

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

CIVIL ENGINEERING

Department Vision

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

Department Mission

- Disseminating and integrating the knowledge of civil engineering and allied fields.
- Enhancing industry-institute interaction leading to interdisciplinary research.
- Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- Motivate entrepreneurship and professional ethics to serve the society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1:Successfully address technological and managerial challenges.

PEO2:Professionally design and execute Civil Engineering projects.

PEO3:Pursue advanced education, research and continue life-long learning process to remain active professionals.

PEO4: Play key roles in addressing societal needs through interdisciplinary approach.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO

Description

- PSO1 Apply knowledge of fundamental aspects to analyze and design civil engineering structures
- PSO2 Provide sustainable solutions to civil engineering problems
- PSO3 Employ codal provisions to arrive at comprehensive solutions to address societal needs
- PSO4 Exhibit communication and teamwork skills

Lead Society: American Society of Civil Engineers (ASCE)

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

CIVIL ENGINEERING

Abbreviations

SL. NO.	ABBREVIATION	MEANING
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	CHY	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	PHY	Engineering Physics
13.	SEE	Semester End Examination
14.	MAT	Engineering Mathematics
15.	PCE	Professional Core Elective
16.	GE	Global Elective

INDEX

V Semester					
Sl. No.	Course		Course Title	Page No.	
	Code				
1.	16HEM51	Foundations of	of Management & Economics	1	
2.	16CV52	Structural Ar	nalysis	3	
3.	16CV53	Design and	Drawing of RCC Structures	5	
4.	16CV54	Highway En	gineering	7	
5.	16CV55	Irrigation and	d Hydraulic Structures	10	
		GROUP A: PI	ROFESSIONAL CORE ELECTIVES	l	
1.	16CV5A1	Numerical me	ethods in Civil Engineering	12	
2.	16CV5A2	Environmenta	l Impact Assessment	14	
3.	16CV5A3	Ground Water	r Hydrology	16	
4.	16CV5A4	Alternative B	uilding Materials And Technologies	18	
	GROUP B: GLOBAL ELECTIVES				
Sl. No.	Course	Host Dept	Course Title	Page No.	
	Code				
1.	16G5B01	BT	Bioinformatics	20	
2.	16G5B02	СН	Fuel Cell Technology	23	
3.	16G5B03	CV	Geoinformatics	25	
4.	16G5B04	CSE	Graph Theory	27	
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	29	
6.	16G5B06	EEE	Hybrid Electric Vehicles	31	
7.	16G5B07	IEM	Optimization Techniques	34	
8.	16G5B08	E&I	Sensors & Applications	36	
9.	16G5B09	ICE	Introduction To Management Information	38	
		ISE	Systems		
10.	16G5B10	ME	Industrial Automation	40	
11.	16G5B11	TCE	Telecommunication Systems	42	
12.	16G5B12	MAT	Computational Advanced Numerical Methods	44	
13.	16G5B13	AE	Basics of Aerospace Engineering	46	

	VI Semester			
Sl. No.	Course Code		Course Title	Page No.
1.	16HSI61	Intellectual F	Property Rights and Entrepreneurship	48
2.	16CV62	Geotechnica	al Engineering	51
3.	16CV63	Prestressed	Concrete Structures	53
4.	16CV64	Transportat	ion Engineering	55
GROUP C: PROFESSIONAL CORE ELECTIVES				
1.	16CV6C1	Structural M	asonry	57
2.	16CV6C2	Traffic Engin	neering and transportation Planning	59
3.	16CV6C3	Air pollution	& control Engineering	61
4.	16CV6C4	Watershed N	Ianagement	63
GROUP D: PROFESSIONAL CORE ELECTIVES				
1.	16CV6D1	Structural D	ynamics	65
2.	16CV6D2	Remote sens	Remote sensing & GIS	
3.	16CV6D3	Construction	Construction Management	
4.	16CV6D4	Advanced Co	Advanced Concrete Technology	
		GROU	JP E: GLOBAL ELECTIVES	
Sl. No.	Course	Host Dept	Course Title	Page No.
	Code			
1.	16G6E01	BT	Bioinspired Engineering	73
2.	16G6E02	CH	Green Technology	75
3.	16G6E03	CV	Solid Waste Management	78
4.	16G6E04	CSE	Introduction to Web Programming	80
5.	16G6E05	ECE	Automotive Electronics	83
6.	16G6E06	EEE	Industrial Electronics	85
7.	16G6E07	IEM	Project Management	87
8.	16G6E08	E&I	Virtual Instrumentation	89
9.	16G6E09	ISE	Introduction to Mobile Application Development	91
10.	16G6E10	ME	Automotive Engineering	93
11.	16G6E11	TCE	Mobile Network System and Standards	96
12.	16G6E12	MAT	Applied Partial Differential Equations	98
13.	16G6E13	AE	Aircraft Systems	100

