429.
6	Electric Vehicle Technology and Design, Antoni Gandia. CRC Press, ISBN-13: 978-1138551912.
7	Sustainable Transportation: Problems and Solutions. William R. Black, The Guilford Press, ISBN-13: 978-1462532072.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

			Semester: VI				
		HUMA	AN MACHINE IN				
Catego	ory	: Institutional E	lectives – I (Indus	try Assisted Elec	etive	e-BOSCH)	
			(Theory)	CIE		100 3.5	•
Course Code	:	EC266TEH		CIE	:	100 Mar	
Credits: L:T:P	:	3:0:0		SEE	:	100 Mar	KS
Total Hours	:	45L	TT •4 T	SEE Duration	:	03 Hrs	00.11
			Unit-I		_ / _		09 Hrs
Software and Ope everyday actions,	erat R	ing environments easoning and pro	History of User Int s, The Psychopath blem solving. The frameworks, Erg	ology of everyda computer: Devi	y T ces,	hings, Psy Memory,	chology of Processing
	es.	Interaction bet	: Automotive, Indu ween ECUs. Co:				
/			Unit – II				09 Hr
Assistance System Recognition in A Evaluation in Au Emerging Technol- Autonomous Vehic	uto con ogi	motive HMIs, T notive HMIs, Sa es in Automotive	ouchscreen Interfactories fety Consideration	aces and Contro is and Regulatio	ls, ns	Usability '	Testing and
	100		Unit –III				09 Hrs
	ots, v, (Graphic design to Guidelines and	X design - stages, t ols - Adobe Photo GG.				P, Asset
	r 4	е тт ,	Unit –IV	1 1 /		D .	09 Hrs
Web-Ser HTML,	ver Fc	erface: User-cento Web-based CSS, our Principles of I	ered HMI HMI: Basics JavaScri Mobile UI Design,	pt.	win	CAT and	of bile HMI
1			Unit –V				09 Hrs
controls. Haptics Haptics in Multin HMI Testing : Li tool - GraphicsTe	in nod mit st \$	Automotive HM alHMI, Automoti ations of Traditio Systems (GTS).	o Voice-Based HM I: Kinesthetic Feed ve Use-Cases nal Test Solutions ing, Performance P	lback Systems, Ta , Case - Study: B	actil oscl	e Feedback	Systems,

Cours	Course Outcomes: After completing the course, the students will be able to:-		
CO1	Understanding the application of HMIs in various domain.		
CO2	Comparison of various communication protocols used in HMI development.		
CO3	Apply and analyse the car multimedia system free software and hardware evolution.		
CO4	Design and evaluate the graphic tools and advanced techniques for creating car dashboard multimedia		

systems.

Ref	Reference Books			
1.	Touch based HMI; Principles and Applications, Shuo gao, Shuo Yan, Hang Zhao, Arokia Nathan, Springer Nature Switzerland AG, 1 st Edition.			
2.	Unity 2020 by Example: A Project based guide to building 2D, 3D augmented reality and Virtual reality games from sratch, Robert Wells, Packt Publishing ltd, 2020.			
3.	GUI Design and Android Apps, Ryan Cohen, Tao Wang, Apress, Berkley, CA,2014.			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO	
	QUIZZES will beconducted & Each Quiz will be evaluated for 10 Marks.	20
	THE SUM OF TWO	
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with	
	different complexity levels (Revised Bloom's Taxonomy Levels:	40
	Remembering, Understanding, Applying, Analyzing, Evaluating, and	40
	Creating). TWO tests will be conducted. Each test will be evaluated for 50	
	Marks, adding up to 100 Marks. FINAL TEST MARKS WILL	
	BE REDUCED TO 40 MARKS.	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their	
	creativity and practical implementation of the problem. Case study-based	
	teaching learning (10), Program specific requirements (10), Video based	40
	seminar/presentation/demonstration	
	(20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any	
	outcome).	
	ADDING UPTO 40 MARKS.	
AXIM	UM MARKS FOR THE CIE	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16

9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

		Seme	ster: VI		
	EN		NG & STANDARDS		
			tutional Elective-I		
		•••	leory)		
Course Code	: EE266T		CIE	:	100 Marks
Credits: L:T:P	: 3:0:0		SEE	:	100 Marks
Total Hours	: 45 L		SEE Duration	:	3Hours
					• Hours
		Unit-I			06 Hrs
Types of Energy	y Audit and	Energy-Audit M	lethodology: Definition of 1	Ener	gy Audit, Place of
Audit, Energy -	Audit Metho	dology, Financia	l Analysis, Sensitivity Anal	ysis,	Project Financing
Options, Energy N	Monitoring and	l Training.			
Survey Instrum	entation: Ele	ctrical Measurer	nent, Thermal Measurement	t, L	ight Measurement
Speed Measureme					
Energy Audit of	f a Power Pla	nt: Indian Power	r Plant Scenario, Benefit of	Aud	it, Types of Power
Plants, Energy Au	udit of Power F				
		Unit – I			10 Hrs
	0		s, Electrical Load Managem		, i i i i i i i i i i i i i i i i i i i
	cs and its Effe	ects, Electricity 7	Fariff, Power Factor, Transm	issic	on and Distribution
Losses.					
			otors, Parameters related to N	Moto	ors, Efficiency of a
			Rating and Labelling.		
Energy Audit of	Pumps, Blow		Towers: Pumps, Fans and Bl	owe	
		Unit –II	[09 Hrs
Communication					
			ess metropolitan area netw	'ork,	cellular network
satellite communi					
			gy, powerline technology, co	axia	l cable technology
Optical communi	cation, TCP/IP				
		Unit –IV			09 Hrs
			ers, Parts of Boiler, Efficien	cy c	of a Boiler, Role of
excess Air in Boil		0, 0			
0.		rts of a Furnace, c	lassification of Furnaces, Ene	rgy	saving Measures in
Furnaces, Furnace				т	
			S team as Heating Fluid, Stea		
of Steam, Pressur	e, Piping, Loss		ibution Systems, Energy Con	serv	
	T • L • • • • •	Unit-V			09 Hrs
			als of Lighting, Different Lig		
			ouvres, Lighting Control Sys	stem	s, Lighting System
Audit, Energy Sav	• • •				· · · · · · · · · · · · · · · · · · ·
			Saving Measures in New E		-
wiethod of Audit,	General Energ	gy – Savings Tips	Applicable to New as well as	EX1	sting Buildings.
Comment O t	A 64	1.4	4 h a a 4 m d a 4 911 1 1 4		
			e, the students will be able to		· C 41
-	the need for e	energy audit, pre	pare a flow for audit and i	aent	ity the instruments
needed.	1 6 1	1 *.			
			cess for electrical systems.		
v	<u>^</u>	<u> </u>	cess for mechanical systems		
CO 1 Propose e		ment scheme for	1 111		

CO 4 Propose energy management scheme for a building

Reference Books

- 1. Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348.
- 2. Energy management handbook, Wayne C Turner and Steve Doty, 6th Edition, 2015, CRC Press, ISBN: 0-88173-542-6.
- 3. Energy management, Sanjeev Singh and Umesh Rathore, 1st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014.
- 4. Energy audit of building systems, Moncef Krarti, 2nd Edition, 2010, CRC Press ISBN: 9781439828717

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

			Seme	ster: VI		
		B		TRUMENTATION		
			Category: Institut			
~			(Theor	• /		
	rse Code	: EI266TE	EK	CIE	: 100 Ma	
	lits: L:T:P	: 3:0:0		SEE	: 100 Ma	
Tota	l Hours	: 45L		SEE Duration	: 03 Hrs	
			Unit-I		09 H	rs
				c medical instrumentation sys	stem, General	
	-	*	instrumentation system			_
				oelectric signals, Types of		
	rding electrod		-tissue interface, Pol	arization, Skin contact imped	Jance, Silver-s	silve
		/	, Microelectrodes.			
LICC		$\frac{1}{2}$, EEO, EMO,	Unit – II		09 H	M G
EL				· 1.1 · · · · · · ·		
				enesis and characteristics of iograph, ECG lead systems, N		
mach		•				
				agram description of an EEG,	10-20 Electro	de
syste	em, Computeri	zed analysis of	of EEG.			
			Unit –III	entral Monitors, Measureme	09 H	
-			neter, pulse oximete	er, skin reflectance oximeter	r and intravas	cula
omin			Unit –IV		09 H	rs
Bloo	d Flow Mete	ers: Electrom		meter, Types of electroma		
				ow meters, Laser Doppler blo		
				Cardiac pacemaker, External		
Impl	antable Pacem	aker, Types of	f Implantable Pacem	naker, Ventricular Synchrono	us Demand	
	maker and Pro					
		or a defibrillat	tor, DC defibrillator,	, Defibrillator electrodes, DC	defibrillator w	vith
sync	hronizer.					
			Unit –V		09 H	
				inciples of generation, Co		
	0 1 2	1.0	giography, Digital	radiography, Digital subtra	ction angiogr	aph
	A). Basic princ		resonance imaging	system and Ultrasonic imagin	na system	
com	Juica iomogra	onv, magnette		system and Omasonic inlagi	15 System.	
C	rse Outcomes		resonance magnig			
CON		· · ·		ne students will be able to:-		
	Understand t	: After compl	leting the course, th	ne students will be able to:-		
C O 1		: After compl he sources of	leting the course, the biomedical signals a	nd basic biomedical instrume	ents.	
CO1 CO2	Apply conce	: After compl he sources of pts for the des	leting the course, the biomedical signals a sign of biomedical de	nd basic biomedical instrume evices		
C O 1	Apply conce	: After compl he sources of pts for the des	leting the course, the biomedical signals a sign of biomedical de	nd basic biomedical instrume		ical

CO4 Develop instrumentation for measuring and monitoring biomedical parameters.

