Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SCHEME & SYLLABUS THIRD YEAR B.E. PROGRAMS

CHEMICAL ENGINEERING

BACHELOR OF ENGINEERING (B.E.) 2021 SCHEME

ACADEMIC YEAR 2023-24

Go, change the world

RV Educational Institutions[®]

to Visvesvaraya Technological University, Belagavi

RV College of Engineering[®] Approved by AICTE, Autonomous Institution Affiliated New Delhi

CHEMICAL ENGINEERING

DEPARTMENT VISION

Imparting quality technical education in Chemical Engineering to promote leadership in research, innovation and sustainable technology through teamwork.

DEPARTMENT MISSION

- Impart quality education in basic and applied areas of Chemical Engineering.
- Enable students and faculty to achieve proficiency in the areas of Chemical Processes, Energy, Unit Operations and Computational Chemical Engineering using state-of-art laboratories and modern infrastructure.
- Encourage faculty and students to make career in research and contribute towards innovative processes and products.
- Develop inclusive technologies with a focus on new materials and sustainability.
- Collaborate with industries and research Institutes for academics and research.
- Inculcate leadership qualities, entrepreneurial skills, societal and ethical values in students and faculty.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1**: Exhibit knowledge of basic sciences, concepts and principles of Chemical Engineering.
- **PEO 2**: Comprehend, analyze, design and implement engineering systems with a focus on research, innovation and sustainability.
- **PEO 3**: Work in multidisciplinary team and cater to the needs of process safety, health and environmental industries with appropriate regulations.
- PEO 4: Demonstrate effective communication skills, leadership qualities and develop into successfulentrepreneurs.

PSO	Description
PSO1	Gain knowledge of Chemical Engineering fundamentals and demonstrate problem formulation capabilities
PSO2	Analyse and solve engineering problems with a focus on environment and sustainability
PSO3	Contribute to multidisciplinary research using relevant Chemical Engineering tools

PROGRAM SPECIFIC OUTCOMES (PSOs)

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	AEC	Ability Enhancement Courses

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

INDEX

	THIRD YEAR COURSES							
SI. No.	Course Code	Name of the Course	Page No.					
	V Semester							
1.	21HS51B	Principles of Management & Economics	1					
2.	21CH52	Process Dynamics and Control	3					
3.	21CH53	Design of Water Systems	6					
4.	21CH54	Mass Transfer-I	9					
5.	21CH55BX	Professional Core Elective-I (Group-B)	11-18					
6.	21CH56CX	Professional Core Elective-II (Group C)	19-23					
7.	21CHI57	Summer Internship- II	24					
	1	VI Semester						
8.	21HS61A	Intellectual Property Rights & Entrepreneurship	26					
9.	21CH62	Process Simulation and Modeling	29					
10.	21CH63	Mass Transfer-II	32					
11.	21CH64DX	Professional Core Elective (Group – D)	35-42					
12.	21CH65EX	Professional Core Elective (Cluster Elective) (Group- E) (TWO Courses under Each Program)	43-56					
13.	21IE66FX	Institutional Electives – I (Group F)	57-79					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

TUT

Approved by AICTE, New Delhi

Bachelor of Engineering in CHEMICAL ENGINEERING

	V SEMESTER												
SI.	Course		C	redit	Alloc	cation	D C		Max M CIF		SEE	Max Marks SEE	
No.	Code	Course Title	L	Т	Р	Total	BoS	Category	Theory	Lab	Duration (H) Theory		Lab
1	21HS51B	Principles of Management & Economics	3	0	0	3	HSS	Theory	100	* * * *	3	100	****
2	21CH52	Process Dynamics and Control	3	0	1	4	СН	Theory + Lab	100	50	3	100	50
3	21CH53	Design of Water Systems	3	0	1	4	СН	Theory + Lab	100	50	3	100	50
4	21CH54	Mass Transfer-I	3	1	0	4	CH	Theory	100	****	3	100	****
5	21CH55BX	Professional Core Elective-I (Group-B)	3	0	0	3	СН	Theory	100	****	3	100	****
6	21CH56CX	Professional Core Elective-II (Group C)	2	0	0	2	СН	NPTEL	50	****	2	50	****
7	21CHI57	Summer Internship- II	0	0	2	2	СН	Internship	****	50	2	****	50
						22							

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	ELECTIVES							
	GROUP-B							
Sl.No	Sl.No Course code Course Title							
1	21CH55B1	Heterogeneous Reaction Systems						
2	21CH55B2	Pilot Plant and Scale up Studies						
3	21CH55B3	Design of Piping Systems						
4	21CH55B4	Chemical Plant Utilities						
(NPTEL c	ourses are subject t	GROUP-C (NPTEL) o change based on the availability of the course on the NPTEL Platform)						
Sl. No.	Course Code	Course Title						
1	21CH56C1	Electrochemical Technology in Pollution Control						
2	21CH56C2	Biological Process Design for Wastewater Treatment						
3	21CH56C3	Computational Process Design						
3	21CH56C4	Physical and Electrochemical Characterizations in Chemical Engineering						
4	21CH56C5	Waste to Energy Conversion						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Bachelor of Engineering in CHEMICAL ENGINEERING

	VI SEMESTER												
SI.	Course	Course Title	Credit Allocation				BoS Category	Category	Max Marks CIE		SEE Duration	Max Marks SEE	
No.	Code	Course Thie	L	Т	Р	Total	DUS	Category	Theory	Lab	(H)	Theory	Lab
1	21HS61A	Intellectual Property Rights & Entrepreneurship	3	0	0	3	HSS	Theory	100	****	3	100	****
2	21CH62	Process Simulation and Modeling	3	0	1	4	СН	Theory + Lab	100	50	3	100	50
3	21CH63	Mass Transfer-II	3	0	1	4	СН	Theory + Lab	100	50	3	100	50
4	21CH64DX	Professional Core Elective (Group – D)	3	0	0	3	СН	Theory	100	****	3	100	****
5	21CH65EX	Professional Core Elective (Cluster Elective) (Group- E)	3	0	0	3	CH/BT/ CV	Theory	100	****	3	100	****
6	21IE66FX	Institutional Electives – I (Group F)	3	0	0	3	Res.BoS	Theory	100	****	3	100	****
							20						

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	ELECTIVES							
	GROUP-D Professional Core Elective							
Sl.No	Course co	ode	Course Title					
1	21CH64I	D1	Food Engineering					
2	21CH64I	02	Fuel Cell Technology					
3	21CH64I	03	Process Engineering and Economics					
4	21CH64I	04	Energy Storage Technology					
	GR	ROUP-E	Professional Core Elective (Cluster Elective)					
1	21BT65E	E1	Nanobiotechnology					
2	21BT65E	E2	Nature Impelled Technologies					
3	21CH65I	E1	Bioenergy Technology					
4	21CH65I	E2	Hydrogen Technology					
5	21CV651	E1	Disaster Management					
6	21CV651	21CV65E2 Solid Waste Management						
		0	GROUP-F Institutional Electives – I					
Sl. No.	Course Code	BoS	Course Title					
1	21IE6F1	CH	Industrial Safety and Risk Management					
2	21IE6F2	EE	Renewable Energy Systems					
3	21IE6F3	IM	Systems Engineering					
4	21IE6F4	ME	Mechatronics					
5	21IE6F5	MA	Mathematical Modelling					
6	21IE6F6	ME	Industry 4.0 – Smart Manufacturing for The Future					
7	21IE6F7	HSS	Industrial Psychology for Engineers					
8	21IE6F8	IM	Elements of Financial Management					
9	21IE6F9	HSS	Universal Human Values-II					
10	21IE6F10	EC	Human Machine Interface (Industry Offered Elective)					

RV

Approved by AICTE, New Delhi

RV Educational Institutions

Autonomous Institution Affiliated to Visvesvaraya Technological

RV College of Engineering®

	University, Be		vi					
				Semeste	er: V			
	PRINCIPLES OF MANAGEMENT & ECONOMICS							
(Common to All Programs)								
(Theory)								
Cours	se Code	:	21HS51B		CIE	:	100 Mar	'ks
Credi	ts: L:T:P	:	3:0:0		SEE	:	100 Mar	'ks
Total	Hours	:	45Hrs		SEE Durat	ion :	3Hours	
			•	Unit-I				06 Hrs
Intro	duction to I	Mar	nagement: Mar	nagement Functi	ons – POSDCOR	B – an o	verview, N	Anagement
levels	& Skills, M	lana	agement History	- Classical Ap	proach: Scientific	Manage	ement, Ad	ministrative
Theor	y, Quantita	tive	e Approach: O	perations Resea	rch, Behavioral A	pproac	h: Hawtho	rne Studies,
Conte	emporary A	ppi	roach: Systems	Theory, Conting	gency Theory. Cas	selets / C	Case studie	S
				Unit – II				10 Hrs
Found	dations of F	Plan	ning: Types of	Goals & Plans	, Approaches to Se	etting Go	oals & Plar	ns, Strategic
Manag	gement Proc	ess	, Corporate stra	tegies – types o	of corporate strateg	gies, BC	G matrix, (Competitive
Strate	gies – Porte	ers	Five force Mo	del, types of C	ompetitive Strate	gies. Ca	selets / C	ase studies
					of Designing Orga			
Specia	alization, D)epa	artmentalization	, Chain of C	ommand, Span o	of Contr	rol, Centra	alization &
Decen	ntralization,	For	malization, Mec	hanistic & Orga	nic Structures. Ca	selets / G	Case studi	es
				Unit –III				10 Hrs
					ow's Hierarchy o			
					Theory. Contempo		eories of	Motivation:
					Caselets / Case st			
					on's Managerial C			
	-	•			adership, Contem	porary	Views of	Leadership:
Transa	actional & T	ran	sformational Le		ets / Case studies			1
_				Unit –IV				10 Hrs
					nd Macroeconom			
					Macroeconomic			
					AS-AD model, Th			
					ess in India. Mac			
					e, Labor Market, N			
					P, Measures of G	DP: Out	come Metr	nod, Income
metho	and Exper	1011	ure method, Nu	mericals on GD	P Calculations.			00 11
F	4-1 f M	•		Unit –V		M.		09 Hrs
					, and Equilibrium Elasticity of Su			
					and and supply. C			
					betition, Oligopoly		in meome	allu Flices
Anec	ung Consun	ipin		nopolistic Comp	bennon, Ongopory	•		
Cours	se Outcome		ften eenenletin				•_	
Course Outcomes: After completing the course, the students will be able to:-CO1Elucidate the principles of management theory & recognize the characteristics of an								
CO1	Elucidate							stics of an
		the						stics of an
CO1	organizatio	the on.	principles of	management	theory & recogn	ize the	characteri	
	organizatio Demonstra	the on. ite 1	the importance	management of key perform	theory & recognitation	ize the tegic ma	characteris	and design
CO1	organizatio Demonstra appropriate	the on. ite 1	the importance	management of key perform	theory & recogn	ize the tegic ma	characteris	and design
CO1 CO2	organizatio Demonstra appropriate dynamics.	the on. ite 1 e or	principles of the importance ganizational str	management of key perform uctures and pos	theory & recogn ance areas in stra sess an ability to c	ize the tegic ma onceive	characteria anagement various org	and design ganizational
CO1	organizatio Demonstra appropriato dynamics. Compare a	the on. ite 1 e or	the importance ganizational str	management of key perform uctures and post nd contemporary	theory & recogn ance areas in stra sess an ability to c v theories of motiv	ize the tegic ma onceive ation and	characteria anagement various org	and design ganizational l implement
CO1 CO2 CO3	organizatio Demonstra appropriate dynamics. Compare a the right le	the on. ite t e or and eade	principles of the importance ganizational str contrast early an ership practices	management of key perform uctures and posi- nd contemporary in organizations	theory & recogni ance areas in stra sess an ability to c theories of motivithat would enable	ize the tegic ma onceive ation and systems	characteria anagement various org d select and orientation	and design ganizational l implement
CO1 CO2 CO3 CO4	organizatio Demonstra appropriate dynamics. Compare a the right le Demonstra	the on. ite 1 e or and eade	principles of the importance ganizational str contrast early an ership practices i an understanding	management of key perform uctures and posi- nd contemporary in organizations g on the usage as	theory & recogni ance areas in stra sess an ability to c theories of motivi- that would enable and application of b	ize the tegic ma onceive ation and systems asic eco	characteria anagement various or d select and orientation nomic prin	and design ganizational l implement n. ciples.
CO1 CO2 CO3	organizatio Demonstra appropriate dynamics. Compare a the right le Demonstra Appreciate	the on. ite 1 e or and ade ite a e the	principles of the importance ganizational str contrast early an ership practices i an understanding	management of key perform uctures and posi- nd contemporary in organizations g on the usage ar- res of macro-ecc	theory & recogni ance areas in stra sess an ability to c theories of motivithat would enable	ize the tegic ma onceive ation and systems asic eco	characteria anagement various or d select and orientation nomic prin	and design ganizational 1 implement 1. ciples.

Chemical Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	Reference Books						
1.	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 15 th Edition, 2021, Pearson Education Publications, ISBN: 13: 978-0-13-558185-8						
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 2009, PHI, ISBN: 81-203-0981-2.						
3.	Principles of Microeconomics, Steven A. Greenlaw, David Shapiro, 2 nd Edition, 2017, ISBN:978-1-947172-34-0						
4.	Macroeconomics: Theory and Policy, Dwivedi D.N, 5th Edition, 2021, McGraw Hill Education; ISBN : 9789353163334						

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	. NO. CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2 : Question 3 or 4	16						
5&6	Unit 3 : Question 5 or 6	16						
7 & 8	Unit 4 : Question 7 or 8	16						
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: V						
	PROCESS DYNAMICS AND CONTROL						
		ory: Professional Core					
	(Th	eory and Practice)					
Course Code	: 21CH52		+ 50				
Credits: L:T:P	: 3:0:1		+ 50				
Total Hours	: 45L+30P	SEE Duration : 3 H	lours				
	Un	iit-I	09 Hrs				
First order Syste		s, transient response, Forcing functions					
		mercury in glass thermometer, liquid level					
		inertial in glass thermometer, inquid rever					
		Interacting and non-interacting systems.	3.				
		t - II	09 Hrs				
	ally damped and terms	ond order systems: U-tube manometer, Da for second order under damped process, Tra	nsportation lag				
	Unit	t –III	09 Hrs				
Controllers: Controllers:	rollers, components of	a control system, closed loop and open	loop systems,				
	for two position, propor	· 1					
		Proportional + Reset +Rate controller (P+I+I	D)				
Final Control elen		ody, valve characteristics					
		t –IV	09 Hrs				
Closed Loop Systems: Control System, servo and regulator problem, Overall transfer function for single-loop systems and multi loop control system, overall transfer function for set-point change and load change.							
Transient response of simple control systems Unit –V 09 Hrs							
			09 Hrs				
Stability: Concept method.	of Stability, Stability cr	iterion, Routh Herwitz test for stability, Roc	ot Locus				
	se: Bode diagrams for chols tuning method.	r first, second order systems and controllers	, Bode stability				

Laboratory Component

	List of experiments
1	Time constant determination and response to step change of thermometer: First order
2	Single tank system: First order
3	Non interacting First order elements in series
4	Interacting First order elements in series
6	Level Controller (P, I, D, PID controllers)
7	Flow controller (P, I, D, PID controllers
8	Pressure controller (P, I, D, PID controllers)
9	Temperature controller (P, I, D, PID controllers)
10	Control valve characteristics
11	Controller Tuning

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course	Outcomes: After completing the course, the students will be able to
CO 1	Recall the concepts of Laplace transforms and first & second order systems
CO 2	Compute transfer functions for first, second order and control systems
CO 3	Analyze the response of first & second order systems and controllers for various inputs
CO 4	Determine the overall transfer function of single and closed loop control system and evaluate the stability of control systems
	nce Rooks

1 Process system Analysis and Control: Steven E. LeBlanc, Donald R. Coughanowr, Third Edition, 2017, McGraw Hill, ISBN- 978-1259098437

- 2 Chemical Process Control: George Stephanopoules, First Edition, 2015, Pearson Education, ISBN- 978-9332549463
- 3 Coulson and Richardson's Chemical Engineering: Richardson J. F. Et. Al, 4th Edition,2006, Elsevier, ISBN 978-8131204528
- Process modeling, simulation and Control for Chemical Engineers: Luyben, 2nd Edition, 2013, McGraw Hill Education, 978-9332901681

Process Dynamics and Control; Seborg, Edgar, Mellichamp, Doyle; 3rd Edition, Wiley, 2013, ISBN- 978-8126541263

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY) Q.NO. CONTENTS MARKS PART A 1 Objective type of questions covering entire syllabus 20 PART B (Maximum of THREE Sub-divisions only) 2 Unit 1 : (Compulsory) 16 3 & 4 Unit 2 : Question 3 or 4 16 5&6 16 Unit 3 : Question 5 or 6 7&8 Unit 4 : Question 7 or 8 16 9 & 10 Unit 5: Question 9 or 10 16 TOTAL 100

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	30
3	Viva	10
	TOTAL	50

RV ISTITUTION

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

University	Belag	avi					
			Semester: V				
		DE	SIGN OF WATER	SYSTEMS			
			ategory: Professio				
		U	(Theory and Prac				
Course Code	:	21CH53		CIE Marks	:	100 + 50	
Credits: L:T:I		3:0:1		SEE Marks	:	100 + 50 100 + 50	
Total Hours	:	40L+30P		SEE Duration	:	3Hours	
			Unit-I				08 Hrs
Constituents o	f Wa	stewater:					
Physical Chara	eteris	tics: solids turb	idity, colour, tempera	ature. Chemical Co	onst	ituents [,] nH	alkalinity
			ents: BOD, modellin				
		est, estimation o		g of Bob fourth	, iii, i		BOD unu,
		••••, ••••••••	Unit – II				08 Hrs
Design of Phys	ical I	Init Operations	and Chemical Unit	Processes			00 111 5
•		-	s, flow equalization,		ulat	ion gravity	v separation
			ry sedimentation tank		uiui	ion, gravity	separation
theory, give ren	o rui,	debigit of printa	Unit –III				08 Hrs
Design of Che	nical	Unit Processes					00 1115
			precipitation, estim	ation of sludge	vo	lume fron	n chemical
			sphorous removal,				
stabilization		8 1	1 ,			,	
			Unit –IV				08 Hrs
Design Aspect	s in B	iological Waste	water Treatment:				1
Suspended gro	wth s	ystems, attached	l growth systems, hy	brid system, anaei	obi	c fermentat	tion, carbon
and hydrogen f	low i	n anaerobic dige	estion, estimation of 1	nethane gas produ	ictic	n, design c	of anaerobic
digester.							
			Unit –V				08 Hrs
		isinfection Proc					
			and methods. Disinf				
facilities, Desig	n of o	chlorine contact	basin, Disinfection w		er di	sinfection	methods.
			Laboratory Con	nponent			
Lis	of ex	periments					
1 Deterr	ninati	on of Acidity an	d Alkalinity				
			al Oxygen Demand (
2. Det			Solids and Dissolved				
-			lids and Fixed Solids				
1. 1.50			olids in Water Sample				
•••=•••			-				
			gulant by Jar Test Stu				
			cal Oxygen Demand	(BOD)			
		ation of pH	6 W - 4 - 11				
2.1		ation Turbidity					
10 10. De	termi	nation of Colifo	rm Count (MPN)				
Course Outco	nee.	After completin	g the course, the stu	dents will be able	e to	-	
			s of modern systems				

CO1 Describe the technical aspects of modern systems for drinking water treatment.

CO2 Identify and choose the most appropriate treatment methods

CO3 Gain insight to smart water supply systems including automation.

CO4 Develop financial sustainability of water supply systems.