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi)

FIFTH	SEME	STE
-------	------	-----

	FIFTH SEMESTER							
SI	Course					Total		
No	Code	Course Title		Lecture	Tutorial	Practical	SS (EL)	Hours
1	16HEM51	Foundations of Management and Economics	HSS	2	0	0	0	2
2	16CV52	Structural Analysis	CV	3	1	0	0	4
3	16CV53	Design and Drawing of RCC Structures	CV	3	0	1	1	5
4	16CV54	Highway Engineering	CV	3	0	1	0	4
5	16CV55	Irrigation and Hydraulic Structures	CV	3	0	0	1	4
6	16CV5AX	Elective A (PCE)	CV	3	0	0	1	4
7	16G5BXX	Elective B (GE)	CV	4	0	0	0	4
		Total No. of Hours						27
		No. of Hrs.		21	2	4	12**	27

**Non-contact hours

	SIXTH SEMESTER							
SI	Course				Credit All	location		Total
No.	Code	Course Title	BOS	Lecture	Tutorial	Practical	SS (EL)	Hours
1	16HSI61	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	0	3
2	16CV62	Geotechnical Engineering	CV	3	1	1	0	5
3	16CV63	Prestressed Concrete Structures	CV	3	0	0	1	4
4	16CV64	Transportation Engineering	CV	3	0	0	0	3
5	16CV6CX	Elective C (PCE)	CV	3	0	0	1	4
6	16CV6DX	Elective D (PCE)	CV	3	0	0	1	4
7	16G6EXX	Elective E(GE)	CV	3	0	0	0	3
8	16HS68	Professional Practice-III (Employability Skills and Professional Development of Engineers)	HSS	1	0	0	0	1
		Total No. of Hours						27
		No. of Hrs.		22	2	2	12**	26

**Non-contact hours

	V Sem			
	GROUP A: PROFESSIONAL CORE ELECTIVES			
Sl. No.	Course Code	Course Title		
1.	16CV5A1	Numerical methods in Civil Engineering		
2.	16CV5A2	Environmental Impact Assessment		
3.	16CV5A3	Ground Water Hydrology		
4.	16CV5A4	Alternative Building Materials And Technologies		

	GROUP B: GLOBAL ELECTIVES				
Sl. No.	Host Dept	Course Code	Course Title	Credits	
1.	BT	16G5B01	Bioinformatics	4	
2.	СН	16G5B02	Fuel Cell Technology	4	
3.	CV	16G5B03	Geoinformatics	4	
4.	CSE	16G5B04	Graph Theory	4	
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning		
6.	EEE	16G5B06	Hybrid Electric Vehicles		
7.	IEM	16G5B07	Optimization Techniques 4		
8.	E&I	16G5B08	Sensors & Applications 4		
9.	ISE	16G5B09	Introduction To Management Information Systems		
10.	ME	16G5B10	Industrial Automation	4	
11.	TCE	16G5B11	Telecommunication Systems	4	
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4	
13.	AE	16G5B13	Basics of Aerospace Engineering	4	

