

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2016 SCHEME

CIVIL ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2016 SCHEME

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT VISION

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

DEPARTMENT MISSION

- Disseminating and integrating the knowledge of civil engineering and allied fields.
- Enhancing industry-institute interaction leading to interdisciplinary research.
- Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- Motivate entrepreneurship and professional ethics to serve the society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- PEO1. Successfully address technological and managerial challenges.
- **PEO2.** Professionally design and execute Civil Engineering projects.
- **PEO3.** Pursue advanced education, research and continue life-long learning process to remain active professionals.
- PEO4. Play key roles in addressing societal needs through interdisciplinary approach

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Apply knowledge of fundamental aspects to analyze and design civil engineering structures
PSO2	Provide sustainable solutions to civil engineering problems
PSO3	Employ codal provisions to arrive at comprehensive solutions to address societal needs
PSO4	Exhibit communication and teamwork skills

Lead Society: American Society of Civil Engineers (ASCE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

VII Semester								
Sl. No.	Course Code	Course Title	Page No.					
1.	16CV71	Design and Drawing of Steel Structures	1					
2.	16CV72	Foundation Engineering	3					
3.	16CV73	Estimation and Costing	5					
4.	16CV74	Extensive Survey Camp	7					
5.	16CV7FX	Elective F (Professional Electives)	9					
6.	16CV7GX	Elective G (Professional Electives)	17					
7.	16GH7XX	Elective H (Global Electives)	25					

VIII Semester								
Sl. No.	Page No.							
1.	16CV81	Major Project	59					
2.	16CV82	Technical Seminar	62					
3.	16HS83	Innovation and Social Skills	63					

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) CIVIL ENGINEERING

SEVENTH SEMESTER CREDIT SCHEME											
Sl.	Course	Course Title	POS		Credit Allo	ocation		Total			
No	Code	Course Thie	D U5	Lecture	Tutorial	Practical	SS	Credits			
1	16CV71	Design and Drawing of Steel Structures	CV	3	0	1	0	4			
2	16CV72	Foundation Engineering	CV	3	0	0	0	3			
3	16CV73	Estimation and Costing	CV	3	0	0	0	3			
4	16CV74	Extensive Survey Camp*	CV	0	0	3	0	3			
5	16CV7FX	Elective F (PE)	CV	4	0	0	0	4			
6	16CV7GX	Elective G(PE)	CV	4	0	0	0	4			
7	16GH7XX	Elective H (GE)	CV	3	0	0	0	3			
	Total	No. of Credits	20	0	4	0	24				
	N	o. Of Hrs.		20	0	8	0	28			

* Extensive Survey Camp during VI to VII Semester vacation for 11 days.

EIGTH SEMESTER CREDIT SCHEME										
SI.	Course				Credit Allo	ocation		Total		
No.	Code	Course Title	BOS	Lecture	Tutorial	Practical	SS	Credits		
1.	16CV81	Major Project	CV	0	0	16	0	16		
2.	16CV82	Technical Seminar	CV	0	0	2	0	2		
3.	16HS83	Innovation and Social Skills	HSS	0	0	2	0	2		
	Т	otal No. of Credits	0	0	20	0	20			
		No. of Hrs.		0	0	40	0	40		

VII Semester								
	GROUP F: PROFESSIONAL ELECTIVES							
Sl. No.	Course Code	Course Title						
1.	16CV7F1	Bridge Engineering						
2.	16CV7F2	Solid waste Engineering						
3.	16CV7F3	Ground Improvement Techniques						
4.	16CV7F4	Urban Water Engineering and Management						
		VII Semester						
	GR	OUP G: PROFESSIONAL ELECTIVES						
Sl. No.	Course Code	Course Title						
1.	16CV7G1	Advanced Design of RCC Structures						
2.	16CV7G2	Pavement Analysis and Design						
3.	16CV7G3	Rock Mechanics						
4.	16CV7G4	Valuation Engineering						

	GLOBAL ELECTIVES										
Sl. No.	Host Dept	Course Code	Course Title								
1.	BT	16G7H01	Nanotechnology								
2.	СН	16G7H02	Industrial Safety and Risk Management								
3.	CV	16G7H03	Intelligent Transport System								
4.	CS	16G7H04	Intelligent Systems								
5.	EC	16G7H05	Image Processing and Machine Learning								
6.	EE	16G7H06	Design of Renewable Energy Systems								
7.	IM	16G7H07	Systems Engineering								
8.	EI	16G7H08	MEMS and Applications								
9.	IS	16G7H09	Introduction to Internet of Things								
10.	ME	16G7H10	Industry 4.0 – Smart Manufacturing for The								
			Future								
11.	TE	16G7H11	Space Technology and Applications								
12.	MA	16G7H12	Advanced linear Algebra								
13.	PY	16G7H13	Thin Film Nanotechnology								
14.	CY	16G7H14	Engineering Materials for Advanced Technology								
15.	HSS	16G7H15	Applied Psychology for Engineers								
16.	HSS	16G7H16	Foundational Course on Entrepreneurship								
17.	AS	16G7H17	Unmanned Aerial Vehicles								

Semester: VII											
	DESIGN AND DRAWING OF STEEL STRUCTURES										
(Theory & Practice)											
Cour	rse Code	:	16CV71		CIE	:	100+50				
Cred	its: L:T:P:S	:	3:0:1:0		SEE	:	100+50				
Tota	Total Hours : 36L SEE Duration : 3 Hrs + 3 Hrs										
Cour	rse Learning O	bjeo	ctives: The stu	dents will be able to	ning annual daaid		un a sifi a sti ang (IC				
1	800:2007 is the	e co	de of practice i	used in the course)	using current desig	gn s	specifications.(15				
2	Apply their kn between analys	iow sis a	ledge from sta and design of st	tics, and structural anal eel structures	lysis understandin	g ir	the relationship				
3	Design of stee loading and to	el si pre	tructural eleme	nts of different forms, steel drawings	connections unde	er d	lifferent states of				
				PART A							
				UNIT-I			08 Hrs				
Intro	duction: Adva	ntag	tes and disadva	ntages of steel structure	es load and load of	com	binations. design				
philo	sophies, structur	al f	forms.	intages of steel structure		.011	emations, acorgi				
Bolte	ed connections:	Ad	lvantages, Type	es, Modes of failures, I	ntroduction to sim	ple	, semi rigid and				
rigid	connections, Ec	cer	tric connection	s(plane of connection p	parallel and perper	ndia	cular to the plane				
of mo	oment),			`							
Weld	led connections	s: A	dvantages, dis	advantages. Types of jo	oints, weld symbol	ls, 1	Design of simple				
joints	s, eccentric conn	ecti	ions, (plane of o	connection parallel and	perpendicular to th	e p	lane of moment).				
				UNIT-II			07 Hrs				
Simp	ole beam to be	am	and beam to	column connections:	Framed, stiffened	l, u	nstiffened seated				
conn	ections with pro	bleı	ns on welded a	nd bolted connections.							
				UNIT-III			07 Hrs				
Desig Lug a	gn of tension m eangles.	eml	bers: modes of	failures, Analysis and d	esign of tension i	nen	nbers- angles,				
	0			UNIT-IV			07 Hrs				
Desig	gn of compressi	on	members: Fail	ure modes, section used	for compression r	nen	nber, member				
class	ification, analysi	is a	nd design of sir	nple axially loaded men	bers. Design of la	cin	g, battens, slab				
base	and gusseted col	lum	n base with axi	al load on column.	-		-				
				UNIT-V			07 Hrs				
Desig	gn of beams: E	Bear	n types, sectio	n classification, design	of laterally suppo	orte	d beams, Design				
proce	edure for laterall	y ui	nsupported bear	ms.							
			PART-B	(LABORATORY)			36 Hrs				
				Part - B1							
a) Da	ta given drawin	g us	sing drafting so	ftware of the following							
i) Be	eam to beam con	nec	tions - Framed	connections- bolted and	l welded						
Beam to column connections – unstiffened and stiffened connections - bolted and welded.											
ii) Laced and battened column.											
				Part - B2							
b) De	b) Design and drawing										
Roof	Roof truss including bolted and welded connection, supports										
Course Outcomes: After completing the course, the students will be able to											
CO1	: Explain the e	engi	neering proper	ties and behavior of stru	ctural steel						
CO2	CO2: Apply the behavior of steel members and connections to analyze structural components										

CO3: Analyze and evaluate critical capacity of structural steel sectionsCO4: Design and detail steel members and connections

Ref	erence Books
1.	Design of Steel structures, Subramanian N, Oxford University press, 1 st Edition, 2008, ISBN
	978019567681
2.	Limit state design of steel structures, S K Duggal, Tata McGraw Hill Education Private Limited,
	2017, ISBN-10 9351343499, ISBN-13 978-9351343493
3.	Design of Steel structures, Bhavikatti S S, Interline Publications, 2009, ISBN 978938002661
4.	BIS Codes:
	i) IS-800-2007, General construction in steel-code of practice.
	ii) IS 875-1987, Code of practice for design loads,
	iii) SP6(6)- 1972, ISI handbook for structural engineers-application of plastic theory in
	design of steel structures.
	iv) SP6(1)-1964, Reaffirmed in 2003 Handbook for structural engineers- Structural steel
	sections

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10. **Total CIE is 30(O) + 60(T) + 10(A) = 100 Marks.**

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 40 marks. At the end of the semester a test (T) is conducted for 10 marks. Total marks for the laboratory is 50. **Total CIE is 40(AM) + 10 (T) = 50 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and viva is for 10marks. The laboratory consists of Part B1 and Part B2. Out of 40 marks, Part-B1 is to be evaluated for 15 marks and Part-B2 is to be evaluated for 25 marks (Design-15M, Drawing-10M).

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	1	-	-	-	1
CO2	3	1	-	-	-	-	-	2	-	-	-	2
CO3	1	3	2	-	-	-	-	2	-	-	-	2
CO4	3	-	3	-	-	-	1	3	-	-	-	3

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	Semester: VII									
	FOUNDATION ENGINEERING									
				(Theory)						
Cou	Course Code : 16CV72 CIE : 100									
Credits: L:T:P:S		:	3:0:0:0		SEE	:	100			
Tota	l Hours	:	36		SEE Duration		3 Hrs			
Cou	rse Learning O	bje	ctives: The stu	idents will be able to						
1	Understand t	he S	tratification of	f soils and soil investiga	tion					
2	Predict the be	ehav	vior of soil ben	eath the substructures						
3	Interpret the s	oil o	condition at a g	given location and sugge	est suitable foundat	ion				
1	Summarize th	ne v	arious method	s of soil investigation	and foundations fo	r C	ivil Engineering			
4	applications			-						

UNIT-I	07 Hrs							
Site Investigation: Introduction, site reconnaissance, objective of site exploration, met	hods of site							
exploration, soil samples and samplers, methods of sampling, penetration and sounding tests,								
geophysical methods.								
UNIT-II	07 Hrs							
Stress Distribution in Soil Mass: Introduction, Boussinesq's analysis, isobar and pr	essure bulb,							
vertical stress distribution on horizontal plane and on vertical line, vertical stress under	r uniformly							
loaded circular area and under strip load, vertical stress due to line load, uniformly loaded	rectangular							
area, equivalent point load method, Newmark's influence chart, Westergaard analysis, co	mparison of							
Boussinesq and Westergaard theories.								
UNIT-III	08 Hrs							
Bearing Capacity: Introduction, Terzaghi's analysis, Meyerhof's analysis and effect of	water table							
on bearing capacity, effect of eccentricity of loading, I.S. Code method for comput	ing bearing							
capacity, plate load test, penetration tests.								
UNIT-IV	07Hrs							
Pile Foundations: Introduction, Classification of piles, pile driving, load carrying capacity	y of piles,							
dynamic formulae, static formulae, pile load tests, group action in piles, negative skin frid	ction,							
under-reamed pile foundations.								
UNIT-V	07Hrs							
Earth Pressure: Introduction, earth pressure at rest, active earth pressure: Rankine's th	eory, active							
earth pressure of cohesive soils, passive earth pressure: Rankine's and Coulomb's we	edge theory,							
Rebhann's and Culmann's graphical method for active and passive pressure.								
Course Outcomes: After completing the course, the students will be able to								
CO1: Understand the soil behaviour under different subsoil conditions and meth	ods of soil							
investigation								
CO2: Interpret the investigated soil data and design suitable foundation system								
CO3: Analyse the sub soil conditions at a given location and evaluate bearing capacity								
CO4: Apply the principles of soil behaviour and concepts of substructure to solve Civil	engineering							

problems

Refe	erence Books
1.	Foundation Analysis and Designs, Bowles. J.E, McGraw Hill Publishing Co., New York1996,
	5 th Edition. ISBN 978-0071188449
2.	Soil Mechanics in Engineering practice, Terzaghi, Peck and Mesri, 3 rd Edition, Wiley
	publication.
3.	Basic and Applied Soil Mechanics, Gopal Ranjan and Rao ASR ,New Age International (P) ltd,
	New Delhi, 2000, ISBN 788122412239
4.	Soil Mechanics and Foundation Engineering, VNS Murthy, First Edition, UBS Publishers and
	Distributors, New Delhi,2007, ISBN 9788174763228

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	-	
CO2	2	2		-	-	-	-	-	-	-	-	1	
CO3	-	2	2	-	-	-	-	-	-	-	-	-	
CO4	-	2	1	-	-	-	-	-	-	-	-	-	

Semester: VII											
ESTIMATION AND COSTING											
(Theory)											
Cours	Course Code : 16CV73 CIE : 100										
Credit	ts: L: T:P:S	:	3:0:0:0		SEE	:	100				
Total	Hours	:	36		SEE Duration	:	3 Hrs				
Cours	e Learning Obj	ecti	ves: The stude	ents will be able to							
1	Estimator learn	ns t	o read the con	struction drawings and	extract quantities	of	items of different				
1	items involved	in 1	he construction	project and prepare es	timates for the prop	pose	ed project				
2	Imparting the	kn	owledge of d	ifferent types of esti-	mates-Item wise,	are	ea basis, contract				
	documents, dep	oart	mental procedu	res etc							
	Calculations a	nd	earthwork qua	antities for construction	on, earthen embar	nkn	nents, canals etc.				
3	Preparation of										
	detailed specifi	cat	on for the item	s of constructions							
4	Preparation of	c	onstruction es	timates using availab	le software for	acc	uracy and faster				
-	preparation										
	Retrieval of data, Rate analysis, perform calculations in shorter time enabling the estimator to										
5	give more att	enti	on to alternat	ive construction meth	ods, to assess la	bou	r and equipment				
	utilization										
	- ·										

UNIT-I08 HrsEstimation: Different type of estimates, study of various drawing attached with estimates, important
terms, units of measurement, abstract, approximate methods of estimating buildings, cost from materials
and labour coefficients recommended.

Measurement of Earth Work for Roads

Estimation: Methods of taking out quantities and cost-center line method, long and short wall method or crossing method, long and short wall method or crossing method. Preparation of detailed and abstract estimates for the following Civil Engineering works – Buildings – Masonry structures, framed structures with flat, slopped RCC roofs with all building components, RCC slab culverts..

Estimates: Steel truss (north light and fink roof truss), manhole and septic tanks.

UNIT-II

07 Hrs

Specifications: Definition of specifications, objectives of writing specifications, essentials in specifications, general and detailed specifications of item of works in buildings, specifications of aluminum and wooden partitions, false ceiling, aluminum and fiber doors and windows. Various types of claddings.