Re	Reference Books		
1.	Handbook of Biomedical Instrumentation, R. S. Khandpur,3 rd Edition, Reprint 2016, Tata McGraw-Hill, ISBN: 9780070473553.		
2.	Biomedical Instrumentation and Measurements, Leslie Cromwell & others, 2 nd Edition, Reprint 2015, ISBN: 9780130771315.		
3.	Medical instrumentation: Application and Design, J. G. Webster, 3 rd Edition, Reprint 2015, Wiley Publications, ISBN: 9788126511068.		
4.	Principles of Medical Imaging, K.Kirk Shung, Michael B. Smith and Banjamin Tsui, Academic Press, 2016, ISBN: 978-0126409703.		

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY	<i>(</i>)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted . Each test will bebevaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20). Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

				Semester: VI					
	TELECOMMUNICATION SYSTEMS								
	Category: Institutional Elective-I								
	(Theory)								
Course	e Code	:	ET266TEM		CIE	: 100 Marks			
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total l	Hours	:	45 L		SEE Duration	:	3 Hours		
							0.77		
T	4 4	F 1.		Unit-I	· · · · · · · · · · · · · · · · · · ·		8 Hrs		
				nication: The Sign Electronic Communi					
				A Survey of Commun			a muniplexing,		
				n, Attenuation, and D		5.			
			er heterodyne rece	, ,					
		-	•	nit – II			10 Hrs		
Modul	ation Sahan			nit – 11 tion: AM, FM and PM	1 brief review		10 Hrs		
				ASK, FSK, PSK & Q					
			n: Spread spectrum			•			
			IA, TDMA, CDM	· · · ·					
^			U	nit –III			10 Hrs		
Satelli	te Communi	icati	ion: Satellite Orb	its, Satellite Commun	ication Systems, Sa	telli	te Subsystems,		
Ground	d Stations, Sa	tell	ite Applications, 0	Global Positioning Sy	vstem.				
	Unit –IV 9 Hrs								
Optica	l Communi	cati	on: Optical Princ	ciples, Optical Comm	unication Systems	Fib	er-Optic Cables,		
Optical	l Transmitter	s an	d Receivers, Way	elength-Division Mu	ltiplexing, Passive	Opti	cal Networks.		
			U	nit –V			8 Hrs		
		nolo	ogies: Cellular c	concepts, Frequency	allocation, Freque	ency	reuse, Internet		
Teleph	•					** **	1		
		<u> </u>		, PANs and Bluetoo	th, Zig Bee, Mesh	W 11	reless Networks,		
wiivia	k, and wirele	ess n	Metropolitan Area	l Inetworks.					
Cours	e Outcomes:	Af	ter completing th	e course, the studen	ts will be able to :-				
CO1			sics of communic						
CO2				lation and multiple ac	cess schemes for co	mm	unication		
	systems.	•		*					
CO3				of cell phone and othe					
CO4	Justify the u	se o	of different compo	onents and sub-system	n in advanced comm	nunic	cation systems.		
D 4									
Refere	nce Books	6 []		institut Cart T	E E E E E E E E E E E E E E E E E E E		2016		
1.	Tata McGra	w H	Iill, ISBN: 978-0-						
2.			munication System 2-800592-9.	ms, George Kennedy	3 rd Edition, 2008, 7	`ata]	McGraw		
3.	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning ISBN: 981-240-081-8								

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A	-			
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI						
M	MOBILE COMMUNICATION NETWORKS AND STANDARDS					
		Category: Institut	ional Electives Course – I			
			(Theory)			
Course Code	:	ET266TEN	CIE	:	100 Marks	3
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	5
Total Hours	:	45 L	SEE Duration	:	3 Hours	
		Unit	-I			9 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, Frequency						
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, Frequency						
Reuse distance Co-channel Interference and Signal Quality Co-channel interference Reduction						

Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, Frequency Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference Reduction Methods.

Unit – 11	9 nrs	
Basic Cellular system: Consideration of components of a cellular system- A basic cellular system		
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	r system,	
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	of FDMA	
and TDMA systems		

Unit –III	9 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifier	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	

Unit -IV9 Hrs3G Digital Cellular Technology: GPRS: GPRS technology, GPRS NetworkArchitecture, GPRSsignalling, Mobility Management in GPRS. UMTS: UMTS Network Architecture, UMTS Interfaces,UMTS Air Interface Specifications, UMTS Channels.

Unit –V	9 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, App	olications.
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN	Network
architecture, Protocol stack	

Course Outcomes: After completing the course, the students will be able to :-		
CO1	Describe the concepts and terminologies for Cellular Communication.	
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.	
CO3	Compare the performance features of 2G and 3G Cellular Technologies.	
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.	

Refe	Reference Books		
1	Wireless Communications, T.L. Singal, 2nd Reprint 2011, Tata McGraw Hill Education		
1.	Private Limited, ISBN: 978-0-07-068178-1		
2.	Wireless and Mobile Networks Concepts and Protocols, Dr. Sunil Kumar S Manvi, 2010,		
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.		
3.	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education, ISBN-		
э.	13:978-0-19-806066-6.		

Wireless Communications Principles and practice, Theodore S Rappaport, 2nd Edition, 4 Pearson, ISBN 97881-317-3186-4

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOF	RY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semeste	r: VI		
			ILE APPLICATIO	N DEVELOPMENT l Elective Course-I	Γ	
Cours	e Code	: IS266TEO		CIE		: 100 Marks
Credit	s: L:T:P	: 3:0:0		SEE		: 100 Marks
Total]	Hours	: 45L		SEE Du	ration	: 03 Hours
			Unit-I			09 Hrs
Smart Androi UI Des Views Activit Androi User e	id Studio, sign: Build ies and Inf id Studio D xperience	creating an An ling a layout w tents, The Action Debugger, Test	ndroid app project, o with UI elements, La wity Lifecycle, Man ing the Android app Unit–II	applications. Introduc leploying the app to youts, Views and Res aging State, Activitie , The Android Suppor een Navigation, Recy	the emul ources, 7 s and Im t Library	ator and a device. Text and Scrolling plicit Intents, The 7. 09 Hrs
	ence, Drav		and Themes, Mate	erial Design, Testing		
			Unit–III			09 Hrs
Schedu Data E				the Internet, Broadca ifications, Scheduling		
Databa Advan	ise. Sharing ced Andro	g data with con id Programmin	ntent providers.	references. Storing d inment and Services. rs.		
			Unit–V			09 Hrs
Permis	sions and I			y. Fire base and AdM	ob, Publ	ish and Polish,
Cours	e Qutcom	es: After com	pleting the course of	he students will be a	ble to	
CO1:	Compreh	end the basic f	eatures of android p	latform and the application of Android application	ation de	A A
CO2:	incorpora Android	tting features in dev	eloping mobile appl			
CO3:	Android troublesh	technologies, h ooting tools.	andle security issue	bile programming pla s, rich graphics interfa	aces, usin	ng debugging and
CO4:	marketpla	novative appli- ace by offering cations for dov	5	he economics and fea	tures of	the app

Reference Books

1	Android Programming, Phillips, Stewart, Hardyand Marsicano, Big Nerd Ranch Guide, 2 nd Edition, 2015, ISBN-13 978-0134171494
2	AndroidStudioDevelopmentEssentials-Android6, NeilSmyth,2015, Create space Independent Publishing Platform, ISBN:9781519722089
3	Android Programming–Pushing the limits, EricHellman,2013, Wiley, ISBN-13:978-1118717370
4	Professional Android2ApplicationDevelopment,RetoMeier, Wiley India Pvt. Ltd, 1 st Edition, 2012, ISBN-13:9788126525898
5	BeginningAndroid3, Mark Murphy, A press Springer India Pvt Ltd,1stEdition,2011, ISBN- 13:978-1-4302-3297-1
6	AndroidDeveloperTraining-https://developers.google.com/training/android/ AndroidTestingSupportLibrary-https://google.github.io/android-testing-support-library/