	VI Sem				
	GROUP C: PROFESSIONAL CORE ELECTIVES				
Sl. No.	Sl. No. Course Code Course Title				
1.	16CV6C1	Structural Masonry			
2.	16CV6C2	Traffic Engineering and transportation Planning			
3.	16CV6C3	Air pollution& control Engineering			
4.	16CV6C4	Watershed Management			
		GROUP D: PROFESSIONAL CORE ELECTIVES			
1.	16CV6D1	Structural Dynamics			
2.	16CV6D2	Remote sensing & GIS			
3.	16CV6D3	Construction Management			
4.	16CV6D4	Advanced Concrete Technology			

	GROUP E: GLOBAL ELECTIVES			
Sl. No.	Host Dept	Course Code	Course Title	Credits
1.	BT	16G6E01	Bioinspired Engineering	3
2.	СН	16G6E02	Green Technology	3
3.	CV	16G6E03	Solid Waste Management	3
4.	CSE	16G6E04	Introduction to Web Programming	3
5.	ECE	16G6E05	Automotive Electronics	3
6.	EEE	16G6E06	Industrial Electronics	3
7.	IEM	16G6E07	Project Management	3
8.	E&I	16G6E08	Virtual Instrumentation	3
9.	ISE	16G6E09	Introduction to Mobile Application Development	3
10.	ME	16G6E10	Automotive Engineering	3
11.	TCE	16G6E11	Mobile Network System and Standards	3
12.	MAT	16G6E12	Applied Partial Differential Equations	3
13.	AE	16G6E13	Aircraft Systems	3

	V/V	I SEMESTER	
	FOUNDATIONS OF MA	NAGEMENT AND ECONOMICS	
		(Theory)	
C	(Common to BT,	CHE, CV, E&I, IEM, ME)	
Course	e Code: 10HEM51/61	CIE Marks: 50	
Hours	• 23I	SEE Marks: 50 SEE Duration: 02Hrs	
Course	• Learning Objectives: The students	will be able to	
1 U	Inderstand the evolution of manageme	nt thought.	
2 A	Acquire knowledge of the functions of I	Management.	
3 (Gain basic knowledge of essentials of N	Aicro economics and Macroeconomics.	
4 U	Jnderstand the concepts of macroecond	omics relevant to different organizational contex	ts.
LL	A		
		UNIT-I	
Introd	uction to Management: Manageme	nt Functions, Roles & Skills, Management	04 Hrs
History	v - Classical Approach: Scientific	c Management & Administrative Theory,	
Quantit	tative Approach: Operations Research	, Behavioural Approach: Hawthorne Studies,	
Conten	nporary Approach: Systems & Conting	ency Theory.	
		UNIT-II	1
Found	ations of Planning: Types of Goals &	z Plans, Approaches to Setting Goals & Plans,	02 Hrs
Strateg	ic Management Process, Corporate & C	Competitive Strategies.	
Organi	izational Structure & Design: Over	view of Designing Organizational Structure:	03 Hrs
Work	Specialization, Departmentalization,	Chain of Command, Span of Control,	
Central	lization & Decentralization, Formalizat	ion, Mechanistic & Organic Structures.	
Mating	ting Employees, Easty Theories of	UNIT-III Mativation Maslow's Hismanshy of Nacda	02 11
Theory	Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs 03 Hrs		
Theory	, McGregor's Theory A & Theory 1,	nerzberg s Two Factor Theory, Contemporary	
Manao	ers as Leaders: Behavioural Theory	ries: Obio State & University of Michigan	03 Hrs
Studies	Blake & Mouton's Managerial Grid	Contingency Theories of Leadership: Hersey	05 1115
& Blan	chard's Situational Leadership. Conter	nporary Views of Leadership: Transactional &	
Transfo	ormational Leadership.		
	*	UNIT-IV	
Introd	uction to Economics: Concept of Ec	onomy and its working, basic problems of an	04 Hrs
Econor	ny, Market mechanism to solve econor	nic problems, Government and the economy,	
Essenti	ials of Micro Economics: Concept an	nd scope, tools of Microeconomics, themes of	
microe	conomics, Decisions: some central the	emes, Markets: Some central themes, Uses of	
Microe	conomics.		
		UNIT-V	
Essenti	ials of Macroeconomics: Prices an	d inflation, Exchange rate, Gross domestic	04 Hrs
product	t(GDP), components of GDP, the La	bour Market, Money and banks, Interest rate,	
Macroe	economic models- an overview, Growt	h theory, The classical model, Keynesian cross	
model,	IS-LM-model, The AS-AD-model,	The complete Keynesian model, The neo-	
classica	al synthesis, Exchange rate determinati	on and the Mundell-Fleming model	
Lourse	Evolution the principles of manage	urse, the students will be able to	ce of an
L I	organization	ement theory & recognize the characteristi	us of all
1	Demonstrate the importance of key	performance areas in strategic management a	nd design
L	appropriate organizational structures	and possess an ability to conceive various orga	nizational
	dynamics.		
3	Select & Implement the right leaders	ship practices in organizations that would enable	le systems
_	orientation.		
4	Understand the basic concepts and pr	inciples of Micro economics and Macroeconom	ics