UNIT-III	07 Hrs
Rate analysis: Definition and purpose. Working out quantities and rates for the follow	wing standard
items of works - earth work in different types of soils, cement concrete of different mix	es, bricks and
stone masonry, flooring, plastering, RCC works, centering and form work for different	t RCC items,
wood and steel works or doors, windows and ventilators.	
	A -

UNIT-IV07 HrsMeasurement of Earth Work for Roads: Methods for computation of earthwork-cross sections-med
section formula, trapezoidal or average end area or mean sectional area formula, prismoidal
formula.Project Preparation /Preliminary report (PSR) / DPR07 Hrs

UNIT-V07 HrsContracts: Types of contract-essential of contract –legal aspects, penal provision on breach of contract.Definition of the terms-Tender, Earnest money deposit, tender forms, documents and types.Comparative statements, acceptance of contract documents and issue of work orders, duties andliabilities, termination of contract, completion certificate, quality control, right of contractor refund ofdeposit. Administrative approval - Technical sanction. Nominal muster roll, measurement books –procedure for recording and checking measurements – preparation of bills.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Extract quantities of construction items by reading engineering / construction
	drawings and specifications followed in executing projects
CO2:	Prepare of estimates using different methods for building projects (RCC, Steel
	Structures, Masonry, Road and Hydraulic Structures)
CO3:	Apply the method of working out unit rate analysis of different construction items
	for finally prepared tendered documents
CO4:	Create tender document, billing of qualities of works and other financial related
	issues

Reference Books

1.	Estimating, costing, specification and Valuation in Civil Engg., N. Chakraborti, , N.
	Chakraborti, Published by author, Culcutta, 20 th Edition, 2007
2.	Estimating & Specification, B.N. Dutta, USB Publishers and Distributors, New Delhi,
	25 th Revised Edition, 2006, ISBN 817476383X, ISBN 9788174763839
3.	Estimating and Specification, S.C. Rangawala, Charotar Publishing House, Anand, 2008
4.	Text book of Estimating and Costing, G.S. Birdie, Dhanpath Rai and Sons, New Delhi,
	1 st Edition, 2008

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE The question paper consists of part A and part B. Part A will be for 20 marks covering the complete syllabus and is compulsory. Part B will be for 80 marks and shall consist of four questions (descriptive, analytical, problems and / or design). Question from Unit 1 shall be for 35 marks and remaining three questions for 15 marks. All four questions from part B will have internal choice and one of the two have to be answered compulsorily.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	-	-	-	-	-	-	2			2	-		
CO2	3	1	-	-	-	-	-	-	-	-	-	-		
CO3	1	-	-	-	-	-	-	-	-	-	2	-		
CO4	-	2	-	-	2	-	-	-	-	-	3	-		

	Semester: VII									
	EXTENSIVE SURVEY CAMP									
				(Practice)						
Cou	rse Code	:	16CV74		CIE	:	100			
Crec	lits: L:T:P:S		0:0:3:0		SEE		100			
Tota	l Hours		36		SEE Duration		3 Hrs			
Cou	rse Learning Ol	ojeo	ctives: The stud	dents will be able to						
1	Describe the t	ype	s of surveys a	nd use of surveying t	ools and equipment	nts	required for civil			
I	engineering pro	ojec	ts.							
2 Address the field problems and challenges in surveying.										
3	3 Evaluation, interpretation and communication the field data.									
4										

4 Design and develop solutions to meet societal needs.

36 Hrs

New Tank Project ;

- 1. Survey and preparation of drawing for longitudinal and Cross section of bund
- 2. Survey and preparation of drawing for Block levels at waste Weir Site.
- 3. Survey and preparation of drawing for Capacity Contours.
- 4. Survey and preparation of drawing for Initial Alignment of Channel.
- 5. Survey and preparation of drawing for Final Alignment of Channel.

Water Supply & Sanitary Project - conduction of survey, preparation of drawings ;

- 1. Water Supply Project.
 - a. Survey and preparation of maps for water supply to the village
 - b. Longitudinal and cross sections along the alignment of pipeline
 - c. Calculation of cutting and filling along the alignment of pipeline
- 2. Sanitary Project.

Village survey & preparation of drawings for waste water drainage

Highway Project ;

- 1. Initial Alignment of Highway.
- 2. Final Alignment of Highway.

Preparation of finalized drawings and related calculations of cutting and filling for the following projects

- 1. New Tank Project
- 2. Water Supply & Sanitary Project
- 3. Highway Project

Course C	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the different surveys required for various Civil Engineering projects							
CO2:	Apply the various equipments and methods of survey for different civil engineering projects							
CO3:	Analyze the field data and prepare the drawings based on the survey field work							
CO4:	Evaluate and calculate the bill of quantities for various works based on the survey and							
	drawings prepared							

Continuous Internal Examination (CIE):

Evaluation will be carried out under three Phases .CIE consists of preliminary survey, survey field work and preparation of preliminary drawings. The total marks for CIE shall be **100** out of which 20% for preliminary survey, 50% for field work and 30% for preparation and submission of drawings.

Scheme of Evaluation for SEE:

Based on performance in the viva voce examination out of **100**

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	-	-	-	-	-	-	3	2		2	
CO2	-	-	-	-	-	-	3	-	2	-	-	-	
CO3	-	-	-	-	-	-	2	-	3	-	1	1	
CO4	-	-	-	-	-	3	2	1	2	1	1	2	

				Semester VII								
			В	RIDGE ENGINEERI	NG							
			_	(Theory)								
Course Code		:	16CV7F1		CIE	:	100					
Credits: L:T:F	:S	••	4:0:0:0		SEE : 100							
Total Hours : 48 SEE Duration : 3 Hrs												
Course Learni	ng Ol	ojeo	ctives: The st	udents will be able to								
1 Describe	histor	y, c	classification a	and component of bridg	jes							
2 Illustrate	the lin	nit	state design n	nethod								
3 Know va	rious t	ype	es of bridges i	ts components and then	r specific uses							
4 Discuss c	lesign	pn	llosopny and c	codal requirements								
				UNIT-I			09 Hrs					
Introduction: H	Iistori	cal	Developmen	ts. Site Selection for	Bridges, Necess	arv	investigations &					
collection of es	sential	br	idge design da	ata, definition of bridge	, Components of b	ridge	e, Classification of					
Bridges, Requir	ement	ts o	f an ideal brid	lge, Forces on Bridges.		U						
Hydraulic Desi	gn: M	letł	nods of findin	ng design discharge, N	Natural artificial a	nd li	near water ways,					
afflux, economi	c spar	ı of	bridge, Scou	r dept								
				UNIT-II			10 Hrs					
Bridge substrue	ctures:	G	eneral, Desig	in and construction of	Bridge piers, Ab	utme	ents, Wing walls,					
Approaches	1	ъ	1 1 11	1 . 1.1. 1	N D'	1 1						
Bearings for bri	dges,	Ro	cker and rolle	r bearings, sliding beari	ngs, Neoprene Bri	dge I	bearing					
Superstructures	Cros	ipoi	arriers and its	S and Railings for High	lway Bridges, Clas	SILIC	ation of Highway					
Bridge parapets	, CIUS	50					10 Hrs					
Low cost bridge	es- Int	rod	uction types	of low cost bridges Ca	use-ways suspensi	on h	ridges Culverts					
Bridge Loading	2: Sta	nda	rd Specificat	ions for Roads and R	ailways Bridges.	Gene	eral. Indian Road					
Congress Bridg	e Cod	e, I	Detailed expla	nation of IRC standard	live loads,		,					
Loading for re	ad br	ridg	ges: Dead loa	ad, Live load, Impact	factor, Centrifug	al fo	orce, wind loads,					
hydraulic force	es, lor	ngit	udinal forces	s, Seismic forces; Ear	th pressure. Buo	anc	y; Lane concept,					
Equivalent load	s, traf	fic	load; Width o	f Roadway and Footwa	У		1					
				UNIT-IV			10Hrs					
Box Culvert:	Differ	ent	Loading Cas	ses IRC Class AA Tr	acked, Wheeled a	nd (Class A Loading,					
working out th	e woi	rst	combination	of loading, Moment I	Distribution, Calci	ilatio	on of BM & SF,					
Structural Desig	gn of S	Slat	b Culvert, Rei	UNIT V			00 II.wa					
PCC dock Stat	Drid	a 0'	Introduction	to PCC dock slob bri	daa Loading cale	ulati	U9 HIS					
Calculation of		ge.	F Structural	design of deck slab b	ridge, Loading card		ding and class A					
loading Reinfo	rceme	nt a	letailing	design of deck slab b	inuge for class Ar	1 102	and class A					
ioadilig, Kellilo		III V	detailing.									
Course Outcon	nes: A	\fte	er completing	the course, the studer	nts will be able to							
CO1: Descr	be th	ne	principle of	bridge site investiga	ation, bridge hyd	rolog	gy and standard					
specif	the st	18	ants of IDC (and IDC 21 in desire	of Dridage							
CO2: Apply	the co	onc	epis of IRC 6	and IKC 21 in design (DI Bridges							
CO4: Design	$\frac{SIS OI}{D of P}$		uges subjected	i to various loads	ad vahicle loading							
U4: Desig				iuge ioi Class AA track								
Reference Boo	ks											
1 Bridge Er	ninga	rind	S P Bind	ra Dhannat Rai & sou	as publication Ne	W D	albi 1000 ISBN					

1.	Bridge Engineering, S. P. Bindra, Dhanpat Rai & sons publication, New Delhi, 1990, ISBN
	9788189928841
2.	Design of Bridge Structures, M. A. Jayaram, PHI Pvt Ltd., 2 nd Edition, 2012, ISBN
	9788120338524
3.	Essentials of Bridge Engineering, D. Johnson and Victor, Oxford and IBH publications, 1980,
	ISBN 9788120417175
4.	Design of Bridges, Krishnaraju N, Oxford; ISBN: 8120403444, 918812040344

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	2	-	-	-	-	-	-	-	1	-	-
CO3	1	-	3	-	-	-	-	2	-	-	-	-
CO4	-	-	1	-	-	-	-	-	-	1	-	-

	Semester: VII										
	SOLID WASTE ENGINEERING										
	(Theory)										
Cou	rse Code	:	16CV7F2	CIE	:	:	100				
Credits: L:T:P:S		:	4:0:0:0	SEE	:	:	100				
Total Hours			48	SEE Duration	n :	:	3 Hrs				
Cou	rse Learning O	bje	ctives: The stud	dents will be able to							
1	Study the prese	ent	methods of soli	d waste management system and to	analyz	e t	their draw backs				
1	comparing with	comparing with statutory rules.									
2	Understand dif	fer	ent elements of	solid waste management from ger	eratior	n o	of solid waste to				
4	disposal.	disposal.									
3	Analyze differ	ent	processing tech	nologies and to study conversion of	munic	cip	al solid waste to				
3	compost or bio	gas	•								
4	Evoluate landf	11	its and to study	the conitory landfill reportions							

4 Evaluate landfill site and to study the sanitary landfill reactions.

UNIT-I	09 Hrs							
Introduction: Land Pollution. Scope and importance of solid waste management. Present solid waste								
disposal methods. Merits and demerits of open dumping, feeding to hogs, incineration	disposal methods. Merits and demerits of open dumping, feeding to hogs, incineration, pyrolysis,							
composting, sanitary landfill. Definition and functional elements of solid waste managemer	nt.							
Sources: Sources of Solid waste, Types of solid waste, Physical and Chemical com	position of							
municipal solid waste. Generation rate, Numerical Problems.								
UNIT-II	09 Hrs							
Collection: Collection of solid waste- services and systems, equipments, Problems.								
Transportation : Need of transfer operation, transfer station, transport means and methods, route								
UNIT III	10 Ung							
On III-III Drocossing techniques: Durness of processing	10 1115							
Chamical and and and the financial and the processing.								
Chemical volume reduction (incineration) – Process description, 31 s, principal compon	ients in the							
design of municipal incinerators, Air pollution control								
Mechanical volume reduction (compaction), Mechanical size reduction (shredding), separation (manual and mechanical methods).	component							
UNIT-IV	10 Hrs							
Composting Aerobic and anaerobic method - process description, process microbiolo consideration, Mechanical composting, Vermicomposting, Numerical Problems.	ogy, design							
UNIT-V	10 Hrs							
Sanitary landfilling: Definition, advantages and disadvantages, site selection, method	ls, reaction							
occurring in landfill- Gas and Leachate movement, Control of gas and leachate movement	nt, Design							
of sanitary landfill. Numerical Problems								

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Analyse existing solid waste management system and to identify their drawbacks.									
CO2:	Evaluate different elements of solid waste management system.									
CO3:	Suggest suitable scientific methods for solid waste management elements.									
CO4 :	Design suitable processing system and evaluate disposal sites.									

Ref	erence Books
1.	Integrated Solid Waste Management: Engineering principles and management issues, George
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.
	Indian Edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous, Tata
	Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.
3.	Municipal Solid Wastes (Management and Handling) Rules, 2000. Ministry of Environment and
	Forests Notification, New Delhi, the 25 th September, 2000. Amendment – 1357(E) – 08-04-2016

 4. Municipal Solid waste management manual, Part II published under Swachh Bharat Mission, Central Public Health And Environmental Engineering Organization (CPHEEO), 2016, Ministry of Urban Development, Government of India.
 5. Handbook of Solidwaste management, Second Edition, George Tchobanoglous, Frank Kreith, published by M/c Graw hill Education, 2002, ISBN-13 978-0071356237 ISBN -10 0071356231

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	3	1	2	2	2	2	-	-	2
CO2	2	-	-	2	-	2	2	2	-	-	-	2
CO3	2	2	2	2	-	1	3	2	-	-	-	-
CO4	3	-	3	1	-	2	2	2	-	-	-	1

High-3: Medium-2: Low-1

	Semester: VII										
	GROUND IMPROVEMENT TECHNIQUES										
	(Theory)										
Course Code		:	16CV7F3		CIE	:	100				
Credits: L:T:P:S		: 4:0:0:0			SEE		100				
Tota	Total Hours		: 48		SEE Duration		3 Hrs				
Cou	rse Learning O	bjeo	ctives: The stu	dents will be able to							
1	Understand the	e va	rious methods o	of soil stabilization for	problematic soils						
2	Discuss the con	nce	ots of ground in	nprovement methods for	or various soil cond	litio	ns				
3	Illustrate the va	ario	us techniques o	f soil modification							
4	Summarize the	me	thods of impro	vement of difficult gro	und						

UNIT-I	10 Hrs								
Ground Improvement: Definition, Objectives of soil improvement. Classification	of ground								
improvement techniques, Factors to be considered in the selection of the best soil improvement									
technique.	-								
Grouting: Introduction, Effects of grouting, Chemicals and materials used, Types of grouting,									
Grouting procedure, Applications of grouting.									
UNIT-II	10 Hrs								
Mechanical Modification: Type of mechanical -modification, Aim of modification, c	compaction,								
Principle of modification for various types of soils, Effect of grain size distribution on compaction for									
various soil types like BC soil. Lateritic soil, coarse-grained soil, micaceous soil, Field compaction -									
static, dynamic, impact and vibratory type, Specification of compaction.									
UNIT-III									
Hydraulic Modification: Definition, aim, principle, techniques, gravity drain, lowering of water									
table, multistage well point, vacuum dewatering, discharge equations, design of dewater	ring system								
including pipe line effects of dewatering. Drainage of slopes, preloading, vertical drains, sa	nd drains.								
UNIT-IV	08 Hrs								
Chemical Modification: Definition, aim, special effects, and methods. Techniques	-sandwich								
technique, admixtures, cement stabilization. hydration -effect of cement stabilization on pe	ermeability,								
Swelling and shrinkage. Criteria for cement stabilization, Assessment of ground co	ndition for								
preloading, Electro kinetic dewatering).									
UNIT-V	10 Hrs								
Stabilization: Suitability, process, special effects, criteria for lime stabilization, Other	chemicals,								
chlorides, hydroxides, lignin, hydrofluoric acid, Fly ash in cement stabilization, Properties of									
chemical components, reactions and effects, Bitumen, tar or asphalt in stabilization.									

