

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in PRODUCT DESIGN AND MANUFACTURING

DEPARTMENT OF MECHANICAL ENGINEERING

INNER FRONT COVER PAGE

College Vision & Mission (To be included from our side)

RV COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in PRODUCT DESIGN AND MANUFACTURING

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

Program Outcomes (PO)

M. Tech. in Product Design and Manufacturing graduates will be able to:

- PO1: Independently carry out a research / investigation and development work to solve practical problems related to product design & manufacturing.
- PO2: Write and present a substantial technical report / document in the field of product design & manufacturing.
- PO3: Demonstrate a degree of mastery over the areas of product design. The mastery would be at a level higher than the requirements in the bachelor's in Mechanical Engineering
- PO4: Use modern tools for the design and analysis of static and dynamic systems and mechanisms.
- PO5: Adopt safety, ethical and environmental factors in product design and processes
- PO6: Perform in multidisciplinary teams with sound interpersonal and management skills with a commitment to lifelong learning

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	CE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	EC Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PHY	Physics		
21.	CHY	Chemistry		
22.	MAT	Mathematics		

INDEX

	I Semester						
Sl.	Course Code	Course Title	Page No.				
No.							
1	18MAT11A	Applied Mathematics	1				
2	18MPD12	Product Design & Development	3				
3	18MPD13	Finite Element Analysis	5				
4	18HSS14	Professional Skills Development	7				
5	18XXX1AX	Elective - A	9-13				
6	18XXX1BX	Elective - B	15-19				
		GROUP A: CORE ELECTIVES					
1.	18MPD1A1	Product Design for Quality	9				
2.	18MMD1A2	Tribology	11				
3.	18MCM1A3	Design of Hydraulic & Pneumatic Systems	13				
		GROUP B: CORE ELECTIVES					
1.	18MPD1B1	Product Data Management	15				
2.	18MCE1B2	Intelligent Systems	17				
3.	18MCM1B3	Non-Traditional Machining & Testing	19				

	II Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	18MMD21	Robust Design	21				
2.	18MPD 22	Product Life Cycle Management	23				
3.	18IM 23	Research Methodology	25				
4.	18MPD24	Minor Project	27				
5.	18XXX2CX	Elective - C	29-33				
6.	18XXX2DX	Elective -D	35-39				
7.	18XXX2GXX	Global Elective	41-59				
		GROUP C: CORE ELECTIVES					
1.	18MPD 2C1	Creative Engineering	29				
2.	18MPD 2C2	Design for Manufacture and Assembly	31				
3.	18MPD 2C3	Reliability Engineering	33				
		GROUP D: CORE ELECTIVES					
1.	18MPD 2D1	Product Cost Analysis & Optimization	35				
2.	18MCM2D2	Robotics & Automation	37				
3.	18MPD 2D3	Systems Engineering	39				
		GROUP G: GLOBAL ELECTIVES					
1.	18CS2G01	Business Analytics	41				
2.	18CV2G02	Industrial & Occupational Health and Safety	43				
3.	18IM2G03	Modelling using Linear Programming	45				
4.	18IM2G04	Project Management	47				
5.	18CH2G05	Energy Management	49				
6.	18ME2G06	Industry 4.0	51				
7.	18ME2G07	Advanced Materials	53				
8.	18CHY2G08	Composite Materials Science and Engineering	55				
9.	18PHY2G09	Physics of Materials	57				
10.	18MAT2G10	Advanced Statistical Methods	59				

RV COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF MECHANICAL ENGINEERING M.Tech in PRODUCT DESIGN AND MANUFACTURING

	FIRST SEMESTER CREDIT SCHEME							
SI.				Credit Allocation				
No.	Course Code	Course Title	BoS	L	Т	Р	Total Credits	
1	18 MAT11A	Applied Mathematics	MAT	4	0	0	4	
2	18 MPD12	Product Design & Development	ME	4	0	1	5	
3	18MPD13	Finite Element Analysis	ME	4	0	1	5	
4	18HSS14	Professional Skills Development	HSS	0	0	0	0	
5	18XXX1AX	Elective – A	ME	3	1	0	4	
6	18XXX1BX	Elective – B	ME/CSE	4	0	0	4	
	Total number of Credits				1	2	22	
	Total Nu	umber of Hours / Week						

	SECOND SEMESTER CREDIT SCHEME							
SI.				Credit Allocation				
No.	Course Code	Course Title	BoS	L	Т	Р	Total Credits	
1	18 MPD 21	Robust Design	ME	4	0	1	5	
2	18 MPD 22	Product Life Cycle Management	ME	3	1	0	4	
3	18 IM 23	Research Methodology	IEM	3	0	0	3	
4	18MPD24	Minor Project	ME	0	0	2	2	
5	18XXX2CX	Elective – C	ME	4	0	0	4	
6	18XXX2DX	Elective – D	ME	4	0	0	4	
7	18XXX2GXX	Global Elective	Respective boards	3	0	0	3	
	Total number of Credits				1	3	25	
	Total Nur	nber of Hours / Week						

	I Semester				
	GROUP A: CORE ELECTIVES				
Sl. No.	Sl. No. Course Code Course Title				
1.	18MPD1A1	Product Design for Quality			
2.	18MMD1A2	Tribology			
3.	18MCM1A3	Design of Hydraulic & Pneumatic Systems			
		GROUP B: CORE ELECTIVES			
1.	1. 18MPD1B1 Product Data Management				
2.	18MCE1B2	Intelligent Systems			
3.	18MCM1B3	Non-Traditional Machining & Testing			
		II Semester			
		GROUP C: CORE ELECTIVES			
1.	18 MPD 2C1	Creative Engineering			
2.	18 MPD 2C2	Design for Manufacture and Assembly			
3.	18 MPD 2C3	Reliability Engineering			
	GROUP D: CORE ELECTIVES				
1.	18 MPD 2D1	Product Cost Analysis & Optimization			
2.	18 MCM2D2	Robotics & Automation			
3.	18 MPD 2D3	Systems Engineering			

	GROUP E: GLOBAL ELECTIVES					
Sl. No.Host DeptCourse CodeCourse Title			Course Title	Credits		
1.	CS	18CS2G01	Business Analytics	3		
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	3		
3.	IM	18IM2G03	Modeling using Linear Programming	3		
4.	IM	18IM2G04	Project Management	3		
5.	СН	18CH2G05	Energy Management	3		
6.	ME	18ME2G06	Industry 4.0	3		
7.	ME	18ME2G07	Advanced Materials	3		
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	3		
9.	PHY	18PHY2G09	Physics of Materials	3		
10.	MAT	18MAT2G10	Advanced Statistical Methods	3		

Semester: I								
	APPLIED MATHEMATICS							
(C	om	mon to MPD,M	MD,MCM,MPE,MBT,MBI,MCH,MST,	MH	Γ)			
Course Code	:	18MAT11A	CIE Marks	:	100			
Credits L: T: P	:	4:0:0	SEE Marks	:	100			
Hours	:	47L	SEE Duration	:	3 hrs			

Unit-I	
Statistics:	09 Hrs
Method of least squares, fitting of straight line, linearization of nonlinear laws, curve fitting by	
polynomials, correlation, coefficient of correlation, lines of regression, Spearman rank	
correlation.	
Unit-II	
Probability distributions:	09 Hrs
Introduction to probability, Random variables-discrete and continuous random variables,	
important measures and moment generating functions, Standard distributions-Binomial,	
ExpTWOntial, Normal and Gamma distributions.	
Unit –III	
System of linear equations and eigen value problems:	09 Hrs
System of linear equations-LU decomposition and Gauss-Jordan method, Eigen value	
problems-bounds on eigen values, Power method and Inverse Power method, Eigen values and	
eigen vectors of real symmetric matrices-Jacobi method.	
Unit –IV	10 Hrs
Numerical solution of differential equations:	
Boundary value problems (BVP's)-finite difference method for linear and nonlinear problems,	
Shooting method and Galerkin method. Finite differences-implicit and explicit scheme, Finite	
difference methods for parabolic, elliptic and hyperbolic partial differential equations, Finite	
element method and simple problems.	
Unit –V	
Engineering optimization:	10 Hrs
Engineering applications of optimization, statement of an optimization problem-design vector,	
design constraints, constraint surface, objective function and objective function surface.	
Multivariable optimization with inequality constraints-Kuhn-Tucker conditions, Constraint	
qualification, Genetic operators, Neural-Network-based Optimization. Optimization of Fuzzy	
systems.	

Course	Course Outcomes: After going through this course the student will be able to					
CO1 Identify and interpret the fundamental concepts of statistics, distributions, linear a differential equations and entimination emissions field engineering.						
-	differential equations and optimization arising in various field engineering					
CO2	Apply the knowledge and skills of statistical/numerical/optimization techniques to solve					
	problems of least squares, probability distributions, linear equations, eigen value					
	problems and differential equations					
CO3	Analyze the physical problem to establish a statistical / mathematical model and use an					
	appropriate method to solve and optimize the solution					
CO4	Distinguish the overall mathematical knowledge gained to demonstrate the problems of					
	least squares, probability distributions, linear equations, eigen value problems,					
	differential equations and optimization arising in practical situations					

Refe	Reference Books:					
1	Seymour Lipschutz and Marc lars Lipson, Theory and Problems of probability, Schaum's Outline					
	Series, 2 nd edition, ISBN: 0-07-118356-6					
2	S. S. Sastry, Introductory method of numerical analysis, Prentice-Hall India Pvt. Ltd. 4 th edition, 2009, ISBN : 81-203-1266-X					
3	M K Jain, S. R. K. Iyengar, R. K. Jain; Numerical methods for scientific and engineering computation; New Age International Publishers; 6 th edition; 2012; ISBN-13:978-81-224-2001					
4	Singiresu S. Rao, Engineering Optimization Theory and Practice, 3rd edition, New Age International (P)Ltd., ISBN: 81-224-1149-5.					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I								
	PRODUCT DESIGN & DEVELOPMENT							
			(Theory & Practice)					
Course Code	:	18MPD12		CIE Marks	:	100+50		
Credits L: T: P	:	4:0:1		SEE Marks	:	100+50		
Hours	:	48L +24P		SEE Duration	:	3 hrs		

Unit – I	
 Design as a Discipline: Mass production and professional designers-quality of life- get more, pay less- cost reduction and higher sophistication- products of dynamic culture. Product life cycle: Various stages of product life cycle- design stage-manufacturing and marketing/ implementation- usage and maintenance- the death of a product. Design phases: Design methodology- formulation- idea rack- short listing and selecting TWO idea- detailing- prototype preparation. 	08 Hrs
Unit – II	
 User centred Design survey: Importance on problem formulation, primary focus on people, target domain, clients and users, interaction, integrated approach, kinds of knowledge, style and peer group, user centred feedback. Need statement and Design requirements: Need statement, guidance for designers, independent of physical embodiment, major requirements and articulation. Specifications and Constraints: Quantitative and qualitative specifications and constraints, design space, refinement of design space, side stepping, various approaches like engineering, architectural, hybrid. 	10 Hrs
Unit – III	
 Idea-Rack: Seeking several concepts, Usability considerations: flexibility, interdisciplinary design and interaction, design activities like original design, adaptive design, and variant design. Tools helpful in generating ideas like deep encounter, analogy, reversal, fusion of opposites, brainstorming, realizing new constraints. Optimization configuration Exploration: Conventional optimization vs configuration optimization, thumb rules, yield to nature's forces, light weight components, use of standard parts, design for manufacturing, material selection. 	10 Hrs
Unit – IV	
Simplicity, Complexity and Richness: Axiom and KISS, value consideration, tools for simplification, simple and complex, richness, value for complexity. Decision Making: Indecision is a negative act, delegating responsibilities, decisions on scanty data, important elements of decision making like analysis, synthesis, emotions, intuitions, risk and management of failures.	10 Hrs
	10.11
Uncoupled, Decoupled and coupled designs: Functional domain and functional requirements, physical domain and design parameters, mathematical representation like design matrix and coupled design, uncoupled, decoupled. Additional expenditure. Products static and Dynamic Societies: Form, context and misfits, products of static societies, products of dynamic societies, products of dynamic cultures, short comings, comparison and middle path.	10 Hrs
Unit – VI (Lab Components)	24 Hrs
 Understanding of various CAD commands and creating simple objects Understanding of holes, cuts and model tree relations Creation shafts, rounds, chamfers and slots 	

- 4. Sketch Tools & Datum planes
- 5. Creation of objects by revolved features, patterns and copies, sweeps and blends
- 6. Creation of engineering drawing details such as dimensioning, sectional views, adding esthetics
- 7. Assembling of part models using constraints
- 8. Assembly operations -part modifications, adding another assembly features -display.