Chemical Engineering

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	erence Books
1.	Environmental Engineering (2015) by Peavy, Rowe and Tchobanoglous; Publisher - McGraw-Hill
2.	Water Quality Engineering: Physical / Chemical Treatment Processes (2013), by Lawler and Benjamin; Publisher - John Wiley & Sons
3.	Water Supply and Pollution Control (2008) by Warren Viessman Jr. and Mark J. Hammer; Publisher: Pearson Education.
4.	Unit Operations and Processes in Environmental Engineering (1996) by Reynolds and Richards Publisher - CL Engineering
5	Manual on Water Supply and Treatment (1999); Publisher - CPHEEO (MoUD)

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type of questions covering entire syllabus	20
	PART B (Maximum of THREE Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3&4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	30
3	Viva	10
	TOTAL	50

Go, change the world

R V B

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Univers	sity, Belagav	<i>i</i> i			
			Semester: V		
		M	ASS TRANSFER-I		
		Categ	ory: Professional Core		
	-	-	(Theory)		
Course Co			CIE M		00
Credits: L			SEE M		00
Total Hou	rs :	45L+30T	SEE D	uration : 3	Hours
					0.0 11
			nit-I		09 Hrs
		y Diffusion in Fluic			
			ids: Fick's Law of diffus		
			vities in stationary fluid, eq	jui-molar, co	unter diffusion,
mass transfe	er coeffic	ients, theories of ma			
			t – II		09 Hrs
Inter Phase					
			liffusion between phases, rel		
			terial balance for stages of	perations in	co-current and
	-	esses, NTU and HT	-		
			um curve, theories of crystal	llization Mat	erial and energy
balances, Sv	vensen w	alker and vacuum c			1
		Uni	t –III		09 Hrs
	itions, ac	diabatic saturation oling towers-classif	temperature, wet bulb temp ication and design.	perature Hun	nidification and
		Uni	t –IV		09 Hrs
			continuous drying equipment l continuous operations.	ts, mechanisı	n of drying, and
		Un	it –V		09 Hrs
	adsorpti	on, industrial adsor s and calculations.	pents, single and multistage	cross curren	t and fixed bed
Course Ou	itcomes:	After completing th	e course, the students will be	able to	
		the basic concepts o		4010 10	
			nsfer to estimate interphases m	nass transfer o	o-efficient
1		ctors governing the t			
CO 4 Ide	entify the	factors that influence	e the mass transfer operations		
Reference					1
	E. Treyb 0706517		Operation", Mc Graw Hill, N	New York, 3	rd Edition, 1980,
		mith W L, "Unit O , 2007, ISBN: 00728	perations in Chemical Engine 48235.	eering", Mc	Graw Hill, New
			Engineering - Volume 1", E	Elsevier (Indi	an reprint), New

3 Coulson and Richardson, "Chemical Engineering – Volume 1", Elsevier (Indian reprint), New Delhi, 6th Edition, 2006, ISBN: 0750625570.

4 Geankoplis C J, "Transport Processes and Unit Operations", Prentice Hall, New Delhi, 4th Edition, 2000. ISBN: 8120326148.

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) # **COMPONENTS** MARKS 1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF 20 TWO QUIZZES WILL BE THE FINAL QUIZ MARKS. 2. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests 40 will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. 3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10),Program specific requirements (10),Video based 40 seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	-
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

				mester: V				
					ION SYSTEM	15		
		(Category: F		I Elective			
Course Code	:	21CH55B1	(Theory)	CIE	:	100 M	arls
Credits: L:T:P	:	3:0:0			SEE	:	100 M	
Total Hours	:	40L			SEE Duration		3Hour	
	1.		Unit-	I				08 Hrs
Introduction to	Het	erogeneous l	Reaction Sys	stems: Exa	mples for heter	rogene	ous cata	lytic reaction
and heterogeneou								
for heterogeneous				01	1		,	1
Fluid Particle R		-			1		or shrink	ing Spherica
Particles, Determ					i, itute of feae		л <u>зні</u> нк	ing opnened
	mat		Unit –					08 Hrs
Catalysis: Introd		1 .				. 1 .	1	
			catalyst prep	aration, cata	alyst poisoning			
Catalyst Deacti reactions.	vati	on: Mechan	catalyst prepared ism of dea	aration, cata ctivation, a	alyst poisoning activity, rate	equatio	ons for	deactivation
Catalyst Deacti reactions. Catalyst Charace volume distributi Steps and Adsor controlling steps,	vati	on: Mechan sation: Dete Scanning Ele on Isotherms: ses of adsorp	catalyst prep- ism of dea <u>Unit –</u> I rmination of ctron Micros Langmuir tion, surface	aration, cata ctivation, a <u>III</u> The surface scopy, X-Ra adsorption reaction a	alyst poisoning activity, rate e area of the c ay Diffraction Isotherms, Eli	equation catalyst Techni ey-Rid	t (BET 1 ique. Ra	deactivation 08 Hr nethod), Por te Controlling hanism. Rat
Catalyst Deacti	vati	on: Mechan sation: Dete Scanning Ele on Isotherms: ses of adsorp	catalyst prep- ism of dea <u>Unit –</u> I rmination of ctron Micros Langmuir tion, surface	aration, cata ctivation, a <u>III</u> `the surfac scopy, X-Ra adsorption = reaction a atalyst.	alyst poisoning activity, rate e area of the c ay Diffraction Isotherms, Eli	equation catalyst Techni ey-Rid	t (BET 1 ique. Ra	deactivation 08 Hr nethod), Port te Controlling hanism. Rate
Catalyst Deacti reactions. Catalyst Charace volume distributi Steps and Adsor controlling steps, diffusion in porou	vati eteri on, ptic , rat	on: Mechan sation: Deter Scanning Ele on Isotherms: res of adsorp atalysts, effect	catalyst preprism of dea <u>Unit –1</u> rmination of ctron Micros Langmuir tion, surface tiveness of ca <u>Unit –1</u>	aration, cata ctivation, a <u>III</u> `the surface scopy, X-Ra adsorption e reaction a atalyst. IV	alyst poisoning activity, rate e area of the c ay Diffraction Isotherms, Eli nd desorption.	equatic catalyst Techni ey-Rid Whee	ons for t (BET 1 ique. Ra leal med elers mo	deactivation 08 Hr method), Por te Controllin, hanism. Rat del, Types o
Catalyst Deacti reactions. Catalyst Charace volume distributi Steps and Adsor controlling steps,	vati eteri on, ptic , rat is ca actio	on: Mechan sation: Deter Scanning Ele on Isotherms: tes of adsorp atalysts, effect ons: Kinetic on, Fast read	catalyst preprism of dea Unit –I rmination of terron Micros Langmuir tion, surface tiveness of ca Unit –I regimes for terron, Interm netic regimes	aration, cata ctivation, a <u>III</u> the surface scopy, X-Ra adsorption reaction a atalyst. <u>IV</u> or mass tr nediate rate s, slurry rea	alyst poisoning activity, rate e area of the c ay Diffraction Isotherms, Eli nd desorption. ansfer and c, Rate equatio	equation catalyst Techni ey-Rid Whee reaction	ons for (BET n ique. Ra leal mec elers mo n, rate slow r	deactivation 08 Hr nethod), Por te Controlling thanism. Rat del, Types o 08 Hr equation for eaction, Film
Catalyst Deacti reactions. Catalyst Charace volume distributi Steps and Adsor controlling steps, diffusion in porou Fluid-Fluid Rea Instantaneous reaconversion param slow reactions.	vati eteri on, ptic , rat actio actio	on: Mechan sation: Deter Scanning Ele on Isotherms: es of adsorp atalysts, effect ons: Kinetic on, Fast reac c, clues for kin	catalyst preprism of dea Unit –1 rmination of ctron Micros Langmuir tion, surface tiveness of ca Unit –1 regimes for ction, Interm netic regimes	aration, cata ctivation, a <u>III</u> the surface scopy, X-Ra adsorption reaction a <u>atalyst.</u> IV or mass tr nediate rate s, slurry rea	alyst poisoning activity, rate e area of the c ay Diffraction Isotherms, Eli nd desorption. ansfer and c, Rate equation	equation catalyst Techni ey-Rid Whee reaction on for Design	ns for (BET n ique. Ra leal med elers mo n, rate slow r of towe	deactivation 08 Hr nethod), Por te Controlling hanism. Rat del, Types o 08 Hr equation fo eaction, Film rs for fast and 08 Hr
Catalyst Deacti reactions. Catalyst Charace volume distributi Steps and Adsor controlling steps, diffusion in porou Fluid-Fluid Rea Instantaneous rea conversion param slow reactions.	vati eteri on, ptic , rat actio actio	on: Mechan sation: Deter Scanning Ele on Isotherms: es of adsorp atalysts, effect ons: Kinetic on, Fast reac c, clues for kin	catalyst preprism of dea Unit –1 rmination of ctron Micros Langmuir tion, surface tiveness of ca Unit –1 regimes for ction, Interm netic regimes	aration, cata ctivation, a <u>III</u> the surface scopy, X-Ra adsorption reaction a <u>atalyst.</u> IV or mass tr nediate rate s, slurry rea	alyst poisoning activity, rate e area of the c ay Diffraction Isotherms, Eli nd desorption. ansfer and c, Rate equation	equation catalyst Techni ey-Rid Whee reaction on for Design	ns for (BET n ique. Ra leal med elers mo n, rate slow r of towe	deactivation 08 Hr nethod), Por te Controllin, hanism. Rat del, Types of 08 Hr equation for eaction, Filr rs for fast an 08 Hr
Catalyst Deacti reactions. Catalyst Charace volume distributi Steps and Adsor controlling steps, diffusion in porou Fluid-Fluid Rea Instantaneous reaconversion param	vati etteri on, ptic ptic s ca actio actio actio actio	on: Mechan sation: Deter Scanning Ele on Isotherms: tes of adsorp atalysts, effect ons: Kinetic on, Fast reac c, clues for kin ods For Fine	catalyst preprism of deal Unit –I rmination of ctron Micross Langmuir tion, surface tiveness of ca Unit –I regimes for ction, Interm netic regimes Unit – Unit – ding Rates:	aration, cata ctivation, a <u>III</u> the surface scopy, X-Ra adsorption reaction a atalyst. <u>IV</u> or mass tr nediate rate s, slurry rea <u>V</u> Differentia	alyst poisoning activity, rate e area of the c ay Diffraction Isotherms, Eli nd desorption. ansfer and c, Rate equation ction kinetics, I 1 and Integral	equatic catalyst Techni ey-Rid Whee reactio on for Design Reacto	n, rate of towe	deactivation 08 Hr method), Por te Controllin chanism. Rat del, Types o 08 Hr equation for eaction, Filr rs for fast an 08 Hr rential and

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Define the rate equations for heterogeneous reactions					
CO2	2 Predict the rate controlling mechanism					
CO3	Analyze adsorption isotherms by conducting adsorption studies					
CO4	Interpret experimental data and determine rate equations, design the reactors for fluid-solid					
	and fluid-fluid reactions					

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Reference Books

L	ILLI	Cherence Books					
	1	Chemical Reaction Engineering, Levenspiel Octave, 3 rd Edition, 2006, John Wiley and Sons, 1999, ISBN 978-812651000					
	2.	Chemical Engg Kinetics, J. M. Smith, 7th Edition, 2004, Mc Graw Hill, , ISBN 978-0070145870					
	3.	Elements of Chemical Reaction Engineering, 5 th Edition, 2016, H. Scott Foggler, Prentice Hall, ISBN 978-8126510009					
	4.	Chemical and Catalytic Reaction Engineering, James J. Carberry, Dover Publications; Dover Edition, 2001, ISBN-13: 978-0486417363					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	7 & 8 Unit 4 : Question 7 or 8			
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: V				
	PILOT PLANT STUDIES AND SCALE UP STUDIES						
Category: Professional Elective							
	(Theory)						
Course Code							ks
Credits: L:T:P	:	3:0:0		SEE	:		
Total Hours	:	42 Hrs		SEE Duration	:	3Hours	
			Unit-I				07 Hrs
Introduction: Pro	ces	s development, N	eed for pilot plants	s, Scale-up procedu	ires	s, basic terr	minologies-
prototypes, model	5, S	cale ratios and eler	ments				
Principles of Sin	nila	rity: Geometric,	Static, dynamic, k	inematics, thermal	an	d chemica	l similarity
with examples		·					-
			Unit – II				08 Hrs
Dimensional Ana	lys	is: Significance of		nbers, Generalized	dir	nensionles	s equations
				, thermal systems, i	mas	ss transfer j	processes,
homogeneous and	het	terogeneous chemi					
			Unit –III				9 Hrs
			hermal, chemical a				
				and Mass cont			
				led dynamic regin			
				lass transfer cont	roll	ed, Surfac	ce reaction
controlled and mix	lea	, extrapolation and	Unit –IV				0.11
Scala un of mivi	10	aquinmont Sca		wer number, Scale	-111 د_111	n hased on	9 Hrs
speed, Scale–up of				wei number, seak	c-uj		i i enplicial
				ed convection and r	natr	iral convec	tion Scale-
				d and Regression a			
			Unit –V	0		5	9 Hrs
Scale-up of Che	mi	cal Reaction sys	stems - Equality	of RTD, Scale-up	o ri	ules for h	omogenous
			ous reaction system				-
				es for overall-Mas			
	Analysis of parameters like Liquid distribution, Flooding Velocities, Pressure Drop and height of						
Packing ; Scale-up	Packing ; Scale-up of Distillation systems, Absorption systems, Liquid Extraction systems						
				dents will be able	to		
		need for pilot plan					
1	CO 2 Explain the concept of Similitude and compare the regimes						
CO 4 Establish	CO 4Establish Similarity criteria and develop the scale equations for chemical processes						

Refer	Reference Books						
1.	Dimensional Analysis and Scale-up in Chemical Engineering, Marko Zlokarnik, 1991,						
	Springer-Verlag, ISBN 9783540541028						
2.	Scale up of Chemical Processes, Scale up of Chemical Processes, 1985, John Wiley & Sons,						
	ISBN 0471057479						
3.	Pilot Plants Models and scale up method in Chemical Engineering, Johnstone and Thring,						
	1957, McGraw Hill, ISBN: 978-0071422949						
4.	Scale-up in Chemical Engineering, Marko Zlokarnik, 2006, Wiley-VCH, ISBN						
	9783527314218						

Chemical Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: V			
DESIGN OF PIPING SYSTEMS						
Category: Professional Elective						
			(Theory)			
Course Code	:	21CH55B3		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40 Hrs		SEE Duration	:	3 Hours
			Unit-I			08 Hrs
Fundamentals f equation, Bernoul		••••	-	Euler's equation	n o	f motion, continuity
•		1 0		una duan in nin	20	Calculation of pump
						g materials, physical
			ided piping material		ipm	g materiais, physical
properties of pipe	ma			15.		00 XX
D: E:4/' D		1	Unit – II	. Cana C 1		08 Hrs
- 0	and	ching, Tees, Reduc	cers, Elbows, Swag	ge, Caps, Couplin	gs,	Socket Weld Fittings,
Screwed Fittings,	T:	the man Walayan for	untinum of waters w	-1		hada af an atmatian
			es of valves, valve f		me	thods of construction,
pressure drop in v	aiv	es, valve size, typ		nungs		00 II.mg
Ding Sunnauta	Da	at Summart Hong	Unit –III	n Summant Dum		08 Hrs
					iny i	Leg Support, Guides,
			clamping, flexible h		NC	I, API, ASME, British
Standards, DIN St			0	dards - ASTNI, P	11ND	I, API, ASIVIE, DHUSH
				ng lavout Consid	erati	ons for piping layout,
r unuamentais or		ping Dayout . To	Unit –IV	ig layout, collsia	crati	08 Hrs
Pining Fahricati	n.	Piping fabrication		nine lines weldin	σ nr	ocesses used in piping
						d joints, inspection of
			ints, acceptance star			a joints, hispeetion of
					ethc	ds of compensation,
						t stresses caused by'
						bellow below material
and life, use of him		-			0	
,	0	1	Unit –V			08 Hrs
Thermal Insulat	ion	: Functions of th		odes of heat trar	nsfer	, insulating materials,
			tion of insulation, ca			
						on process, corrosion
reaction, types of corrosion, anticorrosive protective coatings, cathodic protection of pipelines,						
abrasion.			Proceeding of		· P-	provide of provide states,
Safety analysis an	d c	olour coding in Pi	ping design.			
j j uu						
Course Outcome	s: /	After completing	the course, the stu	dents will be able	e to	
		e fundamentals of				
			of construction for	oiping.		
		•	appropriate standar			
			appropriate standar			

CO 4 Determine the specific need and choose pipes/pipe fittings, supports, expansion devices for various processes.

Go, change the world

RV

Autonomous Institution Affiliated Approved by AICTE, New Delhi

Institution Affiliated New Delhi to Visvesvaraya Technological University, Belagavi

RV Educational Institutions [®]

Refer	Reference Books								
1.	G K. Sahu, "Handbook of Piping Design", 1st Edition, New Age Publishers, 1998.								
2.									
	Publication, 1996.								
3.	Don W. Green; Robert H. Perry. Perry's Chemical Engineers' Handbook, 8th Edition								
	(McGraw-Hill: New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City,								
	Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto, 2008, 1997, 1984, 1973,								
	1963, 1950, 1941, 1934)								

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Sen	nester: V				
		С	HEMICAL I	PLANT UT	TILITIES			
		(Category: Pi	rofessional	Elective			
		-	(]	Theory)				
Course Code	:	21CH55B4			CIE	:	1	100 Marks
Credits: L:T:P	:	3:0:0			SEE	:	1	100 Marks
Total Hours	:	45L			SEE Duration	:	3	3 Hours
			Unit-I					09 Hrs
selection and es Drinking water	tima and : Coi	tion of suitabl boiler feed w mpressed air,	le utilities. W rater quality s Blower air, F	ater: Water standards, 7 an air, Typ	r resources, Pro Types and selec bes of compress	cess tion	wa of	ions and criteria fo ater, Cooling water pumps, piping and vacuum pumps and
			Unit – I	Ι				09 Hrs
types and charac	teris	tics, Calorific	value, Proxin	nate and ult	imate analysis, o	cogei	nei	heat boilers. Fuels- ration power plants. ent fuels, related
			Unit –II	Ι				09 Hrs
								· related calculations
systems. Coeffic for each type of selection, econo	vient of re mics	of performance of rigeration system of insulation	ce, Power requestern, Refrigues, Insulating f	uirements a erant prope actors, Pro	nd refrigeration erties and selec	effeo tion.	ct- Ii	
systems. Coeffic for each type of selection, econo and cryogenic in	vient of re mics sula	of performance frigeration system of insulation tion	ce, Power requester, Refriguester, Refriguester, Insulating f	uirements a erant prope actors, Pro	nd refrigeration erties and selec perties and clas	effection.	ct- Ii atio	related calculation nsulation materials on, Cold insulation 09 Hrs
for each type of selection, econo and cryogenic in Compressors an	vient of re mics sula d Va Meth	of performance frigeration system s of insulation tion acuum Pumps nods of vacuum	ce, Power requester, Refriguester, Refriguester, Insulating f Unit – IV Types of contained development	uirements a erant prope actors, Pro <u>V</u> mpressors a tent and th	nd refrigeration erties and selec perties and clas and vacuum pur heir limitations,	effection. sification	ct- In atio	related calculation nsulation materials on, Cold insulation
systems. Coeffic for each type of selection, econo and cryogenic in Compressors an characteristics.	vient of re mics sula d Va Meth	of performance frigeration system s of insulation tion acuum Pumps nods of vacuum	ce, Power requester, Refriguester, Refriguester, Insulating f Unit – IV Types of contained development	uirements a erant prope actors, Pro V mpressors a eent and th oval in com	nd refrigeration erties and selec perties and clas and vacuum pur heir limitations,	effection. sification	ct- In atio	related calculations nsulation materials on, Cold insulation 09 Hrs d their performance
systems. Coeffic for each type of selection, econo and cryogenic in Compressors an characteristics. vacuum, piping Air and Water O	eient of re mics sula d Va d Va Meth syste Cooli le, oj	of performance frigeration system tion acuum Pumps nods of vacuut ems, lubrication ng Types of a perating prince	ce, Power requester, Refriguester, Refriguester, Insulating f Unit – IV Types of contained development n and oil rement Unit – V ir coolers, contained development iples of cooling	uirements a erant prope actors, Pro <u>V</u> mpressors a ent and th oval in com 7 nstruction a ng towers, 1	nd refrigeration erties and selec perties and clas and vacuum pur heir limitations, apressors in pur and working of types of cooling	effection. sifica nps a mat ps. air c	ct- In ationation eri	related calculation nsulation materials on, Cold insulation 09 Hrs d their performance ials handling unde
systems. Coeffic for each type of selection, econo and cryogenic in Compressors an characteristics. vacuum, piping Air and Water O working princip	cient of re mics sula d Va Meth syste Cooli le, oj ution	of performance frigeration system tion acuum Pumps nods of vacuut ems, lubrication ng Types of a perating prince	ce, Power requester, Refriguester, Refriguester, Insulating f Unit – IV Types of contained development n and oil rement Unit – V ir coolers, contained development iples of cooling	uirements a erant prope actors, Pro <u>V</u> mpressors a ent and th oval in com 7 nstruction a ng towers, 1	nd refrigeration erties and selec perties and clas and vacuum pur heir limitations, apressors in pur and working of types of cooling	effection. sifica nps a mat ps. air c	ct- In ationation eri	related calculations nsulation materials on, Cold insulation 09 Hrs d their performance ials handling under 09 Hrs olers, cooling towers
systems. Coeffic for each type of selection, econo and cryogenic in Compressors an characteristics. vacuum, piping Air and Water O working princip hot water distrib Reference Book 2. Industrial 156032069	vient of remics sula d Va Meth syste Cooli le, op ution syste Cooli Haza 9	of performance frigeration systems of insulation tion acuum Pumps nods of vacuum ems, lubrication ng Types of a perating prince n systems, air to ards and Plan	ce, Power requester, Refriguester, Refriguester, Refriguester, Insulating f Unit – IV Types of contum development and oil removester Unit – V ir coolers, cooling flow distribution flow distribution	uirements a erant prope actors, Pro W mpressors a ent and th oval in com / nstruction a ng towers, ion systems anerjee S,	nd refrigeration erties and select perties and clas and vacuum pur erir limitations, apressors in pur and working of types of cooling types of cooling	effect tion. sifica nps a mat <u>air c</u> ; tow	et- Inationation and eri ooo er	related calculations nsulation materials on, Cold insulation 09 Hrs d their performance ials handling unde 09 Hrs olers, cooling towers and their operation CRC press, ISBN
systems. Coeffic for each type of selection, econo and cryogenic in Compressors an characteristics. vacuum, piping Air and Water O working princip hot water distrib Reference Bool 2. Industrial 156032069 2. Basic Refri Hill Educat	ient of re mics sula d Va Meth syste Cooli le, op ution (s S Haza 9 gera ion (of performance frigeration systems of insulation tion acuum Pumps nods of vacuut ems, lubrication ng Types of a perating prince n systems, air in ards and Plan tion and Air of (India) Private	ce, Power requester, Refriguester, Refriguester, Refriguester, Insulating for the second seco	uirements a erant prope actors, Pro V mpressors a ent and th oval in com 7 nstruction a ng towers, 1 ion systems anerjee S, P N Anar N: 9383286	nd refrigeration erties and selec perties and clas and vacuum pur eir limitations, pressors in pur and working of types of cooling 1 st Edition, 2 thanarayanan, 4 5563	effection. sifica mps a mat ps. air c tow 2002, t th Ec	ct- In atio eri oo er	related calculations nsulation materials on, Cold insulation 09 Hrs d their performance ials handling unde 09 Hrs olers, cooling towers and their operation CRC press, ISBN ion, 2013, McGrav
systems. Coeffic for each type of selection, econo and cryogenic in Compressors an characteristics. vacuum, piping Air and Water O working princip hot water distrib Reference Book 2. Industrial 156032069 2. Basic Refri Hill Educat 3. Mass Trans 125902915	ient ient ient isula isula d Va Meth syste Cooli le, op ution (ss gera ion (sfer 8	of performance frigeration systems of insulation tion acuum Pumps nods of vacuum ems, lubrication ing Types of a perating prince in systems, air in ards and Plan tion and Air of (India) Private Operations, R	ce, Power requester, Refriguester, Refriguester, Refriguester, Insulating for the second seco	uirements a erant prope actors, Pro- W mpressors a ent and th oval in com / nstruction a ng towers, a ion systems anerjee S, P N Anar N: 9383280 I, 3 rd Editio	nd refrigeration erties and selec perties and clas and vacuum pur erir limitations, apressors in pur and working of types of cooling types of cooling thanarayanan, 4 5563 on, 2017, McGr	effect tion. sifica nps a mat <u>ps.</u> air c ; tow 2002, t th Ec	ct- In atio eri oo er dit Hil	related calculations nsulation materials on, Cold insulation 09 Hrs d their performance ials handling unde 09 Hrs olers, cooling towers and their operation CRC press, ISBN