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe the in-situ methods of soil improvement projects								
CO2:	Acquire knowledge of ground improvement methods and its application								
CO3:	Analyse the behaviour of soil with the addition of admixtures								
CO4:	Summarize the methods of stabilization using admixtures								

Reference Books

1.	Ground Improvement Techniques, Purushothama Raj. P. Firewall Media Publisher, 2004									
	ISBN81/0088372									
2.	Construction and Geotechnical Methods in Foundation Engineering, Koerner. R.M, Mc Graw									
	Hill Pub. Co., New York. 2007 ISBN0070352453									
3.	Engineering principles of ground modification, Manfied Hausmann, McGraw Hill Pub. Co.,									
	New York.,2008 ISBN0070272794									
4.	Methods of treatment of unstable ground, Bell, F.G., Butterworths, London. 2007									
	ISBN0408001666									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	-	2	2	-	-	-	-	-	-	1	-	-
CO4	-	2	1	-	-	-	-	-	-	1	-	-

	Semester: VII						
	U	RB	AN WATER	ENGINEERING ANI) MANAGEMEN	Т	
(Theory)							
Cou	rse Code	:	16CV7F4		CIE	:	100
Cree	lits: L:T:P:S	:	4:0:0:0		SEE	:	100
Tota	l Hours	:	48		SEE Duration	:	3 Hrs
Cou	rse Learning Ol	ojeo	tives: The stu	dents will be able to	. 1. 1		
1	Study the prese comparing with	ent 1 sta	methods of sol atutory rules.	id waste management	system and to anal	yze	their draw backs
2	Understand dif disposal.	fer	ent elements or	f solid waste managen	nent from generati	on	of solid waste to
3	Analyze differed compost or bio	ent gas	processing tecl	nnologies and to study	conversion of mu	nicij	pal solid waste to
4	Evaluate landfi	11 s	ite and to study	the sanitary landfill rea	actions.		
				UNIT-I			09 Hrs
URE	BAN HYDROL	COR	IC CYCLE:	Water in the urban ec	o-system – Urban	W	ater Resources -
Majo	or problems – Ur	bar	hydrological	cycle – Storm water m	anagement objecti	ves	and limitations –
Stori	m water policies	– F	easibility consi	deration.			
				UNIT-II			09 Hrs
URE	BAN WATER	RE	SOURCES N	IANAGEMENT: Typ	pes of models -	Ph	ysically based -
conc	eptual or unit hy	dro	graph based -	Urban surface runoff -	- Management of f	low	rate and volume
contr	rol rate.						
				UNIT-III			<u> </u>
	BAN STORM W	A	TER MANAG	EMENT: Storm wate	r management pra		es (Structural and
Non-	-structural Mana	ger	nent measures) – Detention and ret	ention concepts –	Ty	pes of storage –
Mag	nitude of storage	- I	flow and storag	tinit iv	nponents – Lake re	esto	rations.
DEN	IOTE SENSIN	C	AND CIS E	UNIT-IV OD WATED DESOI	IDCES MANAC	T.N.	IV IIS
	ving Digital al	U	tion model W	UN WAIEK KEDU	UNCES MANAG		approach water
resol	irces system _R	oin	fall runoff –	Groundwater manning	– Water quality i	man	ping - Drought
moni	itoring – Croppir	am or r	attern change s	analysis –Performance	evaluation of irrig	atio	ping Diougin
selec	tion for artificial	18 F rea	sharge	indrysis renormance	evaluation of mig	nio	il commands. Site
50100		100		UNIT-V			10 Hrs
CAS	E STUDIES:	Wa	ter resources a	ssessment case studies	– Ganga Damoda	r Pı	oiect. Himalayan
glaci	er studies. Gan	ga	vallev project	Operation policies for	or water resources	pr	ojects - Drought
mana	agement strategie	s -	Temporal & sp	atial assessment of wat	ter.	r	j
L	<u> </u>						
Cou	rse Outcomes: A	fte	er completing (the course, the student	ts will be able to		
CO1	: Describe fu	ınd	amental conce	epts of hydrology c	ycle, urban wate	r 1	nanagement and
	application	of r	emote sensing	and GIS.			
CO2	Discuss con	ipo	nents of hydrol	ogy cycle and urban wa	ater management.		
CO3	Apply the co	onc	epts of hydrolo	gy cycle and managem	ent practices in eng	gine	ering problems.

CO4: Demonstrate the applications of remote sensing and GIS for solving engineering problems.

Text books: Urban Water Engineering and Management, Mohammad Karamouz, Ali Moridi, Sara Nazif, CRC Press, 2010 Storm Water Management, Martin, P. Wanelista and Yousef, A. Yousef., John Wiley and sons, 1993 Principles of Geographical Information Systems, Burrough P.A. and McDonnell R.A,Oxford University Press. New York. 1998

Refe	erence Books
1.	Storm Water Management, Martin, P. Wanelista and Yousef, A. Yousef., John Wiley and sons,
	1993.
2.	Urban Water Infrastructure Planning, Management and Operations, Neil S. Grigg., John Wiley
	and Sons, 1986.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	1	-	-	-	-	-	-
CO2	2	-	-	-	1	1	1	-	-	-	-	-
CO3	2	2	2	1	-	2	1	-	-	-	-	1
CO4	2	2	2	-	3	2	2	-	-	-	1	1

Semester: VII								
	ADVANCED DESIGN OF RCC STRUCTURES							
				(Theory)				
Course Code			16CV7G1		CIE		100	
Credits: L:T:P:S		:	4:0:0:0		SEE		100	
Tota	Total Hours		48		SEE Duration		3 Hrs	
Cou	rse Learning O	bjeo	ctives: The stu	dents will be able to				
1	Apply the meth	nod	s of designing	RCC structures				
2	2 Design basic RCC structures such as slabs, beams, columns, footings using SP-16							
3	3 Design advanced RCC structures using SP-16							
4	4 Create bar bending schedule and detailing of reinforcement in various structures							

UNIT-I	09 Hrs
Analysis and design of singly and doubly reinforced beam, T beam, slabs with different end	l conditions
using SP16 only. Detailing of reinforcement for singly and doubly reinforced beam, T b	eam, slabs.
UNIT-II	09 Hrs
Importance of slenderness ratio in the design of columns, Analysis and design of long co	lumns with
axial load, uni-axial and bi- axial bending. Analysis and design of footings using SP16. I	Detailing of
reinforcement for different columns and footings.	
UNIT-III	10Hrs
Analysis and design of Single storey-singly bay portal frame using SP16 with hinged an	d fixed end
conditions. Detailing of reinforcement for single bay RCC frame with hinged and fixed end	conditions.
UNIT-IV	10Hrs
Necessity and proportioning of combined footing. Analysis and design of Combined fo	ooting with
Necessity and proportioning of combined footing . Analysis and design of Combined for strap beam using SP16. Detailing of reinforcement for combined footing with strap beam.	ooting with
Necessity and proportioning of combined footing . Analysis and design of Combined for strap beam using SP16. Detailing of reinforcement for combined footing with strap beam. UNIT-V	ooting with 10Hrs
Necessity and proportioning of combined footing . Analysis and design of Combined for strap beam using SP16. Detailing of reinforcement for combined footing with strap beam. UNIT-V Necessity of retaining walls. Types of RCC retaining walls . Analysis and design of Car	10Hrs ntilever and
Necessity and proportioning of combined footing . Analysis and design of Combined for strap beam using SP16. Detailing of reinforcement for combined footing with strap beam. UNIT-V Necessity of retaining walls. Types of RCC retaining walls . Analysis and design of Car	ooting wit 10Hrs ntilever and

Course Outcomes: After completing the course, the students will be able to					
CO1:	Analyze various forces in RC structures				
CO2:	Design various RCC structures				
CO3:	Demonstrate the Use of SP-16 in designing of RC structures				
CO4:	Apply the principles of detailing of the reinforcements for RC structures				

Reference Books

- 1. Reinforced Concrete Structures, Punmia B C, Volume 2, Standard Publishers and Distributors, 2004. ISBN :978-81-318-0644-9
- 2. Limit State Design of Reinforced concrete, Varghese P C Eastern Economy Edition, Pentice Hall of India Pvt Ltd, New Delhi, 2nd Edition, 2004. ISBN: 8120320395
- **3.** Design of Reinforced Concrete Structures, Unnikrishnan Pillai and Devadas Menon PHI New Delhi, 4th Edition, 2003, ISBN: 0070495041
- **4.** Advanced Reinforced concrete Design, Krishna Raju N, CBS Publishers and Distributors, 4th Edition, 2012.ISBN : 1259003361

Cod	les:
1	IS 456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards
2	SP 24-1983, Explanatory hand book on IS code of practice for plain and Reinforced concrete
3	SP 16-1980, Design Aids for IS code of practice for Plain and reinforced concrete, Bureau of
	Indian Standards
4	SP 34 : 1987, handbook on reinforcement and detailing, bureau of Indian standards, New Delhi

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	2	-	2	-	1	-	2
CO2	3	3	3	2	1	2	-	2	-	1	-	1
CO3	3	3	3	2	1	2	-	2	-	1	-	1
CO4	3	3	3	2	1	2	-	2	-	1	-	1

Semester: VII								
	PAVEMENT ANALYSIS AND DESIGN							
	(Theory)							
Course Code :			16CV7G2		CIE		100	
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100	
Total Hours		:	48	SEE Duration		:	3 Hrs	
Cou	rse Learning Ol	ojeo	ctives: The stu	dents will be able to				
1	1 Understand types ,components and factors affecting design of pavements							
2	2 Analyze stresses in flexible pavements using layered system							
3	3 Analyze stresses in rigid pavements							

4	Design flexible and rigid pavements using IRC method

UNIT-I					
Types of pavement – types of pavements, advantages and limitations, composition and	09 Hrs				
function, Factors affecting design of pavements.					
UNIT-II					
Stresses and Deflections in flexible pavement – layered systems concept, determination	09 Hrs				
of stresses, homogeneous system, two layer, three layer elastic pavement system					
Various approaches to design of flexible pavements, Design of Flexible Pavement as per					
IRC 37 (2002 and 2012)					
UNIT-III					
Flexible Pavement design: Various approaches to design of flexible pavements, Design	10 Hrs				
of flexible pavements as per IRC -37-2002 and 2012, overview of AASHTO method,					
overview of airfield pavement design					
UNIT-IV					
Stresses in rigid pavements – radius of relative stiffness of slab, modulus of sub-grade	10 Hrs				
reaction, stress due wheel load and temperature, critical combination of stresses.					
UNIT-V					
Rigid Pavement design: IRC: 58 - 2015 method of Rigid pavement design – Importance	10Hrs				
of Joints in Rigid Pavements- Design of Joints – Design of Tie Bars and Dowel Bars.					

Course Outcomes: After completing the course, the students will be able to						
CO1:	Identify the pavement components and its function					
CO2:	Calculate stresses and deflection in flexible and rigid pavements					
CO3:	Design and evaluate flexible pavement using IRC method					
CO4:	Design and evaluate rigid pavements by IRC method					

Reference Books

1.	Principles of Pavement Design, Yoder and Witczak, -John Wiley and sons Inc ,Second
	Edition ,1975, ISBN : 978-81- 265-3072- 4.
2.	Pavement Design, R Srinivasa Kumar, University Press -,2013, ISBN 108173718857, ISBN -
	13978-8173718854.
3.	Pavement Engineering: Principles and Practice, Rajib B. Mallick, Tahar El-Korchi, Second
	Edition, CRC Press, March 27, 2013, ISBN 9781439870358
4.	IRC 37-2001, 2012, IRC 81-1997, IRC 58 - 2002, 2015. IRC 59 - 1976, IRC 101-1988, Indian
	Roads Congress, New Delhi
5.	Highway Engineering, Khanna, Justo CEG, A Veeraraghavan, Enchant Publisher – 10 th Edition.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	-	-	-	-	-	-	-	-	-	-	
CO2	2	2	3	3	-	-	-	-	-	-	-	-	
CO3	2	2	3	3	-	-	-	-	-	-	-	-	
CO4	2	3	3	3	-	-	-	-	-	-	-	-	

Semester: VII										
ROCK MECHANICS										
(Theory)										
Course Code	ourse Code : 16CV7G3 CIE : 100									
Credits: L:T:P:S	:	4:0:0:0		SEE	:	100				
Total Hours	:	48		SEE Duration	:	3 Hrs				
Course Learning O	bje	ctives: The stu	dents will be able to							
1 Understand the	in i	portance of Ro	ck Mechanics.	·						
2 Identify the roc		as materials use	ed for civil engineering	projects.						
3 Interpret the be	ehav	viour of rocks to	solve engineering pro	blems.						
4 Apply principle	es o	of rock mechani	cs for solving Civil En	gineering problems	•					
						00 IIma				
Dook og a Matamial	• 1•	traduction Fig	UNIT-I	ook maahaniaa ra	Jz f	09 Hrs				
classification of rock	: П С	alogical petr	araphic and engineer	ing Index propertie	ж I эс (of rocks porosity				
density permeabilit	v v	strength and	durability logging o	f cores core rec	ove	ry rock quality				
designation and its er	y, ngir	eering importa	nce.			ry, rook quanty				
	-9		UNIT-II			10 Hrs				
Defects in Rock mas	sses	: Discontinuitie	es, Causes, strike and c	lip, bedding planes,	str	atification, joints,				
faults, types and impo	orta	nce of folds								
Physical and mech	an	ical properties	s of rocks: Porosity,	density, moisture	co	ntent, degree of				
saturation, permeabi	lity	, electrical pro	perties, thermal prop	erties, swelling, ar	iso	tropy, durability,				
mechanical propertie	s, s	trength, tensile	and compression stren	gth						
			UNIT-III			10 Hrs				
Testing of Rocks :	Lał	poratory testing	- Uniaxial compressio	n test, tension test,	to	sion test, hollow				
cylinder test, diameti	1ca	l compression	test, permeability tests	, field tests- flat jac	ck t	est, plate bearing				
tests. Insitu test for st	ren	igth assessment	in compression and sh	earing.		10 11				
Stuanath of voolvar	C+	an atrain haha	UNII-IV	ing the strongth of		IU Hrs				
Strength of rocks:	SIR	ess- strain bena	viour, factors influence	ang the strength of	ro	of rocks Mohr				
'hypothesis Griffith	su ('s (ani raies, mu riteria Murrel ³	's extension of Griffit	h's theory elemen	ics tarv	theory of crack				
propagation failure c	of re	ock by crack pro	opagation effects of cr	acks on elastic pror	ert	ies				
propuguion, fundre o		sen of ender pro	UNIT-V	uens on enusite prop		09 Hrs				
Rock foundations: 1	ntr	oduction, types	of shallow and deep i	nvestigations for for	ound	lation design and				
construction aspect.			1	C		e				
Rock slope Stabilit	y:	Modes of slop	e failures in rocks, E	ingineered slopes,	slop	be design aspect,				
excavations in rocks	and	l stabilization co	oncepts.							
Course Outcomes: A	\ft	er completing t	he course, the studen	ts will be able to						
CO1: Describe fu	nda	amental concep	ts of rock mechanics	applied to Civil En	gin	eering structures,				
mechanics a	ind	materials.								
CO2: Discuss eng	ine	ering properties	s of rocks and behaviou	ar of rocks.		<u> </u>				
CO3: Apply the	cor	cepts of rock	mechanics and rock	as materials used	in	Construction for				
engineering	pro	oblems.								

CO4: Demonstrate the applications of fundamentals for solving engineering problems.