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1 O	bjective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2 U	nit 1 : (Compulsory)	16			
3 & 4 U	nit 2 : Question 3 or 4	16			
5 & 6 U	nit 3 : Question 5 or 6	16			
7 & 8 U	nit 4 : Question 7 or 8	16			
9 & 10 U	nit 5: Question 9 or 10	16			
	TOTAL	100			

			ester: VI		
	E	LEMENTS OF FINA	NCIAL MANAGEMEN	Г	
		Category: Institution	onal Elective Course - I		
		(T	'heory)		
Course Code	:	IM266TEQ	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3.00 Hours
	•	Unit-I			06 Hrs
principle of finance, framework. The financial Sys	, Organ tem: H	ization of finance fun Functions, Assets, M	l Decisions in a firm, Goal ction and its relation to ot larkets, Market returns,	her fund	tions, Regulatory
framework, Growth	and tre	nds in Indian financia	l system.		40.77
		Unit – II	Balance sheet, statement o		10 Hrs
only) Time Value of Mor single amount, prese Valuation of sect	ney: Fur ent valu urities:	ture value of a single a e of an annuity. Basic valuation m	ofits vs Cash flows, Taxes amount, future value of an nodel, bond valuation, o	annuity	, present value of
capitalization approa	ach and				10 11
D'ala and Datasana	D: 1	Unit –III			10 Hrs
		nd Return of single and return, implications	assets and portfolios, mea	suremer	it of market risk
Techniques of Caj	pital B	udgeting: Capital bu	Idgeting process, project of netrinal Rate of return, Pay		
rate of return.					
(Conceptual and N	umeric				
		Unit –IV			10 Hrs
debentures. Raising Rights Issue, Private Securities Market:	long te e Placer Prima	rm finance- Venture o nent, Term Loans, Inv y market vs Seconda	Internal accruals, prefere capital, Initial Public Offer restment Banking ary market, Trading and S Corporate debt market.	, Follow	on Public Offer
1	,	Unit –V	•		09 Hrs
Current assets finan	cing po	cy and Financing: I licy, operating cycle a	Factors influencing worki and cash cycle. Accruals, t as, right debentures, comme	rade cre	tal requirements, edit, banks, public

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Explain the features and elements of a financial system.					
CO2	Recognize the relevance basic principles of financial management in decision making.					
CO3	Describe the processes and techniques of capital budgeting and working capital financing by					
	organizations.					
CO4	Demonstrate an understanding of various sources of finance.					

Re	Reference Books:					
1.	Fundamentals of Financial Management, Prasanna Chandra, 6th Edition, 2018, McGraw Hill					
	Education(India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5					
2.	Financial Management ,I M Pandey, 12th edn, 2021, Pearson, ISBN-939057725X, 978- 9390577255					

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

- 3. Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018,
 - McGraw Hill Education(India) Pvt. Ltd, ISBN: 9353162181, 9789353162184
- 4. Fundamentals of Financial Management, Eugene F Brigham, Joel F Houston, 8th Edition, 2014, Cengage Learning, ISBN : 9781285065137, 1285065131.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9z or 10	16			
	TOTAL	100			

			Semester: VI			
		OPTIM	IZATION TECHNIC	QUES		
Category: Institutional Elective Course-I						
(Theory)						
Course Code	ourse Code : IM266TER CIE : 100 M					100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	03 Hours
		UNI	T – I			08 Hrs
Introduction: OR	Me	thodology, Definit	ion of OR, Application	n of OR to Enginee	ring	and Manageria
		OR models, Limita		C	C	C
Linear Programn	ning	g: Definition, Math	ematical Formulation,	Standard Form, So	oluti	on Space, Type
of solution – Feas	ible	, Basic Feasible, D	egenerate, Solution th	rough Graphical N	leth	od. Problems or
Product Mix, Blen	ding	g, Marketing, Finar	nce, Agriculture and Po	ersonnel.		
Simplex methods	: V	ariants of Simplex	Algorithm – Use of A	rtificial Variables.		
		UNI	Γ–II			09 Hrs
Simplex Algorith	m:	How to Convert a	n LP to Standard For	m, Preview of the	Sim	plex Algorithm
Direction of Unbo	und	edness, Why Does	an LP Have an Optim	al basic feasible so	lutio	on, The Simple
Algorithm, Using	the	e Simplex Algorit	hm to Solve Minimi	zation Problems, .	Alte	rnative Optima
Solutions, Degene	racy	and the Converge	nce of the Simplex Alg	gorithm, The Big N	1 Me	ethod, The Two
Phase Simplex Me	tho	d.				
		UNIT	г нн			
						09 Hrs
		olem: Formulation	of Transportation N			Solution using
		olem: Formulation				Solution using
North-West corner Transportation Pr	r, L	olem: Formulation east Cost, Vogel's	of Transportation N	hod, Optimality M	etho	Solution using ods, Unbalance
North-West corne Transportation Pr Problems.	r, L oble	olem: Formulation east Cost, Vogel's em, Degeneracy	of Transportation M Approximation Met in Transportation Pr	hod, Optimality M oblems, Variants	etho in	Solution using ods, Unbalanced Transportation
North-West corne Transportation Pr Problems. Assignment Prob	r, L oble olen	blem: Formulation east Cost, Vogel's em, Degeneracy i n: Formulation of	of Transportation M Approximation Met in Transportation Pr the Assignment pro	hod, Optimality M oblems, Variants blem, solution me	etho in thoc	Solution using ods, Unbalanced Transportation
North-West corne Transportation Pr Problems. Assignment Prob	r, L oble olen	Dem: Formulation east Cost, Vogel's em, Degeneracy i i: Formulation of lethod, Variants in	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T	hod, Optimality M oblems, Variants blem, solution me	etho in thoc	Solution using ods, Unbalanced Transportation l of assignmen oblem (TSP).
North-West corne Transportation Pr Problems. Assignment Prob problem-Hungaria	r, L oble olen n M	Dem: Formulation east Cost, Vogel's em, Degeneracy i n: Formulation of lethod, Variants in UNIT	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$	hod, Optimality M oblems, Variants blem, solution me Fravelling Salesman	etho in thoc <u>n Pro</u>	Solution using ods, Unbalanced Transportation l of assignmen oblem (TSP). 08 Hrs
North-West corne Transportation Pr Problems. Assignment Prob problem-Hungaria Project Manage	r, L oble olen <u>n M</u> mei	blem: Formulation east Cost, Vogel's em, Degeneracy n: Formulation of lethod, Variants in UNIT nt Using Netwo	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$ ork Analysis: Network	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction,	thoc cl	Solution using ods, Unbalanced Transportation I of assignmen oblem (TSP). 08 Hrs PM & PERT
North-West corner Transportation Pr Problems. Assignment Prob problem-Hungaria Project Manage Determination of o	r, L oble olen n M men criti	blem: Formulation east Cost, Vogel's em, Degeneracy in: Formulation of lethod, Variants in UNIT nt Using Netwo cal path and durati	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction,	thoc cl	Solution using ods, Unbalanced Transportation I of assignmen oblem (TSP). 08 Hrs PM & PERT
North-West corne Transportation Pr Problems. Assignment Prob problem-Hungaria Project Manage	r, L oble olen n M men criti	Dem: Formulation east Cost, Vogel's em, Degeneracy i r: Formulation of lethod, Variants in UNIT nt Using Netwo cal path and duration y problems	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$ ork Analysis: Netwo ion, floats. Crashing c	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction,	thoc n Pro	Solution using ods, Unbalanced Transportation I of assignmen oblem (TSP). 08 Hrs PM & PERT oftware tools to
North-West corner Transportation Pr Problems. Assignment Prob problem-Hungaria Project Manage Determination of o	r, L oble olen n M men criti	Dem: Formulation east Cost, Vogel's em, Degeneracy i r: Formulation of lethod, Variants in UNIT nt Using Netwo cal path and duration y problems	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$ ork Analysis: Network	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction,	thoc n Pro	Solution using ods, Unbalanced Transportation I of assignmen oblem (TSP). 08 Hrs PM & PERT
North-West corner Transportation Pr Problems. Assignment Prob problem-Hungaria Project Manage Determination of demonstrate N/W	r, L oble n M men criti flov	Dem: Formulation east Cost, Vogel's em, Degeneracy it Formulation of lethod, Variants in UNIT nt Using Netwo cal path and duration y problems UNIT	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$ ork Analysis: Netwo ion, floats. Crashing of $\Gamma - V$	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction, of Network. Usage	thoc n Pro Cl of s	Solution using ods, Unbalanced Transportation I of assignmen oblem (TSP). 08 Hrs PM & PERT oftware tools to 8 Hrs
North-West corne Transportation Pr Problems. Assignment Prot problem-Hungaria Project Manage Determination of o demonstrate N/W Game Theory: In	r, L oble n M mer criti flov	Dem: Formulation east Cost, Vogel's em, Degeneracy i n: Formulation of lethod, Variants in UNIT nt Using Netwo cal path and duration y problems UNIT duction, Two person	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$ ork Analysis: Netwo toon, floats. Crashing of $\Gamma - V$ on Zero Sum game, T	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction, of Network. Usage Pure strategies, Ga	thoc n Pro Cl of s	Solution usin ods, Unbalance Transportation I of assignmen oblem (TSP). 08 Hrs PM & PERT oftware tools to 8 Hrs
North-West corne Transportation Pr Problems. Assignment Prot problem-Hungaria Project Manage Determination of o demonstrate N/W Game Theory: Ir	r, L oble n M mer criti flov	Dem: Formulation east Cost, Vogel's em, Degeneracy i n: Formulation of lethod, Variants in UNIT nt Using Netwo cal path and duration y problems UNIT duction, Two person	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$ ork Analysis: Netwo ion, floats. Crashing of $\Gamma - V$	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction, of Network. Usage Pure strategies, Ga	thoc n Pro Cl of s	Solution usin ods, Unbalance Transportation I of assignmen oblem (TSP). 08 Hrs PM & PERT oftware tools to 8 Hrs
North-West corne Transportation Pr Problems. Assignment Prot problem-Hungaria Project Manage Determination of o demonstrate N/W Game Theory: Ir point - Arithmetic	r, L oble n M mer criti flov	plem: Formulation east Cost, Vogel's em, Degeneracy is n: Formulation of lethod, Variants in UNIT nt Using Netwo cal path and duration y problems UNIT duction, Two person thod, Graphical Mo	of Transportation M s Approximation Met in Transportation Pro- the Assignment pro- assignment problem, T $\Gamma - IV$ ork Analysis: Netwo toon, floats. Crashing of $\Gamma - V$ on Zero Sum game, T	hod, Optimality M oblems, Variants blem, solution me Travelling Salesman ork construction, of Network. Usage Pure strategies, Ga minance	thoc n Pro Cl of s	Solution usin ods, Unbalance Transportatio l of assignmer oblem (TSP). 08 Hrs PM & PERT oftware tools t 8 Hrs