Course Ou	Course Outcomes: After going through this course the student will be able to	
CO1	Understand the design phases	
CO2	Formulate need statement and specifications	
CO3	Apply decision making statement	
CO4	Learn Computer Aided Modelling concepts.	

Re	Reference Books:		
1	Prashant Kumar, "Product Design", PHI Learning Pvt. Ltd., 2012, ISBN:978-81-203-4427-3		
2	Karl.T.Ulrich, Steven D Eppinger, "Product Design and Development", McGrawHill ,2000, ISBN-		
	13: 978-0078029066		
3	A C Chitale and R C Gupta, "Product Design and Manufacturing", PH1, - 3rd Edition, 2003. ISBN-		
	13: 978-8120342828.		
4	Sham Tickoo, "SOLIDWORKS 2018 for Designers", CADCIM Technologies,16th revised Edition		
	Paperback, 2018.		

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Continuous Internal Evaluation (CIE) for Practical: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks

		Sem	ester: I		
		FINITE ELEM	IENT ANALYSIS		
		(Theory a	& Practice)		
Course Code	:	18MPD13	CIE Marks	:	100+50
Credits L: T: P	:	4:0:1	SEE Marks	:	100+50
Hours	:	48L+24P	SEE Duration	:	3 hrs

PART A (Theory)	
Unit – I	
Introduction: Introduction: Need for numerical methods to solve engineering problems – mathematical modeling – discrete and continuum modeling - relevance and scope of finite element methods – engineering applications of FEA. Weighted residual methods – Rayleigh Ritz method –application to bar element and beam elements	09 Hrs
Unit -II	
TWO Dimensional Problems: Natural co-ordinates, Elemental equations for bar element, quadratic element, truss element, nodal approximation – development of shape functions –element matrices and vectors – example problems	09 Hrs
Unit -III	
Two Dimensional Problems : Three noded triangular elements – four noded rectangular elements – higher order elements – Lagrange approach - iso-parametric, super-parametric, sub-parametric elements	10 Hrs
Unit-IV	
 Dynamic Problems : Formulation of dynamic problems, consistent and lumped mass matrices for bar and beam elements, evaluation of Eigenvalue and Eigen vector (characteristic polynomial technique) Heat Transfer Problems: 1-D element, steady state heat transfer, TWO dimensional heat 	10 Hrs
conduction, TWO dimensional heat transfer in thin fins, problems	
Unit-V	
Finite element Modeling of Machining considerations : formulation, meshing, boundary conditions, material modeling, chip separation-chip breakage, high speed machining modeling, 3D machining modeling. Beams: Finite element formulation, evaluation of shear force and bending moment for various loading conditions, problems	10 Hrs
PART B (Practical)	
Part- I	
Introduction to ANSYS, element library, applicability for engineering analysis, analysis of b trusses, beams and shafts, static analysis of 2D plates – subject to plane load, bending load a with internal pressure	
Part-II	
Dynamic and Thermal Analysis – Normal modal analysis of beams, bars and truss elements harmonic analysis of beam structures, conductive, convective and radiative heat transfer procoupled field analysis	

Course Outcomes: After going through this course the student will be able to		
CO1	Understand the fundamentals of finite element methods	
CO2	Develop the knowledge to analyze structures in static and dynamic conditions	
CO3	Assess the numerical techniques for solving engineering problems	
CO4	Formulate finite element model to implement industrial projects	

Reference Books:

Ittle	Tence Dooks.
1	Hutton, Fundamentals of FEM, Tata McGraw Hill education Pvt. Ltd, 2005, ISBN:
	0070601224
2	Daryl L Logan, "First Course in Finite element methods', 5th Edition, Thomson Brooks, 2011,
	ISBN : 10:0495668257
3	T R Chandrupatla, A D Belegondu, 'Introduction to FE in engineering", 3rd Edition, Prentice
	Hall, 2004
4	Angelos.P.Markopoulos, Finite Element method in machining processes, Srpinger series, 2013,
	ISBN: 978-1-4471-4330-7

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Continuous Internal Evaluation (CIE) for Practical: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks

	Semester: I					
	PROFESSIONAL SKILL DEVELOPMENT					
			(Common to all Program	ns)		
Course Code	:	18HSS14		CIE Marks	:	50
Credits:L: T: P	:	3:0:0		SEE Marks	:	Audit Course
Hours	:	18L				

Unit – I	03 Hrs
Communication Skills: Basics of Communication, Personal Skills & Presentation	Skills -
Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC ana	lysis.
Resume Writing: Understanding the basic essentials for a resume, Resume writing tips Guid	delines for
better presentation of facts. Theory and Applications.	
Unit - II	08 Hrs
Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction	decimals,
digit places etc. Simple equations - Linear equations, Elimination Method, Substitution	n Method,
Inequalities.	
Reasoning – a. Verbal - Blood Relation, Sense of Direction, Arithmetic & Alphabet.	
b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification.	
Analytical Reasoning - Single & Multiple comparisons, Linear Sequencing.	
Logical Aptitude - Syllogism, Venn-diagram method, Three statement syllogism, Dedu	ictive and
inductive reasoning. Introduction to puzzle and games organizing information, parts of an	argument,
common flaws, arguments and assumptions.	-
Verbal Analogies/Aptitude - introduction to different question types - analogies, Gramm	ar review,
sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc	. Reading
Comprehension, Problem Solving	
Unit - III	03 Hrs
Interview Skills: Questions asked & how to handle them, Body language in interview, and l	
Conversational and Professional, Dress code in interview, Professional attire and Grooming, I	
and technical interviews, Mock interviews - Mock interviews with different Panels. Practice	e on Stress
Interviews, Technical Interviews, and General HR interviews	
Unit - IV	02 Hrs
Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity	y, gender
sensitivity; capability and maturity model, decision making ability and analysis	for brain
storming; Group discussion(Assertiveness) and presentation skills	
Unit - V	07 Hrs
Motivation: Self-motivation, group motivation, Behavioral Management, Inspirati	onal and
motivational speech with conclusion. (Examples to be cited).	
Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.	
Course Outcomes: After going through this course the student will be able to:	

CO1 Develop professional skill to suit the industry requirement.	
---	--

CO2	Analyze problems using quantitative and reasoning skills
-----	--

- **CO3** Develop leadership and interpersonal working skills.
- **CO4** Demonstrate verbal communication skills with appropriate body language.

Refer	Reference Books:		
1.	The 7 Habits of Highly Effective People, Stephen R Covey, 2004 Edition, Free Press, ISBN: 0743272455		
2.	How to win friends and influence people, Dale Carnegie, 1 st Edition, 2016, General Press, ISBN: 9789380914787		
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204		
4.	Ethnus, Aptimithra: Best Aptitude Book, 2014 Edition, Tata McGraw Hill ISBN: 9781259058738		

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity				
I After 9 hours of training program, students are required to undergo a test set for a t marks. The structure of the test will have two parts. Part A will be quiz based evalua marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 n total marks for this phase will be $50 (15 + 35)$.					
II	I Similarly students will have to take up another test after the completion 18 hours of training The structure of the test will have two parts. Part A will be quiz based evaluated for 15 mark and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The tota marks for this phase will be 50 (15 + 35).				
	FINAL CIE COMPUTATION				
Continuous Internal Evaluation for this course will be based on the average of the score attained through the two tests. The CIE score in this course, which is a mandatory requirement for the award of degree, must be greater than 50%. Needless to say the attendance requirement will be the same as in any other course.					

Semester: I							
PRODUCT DESIGN FOR QUALITY							
	(Group A: Core Elective)						
Course Code	:	18MPD1A1	CIE Marks	:	100		
Credits L: T: P	:	3:0:0	SEE Marks	:	100		
Hours	:	36L	SEE Duration	:	3 hrs		

Unit	_	I
------	---	---

Design for quality : Taguchi's Approach to Quality, On-line and Off-line Quality Control, ,	07 Hrs
Quality Loss Function, System Design, Parameter Design, Design for Environment, Human	
factor design, Design for casting and forging, Causes of Variation.	

Unit – II	
Quality Function Deployment –Introduction, QFD team, benefits, voice of customer,	08 Hrs
organisation of information, house of quality, QFD process	
Design of Experiments: Basic methods- Two factorial experiments-Extended method	
reduced tests and fractional experiments, orthogonality, base design method, higher	
dimensional fractional factorial design	
Unit – III	

Failure Mode Effect Analysis : Refining geometry and layout, Failure tree analysis, Defects	07Hrs
and failure modes, Techniques of failure analysis, Field inspection of failure, Macroscopic	
and Microscopic examination, Additional tests, Analysis of data and report of failure.	

Unit	-IV

Statistical Consideration In Product Design and Development		
Frequency distributions and Histograms- Run charts -stem and leaf plots- Pareto diagrams-		
Cause and Effect diagrams-Box plots- Probability distribution- Statistical Process control-		
Scatter diagrams – Multivariable charts		
Unit – V		
Six Sigma – Overview, Basics and history of the approach for six sigma, Methodology and	07 Hrs	

Six Sigma – Overview, Basics and history of the approach for six sigma, Methodology and	07 Hrs
focus, the application of Six Sigma in production and in service industries, Relationship of	
Six Sigma and Lean Management, linking Six Sigma project goals with organizational	
strategy	

Course Outcomes: After going through this course the student will be able to				
CO1 Identify the importance of various principles of quality in product or service				
CO2	Use statistical tools in product development			
CO3	Apply basic risk analysis and experiment design techniques into practical cases			
CO4	Demonstrate knowledge about Six sigma, Design of Experiments			

Reference Books:

1	Total quality Management Kevin Otto & Kristin Wood, Product Design Techniques in Reverse Engineering and New Product Development, Pearson Education (LPE), 2001. ISBN10: 0130212717				
2	Karl T. Ulrich, Steven D. Eppinger, Product Design and Development, TATA McGraw- HILL- 3rd Edition, 2003. ISBN:13: 978-0073404776				
3	James R. Evens, William M Lindsay, The Management and control of Quality, 6th edition- South-Western Publishers ISBN: 0314062157				
4	George E Dieter Engineering Design, 3 rd Edition,McGraw Hill International Edition, ISBN: 0-07-116204-6				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
	TRIBOLOGY						
	(Group A: Core Elective)						
Course Code	:	18MMD1A2		CIE Marks	:	100	
Credits L: T: P	:	3:1:0		SEE Marks	:	100	
Hours	:	36L		SEE Duration	:	3 hrs	