Tex	t books:
1.	Fundamentals of Rock Mechanics , J. C. Jaeger, N. G.W. Cook, and R. W. Zimmerman ,
	Blackwell Publishing Company, 4 th Edition, 2007, ISBN-13: 978-0-632-05759-7
2.	Introduction to Rock mechanics, Richard E Goodman, John Wiley and Sons Inc., U.S.A, 2 nd
	Edition, 2009, ISBN- 0-471-81200-5
3.	Engineering Rock Mechanics Introduction to the Principles, John A Hudson and John P Harrison,
	Pergamon Press, First Edition, 2000, ISBN:0 08 04 19 12 7

Reference books:

Itert	create books.
1	Engineering in Rocks for Slopes, Foundations and Tunnels, T Ramamurthy PHI 2 nd Edition,
	2010, ISBN-971-81-203-4168-5
2	Geotechnology – An Introductory Text for Students and Engineers, A Roberts, 1 st Edition 1977,
	ISBN 0-08-019602-0
3	Rock Mechanics in Engineering Practice', Stagg, K.G. and Zienkiewicz ,John Wiley and Sons,
	London, 1968, 1st Edition, ISBN 10: 0471819654 ISBN 13: 9780471819653.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	-	
CO2	2	2	-	-	-	-	-	-	-	-	-	-	
CO3	-	2	2	-	-	-	-	-	-	1	-	-	
CO4	-	2	1	-	-	-	-	-	-	1	-	-	

			Semester: VII							
VALUATION ENGINEERING										
(Theory)										
Course Code	:	16CV7G4		CIE	:	100				
Credits: L:T:P:S	:	4:0:0:0		SEE	:	100				
Total Hours	:	48		SEE Duration	:	3 Hrs				
Course Learning Ol	ojeo	ctives: The stu	dents will be able to							
1 To understand	diff	erent types of o	outgoings	_						
2 To analyze diff	ere	nt methods of c	alculation of depreciat	tion						
3 To know the m	eth	ods of valuation	ns of different form of	properties						
4 To understand	the	methods of cal	culation of rent of the	properties						
			UNIT-I			09 Hrs				
Introduction: Purpos	se o	of valuation, Di	fferent forms of values							
Outgoings: Municip	al	& Govt. Taxes	s, insurance, Loss of	rent, collection ch	arg	es, sinking fund,				
Annual repairs & mai	inte	nance. Depreci	ation.							
Methods of calculati	on	of depreciation	n: Year's Purchase, Ca	apitalized value, Ob	sole	escence,				
Amortization.						10				
		0 1 1 1	UNIT-II	• . • • •	6.1	10 Hrs				
Methods of valuation	on:	Open land value	uation, Factors affectin	ng intrinsic values of	of la	and, Comparative				
method, Abstractive i	net	hod, Belting m	ethod.	C	.1					
Kent : Definition, For	rms	of rents. Cost	of structure, BIS rule	s for measuring pli	nth	area and cubical				
contents. Rights and		binties of Lesse	or & Lessee, Leasenoic	i properties, freenoi	a P	roperties.				
Valuation of land u		huildin ag. D.	UNIT-III	d harilding mathed	V.	10 Hrs				
valuation of land w	vitn	Duildings : Re	ental method, Land an	a building method	, Va	aluation on profit				
Valuation of agricult	son	forma lon do	e, Residual of Develop	ment method.						
valuation of agriculu	Irai	/larm lands.				10 11				
Eagamanta, Calfing		ad I agaller and	UNIT-IV	unient henitees Ef	· ·	<u>IUHrs</u>				
Easements: Self-III]	pos	ed, Legally cre	ated, Dominant and Se	ervient neritage. El	iec	t of easements on				
Valuation. Montrati Deal Estat		antrat and man	drot volvo foir morte	t volue onen me	1-0+	value offecting				
Market: Real Estate	2 11	larket and mai	ket value, fair marke	et value, open ma	rkei	value, affecting				
Investments: Bonds	لمل	banturas canita	l gaine Wealth Tay an	d Income Tax						
Investments. Donus, dependeres, capital gains, weath i fax and income fax.										
Case Studies: Valuet	ion	of immovable	nonerties Dranaration	of valuation repor	te f	various types				
of huildings land wit	Case Studies: valuation of immovable properties. Preparation of valuation reports for various types of buildings, land with buildings									
or ounungs, ianu wit	of buildings, land with buildings.									
	ſ4.		h	4						

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the different types of properties, outgoings, depreciations, Investments, valuation									
	etc									
CO2:	Apply the different methods of calculation of depreciation, valuation of buildings, open									
	lands									
CO3:	Analyze and evaluate the rent and value of the property scientifically									
CO4:	Develop the valuation reports of the real properties									

Reference Books

Refe	erence Books
1.	Principles and Practice of Valuation, John A Parks., Banerjee D.N., Eastern law house, 1998
	ISBN:8171770940 9788171770946
2.	Professional Practice, Roshan H. Namavathi, Lakhani Book Depot., 2001, ISBN : 9382472665
	9789382472667
3.	Theory and Practice of Valuation, Mitra A.K., Eastern law house , 1986, ISBN : 087094-917-9
4.	Valuation Practices of Immovable Properties, Rao Gopinath C H, 2002. ISBN: 336.2220954 G
	647

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment is 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	-	-	-	-	-	-	1	-	-	-	
CO2	-	-	3	3	-	-	-	-	1	1	-	-	
CO3	-	-	-	-	-	2	2	-	1	-	-	-	
CO4	-	-	3	3	-	-	-	1	1	1	-	-	

	Semester: VII										
	NANOTECHNOLOGY										
			(Grou	p H: Global Elective	e)						
Cou	rse Code	:	16G7H01		CIE	:	100 Marks				
Credits: L:T:P			3:0:0		SEE	:	100 Marks				
Total Hours			36		SEE Duration	:	3.00 Hours				
Cou	rse Learning C	bje	ectives: The students	s will be able to							
1	To have the ba	asic	knowledge of nano	materials and the pro	cess.						
2	Describe meth	nod	s of nanoscale manu	facturing and charact	erization can be enab	oled	l.				
3	To learn abo	ut	Nano sensors and	their applications i	in mechanical, elect	trica	al, electronic,				
	Magnetic, Ch	emi	cal field.								
4	4 To understand the concept for a nanoscale product based on sensing, transducing, and actuating										
	mechanism.										
_					1 1 1 1 1 0 1						

5 To have awareness about the nanoscale products used in multidisciplinary fields.

Unit-I									
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of carbon									
based: Fullerenes (Bucky Ball, Nanotubes), metal based: Nano Shells, Quantum Dots, De	ndrimers,								
Diamond like carbon(DLC) Nanocarriers, bionanomaterails: protein & DNA based nanostructures,									
Hybrids: hybrid biological/inorganic, Nanosafety Issues: Toxicology health effects ca	aused by								
nanoparticles.	-								
Unit – II	08 Hrs								

 Unit – II
 08 Hrs

 Characterization of Nanostructures: Spectroscopy: UV-Visible spectroscopy, Fourier Transform infrared spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy.
 Electron microscopy:

 Scanning electron microscopy (SEM), Transmission electron microscopy (TEM).
 Scanning probe microscopy (STM).

Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and Top down approaches using processes like Ball milling, Sol-gel Process, Chemical Vapour deposition (CVD), plsma arching and various lithography techniques (Hard & Soft lithography).

Unit –III09 HrsNanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors and their
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue, Magnetic
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Biosensors:
Biosensors in modern medicine.

Unit –IV

Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, Chemical and Mechanical Transducers –Sensing and Actuators. Microfludics: Laminar flow, Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels, mixing, microvalves & micropumps.

Unit –V07 HrsApplications of Nanotechnology:Molecular electronics, molecular switches, mechanical cutting
tools, machine components, DLC coated grinding wheels. solar cells, Batteries, fuel cells, Nanofilters.
Medical nanotechnology: in Diagnostics, Therapeutics, Drug delivery and Nanosurgery.

Course Outcomes: After completing the course, the students will be able to				
CO1:	Remember, understand, and apply knowledge about of nanomaterials and their uses.			
CO2:	Interpret and apply the techniques of manufacturing and characterization processes			
CO3:	Apply the knowledge of Nanosensors, related to nanosensors in electronics, mechanical, chemical, and biological systems.			
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines			

06 Hrs

Reference Books

1	Textbook of Nanosciences and Nanotechnology, B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH, XII.1 st Edition, 2013, ISBN- 978-3-642-28030-6.
2	Nanosensors:, Physical, Chemical and Biological, V. K. Khanna, CRC press, 1 st Edition, 2013, ISBN 9781439827123 (Unit III).
3	Nanostructured materials, Nanostructured materials, C. C. Kock., William Andrew Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.
4	Nanotechnology, M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., overseas Press (India) Private Ltd.,1 st Edition, 2005,ISBN 81-88689-20-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

				Semester: VII			
		Ι	NDUSTRIAL SAF	ETY AND RISK M	ANAGEMENT		
		1	(Grou	p H: Global Elective	e)	_	
Cour	se Code	:	16G7H02		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36		SEE Duration	:	3.00 Hours
Cour	se Learning O)bje	ectives: The student	s will be able to			
1	Understand t	he	basics of risk assess	ment methodologies			
2	Select approp	pr18	te risk assessment to	echniques			
3	Analyze pub		and individual perce	ption of risk			
4	Relate safety	, ei	gonomics and numa	in factors			
3	Carry out ris	ка	ssessment in process	andustries			
				Unit-I			08 Hrs
Gene	eral Risk Ident	ific	cation Methods – I:	* -			
Haza	rd identificatio	n 1	nethodologies, risk	assessment methods	s-PHA, HAZOP, M	ICA.	consequence
analy	sis, hazards in	W	orkplaces-nature an	d type of work plac	es, types of hazard	ls, h	azards due to
impro	oper housekeep	ing	, hazards due to fire	in multi floor industr	ries and buildings.		
			U	nit — II			07 Hrs
Risk	Assessment M	[et]	nods – II:				
Risk	adjusted discou	unt	ed rate method, cert	ainty equivalent coe	fficient method, qua	intit	ative analysis,
proba	bility distribut	tior	n, coefficient of va	ariation method, Sir	nulation method, S	Shac	kle approach,
Hille	r``s model, Hert	z N	Aodel.				
D' 1	NT 4	Т		nit –III			07 Hrs
Kisk	Management	- I.	II: Toma Diana nua anar	n hanah asala arma	minanta dagian of		and an art maliaf
Ellier	gency rener S	ysi	enis, Diers prograi	tachnology option a	malucie rick manage		at alternatives
rick r	nanagement to	ole	risk management	plans risk index me	thod Dowfire and a	vnl	osion method
Mone	index Method	015	, fisk management	plans, lisk much me		лри	JSIOII IIIetilou,
101011		••	U	nit –IV			07 Hrs
Risk	Assurance and	d A	ssessment – IV:				01 1115
Prope	erty insurance,	tra	insport insurance, 1	iability insurance, ri	sk Assessment, low	Pro	obability high
consequence events. Fault tree analysis, Event tree analysis.							
	•		U	nit –V			07Hrs
Risk	Analysis in (Ch	emical Industries-	V: Handling and s	storage of chemical	s, p	rocess plants,
personnel protection equipment's. International environmental management system.							
Cour	se Outcomes:	Af	ter completing the	course, the students	will be able to		
CO1	Recall risk	as	sessment techniques	used in process indu	stry		
CO2	Interpret th	ne v	arious risk assessme	ent tools			
CO3	Use hazard	l id	entification tools for	safety management			
CO4	Analyze to	ols	and safety procedur	res for protection in p	rocess industries		

Refere	ence Books
1	Functional Safety in the Process Industry : A Handbook of practical Guidance in the
	application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, North corolina, Lulu
	publication, 2012, ISBN:1291187235
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and
	William M., Pensulvania ISA publication,2005,ISBN:155617909X
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutcheon. , The
	University of Alberta press, Canada, 1st Edition, 2003, ISBN: 0888643942.
4	Environmental Engineering – A Design Approach, Sincero A P and Sincero G A, Prentice

	Hall of India, New Delhi,1996, ISBN: 0024105643
5	Risks in Chemical units, Pandya C G, Oxford and IBH publications, New Delhi, 1992, ISBN:
	8120406907

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VII						
INTELLIGENT TRANSPORT SYSTEM						
Course Code		:	16G7H03	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks
Total Hours		:	36	SEE	Duration :	3.00 Hours
Cou	Course Learning Objectives: The students will be able to					
1	1 Understand basic traffic flow and control for ITS					
2	2 Understand user services for application in transportation system					
3	3 Understand ITS architecture and its planning at various levels					
4	4 Evaluate user services at various levels					

Unit – I	8 Hrs			
Introduction: -Historical Background, Definition, Future prospectus, ITS training and educational				
needs.				
Fundamentals of Traffic Flow and Control- Traffic flow elements, Traffic flow model	ls, Shock			
waves in Traffic streams, Traffic signalization and control principles, Ramp metering	, Traffic			
simulation				
Unit – II	6 Hrs			
ITS User services-User services bundles, Travel and Traffic management, Public Trans	portation			
Operations, Electronic Payment, Commercial Vehicles Operations, Emergency Man	agement,			
Advanced Vehicle Control and safety systems, Information Management, Maintena	ince and			
construction Management				
Unit –III	7 Hrs			
ITS Applications and their benefits-Freeway and incident management systems-ol	bjectives,			
functions, traffic Surveillance and incident detection, Ramp control, incident management, A	Advanced			
arterial traffic control systems- historical development, Adaptive traffic control algorithms, A	arterial traffic control systems- historical development, Adaptive traffic control algorithms, Advanced			
Public Transportation Systems-Automatic vehicle location systems, Transit Operations software and				
information systems, Electronic fare payment systems, Multimodal Traveler Information syst	ems			
Unit –IV	7 Hrs			
ITS Architecture-Regional and Project ITS Architecture, Need of ITS architecture, concept of				
Operations, National ITS Architecture, Architecture development tool.				
ITS Planning-Transportation planning and ITS, Planning and the National ITS Architecture,				
Planning for ITS, Integrating ITS into Transportation Planning, relevant case studies.				
Unit –V	8 Hrs			
ITS Standards-Standard development process, National ITS architecture and standa	rds, ITS			
standards application areas, National Transportation Communications for ITS Protocol, Standards				
testing.				
ITS Evaluation – Project selection at the planning level, Deployment Tracking, Impact Assessment,				
Benefits by ITS components, Evaluation Guidelines, Challenges and Opportunities.				