CO1	Understand the characteristics of different types of decision – making environments and the
	appropriate decision making approaches and tools to be used in each type.
CO2	Build and solve Transportation Models and Assignment Models.
CO3	Design new simple models, like: CPM, PERT to improve decision –making and develop critical
	thinking and objective analysis of decision problems.

CO4 Implement practical cases, by using TORA, WinQSB, Excel, GAMS.

Reference Books:

- Operation Research An Introduction, Taha H A, 10th Global Edition, 2017, Pearson Education Limited, ISBN 13: 978-1-292-16554-7
- Principles of Operations Research Theory and Practice, Philips, Ravindran and Solberg, 2nd Edition, 2007, John Wiley & Sons (Asia) Pvt Ltd, ISBN 13: 978-8126512560
- 3. Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 10th Edition, 2017, McGraw Hill Education, ISBN 13: 978-9339221850

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

4. Operations Research Theory and Application, J K Sharma, 6th Edition, 2009, Trinity Press, ISBN: 978-93-85935-14-5

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY	⁽)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)	-			
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9z or 10	16			
	TOTAL	100			

				Semester: V			
				MOTIVE MECHA y: Institutional Ele			
			Cuttgoi	(Theory)			
Course (Code	:	ME266TES		CIE	:	100 Marks
Credits:		:	3:0:0		SEE	:	100 Marks
Fotal Ho	ours	:	45 L		SEE Duration	:	03 Hours
				Unit-I			09 Hrs
Classifi formation Thermo	on – Exter odynamic p	Inte nal, orine	internal, qualit	y and quantity contrond nd Diesel cycle. Cha	nomenclature and mech ol – homogeneous and aracteristics – pressure	strati	fied injection.
	<u> </u>	,	1 / 1	Unit-II			10 Hrs
Turbocł Recircu	Auxiliary narger, Ir lation system	ntero			ay catalytic convert		
				m - Low pressure an	d high pressure fuel sy		, Return mie,
Quantity Vehicu Vehicle Brakes	y control v lar Auxilia frame ar - Disc and	ary ary nd b	e and Injectors. Systems: body classifica m brakes, Anti	Unit-III tion- Hatchback, So	edan, SUV, Coupe, Ins, ESP, TCS. Wheels	Roadst	10 Hrs ter. Adaptive
Quantity Vehicul Vehicle Brakes Toe-Ou Supple	y control v lar Auxilia frame ar - Disc and t, Caster ar mental Ro	ary ary nd b dru nd C estr	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: 4	Unit-III tion- Hatchback, Se lock Braking System Classification of tyre Active and passive se n sensor, Rollover se	edan, SUV, Coupe, Ins, ESP, TCS. Wheels	Roadst and T re, Ga	10 Hrs ter. Adaptive Syres- Toe-In, as generator a nition.
Quantit Vehicul Vehicle Brakes Toe-Ou Supple air bags	y control v lar Auxilia frame ar Disc and t, Caster an mental Ro s, Belt Tens	ary ary nd t dru nd C estr sion	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System : A her, Acceleratio	Unit-III tion- Hatchback, Se lock Braking System Classification of tyre Active and passive s n sensor, Rollover se Unit-IV	edan, SUV, Coupe, I ns, ESP, TCS. Wheels es, Radial, Tubeless. safety, Vehicle structu ensor, Seat occupancy	Roadst and T re, Ga recogi	10 Hrs ter. Adaptive `yres- Toe-In, as generator a nition. 09 Hrs
Quantity Vehicul Vehicle Brakes Toe-Ou Supple air bags EV Tech Battery	y control v lar Auxilia frame ar - Disc and t, Caster ar mental Ro s, Belt Tens nology: T Thermal M	ary ary nd b dru nd C estr sion	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: A her, Acceleration s of EV's, ICE	Unit-III tion- Hatchback, Se lock Braking System Classification of tyre Active and passive s n sensor, Rollover se Unit-IV vs EV torque output n, Regenerative brak	edan, SUV, Coupe, I ns, ESP, TCS. Wheels ss, Radial, Tubeless. safety, Vehicle structu	Roadst and T re, Ga recogn	10 Hrs ter. Adaptive 'yres- Toe-In, 's generator a nition. 09 Hrs of EV's. bacts of EV o
Quantity Vehicul Vehicle Brakes Toe-Ou Supple air bags EV Tech Battery	y control v lar Auxilia frame ar - Disc and t, Caster ar mental Ro s, Belt Tens nology: T Thermal M	ary ary nd b dru nd C estr sion	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: A her, Acceleration s of EV's, ICE	Unit-III tion- Hatchback, So lock Braking System Classification of tyre Active and passive so n sensor, Rollover so Unit-IV vs EV torque output	edan, SUV, Coupe, I ns, ESP, TCS. Wheels es, Radial, Tubeless. safety, Vehicle structu ensor, Seat occupancy t, Architecture and Wo	Roadst and T re, Ga recogn	10 Hrs ter. Adaptive Syres- Toe-In, as generator a nition. 09 Hrs of EV's.
Quantity Vehicul Brakes Toe-Ou Supple air bags EV Tech Battery he envir	y control v lar Auxilia frame ar - Disc and t, Caster ar mental Ro s, Belt Tens biology: T Thermal M conment. ics in vehi of radio w s: Oxygen	ary ary ad t dru nd C estra sion Gype fana	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: A her, Acceleration s of EV's, ICE agement System s – Radio Trans s. sors, Crankshat	Unit-III tion- Hatchback, Se lock Braking System Classification of tyre Active and passive se n sensor, Rollover se Unit-IV vs EV torque output n, Regenerative brak Unit-V mission, Exchange of ft/Cam shaft Sensor,	edan, SUV, Coupe, I ns, ESP, TCS. Wheels es, Radial, Tubeless. safety, Vehicle structu ensor, Seat occupancy t, Architecture and Wo	Roadst and T re, Ga recogn orking nd Imp oath & r, Coo	10 Hrs ter. Adaptive 'yres- Toe-In, us generator a nition. 09 Hrs of EV's. bacts of EV o 07 Hrs properties, lant
Quantity Vehicul Brakes Toe-Ou Supple air bags EV Tech Battery the envir Felemat Concept Sensors Temper	y control v lar Auxilia frame ar - Disc and t, Caster an mental Ro s, Belt Tens nology: T Thermal M conment. ics in vehi of radio w s: Oxygen ature Sens	alve ary ad t dru nd C estr sion ype fana cles ave sen sor, s: A	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: A ler, Acceleration s of EV's, ICE agement System 5 – Radio Trans s. sors, Crankshat Hot Film Air M After completin	Unit-III tion- Hatchback, Selock Braking System Classification of tyre Active and passive sen sensor, Rollover sec Unit-IV vs EV torque output n, Regenerative brak Unit-V mission, Exchange of ft/Cam shaft Sensor, Th ag the course, the st	edan, SUV, Coupe, I ns, ESP, TCS. Wheels es, Radial, Tubeless. safety, Vehicle structu ensor, Seat occupancy t, Architecture and Wo king, Safety system ar of information, signal p Boost Pressure Sensor prottle Position Sensor, tudents will be able to	Roadst and T re, Ga recogn orking nd Imp oath & r, Cool Rain/	10 Hrs ter. Adaptive 'yres- Toe-In, us generator a nition. 09 Hrs of EV's. bacts of EV o 07 Hrs properties, lant
Quantity Vehicul Vehicle Brakes Toe-Ou Supples air bags EV Tech Battery the envir Felemat Concept Sensors Temper	y control v lar Auxilia frame ar - Disc and t, Caster an mental Ro s, Belt Tens nology: T Thermal M conment. ics in vehi of radio w s: Oxygen ature Sens	alve ary ad t dru nd C estr sion ype fana cles ave sen sor, s: A	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: A ler, Acceleration s of EV's, ICE agement System 5 – Radio Trans s. sors, Crankshat Hot Film Air M After completin	Unit-III tion- Hatchback, Selock Braking System Classification of tyre Active and passive sen sensor, Rollover sec Unit-IV vs EV torque output n, Regenerative brak Unit-V mission, Exchange of ft/Cam shaft Sensor, Th ag the course, the st	edan, SUV, Coupe, I ns, ESP, TCS. Wheels es, Radial, Tubeless. safety, Vehicle structu ensor, Seat occupancy t, Architecture and Wo king, Safety system ar of information, signal p Boost Pressure Sensor prottle Position Sensor,	Roadst and T re, Ga recogn orking nd Imp oath & r, Cool Rain/	10 Hrs ter. Adaptive 'yres- Toe-In, us generator a nition. 09 Hrs of EV's. bacts of EV o 07 Hrs properties, lant
Quantity Vehicul Brakes Toe-Ou Supple air bags EV Tech Battery the envir Felemat Concept Sensors Temper	y control v lar Auxilia frame ar - Disc and t, Caster an mental Ro a, Belt Tens nology: T Thermal M onment. ics in vehi of radio w s: Oxygen rature Sens Outcome Describe	alve ary ad t dru nd C estr sion ype fana ave sen or, s: A the	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: A her, Acceleration s of EV's, ICE agement System s – Radio Trans s. sors, Crankshat Hot Film Air N After completin functions of N	Unit-III tion- Hatchback, Selock Braking System Classification of tyre Active and passive sen sensor, Rollover sec Unit-IV vs EV torque output n, Regenerative brak Unit-V mission, Exchange of ft/Cam shaft Sensor, Th ag the course, the st	edan, SUV, Coupe, 1 ns, ESP, TCS. Wheels es, Radial, Tubeless. safety, Vehicle structu ensor, Seat occupancy t, Architecture and Wo king, Safety system ar of information, signal p Boost Pressure Sensor prottle Position Sensor, tudents will be able to in a modern automobil	Roadst and T re, Ga recogn orking nd Imp oath & r, Cool Rain/	10 Hrs ter. Adaptive 'yres- Toe-In, us generator a nition. 09 Hrs of EV's. bacts of EV o 07 Hrs properties, lant
Quantity Vehicul Vehicle Brakes Toe-Ou Supples air bags EV Tech Battery the envir Telemat Concept Sensors Temper Course CO1:	y control v lar Auxilia frame ar - Disc and t, Caster an mental Ro a, Belt Tens nology: T Thermal M onment. ics in vehi of radio w s: Oxygen rature Sens Outcome Evaluate	alve ary ad t dru nd C estr sion ype fana icles ave sen or, s: A the	e and Injectors. Systems: body classifica m brakes, Anti Camber angle. (aint System: A her, Acceleration s of EV's, ICE agement System s – Radio Trans s. sors, Crankshat Hot Film Air M After completin functions of M performance o	Unit-III tion- Hatchback, Selock Braking System Classification of tyre Active and passive sensor, Rollover set Unit-IV vs EV torque output n, Regenerative brak Unit-V mission, Exchange of ft/Cam shaft Sensor, The Ing the course, the stat Iechatronic systems	edan, SUV, Coupe, I ns, ESP, TCS. Wheels es, Radial, Tubeless. safety, Vehicle structu ensor, Seat occupancy t, Architecture and Wo king, Safety system ar of information, signal p Boost Pressure Sensor prottle Position Sensor, tudents will be able to in a modern automobil grameters	Roadst and T re, Ga recogn orking nd Imp oath & r, Cool Rain/	10 Hrs ter. Adaptive 'yres- Toe-In, us generator a nition. 09 Hrs of EV's. bacts of EV o 07 Hrs properties, lant

1. Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage Learning, ISBN-13: 978-1428311497

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

2. Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004, SAE International, ISBN: 0768009871 Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527 3. 4. Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-Heinemann, ISBN 0-7506-7008-8

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

MAXIMUM MARKS FOR THE CIE THEORY

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: (Internal Choice)	16				
5&6	Unit 3: (Internal Choice)	16				
7 & 8	Unit 4: (Internal Choice)	16				
9 & 10	Unit 5: (Internal Choice)	16				
	TOTAL	100				

				Semester: VI			
MATHEMATICAL MODELLING							
Category: Institutional Elective-I							
(Theory)							
Course	e Code	:	MA266TEU		CIE	:	100 Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total I	Iours	:	45L		SEE Duration	:	3.00 Hours
				J nit-I			09 Hrs
			ematical Modellin	8	0 11		
				ling, classification	of models, assorted	l S11	nple mathematical
models	from divers	e n		nit – II			09 Hrs
Matha	matically M						09 Hrs
			elling Discrete Pro	order, Introduction	to Difference equ	ation	as Introduction to
				athematical model	1		-
				, genetics and other			iee equations in
)	/ 1		nit –III	1		09 Hrs
Marko	v modelling	:					I
Mather	natical found	lati	ons of Markov cha	ins, application of N	Markov Modelling t	o pi	roblems.
				nit —IV			09 Hrs
	ing through						
Graph	theory conce	pts		ons through differer	nt types of graphs.		
.			-	nit –V			09 Hrs
			and Dynamic Pro		1.1	1	1
			ns with application	Mathematical mod	iels of variational	prot	blem and dynamic
prograi	lilling, Floo	len	is with application	5.			
Course	Outcomes	A	fter completing th	e course, the stude	nts will be able to		
C01:				cepts of mathema		ng	in various fields
	engineerin			····		0	
CO2:		<u> </u>	nowledge and skill	s of discrete and c	continuous models	toι	inderstand various
	types of an						
CO3:			appropriate mathem	natical model to solv	ve the real-world pr	oble	em and to optimize
	the solutio					1	· · · · · · · · · · · · · · · · ·
CO4:				edge gained to den	nonstrate the problem	em	s arising in many
D . f	practical s	itua	ations.				
	nce Books Mathematic	-01	Modeling I N V	apur, 1st Edition, 1	998 New Age Into	rno	tional New Dalhi
1	ISBN: 81-2			apur, 1st Edition, 1	996, New Age Inte	ma	tional, New Denii,
				ls, Analysis and	Applications. Sar	dip	Baneriee. 2014.
2			6	k, ISBN 978143985	• •	P	
				deling, D. J. G. Jam		ld,	1981, Stanly
3				0271779, 97804702		,	
				ns, D. N. Burghes,		Harv	wood, 1981. ISBN
4	13: 978085		1	,,,,,,,,,			
	1017/00005122007						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
(Maxin	PART B (Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7 & 8 Unit 4 : Question 7 or 8							
9 & 10							
	TOTAL	100					

				Semester: VI					
		M		S OF QUANTUN					
			Catego	ry: Institutional El	ective-l				
Course Co	de	:	MA266TEV	(Theory)	CIE	•	100 Marks		
Credits: L		•	3:0:0		SEE	•	100 Marks		
Total Hou		•	45L		SEE Duration	•	: 100 Marks : 3.00 Hours		
10141 1100	1.5	•	431		SEE Duration	•	5.00 110015		
			Ţ	J nit-I			09 Hrs		
Introducti	on to Qua	ntu	m Computing:						
				algebra for quantun	n computing, Inner	pro	oducts and Tenso		
				states in Hilbert					
measureme	nts, No-clo	onii	ng theorem.				1		
			Uı	nit – II			09 Hrs		
Quantum									
				Dirac formalism, s					
				ard Gate, CNOT (Gate, Phase Gate,	Z-	Y decomposition		
Quantum C	ircuit Con	npo	sition, Basic Qua						
				nit —III			09 Hrs		
Quantum .	0			11 D			~		
				orithm, Bernstein-		n,	Simon periodicit		
algorithm,	Phase estir	nat		uantum Fourier tran	storm.		00 11		
0 (<u> </u>			nit —IV			09 Hrs		
Quantum .				1	·4 II II		1. 1.1. 1./1111		
				tum factoring algo	orithm, Harrow-Ha	ISS10	dim-Lloyd (HHL		
algorithm I	or solving	line	ear system proble	nit –V			09 Hrs		
Annligatio	na of Outo			iiit –v			09 1115		
			m Computing:	ogarithm, quantum	counting Boolean	cat	isfiability problem		
(SAT), graj				garitini, quantum	counting, Doolean	Sat	isliability problem		
<u>(SAT), gra</u>	Ji theory p	100	Jiems.						
Course Ou	itcomes: A	fte	r completing th	e course, the stude	nts will be able to				
	iccomes. 1	1100	r completing th	e course, the stude					
CO1: Ex	plore the	fun	damental concep	ts of quantum comp	uting.				
	•		•	lls of quantum cor	•	and	various types of		
-			g in various field	-	1				
-		-	-	$\frac{1}{1}$ n algorithm to solve	e the real-world pro	hle	m and to ontimiz		
th	e solution.								
CO4: Di	Distinguish the overall knowledge gained to demonstrate the problems arising in many								

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Reference Books 1 An introduction to Quantum Computing, Phillip Kaye, Raymond Laflamme, 2007, Oxford University press. 2 Quantum Computing for Everyone, Chris Bernhardt, 2020, The MIT Press, Cambridge.