Unit – I	
Introduction to Tribology: Introduction, Friction, Wear, Wear Characterization, Regimes of lubrication, Classification of contacts, lubrication theories, Effect of pressure and temperature on viscosity. Newton's Law of viscous forces, Flow through stationary parallel plates. Hagen's poiseuille's theory, viscometers. Numerical problems, Concept of lightly loaded bearings, Petroff's equation, Numerical problems	06 Hrs
Unit – II	10 Hrs
Hydrodynamic Lubrications: Pressure development mechanism. Converging and diverging films and pressure induced flow. Reynolds's 2D equation with assumptions. Introduction to idealized slide bearing with fixed shoe and Pivoted shoes. Expression for load carrying capacity. Location of center of pressure, effect of end leakage on performance, Numerical problems.	
Journal Bearings: Introduction to idealized full journal bearings. Load carrying capacity of idealized full journal bearings, Somerfield number and its significance, partial bearings, Comparison between lightly loaded and heavily loaded bearings, effects of end leakage on performance, Numerical problems.	
Unit – III	
Hydrostatic Bearings: Hydrostatic thrust bearings, hydrostatic circular pad, annular pad, rectangular pad bearings, expression for discharge, load carrying capacity and condition for minimum power loss, numerical problems	08 Hrs
Antifriction bearings: Advantages, selection, nominal life, static and dynamic load bearing capacity, probability of survival, equivalent load, cubic mean load, bearing mountings. Unit – IV	
EHL Contacts: Introduction to Elasto - hydrodynamic lubricated bearings. Introduction to 'EHL' constant. Grubin type solution	06 Hrs
Porous Bearings: Introduction to porous and gas lubricated bearings. Governing differential equation for gas lubricated bearings, Equations for porous bearings and working principal, Fretting phenomenon and its stages.	
Unit – V	
Magnetic Bearings: Introduction to magnetic bearings, Active magnetic bearings. Different equations used in magnetic bearings and working principal. Advantages and disadvantages of magnetic bearings, Electrical analogy, Magneto-hydrodynamic bearings	06 Hrs

Course Outcomes: After going through this course the student will be able to:				
CO1	fundamentals of tribology, lubricants and methods of lubrication			
CO2	Analyze bearings for load carrying capacity, frictional force and power loss			
CO3	Illustrate the different modes of lubrication system for various applications.			
CO4	Design the different bearing system such as antifriction bearings, magnetic bearings and			
	porous bearings for various applications			

Re	ference Books:
1	Radzimovsky, Lubrication of Bearings - Theoretical principles and design, Oxford press Company,
	2000
2	1. Dudley D.Fuller ,Theory and practice of Lubrication for Engineers, New YorkCompany.1998
3	Moore ,Principles and applications of Tribology, Pergamon press, 1975
4	G W Stachowiak, A W Batchelor, Engineering Tribology, Elsevier publication 1993.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I					
	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS				
		(Group	A: Core Elective)		
Course Code	:	18MCM1A3	CIE Marks	:	100
Credits L: T: P	:	3:1:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Cmt – 1	
Introduction to Hydraulic System: Introduction, Basic hydraulic system, classification of	07 Hrs
hydraulic motors, hydraulic pumps, Performance of hydraulic motors, Hydraulic actuators,	
types of hydraulic actuators.	
Control Components in Hydraulic Systems: Introduction, Direction control valves,	
Solenoid actuated valve, Pilot operated valve, Rotary spool DCV, Pressure control valves,	
Hydraulic fuse, Flow control valve, graphic symbols.	
Unit – II	
Maintenance of Hydraulic Systems: Prime function of hydraulic fluids, desirable properties	06 Hrs
of hydraulic fluids, general types of fluids, factors affecting the selection of fluids, sealing	
devices, reservoir systems, filters and strainers, heat exchangers, pressure switch, wear of	
moving parts, troubleshooting of hydraulic systems.	
Unit – III	
Hydraulic circuit Design and Analysis: Control of a single acting cylinder, double acting	07 Hrs
cylinder, regenerative circuit, counter balance valve applications, Hydraulic cylinder	
sequencing circuits, automatic cylinder reciprocating systems, Locked cylinder using pilot	
check valves, cylinder synchronizing circuits, fail safe circuits.	
Unit – IV	
Pneumatic Concepts: Introduction, comparison of hydraulics/pneumatics/and electrical	08 Hrs
system, air compressor system, types of compressors, compressed air behavior, pneumatic	
actuators, direction control valves, building a pneumatic circuits, application of logic valves.	
Design of Pneumatic Circuits: Speed control circuits, Application of time delay valves.	
Position sensing in pneumatic cylinders, roller lever valve, pressure sensing in pneumatic	
circuits, pressure sequence valve, two cylinder movement, cascade method.	
Unit – V	
Electro-Pneumatics: Introduction, Pilot operated solenoid valve, Electrical connection to the	08 Hrs
solenoid, Electro-pneumatic circuit, Electrical limit switches and proximity switches, Relays,	00 1115
Solenoid, PE converter, Concept of latching.	
Servo System and PLC Applications in Pneumatics: Closed loop control with servo	
system, Hydro-mechanical servo system, Electro-hydraulic servo system, Conventional valve	
vs proportional valve, Proportional valve in hydraulic circuits, characteristics of proportional	
valve and servo valve. PLC application in fluid power, logic in ladder logic diagram and	
Mnemonics, Timer- on delay and off delay.	
whemomes, riner on delay and on delay.	

Course Outcomes: After going through this course the student will be able to:					
CO1	Describe the constructional features of hydraulic and pneumatic components				
CO2	Apply hydraulic and pneumatic controls in the design of automated controls				
CO3	Evaluate the design of hydraulic and pneumatic compTWOnts for building a circuit				
CO4	Design the hydraulic and pneumatic based systems for industrial applications.				

I

Ref	erence Books:
1	S Ilango, V Soundararajan, Introduction to Hydraulics and Pneumatics, PHI Publication, ISBN- 978-81-203-3079-5.
2	Jagadeesha T, Hydraulics and Pneumatics, I K International Publication, ISBN: 978-93-84588- 90-8
3	James L Johnson, Introduction to fluid power, Cengage Learning, first edition 2003, ISBN- 981- 243-661-8
4	R Srinivasan, Hydraulic and pneumatic controls, Tata McGraw hill, second edition,2010 ISBN – 978-81-8209-138-2

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: I			
	PRODUCT DATA MANAGEMENT					
	(Group B: Core Elective)					
Course Code	:	18MPD1B1	C	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SI	EE Marks		100
Hours	:	48L	SI	EE Duration	:	3 hrs

Unit – I

Unit – I	
Centralized systems: Client Server Systems, Parallel Systems, Distributed Systems,	10 Hrs
Network Types, Parallel Database, Distributed Database, Security and Integrity,	
Standardization views.	
Product Data Management: Complexity in Product Development, General Description of	
PDM Basic functionality of PDM: Information architecture, PDM System architecture,	
Applications used in PDM systems. Trends in PDM	
Unit – II	
Product life cycle management - Need for PLM, Components of PLM, Product Data and	10 Hrs
Product workflow, Drivers for Change, The PLM Strategy, Developing a PLM Strategy, A	
Five-step Process	
Unit – III	
Document Management Systems: Document management and PDM, Document life cycle,	10 Hrs
Content Management, Document management and related technologies, Document	
management resources on the Internet Workflow Management in PDM: Structure	
Management, Engineering Change Management, Release Management, Version	
Management, Configuration Management	
Unit – IV	1
Creating Product Structures: Part centric approach, CAD centric approach, Product	08 Hrs
Structure configuration, Managing Product Structures, PDM resources on the Internet.	
¥7 4/ ¥7	
Unit –V	40.77
PDM Implementation Case Studies: Matrix One, Team Center, Windchill, Enovia.	10 Hrs
Standards in PDM, CM, SCM and CMM.	

Course Outcomes: After going through this course the student will be able to:				
CO1	Understanding the Product data base systems			
CO2	Select the Product data base systems based on material and product			
CO3	Analyzing the Product data base and Product life cycle for new products			
CO4	Evaluate the parameters for Product data base considerations based on process			

Reference Books:

1	Implementing and Integrating Product Data Management and Software Configuration Management -
	20 - Ivica Cmkovic Ulf Asklund - Annita Persson Dahlqvist - Archtech House Publishers.
2	Product Data Management - Rodger Burden - Publisher: Resource Publishing- ISBN-10:
	0970035225, ISBN-13: 978-0970035226 – 2003.
3	Windchill 8.0 – PDM Link User's Guide- Parametric Technology Corporation (PTC),2008
4	The AutoCAD Database Book - Accessing and Managing CAD Drawing Information - Galgotia
	Publications - Third Edition

٦

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

		Seme	ester I		
		INTELLIGE	NT SYSTEMS		
		(Group B: C	Core Elective)		
		(Common to CSE	C, MPD, MD, CIM)		
Course Code	:	18MCE1B2	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	46L	SEE Duration	:	3 hrs

Unit – I	
Overview of Artificial Intelligence: Artificial Intelligence and its Application areas;	09 Hrs
Knowledge Representation and Search: The Predicate Calculus: The Propositional	
Calculus, The Predicate Calculus, Using Inference Rules to Produce Predicate Calculus	
Expressions, Application: A Logic-Based Financial Advisor;	
Structures and strategies for state space search: Introduction, Structures for state	
space search ,Strategies for State Space Search, Using the State Space to Represent	
Reasoning with the Predicate Calculus; And/Or Graphs.	
Unit – II	
Heuristic Search: Introduction, Hill Climbing and Dynamic Programming, The Best-	09 Hrs
First Search Algorithm, Admissibility, Monotonicity and Informedness, Using	
Heuristics in Games, Complexity Issues.	
Control and Implementation of State Space Search: Introduction, Recursion-Based	
Search, Production Systems, The Blackboard Architecture for Problem Solving.	
Unit – III	
Other Knowledge Representation Techniques: Semantic Networks, Conceptual	09 Hrs
Dependencies, Scripts and Frames, Conceptual Graphs.	
Knowledge Intensive Problem Solving : Overview of Expert System Technology,	
Rule-Based Expert Systems, Model-Based, Case Based, and Hybrid Systems	
Planning: Introduction to Planning, Algorithms as State-Space Search, Planning graphs.	
Unit – IV	
Automated Reasoning: Introduction to Weak Methods in Theorem Proving, The	09 Hrs
General Problem Solver and Difference Tables, Resolution Theorem Proving;	
Uncertain Knowledge and Reasoning:	
Introduction to Uncertainty, Inference using Full-Joint Distribution, Independence,	
Bayes' Rule and its use.	
Representing Knowledge in Uncertain Domain:	
Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions,	
Exact Inference in Bayesian Network, Approximate Inference in Bayesian Network	
Unit –V	40.77
Introduction to Learning: Forms of Learning: Supervised learning, Unsupervised	10 Hrs
Learning, Semi-Supervised and Reinforcement Learning; Parametric Models & Non-	
Parametric Models, Classification and Regression problems	
Artificial Neural Networks: ANN Structures, Single Layer feed-forward neural	
networks, Multi-Layer feed-forward neural networks, Learning in multilayer networks, networks.	
Artificial Intelligence Current Trends : The Science of Intelligent Systems, AI:	
Current Challenges and Future Directions;	

Course	e Outcomes: After going through this course the student will be able to:			
CO1	Explore various Artificial Intelligence problem solving techniques.			
CO2	Identify and describe the different AI approaches such as Knowledge representation, Search strategies, learning techniques to solve uncertain imprecise, stochastic and nondeterministic nature in AI problems.			
CO3	Apply the AI techniques to solve various AI problems.			
CO4	Analyze and compare the relative challenges pertaining to design of Intelligent Systems.			