Refe	erence Books
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5th Edition, 2009, TMH Pub. Co.
	Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, (www.bookboon.com), Peter Jochumzen, 1st Edition. 2010, e-
	book, ISBN:978-87-7681-558-5.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	2	2	-	-	1	-	-	2	2	-
CO3	1	-	-	-	-	-	-	2	2	2	1	-
CO4	1	2	-	-	-	2	-	-	-	-	-	2

Low-1 Medium-2 High-3

	Semester: V							
	STRUCTURAL ANALYSIS							
	(Theory)							
Course Code:16CV52 CIE Marks: 100								
Credits: L:T:P:S: 3:1:0:0		SEE Marks: 100						
Hours: 36L + 24T SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students	will be able to						
1	Understand the basic concepts of plastic	c analysis and matrix method of analysis						
2	Understand the concept of influence line diagram and its application under rolling loads							
3	Analyse the structural system under stat	tic and rolling loads						
Evaluate the behaviour of structures by conventional, strain energy and plastic methods of								
4	analysis							
5	Develop flexibility matrix and stiffness	matrix for beam element						

UNIT-I						
Redundant Trusses: Introduction, Analysis of statically indeterminate structures using	08 Hrs					
strain energy method, Analysis of trusses (Redundant up to second degree), Lack of fit in						
member & temperature stress in redundant truss.						
UNIT-II	1					
Moment – Distribution Method: Introduction, Stiffness factor, Distribution Factor,	07 Hrs					
Distribution moment and Carry-over moment; Analysis of Continuous beams with and						
without settlement of supports. Single bay, Single storey, Orthogonal Portal frames with						
and without sway.						
UNIT-III						
Rolling loads and influence lines: Rolling load analysis for simply supported beams (No	07 Hrs					
overhanging beams), for the case of several point loads and UDL, Influence line diagrams						
for reactions, Shear forces and Bending moments at a given section for simply supported						
beams (No overhanging beams).						
UNIT-IV						
	07 Hrs					
Plastic Analysis: Introduction to plastic hinge, plastic collapse load, conditions of plastic						
analysis. Redistribution of moments. Theorems of plastic collapse, plastic analysis of						
beams and orthogonal portal frames by mechanism method.						
UNIT-V						
Introduction to Matrix Methods: Flexibility method and Stiffness method –	07 Hrs					
Introduction, concept of flexibility and stiffness, Development of stiffness and flexibility						
matrices for determinate structures by basic approach. (Only derivations)						

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Illustrate the concepts of various methods of analysis						
2	Apply the basic concepts of analysis methods in determining unknown reactions of the structures						
3	Analyze the different forms of structural elements by suitable methods of analysis						
4	Evaluate the behavior of structure under various loading conditions						

Reference Books

1.	Structural Analysis, R C Hibbler, 8th edition, Pearson Publications, ISBN-13: 978-0132570534
2.	Theory of Structures, S. Ramamrutham, Dhanpat Rai Publishing Company Private Limited-New
	Delhi; Ninth edition (2014), ISBN-13: 978-9384378103