 Quantum Computing for Everyone, Chris Bernhardt, 2020, The MIT Press, Cambridge.
 Quantum Computation and Quantum Information, M. A. Nielsen & I. Chuang, 2013,
 Cambridge University Press.
 Quantum Computing for the quantum curious, Cirian Hughes et. al., 2021, Springer, ISBN 978-3-030-61600-7.

5

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Concise guide to quantum computing, Sergei Kurgalin, Sergei Borzunov, 2021, Springer, ISBN 978-3-030-65051-3, ISBN 978-3-030-65052-0 (eBook).

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
(Maxin	PART B (Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Ø & 10 Unit 5: Question 9 or 10 16					
	TOTAL	100				

			Semes	ter: VI			
		A	PPLIED PSYCHOLO		RS		
				tional Electives – I			
(Theory)							
Course (Code	:	HS266TEW	CIE	:	100 Marks	
	Credits: L:T:P : 3:0:0 SEE : 100 Marl						
Total Ho		:	45 Hrs	SEE Duration	:	3 Hours	
			Unit-I			08 Hrs	
Introduc	ction to Psv	cholo	gy: Definition and go	als of Psychology: R	ole of a P		
			tives (Branches of p				
•	•	-	Humanistic, Psycholo			• •	
			bservation, Questionnai			2	
			Unit – II			08 Hrs	
Intellige	nce and Ai	otitua	le: Concept and defi	inition of Intelligence	e and Ap		
			Intelligence – Spear				
			pes of tests. Measuren				
	0		ntelligence – Fluid and	e			
		1	Unit –III			10 Hrs	
Personal	lity: Concept	t and	definition of personal	lity. Approaches of p	ersonality-		
			sonal and developme				
			Personality: Self- repo				
			niques, its Characteristi				
	e e		1		,,		
			Assessment.				
			Unit –IV			10 Hrs	
Learnin	g: Definition	n. Co		Conditioning, Basics	s of Class		
			nditioning – Classical			ical Conditioning	
(Pavlov)	, the proces	s of	nditioning – Classical Extinction, Discrimir	ation and Generaliza	tion. Open	ical Conditioning	
(Pavlov) (Skinner	, the proces expt). The b	s of basics	nditioning – Classical Extinction, Discrimir of operant conditionir	ation and Generalizand, Schedules of reinfo	tion. Open preement. (ical Conditioning rant Conditioning Cognitive – Socia	
(Pavlov) (Skinner approach	, the proces expt). The b nes to learning	s of basics	nditioning – Classical Extinction, Discrimir	ation and Generalizand, Schedules of reinfo	tion. Open preement. (ical Conditioning rant Conditioning Cognitive – Socia	
(Pavlov) (Skinner	, the proces expt). The b nes to learning	s of basics	nditioning – Classical Extinction, Discrimir of operant conditionir atent Learning, Observa	ation and Generalizand, Schedules of reinfo	tion. Open preement. (ical Conditioning rant Conditioning Cognitive – Socia Method, Insightfu	
(Pavlov) (Skinner approach Learning	, the proces expt). The b nes to learning g.	s of basics g – La	nditioning – Classical Extinction, Discrimir of operant conditionir atent Learning, Observa Unit –V	nation and Generaliza ag, Schedules of reinfo ational Learning, Trial	tion. Open preement. C and Error I	ical Conditioning rant Conditioning Cognitive – Socia Method, Insightfu 09 Hrs	
(Pavlov) (Skinner approach Learning Applicat	, the proces expt). The b nes to learning tion of Psyce	s of pasics g – La cholo	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese	ation. Open preement. C and Error I ent scenari	ical Conditioning rant Conditioning Cognitive – Socia Method, Insightfu 09 Hrs o of information	
(Pavlov), (Skinner approach Learning Applicat technolog	, the proces expt). The b nes to learning tion of Psyce gy, the role	s of basics g – La cholo of p	nditioning – Classical Extinction, Discrimir of operant conditionir atent Learning, Observa Unit –V gy in Working Env sychologist in the org	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a	ation. Open preement. C and Error I ent scenari and Trainin	ical Conditioning rant Conditioning Cognitive – Socia Method, Insightfu 09 Hrs o of information ng of Psycholog	
(Pavlov), (Skinner approach Learning Applicat technolog Professio	, the proces expt). The b nes to learning tion of Psyce gy, the role ponals to wor	s of pasics g - La cholo of p k in	nditioning – Classical Extinction, Discrimir of operant conditionir atent Learning, Observa <u>Unit –V</u> gy in Working Env sychologist in the org the field of Informati	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc	and Error I ent scenari chological	ical Conditioning rant Conditioning Cognitive – Socia Method, Insightfu 09 Hrs o of information ng of Psycholog Stress: a. Stress	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio	, the proces expt). The b nes to learning tion of Psyce gy, the role onals to wor on, Symptoms	s of pasics g – La cholo of p k in s of S	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products	ation and Generalization, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection at on Technology. Psyc s of stress v s Burnout,	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Plac	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress: a. Stress ce Trauma. Cause	
(Pavlov) (Skinner approach Learning Applicat technolog Professio Definitio of Stress	, the proces expt). The b ness to learning tion of Psyce gy, the role onals to work on, Symptoms s – Job related	s of pasics g - La cholo of p k in s of S ed can	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc s of stress v s Burnout, of Frustration, Stress a	and Error I ent scenari hological Work Plac	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress: a. Stress we Trauma. Cause erformance, Stress	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat	, the proces expt). The b nes to learning tion of Psyce gy, the role onals to wor on, Symptoms s – Job relate pility-Stress th	s of pasics $g - L_i$ cholo of p k in s of S ed can hresh	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control.	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B.	ation. Open preement. C and Error I ent scenari and Trainin hological Work Plac and Job Pe Psychologi	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress: a. Stress we Trauma. Cause erformance, Stress	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat	, the proces expt). The b nes to learning tion of Psyce gy, the role onals to wor on, Symptoms s – Job relate pility-Stress th	s of pasics $g - L_i$ cholo of p k in s of S ed can hresh	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B.	ation. Open preement. C and Error I ent scenari and Trainin hological Work Plac and Job Pe Psychologi	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress: a. Stress we Trauma. Cause erformance, Stress	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for	, the proces expt). The b nes to learning tion of Psyce gy, the role on, Symptoms s – Job relate oility-Stress the Counseling,	s of pasics g – La cholo of p k in s of S ed can hresho Type	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Dire	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc s of stress v s Burnout, of Frustration, Stress a Type A and Type B.	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Plac and Job Pe Psychologi unseling.	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress: a. Stress we Trauma. Cause erformance, Stress	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for Course (, the proces expt). The bases to learning tion of Psyce gy, the role on, Symptoms s – Job relate oility-Stress the Counseling, Outcomes: A	s of pasics g – La cholo of p k in s of S ed can hresh Type	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Direc	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. I ected, Participative Cou the students will be a	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Plac and Job Pe Psychologi inseling.	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress we Trauma. Cause erformance, Stress ical Counseling	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for Course (CO1 D	, the proces expt). The b nes to learning tion of Psyce gy, the role onals to wor on, Symptoms a – Job relate bility-Stress the Counseling, Outcomes: A Describe the b	s of pasics g – La cholo of p k in s of S ed can hresh Type fter o pasic	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Director completing the course, theories, principles, an	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. I ected, Participative Cou the students will be a	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Plac and Job Pe Psychologi inseling.	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress we Trauma. Cause erformance, Stress ical Counseling	
(Pavlov), (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerab Need for Course (CO1 D b	, the proces expt). The bases to learning tion of Psyce gy, the role onals to wort on, Symptoms s – Job relate oility-Stress the Counseling, Outcomes: A Describe the bases and	s of pasics g – La cholo of p k in s of S ed can hreshe Type fiter of pasic ment	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Dire completing the course, theories, principles, an al processes.	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. 1 octed, Participative Cou the students will be a d concepts of applied	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Plac and Job Pe Psychologi unseling.	ical Conditioning rant Conditioning Cognitive – Socia Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress ce Trauma. Cause erformance, Stress ical Counseling	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for CO1 D b CO2 D	, the proces expt). The b ness to learning tion of Psyce gy, the role onals to work on, Symptoms a – Job relate oblity-Stress the Counseling, Outcomes: A Describe the b ehaviors and Define learning	s of pasics g – La cholo of p k in s of S ed can hresh Type fter o pasic ment ing a	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Direc completing the course, theories, principles, an al processes. and compare and compare	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. I beted, Participative Cou the students will be a d concepts of applied	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Place and Job Pe Psychologi unseling.	ical Conditioning rant Conditioning Cognitive – Socia Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress ce Trauma. Cause erformance, Stress ical Counseling	