Re	ference Books
1.	George F Luger, Artificial Intelligence – Structures and Strategies for Complex problem Solving, 6 th Edition, Pearson Publication, 2009, ISBN-10: 0-321-54589-3, ISBN-13: 978-0-321-54589-3
2.	Stuart Russel, Peter Norvig, Artificial Intelligence A Modern Approach, 3 rd Edition, Pearson Publication, 2015, ISBN-13: 978-93-325-4351-5
3.	Elaine Rich, Kevin Knight, Artificial Intelligence, 3 rd Edition, Tata McGraw Hill, 2009, ISBN-10: 0070087709, ISBN-13: 978-0070087705
4.	Grosan, Crina, Abraham, Ajith, Intelligent Systems-A Modern Approach, Springer-Verlag Berlin Heidelberg 2011, ISBN 9783642269394, 2011.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I					
NON TRADITIONAL MACHINING & TESTING					
		(0	Group B: Core Elective)		
Course Code	:	18MCM1B3	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	48L	SEE Duration	:	3 hrs

Unit – I	
Introduction : Need for unconventional machining processes, classification of non-traditional	08 Hrs
machining processes.	
Abrasive Jet Machining (AJM): Abrasive Jet Machining Setup – Gas propulsion System,	
Abrasive feeder, Machining Chamber, AJM Nozzle; Parametric Analysis – Stand-off-	
distance, Abrasive flow rate, Nozzle pressure, Mixing ratio; Process Capabilities.	
Ultrasonic machining (USM): Ultrasonic Machining System, Mechanics of cutting, Model	
proposed by Shaw – Grain Throwing Model, Grain Hammering Model; Parametric Analysis,	
Process Capabilities.	
Unit – II	
Water Jet Cutting (WJC): WJC Machine, Process Characteristics, Process Performance.	12 Hrs
Applications, Advantage and Limitations.	
Abrasive Water Jet Machining (AWJM): Working Principle, AWJM Machine – Pumping	
System, Abrasive Feed System, Abrasive Water Jet Nozzle, Catcher; Process Analysis -	
Water Jet Pressure during Slotting, Water Flow Rate, Abrasive Flow Rate, Abrasive Particle	
Size, Abrasive Material, Cutting Parameters – Traverse Speed, Number of Passes, Stand-Off-	
Distance, Process Capabilities.	
Abrasive Flow Machining (AFM): Working Principle of Abrasive flow Machining System	
Process Variables,	
Magnetic Abrasive Finishing (MAF) – Working Principle of MAF, Material Removal and	
Surface Finish – Type and Size of Grains.	
Unit – III	
LASER Beam Machining (LBM): Production of LASERS, Working Principle of LASER	10 Hrs
Beam Machining, Types of Lasers – Solid State Lasers, Gas Lasers; Process Characteristics.	
Applications, Advantage and Limitations.	
Plasma Arc Machining (PAM): Working Principle, Plasma Arc Cutting System, Elements	
of Plasma Arc Cutting System, Process Performance.	
Electron Beam Machining (EBM): Working Principle, Electron Beam Machining System –	
Electron Beam Gun, Power Supply, Vacuum System and Machining Chamber; Process	
Parameters, Characteristics of the Process. Applications, Advantage and Limitations.	
Unit – IV	00 FF
Electrochemical Machining (ECM): Electrolysis, ECM Principle, ECM Machine Tool-	08 Hrs
Power Source, Electrolyte supply and Cleaning System, Tool and Tool Feed System,	
Workpiece and Work Holding Device; Theory of ECM – Faraday's Laws of Electrolysis,	
Electrochemical Equivalent of Alloys, Material Removal Rate in ECM.	
Chemical Processes: Introduction, Maskants – Cut and Peel, Screen Printing, Photoresist	
Maskant; Electropolishing – Introduction, Process Description, Process parameters, Process	
limitations, Applications, Advantage and Limitations.	<u> </u>
Unit – V	
Non Destructive Testing: Scope and advantages of NDT, comparison of NDT with DT,	10 Hrs
classifications of NDT, introduction, principle, equipment, procedures and characteristics of	
Visual Inspection, Eddy Current Testing, Liquid Penetrant Testing, Magnetic Particle Testing	
and Radiographic Testing.	L

Course	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain the principle, mechanism of metal removal of various unconventional machining				
	processes.				
CO2	Analyses the process parameters and their effect on the compTWOnt machined on various				
	unconventional machining processes and tested using NDT techniques.				
CO3	Apply the concept for different NTM and NDT concepts industry.				
CO4	Evaluate appropriate NTM and non-destructive techniques.				

Reference Books:

Itere	Tence Dooks.
1	Bennedict, G. F., "Non Tradtional Machining Techniques", Marcel Decker, New York, 1990
	ISBN 9780824773526
2	Pandey and Sha, "Modern Manufacturing Process", Prentice Hall, New Delhi, 1997 ISBN: 978-
	81-7319-138-1
3	Garry F. Benedict, "Unconventional Machining Process", Marcel Dekker Publication, New York,
	1987. ISBN: 0-8247-7352-7
4	I. J Prasad, C G K Nair, "Non-Destructive Testing and Evaluation of Materials", Tata McGraw
	Hill Education Private Limited

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			SECOND SEMESTER				
	Semester: II						
	ROBUST DESIGN						
	(Theory & Practice)						
Course Code	:	18MPD21	CIE Mai	rks	:	100+50	
Credits L: T: P	:	4:0:1	SEE Ma	rks	:	100+50	
Hours	:	48L+24P	SEE Du	ration	:	3 hrs	

PART A (Theory)	
Unit – 1	
Quality by Experimental Design Quality, western and Taguchi quality philosophy, Elements of cost, Noise factors, causes of variation, Quadratic loss function and variation of quadratic loss functions. Robust Design Steps in robust design, parameter design and tolerance design, illustration through numerical problems	08 Hrs
Unit -2	
Experimental Design Factorial experiments, terminology, factors, levels, Interactions, treatment combination, randomization, 2-level experimental design for two factors and three factors, Examples Higher level experiment design Two factors and three factors, factor effects, factor interactions, Fractional factorial design, Saturated design, Central composite designs, Illustration through numerical	10 Hrs
examples Unit -3	
Measures of Variability: Measures of variability, Concept of confidence level,	10 Hrs
Statistical distributions: normal, log normal and Weibull distributions. Hypothesis testing, Probability plots, choice of sample size illustration through numerical examples Analysis and interpretation of experimental data: Measures of variability, Ranking method, column effect method and plotting method, Analysis of variance (ANOVA), in factorial experiments, Regression analysis, Mathematical models from experimental data, illustration through numerical examples.	
Unit-4	
 Taguchi's Orthogonal Arrays : Types of orthogonal arrays, Selection of standard orthogonal arrays, Linear graphs and interaction assignment, dummy level technique, Compound factor method, modification of linear graphs, Column merging method, Branching design, Strategies for constructing orthogonal arrays. Signal to Noise ratio (S-N Ratios): Evaluation of sensitivity to noise, Signal to noise ratios for static problems, Smaller – the – better types, Nominal – the – better – type, larger – the- better – type. Illustrations through numerical examples. 	10 Hrs
Unit-5	
Parameter Design and Tolerance Design: Parameter and tolerance design concepts,	10 Hrs
 Taguchi's inner and outer arrays, Parameter design strategy, Tolerance design strategy, illustrations through numerical examples. Reliability Improvement Through Robust Design: Role of S-N ratios in reliability improvement, Case study; Illustrating the reliability improvement of routing process of a printed wiring boards using robust design concepts. 	101115

Part B (Practical)	24 Hrs
Industrial application problems on ANOVA, Taguchi's two level and three level	
factorial design, central composite design, regression analysis, S/N ratios, Orthogonal	
arrays and multi response optimisation to be solved using MINITAB.	

Cours	Course Outcomes: After going through this course the student will be able to:			
CO1	Understand the fundamentals of Robust design principles and techniques			
CO2	Develop the knowledge to analyze experimental data through design of experiments			
CO3	Assess the engineering design concepts for stability, reliability and tolerances			
CO4	Formulate mathematical models using robust design concepts			

Refe	Reference Books:				
1	Quality Engineering using Robust Design - Madhav S. Phadake: Prentice Hall, Englewood				
	Clifts, New Jersey 07632, 1989.				
2	Design and analysis of experiments - Douglas Montgomery: Willey India Pvt. Ltd., V Ed.,				
	2007.				
3	Techniques for Quality Engineering - Phillip J. Ross: Taguchi 2nd edition. McGraw Hill Int.				
	Ed., 1996.				
4	Quality by Experimental Design - Thomas B. Barker - Marcel Dekker Inc ASQC Quality				
	Press, 1985				

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Continuous Internal Evaluation (CIE) for Practical: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: II						
	PRODUCT LIFE CYCLE MANAGEMENT					
Course Code	:	18MPD22	CIE Marks	:	100	
Credits L: T: P	:	3:1:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I		
Product life cycle management- Need for PLM, Components of PLM, Product Data and	07 Hrs	
Product workflow, Drivers for Change.		
Unit – II		
The PLM Strategy, Developing a PLM Strategy, A Five-step Process Strategy Identification	07 Hrs	
and Selection, Strategy Elements, Implications of Strategy Elements, Policies, Strategy		
Analysis, Communicating the Strategy		
Unit – III		
Change Management for PLM, Configuration management, cost of design changes, schemes	07 Hrs	
for concurrent engineering, Design for manufacturing and assembly, robust design, failure		
mode and effect-analysis		
Unit – IV		
Modeling, Current concepts, part design, sketching, use of datum's construction features, free	07 Hrs	
ovulation, pattering, copying, and modifying features, reference standards for datum		
specification, Standards for Engineering data exchange		
Unit – V		
Tolerance mass property calculations, rapid prototyping and tooling, finite modeling and	08 Hrs	
analysis, general procedure, analysis techniques, Finite element modeling. Applicability of		
FEM, Static analysis, thermal analysis, dynamic analysis.		

Course	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain product life cycle management concepts.				
CO2	Analyze schemes of concurrent engineering.				
CO3	Appraise modeling and analysis concepts.				
CO4	Adapt change management concepts.				

Refe	erence Books:
1	Product Lifecycle Management Paradigm for century Product Realization - John Stark, Springer-
	Verlag, 21st, London, 3rd printing -2006, ISBN: 1-85233-810-5
2	Crnkovic, Ivica; Asklund, Ulf; & Dahlqvist, Annita Persson. Implementing and Integrating
	Product Data Management and Software Configuration Management, Artech House Publishers,
	2003. ISBN 1580534988.
3	Grieves, Michael. Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
4	PDM: Product Data Management, Rodger Burden, Ronnie Bishop, Mary Ellen Lucas, , Resource
	Publishing, 2003. ISBN 0970035225.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

		Sei	mester: II			
	RESEARCH METHODOLOGY					
		(Common	to all programs)			
Course Code	:	18IM23	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I	
Overview of Research: Research and its types, identifying and defining research problem	07 Hrs
and introduction to different research designs. Essential constituents of Literature Review.	
Basic principles of experimental design, completely randomized, randomized block, Latin	
Square, Factorial.	
Unit – II	
Data and data collection: Overview of probability and data types, Primary data and	08 Hrs
Secondary Data, methods of primary data collection, classification of secondary data,	
designing questionnaires and schedules.	
Sampling Methods: Probability sampling and Non-probability sampling	
Unit – III	
Processing and analysis of Data: Statistical measures of location, spread and shape,	07 Hrs
Correlation and regression, Hypothesis Testing and ANOVA. Interpretation of output from	
statistical software tools	
Unit – IV	
Advanced statistical analyses: Non parametric tests, Introduction to multiple regression,	07 Hrs
factor analysis, cluster analysis, principal component analysis. Usage and interpretation of	
output from statistical analysis software tools.	
Unit-V	
Essentials of Report writing and Ethical issues: Significance of Report Writing, Different	07 Hrs
Steps in Writing Report, Layout of the Research Report, Ethical issues related to Research,	
Publishing, Plagiarism.	
Case studies: Discussion of case studies specific to the domain area of specialization	

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	1 Explain the principles and concepts of research types, data types and analysis procedures.					
CO2	2 Apply appropriate method for data collection and analyze the data using statistical principles.					
CO3	Present research output in a structured report as per the technical land ethical standards					
CO4	Create research design for a given engineering and management problem situation.					

Reference Books:

1	Kothari C.R., Research Methodology Methods and techniques, New Age International Publishers,
	4th edition, ISBN: 978-93-86649-22-5
2	Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology,
	Pearson Education: New Delhi, 2006. ISBN: 978-81-77585-63-6
3	William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3rd
	Edition, Atomic Dog Publishing, 2006. ISBN: 978-1592602919
4	Levin, R.I. and Rubin, D.S., Statistics for Management, 7th Edition, Pearson Education: New
	Delhi.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
			MINOR PROJECT			
Course Code	:	18 MPD 24		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:			SEE Duration	:	3 hrs

GUIDELINES

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course Outcomes: After going through this course the student will be able to:				
CO1	Conceptualize, design and implement solutions for specific problems.			
CO2	Communicate the solutions through presentations and technical reports.			
CO3	Apply resource managements skills for projects			
CO4	Synthesize self-learning, team work and ethics.			