Course Outcomes: After completing the course, the students will be able to			
CO1:	Identify various applications of ITS		
CO2:	Apply ITS applications at different levels.		
CO3:	Examine ITS architecture for planning process.		
CO4:	Define the significance of ITS for various levels		

Reference Books				
1	Fundamentals of Intelligent Transportation Systems Planning, Choudury M A and Sadek			
	A, Artech House publishers ,2003, ISBN-10: 1580531601			
2	Intelligent transportation systems standards, Bob Williams, Artech House, London, 2008.			
	ISBN-13: 978-1-59693-291-3.			
	Intelligent Transport Systems: Technologies and Applications, Asier Perallos, Unai			
3	Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola, Wiley Publishing, 2015,			
	ISBN:1118894782 9781118894781			
4	ITS Hand Book, Kan Paul Chen, John Miles, Recommendations for World Road			
	Association (PIARC), 2000.			
5	Intelligent Transport System, Dominique Luzeaux ,Jean-René Ruault, Michel Chavret,			
	John Wiley & Sons, Inc, 2013, DOI: 10.1002/9781118557495.ch6			

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.
				Semester: VII	16		
			INTEL (Grou	p H: Global Elective	15 e)		
Cou	rse Code	:	16G7H04		CIE	:	100 Marks
Crec	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bj	ectives: The student	s will be able to			
1	Understand fu	ınd	amental AI concepts	and current issues.			
2	Understand a	nd	apply a range of AI	techniques including	search, logic-based	reas	soning, neural
	networks and	rea	asoning with uncertain	in information.			
3	Recognize co	mp	utational problems s	uited to an intelligent	t system solution.		
4	Identify and I	1st	the basic issues of kr	iowledge representat	ion, blind and heurist	1C S	earch.
			1	īnit_I			07 Hrs
Intro	oduction: The	Fo	undations of Artifici	al Intelligence, Histo	rv of Artificial Intell	iger	nce. The State
of th	e Art. Intellige	ent	Agent: Introduction	. How Agents Shoul	d Act. Structure of I	ntel	ligent Agents.
Prob	olem-solving:	Sol	ving Problems by	Searching Search S	strategies, Avoiding	Re	peated States
,Avo	iding Repeated	St	ates	e			
			U	nit — II			07 Hrs
Info	rmed Search	M	ethods: Best-First	Search, Heuristic F	unctions, Memory	Bou	nded Search,
Itera	tive Improveme	ent	Algorithms				
Gam	e Playing: Int	rod	luction: Games as S	earch Problems, Perl	fect Decisions in Tw	o-P	erson, Games
Impe	erfect Decisions	s, A	Apha-Beta Pruning, (James That Include a	an Element of Chance	e	07.11
17			Ui	nit –III			07 Hrs
Kno	wledge Interei	ice	tion Droduction ha	and sustam Frama	based system Infor	ma	Dealword
chair	vieuge represe	nia cha	ining Rule value ar	seu system, Flame	oning - Certainty fac	tors	Bayes Rule
Unce	rtainty Princin	les	Bavesian Theory-B	avesian Network-De	ming - Certainty fac moster - Shafer theor	v	, Dayes Rule,
Chee	fitunity i interp	100	<u>, Buyesian Theory B</u>	nit –IV	inpster sharer theor	<i>y</i> .	07 Hrs
Lear	ning from Ot	sei	rvations: A General	Model of Learning	Agents, Inductive Le	earn	ing, Learning
Deci	sion Trees, Us	ing	Information Theory	y, Learning General	Logical Description	s, V	Why Learning
Worl	ks: Computatio	nal	Learning Theory	-			
Rein	forcement Le	arı	ning: Passive Learr	ning in a Known E	nvironment, Passive	Le	earning in an
Unkr	nown Environn	nen	t, Active Learning in	an Unknown Enviro	onment		
				nit –V			07 Hrs
Expe	ert Systems, C	om	ponents, Production	rules, Statistical re	asoning, certainty fa	icto	rs, measure of
belie	I and disbelief \mathbf{m}_{0} P olog of	, N	leta level knowledg	e, Introspection. Exp	pert systems - Archi	teci	ture of expert
syste	ms, Roles of t	exp	IN DAPT YOON	Fixed acquisition –	Meta knowledge, H	euri	istics. Typical
ехре	it systems - wi		IN, DART, AOON, I	Expert systems shens			
Cou	rse Outcomes:	Af	ter completing the	course, the students	will be able to		
C01	: Understand	an	d explore the basic c	oncepts and challeng	es of Artificial Intell	iger	nce.
CO_2	: Analyze an	<u>d e</u>	xplain basic intellige	nt system algorithms	to solve problems.	1	11
CO3	: Apply Artif	101	al Intelligence and va	arious logic-based tec	chniques in real world	1 pr	oblems.
CO4	Assess then	r ap	pheadinty by compa	aring different interns	gent System techniqu	es	
Refe	rence Books						
1	AI – A Mode ISBN-13: 978	rn 3-01	Approach , Stuart R 137903955.	ussel, Peter Norvig,	2 nd Edition, Pearson	Edu	ucation, 2010,
2	Artificial Inte 2008, ISBN: 9	ellig 978	gence (SIE), Kevin 30070087705	Night, Elaine Rich	, Nair B., ,McGraw	Hil	ll, 1 st Edition,
3	Introduction 0132097680	to 1	AI and ES , Dan W	. Patterson, Pearsor	Education, 1 st Edit	ion	,2007. ISBN:
4	Introduction 1 978-0201876	to 1 864	Expert Systems ,Pet	er Jackson, 3 rd Editio	on, Pearson Educatio	on,	2007, ISBN-

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				Semester: VII			
]	MAGE PROCESS	ING AND MACHINE	E LEARNING		
~	(Group H: Global Elective)						
Cou	rse Code	:	16G7H05		CIE	:	100 Marks
Crec	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36		SEE Duration	:	03 Hours
Cou	rse Learning O	bje	ctives: The students	will be able to			
1	Understand the	e m	ajor concepts and tec	hniques in image proce	essing and Machine I	Lea	rning
2	To explore, ma	anip	oulate and analyze in	age processing technic	ques		
3	To become far	nili	ar with regression me	ethods, classification m	nethods, clustering m	ethe	ods.
4	Demonstrate in	nag	ge processing and Ma	chine Learning knowle	edge by designing an	d ir	nplementing
	algorithms to s	olv	e practical problems				
			l	Unit-I			08 Hrs
Intro	oduction to ima	ge j	processing:				
Imag	es, Pixels, Imag	ge r	esolution, PPI and I	DPI, Bitmap images, L	ossless and lossy co	mpi	ression, Image
file f	ormats, Color sp	ace	es, Bezier curve, Elli	osoid, Gamma correction	on, Advanced image	con	cepts
			U	nit – II			08 Hrs
Basi	cs of Python &	Sci	kit image:				
Basie	es of python, v	vari	ables & data types	, data structures, con	ntrol flow & condit	tion	al statements,
uploa	ading & viewing	; an	image, Image resolu	tion, gamma correction	n, determining struct	ural	similarities.
			U	nit –III			08 Hrs
Adva	anced Image pr	oce	essing using Open C	V			
Blen	ding Two Image	es,	Changing Contrast a	and Brightness Adding	g Text to Images Sm	1001	hing Images,
Med	ian Filter ,Gau	ssia	n Filter ,Bilateral	Filter ,Changing the	Shape of Images	,Ef	fecting Image
Thre	sholding ,Calcul	atir	ng Gradients, Perform	ming Histogram Equali	ization		1
			U	nit –IV			08 Hrs
Mac	hine Learning [Гес	hniques in Image P	rocessing			
Baye	sian Classificat	ion	, Maximum Likelih	ood Methods, Neural	l Networks; Non-pa	iran	netric models;
Man	ifold estimation,	Su	pport Vector Machin	es, Logistic Regression	n		1
			U	nit –V			08 Hrs
Intro	oduction to obje	ect	Tracking , Modeling	g & Recognition			
Exha	ustive vs. Stoc	has	tic Search, Shapes,	Contours, and Appe	arance Models. Me	an-	shift tracking;
Contour-based models, Adaboost approaches: Face Detection / Recognition, Tracking.							
Course Outcomes: After completing the course, the students will be able to							
CO1	: Gain knowle	edge	e about basic concept	ts of Image Processing			
CO2	: Identify mac	hin	e learning technique	s suitable for a given p	roblem		
CON	W/		C 'C' 1' /				

CO3: Write programs for specific applications in image processing

CO4: Apply different techniques for various applications using machine learning techniques.

Ref	ference Books
1	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and
I	Pattern Recognition Using Python, Himanshu Singh, Apress publisher.
2	Pattern Recognition and Machine Learning, Christopher Bishop, Springer, 2008
3	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, Prentice Hall India, 2004.
4	Machine Vision : Theory Algorithms Practicalities, E.R. Davies Elsevier 2005.
5	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, 2001.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				SEMESTER: V	/II			
			DESIGN O	F RENEWABLE	ENERGY S	YSTEMS		
			(GR	OUP H: GLOBA	L ELECTIV	E)		
Cou	rse Code	:	16G7H06			CIE Marks	:	100
Crec	dits: L:T:P	:	3:0:0			SEE Marks	:	100
Tota	l Hours	:	36			SEE Duration	:	3.00 Hours
Cou	rse Learning Ob	jeo	ctives:					
1 7	Fo provide opport	un	ity for student	s to work on multi	disciplinary p	projects.		
2 7	Γo familiarize th	e s	students with	the basic concept	s of nonconv	ventional energy s	ourc	es and allied
t	echnological syst	em	is for energy c	onversion				
3 7	Fo impart skill to	foi	mulate, solve	and analyze basic	Non – conve	ntional energy prol	olem	ns and prepare
	hem for graduate	sti	idies.					
4 1	l'o enable the stud	len	t to design prin	marily solar and w	ind power sy	stems.		
5 1	l'o expose the stu	ler	its to various a	pplications of sola	r, wind and t	idal systems.		
				UNIT – I				07 Hrs
An i	ntroduction to e	nei	rgy sources:	11				•
Indu	istry overview, i	nce	entives for ren	iewable, utility pe	rspective, Re	elevant problems d	iscu	ssion, current
posit	tions of renewable	e e	nergy conditio	ons				00 11
DX 7	Fasherala area			UNII - II				09 Hrs
PV	ovoltaio powor E	V.	projects Build	ling integrated DV	system DV	call tachnologias	olar	anaray mana
Tech	voltate power, r	v Ph	projects, Dunc	wor Systems: DV	system, r v o	le and Array Equ	uival	lent electrical
circu	uit open-circuit		Itage and she	ort-circuit current	LV and P.	V curves Array	desi	ign (different
meth	ndologies) neak	-no	wer operation	system compone	nts	v curves, Anay	uesi	ign (unterent
meth	iodologies), peak	po	wer operation	<u>INIT – III</u>	11.5.			09 Hrs
Win	d Speed and En	ro	W •					07 1115
Spee	ed and power rela	tio	ns. power extr	acted from the wi	nd. Air densit	ty. Global wind par	tern	s, wind speed
distri	ibution (parame	ers	s calculations) . wind speed	prediction.	Wind Power Sy	vster	ms : system
com	ponents, turbine	ra	ating, power	vs. speed and TS	SR, maximur	n energy capture,	may	kimum power
opera	ation, system-des	igr	trade-offs, sy	ystem control requ	irements, env	vironmental aspects		
	-	-		UNIT – IV		^		07 Hrs
Geot	thermal and oce	an	energy	0111111				07 1115
Geot	thermal power	an Jec	pressured so	ources Geotherm	al well drilli	ng advantages ar	nd d	lisadvantages
Com	parison of flashe	d si	team and total	flow concept		ing, udvantages a	ia a	iisuu vuituges,
Ener	rgv from ocean:	O7	EC power gei	neration. OPEN an	d CLOSED a	cycle OTEC. Estim	ate (of Energy and
powe	er in simple singl	e b	asin tidal and	double basin tidal	system			8,
	1 0			UNIT – V	2			08 Hrs
Stan	d alone system:							
PV s	stand-alone, Elect	ric	vehicle, wind	l standalone, hybri	d systems (ca	ase study), system	sizir	ng, wind farm
sizin	sizing.							
Grid	Grid-Connected Systems: introduction, interface requirements, synchronizing with the grid, operating							
limit, Energy storage and load scheduling, Grid stability issues, distributed power generation.								
Cou	rse Outcomes: A	fte	er completing	the course, the st	udents will l	be able to		
CO1	I: Demonstrate	an	understandin	g of the scientific	principles of	f methodology of 1	Non	-conventional
	energy.							
CO2	2: Acquire wor	cin	g knowledge o	of different Renew	able energy s	cience-related topi	cs.	
CO3	3: Ability to an	aly	ze the system	related concepts ef	fectively in t	he wind energy des	signi	ing.
CO4	1: Students will	be	e able to decid	le the appropriate	procedures to	ensure that the w	orki	ng model has
	developed pr	op	erly.					

Ref	ference Books
1.	Wind and Solar Power Systems Design, Analysis and operation, Mukund R Patel, 2 nd Edition, 2006,
	Taylor and Francis publishers, ISBN 978-0-8493-1570-1.
2.	Non-Conventional sources of energy, G.D.Rai, 4 th Edition, 2009, Khanna Publishers, ISBN
	8174090738, 9788174090737,
3.	Solar Energy, Sukhatme, 4 th Edition, McGraw Hill Education, 2017, ISBN-13: 978-9352607112
4.	Renewable energy sources, John Twidell, Tony Weir, 3 rd Edition, , Routledge Publisher, 2015, ISBN- 13: 978-0415584388.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

RV College of Engineering®

	VII Semester						
	SYSTEMS ENGINEERING						
				(Group H: Global Elective)			
Cou	irse Code	:	16G7H07	CIE Mar	·ks	:	100
Cre	dits: L:T:P	:	3:0:0	SEE Mai	rks	:	100
Total Hours		:	36	SEE Dur	ation	:	03 Hours
Cou	irse Learning	Ob	jectives:				
1	1 Develop an appreciation and understanding of the role of systems engineering processes and						
	systems management in producing products and services.						
2	2 Document systematic measurement approaches for generally cross disciplinary development effort.						
3	3 Discuss capability assessment models to evaluate and improve orgnizational systems engineering						
	capabilities.						

Unit-I	07 Hrs
System Engineering and the World of Modem System: What is System Engineering?	, Origins of
System Engineering, Examples of Systems Requiring Systems Engineering, System	Engineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	ns.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex	lex systems,
System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, E	Evolutionary
Characteristics of the development process, The system engineering method, Testing through	hout system
development, problems.	
Unit – II	07 Hrs
Systems Engineering Management: Managing systems development and risks, Work	breakdown
structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Orga	anization of
Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems	Engineering
standards, Problem.	
Needs Analysis: Originating a new system, Operations analysis, Functional analysis,	Feasibility
analysis, Feasibility definition, Needs validation, System operational requirements, and probl	lems.
Concept Exploration: Developing the system requirements, Operational requirement	ts analysis,
Performance requirements formulation, Implementation concept exploration, Performance re	equirements
validation, problems.	1
Unit – III	07 Hrs
	0. 1115
Concept Definition: Selecting the system concept, Performance requirements analysis,	Functional
analysis and formulation, Concept selection, Concept validation, System Development plann	Functional ing, System
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems	Functional ing, System
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A	Functional ing, System
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems.	Functional ing, System analysis and
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV	Functional ing, System analysis and 06 Hrs
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis,	Functional ing, System analysis and 06 Hrs Functional
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, problems	Functional ing, System analysis and 06 Hrs Functional olems.
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, prob Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p	Functional ing, System analysis and 06 Hrs Functional lems. lanning and
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, prob Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and	Functional ing, System analysis and 06 Hrs Functional lems. lanning and evaluation,
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, problems Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and problems.	Functional ing, System analysis and 06 Hrs Functional lems. lanning and evaluation,
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, problems Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and problems.	Functional ing, System analysis and 06 Hrs Functional lems. lanning and evaluation, 06 Hrs
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, problems Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and problems. Unit – V Production: Systems Engineering in the factory, Engineering for production, Transport	Functional ing, System analysis and 06 Hrs Functional lems. lanning and evaluation, 06 Hrs sition from
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, prob Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and problems. Unit – V Production: Systems Engineering in the factory, Engineering for production, Transdevelopment to production, Production operations, Acquiring a production knowledge base, production operation operations, Acquiring a production knowledge base, production production, Production operations, Acquiring a production knowledge base, production production, Production operations, Acquiring a production knowledge base, production production, Production operations, Acquiring a production knowledge base, production produc	Functional ing, System analysis and 06 Hrs Functional lems. lanning and evaluation, 06 Hrs sition from problems.
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, prob Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and problems. Unit – V Production: Systems Engineering in the factory, Engineering for production, Trans development to production, Production operations, Acquiring a production knowledge base, p Operations and support: Installing, maintenance and upgrading the system, Installation a	Functional ing, System analysis and 06 Hrs Functional lems. lanning and evaluation, 06 Hrs sition from problems. and test, In-
Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development plann Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, prob Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and problems. Unit – V Production: Systems Engineering in the factory, Engineering for production, Trans development to production, Production operations, Acquiring a production knowledge base, p Operations and support: Installing, maintenance and upgrading the system, Installation a service support, Major system upgrades: Modernization, Operational factors in system development for production in system of the system of the system of the system in the system upgrades: Modernization, Operational factors in system development for production in system of the syste	Functional ing, System analysis and 06 Hrs Functional lems. lanning and evaluation, 06 Hrs sition from problems. and test, In- evelopment,

Course	e Outcomes: After completing the course, the students will be able to
CO1	Understand the Life Cycle of Systems.
CO2	Explain the role of Stake holders and their needs in organizational systems.
CO3	Develop and Document the knowledge base for effective systems engineering processes.
CO4	Apply available tools, methods and technologies to support complex high technology systems.
CO5	Create the frameworks for quality processes to ensure high reliability of systems.