Cours	Course Outcomes: After completing the course, the students will be able to:-							
CO1	Recall the utilities necessary for chemical plant							
CO2	Explain the energy utility requirement and material properties to safeguard chemical plants.							
CO3	To gain knowledge on heating, cooling and air conditioning systems.							
CO4	Identify and use utility equipment in process industries.							

Chemical Engineering

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS # MARKS QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will 1. be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO 20 QUIZZES WILL BE THE FINAL QUIZ MARKS. 2. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, 40 Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and 3. practical implementation of the problem. Case study-based teaching learning (10), requirements Video based 40 Program specific (10),seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7&8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

2/14/2	iversity, bei	0					
				Semester V			
ELECTROCHEMICAL TECHNOLOGY IN POLLUTION CONTROL (NPTEL ELECTIVE) Category: Professional Elective (Theory)							
Credits:		•	2:0:0		SEE Marks	•	50
Total Ho		:	30 L		SEE Duration	:	50
I otal II	Juis	·	CO E		SEE Duration	·	
			Ur	nit - I			08 Hrs
Introduc Electroch 2, Proper Properti	ction, An nemical t ties of solu tes of solu ties of solu	tom ech utic tior utio	nology in Pollution on-1 I s	n Control At	operties of solution omic structure – 1, ies of solution-2, Pro	A	tomic structure-
			Un	it - II			11 Hrs
Potention Electroc Polarogra Electroc Polarogra Ion selec	metry-3 hemical m aphy -1 hemical m aphy -3, N tive electrictive elect	net net Volt	hods-2, Potentiome hod, Ion selective ele ametry & Polarograp es, Electrochemical se	try-4, Potention ectrodes, Voltar hy – 4, Karl -Fis ensors, Process	tentiometry - Types of netry-5, Potentiometry netry & Polarography sher titration-1, Ion sel waste handling, Ion se Electrochemical senso	y-6, -2, ecti elec	Voltametry & Voltametry & ive electrodes-1 tive electrodes-2,
nananng	1		Uni	it - III			11 Hrs
Process 3,lectrop Electrop	waste ha lating-1, E lating, Ba	indl Elec atte	ng and Electroplatin ing, Electroplating, troplating-2, Electrop ries and fuel cells, 2	g Process waste plating-3 Zero liquid disc	handling-2, Proce harge, Electroplating- 3, Zero liquid discharg	4, 1	waste handling-
					ents will be able to:-		
			properties of polyme				
	11 7 1				ymer matrix composit	es	
	*		anical/thermal perform	1 7	1	1	1
CO4 D	esign poly	yme	er composites for space	ce, automotive, c	construction and medic	cal a	applications

Ref	ference Books
3.	Krishnan K Chawla, "Composite Materials- Science and Engineering." 2 nd Edition, Springer, ISBN 81-8128-490-9
2.	Christos Comninellis, Guohua Chen,"Electrochemistry for the Environment" 2009, Springer, ISBN 978-0387-36922-8

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: V				
		BIOLOGICAI					
		WASTEWATER TR	· ·		VE)		
		Category	: Professional	Elective			
			(Theory)				
Course Code	:	21CH56C2		CIE Marks	:	50	
Credits: L:T:P	:	2:0:0		SEE	:	50	
Total Hours	:	30L		SEE Duration	:		
		Un	it-I				10 Hrs
Biological treatm	ien	fundamentals					
Microbiology and	ec	ology, Fundamentals of	Biochemical O	perations; Conve	ersio	n proces	ses of
organic and inorg	anio	matter. Wastewater ch	aracterization				
Modelling of biol	logi	al treatment process					
		on and bacterial growth		or hydraulics. Ma	iss a	nd heat b	alance
		on and bacterial growth		or hydraulics. Ma	iss a	nd heat b	alance 10 Hrs
Stoichiometry, rea	acti	on and bacterial growth	kinetics; reacto	or hydraulics. Ma	iss a	nd heat b	
Stoichiometry, rea Aerobic Biologic Classification of	acti al 1 b	on and bacterial growth Unit Treatment Processes ological treatment P	kinetics; reactors t – II rocesses. Biol	ogical nitrificat	ion,	denitrif	10 Hrs ication, and
Stoichiometry, rea Aerobic Biologic Classification of phosphorus remov	acti al T b val.	on and bacterial growth Unit reatment Processes ological treatment P Aerated lagoon, activa	kinetics; reactors t – II rocesses. Biol	ogical nitrificat	ion,	denitrif	10 Hrs ication, and
Stoichiometry, rea Aerobic Biologic Classification of phosphorus remov sequential batch re	acti al T b val. eac	on and bacterial growth Unit reatment Processes ological treatment P Aerated lagoon, activa	kinetics; reactor - II rocesses. Biol ted sludge syst	ogical nitrificat	ion,	denitrif	10 Hrs ication, and
Stoichiometry, rea Aerobic Biologic Classification of phosphorus removes sequential batch re Anaerobic Biolog	acti al T b val. eac gica	on and bacterial growth Unit Vreatment Processes tological treatment P Aerated lagoon, activa or I Treatment Processes	kinetics; reactor t – II rocesses. Biol ted sludge syst	ogical nitrificat	ion,	denitrif	10 Hrs ication, and
Stoichiometry, rea Aerobic Biologic Classification of phosphorus removes sequential batch re Anaerobic Biolog	acti al T b val. eac gica	on and bacterial growth Unit reatment Processes ological treatment P Aerated lagoon, activa	kinetics; reactor t – II rocesses. Biol ted sludge syst	ogical nitrificat	ion,	denitrif	10 Hrs ication, and
Stoichiometry, rea Aerobic Biologic Classification of phosphorus removes sequential batch real Anaerobic Biolog UASB, and hybrid	acti al 7 b val. eac gica	on and bacterial growth Unit Treatment Processes ological treatment P Aerated lagoon, activa or I Treatment Processes ASB reactors, bio towe Unit	kinetics; reactor t – II rocesses. Biol ted sludge syst s rs. t –III	ogical nitrificat	ion,	denitrif	10 Hrs ication, and
Stoichiometry, rea Aerobic Biologic Classification of phosphorus remov sequential batch re Anaerobic Biolog UASB, and hybrid Advanced Biolog	acti al T b val. eac gica	on and bacterial growth Unit Treatment Processes fological treatment P Aerated lagoon, activa for I Treatment Processes ASB reactors, bio tower Unit	kinetics; reactor t – II rocesses. Biol ted sludge syst s rs. ted sludge syst s rs. ted sludge syst s rs. ted sludge syst s	ogical nitrificati ems, trickling fil	ion, ter,	denitrif rotating	10 Hrs ication, and disc reactors 10 Hrs
Stoichiometry, rea Aerobic Biologic Classification of phosphorus remov sequential batch re Anaerobic Biolog UASB, and hybrid Advanced Biolog Fluidized bed bio	acti al T b val. eac gica d U	on and bacterial growth Unit reatment Processes fological treatment P Aerated lagoon, activa for I Treatment Processes ASB reactors, bio tower Unit I Wastewater Treatme ctors; Membrane bior	kinetics; reactors kinetics; reactors rocesses. Biol ted sludge syst s. -III eactors (MBRs	ogical nitrificat ems, trickling fil	ion, ter,	denitrif rotating ilm react	10 Hrs ication, and disc reactors 10 Hrs tor (MBBR)
Stoichiometry, rea Aerobic Biologic: Classification of phosphorus remov sequential batch re Anaerobic Biolog UASB, and hybrid Advanced Biolog Fluidized bed bio biological nitrog	acti al 1 b val. gica gica gica prea	on and bacterial growth Unit Treatment Processes fological treatment P Aerated lagoon, activa for I Treatment Processes ASB reactors, bio tower Unit I Wastewater Treatme ctors; Membrane bior removal. Sludge cha	kinetics; reactors - II rocesses. Biol ted sludge syst - - - - - - - - - - - - -	ogical nitrificati ems, trickling fil); Moving bed roduction, stabi	ion, ter,	denitrif rotating ilm react	10 Hrs ication, and disc reactors 10 Hrs tor (MBBR)
Stoichiometry, rea Aerobic Biologic Classification of phosphorus removes sequential batch rea Anaerobic Biolog UASB, and hybrid Advanced Biolog Fluidized bed bio biological nitrog dewatering; patho	acti al T b val. gica d U gica orea en ger	on and bacterial growth Unit Treatment Processes ological treatment P Aerated lagoon, activa or I Treatment Processes ASB reactors, bio towe Unit I Wastewater Treatment ctors; Membrane biore removal. Sludge cha removal; sludge transf	kinetics; reactor kinetics; reactor rocesses. Biol ted sludge syst s. -III ent eactors (MBRs processes, model actor is the system contactor is the system cont	ogical nitrificati ems, trickling fil); Moving bed roduction, stabi	ion, ter,	denitrif rotating ilm react	10 Hrs ication, and disc reactors 10 Hrs tor (MBBR)
Stoichiometry, rea Aerobic Biologic. Classification of phosphorus removes sequential batch real Anaerobic Biological UASB, and hybrid Advanced Biological Fluidized bed bio biological nitrogical dewatering; patho Sustainability in	acti al 7 b val. eac gica d U gica orea en ger wa	on and bacterial growth Unit Treatment Processes ological treatment P Aerated lagoon, activa or I Treatment Processes ASB reactors, bio towe Unit I Wastewater Treatmen ctors; Membrane bior removal. Sludge cha removal; sludge transf stewater treatment pla	kinetics; reactors t – II rocesses. Biol ted sludge syst rs. -III ent eactors (MBRs processes, Biol ted sludge syst state rs. -III ent for the state processes, Biol ted sludge syst state rs. -III ent for the state processes, Biol ted sludge syst state -III ent for the state reactors (MBRs processes, processes,	ogical nitrificati ems, trickling fil s); Moving bed roduction, stabi isposal methods	ion, ter, biof	denitrif rotating ilm react ion; thi	10 Hrs ication, and disc reactors 10 Hrs tor (MBBR) ckening and
Stoichiometry, rea Aerobic Biologic. Classification of phosphorus removies sequential batch re- Anaerobic Biologies UASB, and hybrid Advanced Biologies Fluidized bed biological nitrogic dewatering; pathois Sustainability in Sustainability in Sustainabili	acti al T b val. gica gica d U gica en ger ger wa	on and bacterial growth Unit Treatment Processes ological treatment P Aerated lagoon, activa or I Treatment Processes ASB reactors, bio towe Unit I Wastewater Treatment ctors; Membrane biore removal. Sludge cha removal; sludge transf	kinetics; reactors t – II rocesses. Biol ted sludge syst s. -III ent eactors (MBRs practeristics, pro- formation and d ent t designing; groups	ogical nitrificati ems, trickling fil b); Moving bed roduction, stabil isposal methods eater water avail	ion, ter, biof lizat	denitrif rotating ilm react ion; this	10 Hrs ication, and disc reactors; 10 Hrs tor (MBBR); ckening and r energy and

Ref	erence Books
4.	Henze M., van-Loosdrecht M.C.M., Ekama G.A. and Brdjanovic D., "Biological Wastewater
4.	Treatment: Principles, Modelling and Design", IWA publishing, 2008.
2	Davide Dionisi. Biological wastewater treatment processes: mass and heat balances. CRC Press,
2.	2017.
2	Tchobanoglous G., Burton F.L., Stensel H.D., "Metcalf and Eddy Inc Waste Water Engineering
5.	Treatment and Reuse", Tata McGraw-Hill, 2017
4.	C. P. Leslie Grady, Glen T. Daigger, Nancy G. Love, Carlos D. M. Filipe. Biological Wastewater
4.	Treatment. Co-published by IWA Publishing & CRC Press, 2011.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester V **COMPUTATIONAL PROCESS DESIGN (NPTEL ELECTIVE) Category: Professional Elective** (Theory) **Course Code** 21CH56C3 **CIE Marks** 50 : : Credits: L:T:P 2:0:0 **SEE Marks** : 50 : **SEE Duration** 90 min **Total Hours** : 30 L :

Unit - I	08 Hrs
Flowsheet synthesis, mass and energy balance, design of batch plants, and simulations design	of process
Unit – II	11 Hrs

Process flowsheet optimization, Heat and power integration, reactor network analysis

Unit - III	11 Hrs
Operability and process scheduling, quantifying sustainability for design, and sustainablesign	ole process

Course	Outcomes: After completing the course, the students will be able to
	Understand the basic concepts of mass and energy balance
CO 2	Design and simulate batch plants

- **CO 3** Carry out flowsheet optimization and energy integration
- **CO 4** Quantify sustainability for design

Refe	Reference Book							
1	Systematic methods of chemical process design; Lorenz T Biegler, Ignacio E Grossmann, and Arthur E Westerberg; Prentice Hall International Series							
2	Chemical process design and integration; Robin Smith; John Wiley and Sons, Ltd.							
3	Sustainable Design Through Process Integration; Mahmoud M El-Halwagi; Elsevier							
4	Sustainable engineering: principles and practice; Bhavik R Bakshi, Cambridge University Press.							

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester V PHYSICAL AND ELECTROCHEMICAL CHARACTERIZATIONS IN CHEMICAL ENGINEERING (NPTEL ELECTIVE) Category: Professional Elective

(Theory)

Course Code	:	21CH56C4	CIE Mar	ks :	50
Credits: L:T:P	:	2:0:0	SEE Mar	·ks :	50
Total Hours	:	30 L	SEE Dur	ation :	90 min

Unit - I	10 Hrs
Spectroscopic Techniques	
Spectroscopic Techniques	
Physical and Chemical Absorption Methods	
Unit - II	10 Hrs
Rheological and Interfacial Measurements	·
Rheological and Interfacial Measurements	
Unit - III	10 Hrs
Electron Spectroscopy for Surface Analysis	· · · · · ·
Electrochemical Characterization Techniques	
Electrochemical Characterization Techniques	

Refe	Reference Book				
1	Y. Leng, Materials Characterization: Introduction to microscopic and spectroscopic methods, 1 st Ed., John Wiley & Sons, 2008.				
2	S. Zhang, Material Characterization Techniques, CRC Press, 2009				
3	Pallab Ghosh. Colloid and Interfacial Science, PHI Publisher 2009				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Semester V						
WASTE TO ENERGY CONVERSION						
		Category: Pr	ofessional Elective			
		(]	Theory)			
Course Code	:	21CH56C5	CIE Marks	:	50	
Credits: L:T:P	Credits: L:T:P : 2:0:0 SEE Marks : 50					
Total Hours	:	30 L	SEE Duration	:	90 min	

Unit - I	08 Hrs		
Introduction, characterization of wastes, Energy production form wastes through incineration, energy			
production through gasification of wastes.			
Unit - II 11 Hrs			
Energy production through pyrolysis and gasification of wastes, syngas utilization. Densification of			
solids, efficiency improvement of power plant and energy production from waste plastics. Energy			
production from waste plastics, gas cleanup.			
Unit - III	11 Hrs		

Energy production from organic wastes through anaerobic digestion and fermentation, introduction to microbial fuel cells. Energy production from wastes through fermentation and transesterification. Cultivation of algal biomass from wastewater and energy production from algae.

Refe	rence Books
1	Rogoff, M.J. and Screve, F., "Waste-to-Energy: Technologies and Project Implementation", Elsevier Store, ISBN:978-1-4377-7871-7, 2011
2	Young G.C., "Municipal Solid Waste to Energy Conversion processes", John Wiley and Sons, ISBN: 9780470539675, 2010
3	Harker, J.H. and Backhusrt, J.R., "Fuel and Energy", Academic Press Inc. ISBN: 978-0123252524, 1981
4	EL-Halwagi, M.M., "Biogas Technology- Transfer and Diffusion", Elsevier Applied Science.
5	Hall, D.O. and Overeed, R.P.," Biomass - Renewable Energy", John Willy and Sons, OSTI: 5187569, 1987
6	Mondal, P. and Dalai, A.K. eds., 2017. Sustainable Utilization of Natural Resources. CRC Press, ISBN: 9781315153292, 2017

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: V							
SUMMER INTERNSHIP - II							
	(Practical)						
Course Code	:	21CHI57	CIE	:	50 Marks		
Credits: L: T: P	:	0:0:2	SEE	:	50 Marks		
Total Hours	:	4 Weeks	SEE Duration	:	02 Hrs		
Students can opt the internship with the below options					4 Weeks		

A. Within the respective department at RVCE (Inhouse) Departments may offer internship opportunities to the students through the available tools so that the students come out with the solutions to the relevant societal problems that could be completed within THREE WEEKS.

B. At RVCE Center of Excellence/Competence

RVCE hosts around 16 CENTER OP EXCELLENCE in various domains and around 05 CENTER OP COMPETENCE. The details of these could be obtained by visiting the website https://rvce.edu.in / rvce-center- excellence. Each centre would be providing the students relevant training/internship that could be completed in three weeks.

C. At InternShala

Intern Shala is India's no.1 internship and training platform with 40000+ paid internships in Engineering. Studentscan opt any internship for the duration of three weeks by enrolling on to the platform through https: /

/internshala.com

D. At Engineering Colleges nearby their hometown

Students who are residing out of Bangalore, should take permission from the nearing Engineering College of their hometown to do the internship. The nearby college should agree to give the certificate and the letter/email stating the name of the student along with the title of the internship held with the duration of the internship in their officialletter head.

E. At Industry or Research Organizations

Students can opt for interning at the industry or research organizations like BEL, DRDO, ISRO, BHEL, etc.. through personal contacts. However, the institute/industry should provide the letter of acceptance through hard copy/email with clear mention of the title of the work assigned along with the duration and the name of the student.