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members : guide, two senior faculty members and Head of the Department.

I Synopsis submission, Preliminary seminar for the approval of selected topic and Objectives formulation 20% II Mid-term seminar to review the progress of the work and documentation 40%	Phase	Activity	Weightage
II Mid-term seminar to review the progress of the work and 40% documentation	Ι	Synopsis submission, Preliminary seminar for the approval of selected	20%
documentation		topic and Objectives formulation	
	II	Mid-term seminar to review the progress of the work and	40%
		documentation	
III Oral presentation, demonstration and submission of project report 40%	III	Oral presentation, demonstration and submission of project report	40%

****Phase wise rubrics to be prepared by the respective departments**

CIE Evaluation shall be dTWO with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
• Demonstration & Presentation	15%
• Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by TWO senior faculty from the department and TWO external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be TWO in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Presentation / Demonstration of the project	20%
3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

Semester: II					
	CREATIVE ENGINEERING				
		(Group C:	Core Elective)		
Course Code	:	18MPD2C1	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	48L	SEE Duration	:	3 hrs

Unit – I	
INTRODUCTION Creative thinking, blocks to creativity, factors that influence creative design, engineering design and creative design, influence of society, technology and business on creativity, force field analysis, market pull & technology push, attribute of a creative person, creative thinking in groups, creating a creative climate. CREATIVITY & PRODUCT DESIGN Need or identification of a problem, market survey, data collection, review & analysis, problem definition, Kipling method, challenge statement, problem statement initial specifications,	10 Hrs
Unit – II	
IDEA GENERATION Brain storming, analogy technique or synectics, check list, trigger words, morphological method, interaction matrix method, analysis of interconnected decision making, CREATIVE THINKING PROBLEM / OPPORTUNITY Pictures of situation, environment, quantification, Heros, boundary conditions, record-discuss-clarify-verify, recording of ideas, evaluation of ideas, detail design, prototyping, product deployment, useful life assessment, recycling	10 Hrs
Unit – III	<u>I</u>
EMOTIONAL DESIGN Emotional Design – Three levels of Design – Viceral, Behavioral and Reflective- design by individual and design in groups, designs with personality – machines that senses emotions and induce emotions- Robots, personality products, products for games, fun, people and places; Simulation – dimensional or mathematical, virtual simulation, physical simulation, scale down models;	09 Hrs
Unit – IV	
THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ) Common features of good solutions – resolve contradiction, use available resource, increase the ideality, trade-off, inherent contradiction, 30 key TRIZ principles – multifunction, preliminary action, compensation, nested doll, blessing in disguise, segmentation, separation, regional influences, symmetry change, opaque & porous, inflate and deflate, color, recycle & recover, phase transformation, energy, imaging, environment, composition, economical, surface response, equipotential, static & dynamic, continuous & intermittent, servo systems, smart systems, dimensions	11 Hrs
Unit – V	L
APPLICATION OF CEDA Approach: (a) Cooking stove for rural India; (b) utilizing solar energy; (c) water filtration systems; (d) automation in healthcare; (e) technologies for law enforcement; (f) application of robots to reduce human fatigue (g) Layout of berths in a railway coach	08 Hrs

Course Ou	Course Outcomes: After going through this course the student will be able to:		
CO1	Explain the steps involved in the creative thinking process		
CO2	Apply the various techniques for stimulating creativity and innovation thinking		
CO3	Analyze the techniques to design and develop new products.		
CO4	Synthesize the creative design with analysis to develop new products		

Refe	erence Books:
1	Amaresh Chakrabarti, Creative Engineering Design Synthesis, Springer, 2009
2	Floyd Hurt, Rousing Creativity: Think New Now, Crisp Publ Inc. 1999, ISBN 1560525479
3	Donald A. Norman, Emotional Design, Perseus Books Group New York , 2004, ISBN 123-1-118-027-6
4	Kalevi Rantanen & Ellen Domb, Simplified TRIZ – II edn., Auerbach Publications, Taylor & Francis Group, 2010, ISBN: 978-142-0062-748

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

		Seme	ster: II			
		DESIGN FOR MANUFAC	TURING AND ASSEMBLY			
		(Group C: C	Core Elective)			
Course Code	:	18 MPD2C2	CIE Marks	:	100	
Credits L: T: P	:	4:0:0	SEE Marks	:	100	
Hours	:	48L	SEE Duration	:	3 hrs	
					I	
		Un	it – I			
Introduction to]	Desi	gn for Manufacture & As	sembly: Steps in DFMA, Adv	antag	ges of 10Hrs	
DFMA,		-			-	

Design guidelines for Manual Assembly and High Speed Automatic and Robotic Assembly **Geometrical Dimensioning & Tolerance** – Dimensions & Tolerance, Limits, Fits and Tolerances, Hole and Shaft Basis, Three datum – functional, machining and manufacturing, geometrical and form tolerance, conventional and advanced tools and techniques for measurements, numerical

Unit – II	
Metal Casting Processes - Gravity Die Casting : compute the dimensions for Pattern,	10Hrs
Mould, based on materials to be cast - ferrous and non-ferrous alloys, influence of parting	l
line, cast holes, special sand cores, shrinkage compensation, numericals, Pressure Die	l
Casting: Die casting alloys, machine selection, operation, sub-systems, post-processing	l
equipments, mould design, number of cavities, manufacturing and assembly of moulds,	l
design principles.	
Unit – III	

Design for Injection Molding - Injection moulding systems - injection subsystem, ejection	10Hrs
system, clamping and feeding system, machine sizing, materials for injection moulding and	
its properties, injection mould design - cavity and core, manufacturing processes for moulds,	
operation and cycle time.	

U nit	_ IV
UIIIL	- I V

Design for Powder Metallurgy Processes: Introduction to PM process, blending and	10Hrs
mixing, compaction, sintering processes. Tooling materials, heat treatment, surface	
treatments and preparation of green compacts, Press tools for PM process - load, tooling	
layout, capacity; sintering furnace and influence of process and materials parameters on	
shrinkage.	

Unit – V

Design for Sheet Metal Processing : Design of moulds for shearing, piercing, bending, deep	08Hrs
drawing, progressive die operation, selection of press – hydraulic and electric, sub-systems,	
turret operation, cycle time calculation, laser cutting of sheet metals.	
Cost Estimation for sand casting, pressure die casting, injection moulding, PM process and	
sheet metal processes.	

Course O	Course Outcomes: After going through this course the student will be able to:		
CO1	Explain the concept of DFMA and GD&T		
CO2	Apply engineering products and suggest suitable manufacturing process		
CO3	Evaluate the influence of design, material and manufacturing processes on product		
	assembly		
CO4	Develop appropriate manufacturing and assembly processes for a given product		

Reference Books:		
1.	Geoffrey Boothroyd, Peter Dewhurst, Winston Knight Marcel Dekker, Inc.,"Product Design for Manufacture and Assembly", –Newyork - Second Revision, ISBN 0-8247-0584-X	
2.	Harry Peck," Designing for Manufacturing", Pitman Publications, 1983, ISBN: 1-85233-810-5	
3.	Merhyle F Spotts, Englewood Cliffs, "Dimensioning and Tolerance for Quantity Production" Prentice Hall, 5th edition, ISBN: 2-95433-956-3	
4.	Design for manufacturing – a structured approach, Corrado Colig. BH publishers, ISBN :	

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II				
			BILITY ENGINEERING				
	(Group C: Core Elective)						
Course Code	:	18 MPD 2C3	CIE Marks	:	100		
Credits L: T: P	:	4:0:0	SEE Marks	:	100		
Hours	:	48L	SEE Duration	:	3 hrs		

Unit – I	
Basic Probability Theory: Basic concepts – Definitions of Reliability, Parameters and	10Hrs
Reliability concepts, Rules for combining Probabilities of events, Failure Density and	
Distribution functions, Bernoulli's trials, Binomial distribution, Expected value and standard	
deviation for binomial distribution, Numericals	
Introduction to Probability Distributions: Normal, Poisson and Binomial distribution.	
Control Charts: Variable Chart – X Bar chart, R-chart and Sigma chart. Attribute Chart: P –	
Chart, nP Chart, C-Chart and U – Chart. Numericals.	
Unit – II	
Network Reliability Evaluation: Basic concepts – Evaluation of network Reliability and	10Hrs
Unreliability, Series systems, Parallel systems, Series - Parallel systems, partially redundant	
systems – Types of redundancies - Evaluation of network Reliability Unreliability using	
conditional probability method – Paths based and cutset based approach – complete event	
tree and reduced event tree methods. Numericals	
Unit – III	
Acceptance Sampling and Failure Data Analysis: Fundamentals of acceptance sampling,	10Hrs
types of acceptance sampling, OC Curve, AQL, LTPD, AOQL. Introduction to Failure data	
analysis, Failure Data, Quantitative measures, MTTF, MTBF, Bathtub Curve, Mean Life,	
Life Testing, Problems, Introduction to Failure Mode and Effect Analysis. Numericals.	
Reliability Improvement and Allocation: Difficulty in achieving reliability, Methods for	
improving reliability during design, Different techniques available to improve reliability,	
Optimization, Reliability-Cost trade off, Prediction and Analysis.	
Unit – IV	
Discrete Markov Chains & Continuous Markov Processes	09Hrs
Basic concepts, Stochastic transitional Probability matrix, time dependent probability	
evaluation, Limiting State Probability evaluation, Absorbing states, Markov Processes-	
Modelling concepts, State	
space diagrams, time dependent reliability evaluation of single component repairable model,	
Evaluation of Limiting State Probabilities of TWO, two component repairable models –	
Frequency and duration concepts, Frequency balance approach. Numericals.	
Unit – V	
Reliability Life Testing Methods: Reliability Life Testing - Test time calculations, Burn-in	09Hrs
testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability	
Growth Testing - Growth process, Idealized growth curve and other growth modals.	
Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the expTWOntial	
distribution, Mann's test for the weibull distribution, Kolmogorov, smirnov test for normal	
and lognormal distributions and tests for the power law process model.	