Ref	erence Books
1	Systems Engineering – Principles and Practice, Alexander Kossoakoff, William N Sweet, John
	Wiley & Sons, Inc, 2012, ISBN: 978-81-265-2453-2
2	Systems Engineering and Analysis, Blanchard, B., and Fabrycky W, 5 th Edition, Saddle River, NJ,
	USA: Prentice Hall, 2010.
3	Handbook of Human Systems Integration, Booher, H. Hoboken, NJ, USA: Wiley, 2003.
4	Systems Engineering: A 21 st Century Methodology, Hitchins, D., Chichester, England: Wiley, 2007.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	MEMS AND APPLICATIONS						
			(Grou	p H: Global Elective	e)		
Cou	rse Code	:	16G7H08		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	36		SEE Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the rudiments of Micro fabrication techniques.						
2	2 Identify and associate the various sensors and actuators to applications.						
3	3 Analyze different materials used for MEMS.						
4	Design applic	atic	ons of MEMS to disc	ciplines.			

Unit - I 06	Hrs
Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and micro sy	ystem
products, Evolution of micro fabrication, Microsystems and microelectronics, Multidiscipl	inary
nature of Microsystems, Design and manufacture, Applications of Microsystems in automo	otive,
healthcare, aerospace and other industries.	
Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acord	ustic,
Chemical, Optical, Pressure, Thermal.	
Unit – II 08	Hrs
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and electron	static
forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and micropu	umps,
microaccelerometers, microfluidics.	
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling	ng in
Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanics.	
Unit – III 08	Hrs
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materials, Si	ilicon
as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelectric Cry	stals,
Polymers and packaging materials. Three level of Microsystem packaging, Die level packa	iging,
Device level packaging, System level packaging. Interfaces in microsystem packaging. Esse	ential
packaging technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.	
Unit – IV 06	Hrs
Microsystem Fabrication Process: Introduction to microsystems, Photolithography,	Ion
Implantation, Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition of Epiaxy, Etching, I	LIGA
process: General description, Materials for substrates and photoresists, Electroplating and SI	LIGA
process.	
Unit – V 07	Hrs
Tactile and Flow sensors - Piezoelectric sensors and actuators - piezoelectric effects - piezoelectric	ectric
materials – Applications to Inertia, Acoustic, Tactile and Flow sensors.	
Overview, Application, Fabrication Process in Applications:	
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Electrostatic Comb drive, Por	rtable
blood analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection.	
Course Outcomes: After completing the course, the students will be able to	
CO1: Understand the operation of micro devices, micro systems and their applications.	

- **CO2:** Apply the principle of material science to sensor design.
- **CO3:** Analyze the materials used for sensor designs.
- **CO4:** Conceptualize and design micro devices, micro systems.

Refere	ence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, Tata McGraw
	Hill Education, New Delhi, 2002, ISBN-13:978-0-07-048709-3.
2	Foundations of MEMS, Chang Liu, Pearson Education Inc., 2012, ISBN-13:978-0-13-
	249736-7.
3	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan,
	Wiley-INDIA, 2006, ISBN-978-81-265-3170-7.
4	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, Wiley
	Publications, 2015, ISBN-:978-81-265-2715-1.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
			INTRODUCTIO	N TO INTERNET OF	THINGS			
			(Grou	p H: Global Elective)				
Cou	rse Code	•••	16G7H09	С	SIE (Contraction of the second s		100 Marks	
Credits: L:T:P		••	3:0:0	S	EE	••	100 Marks	
Total Hours		••	36	S	EE Duration	:	3.00 Hours	
Cou	rse Learning O	bje	ctives: The students	will be able to				
1	Learn the fund	lam	entals of IoT					
2	Understands th	ne ł	ardware, networks &	k protocols used in IoT of	development			
3	3 Illustrate smart applications using IoT devices and building applications							
4	Know more ad	lva	nced concepts like cl	oud connectivity in IoT				
5	Learn the fund	lam	entals of IoT					

Unit-I	06 Hrs					
Fundamentals Of IOT: Introduction, Physical design of IoT, Logical design of IoT, IoT						
technologies, IoT Levels and Deployment Templates, , IoTvs M2M	-					
Unit – II	06 Hrs					
IOT Design Methodology: Need for IoT systems management, IoT Design Methodology						
Internet of Things Strategic Research and Innovation Agenda: Internet of Things Vi	sion, IoT					
Strategic Research and Innovation Directions, IoT Smart-X Applications, Internet of The	nings and					
Related Future Internet Technologies.						
Unit –III	11 Hrs					
IOT Systems - Logical Design using Python: Provides an introduction to Python, installin	g Python,					
Python data types & data structures, control flow, functions, modules, packages, file inp	ut/output,					
data/time operations and classes.						
Unit –IV	09 Hrs					
IOT Physical Devices & Endpoints: What is an IoT device, Raspberry Pi device, About t	he board,					
Linux on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python.						
Unit –V	07 Hrs					
IOT Physical Servers & Cloud Offerings: Provides an introduction to the use of cloud platforms and						
frameworks such as Xively and AWS for developing IoT applications.						
frameworks such as Xively and AWS for developing IoT applications.						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the fundamentals of IoT.						
CO2:	Analyse the IoT devices, programming, networking requirements and protocols for building						
	IoT products.						
CO3:	Apply the concepts to design and develop IoT applications						
CO4:	Creating applications of IoT using physical devices and interfacing with cloud.						

Refere	ence Books
1	Internet of Things (A Hands-on-Approach), Vijay Madisetti and ArshdeepBahga, 1 st Edition,
	VPT, 2014, ISBN-13: 978-0996025515.
2	Internet of Things – From Research and Innovation to Market Deployment, OvidiuVermesan,
	Peter Friess, River Publishers Series in Communication, River Publishers, 2014, ISBN:
	ISBN: 978-87-93102-94-1 (Hard copy), 978-87-93102-95-8 (Ebook) (UnitsII 2 nd part)
2	Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, Francis
5	daCosta, , 1 st Edition, Apress Publications, 2013, ISBN-13: 978-1430257400.
4	Meta products - Building the Internet of Things, WimerHazenberg, Menno Huisman, BIS
	Publishers, 2012, ISBN: 9789863692515.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	INDUSTRY 4.0- SMART MANUFACTURING FOR THE FUTURE						
			(Grou	p H: Global Elective)			
Cou	rse Code	:	16G7H10	C	CIE	:	100 Marks
Cree	lits: L:T:P	:	3:0:0	S	EE	:	100 Marks
Tota	Total Hours: 36SEE Duration: 3.00 Hours					3.00 Hours	
Cou	rse Learning ()bje	ectives: The student	s will be able to			
1	Understand th	ie ir	nportance and role of	of Smart Manufacturing	Systems, IoT and	IIo	Г
2	Explain impo	rtan	ce of automation tec	chnologies, sensors, Rot	potics and Machine	e vi	sion.
3	Understand a	ppli	cation of artificial in	ntelligence and the need	d for data transform	nati	ion, handling,
	storing and se	cur	ity.	-			_
4	Understand si	mu	lation, predictive and	d knowledge modeling a	along with analysis	5	
5	5 Learn networking, sustainable technology and factory networks.						
			Ţ	U nit-I			06 Hrs
Sma	rt Manufactur	ino	and Industry 4.0				

 Smart Manufacturing and Industry 4.0

 Need for Smart Manufacturing, Advantages, Emerging technologies in Smart manufacturing, CAD

 Architecture surrounding 3D Models (B-rep and CSG), MEMS, Industry 4.0–Interoperability,

 Information transparency, Technical assistance, Decentralized decision-making, Internet of

 Things(IoT), Industry Internet of Things (IIoT), Future of Manufacturing industries

 Unit – II
 09 Hrs

Manufacturing Automation

Technology intensive manufacturing and cyber-physical systems, Automation using Robotics, Data storage, retrieval, manipulation and presentation; Mechanisms for sensing state and modifying processes, Material handling systems, controlling material movement and machine flow, Mechatronics, Transducers and sensors, Proximity sensors, Biosensors, Acceleration Machine Vision–Flaw detection, Positioning, Identification, Verification and Measurement–Application of Machine Vision in industries

Unit –III

Data handling using Embedded Systems

Data transformation–Mathematical functions, Regression, Need for different functions, Data merging–Discrete and Random variables, Transformation languages, Interfacing systems-Microprocessors, Direct memory access, Data transfer schemes and systems, Communication systems–Modulation, Time domain and frequency domain, Industrial Network Data Communications, Data Security Artificial Intelligence – Intelligent systems, Fuzzy logics, Neural networks – Supervised, Unsupervised and Reinforced learning
Unit–IV 06 Hrs

Simulation, Modeling and Analysis

Simulation - system entities, input variables, performance measures, and Functional relationships, types of simulation. Predictive modeling and simulation tools, Knowledge Modeling –types and technology options, Functional analysis of control systems – Linear and Non-linear, Functional decomposition, Functional sequencing, Information / dataflow, Interface

Unit –V09 HrsPerformance Measures of Smart Manufacturing Systems- Smart manufacturing- Sensing and
Perception, Manipulation, Mobility and Autonomy, Factory Networks, Information Modeling and
Testing, Performance Measurement and Optimization, Engineering System integration, Production
Network integration, Production network data quality, Sustainable Processes and Resources,
Integration Infrastructure for Sustainable Manufacturing

09 Hrs

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain role and importance of Smart Manufacturing Systems, IoT and IIoT						
CO2:	Explain importance of automation technologies, sensors, robotics and machine vision						
CO3:	Illustrate the application of artificial intelligence and need for data transformation, handling						
CO4:	Explain analytical and simulation for performance study of smart technologies and networks						
Refere	ence Books						
	Zongwei Luo, Smart Manufacturing Innovation and Transformation: Interconnection And						
1	Intelligence, 1 st Edition, IGI Global Publications, 2014,ISBN-13: 978-1466658363 ISBN-10:						
	1466658363						
2	Yan Lu. KC Morris, Simon Frechette, Smart Manufacturing Standards, NIST, Project report,						
	1 st Edition, 2016,						

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
			SPACE TE	CHNOLOGY AND APP	LICATIONS			
Course Code : 16G7H11 CIUD II: GIODAI Elective) : 100 Marks								
Credi	its: L:T:P	•	3:0:0		SEE		100 Marks	
Hrs/V	Veek	•	36		SEE Duration	:	3.00 Hours	
Cour	se Learning C	bj	ectives: The stu	dents will be able to		<u> </u>		
1 D	efine the eart	h e	nvironment and	l its behaviour, launching	vehicles for satell	ites	and its associated	
co	oncepts.			, E				
2 A	nalyze satellite	es i	n terms of techn	ology, structure and comm	unications.			
3 U	se satellites fo	r sp	bace applications	s, remote sensing and metro	ology.			
4 A	pply the space	teo	chnology, techno	ology mission and advanced	l space systems to r	atic	on's growth.	
r								
				UNIT-I			07 Hrs	
Earth	i's environn	ien	it: Atmospher	e, ionosphere, Magneto	osphere, Van A	llen	n Radiation belts,	
Interp	lanetary mediu	ım,	Solar wind, Sol	ar-Earth Weather Relation	S. 	10	····	
Contr	ol and Guidan		vistom Ion prop	ulsion and Nuclear Propuls	n, Sona, Liquia an	a C	ryogenic engines,	
Contro		.6 5	system, ion prop	uision and Nuclear Flopuis	1011.			
				UNIT-II			07 Hrs	
Satell	ite Technolo	gy	: Structural, N	Mechanical, Thermal, Po	ower control, Teles	met	ry, Telecomm and	
Qualit	ty and Reliabil	ity,	Payloads, Spac	e simulation.				
Satell	ite structure:	Sat	tellite Communi	cations, Transponders, Sate	ellite antennas.			
G 4 11	•••••		·	UNIT-III	1 1 1	1	07 Hrs	
Satell	ite Communi	cat	ions: LEO, M	EO and GEO orbits, Altit	ude and orbit cont	rois	, Multiple Access	
Snace	nques.	• т	elephony V-S	AT DRS system Satellite	Radio and TV	Геle	-Education Tele-	
medic	ine Satellite n	• 1 avi	gation GPS	AI, DDS system, Satema	Radio and TV,		-Education, Tele-	
meare	ine, succince in	a + 1	gutton, or st	UNIT-IV			07 Hrs	
Remo	ote Sensing: \	/isu	ual bands, Agric	ultural, Crop vegetation, Fo	orestry, water Reso	urce	es, Land use, Land	
mappi	ing, geology, U	Jrb	an development	resource Management, and	image processing t	ech	niques.	
Metro	ology: Weathe	r	forecast (Long	term and Short term), we	eather modelling,	Сус	clone predictions,	
Disast	ter and flood	Wa	arning, rainfall	predictions using satellites				
				UNIT-V			07Hrs	
Satell	ite payloads:	Te	chnology missi	ons, deep space planetary	missions, Lunar n	niss	ions, zero gravity	
experi	iments, space t	010l	ogy and Internat	tional space Missions.	1 1 1 41		· · · · ·	
Adva	nced space sys	ste	ms: Remote sen	sing cameras, planetary pay	yloads, space shuttle	e, sj	pace station, Inter-	
space	communicatio	n s	ystems.					
Cours	e Outcomes: 4	\ ft	er completing f	he course, the students wi	ll be able to			
	Emplois diff			as askit and same late 1 1				
	Apply the bas	ice	of launching vo	tes, orbit and associated such that has a satellites and sub or	systems for space apr	lice	ations	

	Apply the basics of faunching venicles, saterities and sub-systems for space applications.
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrology etc.

CO4 Study technology trends, satellite missions and advanced space systems.

Re	Reference Books						
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009, ISBN- 10:0415465702.						
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN: 9788120324015.						
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0-471-37007-9, ISBN 10:						
	047137007X.						
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009, ISBN: 108176496308.						