Procedures for the Internship:

- 1. Request letter/Email from the office of respective departments should go to Places where internships are intended to be carried out with a clear mention of the duration of Three Weeks. Colleges/Industry/ CoEs/CoCswill confirm the training slots and the number of seats allotted for the internship via confirmation letter/ Email.
- 2. Students should submit a synopsis of the proposed work to be done during internship program. Internship synopsis should be assessed or evaluated by the concerned Colleges/Industry/CoEs/CoC. Students on joining internship at the concerned Colleges/Industry/ CoEs/CoCs submit the Daily log of student's dairy from the joining date.
- 3. Students will submit the digital poster of the training module/project after completion of internship.
- 4. Training certificate to be obtained from industry.

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to: -CO1Develop interpersonal, critical skills, work habits and attitudes necessary for employment.CO2Assess interests, abilities in their field of study, integrate theory and practice and
explore careeropportunities prior to graduation.CO3Explore and use state of art modern engineering tools to solve the societal problems with
affinity towardsenvironment and involve in ethical professional practice.CO4Compile, document and communicate effectively on the internship activities with the
engineeringcommunity.

	RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	REVIEW I: Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments, exhibiting professional and ethical practice, communication skills (oral and body language).	20
2.	REVIEW II : Presentation in the form digital poster, report writing, exhibiting ethics inreport writing, oral presentation.	30
	MAXIMUM MARKS FOR THE CIE THEORY	50

RUBRICS FOR SEMESTER END EXAMINATION

The SEE examination shall be conducted by an external examiner (domain expert) and an internal					
examine	r.				
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI							
INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP							
(Common to all Programs)							
	21110(1)	(Theory)	CIE		100 10		
Course Code :	21HS61A		CIE SEE	:	100 Marks		
Credits: L:T:P:Total Hours:	3:0:0 40L		SEE Duration	:	100 Marks 3Hours		
Total Hours :		Unit-I	SEE DUration	•	09 Hrs		
Introduction Type	s of Intellectual Prope				07 1113		
		features of patent; patenta	able and non-pater	ntabl	e inventions.		
		of Patent Rights; pro					
Infringement of pate	ents and remedy, Case	studies			C ·		
Patent Search and Pa		ercialization and Valuatio	n of IP. Case exam	ples			
		J nit – II			08 Hrs		
		Tools to protect Trade sec					
		ferent kinds and forms of					
		Mark; Deceptive similar					
Label, Passing off, f		Mark with Case studies a	nd Remedies. Cas	e Ex	08 Hrs		
Industrial Design		strial Designs Features o	f Industrial Desig	n P			
		Infringement and Remed		,11. 1	Toeedure for		
		cope, Rights conferred by		rigł	nt protection,		
		asting organizations and					
Copy Right, Infringe	ement of Copy Right	with case studies.					
		Technology Act, cybercr		ce, o	data security,		
confidentiality, priva		ects of computer and onlin	ne crime.		00 II		
		Jnit –IV	. 1.	T	09 Hrs		
Entrepreneurship:			1 1	-	ortance of		
		eneurship, Characteristic of Entrepreneurship, Entr					
		nd Capacity Building					
		trepreneurship in India					
Entrepreneurs. Case		1 1	<i>, , , ,</i>		5		
Entrepreneurship	in the New Age:	Getting to know your	Business, it's	Eco	-system and		
		g, building and growing	Family businesses	, Ch	allenges and		
suggested manageme							
		Unit –V			11 Hrs		
	· 1	of a Business Plan ,Cont					
Concept, Business Strategy, Marketing Plan, Operations Plan, Financial Plan, Presenting a Business Plan, Oral and Visual Presentation, Why Do Some Business Plans Fail? Procedure for Setting Up an							
		s Model Innovation Creat					
studies.	widdels and Dusiness		ing a Dusiliess Fla	п. С	ase 1013/Case		
	iect: Meaning of Proi	ect; Project Identification	; Project Selection	ı; Pr	oject Report:		
Preparation of project : Meaning of Project; Project Identification; Project Selection; Project Report; Need and Significance of Report; Contents; formulation; Guidelines by Planning Commission for							
		rs of Project Report; Pr					
Business Opportunit	ties: Market Feasibili	ty Study; Technical Feas	ibility Study; Fina	anci	al Feasibility		
Study & Social Feasibility Study. Use of standard templates for preparation of project report.							

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Cours	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Comprehend the applicable source, scope and limitations of Intellectual Property within the				
	purview of engineering domain.				
CO2	Knowledge and competence related exposure to the various Legal issues pertaining to				
	Intellectual Property Rights with the utility in engineering perspectives.				
CO3	Enable the students to have a direct experience of venture creation through a facilitated				
	learning environment.				
CO4	It allows students to learn and apply the latest methodology, frameworks and tools that				
	entrepreneurs use to succeed in real life.				

Reference Books

1	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition,
1	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
2	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN:
2.	8180380025, 9788180380020.
3.	Poornima M. Charantimath "Entrepreneurship Development and Small Business
	Enterprise", Pearson Education, 2005, ISBN: 9788177582604
4	Dynamics of Entrepreneurial Development & Management-Vasant Desai, Himalaya
4.	Publishing House, 6th Edition, 2018, ISBN - 978-93-5299-133-4
5	Entrepreneurial development, Khanka, Shobhan Singh, S. Chand Publishing, 2006,
	ISBN - 8121918014, 9788121918015

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS	MARKS
PART A		
1	Objective type questions covering entire syllabus	20
PART B (Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

		Sem	ester: VI		
PROCESS SIMULATION AND MODELING Category: Professional Core					
Course Code	:	21CH62	CIE	:	100 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 Marks
Total Hours	:	42L+30P	SEE Duration	:	3Hours
		Unit-I			8 Hrs
of formulation, mode	ling as	pects, classification of	on, Fundamental laws, of models. Continuity e n, and chemical kinetic	quation, e	quations of motion,
		Unit – II			8 Hrs
state single stage solv	ent ex	traction, multistage g	ingle and multiple stag as absorption, single co i-component flash drun	omponent	
-		Unit –III			9 Hrs
		h reactor and reactor	ant hold-up CSTRs, C with mass transfer, gas		
Unit –IV 9 Hrs					
unsteady state steam l	heating opera	of Liquid. tion: Fluid through p	f tanks, unsteady state acked bed column, flow Two-heated tanks.		-
)		Unit –V	· · ·		8 Hrs
simulation, iterative	conve	rgence methods –	on, Role of computers interval halving, New al integration of ODEs -	ton-Raphs	on method, False-
-	11 6				
		Tube Heat Exchange	ſ		
		al Pump/Compressor			
3. Simulation of Fla					
4. Simulation of single stream gas heater/cooler					
5. Simulation of CSTR 6. Simulation of Distillation Column					
			1		
		ric distillation of crud			
		tripper with recycling			
9. Simulation of Ber					
		l-water separation usi			
11. Simulation of Va	nous r	eactor types to model	a single reaction		

12. Simulation of cyclo hexane production

Ì	Course Outcomes: After completing the course, the students will be able to
	course outcomest inter completing the course, the students will be usie to

- **CO2:** Explain modeling and simulation of simple chemical engineering systems
- **CO3:** Apply mathematical tools to solve model equations

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

CO4: Analyze chemical engineering systems for model development

Approved by AICTE, New Delhi

Refer	ence Books
1	Process Modeling, Simulation and Control for Chemical Engineers, William L. Luyben McGraw Hill 2 nd Edition, 1999, ISBN: 978-0070391598.
2	Process Plant Simulation, B V Babu, 1 st Edition, 2004, Oxford University Press, ISBN: 978- 0-19-566805-6.
3	Elements of Chemical Reaction Engineering, H Scott Fogler, 3 rd Edition, Prentice Hall of India, 2004, ISBN: 7502741003.
4	Process Heat Transfer, D.Q.Kern, 1st Edition, 2012, Tata McGraw Hill, ISBN: 007034190.

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO.	CONTENTS	MARKS	
	PART A		
1	Objective type of questions covering entire syllabus	20	
	PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7&8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	30		
3	Viva	10		
	TOTAL	50		

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: VI				
			MASS TRANSFE	R-II			
		Cat	egory: Profession	nal Core			
			(Theory and Prac	tice)			
Course Code	:	21CH63		CIE	:	100 + 50	Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 + 50	Marks
Total Hours	:	40L + 30P		SEE Duration	:	3 Hours	
			Unit-I				08 Hrs
Types, construction	on icie	and working of pencies. Liquid ph	acked tower absorp blate and packed c ase holdup and pre	olumns. Types and			
ł			Unit – II				08 Hrs
Distillation							
Introduction, vapo			elative volatility, pre azeotropes, immisc				
using readent b lut	<u>, </u>	ion racar systems,	Unit –III	iere systems, and i	(Iuo)		08 Hrs
Distillation							
Multi-stage rectif			sign using McCabe le feed to distillati				
			opic, molecular and				
			Unit –IV				08 Hrs
	um	, solvent selecti	on, single stage, extraction and num		cur	rent, count	er current
			Unit –V				08 Hrs
			of solids for le leaching operation				diagrams.
Laboratory Ex	ber	iments					
1. Diffusion of Or							
2. Simple /Differe							
3. Packed Column							
4. Steam Distillati	on						
6. Solid Liquid Le	acł	ning					
7. Surface Evapor	atic	on					
8. Tray Dryer							
9. Adsorption Stu	lies	S					
10. Liquid Liquid/Vapor Liquid Equilibrium							
11. Liquid Extraction (Cross Current: Single and multi-Stages)							
12. Holdup Studie							
13. Wetted Wall C	Colu	umn/Mass Transfe	er Coefficient Estim	ation			
Course Outcomo	s• /	After completing	the course the stu	dents will be able	to		
Course Outcomes: After completing the course, the students will be able to							
CO1Understand the concepts of equilibrium, stage operations and carryout material balanceCO2Explain the working principles of mass transfer operations							
			us mass transfer op		ron	highl renros	entations
			us mass transfer ope juipment and evalua				
	100		aupment and evalua	te die performance (лц	C mass trails	

Chemical Engineering

equipment

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books 1 Mass Transfer Operations, Robert E Treybal, McGraw Hill, 3rd Edition, 1981, ISBN:978007065760 2. Unit Operations in Chemical Engineering, McCabe & Smith, McGraw Hill, 6th Edition, 2001, ISBN:9780072848236

- 3. Coulson and Richardson, Chemical Engineering Volume 1 and Volume 2, Pergemen Press, 4th Edition, 1998 ISBN: 0750644451
 Badger and Banchero, Introduction to Chemical Engineering, Tata McGraw Hill, 1st Edition
- 4. 1997, ISBN:9780070850279.

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO.	CONTENTS	MARKS	
	PART A		
1	Objective type of questions covering entire syllabus	20	
	PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7&8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	30		
3	Viva	10		
	TOTAL	50		

Approved by AICTE.

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI FOOD ENGINEERING **Category:** Professional Elective (Theory) **Course Code** 21CH64D1 CIE 100 Marks : Credits: L:T:P : 3:0:0 SEE 100 Marks : **Total Hours** 40L **SEE Duration** 3 Hours : : UNIT-I 08 Hrs Introduction to Food Engineering: Introduction: general aspects of food industry, world food demand and Indian scenario, Physical properties of food materials: Rheological models, Water activity, Fluid Flow in Food Processing: Liquid Transport Systems; Pipes for Processing Plants, Pumps for food plants; Numerical on fluid flow in food processing. **UNIT-II** 08 Hrs Food processing and preservation: Food deterioration – Causes, Aims and objectives of preservation and processing. High-temperature preservation: Introduction to Thermal Processing; Pasteurization; Commercial Sterilization Kinetics of Microbial Death; Thermal Death Time; Heat Transfer in Thermal Processing: Integrated F Value; Batch & continuous Retorts for Thermal Processing Non-thermal preservation: Cold sterilization: Gamma irradiation; Microwave & Ohmic heating, Pulsed Electric Field, High Pressure Processing 08 Hrs **UNIT-III** Low-temperature preservation: Principles of low temperature preservation; freezing rate & freezing point; physical properties of frozen food; food quality during frozen storage; freezing equipment, plate freezer, blast freezer, fluidized bed freezer, scraped surface freezer; cryogenic and immersion freezing; prediction of freezing time using Plank's equation & Nagaoka's equation. Food contamination and adulteration: Types of adulterants and contaminants, Intentional adulterants, incidental adulterants and its effects, food laws and standards, Hazard analysis and critical control points or HACCP, Food Safety and Standards Authority of India (FSSAI). **UNIT-IV 08 Hrs** Food additives: Introduction and need for food additives. Types of additives – antioxidants, chelating agents, coloring agents, curing agents, emulsions, flavors and flavor enhancers, flavor improvers, humectants and anti-caking agents, leavening agents, nutrient supplements, non - nutritive sweeteners, pH control agents, stabilizers and thickeners, other additives. Additives and food safety **UNIT-V 08 Hrs** Extrusion processes: Introduction to Extrusion, Basic Principles, Extrusion Systems, Cold Extrusion, Extrusion Cooking, Single Screw Extruders, Twin-Screw Extruders. Packaging concepts: Introduction to packaging, food protection, product containment, commutation, convenience, mass transfer in packaging materials, and permeability of packaging material to fixed gases, innovations in food packaging, passive packaging, active packaging, intelligent packaging, food packaging and product shelf-life. Advances in aseptic processing and packaging, nutrition labelling.

RV B

RV Educational Institutions [®] RV College of Engineering [®]

New Delhi

Approved by AICTE,

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

 Course Outcomes: After completing the course, the students will be able to

 CO1:
 Identify sources of contaminants, adulterants and hazard analysis to ensure the safe food processing.

 CO2:
 Comprehend the engineering solutions involved in the packaging improvements for sustainable development of food industry

 CO3:
 Apply biocompatible additives and packaging for food products

 CO4:
 Evaluate different food processing and preservation technologies

Reference Books

Itti						
1	R.Paul Singh and Dennis R. Introduction to Food Engineering, Elsevier Science &					
1	Technology, 5th Edition, ISBN: 9780123985309, 2013.					
2	P.G. Smith, Introduction to Food Process Engineering Second Edition, Springer Press, ISBN					
2	978-1-4419-7661-1, 2009					
3	Subbulakshmi G. and Shobha A. Udupi, Food Processing and Preservation, New Age					
3	International Pvt. Ltd., ISBN: 8122412831, 2001					
4	Food Engineering 1, Gustavo V. Barbosa-Canovas & Pablo Juliano					
4	http://www.eolss.net/ebooklib/ebookcontents/e5-10-themecontents.pdf (ebook)					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

				Semester: V	Ι			
			FU	EL CELL TECH	NOLOGY			
	Category: Professional Elective							
				(Theory)				
Cou	rse Code	:	21CH64D2		CIE	:	100 Ma	rks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Ma	rks
	al Hours	:	40L		SEE Duration			
				Unit-I				08 Hrs
Intr	oduction to F	ue	l Cells					I
				, working principle	of fuel cell, hist	orical	developm	ments of fuel
cells					,		1	
Fue	l cell thermod	yna	mics, advantage	s of fuel cells over	conventional en	ergy s	ystems, fi	uels for cells
and	their propertie	es.					-	
				Unit – II				08 Hrs
Ty	pes of Fuel Co	ells						
				el cell, phosphoric				
				xide fuel cell, pol	ymer electrolyte	fuel	cell, adv	vantages and
disa	dvantages of e	eacl	1.					
				Unit –III				08 Hrs
			nd kinetics of F					
				sic maximum effic				
				losses, fuel crosso		curren	nt, ohmic	losses, mass
tran	sport/concentr	atio	on losses, and act	tivation/electrode/re	action kinetics			I
				Unit –IV				08 Hrs
	racterization			. 1.				
				rrent voltage measu		nterru	pt measure	ement,
				cal impedance spec		1		
				activity, flexural str	ength, electrical c	condu	ctivity,	
elec	trochemical st	ILIS	ice area and elect	rochemical activity				00 11
A	liastions of f		aalla	Unit –V				08 Hrs
	lications of fu			and not the transmost h	idua can stana ca	hondl	na and ca	fatty isomes
Арр	offications of fu	er	ens in air, road a	and rail transport, h	drogen storage,	nandi	ng and sa	iety issues
Cou	irse Outcome	s: /	After completing	g the course, the st	udents will be al	ole to		
CO	1 Understan	d tł	e fundamentals a	and characteristics of	of fuel cells			
CO	2 Apply che	mic	al engineering p	rinciples to distingu	ish fuel cells from	n con	ventional	energy
	systems							
CO	3 Analyze th	ie p	erformance of fu	el cells using differ	ent characterizati	on tec	hniques	
CO	4 Evaluate th	ne p	ossibility of inte	grating fuel cell sys	tems with conver	ntiona	l energy s	systems
Dof	ananaa Daalaa							
Kel	erence Books	ict-	me Evolution 1	amas Laminia an	Androw Diali	Ich.	Wilow	& Song 2nd
1			ms Explained, J	ames Larminie and	Andrew Dicks	, joni	i wney d	x 30118, 211d
				ations, Viswanatha	n and M Aulica	Scihi	h Univo	reities Drass
2.			9, ISBN 13: 978		in and wi Aunce	SCIUI	on, Onive	1511105 11088,
				re, R. P., S. Cha, W	Colella F R	Prinz	Wiley N	ew Vork 1st
3.			SBN 978 0470 2:		· · · · · · · · D.	. 1 IIIZ,	whey, IN	CW IOIK, I
				nce and Technology	Rasu S Spring	rer 1a	t Edition	2007 ISBN
4.	978 0387 688			ice and reenhology	, Dasu. 5, Spring	,01, 18	a Lunion,	2007, ISBN
	210 0301 000	,1,	-					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

				Semester: VI				
PROCESS ENGINEERING ECONOMICS								
Category: Professional Elective								
				(Theory)				
Course Code:21CH64D3CIE:100 Marks						ks		
Cre	edits: L:T:P	:	3:0:0		SEE	:	100 Mar	ks
Tot	al Hours	:	40L		SEE Duration	:	3 Hours	
				Unit-I				08 Hrs
Equ		1 &	selection, Analy	development – Fea sis of Process flow				
				Unit – II				08 Hrs
				nents of project cos				
				tion cost, interest, p		ost	estimation,	
inve	estment costs,	tax	es and insurance, o	lepreciation, time v	alue of money			
				Unit –III				08 Hrs
eve retu Cap	n analysis , m irn on investm pitalized costs	neas nent , P	sures of process p , Discounted cas	and Replacements profitability, metho sh flow based on t implified model t ent.	ds of evaluation of full-life performant	of p nce	orofitability , Net pres	r – Rate of ent worth,
			•	Unit –IV				08 Hrs
Optimum design and design strategy : Procedures for determining optimum conditions- Single and multi-variable procedures, graphical and analytical procedures, Significance of breakeven chart for optimum analysis, Optimum rate of production- concept of minimum cost of the product, maximum cost of the product and case of maximum profit. Economics of material selection and fabrication selection								
				Unit –V				08 Hrs
Equipment cost: Heat transfer equipment costs, Mass transfer equipment costs, Plate and								
packed towers, dryers, cost estimation for reactor equipment components, cost of piping								
Des	sign report: ty	pe	s of report, organ	nization of the rep	ort.			
Ref	erence Books							
1.			d Economics for IcGraw Hill, ISBN	Chemical Engineer N: 0072392665.	rs, M.S. Peters and	d K	.D. Timme	erhaus – 4 th
2.	Industrial Organization and Engineering Economics, T.P. Banga and S.C. Sharma, 22 nd Edition				T.R.Banga and S	.C.	Sharma, 22	

		2007, Khaima I ubisheis, ISBN: 81-7409-078-9.
ſ		Chemical Process Economics, J. Happel and D.J. Jordan, 2005, Marcal Dekker Inc., ISBN:
	0.	0824761553

Cours	Course Outcomes: After completing the course, the students will be able to:-						
CO1	Define the basic terminologies of process development and economics.						
CO2	Explain concepts of process development, elements of project costing						
CO3	Calculate various cost elements and draw cash flow diagrams and determine optimum cost.						
CO4	Analyze process flow sheets, design reports and do break even analysis.						

Approved by AICTE.

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS # MARKS QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will 1. be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO 20 QUIZZES WILL BE THE FINAL QUIZ MARKS. 2. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be 40 conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and 3. practical implementation of the problem. Case study-based teaching learning (10), requirements Video based 40 Program specific (10),seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Approved by AICTE.