Course Outcomes: After going through this course the student will be able to:					
CO1	Explain the concepts of reliability and probability theory.				
CO2	Evaluate network Reliability and Unreliability for systems.				
CO3	Analyse the various sampling and failure data analysis for reliability improvement				
CO4	Develop Reliability Life Testing Methods for a given model				

Refe	rence Books:
1	Reliability Engineering - A K Govil - Prentice Hall – 1981.
2	Reliability Engineering - E. Balagurusamy, Tata McGraw Hill, 2003.
3	Reliability Evaluation of Engineering Systems - Roy Billinton and Ronald N. Allan, Reprinted
	in India B. S. Publications, 2007.
4	Concepts in Reliability Engineering- Srinath L S - Affiliated East-West Press Private Limited,
	New Delhi, India. – 1985.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II							
	PRODUCT COST ANALYSIS AND OPTIMIZATION							
	(Group D: Core Elective)							
Course Code	:	18MPD2D1		CIE Marks	:	100		
Credits L: T: P	:	4:0:0		SEE Marks	:	100		
Hours	:	48L		SEE Duration	:	3 hrs		

Unit – I				
Introduction: New products, New product strategy, Sequential Decision Process, Market	10 Hrs			
definition and entry strategy, Idea generation, introduction to the design process,				
forecasting sales potential				
Unit -II				
Consumer Measurement process, Research Methods, Sampling, Attitude Scaling, Perceptual Mapping: Perceptual Positioning, Perceptual Maps and Analytical methods to Perceptual Maps Product Positioning : Preference in Product Positioning, Proactive Product Positioning, Benefit Segmentation, Managerial use of Preference Models	10Hrs			
Unit -III				
 Manufacturing Planning: Selection of optimum process, standardization. Break even analysis- application and area of use -problems -multi - product analysis and Process planning. Value Analysis: Steps in selection, analysis and implementation, Selection of cutting speed for optimum cost - problems. 	10Hrs			
Unit-IV				
Cost Accounting Cost estimation -difference -types -steps involved in cost estimation. Types of Cost: Cost Centres, Direct –indirect, material cost -direct indirect material cost Overhead cost Elements in overheads: Preparation of cost sheet, machine hour rate, apportioning methods Variance Analysis – Labour variance, Material variance and Overhead variance, Activity based costing - Introduction to target costing	10Hrs			
Unit-V				
Cost Calculation Cost calculation for machined compTWOnts, welding, casting, Sheet Metal and forged compTWOnts illustrations - calculation of sales cost. Launching the product: Launch Planning, Track Launching, Durable and Industrial Products.	08Hrs			

Course Outcomes: After going through this course the student will be able to:				
CO1	Describe the Value Analysis and new product strategy			
CO2	Apply suitable manufacturing process based on material and product			
CO3	Analyzing the Cost Accounting machined compTWOnts for a given material			
CO4	Evaluate the parameters for design considerations based on process			

Refe	Reference Books:					
1	Glen L Urban, John R Hauser, "Design and Marketing of New Products", Prentice Hall. New Jersey, 1980, ISBN : 40:0257-02-0001					
2	T.R.Ranga and S C Sharma, "Mechanical Estimating and Costing",- Khanna Publishers- 2015. ISBN : 40:0257-02-0001					
3	Yasuhiro Monden Cost management in the New Manufacturing Age -, Productivity Press-1992, 1980, ISBN : 90:0777-02-0001					
4	Miles Lewrence, "Technique for Value Analysis And Engineering", McGraw Hill, New york- 1972, ISBN : 65:0257-22-0004					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

		Seme	ster: II		
			AUTOMATION		
		(Group D: C	Core Elective)		
Course Code	:	18MCM2D2	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	48L	SEE Duration	:	3 hrs

Unit – I	
Automation and Robotics - Historical Development, Definitions, Basic Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Factors related to use Robot Performance, Basic Robot Configurations and their Relative Merits and Demerits, Types of Drive Systems and their Relative Merits, the Wrist & Gripper Subassemblies. Concepts and Model about Basic Control System, Control Loops of Robotic Systems, PTP and CP Trajectory Planning, Control Approaches of Robots	07 Hrs
Unit – II	
Kinematics of Robot Manipulator : Introduction, General Description of Robot Manipulator, Mathematical Preliminaries on Vectors & Matrices, Homogenous Representation of Objects, Robotic Manipulator Joint Co-Ordinate System, Euler Angle & Euler Transformations, Roll-Pitch-Yaw(RPY) Transformation, Relative Transformation, Direct & Inverse Kinematics' Solution, D H Representation & Displacement Matrices for Standard Configurations, Geometrical Approach to Inverse Kinematics. Homogeneous Robotic Differential Transformation: Introduction, Jacobian Transformation in Robotic Manipulation	10 Hrs
Unit – III	

Robotic Workspace & Motion Trajectory: Introduction, General Structures of Robotic	12 Hrs			
Workspaces, Manipulations with n Revolute Joints, Robotic Workspace Performance Index,				
Extreme Reaches of Robotic Hands, Robotic Task Description. Robotic Motion Trajectory				
Design: - Introduction, Trajectory Interpolators, Basic Structure of Trajectory Interpolators,				
Cubic Joint Trajectories. General Design Consideration on Trajectories: 4-3-4 & 3-5-3				
Trajectories, Admissible Motion Trajectories.				
Unit – IV				

Dynamics of Robotic Manipulators: Introduction, Bond Graph Modeling of Robotic	12 Hrs
Manipulators, Examples of Bond Graph Dynamic Modeling of Robotic Manipulator. Brief	
Discussion on Lagrange-Euler (LE) Dynamic Modeling of Robotic Manipulators: -	
Preliminary Definitions, Generalized Robotic Coordinates, Dynamic Constraints, Velocity &	
Acceleration of Moving Frames, Robotic Mass Distribution & Inertia Tensors, Newton's	
Equation, Euler Equations, The Lagrangian& Lagrange's Equations. Application of	
Lagrange-Euler (LE) Dynamic Modeling of Robotic Manipulators: - Velocity of Joints,	
Kinetic Energy T of Arm, Potential Energy V of Robotic Arm, The Lagrange L, Two Link	
Robotic Dynamics with Distributed Mass, Dynamic Equations of Motion for A General Six	
Axis Manipulator.	

Unit – V

Autonomous Robot: Locomotion Introduction, Key issues for locomotion Legged Mobile	07 Hrs
Robots Leg configurations and stability Examples of legged robot locomotion Wheeled	
Mobile Robots Wheeled locomotion: the design space Wheeled locomotion: case studies	
Mobile Robot Kinematics Introduction Kinematic Models and Constraints Representing	
robot position Forward kinematic models Wheel kinematic constraints Robot kinematic	
constraints, Mobile Robot Maneuverability Degree of mobility Degree of steerability Robot	
maneuverability.	

Course Outcomes: After going through this course the student will be able to:				
CO1 Analyze the manipulator design including actuator, drive and sensor issues				
CO2	Calculate the forward kinematics, inverse kinematics and Jacobian industrial robots			
CO3	Solve trajectory and dynamic related robotic problems			
CO4	Evaluate the different configurations and stability of autonomous robots			

Refer	rence Books:
1	Mohsen Shahinpoor "A Robot Engineering Textbook" Harper & Row publishers, New York. ISBN:006045931X
2	Fu, Lee and Gonzalez, "Robotics, control vision and intelligence," McGraw Hill International. ISBN:0070226253
3	John J. Craig, "Introduction to Robotics", Addison Wesley Publishing, ISBN:0201543613
4	Roland Illah R. Siegwart Nourbakhsh, Autonomous mobile robots, The MIT Press Cambridge,
	Massachusetts London, England, 2004.ISBN:0262015358

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	SYSTEMS ENGINEERING					
	(Group D: Core Elective)					
Course Code	:	18MPD2D3	CIE Marks	:	100	
Credits L: T: P	:	4:0:0	SEE Marks	:	100	
Hours	:	48L	SEE Duration	:	3 hrs	

Unit – I	
 System Engineering and the World of Modem System: Definition, Origin, Examples of Systems Requiring Systems engineering, System Engineering view point, System Engineering as a Profession, The power of System Engineering, Problems. Structure of Complex Systems: Systems building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions. The System Development Process: System Engineering through the system Life cycle, Evolutionary Characteristic of the development process, The system engineering method, Testing throughout system development, problems 	10 Hrs
Unit – II	
System Engineering Management: Managing system development and risks, Work break down structure (WBS), System Engineering Management Plane (SEMP), Risk Management, Organization of System Engineering Capability Maturity Assessment, System Engineering standards, Problems. Needs Analysis: Origination of a new system, Operation analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, Problems. Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, Problems. Unit – III	10 Hrs
Concept Definition: Selecting the system concept, Performance requirements analysis,	09 Hrs
Functional analysis and formulation, Concept selection, Concept selection, Concept validation, System Development planning, System Functional Specification, Problems. Advanced Development: Reducing program risks, Requirement analysis, Functional analysis and Design. Prototype development, Development testing, Risk reduction, problems.	09 1115
Unit – IV	
Engineering Design: implementing the System Building blocks, Requirements analysis, Functional analysis and design, Concept design, Design validation, Configuration Management, Problems. Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and preparation, System integration, Developmental system testing, Operational test and evaluation, problems. Unit - V	10 Hrs
	00.77
Production: System Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, Problems. Operation and support: Installing, maintenance and up grading the system, Installation and test, In-service support, Major system upgrades: Modernization, Operational factors in system development, problems	09 Hrs

Course Outcomes: After going through this course the student will be able to:				
CO1	Explain the role of Stake holders and their need in organizational system.			
CO2	Develop and document the knowledge base for effective system engineering processes			
CO3	Apply available tool, methods and technologies to support high technologysystems.			
CO4	Create the framework for quality processes to ensure high reliability of systems.			

Refe	erence Books:
1	Alexander Kossoakoff, William N Sweet, "System Engineering-Principles and Practice" John
	Wiley & Sons, Inc, Edition: 2012, ISBN: 978-81-265-2453-2
2	Andrew P. Sage, William B. Rouse, "Hand book of System Engineering And Management" John
	Wiley & sons, Inc., Edition: 1999, ISBN 0-471-15405-9
3	Ludwig von Bertalanffy,"General System Theory: Foundation, Development, Application",
	Penguin University Books, 1973, Revised, ISBN: 0140600043, 9780140600049
4	Balanchard, B., and Febrycky, W.System Engineering and analysis, Saddle river, NJ, USA:
	Prentice Hall, 5 th Edition, 2010

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

		Sem	ester: II			
BUSINESS ANALYTICS						
(Group G: Global Elective)						
Course Code	:	18CS2G01	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I	
Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling. <u>Unit – II</u> Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models	08 Hrs 08 Hrs 07 Hrs
for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.	
Unit – III	
Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive Analytics, Predicative Modelling, Predictive analytics analysis.	08 Hrs
Unit – IV	-
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.	07 Hrs
Unit-V	
Decision Analysis: Formulating Decision Problems, Decision Strategies with and without Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.	06 Hrs

Course C	Course Outcomes: After going through this course the student will be able to:				
CO1	Explore the concepts, data and models for Business Analytics.				
CO2	Analyze various techniques for modelling and prediction.				
CO3	Design the clear and actionable insights by translating data.				
CO4	Formulate decision problems to solve business applications				

Refer	ence Books:
1	Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Business analytics Principles, Concepts, and Applications FT Press Analytics, 1 st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402
2	Evan Stubs , The Value of Business Analytics: Identifying the Path to Profitability , John Wiley & Sons, ISBN:9781118983881 DOI:10.1002/9781118983881,1 st edition 2014
3	James Evans, Business Analytics, Pearsons Education 2 nd edition, ISBN-13: 978-0321997821 ISBN-10: 0321997824
4	Gary Cokins and Lawrence Maisel, Predictive Business Analytics Forward Looking Capabilities to Improve Business, Wiley; 1 st edition, 2013.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
INDUSTRIAL & OCCUPATIONAL HEALTH AND SAFETY							
	(Group G: Global Elective)						
Course Code	:	18CV2G02		CIE Marks	:	100	
Credits L: T: P	:	3:0:0		SEE Marks	:	100	
Hours	:	36L		SEE Duration	:	3 hrs	

UNIT – I	
Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards,	07Hrs
ypes, causes and preventive steps/procedure, describe salient points of factories act 1948 for	
health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure	
vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.	
UNIT – II	
Occupational health and safety : Introduction, Health, Occupational health: definition, Interaction between work and health, Health hazards, workplace, economy and sustainable development, Work as a factor in health promotion. Health protection and promotion Activities in the workplace: National governments, Management, Workers, Workers' representatives and unions, Communities, Occupational health professionals. Potential health hazards: Air contaminants, Chemical hazards, Biological hazards, Physical hazards, Ergonomic hazards, Psychosocial factors, Evaluation of health hazards: Exposure measurement techniques, Interpretation of findings recommended exposure limits. Controlling hazards: Engineering controls, Work practice controls, Administrative controls. Occupational diseases: Definition, Characteristics of occupational diseases, Prevention of occupational diseases.	07Hrs
UNIT – III	
Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents, Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and Oxidizers, General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical Exposure Limits. Physical Agents, Noise and Vibration, Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals. UNIT – IV	08Hrs
Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity ubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods. UNIT – V	07Hrs
Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, over hauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, ii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance. Repair cycle concept and importance.	07Hrs

Course C	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain the Industrial and Occupational health and safety and its importance				
CO2	Demonstrate the exposure of different materials, occupational environment to which the				
	employee can expose in the industries.				
CO3	Characterize the different type materials, with respect to safety and health hazards of it.				
CO4	Analyze the different processes with regards to safety and health and the maintenance required				

in the industries to avoid accidents.