3. Limit State Design of Steel Structures, Duggal S K, Tata McGraw-Hill Education, 2014, ISBN-13: 978-9351343493

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	I	-	-	-	-	I	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	-	2	1	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	-	-	-	-	-	-	-	-

	Semester: V							
	DESIGN AND DRAWING OF RCC STRUCTURES							
	(Theory)							
Cou	rse Code:16CV53	CIE Marks: 100+50						
Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50								
Hours: 48L SEE Duration: 3Hrs + 3 H								
Cou	rse Learning Objectives: The students will be	e able to						
1	Distinguish working stress method and limit state method specifications for RCC structures							
2	Analysis problems on RCC structural elements such as beams, columns, slabs staircase and							
² footings								
3	3 Evaluate and design problems on various specifications of relevant IS codes							
4	Design and details of reinforcements for RCC	structures						

UNIT-I 10 Hrs Principles of Limit State Design and Ultimate Strength of RC Sections Philosophy of limit state design, Principle of limit states, Factor of safety, Characteristic and design loads, Characteristic and design strength, General aspects of ultimate strength, Stress block parameters for limit state of collapse, Ultimate flexural strength of rectangular sections- singly reinforced and doubly reinforced, Ultimate flexural strength of flanged sections, Ultimate torsional strength and shear strength of RC sections, Concept of development length and anchorage, Analysis problems using IS 456:2000 **UNIT-II Design of beams 10 Hrs** Practical requirements of RCC beam, Size, Cover, Spacing of bars, Design of rectangular and flanged RC beams for flexure, shear, deflection, Anchorage etc(Simply supported and Cantilever beams only) using IS 456:2000 and SP16. **UNIT-III** Design of slabs: General considerations for design of slabs, Rectangular slabs spanning 10 Hrs in one direction, Rectangular slabs spanning in two directions for various boundary conditions, Torsion reinforcement design for two way slabs, Design of simply supported and cantilever slabs as per IS 456:2000. **UNIT-IV** Design of columns: General aspects, effective length of column, loads on columns, **08 Hrs** slenderness ratio, Minimum eccentricity, Design of short axially loaded columns, Design of columns subjected to axial load and uni-axial moment, Design of columns subjected to axial load and uniaxial moment. **UNIT-V** 10 Hrs **Design of stairs and Footings** Design of stairs: Loading on stairs, Design of doglegged stairs, design of open-well stairs Design of Footings: Introduction, Load on footing, Design of square and rectangular isolated footings for axial load and uni-axial moment PART B (Laboratory) Preparation of salient drawings and schedule of bars using the given data: 1. Singly and Doubly reinforced beams - Simply supported and cantilever beams. 2. T- Beam and slab arrangement.

- 3. One-way and two-way slab with and without torsion reinforcement.
- 4. Dog legged and Open well staircase.
- 5. Square, rectangular and Circular Isolated column with footing.

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Apply the philosophy and principles of methods to design RCC elements							
2	Analyze RC elements using working stress method and limit state method in the analysis of							
	singly and doubly reinforced RC sections.							
3	Design RC structural elements as per codal provisions							
4	Sketch reinforcement details and evaluate the quantity of steel for RC structural elements.							

Reference Books

1.	Design of Reinforced Concrete Structures, Krishnaraju N and Pranesh. R.N. 2 nd Edition, CBS
-	Publishers and Distributors, New Delhi, 2003, ISBN 978-81-224-1460-8
2.	Limit State Design of Reinforced Concrete, Varghese P.C, 2 nd Edition, Eastern Economy
	Edition, Prentice – Hall of India Pvt Ltd, New Delhi, 2004, ISBN 9788120320390
3.	Design of Reinforced Concrete Structures, Unnikrishnan and DevadasMenon, 4th Edition, PHI
	New Delhi, 2003, ISBN 978-0070495043
4.	RCC Designs (Reinforced Concrete Structures), Punmia B.C., Ashok Kumar Jain, Arun Kumar
	Jain, 10th Edition, 2011, Laxmi Publications (P) Ltd, New Delhi, ISBN 978-81-318-0942-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	1	-	-
CO2	-	2	-	-	-	-	-	-	-	1	-	-
CO3	1	-	3	-	-	-	2	-	-	1	-	-
CO4	-	-	1	-	-	-	-	-	-	1	-	-