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII											
	ADVANCED LINEAR ALGEBRA											
Соц	rse Code	•	(Grou 16G7H12	p G: Global Electiv	CIE	•	100 Marks					
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	Total Hours : 36 SEE Duration : 3.00 Hours						3.00 Hours					
Cou	rse Learning C)bj	ectives: The student	s will be able to								
1	1 Adequate exposure to learn the fundamental concepts to model a system of linear equations and											
	to obtain the solution of system of linear equations.											
2	Analyze and e	exte	end the structure of	vector spaces, linear	transformations, Syr	nm	etric matrices,					
	quadratic form	ns 1	equired in application	ons of Business, Scier	nce and Engineering.							
3	Apply the cor	ncej	pt of Eigenvalues to	study differential equ	uations and dynamica	ıl s	ystems. Apply					
	the concept of	f Oi	rthogonality to exam	ine some of the least	-squares problems.							
4	Apply Linear	Pro	ogramming to Netwo	ork problems and Gan	ne theory.							
			1	Unit-I			07 Hrs					
Syst	em of linear eq	lna	tions	Connecture of linear o	anations Timoon mo	4.1	. in Dusinson					
Scie	ices and system		ing_Input_Output_m	odel in Economics	Releasing chemic		s in Business,					
Elec	trical networks.		ing-input-Output in	ioder in Leononies,	, Datationing chemica		quations and					
			U	nit – II			09 Hrs					
Vect	or spaces and	line	ear transformations	5								
Revi	sion of Vector	Spa	aces, Subspaces, Lir	near independence, B	asis, Dimension and	Ch	ange of basis.					
App	ications to Di	ffei	rence equations, Ma	arkov chains. Interse	ection, Sum, Produc	ct o	of spaces and					
Tens	or product of	f t	wo vector spaces.	Introduction to L	Linear transformatio	ns,	Geometrical					
inter	pretations in 2-0	aim	tions and 3-dimer	nsions.			00 11mg					
Ortl	nogonality Fig	en	values and Figen v	ectors			09 1118					
Orth	ogonality Inne	r n	roduct spaces Appli	ications to Weighted	least-squares and Fo	mri	er series Fast					
Four	ier transform.	Eig	en values and Eiger	n vectors, Applicatio	ns to Differential eq	uat	ions, Discrete					
dyna	mical systems.	0	8	, rr	· · · · · · · · · · · · · · ·		,					
			U	nit –IV			07 Hrs					
Sym	metric matrice	es a	nd quadratic form	5								
Intro	duction to syn	nm	etric matrices, Qua	dratic forms, Test fo	or Positive definiter	less	, Constrained					
Opti	mization, Singu	llar	Value Decompositio	on. Applications to in	nage processing.		07 11					
Line	ar nrogrammi	nσ	and game theory				0/ HIS					
AG	eometrical intro	ng odu	ction to Linear pro-	gramming. Simplex	method and its geon	netr	ical meaning.					
Netv	vork models-Ma	ax f	low-min cut theorem	n, Payoff matrix and	Matrix games.		8,					
				· •								
Cou	rse Outcomes:	Af	ter completing the	course, the students	will be able to							
CO1	: Identify an	d i	nterpret the fundam	ental concepts of lin	near equations, vect	or	CO1: Identify and interpret the fundamental concepts of linear equations, vector spaces, linear					
	transformat	transformations, Orthogonality, Eigen values, symmetric matrices, quadratic forms, linear										
	nro grommit					itic	spaces, linear forms, linear					
<u> </u>		ng a	and game theory.	f Lincon alashua ta a			spaces, linear forms, linear					
CO2	Apply the l	ng a kno	wledge and skills o	f Linear algebra to s	solve linear equation	111C	spaces, linear forms, linear lifference and					
CO2	: Apply the l differential	ng a kno equ	und game theory. wledge and skills o lations, constrained	f Linear algebra to s optimization problem	solve linear equation ns, linear programmi	s, c	spaces, linear forms, linear lifference and problems and					
CO2	 Apply the l differential related prob Analyze the 	ng a kno equ olen e in	wind game theory. wledge and skills o ations, constrained as. put-output models.	f Linear algebra to s optimization problem Markov chains, discre	solve linear equation ns, linear programmi ete dynamical system	s, c ng	spaces, linear forms, linear lifference and problems and singular value					
CO2	 Apply the l differential related prob Analyze the decomposit 	ng a kno equ olen e in ion	wledge and skills o ations, constrained ns. put-output models, 1 , network models an	f Linear algebra to s optimization problem Markov chains, discred d related problems.	solve linear equation ns, linear programmi ete dynamical system	s, c ng ns,	spaces, linear forms, linear lifference and problems and singular value					
CO2 CO3 CO4	 Apply the l differential related prob Analyze the decomposit Using the o 	ng a kno equ olen e in ion	wledge and skills o ations, constrained ns. put-output models, 1 , network models an rall mathematical kn	f Linear algebra to s optimization problem Markov chains, discre d related problems. nowledge of Linear	solve linear equation ns, linear programmi ete dynamical systen Algebra to solve pro	s, c ng ns,	spaces, linear forms, linear difference and problems and singular value ems arising in					

Refere	ence Books
1	Linear Algebra and Its Applications, David C Lay, Pearson Education; 3 rd Edition, 2003,
	ISBN: 9/8-81-775-8333-5.
2	Linear Algebra with Applications, Gareth Williams, 6 th edition, Narosa publications, 2008,
	ISBN: 978-81-7319-981-3.
_	Linear Algebra and Its Applications, Gilbert Strang, 4 th Edition; Cengage Learning India,
3	2006; ISBN: 81-315-0172-8.
	Elementary Linear Algebra Applications Version, Howard Anton and Chris Rorres, Wiley
4	Global Education, 11 th Edition, 2013, ISBN: 9781118879160.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

RV College of Engineering®

	Semester: VII						
THIN FILM NANOTECHNOLOGY							
0			(Grou	ıp G: Global El	ective)		100 34
Cou	rse Code	:	16G7H13		CIE	:	100 Marks
Cree	hts: L:T:P	:	3:0:0		SEE	:	100 Marks
	I Hours	: h:	30	a will be able to	SEE Duration	:	5.00 Hours
	Understand the	DJ Ni	mortance of vacuur	$\frac{1}{2}$ s will be able to	brightion		
2	Acquire the kr		vledge of thin film n	reparation by va	orious techniques		
3	Analyze the pr	or	perties of thin films u	using different cl	haracterization meth	ods	
<u> </u>	Optimize the r	op	cess parameter and r	property depend		ous	
5	Apply the know	wl	edge for developing	thin film device	s.		
U	rippij uie inio						
			I	Unit-I			08 Hrs
Vacu	um Technolog	gy:	Basics of Vacuum	n - Principles o	f different vacuum	pun	nps: Rotary, Roots,
Diffu	ision, Turbo mo	le	cular and Cryogenic	pumps; Measur	rement of vacuum -	Ĉon	cept of Capacitance
Man	ometer, Pirani a	nd	Penning gauges - V	acuum Systems	& Applications.		
			U	nit – II			08 Hrs
Met	hods of thin film	ո լ	preparation				
Phys	ical Vapor Depo	osi	tion (PVD) Techniq	ues:		_	
Evap	<i>oration</i> : Therm	nal	evaporation, Elect	tron beam evap	oration, Laser abla	tion	, and Cathode arc
depo	sition. Sputterin	ıg:	DC sputtering, RF	Sputtering, Mag	gnetron sputtering, I	React	tive Sputtering, and
lont	eam sputtering.						
Cher	nical vapor Dep	205	sition (CVD) Techni	iques: Convention	onal CVD, Plasma E	unna	nce CVD (PECVD)
and	Atomic layer de	po	sition (ALD).Other I	wiethous: Spin c	oating and Spray Py	roly	515.
Sumf	aa Madifiaatia		ond Crowth of Thi	n Filma			07 HIS
Surf	ace preparation	т х	Find Growth of The	Thin film grou	wth: Cleaning Mo	difi	vation Masking &
Patte	rning Base Coa	nts	and Top Coats	Thin thin gio	with Cleaning, Mo	unn	ation, Masking a
Thin	Film growth:	s	Sequence of thin fil	lm growth. Det	fects and impurities	s. Et	ffect of Deposition
Para	meters on film g	ro	wth.		·····	,	
	~		U	nit –IV			08 Hrs
Prop	perties and Cha	ra	cterization of Thin	Films			·
Film	thickness (Qua	art	z crystal thickness	monitor and St	ylus Profiler);Film	Adh	esion (Tape, Cross
hatch	n test, and Hui	mi	dity methods);Surfa	ice morphology	and topography (SEM	I and AFM); Film
com	position (X-ray	Р	hotoelectron Spectr	roscopy); Film	n structure (X-ray	diffi	action and Raman
studi	es); Electrical	(characterization (Fo	our Probe and	d Semiconductor	Ana	lyzer); andOptical
chara	acterization (Spe	ect	rophotometer).	T •4 X 7			00 11
ть:	Film Annlies4	i c-	U	nit – v			U8 Hrs
	Fini Applicat		18: position of a Matal f	Film Ext Alumir	um		
	Transparent		nducting oxides (TC	C(0) = Preparation	n and Optimization	ofa	semiconducting
	film Fx· 7n	$\hat{0}$	inducting Oxides (1C			Ла	senneonducting
	Optimization	0. 1.0	f a dielectric film E	x. Al2O2 or Si2N	J,		
Thin Film Devices							
	• Thin Film Transistors (TFT)						
	• T	hi	n Film Sensors				
	• T	'hi	n Film Capacitors				
	• T	'n	n film Solar Cells.				
	• T	hi	n film Solar Absorbe	ers			
	Diamond-lik	te d	carbon (DLC) coatin	ıg			
	EMI Shieldi	ng	coatings	~			
•	Hard coating	gs	2				
_ •	 Coatings on Plastics/Polymers. 						

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	Understand the importance of vacuum technology for thin film growth			
CO2	Prepare various kinds of thin films using different deposition techniques			
CO3	Characterize the deposited films for various properties			
CO4	Fabricate thin film based devices.			

Reference Books

INCIN	
1.	Vacuum Technology ,A. Roth, Elsevier, 3 rd Edition, 1976, ISBN: 9780444880109, 9780444598745,
2.	Thin Film Phenomenon, K.L. Chopra, McGraw-Hill, 1 st Edition, 1969, ISBN: 0070107998, 978-
	0070107991
3.	Materials Science of Thin Films, Milton Ohring, Elsevier, 2 rd Edition, 2001, ISBN: 9780125249751
4.	Thin-Film Deposition: Principles and Practice, Donald Smith, McGraw-Hill, 1 st Edition, 1995,
	ISBN: 0070585024, 9780070585027

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

				Semester: VI	[
	ENGI	NE	ERING MATERI	ALS FOR AD	VANCED TECHN	OLOG	Y
			(Grou	p H: Global E	lective)		
Cou	Course Code: : 16G7H14 CIE : 100 Marks						
Crea	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36		SEE Duration	:	3.00 Hours
Cou	rse Learning Obje	ectiv	ves: The students v	will be able to			
	Apply the basic c	cond	cepts of Chemistry	to develop fu	turistic materials for	r high-te	ech applications in
1	the area of Engine	eeri	ng.	•		C	
2	Impart sound kn problems in engin	ow] neer	ledge in the diffe ing field.	rent fields of	material chemistry	so as	to apply it to the
3	Develop analytica	al ca	apabilities of stude	ents so that they	can characterize, tr	ansform	n and use materials
	in engineering and	ս պ		$\mathbf{T}_{-}\mathbf{I}$	Telated engineering	problem	08 Hrs
Cool	ing and packaging	a m	otoriola	1-1			00 1115
Surf	and packaging	g m rial					
Sunt	hesis and application	one	of Polymer coatir	na materials. T	eflon Silicone film	e Polyw	invl chloride & its
cono	lymers Poly vinyl	ace	tate. Poly ethylene	-HDPE LDPF	Polyurethane	5 I OIY V	ingr emoride & its
Pron	erties required in a	nio	ment and extender	S S S	, i oryurethane.		
Inorg	ganic pigments-tita	aniu	m dioxide. zinc	oxide. carbor	black. chromate	pigmen	ts. chrome green.
ultra	marine blue, iron bl	lue.	cadmium red.			r- <i>8</i>	,
Corr	osion inhibiting p	oign	nents- zinc phosph	hate, zinc and	parium chromate pig	gments.	ceramic pigments,
meta	l flake pigments, ex	xter	iders.	,	1 0	,	10 /
Deve	elopments in new p	oly	mers such as dendr	rimers, biopopl	ymers & biodegrada	ble poly	/mers.
Pack	aging materials:	•					
Food	l products: Cellulo	osic	and Polymeric pa	ackaging mate	rials and their prop	erties -	- including barrier
prop	erties, strength prop	pert	ies, optical propert	ies. Glass, alur	ninium, tin, paper, p	lastics,	composites.
Pharmaceutical products: Injectibles and tablet packaging materials.							
			UNIT	Г-П			07 Hrs
Adh	esives						
Intro	duction-Classificat	ion	of Adhesives-N	Vatural adhesi	ves, synthetic adł	nesives-	drying adhesives,
press	sure sensitive adhes	sive	es, contact adhesiv	es, hot adhesiv	ves. One part adhest	ives, m	ulti part adhesives.
Adhe	esive Action. Deve	elop	oment of Adhesiv	e strength- Ph	sysical factors influ	lencing	Adhesive Action-
surfa	ce tension, surface	e sn	noothness, thicknes	ss of adhesive	film, elasticity and	tensile	strength. Chemical
Facto	ors Influencing Adl	hesi	ve action - presen	ice of polar gro	oups, degree of poly	merizat	ion, complexity of
the a	adhesive molecules	s, e	ffect of pH. Adhe	esive action- s	pecific adhesive act	tion, me	echanical adhesive
actio	n, fusion adhesior	n. I	Development of a	dhesive streng	th- adsorption the	ory and	diffusion theory.
Prep	aration, curing and	1 bo	onding Processes	by adhesives-v	with reference to E	poxy, p	henolics, Silicone,
Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.							
	1.6%		UNII	-111			08 Hrs
Opti	cal fibre materials	5	6		1		1
Fibe	r Optics, Advantage	es o	f optical fiber com	imunication ov	er analog communic	cation, C	lassification based
on re	erractive index of t	ine	core- step index a	na graded ind	ex optical fibres, Cl	assinca	tion based on core
radius-single mode and multimode optical fibres, Fibre fabricationMethods to manufacture optical glass							
Deposition (CVD) Modified venous deposition (MCVD) Blooms activated venous deposition (CVD)							
Deposition (∇VD) , would deposition (∇VD) Plasma activated vapour deposition $(P\nabla VD)$, Outoide vapour deposition (OVD) Vapour phase axial deposition (VAD) . Drawing the filmer from							
Duis	the vapour deposition	nuoi alvoi	ing process	phase axial d	eposition (VAD).	Drawing	g the mores from
Ion	webongo reging or	d -	mg process.				
Ion	exchange resins an	iu f	duction Types -	hysical propo	tion chamical prov	nartio	anacity swalling
kine	ice etability ion o	woh	ance equilibrium	regeneration	Applications of ion	evelop	apacity, swelling,
of W	ater demineralizati	on	ange equilibrium,	regeneration.	rapplications of 1011	on racin	s-calcium sulphoto
fouli	ng iron fouling	on (dec	or water, auvailiage	matter bactor	ial contamination	SC ICSII	hange membranes
	ng, non rouning, a	Fahr	ication of ion evo	hange cottone	anion exchange co	offon an	d cation exchange
TIM	ypes, Classification, Fabrication of ion exchange cottons- anion exchange cotton and cation exchange						

cotto	n Application of ion exchange membranes in purification of water by electro dialysis method							
conc	INIT-IV 08 Hrs							
Snec	trosconic Characterization of materials:							
Elec	Electromagnetic radiation, interaction of materials with electromagnetic radiation.							
UV-	UV- visible spectrophotometry :Introduction-Electronic transitions- factors influencing position and							
inter	sity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl							
com	bounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-							
Fiese	er rules- for cyclic and α , β -unsaturated carbonyl compounds.							
IR S	Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of							
fund	amental vibrations, factors influencing fundamental vibrations, instrumentation of IR							
spec	trophotometer, sampling techniques and application of IR spectroscopy in characterization of							
func	tional groups.							
	UNIT-V 08 Hrs							
NM	R spectroscopy:							
H ¹ N	MR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in							
	R, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors							
affec	ting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent –magnetic							
aniso	otropy-spin-spin splitting rules- Application of NNR on various compounds such as alkanes, alkenes,							
aiky	ies, alkyl nandes, alconols, ethers, amines, aldenydes, ketones, carboxylic acids, esters, amides &							
mon	mono substituted aromatic compounds. Problems on prediction of structure of compounds.							
Соц	rse Outcomes: After completing the course, the students will be able to							
CO	Identify sustainable engineering materials and understand their properties.							
CO	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications in							
	different areas of engineering.							
CO3	Analyze and evaluate the specific application of materials.							
CO4	Design the route for synthesis of material and its characterization.							
Refe	rence Books							
1.	1. Materials Science, G.K.Narula, K.S.Narula & V.K.Gupta. 38 th Editon, Tata McGraw-Hill Publishing							
	Company Limited, 2015, ISBN: 978-0-07-451796-3.							
2.	Solar Lighting, Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-44-							
	712133-6 (Print) 978-1-44-712134-3 (Online),							
3.	Spectroscopy of organic compounds, P.S.Kalsi, 6 th Edition, New Age International (P) ltd, publisher,							
	2013, ISBN: 978-1-22-415438-6.							
4.	Food Packaging Materials, Mahadeviah M & Gowramma RV, 6 th Edition, Tata McGraw Hill							
	Publishing Company Ltd, 1996, ISBN :746-2-23-82 9780-0.							