Refe	erence Books:
1	Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services
2	Maintenance Engineering Principles, Practices & Management, H. P. Garg, S. Chand and Company, New Delhi, 2009. ISBN:9788121926447
3	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition, International Labour Office – Geneva: ILO, 2008. ISBN 978-92-2-120454-1
4	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
MODELING USING LINEAR PROGRAMMING						
	(Group G: Global Elective)					
Course Code	:	18IM2G03		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I	
Linear Programming: Introduction to Linear Programming problem	7 Hrs
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables	
Unit – II	
Advanced Linear Programming : Two Phase simplex techniques, Revised simplex method	7 Hrs
Duality: Primal-Dual relationships, Economic interpretation of duality	
Unit – III	
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes in RHS, Changes in objectives, Post optimal analysis - changes affecting feasibility and optimality	7 Hrs
Unit – IV	
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation Problems.	8 Hrs
Unit-V	
Assignment Problem: Formulation of the Assignment problem, solution method of assignment problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem (TSP).	7 Hrs

Course Outcomes: After going through this course the student will be able to:				
CO1	Explain the various Linear Programming models and their areas of application			
CO2	Formulate and solve problems using Linear Programming methods.			
CO3	Develop models for real life problems using Linear Programming techniques.			
CO4	Analyze solutions obtained through Linear Programming techniques.			

Refer	Reference Books:				
1	Taha H A, Operation Research An Introduction, PHI, 8th Edition, 2009, ISBN: 0130488089.				
2	Philips, Ravindran and Solberg - Principles of Operations Research – Theory and Practice, John Wiley & Sons (Asia) Pvt Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0				
3	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9 th Edition, 2012, ISBN 13: 978-0-07-133346-7				
4	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4 th Edition, 2009, ISBN 13: 978-0-23-063885-3.				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

		Semo	ester: II		
		PROJECT M	IANAGEMENT		
		(Group G: C	Flobal Elective)		
Course Code	:	18 IM2G04	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Unit – I	
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles,	7 Hrs
Responsibility and Team Work, Project Planning Process, Work Breakdown Structure	l
(WBS), Introduction to Agile Methodology.	l
Unit – II	
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital	7 Hrs
budgeting, levels of decision making, facets of project analysis, feasibility study $-a$	/ 1115
schematic diagram, objectives of capital budgeting	1
Unit – III	
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital	8 Hrs
Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement,	0 1115
Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit	1
	1
Analysis Unit – IV	
	811
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined	7Hrs
activities, logic diagrams and networks, Project evaluation and review Techniques (PERT)	l
Critical Path Method (CPM), Computerized project management	l
Unit-V	
Project Management and Certification: An introduction to SEI, CMMI and project	7 Hrs
management institute USA – importance of the same for the industry and practitiTWOrs.	1
PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing	l
Agile.	l
-0	l
Domain Specific Case Studies on Project Management: Case studies covering project	1
planning, scheduling, use of tools & techniques, performance measurement.	l
plaining, senedaring, ase of tools & teeninques, performance measurement.	

Course Ou	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain project planning activities that accurately forecast project costs, timelines, and				
	quality.				
CO2	Evaluate the budget and cost analysis of project feasibility.				
CO3	Analyze the concepts, tools and techniques for managing projects.				
CO4	Illustrate project management practices to meet the needs of Domain specific stakeholders				
	from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity				
	organizations				

Refer	rence Books:
1	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review,
	Tata McGraw Hill Publication, 8th Edition, 2010, ISBN 0-07-007793-2.
2	Project Management Institute, A Guide to the Project Management Body of Knowledge
	(PMBOK Guide), 5th Edition, 2013, ISBN: 978-1-935589-67-9
3	Harold Kerzner, Project Management A System approach to Planning Scheduling &
	Controlling, John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
4	Rory Burke, Project Management – Planning and Controlling Techniques, John Wiley & Sons,
	4 th Edition, 2004, ISBN: 9812-53-121-1

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
	ENERGY MANAGEMENT					
		(Gr	oup G: Global Elective)			
Course Code	:	18CH2G05		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I	
Energy conservation: Principles of energy conservation and energy audit, types of energy audit, Energy conservation approaches, Cogeneration and types of cogeneration, Heat recuperators- classification, liquid/gas and gas/liquid heat exchangers	07 Hrs
Unit – II	
Wet Biomass gasifiers: Introduction, Classification of feedstock for biogas generation. Biomass conversion technologies: Wet and dry processes, Photosynthesis, Biogas generation, Factors affecting bio-digestion, Classification of biogas plants, Floating drum plant and fixed dome plant their advantages and disadvantages, Biogas from aquatic weed.	07 Hrs
Unit – III	
Dry Biomass Gasifiers : Biomass energy conversion routes, Thermal gasification of biomass, Classification of gasifiers, Fixed bed systems: Construction and operation of up draught and down draught gasifiers. Pyrolysis.	08 Hrs
Unit – IV	
Solar Photovoltaic : Principle of photovoltaic conversion of solar energy, types of solar cells and fabrication. Wind Energy: Atmospheric circulations, classification, factors influencing wind, wind shear,turbulence, wind speed monitoring, Betz limit, WECS: classification, characteristics, and applications	07 Hrs
Unit – V	
Alternative liquid fuels: Introduction. Ethanol production: Raw materials, Pre-treatment, Conversion processes, Fermentation systems. Methanol production: Raw materials, Gasification	07 Hrs

Course Outc	Course Outcomes: After going through this course the student will be able to:				
CO1	Understand the use alternate fuels for energy conversion				
CO2	Develop a scheme for energy audit				
CO3	Evaluate the factors affecting biomass energy conversion				
CO4	Design a biogas plant for wet and dry feed				

of wood, Gas purification and shift conversion, Synthesis, Gasification equipment.

Refe	Reference Books:			
1	Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.			
2	Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.			
3	Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.			
4	C. S. Solanki, Solar Photovoltaics: Fundamental Applications and Technologies, Prentice Hall of India, 2009, ISBN:9788120343863			

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
		(0	INDUSTRY 4.0	、 、		
		(Gr	roup G: Global Electi	ve)		
Course Code	:	18ME2G06		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I	
Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and Artificial	07 Hrs
Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data Management.	
Unit – II	
The Concept of the IIoT: Modern Communication Protocols, Wireless Communication	07 Hrs
Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical	
Perspective, Middleware Architecture.	
Unit – III	
Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing,	08 Hrs
Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with	
Komatsu, Quality Prediction in Steel Manufacturing.	
Internet of Things and New Value Proposition, Introduction, Internet of Things Examples,	
IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.	
Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological	
CompTWOnts of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of	
Robotic Things, Cloud Robotics.	
Unit – IV	
Additive Manufacturing Technologies and Applications: Introduction, Additive	07 Hrs
Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling,	
Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net Shaping,	
Advantages of Additive Manufacturing, Disadvantages of Additive Manufacturing.	
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual Factory	
Software, Limitations of the Commercial Software	
Unit – V	
Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0, Introduction,	07 Hrs
AR Hardware and Software Technology, Industrial Applications of AR, Maintenance,	
Assembly, Collaborative Operations, Training.	
Smart Factories: Introduction, Smart factories in action, Importance, Real world smart	
factories, The way forward.	
A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models,	
Increase Operational Efficiency, Develop New Business Models.	
Course Outcomes: After going through this course the student will be able to:	
CO1 Understand the opportunities challenges brought about by Industry 4.0 for benefits	of

Course o	vaccomes. There going the ough this course the student will be able to.
CO1	Understand the opportunities, challenges brought about by Industry 4.0 for benefits of
	organizations and individuals
CO2	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services
CO3	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
CO4	Evaluate the effectiveness of Cloud Computing in a networked economy

Ref	erence Books :
1	Alasdair Gilchrist, INDUSTRY 4.0 The Industrial Internet Of Things, Apress Publisher, ISBN-
	13 (pbk): 978-1-4842-2046-7
2	Alp Ustundag Emre Cevikcan ,Industry 4.0: Managing The Digital Transformation, Springer,
	2018 ISBN 978-3-319-57869-9
3	Ovidiu Vermesan and Peer Friess Designing the industry - Internet of things connecting the
	physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
4	Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and
	Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
	ADVANCED MATERIALS					
		(0	Group G: Global Elective)			
Course Code	:	18ME2G07	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I	
Classification and Selection of Materials : Classification of materials. Properties required in Engineering materials, Criteria of selection of materials. Requirements / needs of advance	7 Hrs
materials.	
Unit – II	
Non Metallic Materials: Classification of n on metallic materials, Rubber : Properties,	7 Hrs
processing	
and applications. Plastics : Thermosetting and Thermoplastics, Applications and properties.	
Ceramics : Properties and applications. Adhesives: Properties and applications. Optical fibers :	
Properties and applications. Composites : Properties and applications.	
Unit – III	
High Strength Materials : Methods of strengthening of alloys, Materials available for high strength applications, Properties required for high strength materials, Applications of high strength materials	8 Hrs
Unit – IV	
Low & High Temperature Materials	7 Hrs
Properties required for low temperature applications, Materials available for low temperature	
applications, Requirements of materials for high temperature applications, Materials available	
for high temperature applications, Applications of low and high temperature materials.	
Unit – V	
Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and	7 Hrs
nanocomposites, Physical and mechanical properties, Applications of nanomaterials	

Course Outcomes: After going through this course the student will be able to:		
CO1	Describe metallic and non metallic materials	
CO2	Explain preparation of high strength Materials	
CO3	Integrate knowledge of different types of advanced engineering Materials	
CO4	Analyse problem and find appropriate solution for use of materials.	

Refer	rence Books:
1	Donald R. Askeland, and Pradeep P. Fulay, The Science & Engineering of Materials, 5th Edition, Thomson, 2006, ISBN-13-978-0534553968
2	Gregory L. Timp, Nanotechnologym 1999th Editionmm Springer, 1999 ISBN-13: 978-0387983349
3	Dr. VD Kodgire and Dr. S V Kodgire, Material Science and Metallurgym 42nd Edition 2018, Everest Publishing House ISBN NO: 81 86314 00
4	N Bhatnagar, T S Srivatsan, "Processing and Fabrication of Advanced Materials", 2008, IK International, ISBN: 978819077702

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	CON	~	ster: II CIENCE AND ENGINEERIN	IG	
		(Group G: Gl	lobal Elective)		
Course Code	:	18CHY2G08	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Unit – 1	
INTRODUCTION TO COMPOSITE MATERIALS	07 Hrs
Fundamentals of composites - need for composites - Enhancement of properties -	
Classification based on matrix- Polymer matrix composites (PMC), Metal matrix	
composites (MMC), Ceramic matrix composites (CMC) - Constituents of composites,	
Interfaces and Interphases, Distribution of constituents, Types of Reinforcements, Particle	
reinforced composites, Fibre reinforced composites. Fiber production techniques for glass,	
carbon and ceramic fibers Applications of various types of composites.	
Unit – II	
POLYMER MATRIX COMPOSITES (PMC)	08 Hrs
Polymer resins – Thermosetting resins, Thermoplastic resins & Elastomers,	00 1115
Reinforcement fibres-Types, Rovings, Woven fabrics. PMC processes – Hand Layup	
Processes, Spray up processes – Compression Moulding – Injection Moulding – Resin	
Transfer Moulding – Pultrusion – Filament winding – Injection moulding. Glass fibre and	
carbon fibre reinforced composites (GFRP & CFRP). Laminates- Balanced Laminates,	
Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Mechanical Testing of	
PMC- Tensile Strength, Flexural Strength, ILSS, Impact Strength- As per ASTM Standard.	
Applications of PMC in aerospace, automotive industries.	
Unit – III	
CERAMIC MATRIX COMPOSITES AND SPECIAL COMPOSITES	07 Hrs
Engineering ceramic materials – properties – advantages – limitations – monolithic	
ceramics - need for CMC - ceramic matrix - various types of ceramic matrix composites-	
oxide ceramics - non oxide ceramics - Aluminium oxide - silicon nitride - reinforcements	
- particles- fibres- whiskers. Sintering - Hot pressing - Cold Isostatic Pressing (CIPing) -	
Hot isostatic pressing (HIPing). Applications of CMC in aerospace, automotive industries-	
Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix	
carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel	
technique- Processing of Ceramic Matrix composites.	
Unit – IV	
METAL MATRIX COMPOSITES	07 Hrs
Characteristics of MMC, various types of metal matrix composites alloy vs. MMC,	07 1115
advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of	
reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder	
metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process,	
Liquid infiltration In-situ reactions-Interface-measurement of interface properties-	
applications of MMC in aerospace, automotive industries.	
Unit – V	07.11
POLYMER NANO COMPOSITES	07 Hrs
Introduction and Significance of polymer Nano composites. Intercalated And Exfoliated	
Nanocomposites. Classification of Nano fillers- nanolayers, nanotubes, nanoparticles.	
Preparation of Polymer Nano composites by Solution, In-situ Polymerization and melt	
mixing techniques. Characterization Of polymer nanocomposites- XRD, TEM, SEM and	
AFM. Mechanical and Rheological properties of Polymer Nano composites. Gas barrier,	l
Chemical-Resistance, Thermal and Flame retardant properties of polymer nanocomposites.	