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI ENERGY STORAGE TECHNOLOGY **Category: Professional Elective** (Theory) **Course Code** 21CH64D4 CIE 100 Marks : Credits: L:T:P 100 Marks 3:0:0 SEE : : **Total Hours SEE Duration 3Hours** : 40L : Unit-I 06 Hrs Introduction: Origin of energy storage, Fossil Fuels and the Carbon Cycle, necessity of energy storage systems, Classification of energy storage systems -physical, temporal and economic classification. Unit – II 9 Hrs Electrical Energy Storage: General principle of electrical energy storage, principle of double layer capacitor, concept of charging and discharging, pseudo-capacitance, process of charging and discharging. Super capacitor materials for energy storage, distinction between energy and power Storage, application of Supercapacitors, concept of efficiency, losses and ageing. Unit –III 8 Hrs Electrochemical energy storage: Redox reactions in batteries, Nernst equation, current and capacity in electrochemical storage, Lead-acid batteries, Li-ion batteries - reactions, electrode materials, electrode and electrolyte requirements, ageing an degradation of Li-ion batteries. Unit –IV 9 Hrs Chemical Energy Storage: Carbon neutral chemical fuels, hydrogen for energy strorage, Hydrogen production methods – electric methods, steam reforming, gasification, thermochemical water splitting, photolytic and electrolytic methods, Fuel cell – basics and types, Hydrogen storage, biomethanation. Unit –V 8 Hrs Thermal Energy Storage: Thermal energy storage - principles and types, principle of sensible thermal storage and materials used, principle of latent thermal storage and materials used, concept of thermochemical Storage, Materials for thermal energy storage. Course Outcomes: After completing the course, the students will be able to CO 1 Explain principles of energy storage technologies CO 2 Comprehend the science, economics and engineering of renewable energy storage

- CO 3 Understand various energy storage materials
- CO 4 Evaluate assess the efficiencies of energy storage systems.

Reference Books1.Energy Storage- Fundamentals, Materials and Applications, Robert Huggins, 2016, Springer
International Publishing, ISBN- 978-3-319-33108-9, https://doi.org/10.1007/978-3-319-
21239-52.Energy Storage Technologies and Applications, C. Michael Hoff, 2022, Artech House,
ISBN- 97816308190953.Energy Storage Systems - Volume 1, EOLSS- UNESCO, ISBN: 978-1-84826-162-44.Energy Storage Systems - Volume 2, EOLSS- UNESCO, ISBN: 978-1-84826-163-1

Approved by AICTE.

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) # **COMPONENTS** MARKS 1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF 20 TWO QUIZZES WILL BE THE FINAL QUIZ MARKS. 2. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will 40 be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. 3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning Video (10),Program specific requirements (10).based 40 seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: VI			
		NANO	BIOTECHNOLOG	ĞΥ		
	Ca	ntegory: Professio	onal Core Elective (Cluster Elective)		
		(Comm	on to CH, CV, &	BT)		
		× ×	(Theory)	,		
Course Code	:	21BT65E1		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39 Hrs		SEE Duration	:	3.00 Hours
		I	Unit-I			07 Hrs
Introduction to n	anon		Types of nanomateri	als: Fullerenes (Gre	nhen	
			C), Nanoshells, Qun			
			ion & overview of			
			based Nano structur			
application of DNA				, ,		
**		U	nit – II			08 Hrs
Nanomaterials, S	ynth	esis and Charact	erization: Approac	hes of Fabrication:	To	p-Down and
			nd Nanosynthesis: 1			
			anolithography: hard			
			rials using spectrosco			
			roscopy, Scanning			
			on Microscopy (AFN			
				n, o $n, $ o $n, $ o $n, $ o $n, $ n	EM)).
Nanosensors and		Ui	nit –III		EM)). 07 Hrs
	Nar					07 Hrs
		obiosensors: Ove	nit –III erview of nanosenso omagnetic nanosenso	ors, prospects and	marl	07 Hrs ket. Types of
Nanosensors and th	ieir a	obiosensors: Ove pplications. Electro	erview of nanosense	ors, prospects and ors: Magnetic nanose	marl	07 Hrs ket. Types of rs. Mechanical
Nanosensors and th	eir a of n	obiosensors: Ove pplications. Electro anobiosensors: Car	rview of nanosenso omagnetic nanosenso ntilever, nanotube, na	ors, prospects and ors: Magnetic nanose	marl	07 Hrs ket. Types of rs. Mechanical
Nanosensors and th nanosensors. Types Nanosensors, Biose	eir a of n ensor	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV	ors, prospects and ors: Magnetic nanose anowire and nanopa	marl ensor ticle	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrs
Nanosensors and th nanosensors. Types Nanosensors, Biose	eir a of n ensor	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne.	ors, prospects and ors: Magnetic nanose anowire and nanopa	marl ensor ticle	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrs
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical,	eir a of n ensor	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic,	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher	ors, prospects and ors: Magnetic nanose anowire and nanopar ics: MEMS/NEMS nical Transducers.	marl ensor ticle	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrsnotransducers:o sensors and
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical,	eir a of n ensor	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic,	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid	ors, prospects and ors: Magnetic nanose anowire and nanopar ics: MEMS/NEMS nical Transducers.	marl ensor ticle	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrsnotransducers:o sensors and
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty	eir a of n ensor lectro elec pes	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic, of actuators. Micro iderations of flow i	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar flo in small channels, mi	ors, prospects and ors: Magnetic nanose anowire and nanopar ics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise	marl ensor ticle Nar Naro Ile e	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrsnotransducers:o sensors andquation, basic
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty	eir a of n ensor lectro elec pes	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic, of actuators. Micro iderations of flow i	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar flo	ors, prospects and ors: Magnetic nanose anowire and nanopar ics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise	marl ensor ticle Nar Naro Ile e	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrsnotransducers:o sensors andquation, basic
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty fluid ideas, Special Medical Nano Te	eir a of n ensor electro pes cons	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic, of actuators. Micro iderations of flow i U ology: Diagnostics,	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar flo in small channels, mi nit –V , therapeutics, drug	ors, prospects and ors: Magnetic nanose anowire and nanopat ics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise xing, microvalves & delivery, Nano Su	marl ensor ticle Nano lle e c mic	07 Hrs ket. Types of 's. Mechanical based sensor, 07 Hrs notransducers: o sensors and quation, basic cropumps. 10 Hrs ' and Tissue
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty fluid ideas, Special Medical Nano Te Engineering. Diagr	eir a of n ensor lectro pes cons chno	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic, of actuators. Micro iderations of flow i U ology: Diagnostics, cs: Resonance Lig	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar flo in small channels, mi nit –V , therapeutics, drug ht Scattering (RLS)	ors, prospects and ors: Magnetic nanose anowire and nanopar lics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise xing, microvalves & delivery, Nano Su Technology, Nano	marl ensor ticle Nan Nan lle e c mic rgery chij	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrsnotransducers:o sensors andquation, basiccropumps.10 Hrsand Tissueps, gene and
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty fluid ideas, Special Medical Nano Te Engineering. Diagr	eir a of n ensor lectro pes cons chno	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic, of actuators. Micro iderations of flow i U ology: Diagnostics, cs: Resonance Lig	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar flo in small channels, mi nit –V , therapeutics, drug	ors, prospects and ors: Magnetic nanose anowire and nanopar lics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise xing, microvalves & delivery, Nano Su Technology, Nano	marl ensor ticle Nan Nan lle e c mic rgery chij	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrsnotransducers:o sensors andquation, basiccropumps.10 Hrsand Tissueps, gene and
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty fluid ideas, Special Medical Nano Te Engineering. Diagr protein chips. Th	eir a of n ensor electro pes cons chno herap	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic, of actuators. Micro iderations of flow i U ology: Diagnostics, cs: Resonance Lig poeutic: Drug del	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar flo in small channels, mi nit –V , therapeutics, drug ht Scattering (RLS)	ors, prospects and ors: Magnetic nanose anowire and nanopar ics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise xing, microvalves & delivery, Nano Su Technology, Nano ity, Drug Delive	marl ensor tticle Nan Nan Nan Chij rgery chij	07 Hrsket. Types ofrs. Mechanicalbased sensor,07 Hrsnotransducers:o sensors andquation, basiccropumps.10 Hrsand Tissueps, gene andApplications,
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty fluid ideas, Special Medical Nano Te Engineering. Diagr protein chips. Th Bioavailability, Su	eir a of n ensor electro pes cons chno stain	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste ctrical, electronic, of actuators. Micro iderations of flow i U ology: Diagnostics, cs: Resonance Lig peutic: Drug del ed and targeted re	erview of nanosense omagnetic nanosense ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar fle in small channels, mi init –V , therapeutics, drug ht Scattering (RLS) ivery: Bioavailabil	ors, prospects and ors: Magnetic nanose anowire and nanopar ics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise xing, microvalves & delivery, Nano Su Technology, Nano ity, Drug Delivery	marl ensor rticle Nan Nan Ulle e chij rgery chij ry	07 Hrs ket. Types of sbased sensor, 07 Hrs notransducers: o sensors and quation, basic cropumps. 10 Hrs / and Tissue ps, gene and Applications, use of
Nanosensors and th nanosensors. Types Nanosensors, Biose Micro & Nano El Nano- mechanical, Nano Actuators: ty fluid ideas, Special Medical Nano Te Engineering. Diagr protein chips. Th Bioavailability, Su Microneedles and m	eir a of n ensor eectro cons cons cons cons chno stain anop	nobiosensors: Ove pplications. Electro anobiosensors: Car s in modern medici Un omechanical syste etrical, electronic, of actuators. Micro iderations of flow i U ology: Diagnostics, es: Resonance Ligl poutic: Drug del ed and targeted re particles for targeted	rview of nanosenso magnetic nanosenso ntilever, nanotube, na ne. nit –IV ms and Microfluid Magnetic and Cher ofludics: Laminar flo n small channels, mi nit –V , therapeutics, drug ht Scattering (RLS) ivery: Bioavailabil elease. Benefits of	ors, prospects and ors: Magnetic nanose anowire and nanopas ics: MEMS/NEMS nical Transducers. ow, Hagen- Peouise xing, microvalves & delivery, Nano Su Technology, Nano ity, Drug Delivery ed drug delivery. Na	marl ensor rticle Nano Ille e c mic rgery chij ry y sys no r	07 Hrs ket. Types of sket. Types of state based sensor, 07 Hrs notransducers: o sensors and quation, basic cropumps. 10 Hrs and Tissue ps, gene and Applications, tem. Use of obots in drug

with cells. Body on a chip and lab on a chip.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to

Approved by AICTE,

New Delhi

CO1	Remember, understand and apply knowledge about nanomaterials and their uses. Interpret and apply the techniques of manufacturing and characterization processes.							
CO2	Understand the Micro & Nano Electromechanical systems and Microfluidics Interpret and							
	apply the techniques and processes.							
CO3	Understand and apply knowledge of nanosensors and nanobiosensors applications like							
	-1							

		electronics, mechanical, chemical, and biological systems
C	C O 4	Apply knowledge of nanosensors and nanobiosensors to create and evaluate nano- design,
		devices and systems applicable to various medical disciplines.

Reference Books

- Textbook of Nanosciences and Nanotechnology, B.S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday, 2013, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH, XII. ISBN- 978-3-642-28030-6.
- 2 Springer Handbook of Nanotechnology, Editors: Bhushan, Bharat (Ed.), 2017, Springer, ISBN 978-3-662-54357-3.

3	Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences
	(Innovations in Agricultural & Biological Engineering), Deepak Kumar Verma, Megh R. Goya,
	Hafiz Anasr Rasul Suleria, 2019, Apple Academic Press, CRC Press, Taylor & Francis Group,
	ISBN-10 1771887648.

4 Nanotechnology Trends and Future Applications, Tahir, Muhammad Bilal, Rafique, Muhammad, Sagir, Muhammad, 2021, Springer, (Eds.), ISBN 978-981-15-9437-3.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5&6	Unit 3: Question 5 or 6	16					
7&8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological

Technological University, Bel		1					
			Semester: VI				
		NATURE	IMPELLED TEC	CHNOLOGIES			
		Category:Profes	ssional Core Elect	ive (Cluster Elect	ive)		
		(Co	ommon to CH, CV	(, & BT)			
			(Theory)				
Course Code	:	21BT65E2		CIE	:	100 Marks	
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	39 L		SEE Duration	:	03 Hours	

Unit-I	06 Hrs
Nature-inspired materials: Bioinspiration, bio-imitation and biomimicry. Emerging tr	ends and
prospects: Nature-inspired processes, Nature-inspired design approach, nature-inspired ma	terials by
virtue of the gain; Design and functionality, engineering and manufacturing and materials.	
Unit – II	08 Hrs
Plant inspired Technologies: Photosynthesis and Photovoltaic cells, Bionic/Artificial le	
leaf effect for super hydrophobic surfaces. Flectofin®, a new façade-shading system in	
flower of the Bird-of-Paradise, Plantoid ; Robotic Solutions Inspired by Plant Root. Plant c	ockleburs
and Velcro.	00 11
	08 Hrs
Nature inspired technologies for medical applications: Organ system- Circulatory- artific	
artificial heart, pacemaker. Respiratory- artificial lungs. Excretory- Artificial kidney	
Artificial Support and replacement of human organs: artificial liver and pancreas. T	otal joint
replacements- artificial limbs. Visual prosthesis -optical tweezers.	
Unit –IV	08 Hrs
Nature driven technologies for industrial applications: Biosensors, Thermal insulation and	nd storage
materials. Bio-robotics; design, control actuation and sensing. Human inspired hyper	dynamic
manipulation. Humanoid Robot.	
Unit –V	08 Hrs
Nature inspired computing: Cellular automata, evolutionary computing, swarm int	telligence,
artificial life and complex networks. Genetic Algorithms, Artificial Neural Networks.	Artificial
intelligence and MEMS.	
Course Outcomes: After completing the course, the students will be able to	
CO1 Elucidate the concepts and phenomenon of natural processes	
CO2 Apply the basic principles for design and development of nature inspired structures	

CO3 Analyse and append the concept of bio-mimetics for diverse applications

CO4 Designing technical solutions by utilization of natured-inspiration modules.

Re	ference Books
	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C.
1	Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714,
	9781420037715.
2	Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering.
2	Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering. John Wiley, 2018. ISBN: 978-1-119-390336.
2	M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials
3	M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials Cambridge University Press, 2014 ISBN 978-1-107-01045.
4	Tao Deng. Bioinspired Engineering of Thermal Materials. Wiley-VCH Press, 2018. ISBN: 978-3-
4	527-33834-4.

Approved by AICTE.

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) # **COMPONENTS** MARKS 1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL **QUIZ MARKS.** TESTS: Students will be evaluated in test consisting of descriptive questions with 2. different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will 40 be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. 3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING 40 UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Bel	agav	1 1					
				Semester: VI				
			BIO-	ENERGY TECH	NOLOGY			
	Category: Professional Core Elective (Cluster Elective)							
	(Common to CH, CV, & BT)							
			× ×	(Theory)	, ,			
Coι	urse Code	:	21CH65E1		CIE	:	100 Mar	ks
Cre	edits: L:T:P	:	3:0:0		SEE	:	100 Mar	ks
Tot	al Hours	:	40L		SEE Duration	:	3Hours	
				Unit-I				08 Hrs
	roduction:							
				d classification. Op				
			•••	of bioresource tec	•••	-		gnificance,
wor	ld energy scer	ario	o, physico-chemic	al properties, comp	osition, and charac	teri	stics.	
				Unit – II				08 Hrs
	Conversion							
				s for biomass int				en various
ther	mochemical c	onv	ersion technologie	es, Combustion, Py	rolysis and Gasific	atic	n.	
	~ .			Unit –III				08 Hrs
	t Conversion			· · 1 1 · ·	1 (1		F (CC /:
				otential benefits,				
			advantages, Anae	erobic co-digestion	h, Bio gasification	01	cow dung.	Design of
ana	erobic digester			TT •4 TX7				00.11
D :	£ 1			Unit –IV				08 Hrs
	fuels	tra	tmont of ICD 1	isfinal trimos usla	ware of hisfuel	taa	hnalagy	Sources of
				biofuel types, rele anol, Bio-aviation				
nqu		au	tomounes. Bioeun	Unit –V	Turome Fuer, Dio-	puŋ	Jung. Dioga	08 Hrs
Cas	se studies			Unit –v				UO HIS
		าท	from starchy cro	ps and lignocellu	losic biomass Bi	o r	nethanation	n of water
				nol production from				
Jatr		,uo	production, Dutur	ior production no.	in ingliocentatoste	010	indibit. Diet	
	•							
			1 0	the course, the stu				
<u>CO</u>				e of different biom				
$\frac{CO}{CO}$				ble biomass fuels f		ergy	/ applicatio	ons
CO				for biofuel producti			· · · · · · · · ·	
00	4 Develop s	ista	inable biofuel pro	duction considering	g ecological and so	c10	-economic	criteria
CO	erence Books	Reference Books						
	Mark Crocker (Ed.) 2010 Thermochemical Conversion of Biomass to Liquid Fuels and							
Ref	Mark Crock	er	(Ed.), 2010. The	rmochemical Con	version of Bioma	SS	to Liquid	Fuels and
	Chemicals. R	SC	Publishing, ISBN	1:9781849730358			-	
Ref	Chemicals. R Donald L. K	LSC lass	Publishing, ISBN 9, 1998. Biomass	:9781849730358 for Renewable Ene			-	
Ref	Chemicals. R Donald L. K San diego, C	LSC lass A. l	Publishing, ISBN 5, 1998. Biomass 1 ISBN: 978-0-12-4	1:9781849730358 for Renewable Ene 10950-6	rgy, Fuels and Che	emi	cals. Acade	emic Press,
Ref 1 2.	Chemicals. R Donald L. K San diego, C Daizo Kunii	SC lass A. l ar	Publishing, ISBN , 1998. Biomass (SBN: 978-0-12-4 ad Octave Leven	1:9781849730358 for Renewable Ene 10950-6 spiel. Fluid izatio	rgy, Fuels and Che n Engineering, 2n	emi	cals. Acade	emic Press,
Ref	Chemicals. R Donald L. K San diego, C Daizo Kunii Heinemann s	ASC lass A. l ar erie	Publishing, ISBN , 1998. Biomass (SBN: 978-0-12-4 nd Octave Leven es in Chemical Eng	I:9781849730358 for Renewable Ene 10950-6 spiel. Fluid izatio gineering. ISBN 0-	rgy, Fuels and Che n Engineering, 2n 409-90233-0 1	emi nd [cals. Acade	emic Press, utterworth-
Ref 1 2.	Chemicals. R Donald L. K San diego, C Daizo Kunii Heinemann s Charles E. W	ASC lass A. l ar erie	Publishing, ISBN , 1998. Biomass f SBN: 978-0-12-4 nd Octave Leven es in Chemical Englan (Ed.), 1996. He	1:9781849730358 for Renewable Ene 10950-6 spiel. Fluid izatio	rgy, Fuels and Che n Engineering, 2n 409-90233-0 1	emi nd [cals. Acade	emic Press, utterworth-
Ref 1 2. 3.	Chemicals. R Donald L. K San diego, C Daizo Kunii Heinemann s Charles E. W New York. I	ASC lass A. l ar erie 'ym	Publishing, ISBN a, 1998. Biomass f ISBN: 978-0-12-4 ad Octave Leven as in Chemical Englan (Ed.), 1996. Ha N 1-56032055304	I:9781849730358 for Renewable Ene 10950-6 spiel. Fluid izatio gineering. ISBN 0- andbook on Bioeth	rgy, Fuels and Che n Engineering, 2n 409-90233-01 anol: Production ar	emi nd I nd U	cals. Acado Edition. B Jtilization.	emic Press, utterworth- CRC Press,
Ref 1 2. 3.	Chemicals. R Donald L. K San diego, C Daizo Kunii Heinemann s Charles E. W New York. I Brigit Kamm	A. l ar eric SBN	Publishing, ISBN 5, 1998. Biomass f ISBN: 978-0-12-4 nd Octave Leven es in Chemical Englan (Ed.), 1996. He N 1-56032055304 atrick R. Gruber at	I:9781849730358 for Renewable Ene 10950-6 spiel. Fluid izatio gineering. ISBN 0-	rgy, Fuels and Chenn Engineering, 2m 409-90233-0 1 anol: Production ar (Ed.), 2008. Bioref	emi nd I nd U	cals. Acado Edition. B Jtilization. ies -Industri	emic Press, utterworth- CRC Press, al Processes

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) # **COMPONENTS** MARKS 1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS. 2. TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will 40 be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. 3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING 40 UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5&6	Unit 3: Question 5 or 6	16					
7&8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Approved by AICTE.