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII (Global elective)						
			APPLIED PSYC	HOLOGY FOR EN	IGINEERS		
Cou	rse Code	:	16G7H15		CIE	:	100
Cred	lits: L:T:P	:	3:0:0		SEE	••	100
Total Hours: 36SEE Duration: 3 Hours				3 Hours			
Cou	Course Learning Objectives: The students will be able to						
1	1 To appreciate human behavior and human mind in the context of learner's immediate society						
	and environm	ent					
2	To understand the importance of lifelong learning and personal flexibility to sustain personal				stain personal		
	and Professional development as the nature of work evolves.						
3	To provide students with knowledge and skills for building firm foundation for the suitable						
	engineering professions.						
4	To prepare students to function as effective Engineering Psychologists in an Industrial,						
	Governmental or consulting organization.						
5	To enable stud	den	ts to use psychologic	al knowledge, skills,	and values in occup	atio	nal pursuits
	in a variety of settings that meet personal goals and societal needs.						

Unit – I	7 Hrs
Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologi	st in the
Society: Today's Perspectives (Branches of psychology). Psychodynamic, Behavioristic, C	ognitive,
Humanistic, Psychological Research and Methods to study Human Behavior: Expe	rimental,
Observation, Questionnaire and Clinical Method.	
Unit - II	7 Hrs
Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, N	lature of
Intelligence. Theories of Intelligence - Spearman, Thurston, Guilford Vernon. Characte	ristics of
Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concep	t of IQ,
Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.	
Unit – III	7 Hrs
Personality: Concept and definition of personality, Approaches of personality- psychoa	nalytical,
Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait a	ind type
approaches. Assessment of Personality: Self- report measures of Personality, Questionnaire	s, Rating
Scales and Projective techniques, its Characteristics, advantages & limitations, examples. B	ehavioral
Assessment. Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme pro	oducts of
stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress.	Sources
of Frustration, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived c	ontrol.
Unit – IV	7 Hrs
Application of Psychology in Working Environment: The present scenario of inf	ormation
technology, the role of psychologist in the organization, Selection and Training of Ps	ychology
Professionals to work in the field of Information Technology. Distance learning, Psyc	nological
consequences of recent developments in Information Technology. Type A and Type B Psyc	hological
Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counselin	g.
Unit – V	7 Hrs
Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Con	ditioning
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Con	ditioning
(Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive	– Social
approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, I	nsightful
Learning.	
Experimental Psychology (Practicals)- Self Study 2 Hrs /Week	
1.Bhatia's Battery of Performance and intelligence test	
2. Multidimensional Assessment of Personality	
3.David's Battery of Differential Abilities (Aptitude test)	
4.Bilateral Transfer of Training Mirror drawing apparatus with Electronic Digital Res	set Error
Counter (Performance)	
5. Student Stress Scale.	

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to
	behaviors and mental processes.
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and
	Humanistic theorists believe influence the learning process.
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,
	resulting in their enhancement and apply effective strategies for self-management and self-
	improvement.
CO4	Apply the theories into their own and others' lives in order to better understand their
	personalities and experiences.
CO5	Understand the application of psychology in engineering and technology and develop a route
	to accomplish goals in their work environment.

Reference Books:

1. Understanding Psychology ,Feldman R. S, 4th Edition, McGraw Hill India, 1996

2. Psychology, Robert A. Baron, 3rd Edition Prentice Hall India, 1995.

3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN – 81-317 - 1132 - 3

4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5

5. Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

				VII Semester			
	FOUNDATIONAL COURSE ON ENTREPRENEURSHIP						
		1		Group H: Global Elective)			
Co	urse Code	:	16G7H16	C	IE Marks	:	100
Cr	edits: L:T:P	:	3:0:0	S	EE Marks	:	100
To	tal Hours	:	36	S.	EE Duration	:	03 Hours
Co	urse Learning ()bį	jectives:				
1	To make partic	ipa	ants self-discov	er their innate flow, entrepreneur	ial style, and iden	ntif	fy problems
	worth solving the	her	eby becoming	entrepreneurs			
2	To handhold pa	arti	cipants on lear	methodology to craft value prop	osition and get re	ad	ly with lean
_	canvas		1 1		C' 1' 1 1	1	
3	To create solut	10r	demo by cond	lucting customer interviews and f	finding problem-s	ol	ution fit for
-	building Minim	un	n Viable Produc	t (MVP)	1		6 1 (
4	To make partic	ipa	ints understand	cost structure, pricing, revenue ty	pes and important	ce	of adopting
_	shared leadership to build good team						
Э	5 To help participants build a strong brand and identify various sales channels for their products and						
6	Services						
U	• To take participants through basics of business regulations and other legal terms along-with						
				TL *4 T			07 11
Sal	f Discourse and	Δ	nnoutunity Di				07 Hrs
Sel Ein	ding the Elevel	LU Eff	pportunity Dis	covery	a used in estivitie		Idontifying
FIII Drc	blem Worth S	പ	ving: Design 7	Thinking: Brainstorming: Presen	ting the Identify	:8, ad	problems:
Ide	Identifying the Entropronourial Style						
luc	nurying the Lift	cpi	ieneuriai Style.	Unit – II			07 Hrs
Cu	stomer Solution	ng	nd Lean Meth	odology			071113
Cu	stomers and Ma	rke	ets: Segmentation	on and Targeting: Identifying Job	os. Pains, and Ga	ins	s and Early
Ad	opters; Crafting	Va	lue Proposition	Canvas (VPC); Presenting VPC;	Basics of Busine	ss	Model and

 Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.

 Unit – III
 07 Hrs

 Problem-Solution Fit and Building MVP

 Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce

Raise-Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interviews; Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.

Unit – IV06 HrsFinancial Planning & Team BuildingCost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types,Identifying Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks;Bootstrapping and Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, TeamRole and Responsibilities.

Unit – V09 HrsMarketing, Sales, Regulations and Intellectual Property
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business
Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common
Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and
Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	showcase the ability to discern distinct entrepreneurial traits				
CO2	Know the parameters to assess opportunities and constraints for new business ideas				
CO3	Understand the systematic process to select and screen a business idea				
CO4	design strategies for successful implementation of ideas				
CO5	Create Business Model and develop Minimum Viable Product				

Ref	erence Books
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.
2	Entrepreneurship.Roy, R., 2012. Oxford University Press
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial
4	Modern Classics
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar
Э	Publishing Ltd.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)- (Needs to be discussed)

				Somostor: VII			
			UNM	Semester: VII			
				Group H: Global Elective)			
Соц	Course Code : 16G7H17 CIF : 100 Marks						
Cre	dits: L:T:P	:	3:0:0	S	EE	:	100 Marks
Hou	irs	:	36	S	EE Duration:	:	3Hrs
Cou	rse Learning O	bje	ctives: The stud	lents will be able to		1 1	
1	Get an overvie	ew c	of the history of I	JAV systems			
-	Understand th	e ir	mortance of aer	odynamics propulsion structure	s and avionics	in th	e design of
2	UAV	0 11	inportance of act	supervision, succeare			ie design of
2	Demonstrate a	abili	ity to address th	e various mission payloads - or	n-board & off-b	oard	, propulsion
3	systems, integ	ratio	on with manned s	ystems			
4	Assess the per	forr	mance and airwor	thiness of the designed UAV			
				Unit-I			06 Hrs
Intr	oduction to Flig	ght	Vehicles:				
Hist	ory of Flight Ve	hicl	es and UAVs, Cl	assifications, Woking principles o	f flight vehicle.		
Intr	oduction to Un	mai	nned Aircraft Sy	stems	~		
Тур	es of UAVs, cou	nfig	urations and their	r advantages disadvantages, Syste	em Composition	, Ap	plications of
UAV	vs, Characteristi	cs o	of Aircraft	TI 4 TI			07.11
Unit – 11 07 Hrs							
Design of UAV Systems: Governing aspects:							
Aor	a. Actouynann advnamics:	.05,	o. Piopuision, C.	structure, d. Controis			
Intro	oduction basic A	ero	dynamics lift dr	ag Aerofoils wing area optimizat	ion		
Pro	pulsion:		aynannes, mit, ar		10111		
Intro	duction to prop	ulsi	ion system in UA	AV, Propulsion system for fixed	wing UAV and	VTC	DL (Vertical
take	-off and landing) U	AV, Advanced pi	opulsion systems, fuel cells, gene	rators based syst	ems.	× ×
Unit -III 07Hrs							
Structures of UAV:							
Mec	hanic loading, b	oasi	cs of types of lo	ad calculation and structural engi	neering, Materi	al us	ed for UAV
(gen	eral introduction	1), I	FRP and methods	s of usage in UAV, Testing of FR	RP specimens fo	r UA	V, selection
crite	ria for structure	e, T	ypes of structur	al elements used in UAV their	significance an	d cha	aracteristics,
Methods of manufacturing UAV structure.							
0		17	1 0	Unit -IV			07 Hrs
Con	trols, Avionics,	На	rdware, Commi	inication, Payloads:			
Basics of control system and Systems for control system in UAV, PID control, simulation introduction to							
supply integration installation configuration and testing							
supp	ny, megration, i	nsta	anation, configur	ation, and testing.			
Hardware, Communication							
Electronics Hardware in UAV, Communication methods, communication antenna and their significance.							
Pavloads:							
Payl	oad types and th	eir	applications				
-				Unit -V			09 Hrs

Design of UAV Systems:

Fixed wing UAV and Rotary wing UAV (VTOL)

Task specific, activity based exercise

RV College of Engineering®

Cours	Course Outcomes: At the end of this course the student will be able to :				
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs				
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs				
CO3	Determine and evaluate the performance of UAV designed for various Missions and applications				
CO4	Assess the performance and airworthiness of the designed UAV				

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010. Wiley, ISBN 9780470058190.
2	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw- Hill, Inc, ISBN 978-0070462731.
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VIII								
MAJOR PROJECT								
	(Common to all Programs)							
Course Code	:	16CV81		CIE	:	100 Marks		
Credits: L:T:P:S : 0:0:16:0 SEE : 100 Marks								
Hours / Week:32SEE Duration:3.00 Hours								

С	Course Learning Objectives: The students will be able to					
1		Acquire the ability to make links across different areas of knowledge and to generate, develop and				
		evaluate ideas and information so as to apply these skills to the project task.				
2		Acquire the skills to communicate effectively and to present ideas clearly and coherently to a				
		specific audience in both written and oral forms.				
3		Acquire collaborative skills through working in a team to achieve common goals.				
4		Self-learn, reflect on their learning and take appropriate action to improve it.				
5		Prepare schedules and budgets and keep track of the progress and expenditure.				

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (*approved by the department Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program;
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution;
- > The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- > The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's* (*Centre of Excellence*) *identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.

- > The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➢ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Course Outcomes of Major Project:

1	Apply knowledge of mathematics, science and engineering to solve respective engineering
	domain problems.
2	Design, develop, present and document innovative/multidisciplinary modules for a complete
	engineering system.
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long
	learning to follow technological developments.
4	Function effectively as an individual, or leader in diverse teams, with the understanding of
	professional ethics and responsibilities.

CIE Assessment:

The following are the weightages given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%
SEE As The	ssessment: e following are the weightages given during Viva Examination.	
The	e following are the weightages given during Viva Examination.	
1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Calendar of Events for the Project Work:

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being
	carried out in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by
	Department project Committee and guide for internal assessment.
	Finalization of CIE.

RV College of Engineering®

Scheme of Evaluation for CI	Scheme of Evaluation for SEE			
Particulars	%Marks	Particulars	%Marks	
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%	
Project Evaluation II	25%	Project Demo / Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

Evaluation Scheme for CIE and SEE

Semester: VIII							
TECHNICAL SEMINAR							
		(C	common to all P	rograms)			
Course Code	••	16CV82		CIE	••	100 Marks	
Credits: L:T:P:S : 0:0:2:0 SEE : 100 Marks							
Hours / Week	:	04		SEE Duration	:	3.00 Hours	

Cou	Course Learning Objectives: The students will be able to				
1	Recognize recent developments in specific program and in multidisciplinary fields.				
2	Summarize the recent technologies and inculcate the skills for literature survey.				
3	Demonstrate good presentation skills.				
4	Plan and improve the Technical Report writing skills.				
5	Support Group discussion and Team work.				

General Guidelines for the Seminar

- 1. The seminar has to be presented by individual student.
- 2. The topic of the seminar should be from current thrust area along with consultation with the guide.
- 3. The topic can be based on standard papers (like ASCE/IEEE etc.) in the thrust area for the selected topic.
- 4. Presenting/publishing this paper in conference/ Journal will be given weightage in CIE.
- 5. The student needs to submit both hard & soft copy of the seminar report.
- 6. As an outcome of Technical Seminar, each student has to prepare a technical paper out of seminar topic.

Cours	Course Outcomes of Technical Seminar:					
1	Communicate effectively on complex engineering problems and demonstrate contextual knowledge					
	to assess societal and environmental contexts.					
2	Identify, formulate, review research literature, analyze and Design solutions for complex					
	engineering problems using appropriate techniques with effective documentation.					
3	Analyze, interpret and synthesize the information to provide valid conclusions with innovative					
	ideas and ethical principles.					
4	Apply the knowledge of engineering specialization to suggest solutions to complex engineering					
	problems and recognize the need for technological changes.					

Evaluation of CIE Marks:

1.	Relevance of the topic	10%
2.	Literature Survey	10%
3.	Presentation	40%
4.	Report	20%
5.	Outcome	10%
6.	Technical Paper	10%

Semester: VIII								
INNOVATION & SOCIAL SKILLS								
	(Common to all Programs)							
Course Code	:	16HS83	CIE	:	NA			
Credits: L: T:P:S : 0:0:2:0 SEE : NA								
Hours / Week : 02 SEE Duration : NA								

Course Learning Objectives: The students will be able to

1 To provide a platform for the students to exhibit their organizational capabilities, team building, ethical values and extra mural abilities.

2 To encourage to carryout innovative ideas and projects.

3 Take part in societal and community building activities.

4 Make self-learning, ethics and lifelong learning a motto.

Guidelines

- 1. The HSS will be evaluated individually based on the broad parameters which include the progress made by student during 3rd& 4th year in innovative projects, Seminar, Paper Presentation, Field activity & other Co-curricular activities.
- 2. Students shall submit a report and documents as a proof his/her achievements.

Course Outcomes of Innovation & Social Skills:	
1	Apply the knowledge and skills for solving societal issues
2	Plan to work in team in various areas with inclusive effort and sustainability
3	Organize various events and use managerial and budgeting abilities
4	Demonstrate leadership qualities and ethics

Curriculum Design Process

Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment
PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.