	Se	emester: V						
	HIGHWAY ENGINEERING							
	(Theory)							
Cou	rse Code:16CV54		CIE Marks: 100+50					
Crec	lits: L:T:P:S: 3:0:1:0		SEE Marks: 100+50					
Hou	Hours: 36L SEE Duration: 3Hrs + 3 Hr							
Cou	rse Learning Objectives: The students v	vill be able to						
1	Classify roads and describe geometric de	esign elements						
2	2 Understand material properties and factors affecting pavement design							
3	3 Analyze flexible and rigid pavement design							
4	Understand and assess highway drainag	e system						

UNIT – I					
 Principles of Transportation Engineering: Importance of Transportation, IV Road development plan highlights, Jayakar committee recommendations and implementation, Concept of Expressways and PMGSY – for rural connectivity, Golden Quadrilateral and NSEW Corridor. Highway Geometric Design: Importance, Factors controlling the design of Geometric elements, Geometric design consistency 	07 Hrs				
UNIT – II					
Geometric Design Elements: Sight distances-Types, analysis, Factors affecting, measurements. Numerical on above. (Note: Derivation not required). Cross Section Elements: Right of way and width consideration, roadway, shoulders, kerbs, traffic barriers, medians, Facilities for pedestrians, buses and trucks, Horizontal alignment, superelevation, Gradients.	07 Hrs				
UNIT – III					
Pavements: Types, Functions of pavement, choice, Factors affecting design and performance of flexible and rigid pavements – Subgrade, Materials, Axle Load Distribution, ESWL, EWL, VDF, Environmental conditions.					
UNIT – IV					
Pavement Design: Flexible pavement design as per IRC: 37 – 2012. Design of rigid pavement as per IRC: 58 – 2015, types of joints, (excluding design of joints).					
UNit – V					
Highway Drainage System: Importance and requirements, Surface and Subsurface drainage system - methods, Design of filters.					
Laboratory					
 Determination of California Bearing Ratio of soil sample Specific gravity of bitumen Penetration value of bitumen Ductility value of bitumen Softening Point of bitumen Viscosity of bitumen-Rotational Viscometer Impact Value of aggregates Los Angeles Abrasion Value of aggregates 					

- 9. Crushing value of aggregates10. Specific gravity and water absorption of aggregates

- 11. Ten percent fines value of aggregates
- 12. Proportioning of aggregates for dense bituminous mixes
- 13. Determination of bitumen content by Centrifuge Bitumen Extractor
- 14. Determination of the Marshall stability and flow value of Bituminous mixes

Course Outcomes: After completing the course, the students will be able to

1	Explain suitable geometry, materials and drainage system for design and construction of
	pavements.
2	Compute the design requirements for geometry, drainage and pavements.
3	Select suitable geometry, materials and drainage for design and construction of pavements.
4	Evaluate and recommend geometry materials and design for pavements.

Referen	ice Books
1.	Highway Engineering, Khanna, S.K. and Justo, C.E.G, Veeraragavan A, 10 th Edition, Nemechand
	and Bros. Roorkee, 2014 ISBN: 9788185240633, 8185240639
2	L. R. Kadiyali, N.B. Lal Principles And Practices Of Highway Engineering:, Khanna
	Publishers,2004,ISBN-13: 978-8174091659
3	Highway Material Testing, Khanna, Justo and Veeraragavan – 5th Edition, Nemechand Bros,
	Roorkee, 2009, ISBN 9788185240213
4	Principles of Pavement Design, E. J. Yoder and M. W. Witczak, Wiley Publication, Print
	ISBN: 9780471977803
5	IRC -37-2012, IRC-58-2015, Indian Roads Congress, New Delhi

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	1	-	-	-	-
CO3	2	3	-	-	-	-	-	1	-	-	-	-
CO4	-	2	2	-	-	-	-	1	-	-	-	-