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI HYDROGEN TECHNOLOGY **Category: Professional Core Elective (Cluster Elective)** (Common to CH, CV, & BT) (Theory) **Course Code** 21CH65E2 100 : CIE : | Credits: L:T:P : 3:0:0 SEE : 100 **Total Hours SEE Duration** : 40L : **3 Hours** Unit-I 08 Hrs Hydrogen: Peculiarity and Types Salient features of hydrogen, properties of hydrogen, terminology and types of hydrogen, advantages, disadvantages, comparison with other fuels, and global status of supply and demand Unit – II 08 Hrs **Hvdrogen** Generation Generation of different types of hydrogen, conventional methods, nonconventional methods, generation from non-renewable sources, generation from renewable sources and challenges Unit –III **08 Hrs** Hydrogen Storage Storage as compressed gas, storage as cryogenic liquid, storage as metal hydrides, storage through liquid organic hydrogen carriers, and storage in carbon nano tubes Unit –IV **08 Hrs** Hydrogen Handling and Safety Classification of hydrogen hazards, compressed and liquid hydrogen related hazards, regulation, codes and standards related to hydrogen handling and transport, personal protective equipment Unit –V **08 Hrs Hydrogen Applications** Applications of hydrogen in various sectors such as refineries, petrochemicals, fertilizer industries, steel industries, transport and automotive sectors Course Outcomes: After completing the course, the students will be able to **CO1** Understand the importance of hydrogen and its use as an energy carrier **CO2** | Explain the production, storage and handling of hydrogen **CO3** Analyze the need for hydrogen as an alternate fuel and the associated challenges **CO4** Appraise the importance of safety, regulations and codes **Reference Books** Hydrogen Fuel: Production, Transport and Storage, Gupta, R. B., CRC Press, Taylor & Francis 1 Group, 1st Edition, 2009, ISBN: 9780429147364 Hydrogen Production: Electrolysis, Agata Godula-Jopek, Wiley-VCH, 1st Edition, 2015, 2. ISBN:9783527333424

3. Handbook of Hydrogen Storage, Michael Hirscher, Wiley-VCH, 1st Edition, 2010, ISBN:9783527322732
4. Fuel Cell Systems Explained, James Larminie and Andrew Dicks, John Wiley & Sons, 2nd Edition, 2003, ISBN 978 0470 848579

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5&6	Unit 3: Question 5 or 6	16					
7&8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological University Belagavi

University, Bela	gavi	1				
			Semester: VI			
		DIS	SASTER MANAG	EMENT		
		Category: Profe	essional Core Elect	tive (Cluster Electi	ve)	
		(Co	mmon to CH, CV	/ , & BT)		
		•	(Theory)	•		
Course Code	:	21CV65E1		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	36L		SEE Duration	:	3.00 Hours
			Unit-I			08 Hrs
landslides, earthqu Blast etc. Prediction and off-site disast	ake on a er 1	es, volcanoes, avala and perception. En nanagement plans	inche, cyclones, dro vironmental risk du - Pre disaster, actu	ought, fire, release cue to project activit	of ef ties.	strial Hazards- floods, fluents, harmful gases, Preparation of on-site ter plans. Relief camp
	•1	· · · · · · · · · · · · · · · · · · ·	Unit – II			08 Hrs
Environmental Ir framework in India Assessment and	npa ı, E Me	nvironmental inver thodologies Physic	Unit –III IA) Definition, Bas ntory, Base line stud cal, Biological, Na	lies. Over view of E tural resources, Soo	EIA cio	08 Hrs bles of EIA, Regulatory studies. economic and cultural ental decision making.
Procedures for rev	iew	ing EIA analysis a	nd statement. Decis	ion methods for eva	lua	tion of alternatives.
			Unit –IV			08 Hrs
in highly seismic z	one nen	es, retrofitting of bu	ilding, Usage of Re	emote sensing and C	ΞĪS	lesign and construction techniques, Awareness mitigation, Mitigation
			Unit –V			08 Hrs
techniques, primar Causes and reme	y a dies	and secondary data s, Flood and Drou	. Natural disasters ught assessment, c	its causes and reme causes and remedie	edie es,	anagement, tools and es-Earthquake hazards Landslides-causes and nent, inter departmen
<u> </u>	,	<u> </u>				
				ents will be able to		
			of natural and mann			
('()7 Learn to an	alv	se and assess rick i	nvolved due to disa	sters		

- **CO2** Learn to analyse and assess risk involved due to disasters.
- **CO3** Understand the role of public participation.
- **CO4** Learn the management and mitigation tools and techniques

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	erence Books
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.
2	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi
3	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6th Edition, 2002, John Wiley, ISBN:9780470052457

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

University, Belaga	ivi						
		S	Semester	r: VI			
		SOLID WAST	E MAN	AGEMENT			
	Ca	tegory: Professiona	al Core l	Elective (Cluster E	lect	tive)	
		(Common to	CH, C	V, & BT)			
Course Code	:	21CV65E2		CIE	:	100 Marks	
Credits: L:T:P		3:0:0		SEE	:	100 Marks	
Total Hours	:	40L		SEE Duration	:	3.00 Hours	
		Unit – I				08 Hrs	
Introduction: Land	Pollu	tion due to imprope	r solid w	aste management.	Me	rits and demerits of pi	resent
and scientific solid v	vaste o	disposal methods. Sc	ope and	importance of solid	l wa	ste management. Defin	nitior
and functional eleme		•	•	•		ources of Solid waste,	
of solid waste, comp		Ũ				,	21
or come water, comp		Unit – Il				08 Hrs	
Collection and tra	ansno			waste Collection	of	solid waste- services	
						Route optimization.	
waste management r							Sont
wuste management i	ules v	Unit –II		concerton system.	1 (41	08 Hrs	
Composting Aerol	oic a			- process descri	ptio	on, process microbic	
Vermicomposting, N				-	P	in, process interests	1085
		· ·		· ·	se	lection, methods, rea	action
-	-	-		-		hate movement, Site vi	
landfill site.	- 04		cincin, c	control of gas and i	caci	nate movement, site vi	ish n
landini site.		U	7			00 11	
II		Unit –IV		4. C	. 1	08 Hrs s waste, Classification	
Hazardous waste						disposal, Recent haza	
waste (management,							ruous
waste (management,	nanu	Unit –V			uou		
Rio medical waste	man			er biomedical was	te c	on health and environ	
						medical waste, Recen	
						to see the collection	
transportation system					10001		
					istic	waste on land, marin	e and
						es with amendments.	
		• *					
Course Outcomes:	After	completing the cou	rse, the	students will be ab	le t	0	
		xisting waste manage					
CO2 11 / C /	1	CC / C ·			•		

|--|

CO3:	Evaluate and monitor the flow of waste as per the rules laid by Ministry of Environment and
	Forest.
001	

CO4: Design Recycling and scientific disposal options for different types of waste.

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Integrated Solid Waste Management: Engineering principles and management issues George
1	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education . Indian
	edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243
2	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous, Tata
2	Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.
2	Municipal Solid waste (Management & Handling Rules).
3	Ministry of Environment & Forest Notification, New Delhi.
4	Hazardous waste (Management& Handling Rules). Ministry of Environment & Forest
4	Notification, New Delhi.
5	Bio medical waste management rules. Ministry of Environment & Forest Notification, New
5	Delhi.
6	Plastic waste management rules. Ministry of Environment & Forest Notification, New Delhi.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: VI				
		INDUSTRIAL	SAFETY AND RIS		NT		
			gory: Institutiona				
		Cutt	(Theory)				
Course Code	•	21IE6F1		CIE	:	100 Mar	ks
Credits: L:T:P	:	3:0:0		SEE	:	100 Mar	
Total Hours	:	40L		SEE Duration	:	3Hours	
100001100015			Unit-I			• II 0 uI 5	08 Hrs
Introduction Safe	tv:						
	•	trial safety engine	ering, major indust	trial accidents, saf	etv :	and health	issues kev
			heory, Hazard trian	· · · · · ·	-		· •
Causal factors, Haz			icory, mazard man	igie, mazare actua	uon	, Actuallo	n transition,
	Lui		Unit – II				00 11
D'1		1 4 1 T 1 ¹		· · 1 . D· 1		(D'1	08 Hrs
			vidual and societal	l risks, Risk asse	essm	ent, Risk	perception,
Acceptable risk, A	LA	RP. Prevention thr	olloh deston				
TT 1 T 1 (10)							
		n Methods: Prelin	minary Hazard List	· · · · · ·		hodology,	worksheets,
		n Methods: Prelin	minary Hazard List s (PHA), Fault tree a	· · · · · ·		hodology,	
case study. Prelimi	inar	n Methods: Prelin y Hazard Analysis	minary Hazard List s (PHA), Fault tree a Unit –III	nd Event tree analy	vses.		08 Hrs
case study. Prelimi Hazard analysis:	inar Haz	n Methods: Prelin y Hazard Analysis zard and Operabili	minary Hazard List s (PHA), Fault tree a Unit –III ty Study (HAZOP):	nd Event tree analy Definition, Proces	vses. s pai	rameters, (08 Hrs Guide words,
case study. Prelimi Hazard analysis: HAZOP matrix, Pr	nar Haz	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa	minary Hazard List <u>s (PHA), Fault tree a</u> <u>Unit –III</u> ty Study (HAZOP): ailure Modes and E:	nd Event tree analy Definition, Proces	vses. s pai	rameters, (08 Hrs Guide words,
case study. Prelimi Hazard analysis:	nar Haz	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa	minary Hazard List <u>s (PHA), Fault tree a</u> <u>Unit –III</u> ty Study (HAZOP): ailure Modes and E:	nd Event tree analy Definition, Proces	vses. s pai	rameters, (08 Hrs Guide words,
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep	Haz roce t, n	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa aethodology, exam	minary Hazard List <u>(PHA), Fault tree a</u> <u>Unit –III</u> ty Study (HAZOP): ailure Modes and E: ple. <u>Unit –IV</u>	nd Event tree analy Definition, Proces ffects Analysis (FM	vses. s pai IEA	rameters, (): Introduc	08 Hrs Guide words, otion, system 08 Hrs
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep	Haz roce t, n	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa aethodology, exam	minary Hazard List <u>(PHA), Fault tree a</u> <u>Unit –III</u> ty Study (HAZOP): ailure Modes and E: ple. <u>Unit –IV</u>	nd Event tree analy Definition, Proces ffects Analysis (FM	vses. s pai IEA	rameters, (): Introduc	08 Hrs Guide words, stion, system 08 Hrs
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep Application of H	Haz roce t, n	n Methods: Prelin y Hazard Analysis zard and Operabili zdure, Example. Fa hethodology, exam	minary Hazard List <u>(PHA), Fault tree a</u> <u>Unit –III</u> ty Study (HAZOP): ailure Modes and Est ple.	nd Event tree analy Definition, Proces ffects Analysis (FM e of pressure tanl	vses. s par IEA	rameters, (): Introduc	08 Hrs Guide words, ction, system 08 Hrs 08 Hrs nger, system
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep Application of H breakdown structu	Haz roce t, n	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa tethodology, exam ard Identification Accident paths,	minary Hazard List <u>s (PHA), Fault tree a</u> <u>Unit –III</u> ty Study (HAZOP): ailure Modes and E: ple. <u>Unit –IV</u> <u>n Techniques:</u> Cas	nd Event tree analy Definition, Proces ffects Analysis (FM e of pressure tanl	vses. s par IEA	rameters, (): Introduc	08 Hrs Guide words, ction, system 08 Hrs 08 Hrs nger, system
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep Application of H	Haz roce t, n	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa tethodology, exam ard Identification Accident paths,	minary Hazard List <u>s (PHA), Fault tree a</u> <u>Unit –III</u> ty Study (HAZOP): ailure Modes and E: ple. <u>Unit –IV</u> <u>n Techniques:</u> Cas	nd Event tree analy Definition, Proces ffects Analysis (FM e of pressure tanl	vses. s par IEA	rameters, (): Introduc	08 Hrs Guide words, ction, system 08 Hrs 08 Hrs nger, system
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep Application of H breakdown structu probability distribu	Haz roce t, m aza ure, itio	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa tethodology, exam ard Identification Accident paths, n, Hiller's model	minary Hazard List (PHA), Fault tree a Unit –III ty Study (HAZOP): ailure Modes and E: pple. Unit –IV Techniques: Cas HAZOP applicati Unit –V	nd Event tree analy Definition, Proces ffects Analysis (FM e of pressure tanl on, risk adjusted	vses. s pai IEA c, he dis	rameters, (): Introduce eat exchance	08 HrsGuide words,Guide words,ction, system08 Hrsnger, systemate method,08 Hrs
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep Application of H breakdown structu probability distribu Safety in process i	Haz roce t, m aza ure, utio	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa tethodology, exam ard Identification Accident paths, n, Hiller's model ustries and case s	minary Hazard List (PHA), Fault tree a Unit –III ty Study (HAZOP): ailure Modes and E: ple. Unit –IV Techniques: Cas HAZOP applicati Unit –V tudies: Personnel I	nd Event tree analy Definition, Proces ffects Analysis (FM e of pressure tanl on, risk adjusted Protection Equipn	s par IEA c, he dis	rameters, (): Introduce eat exchance counted r	08 Hrs Guide words, Guide words, ction, system 08 Hrs nger, system ate method, 08 Hrs fety glasses,
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep Application of H breakdown structu probability distribu Safety in process if face shields, weldi	Haz roce t, m (aza ure, utio) ind	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa nethodology, exam ard Identification Accident paths, n, Hiller's model ustries and case s nelmets, absorptive	minary Hazard List <u>s (PHA), Fault tree a</u> Unit –III ty Study (HAZOP): ailure Modes and E: ple. Unit –IV Techniques: Cas HAZOP applicati Unit –V tudies: Personnel I e lenses, hard hats, t	nd Event tree analy Definition, Proces ffects Analysis (FM e of pressure tanl on, risk adjusted Protection Equipn ypes of hand PPE,	rses. s par IEA c, he dis	rameters, (): Introduce eat exchance counted r (PPE): Satures of foot F	08 HrsGuide words, ction, system08 Hrsnger, systemate method,08 Hrsfety glasses, PE, types of
case study. Prelimi Hazard analysis: HAZOP matrix, Pr breakdown concep Application of H breakdown structu probability distribu Safety in process if face shields, weldir	Haz roce t, m (aza ure, utio) ind	n Methods: Prelin y Hazard Analysis zard and Operabili edure, Example. Fa nethodology, exam ard Identification Accident paths, n, Hiller's model ustries and case s nelmets, absorptive	minary Hazard List (PHA), Fault tree a Unit –III ty Study (HAZOP): ailure Modes and E: ple. Unit –IV Techniques: Cas HAZOP applicati Unit –V tudies: Personnel I	nd Event tree analy Definition, Proces ffects Analysis (FM e of pressure tanl on, risk adjusted Protection Equipn ypes of hand PPE,	rses. s par IEA c, he dis	rameters, (): Introduce eat exchance counted r (PPE): Satures of foot F	08 HrsGuide words, ction, system08 Hrsnger, systemate method,08 Hrsfety glasses, PE, types of

	· · · · · · · · · · · · · · · · · · ·
CO1	Recall risk assessment techniques used in process industry
CO2	Interpret the various risk assessment tools.
CO3	Use hazard identification tools for safety management.

CO4 Analyze tools and safety procedures for protection in process industries.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	erence Books			
1	Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina,Lulu publication, ISBN:1291187235.			
2.	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X.			
3.	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition University of alberta press, Canada, ISBN: 0888643942.	, 2003,The		
4.	ndustrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4 2005, Khanna Publishers, New Delhi, ISBN: 8174092102.	hth Edition,		
	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Beladavi

Semester: VI							
RENEWABLE ENERGY SYSTEMS							
		Category:	Institutional Elective				
			(Theory)				
Course Code	:	21IE6F2	CIE	:	100Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	40L	SEE Duration	:	3 Hours		

Unit-I 08 Hrs					
Introduction: Energy systems model causes of Energy Scarcity, Solution to Energy Scarcity, Factors					
Affecting Energy Resource Development, Energy Resources and Classification, Renewable Energy -					
Worldwide Renewable Energy Availability, Renewable Energy in India.					
Basics of Solar Energy: Sun- earth Geometric Relationship, Layer of the Sun, Earth – Sun Angles and					
their Relationships, Solar Energy Reaching the Earth's Surface, Solar Thermal Energy Application. Block					
diagram of solar energy conversion.					
Unit – II 08 Hrs					
Solar PV Systems: Basic Principle of SPV conversion - Types of PV Systems(Standalone, Grid					
connected, Hybrid system)- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array ,PV					
Module I-V Characteristics, Array design (different methodologies), peak-power operation, system					
components.Efficiency & Quality of the Cell, series and parallel connections, maximum power point					
tracking, Applications					
Unit –III 08 Hrs					
Wind Power Systems:					
Wind speed and energy: Introduction, history of wind energy, scenario- world and India. Basic principle					
of Wind energy conversion system (WECS), Classifications of WECS, part of a WECS. Derivation of					
power in the wind, electrical power output and capacity of WECS, wind site selection consideration,					
advantages and disadvantages of WECS. Maximum energy capture, maximum power operation, ,					
environmental aspects.					
Unit –IV 08 Hrs					
Geothermal and ocean energy systems: Geothermal well drilling, advantages and disadvantages,					
Comparison of flashed steam and total flow concept (T-S diagram). Associated Problems, environmental					
Effects.					
Energy from ocean: OTEC power generation, OPEN and CLOSED cycle OTEC. Estimate of Energy					
and power in simple single basin tidal and double basin tidal system. Issues Faced in Exploiting Tidal					
Energy					
Unit –V 08 Hrs					
Hydrogen Energy:					
Benefits of Hydrogen Energy, Hydrogen Production through block diagram, Use of Hydrogen Energy,					
Merits and Demerits, Problems Associated with Hydrogen Energy.					
Biomass Energy:					
Introduction-Biomass resources - Energy from Biomass: conversion processes-Biomass Cogeneration-					
Environmental Benefits. Biomass products - ethanol, biodiesel, biogas Electricity and heat production by					
biomass.					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	CO1 Understand the working principle and operation of various renewable energy sources & systems				
CO 2	Analyze the performance and characteristics of renewable energy sources and systems				
CO 3	Evaluate the parameters of wind and solar energy systems				
CO 4	Design and demonstrate the applications of renewable energy sources in a typical systems				

Reference Books

Non-conventional energy sources, by G.D Rai, Khanna publishes, 19th Edition, 2017, ISBN: 978-81-7409-073-8

2	Solar photo voltaic Technology and systems, by Chetan Singh Solanki, 3 rd Edition, PHI, Learning
Ζ.	private limited New Delhi, 2013, ISBN: 978-81-203-4711-3.

2	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition. CRC
3.	Group, Taylor and Francis group, New Delhi, ISBN 978-0-8493-1570-1.

4	Renewable	energy:	Technology,	Economics	and	Environment,	Martin	Kaltschmitt,	Wolfgang
4.	Streicher Aı	ndreas W	iese, Springer	Publication,	2007,	ISBN 978-3-54	40-7094	7-3	

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: V	[
		S	YSTEMS ENGINE				
			egory: Institution				
		C.	(Theory)				
Course Code	:	21IE6F3	(1110013)	CIE	•	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	•	45L		SEE Duration	•	3.00 Hours	
	•	HJL	Unit I	SEE Duration	•		06 Hrs
System Engineer viewpoint, System Structure of Cor System building & The System Dev Characteristics of development, pro Systems Engine structure (WBS), Systems Engine standards, Probler Needs Analysis: Feasibility definit Concept Explor	ring, ns E nple block block elop the blen Sys cring m. Orig ion, ratio iiren	Examples of S ngineering as a Pro- ex Systems: System cs, The system environment Process: Sy development process: g Management: stem Engineering g, Systems Engin ginating a new system Needs validation, on: Developing	Unit-I of Modem System Systems Requiring ofession, The power m building blocks a vironment, Interface ystems Engineering cess, The system er Unit – II Managing system Management Plan eering Capability tem, Operations ana System operational the system requir Implementation co	Systems Engined of Systems Engin and interfaces, Hier s and Interactions. through the system gineering method, s development and (SEMP), Risk Ma Maturity Assession lysis, Functional a requirements, prob	ering eerin rarc m I Te nag nent nag nent	ingineering?, Or g, System Eng ng, problems. hy of Complex ife Cycle, Evol sting throughou risks, Work bre gement, Organiz , Systems Eng ysis, Feasibility ans. requirements a prformance requirements	ineering systems utionary t system 10 Hrs eakdowr cation of ineering analysis analysis irements
			Unit –III				10 Hrs
analysis and form Functional Specif Advanced Devel Design, Prototype Engineering Des analysis and desig Integration and preparation, System	iulat icati lopn e dev sign gn, C Eva	ion, Concept selections, problems nent: Reducing p velopment, Develo : Implementing t Component design, aluation: Integration	vstem concept, Per etion, Concept valid program risks, Req <u>pment testing, Risk</u> <u>Unit –IV</u> he System Buildir Design validation, ing, Testing and ev velopmental system	lation, System Dev uirements analysis reduction, problen g blocks, require Configuration Mar valuating the total	velog s, F ns. mer nage sys	pment planning, unctional Analy nts analysis, Fu ement, problems stem, Test planr	System ysis and 10 Hrs inctional ing and
problems.							
			Unit –V				09 Hrs
development to pr Operations and	rodu sup	ction, Production port : Installing, r	n the factory, Er operations, Acquirin naintenance and up es: Modernization,	ng a production kno ograding the system	owl n, l	edge base, probl Installation and	ems. test, In

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course Outcomes: After completing the course, the students will be able to:-
--

CO1 Understand the Life Cycle of Systems.