Course O	Course Outcomes: After going through this course the student will be able to:				
CO1	Understand the purpose and the ways to develop new materials upon proper combination of				
	known materials.				
CO2	Identify the basic constituents of a composite materials and the list the choice of materials				
	available				
CO3	Will be capable of comparing/evaluating the relative merits of using alternatives for				
	important engineering and other applications.				
CO4	Get insight to the possibility of replacing the existing macro materials with nanomaterials.				

Reference Books: 1 Krishan K Chawla- Composite Materials Science and Engineering, Springer-verlag Gmbh, 3rd Edition, ISBN: 9780387743646, 0387743642 2 K Balani, Donald R Askeland, - The Science Engineering of Materials,6th Edition- Cengage, ISBN: 9788131516416 3 Joel R Fried-Polymer Science and Technology, 2nd Edition, Prentice Hall, ISBN: 9780137039555 4 Rajendra Kumar Goyal-Nanomaterials and nanocomposites, 2nd Edition, CRC Press-Taylor & Francis, ISBN: 9781498761666, 1498761666

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
PHYSICS OF MATERIALS					
		()	Group G: Global Elective)		
Course Code	:	18PHY2G09	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	ı :	3 hrs

Unit – I CRYSTAL STRUCTURE	
Symmetry elements-seven crystals systems-Reciprocal lattice-Packing fraction, Lattice	7 Hrs
Vibration-Brillouin zones, Analysis of Crystal structure using XRD, Thermal properties.	
Unit – II DIELECTRIC MATERIALS	
Basic concepts-Langevin's Theory of Polarisation-Clausius-Mossotti Relation-Ferro electricity-Piezoelectricity-Properties of Dielectric in alternating fields-The complex Dielectric Constant and Dielectric Loss, Polarizability as a function of frequency-Complex	7 Hrs
dielectric constant of non-polar solids-Dipolar relaxation, Applications.	
Unit – III MAGNETIC MATERIALS	
Dia and Paramagnetic materials-Quantum theory of paramagnetic materials-Paramagnetic susceptibility of conduction electrons-Ferro-anti ferromagnetic materials-Superconductors and Applications.	8 Hrs
Unit – IV SEMICONDUCTING MATERIALS	
Semiconductor-Direct and Indirect bonding characteristics-Importance of Quantum confinement-quantum wires and dots-Ferro electric semiconductors-applications-Polymer semiconductors-Photo conductive polymers, Applications.	7 Hrs
Unit – V NOVEL MATERIALS	
Smart materials-shape memory alloys-shape memory effects-Martensitia Transformation functional properties-processing-texture and its nature.	7 Hrs

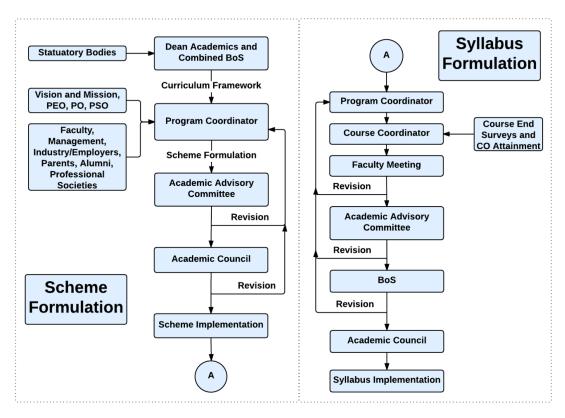
Course Outcomes: After going through this course the student will be able to:				
CO1	Analyse crystals using XRD technique.			
CO2	Explain Dielectric and magnetic materials.			
CO3	Integrate knowledge of various types of advanced engineering Materials.			
CO4	Use materials for novel applications.			

Ref	Reference Books:				
1	Solid State Physics, S O Pillai, 2015, New Age International Publishers, ISBN 10-8122436978.				
2	Introduction to Solid State Physics, C.Kittel, Seventh Edition, 2003, John Wiley & Sons, ISBN				
	9971-51-180.				
3	Material Science, Rajendran V and Marikani, , Tata McGraw Hill, 2013, ISBN 10-007132871.				
4	The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, Sixth Edition,				
	2012 Cengage Learning, ISBN-13:978-0-495-66802-2.				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

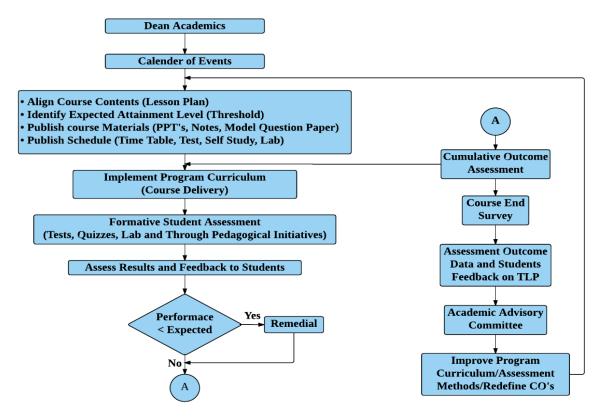
Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II				
	ADVANCED STATISTICAL METHODS				
		(Grou	oup G: Global Elective)		
Course Code	:	18MAT2G10	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

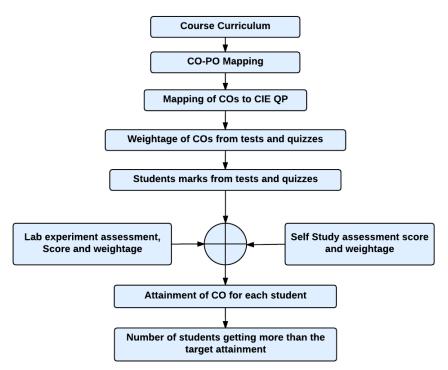

Unit-I	
Sampling Techniques:	07 Hrs
Random numbers, Concepts of random sampling from finite and infinite populations,	
Simple random sampling (with replacement and without replacement). Expectation and	
standard error of sample mean and proportion.	
Unit-II	
Estimation:	07 Hrs
Point estimation, Estimator and estimate, Criteria for good estimates - unbiasedness,	
consistency, efficiency and sufficiency, Method of moment's estimation and maximum	
likelihood estimation, Properties of maximum likelihood estimator (no proofs), Confidence	
intervals-population mean (large sample), population proportion.	
Unit -III	
Tests of Hypothesis:	07Hrs
Principles of Statistical Inference, Formulation of the problems with examples,	
Simple and composite hypothesis, Null and alternative hypothesis, Tests - type I and type II	
error, Testing of mean and variance of normal population (TWO sample and two samples),	
Chi squared test for goodness of fit.	
Unit -IV	
Linear Statistical Models:	07 Hrs
Definition of linear model and types, TWO way ANOVA and two way ANOVA models-	
TWO observation per cell, multiple but equal number of observation per cell.	
Unit -V	
Linear Regression:	08 Hrs
Simple linear regression, Estimation of parameters, Properties of least square estimators,	
Estimation of error variance, Multivariate data, Multiple linear regressions, Multiple and	
partial correlation, Autocorrelation-introduction and plausibility of serial dependence,	
sources of autocorrelation, Durbin-Watson test for auto correlated variables.	

Course Ou	Course Outcomes: After going through this course the student will be able to:				
CO1	Identify and interpret the fundamental concepts of sampling techniques, estimates and				
	types, hypothesis, linear statistical models and linear regression arising in various fields				
	engineering.				
CO2	Apply the knowledge and skills of simple random sampling, estimation, null and				
	alternative hypotheses, errors, TWO way ANOVA, linear and multiple linear				
	Regressions.				
CO3	Analyze the physical problem to establish statistical/mathematical model and use				
	Appropriate statistical methods to solve and optimize the solution.				
CO4	Distinguish the overall mathematical knowledge gained to demonstrate the problems of				
	sampling techniques, estimation, tests of hypothesis, regression and statistical model				
	arising in many practical situations.				

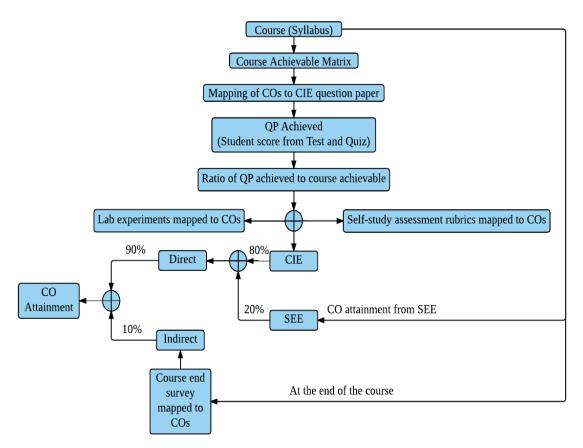
Ref	Reference Books:		
1	A. M. Goon, M. K. Gupta and B. Dasgupta-Fundamentals of Statistics (Vol. I and Vol. II),		
	World Press Private Limited, 3rd Edition, 1968, ISBN-13: 978-8187567806.		
2	D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, John		
	Wiley & Sons, Inc., 3rd Edition, 2003, ISBN 0-471-20454-4.		
3	S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistic - A Modern Approach, S		
	Chand Publications, 10th Edition, 2000, ISBN 81-7014-791-3.		
4	Regression Analysis: Concepts and Applications - F. A. Graybill and H. K. Iyer, Belmont,		
	Calif.: Duxbury Press, 1994, ISBN-13: 978-0534198695.		

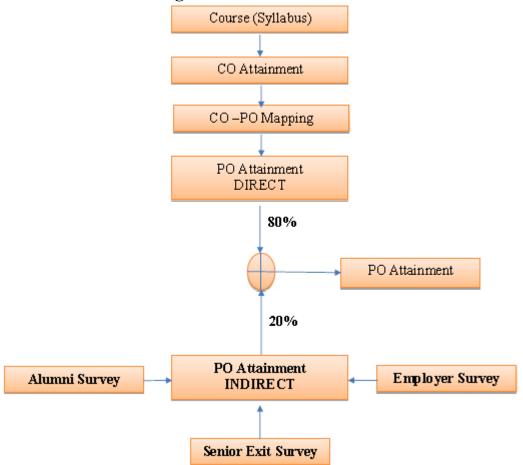

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:



Curriculum Design Process


Academic Planning and Implementation


Process For Course Outcome Attainment

Final CO Attainment Process

RV College of Engineering®

Program Outcome Attainment Process