(Pavlov), (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for CO1 D b CO2 D a	, the proces expt). The bases to learning tion of Psyce gy, the role on Symptoms on Sympto	s of pasics g – La cholo of p k in s of S ed can hreshe Type <u>fter o</u> pasic ment ing a istic t	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Direc completing the course, theories, principles, an al processes. and compare and c heorists believe influen	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a fon Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. Excted, Participative Cou the students will be a d concepts of applied ontrast the factors ce the learning process	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Plac and Job Pe Psychologi inseling.	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress ce Trauma. Cause erformance, Stress ical Counseling y as they relate to itive, behavioral	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for CO1 E b CO2 E a CO3 E	, the proces expt). The bases to learning tion of Psyce gy, the role onals to wor on, Symptoms on, Symptoms o	s of pasics g – La cholo of p k in s of S ed can hreshe Type fter o pasic ment ing a istic t	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Directed, Non- Directed, Non- Directed, Non- Directed, theories, principles, an al processes. and compare and con- heorists believe influen ding of psychological	ation and Generalization, Schedules of reinfortational Learning, Trial ironment: The prese ganization, Selection at on Technology. Psyc of stress v s Burnout, of Frustration, Stress at Type A and Type B. Exted, Participative Cou the students will be at d concepts of applied ontrast the factors ce the learning process attributes such as inte	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Place and Job Pe Psychologi unseling.	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress ce Trauma. Cause erformance, Stres ical Counseling y as they relate to itive, behavioral	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerab Need for CO1 D b CO2 D a CO3 D	, the proces expt). The bases to learning tion of Psyce gy, the role onals to worf on, Symptoms on, Symptoms	s of pasics g – La cholo of p k in s of S ed can hreshe Type fter o pasic ment ing a istic t	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Direc completing the course, theories, principles, an al processes. and compare and c heorists believe influen	ation and Generalization, Schedules of reinfortational Learning, Trial ironment: The prese ganization, Selection at on Technology. Psyc of stress v s Burnout, of Frustration, Stress at Type A and Type B. Exted, Participative Cou the students will be at d concepts of applied ontrast the factors ce the learning process attributes such as inte	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Place and Job Pe Psychologi unseling.	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress ce Trauma. Cause erformance, Stres ical Counseling y as they relate to itive, behavioral	
(Pavlov), (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerab Need for CO1 E b CO2 E a CO3 E	, the proces expt). The bases to learning tion of Psyce gy, the role onals to work on, Symptoms on, Symptoms	s of pasics g – La cholo of p k in s of S ed can hresh Type fter o pasic ment istic t rstand	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Direct completing the course, theories, principles, an al processes. and compare and con- heorists believe influen ding of psychological nhancement and apply	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. I exted, Participative Cou the students will be a d concepts of applied ontrast the factors ce the learning process attributes such as inte effective strategies fo	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Place and Job Pe Psychologi unseling. ble to:- psychology that cogn Illigence, aportself-man	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information g of Psycholog Stress : a. Stress we Trauma. Cause erformance, Stress ical Counseling y as they relate the itive, behavioral ptitude, creativity agement and self	
(Pavlov) (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for CO1 E b CO2 E a CO3 E rc in CO4 A	, the proces expt). The bases to learning tion of Psyce gy, the role onals to wor on, Symptoms a – Job relate bility-Stress the Counseling, Outcomes: A Describe the bases ehaviors and Define learning nd Humani Develop unde esulting in the mprovement. Apply the the	s of pasics g – La cholo of p k in s of S ed can hreshe Type fter of pasic ment ing a istic t rstand neir en	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Dire completing the course, theories, principles, an al processes. and compare and c heorists believe influen ding of psychological nhancement and apply	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. I exted, Participative Cou the students will be a d concepts of applied ontrast the factors ce the learning process attributes such as inte effective strategies fo	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Place and Job Pe Psychologi unseling. ble to:- psychology that cogn Illigence, aportself-man	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information g of Psycholog Stress : a. Stress we Trauma. Cause erformance, Stress ical Counseling y as they relate the itive, behavioral ptitude, creativity agement and self	
(Pavlov), (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerat Need for CO1 [D] b CO2 [D] a CO3 [D] ro if CO4 [A] p	, the proces expt). The bases to learning tion of Psyce gy, the role onals to wor on, Symptoms a – Job relate oility-Stress the Counseling, Outcomes: A Describe the bases and Define learnind Humani Develop unde esulting in the mprovement. Apply the the ersonalities a	s of basics g – La cholo of p k in s of S ed can hreshe Type fter of basic ment ing a istic t rstand heir en eoriess nd ex	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Directed, Non- Directed, Non- Directed, non- Directed, theories, principles, an al processes. and compare and con- heorists believe influen ding of psychological nhancement and apply is into their own and periences.	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. Exted, Participative Cou the students will be a d concepts of applied ontrast the factors ce the learning process attributes such as inter- effective strategies fo others' lives in order	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Place and Job Pe Psychologi unseling. ble to:- psychology that cogn Illigence, ap or self-man	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress ce Trauma. Cause erformance, Stress ical Counseling y as they relate to itive, behavioral ptitude, creativity agement and self	
(Pavlov), (Skinner approach Learning Applicat technolog Professic Definitio of Stress Vulnerab Need for CO1 D b CO2 D a CO3 D ro a CO3 D ro a CO3 D ro a CO3 D	, the proces expt). The bases to learning tion of Psyce gy, the role onals to worf on, Symptoms on, Symptoms	s of basics g – La cholo of p k in s of S ed can hreshe Type fiter of basic ment istic t rstand istic t rstand eories nd ex e app	nditioning – Classical Extinction, Discrimir of operant conditionin atent Learning, Observa Unit –V gy in Working Env sychologist in the org the field of Informati tress, Extreme products uses of stress.Sources old, perceived control. s – Directed, Non- Dire completing the course, theories, principles, an al processes. and compare and c heorists believe influen ding of psychological nhancement and apply	ation and Generaliza ag, Schedules of reinfo ational Learning, Trial ironment: The prese ganization, Selection a on Technology. Psyc of stress v s Burnout, of Frustration, Stress a Type A and Type B. I acted, Participative Cou the students will be a d concepts of applied ontrast the factors ce the learning process attributes such as inte effective strategies fo others' lives in order n engineering and tech	tion. Open orcement. C and Error I ent scenari and Trainin hological Work Place and Job Pe Psychologi unseling. ble to:- psychology that cogn Illigence, ap or self-man	ical Conditioning rant Conditioning Cognitive – Social Method, Insightfu 09 Hrs o of information ng of Psycholog Stress : a. Stress ce Trauma. Cause erformance, Stress ical Counseling y as they relate to itive, behavioral ptitude, creativity agement and self	

Reference Books

ne.	
1.	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
2.	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
3.	Organizational Behaviour, Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN – 81-317 – 1132 – 3
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5
5	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)				
2		16			
	Unit 1 : (Compulsory)				
3&4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	7 & 8 Unit 4 : Question 7 or 8 16				
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Semester: VI						
	UNIVERSAL HUMAN VALUES						
	Category: Institutional Electives Course – I						
	(Theory)						
Course Code	:	HS266TEY	(CIE	:	100 Marks	
Credits: L:T				SEE	:	100 Marks	
Total Hours	:			SEE Duration	:	3.00 Hours	
			Unit-I			10 Hrs	
Introduction-I	Basic H	uman Aspiration	n, its fulfillment through	All-encompassing F	Reso	lution. The basic	
			llment through Right				
			e activities of the Self,				
-			nan Being, its details a				
Resolution.			-	_		_	
			Unit – II			10 Hrs	
Right Underst	tanding	(Knowing)- Kn	ower, Known & the Pro	ocess. The domain of	f rig	ht understanding	
starts from un	derstan	iding the human	being (the knower, the e	experiencer and the d	loer)	; and extends up	
to understand	ing nati	ure/existence - i	ts interconnectedness an	d co-existence; and f	inal	ly understanding	
the role of hu	nan be	ing in existence	(human conduct).				
			Unit –III			08 Hrs	
Understanding	g Exist	ence (including	Nature). A comprehensi	ive understanding (k	now	ledge) about the	
existence, wh	ich cer	tainly includes t	he Nature. The need and	d the process of inne	er ev	olution (through	
			self-evaluation)- particu				
			Contemplation in the				
			e and Contemplation of		nan	in this harmony/	
order leading	to com	prehensive know	ledge about the existence	ce).			
			Unit –IV			08 Hrs	
			standing the human bei				
			being as co-existence of		dy, t	the activities and	
potentialities	of the s	elf, Reasons for	harmony/contradiction i	n the self.			
			Unit –V			08 Hrs	
			All-encompassing Res				
	Understanding Human Conduct, Understanding different aspects of All-encompassing Resolution						
(understanding, wisdom, science etc.), Holistic way of living for Human Being with All-							
	encompassing Resolution covering all four dimensions of human endeavour viz., realization, thought,						
behavior and work (participation in the larger order) leading to harmony at all levels from self to							
Nature and entire Existence.							
-							
			n of the course the stud				
			spiration with program	of its fulfilment and	mea	ning of	
			banse of human living.				
		<u> </u>	epth and see how self is				
CO3 Understand existence in depth and see how coexistence is central to existence							