CO2 Explain the role of Stake holders and their needs in organizational systems.

CO3 Develop and Document the knowledge base for effective systems engineering processes.

CO4 Apply available tools, methods and technologies to support complex high technology systems.

Reference Books:

1	Alexander Kossoaikoff, William N Sweet, "Systems Engineering – Principles and Practice" John
1	Wiley & Sons, Inc, edition: 2012, ISBN: 978-81-265-2453-2

	Andrew P. Sage, William B. Rouse, "Handbook of Systems Engineering And Management" John
۷.	Wiley & Sons, Inc., edition:1999, ISBN 0-471-15405-9

	3	Ludwig von Bertalanffy, "General System Theory: Foundation, Development, Applications",
	5.	Penguin University Books, 1973, Revised, ISBN: 0140600043, 9780140600049.
- Г		

1	Blanchard, B., and Fabrycky, W. Systems Engineering and Analysis, Saddle River, NJ, USA:
4.	Prentice Hall, 5th edition, 2010.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological

 Technological University, Belagavi

 Semester: VI

 MECHATRONICS Category: Institutional Elective (Theory)

 Course Code
 : 21IE6F4

 CIE
 : 100 Marks

 Ceredits: L:T:P
 : 3:0:0

			Unit-I			09 Hrs
Total Hours	:	45L		SEE Duration	:	3 Hours
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Course Code	:	211E0F4		CIE	•	TUU IVIAEKS

Overview of Mechatronic Systems

Traditional and mechatronic design, automatic washing machine, automatic door, dishwasher, compact disc drive copy machine, camera and temperature control. Principle and working of hall sensor, displacement sensor, absolute and incremental encoders, photoelectric sensors, inductive and capacitive proximity sensors, Relays and solenoids, Brushless DC, AC and servo motors, pulse width modulation by basic transistor circuit, H bridge circuit, Stepper motor: variable reluctance and permanent magnet, stepper motor control circuits, selection of motors.

Signal Conditioning

Operational Amplifiers - circuit diagrams and derivation - Numerical, filtering, multiplexers, 4:1 MUX, time division multiplexing -seven segment display, data acquisition, Analog and digital signals, analog to digital converters. Introduction to Digital signal processing – difference equation (Numericals).

Unit – II

Unit –III

Programmable logic controllers

Components, principle of operation, modifying the operation, basic PLC instructions, and concepts of ladder diagram, latching, timer instructions, counter instructions.

Ladder Diagram for PLCs

Examples with ladder logic programs, simple programs using Boolean logic, word level logic instructions. Relay to ladder conversion examples.,

Industrial applications of PLCs

Central heating system, valve sequencing, traffic light control in one direction, water level control, overhead garage door, sequential process, continuous filling operation, Fluid pumping with timers, parking garage counter, can counting in assembly line.

	Unit –IV 0	8 Hrs
--	------------	-------

Microcontrollers

Components of a full featured microcontroller, Memory, I/O Ports, Bus, Read & Write Cycle, Architecture of Intel 8051 microcontroller, Pin diagram, simple instructions for a microcontroller. – Data transfer, arithmetic functions, logical operations, Jump and branching operation.

Digital circuits

Digital representations, Combinational logic - Case studies: BCD to 7 segment decoder, calendar subsystem in a smartwatch., timing diagrams, Karnough maps – 3 variable and 4 variable, design of logic networks, flip-flops, Counters.

10 Hrs

10 Hrs

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Unit –V

08 Hrs

Dynamic Responses of Systems

Closed loop system, Terminology, transfer functions, step response of first order and second order systems, performance measures for first and second order systems, - Numerical

Mechanical Actuation Systems

Four bar chain, slider crank mechanism, Cams and followers, gear trains - Numerical

Cours	Course Outcomes: After completing the course, the students will be able to:-			
CO1	Select appropriate sensors and transducers and devise an instrumentation system for collecting			
	information about processes			
CO2	Apply the electrical and logic concepts and inspect the functioning of mechatronic systems.			
CO3	Evaluate a control system for effective functioning of Mechatronics systems using digital			
	electronics, microprocessors, microcontrollers and programmable logic controllers			
CO4	Develop conceptual design for Mechatronics products based on potential customer requirements			

Ref	Reference Books			
1	Nitaigour Premchand, 'Mechatronics-Principles, Concepts & Applications', TMH 1st Edition, 2009,			
1	ISBN: 9780070483743			
r	Bolton W., 'Mechatronics-Electronic Control System in Mechanical and Electrical Engineering',			
2.	Pearson Education, 4th Edition, 2012; ISBN:9788131732533			
3.	Tilak Thakur 'Mechatronics', Oxford University Press, I Edition, 2016, ISBN: 9780199459329			
4	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-13:			
4.	978-0-07-351088-0			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40	
MAXIMUM MARKS FOR THE CIE THEORY			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
PART A				
1	Objective type questions covering entire syllabus	20		
PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5&6	Unit 3: Question 5 or 6	16		
7&8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: VI				
			FHEMATICAL MOD				
		Ca	tegory: Institutional E	lective			
		1	(Theory)	1		1	
Course Code	:	21IE6F5		CIE	:	100 Mar	rks
Credits: L:T:P	:	3:0:0		SEE	:	100 Mar	rks
Total Hours	:	45L		SEE Duration	:	3.00 Ho	urs
			Unit-I			0	9 Hrs
Carthur Made	1. T		Differential Equations			U	9 nrs
involved in modell	ing,	formation of var	rious continuous models Unit – II	3.		0	9 Hrs
Mathematically N	Ind	elling Discrete P	Processes:				
					• ,		
Difference equation	15 -			ittoronco aquintiana		adjustion t	a dicarat
11 · î	1		,	ifference equations			
		es, mathematica	al modelling through d	1			
		es, mathematica	al modelling through d er real-world problems.	1		conomics	, finance
population dynami	cs, g	es, mathematica	al modelling through d	1		conomics	
population dynami Markov modelling	cs, g	es, mathematica genetics and othe	al modelling through d er real-world problems. Unit –III	ifference equations		conomics	, finance
population dynami Markov modelling	cs, g	es, mathematica genetics and othe	al modelling through der real-world problems. Unit –III hain, applications of Ma	ifference equations		conomics	, finance 9 Hrs
population dynami Markov modelling Mathematical foun	cs, g g: dati	es, mathematica genetics and othe ons of Markov c	al modelling through d er real-world problems. Unit –III	ifference equations		conomics	, finance
population dynami Markov modelling Mathematical foun Modelling throug	cs, g g: dati h gr	es, mathematica genetics and othe ons of Markov c aphs:	al modelling through d er real-world problems. Unit –III hain, applications of Ma Unit –IV	arkov modelling.		conomics	, finance 9 Hrs
population dynami Markov modelling Mathematical foun Modelling throug	cs, g g: dati h gr	es, mathematica genetics and othe ons of Markov c aphs:	al modelling through de <u>r real-world problems.</u> <u>Unit –III</u> hain, applications of Ma <u>Unit –IV</u> tions through different t	arkov modelling.		conomics 0	, finance 19 Hrs 19 Hrs
population dynami Markov modelling Mathematical foun Modelling throug Graph theory conce	cs, g g: dati h gr epts	es, mathematica genetics and othe ons of Markov c aphs: , modelling situa	al modelling through de r real-world problems. Unit –III hain, applications of Ma Unit –IV tions through different to Unit –V	arkov modelling.		conomics 0	, finance 9 Hrs
population dynami Markov modelling Mathematical foun Modelling throug Graph theory conce Variational Probl	cs, g g: dati h gr epts em :	es, mathematica genetics and othe ons of Markov c aphs: , modelling situa and Dynamic P	al modelling through de <u>r real-world problems.</u> <u>Unit –III</u> hain, applications of Ma <u>Unit –IV</u> tions through different to <u>Unit –V</u> rogramming:	arkov modelling.	in e	conomics	, finance 19 Hrs 19 Hrs 19 Hrs
population dynami Markov modelling Mathematical foun Modelling throug Graph theory conce Variational Probl Optimization prime	cs, g g: dation h gr epts em a ciple	es, mathematica genetics and othe ons of Markov c aphs: , modelling situa and Dynamic Pr es and techniqu	al modelling through de r real-world problems. Unit –III hain, applications of Ma Unit –IV tions through different to Unit –V	arkov modelling.	in e	conomics	, finance 19 Hrs 19 Hrs 19 Hrs
population dynami Markov modelling Mathematical foun Modelling throug Graph theory conce Variational Probl	cs, g g: dation h gr epts em a ciple	es, mathematica genetics and othe ons of Markov c aphs: , modelling situa and Dynamic Pr es and techniqu	al modelling through de <u>r real-world problems.</u> <u>Unit –III</u> hain, applications of Ma <u>Unit –IV</u> tions through different to <u>Unit –V</u> rogramming:	arkov modelling.	in e	conomics	, finance 19 Hrs 19 Hrs 19 Hrs
population dynami Markov modelling Mathematical foun Modelling throug Graph theory conce Variational Probl Optimization prime	cs, g g: dation h gr epts em a ciple	es, mathematica genetics and othe ons of Markov c aphs: , modelling situa and Dynamic Pr es and techniqu	al modelling through de <u>r real-world problems.</u> <u>Unit –III</u> hain, applications of Ma <u>Unit –IV</u> tions through different to <u>Unit –V</u> rogramming:	arkov modelling.	in e	conomics	, finance 19 Hrs 19 Hrs 19 Hrs
population dynami Markov modelling Mathematical foun Modelling throug Graph theory conce Variational Probl Optimization princ programming and a	cs, <u>g</u> g: dati h gr em : ciple appl	es, mathematica genetics and othe ons of Markov c raphs: , modelling situa and Dynamic Pr es and techniqu ications.	al modelling through de <u>r real-world problems.</u> <u>Unit –III</u> hain, applications of Ma <u>Unit –IV</u> tions through different to <u>Unit –V</u> rogramming:	arkov modelling. types of graphs.	in e	conomics	, finance 19 Hrs 19 Hrs 19 Hrs
population dynami Markov modelling Mathematical foun Modelling throug Graph theory conce Variational Probl Optimization princ programming and a Course Outcomes	cs, g g: dati h gr epts ciple appl : Af	es, mathematica genetics and othe ons of Markov c aphs: , modelling situa and Dynamic P es and techniqu ications. Ter completing	al modelling through de r real-world problems. Unit –III hain, applications of Ma Unit –IV tions through different to Unit –V rogramming: tes, mathematical mod	arkov modelling. types of graphs. els of variational ts will be able to	in e	conomics	, financo 19 Hrs 19 Hrs 19 Hrs dynami

CO2: Apply the knowledge and skills of discrete and continuous models.

- **CO3:** Analyze the appropriate mathematical model to solve the real-world problem and optimize the solution
- **CO4:** Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Reference Books

1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN: 81-224-0006-X.
2	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and Hall/CRC Textbook, ISBN 9781439854518.
3	Case Studies in Mathematical Modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames, Cheltonham, ISBN: 0470271779, 9780470271773.
4	Modeling with Difference Equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13: 9780853122869.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)						
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5&6	Unit 3: Question 5 or 6	16					
7&8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological Approved by AICTE, New Delhi

na dina kana kana kana kana kana kana kana di sababat da bahar	-1000/00		Semester: VI			
	DI	STRV 4 0 - SMA	RT MANUFACTURING FO	DR THE FUTUR	PF	
111	ν		egory: Institutional Elective	JK IIIE FUTUK	L	
		Cat	(Theory)			
Course Code	:	21IE6F6	(110015)	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	3 Hours
			Unit-I			07 Hrs
Introduction:						1
	stri	al Revolutions, Ne	ed – Reason for Adopting I	ndustry 4.0. Def	initi	on. Goals and
			Virtualization, Decentralizati			
• •		· ·	on, Volatility, Energy and res		-	•
		•	ure of IoT, Technologies for	•		•
			ion, Cyber-Physical Systems,			e e
			mission, Mobile technologies		41111	g, network via
		gii-speed data trans	Unit – II	•		10 Hrs
Opportunities and		L - II	Ulint – II			10 111 5
11		0	d workers, Broadband infras	tructure Policies	Fr	ture of Works
			tion as manufacturing's great			
Robotics in Indus		•	tion as manufacturing s great	est modern chanc	nge	
	•		obots, Human-Machine Intera	action		
Big Data			,			
	ial	of Big Data in	Industry 4.0, Big Data Me	erits, Data transp	oare	ncy, Business
Intelligence, Produ	icti	on planning, Quali	ty, Acquisition of Automation	n Data, Digital Ti	race	ability, Radio-
			Data transformation, Big D			
			applications, Harnessing and s			
e			iagnostic analytics, Predictive			•
-			Unit –III		-	10 Hrs
Cloud Computing	Ţ					1
		Edge Computing a	nd Industry 4.0, The IT/OT co	onvergence, Cybe	r Se	curity
· · · · · · · · · · · · · · · · · · ·			- ·	-		-

Horizontal and Vertical integration

End-to-end engineering of the overall value chain, Digital integration platforms, Role of machine sensors, Sensing classification according to measuring variables, Machine-to-Machine communication

Artificial Intelligence/Machine Learning in Industry 4.0

Fundamentals, Case Studies, Technology paradigms in production logistics - Intelligent conveyor system, Intelligent commissioning system, Intelligent production machine, Intelligent load carrier, Applicationspecific demand on Intelligent Objects (user-oriented functions), Technological realization of Intelligent Objects (product-oriented functions)

Unit –IV									08 Hrs
Augmented	Worl	ker							
Augmented	and	Virtual	Reality,	softwares,	Industrial	Applications	_	Maintenance,	Assembly,

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Collaborative operations, Training

Digital-to-Physical

Additive Manufacturing technologies, Advantages, impact on environment, Applications – Automotive, Aerospace, Electronics and Medical

Unit –V

07 Hrs

Digital twin, Virtual factory, Total Productive Maintenance, Industry 4.0 case studies, Understanding I 4.0 in MSMEs, What's Next: Industry 5.0/Society 5.0

Course Outcomes	After completin	g the course.	, the students will be able to:
course o accomes	and the second second	5 ···· · · · · · · · · · · · ·	

- **CO1** Identify the basic components of Industry 4.0
- **CO2** Analyse the role of Big data for modern manufacturing
- **CO3** Create AR/VR models for industrial scenario
- **CO4** Create simple Additive manufactured parts

Reference Books

1	Industry 4.0: Managing the Digital Transformation, Alp Ustundag, Emre Cevikcan, 2017, Springer,
	ISBN: 978-3-319-57869-9, ISBN: 978-3-319-57870-5
	The Concept Industry 4.0 - An Empirical Analysis of Technologies and Applications in Production
2.	Logistics, Christoph Jan Bartodziej, 2017, Springer Gabler, ISBN 978-3-658-16501-7 ISBN 978-3-
	658-16502-4
2	Industry 4.0 - The Industrial Internet of Things, Alasdair Gilchrist, 2016, APRESS, ISBN-13 978-1-
3.	4842-2046-7 ISBN-13: 978-1-4842-2047-4
	\mathbf{D}^{1}_{1} \mathbf{H}^{1}_{2} \mathbf{H}

4. Digitizing the Industry – Internet of Things connecting the Physical, Digital and Virtual Worlds, Ovidiu Vermesan, 2016, River Publishers, ISBN 978-87-93379-81-7 ISBN 978-87-93379-82-4

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)						
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: (Internal Choice)	16
5&6	Unit 3: (Internal Choice)	16
7&8	Unit 4: (Internal Choice)	16
9 & 10	Unit 5: (Internal Choice)	16
	TOTAL	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICT	Έ,
New Delhi	

University, Bela	gavi							
			Semester: VI					
			PSYCHOLOGY		S			
		Cate	egory: Institutional	l Elective				
			(Theory)		1			
Course Code	:	21IE6F7		CIE	: 100 Marks			
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45L		SEE Duration	:	3 Hours		
			Unit-I			08 Hrs		
	•		e .		-	hologist in the Society:		
						ynamic, Behavioristic,		
•				ds to study Huma	n B	ehavior: Experimental,		
Observation, Ques	tion	naire and Clinical						
			Unit – II			08 Hrs		
						Nature of Intelligence.		
	-					of Intelligence tests,		
•				e, Concept of IQ,	Me	asurement of Multiple		
Intelligence – Flui	d ar	d Crystallized Inte	•					
			Unit –III			10 Hrs		
v				1 2		sychoanalytical, Socio-		
						and type approaches.		
						es, Rating Scales and		
Projective techniq	les,	its Characteristics	, advantages & limit	tations, examples. I	Beha			
		~	Unit –IV			<u> </u>		
						Conditioning (Pavlov),		
						ng (Skinner expt). The		
		•		•	-	proaches to learning –		
Latent Learning, C	bse	rvational Learning	, Trial and Error Me	ethod, Insightful Le	earn			
A		- I * XX /I. *	Unit –V	· · · · · · · · · · · · · · · · · · ·		09 Hrs		
						nformation technology,		
	-	•				Professionals to work		
						n, Symptoms of Stress, - Job related causes of		
						ess threshold, perceived		
						Sypes – Directed, Non-		
Directed, Participa			ical Counselling - I		g, 1	ypes – Directed, Noll-		
Directed, i articipa		Counsening.						
Course Outcomes	: A	fter completing th	ne course, the stude	ents will be able to	:-			
Course Outcomes: After completing the course, the students will be able to:-CO1Describe the basic theories, principles, and concepts of applied psychology as they relate to								
behaviors and mental processes.								
	· · · · · · · · · · · · · · · · · · ·							
		ve influence the lea		č ,				
				s such as intellig	enc	e, aptitude, creativity,		
-			-	-		management and self-		
improveme			11 2	0	-	0		
pro ; enit								

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Sinvelsky, Deldgavi
CO4	Apply the theories into their own and others' lives in order to better understand their personalities and experiences.
CO5	Understand the application of psychology in engineering and technology and develop a route to accomplish goals in their work environment.

Ref	Reference Books					
1	Understanding Psychology Feldman R. S, IV Edition, (1996) McGraw Hill India					
2.	Psychology Robert A. Baron, III Edition (1995) Prentice Hall India.					
3.	Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN $-81-317-1132-3$					
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5					
5	Psychology-themes and variations, Wayne Weiten, IV Edition, Brooks / Cole Publishing Co.					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40		
MAXIMUM MARKS FOR THE CIE THEORY				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5&6	Unit 3: Question 5 or 6	16					
7&8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	agavi	S.						
			Semester: V	I				
ELEMENTS OF FINANCIAL MANAGEMENT								
Category: Institutional Elective								
			(Theory)					
Course Code:21IE6F8CIE:100 Marks								
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45L		SEE Duration	:	3.00 Hours		
	Unit-I 06 Hrs							
Financial Manag	jem	ent-An overview	v: Financial Decisio	ons in a firm, Goa	ls o	f a firm, Fundamental		
	ce,	Organization of	finance function an	d its relation to o	ther	functions, Regulatory		
framework.								
				returns, Intermedi	aries	s, regulatory framework,		
Growth and trends			•		~			
					ofit a	ind loss, items in annual		
			ofits vs Cash flows, '	l'axes.				
(Conceptual treat	tme	ent only)	TT •/ TT			10.11		
			Unit – II			10 Hrs		
				future value of an	anr	uity, present value of a		
single amount, pre						1:: 1 1 : 4 . 1: 4:		
			ion model, bond valu	lation, equity value	itior	-dividend capitalization		
approach and othe			a of simple assets	and montfolion ma		rement of market risk		
relationship betwe				ind portionos, me	asu	tement of market fisk,		
-			-					
(Conceptual and Numerical treatment) Unit –III 10 Hrs								
Techniques of Ca	nit	al Rudgeting• C						
Techniques of Capital Budgeting: Capital budgeting process, project classification, investment criteria, Net present value, Benefit-Cost ratio, Internal Rate of return, Payback period, Accounting rate of return.						on investment criteria		
Net present value	-							
	Be	nefit-Cost ratio, l	nternal Rate of return	n, Payback period,	Acc	ounting rate of return.		
Cost of Capital:	Bei Pre	nefit-Cost ratio, l liminaries Cost o	nternal Rate of return of debt and preference	n, Payback period, ce, cost of retained	Acc l ear	ounting rate of return. nings, cost of external		
Cost of Capital: equity, determinin	Bei Pre	nefit-Cost ratio, l liminaries Cost o	nternal Rate of return of debt and preference	n, Payback period, ce, cost of retained	Acc l ear	ounting rate of return.		
Cost of Capital: equity, determining schedule.	Ben Pre Ig th	nefit-Cost ratio, l liminaries Cost on ne proportions, w	nternal Rate of return of debt and preference reighted average cos	n, Payback period, ce, cost of retained t of capital, weight	Acc l ean red r	ounting rate of return. nings, cost of external narginal cost of capital		
Cost of Capital: equity, determinin schedule. Capital structure	Ben Pre ng th an	nefit-Cost ratio, l liminaries Cost on the proportions, w and cost of capita	nternal Rate of return of debt and preference reighted average cost l: Assumptions and	n, Payback period, ce, cost of retained t of capital, weight concepts, net incom	Acc l ean ed r me a	ounting rate of return. nings, cost of external narginal cost of capital approach, net operating		
Cost of Capital: equity, determining schedule. Capital structure income approach,	Ben Prei ig th e an trai	nefit-Cost ratio, l liminaries Cost on ne proportions, w and cost of capita ditional position	nternal Rate of return of debt and preference reighted average cost l: Assumptions and Modigliani and Mi	n, Payback period, ce, cost of retained t of capital, weight concepts, net incom	Acc l ean ed r me a	ounting rate of return. nings, cost of external narginal cost of capital		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection	Ber Pre Ig th e an trans an	nefit-Cost ratio, l liminaries Cost of ne proportions, w nd cost of capita ditional position nd Capital struct	nternal Rate of return of debt and preference reighted average coss l: Assumptions and by Modigliani and Mi ure	n, Payback period, ce, cost of retained t of capital, weight concepts, net incom	Acc l ean ed r me a	ounting rate of return. nings, cost of external narginal cost of capital approach, net operating		
Cost of Capital: equity, determining schedule. Capital structure income approach,	Ber Pre Ig th e an trans an	nefit-Cost ratio, l liminaries Cost of ne proportions, w nd cost of capita ditional position nd Capital struct	nternal Rate of return of debt and preference reighted average coss l: Assumptions and by Modigliani and Mi ure	n, Payback period, ce, cost of retained t of capital, weight concepts, net incom	Acc l ean ed r me a	ounting rate of return. nings, cost of external narginal cost of capital approach, net operating		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and	Ben Pre ng th e an tran tran s an Nu	nefit-Cost ratio, I liminaries Cost of ne proportions, w ad cost of capita ditional position nd Capital struct merical treatme	nternal Rate of return of debt and preference reighted average cost 1: Assumptions and by Modigliani and Mi are nt) Unit –IV	n, Payback period, ce, cost of retained t of capital, weight concepts, net incon ller Position, Taxa	Acc l ean red r me a tion	ounting rate of return. nings, cost of external narginal cost of capital approach, net operating and Capital structure,		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and Long term fina	Ben Pre ng th e an tra- ns an Nun nce	nefit-Cost ratio, I liminaries Cost of ne proportions, w nd cost of capita ditional position nd Capital struct merical treatme : Sources- Equ	nternal Rate of return of debt and preference reighted average cost I: Assumptions and Modigliani and Mi ure nt) Unit –IV ity capital, Internal	n, Payback period, ce, cost of retained t of capital, weight concepts, net incon ller Position, Taxa	Acc l ean red r me a ttion	ounting rate of return. mings, cost of external narginal cost of capital approach, net operating and Capital structure, 10 Hrs		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and Long term fina debentures. Raising Rights Issue, Priva	Ben Pre ag th e an tra ns a: Num nce ng 1 ate 1	nefit-Cost ratio, I liminaries Cost of ne proportions, w ad cost of capita ditional position nd Capital struct merical treatme : Sources- Equ ong term financ Placement, Term	nternal Rate of return of debt and preference reighted average cos I: Assumptions and Modigliani and Mi are nt) Unit –IV ity capital, Interna e- Venture capital, I Loans, Investment B	n, Payback period, ce, cost of retained t of capital, weight concepts, net incor ller Position, Taxa a accruals, prefer nitial Public Offe- canking	Acc l ean red r me a ttion ence	ounting rate of return. mings, cost of external narginal cost of capital approach, net operating and Capital structure, 10 Hrs capital, term loans, ollow on Public Offer,		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and Long term fina debentures. Raising Rights Issue, Priva Securities Marko	Ben Pre ng th e an tra- tra- tra- ns a: Nun nce ng 1 ate 1 ate 1 et:	nefit-Cost ratio, I liminaries Cost of ne proportions, w nd cost of capita ditional position nd Capital struct merical treatme : Sources- Equ ong term financ Placement, Term Primary market	nternal Rate of return of debt and preference reighted average coss l: Assumptions and b Modigliani and Mi are nt) Unit –IV ity capital, Internate e- Venture capital, I Loans, Investment B vs Secondary mark	n, Payback period, ce, cost of retained t of capital, weight concepts, net incon ller Position, Taxa l accruals, prefer nitial Public Offer eanking cet, Trading and	Acc l ean red r me a ttion ence	ounting rate of return. rnings, cost of external narginal cost of capital approach, net operating and Capital structure, 10 Hrs capital, term loans,		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and Long term fina debentures. Raisin Rights Issue, Priva Securities Marke quotations and Inc.	Ben Pre g th e an trav ns a: Num nce ng 1 ate 1 et: lices	nefit-Cost ratio, I liminaries Cost of ne proportions, w nd cost of capita ditional position nd Capital struct merical treatme : Sources- Equ ong term financ Placement, Term Primary market s, Govt. securitie	nternal Rate of return of debt and preference reighted average cost I: Assumptions and Modigliani and Mi ure nt) Unit –IV ity capital, Internate e- Venture capital, I Loans, Investment B vs Secondary mark s market, Corporate of	n, Payback period, ce, cost of retained t of capital, weight concepts, net incon ller Position, Taxa l accruals, prefer initial Public Offer banking tet, Trading and b debt market.	Acc l ean me a ttion	ounting rate of return. mings, cost of external narginal cost of capital approach, net operating and Capital structure, 10 Hrs capital, term loans, ollow on Public Offer, ements, Stock market		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and Long term fina debentures. Raisin Rights Issue, Priva Securities Marka quotations and Inc Working Capital	Ben Pre g th e an tra ns at Num nce ng 1 ate 1 et: lices	nefit-Cost ratio, I liminaries Cost of ne proportions, w ad cost of capita ditional position nd Capital struct merical treatme : Sources- Equ ong term financ Placement, Term Primary market s, Govt. securitie Policy and Fina	nternal Rate of return of debt and preference reighted average cost l: Assumptions and b. Modigliani and Mi are nt) Unit –IV ity capital, Internate e- Venture capital, I Loans, Investment B vs Secondary mark s market, Corporate on ncing: Factors influe	n, Payback period, ce, cost of retained t of capital, weight concepts, net incon ller Position, Taxa l accruals, prefer initial Public Offer anking tet, Trading and debt market. encing working ca	Acc l ean ed r me a tion ence c, Fo Settl pital	ounting rate of return. mings, cost of external marginal cost of capital approach, net operating and Capital structure, 10 Hrs e capital, term loans, bllow on Public Offer, ements, Stock market requirements, Current		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and Long term fina debentures. Raisin Rights Issue, Priva Securities Marko quotations and Inc Working Capital assets financing p	Ben Prebag the ag the trains an Num nce ng 1 ate 1 et: lices lices	nefit-Cost ratio, I liminaries Cost of ne proportions, w ad cost of capita ditional position nd Capital struct merical treatme : Sources- Equ ong term financ Placement, Term Primary market s, Govt. securitie Policy and Fina cy, operating cyc	nternal Rate of return of debt and preference reighted average cos l: Assumptions and b Modigliani and Mi are nt) Unit –IV ity capital, Interna e- Venture capital, I Loans, Investment E vs Secondary mark s market, Corporate of ncing: Factors influe le and cash cycle. A	n, Payback period, ce, cost of retained t of capital, weight concepts, net incon ller Position, Taxa l accruals, prefer nitial Public Offe anking set, Trading and lebt market. encing working ca Accruals, trade cre	Acc l ean ed r me a ttion ence r, Fo Settl pital dit,	ounting rate of return. mings, cost of external marginal cost of capital approach, net operating and Capital structure, 10 Hrs capital, term loans, blow on Public Offer, ements, Stock market requirements, Current banks, public deposits,		
Cost of Capital: equity, determining schedule. Capital structure income approach, Other imperfection (Conceptual and Long term fina debentures. Raisin Rights Issue, Priva Securities Marko quotations and Inc Working Capital assets financing p	Ber Prebag the e an tra- tra- ns as Num nce ng 1 ate 1 et: lices l – 1 polic	nefit-Cost ratio, I liminaries Cost of ne proportions, w ad cost of capita ditional position nd Capital struct merical treatme : Sources- Equ ong term financ Placement, Term Primary market s, Govt. securitie Policy and Fina cy, operating cyc its, short term loa	nternal Rate of return of debt and preference reighted average cost l: Assumptions and b. Modigliani and Mi are nt) Unit –IV ity capital, Internate e- Venture capital, I Loans, Investment B vs Secondary mark s market, Corporate on ncing: Factors influe	n, Payback period, ce, cost of retained t of capital, weight concepts, net incon ller Position, Taxa l accruals, prefer nitial Public Offe anking set, Trading and lebt market. encing working ca Accruals, trade cre	Acc l ean ed r me a ttion ence r, Fo Settl pital dit,	ounting rate of return. mings, cost of external marginal cost of capital approach, net operating and Capital structure, 10 Hrs capital, term loans, blow on Public Offer, ements, Stock market requirements, Current banks, public deposits,		

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Unit –V09 HrsContemporary topics in Finance: Reasons and Mechanics of a merger, Takeovers, Divestures,
Demergers, World monetary system, Foreign exchange markets, raising foreign currency finance,
International capital budgeting, Options market, Futures market, Warrants, Venture capital financing
framework, Indian venture capital scenario. (Conceptual treatment only)09 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Explain the features of financial system and basic principles of financial management.					
CO2	Describe the processes and techniques of capital budgeting and theories of capital structure.					
CO3	Demonstrate an understanding of various sources of long term and working capital financing					
	by organizations.					
CO4	Analyze the trends in global financial scenarios.					

Reference Books:

	1	Fundamentals of Financial Management, Prasanna Chandra, 6th Edition, 2018, McGraw Hill					
	2.	Education(India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5					
	3.	Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018,					
ſ	4.	McGraw Hill Education(India) Pvt. Ltd, ISBN: 9353162181, 9789353162184					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS.	40	
MAXIMUM MARKS FOR THE CIE THEORY			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS					
PART A						
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological

	Jniversity, Belag	gavi					
	Semester: VI						
UNIVERSAL HUMAN VALUES - II							
	Category: Institutional Elective						
	(Theory)						
Course		:	21IE6F9		CIE	:	100 Marks
Total H	<u>s: L:T:P</u> Jours	:	3:0:0 42L		SEE SEE Duration	:	100 Marks 3.00 Hours
TUTALI		•	42 L		SEE DUI AUOI	•	5.00 Hours
				Unit-I			10 Hrs
Introdu	ction-Basic	Hu	man Aspiration, it	s fulfillment through All-e	encompassing Res	oluti	on. The basic
human	aspirations	and	their fulfillment th	rough Right understanding	and Resolution, R	ight	understanding
and Re	solution are	e th	e activities of the	Self, Self is central to H	Human Existence;	All-	encompassing
Resolut	tion for a Hu	ıma	n Being, its details	and solution of problems ir	the light of Resolution	utio	1.
				Unit – II			10 Hrs
Right U	Understandi	ng ((Knowing)- Knowe	er, Known & the Process.	The domain of ri	ght	understanding
starts fi	rom understa	and	ing the human bein	ig (the knower, the experien	ncer and the doer);	and	extends up to
underst	anding natu	re/e	existence – its inter	rconnectedness and co-exis	stence; and finally	und	erstanding the
			existence (human				-
	Unit –III 08 Hrs						
Unders	Understanding Existence (including Nature). A comprehensive understanding (knowledge) about the						
existen	ce, which ce	ertai	nly includes the Na	ature. The need and the pro	cess of inner evolu	tion	(through self-
explora	tion, self-a	war	eness and self-ev	valuation)- particularly aw	vakening to activity	ities	of the Self:
Realiza	tion, Unders	stan	ding and Contemp	lation in the Self (Realizatio	on of Co-Existence	, Un	derstanding of
Harmon	ny in Natur	e a	nd Contemplation	of Participation of Human	n in this harmony	/ or	der leading to
compre	hensive kno	wle	edge about the exist	ence).			
				Unit –IV			08 Hrs
Unders	tanding Hur	nan	Being. Understand	ling the human being comp	prehensively is the	first	t step and the
theme of	of this cours	e; h	uman being as co-e	existence of the self and the	body, the activities	s and	d potentialities
of the s	elf, Reasons	foi	r harmony/contradi	ction in the self.			_
				Unit –V			08 Hrs
Unders	tanding H	uma	an Conduct, All	-encompassing Resolution	n & Holistic	Way	of Living.
Unders	tanding Hu	ma	n Conduct, Unde	rstanding different aspect	s of All-encomp	assii	ng Resolution
(unders	tanding, wi	sdo	m, science etc.), H	lolistic way of living for H	luman Being with	All-	encompassing
-	Resolution covering all four dimensions of human endeavour viz., realization, thought, behavior and work						
(partici	(participation in the larger order) leading to harmony at all levels from self to Nature and entire Existence.						
<u> </u>	•			-			
	1			the course the students wi			c Constant di
CO1			-	ration with program of its f	uiiiiment and meai	nng	of resolution
	In the com	ple	te expanse of huma	in living.			

CO2 Understand human being in depth and see how self is central to human being

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

CO3	O3 Understand existence in depth and see how coexistence is central to existence				
CO4	Understand human conduct and the holistic way of living leading to human tradition				

Ref	Reference Books				
1	A foundation course in human values and professional ethics, R. R. Gaur, R Asthana, G P Bagaria,				
	2nd revised Edition, excel books, New Delhi – 2019, ISN 978-93-87034-47-1				
2	Avartansheel Arthshastra, A Nagraj, Divya Path Sansthan, Amarkantak, India, ISBN 978-8-174-				
	46781-2				
3	Economy of Performance- a quest for social order based on non – violence, J C Kumarappa, 2010,				
5	Sarva-Seva-Sangh-Prakashan, Varanasi, India				
4	Energy and Equity, Ivan Illich, 1974, The Trinity Press, Worcester & Harper Collins, USA, ISBN,				
4	0060803274, 9780060803278				

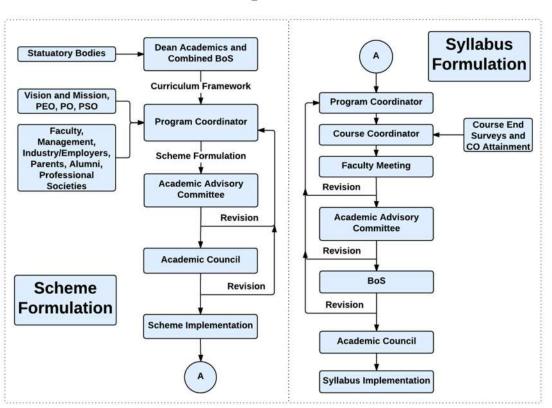
RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40		
MAXIMUM MARKS FOR THE CIE THEORY				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS					
PART A						
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Approved by AICTE,

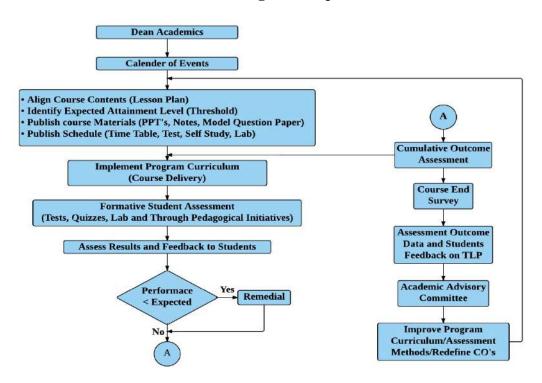
New Delhi

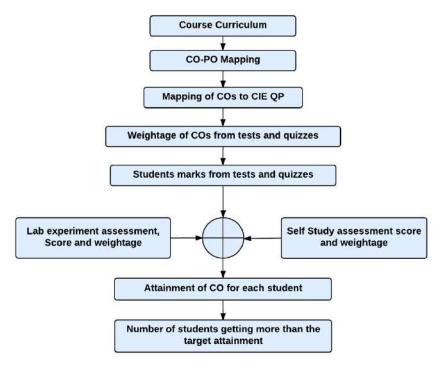
Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi


University, Bela	gavi					
			Semester: VI			
		HUMAN	MACHINE INTE	RFACE (HMI)		
			Institutional Elec			
		Indust	try Assisted Electiv	ve-BOSCH		
Course Code	:	21IE6F10		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3Hours
			Unit-I			09 Hrs
FOUNDATIONS	OI	F HMI : The Huma	n: History of User	Interface Designing	. I/	O channels, Hardware,
						Things, Psychology of
1		e				emory, processing and
		e 1		vles, elements, intera		
						Js within car and their
						Us(CAN, LIN, Most,
FlexRay, Ethernet					LC	US(CAN, LIN, MOSI,
Tiexitay, Etherniet	010)	Unit – II			09 Hrs
Automotive Hum	an_	Machine Interface				071115
				ure sets, System arc	hit	ecture Trends
				notive User Experie		
						(CIA) Besign (S) Interfaces, HMI
A · ·		•		nition in Automotiv	· · ·	
U				Automotive HMIs,		
						ls, Human-Machine
Interfaces for Auto						
			Unit –III			09 Hrs
UX and Guideline	es:					
		esign - stages, the	orv. Design thinkin	ng, UX Study, Inte	rac	tion concepts, Graphic
				•		rview, Guidelines and
		ng, OpenGL, OSG.		, 6)
		0, 1	Unit –IV			09 Hrs
HMI User Int	erf	ace: User-centere		oment process,	Bas	
	MI:			and HTML,		CSS, JavaScript.
HMI on Mobile	F	our Principles of		· · · · · · · · · · · · · · · · · · ·		e HMIs, Mobile HMI
Development Suite		1	C	,		,
•			Unit –V			09 Hrs
HMI Control Sy	ste	ms: Introduction	to Voice-Based H	MI, Gesture-Based	ΙH	MI, Sensor-Based UI
controls.						
Haptics in Autor	not	ive HMI: Kinesth	etic Feedback Sys	tems, Tactile Feed	bac	k Systems, Haptics in
		comotive Use-Cases	•	,		• • 1
				Case - Study: Bosc	h's	HMI validation tool -
Graphics Test Syst			,	5		
1 2			, Performance Prof	iling, Use Cases.		
	- 1			U/		

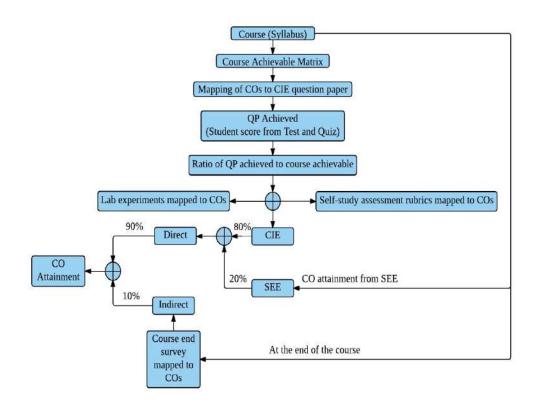
Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

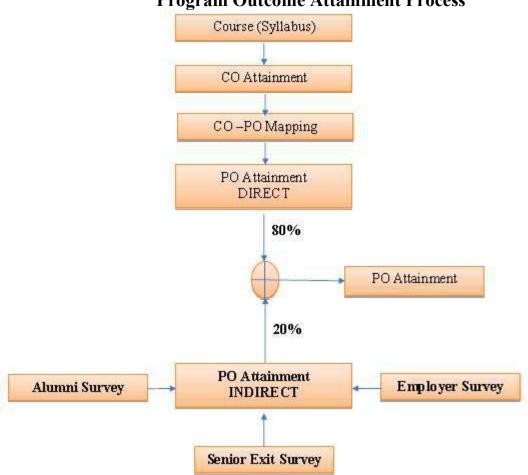
Course Outcomes: After completing the course, the students will be able to:-					
CO1	Understanding the application of HMIs in various domain				
CO2	Comparison of various communication protocols used in HMI development.				
CO3	Apply and Analyze the car multimedia system free software and hardware evolution				
CO4	Design and evaluate the graphic tools and advanced techniques for creating car dashboard				
	multimedia systems				
Refe	Reference Books				
1	Shuo gao, Shuo Yan, Hang Zhao, Arokia Nathan "Touch based HMI; Principles and Applications"				
	Springer Nature Switzerland AG, 1st Edition.				
2	Robert Wells, "Unity 2020 by Example: A Project based guide to building 2D, 3D augumente				
2	reality and Virtual reality games from sratch" Packt Publishing ltd , Edition 2020.				
3	Ryan Cohen, Tao Wang, "GUI Design and Android Apps" Apress, Berkley, CA,2014.				


RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		


RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
PART A						
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Curriculum Design Process


Academic Planning and Implementation



Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

Go, change the world

RV College of Engineering Autonomous Institution Affiliated to Visvesvarava Technological

University, Belagavi

Approved by AIGTE. New Delhi

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutionsin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.