CO3 Understand existence in depth and see how coexistence is central to existence

CO4 Understand human conduct and the holistic way of living leading to human tradition

Reference Books 1 A foundation course in human values and professional ethics, R. R. Gaur, R Asthana, G P Bagaria, 2nd revised Edition, excel books, New Delhi – 2019, ISN 978-93-87034-47-1 2 Avartansheel Arthshastra, A Nagraj, Divya Path Sansthan, Amarkantak, India, ISBN 978-8-174-46781-2

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Economy of Performance- a quest for social order based on non-violence, J C Kumarappa,

- 3 2010, Sarva-Seva-Sangh-Prakashan, Varanasi, India
- Energy and Equity, Ivan Illich, 1974, The Trinity Press, Worcester & Harper Collins, 4
- USA, ISBN, 0060803274, 9780060803278

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	7 & 8 Unit 4 : Question 7 or 8			
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Semester VI						
	INTERDISCIPLINARY PROJECT					
Course Code	:	СН367Р	CIE	:	50 Marks	
Credits: L:T:P	:	0:0:3	SEE	:	50 Marks	
Total Hours	:	15 P	SEE Duration	:	2 Hours	

Interdisciplinary Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internalguide(s) before the beginning of the VI semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of VI semester.

Batch Formation:

- > Students are free to choose their project partners from any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house only.
- > The project work is to be carried out by a team of two to four students.

Project Topic Selection:

The topics of the project work must be in the *field of Sustainable Development goals areas or in line with CoE's(Centre of Excellence) identified by the college* or List of project areas as given by Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

Continuous monitoring of project work will be carried out and cumulative evaluation will be done.

- The students are required to meet their guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Guide regularly.
- For CIE assessment the project groups must give a final presentation with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➢ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.

Course Outcomes:

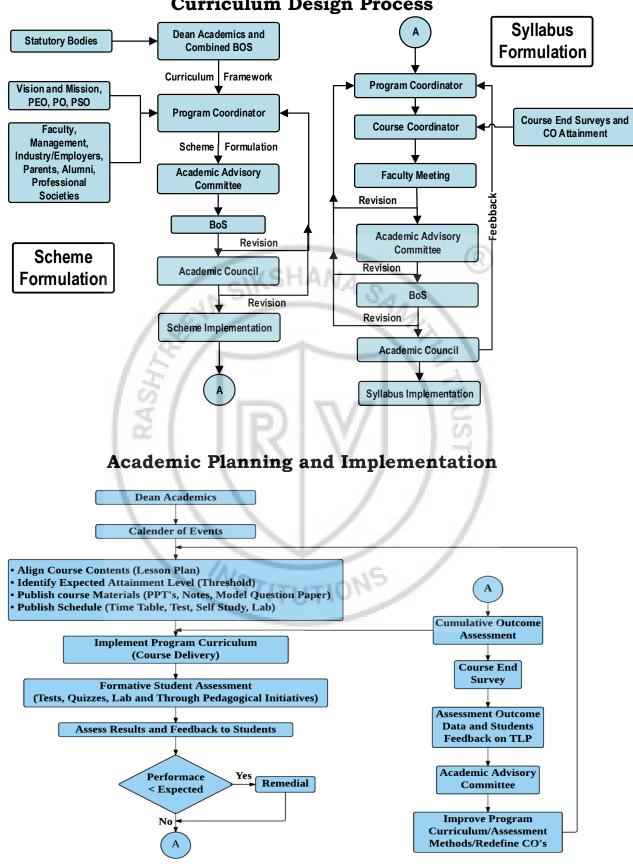
Cour	se Outcomes:
1	Identifying critical thinking and problem-solving abilities by analyzing and addressing
	interdisciplinary challenges, utilizing creative approaches and innovative solutions.
2	Exhibit proficiency in conducting comprehensive research, including literature review, data
	collection, modelling, simulation, and analysis, to address significant technical challenges and
	propose innovative solutions.
3	Demonstrate the ability to do effective teamwork, leadership, project management, and
	communication skills, while adhering to ethical standards and professional responsibility in
	delivering the project outcomes within time and budget constraints.
4	Utilize appropriate engineering tools, technologies, and software to design, test, and implement
	project solutions, ensuring adherence to technical specifications, safety standards, and industry
	best practices.

CIE Assessment:

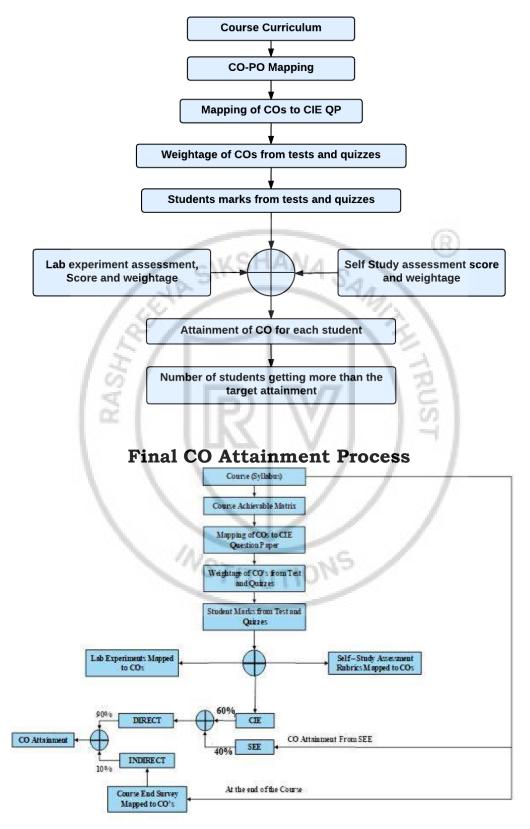
The following are the weightings given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%

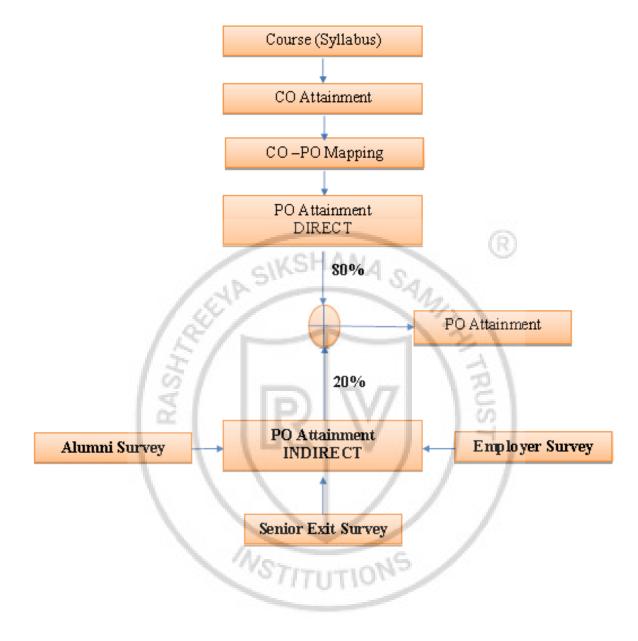
SEE Assessment:


The following are the weightages given during Viva Examination.

1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%


RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Curriculum Design Process



Process For Course Outcome Attainment

Program Outcome Attainment Process

KNOWLEDGE & ATTITUDE PROFILE

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM OUTCOMES (POs)

- * **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- * PO2: Problem Analysis: Identify, formulate, review research literature and analyze engineering problems reaching substantiated complex conclusions with consideration for sustainable development. (WK1 to WK4)
- * **PO3:** Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex * engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- * **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- PO6: The Engineer and The World: Analyze and evaluate societal and environmental * aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- * PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- * **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- * **PO9:** Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- * **PO10:** Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and * ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Professionalism, Commitment, Integrity, Team Work, Innovation

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India +91-80-68188110 www.rvce.edu.in

Go, change the world

Scan Here