	Semester: V							
	IRRIGATION AND HYDRAULIC STRUCTURES							
		(Theory)						
Cou	rse Code:16CV55	CIE Marks: 100						
Crea	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students v	will be able to						
1	Study of scientific application of water	r to soils to raise food crops, Problems extending from						
1	watershed to agricultural farming.							
2	Estimation of Crop water requirement to	b determine storage capacity of reservoir.						
2	Design of storage structures, canal	head works, outlet for reservoirs and impermeable						
3	⁵ foundations for weirs							
4	Design of outlets for reservoir for such	as spillways, energy dissipaters, river protection works						
4 for flood prone rivers.								

UNIT-I

08 Hrs Introduction: Benefits and ill effects of irrigation. Sources of water for irrigation. Systems of irrigation, Methods of irrigation. Irrigation and water requirements of crops: Definition of duty, Delta and Base period, Relationship between Duty, Delta and Base period, Factors affecting Duty of Irrigation water, Types of Duty, Crops and crop seasons in India, Consumptive use, Irrigation efficiency, Frequency of irrigation, Numerical problems. UNIT-II **Canal:** Types of canals. Canal alignment. Command area, Intensity of irrigation, Time **08 Hrs** factor, Capacity factor, Unlined and lined canals standard sections. Design of canals by Lacey's and Kennedy's Silt Theories. **Canal works:** Canal regulators - Classification and suitability. Canal drop – Classification, Hydraulic principles and design of notch type drop. Cross drainage works: Classification. Hydraulic principles and design of an aqueduct. **UNIT-III** Reservoirs: Investigation for reservoir site, Storage zones, Determination of storage 07 Hrs capacity and yield of reservoir using mass curve, Economical height of dam, Reservoir evaporation losses. Diversion works: Layout, types of weirs and Barrages. Design of Impermeable floors-Bligh's and Lacey's theories- Simple design problems. Khosla's theory- Method of independent variables, Exit gradient (No design problem)Sensitivity, numerical problem **UNIT-IV** Gravity dams: Forces acting on a gravity dam, Modes of failures, Elementary and practical 07 Hrs profile, Low and high gravity dams, Stability analysis and related problems, Principal stresses, Drainage galleries. Earthen dams: Types, Failure of earthen dams, Preliminary design, Drainage arrangements, Phreatic line, seepage analysis (no numerical problems) UNIT-V

Spillways: Types of spillways, Design Principles for an Ogee Spillway, Energy dissipaters:06 HrsTypes of Stilling basins (No design problem)06 Hrs

Course Outcomes: After completing the course, the students will be able to						
1	Describe various irrigation practices in use, canal, canal works, reservoirs and dams.(L1)					
2	Understand the concepts of irrigation water management and design of various hydraulic					
	structures. (L2)					
3	Determine the crop water requirement, storage capacity of a reservoir.(L3)					
4	Analyze the conveyance system, canal works, diversion works and spillways, (L4)					

Reference Books

1.	Irrigation Engineering and Hydraulic Structures, S.K.Garg, Khanna publications, New
	Delhi.2006, ISBN-10: 8174090479, ISBN-13: 978-8174090478.
2.	Irrigation water resources and water Power Engineering, P.N.Modi, 9th edition, Standard book
	house, 2008, ISBN 8189401297, ISBN-13: 978-8189401290
3.	Irrigation Engineering, R.K. Sharma, S Chand & company; Revised edition 2007, ISBN-
	10: 8121921287, ISBN-13: 978-8121921282.
4.	Irrigation Engineering and Hydraulic Structures, S.R. Sahasrabudhe, S.K. Kataria & Sons, 2013
	Edition, ISBN-10: 9350141310, ISBN-13: 978-9350141311.
5.	Engineering for Dams Vol I, Creager, Justin and Hinds, Hesperides Press, 2006, ISBN
	9781406717082.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	2	-	2	2	1	-	-	-	2
CO2	3	2	-	-	-	1	2	-	2	-	2	2
CO3	3	2	2	-	-	2	2	-	1	-	-	2
CO4	3	2	2	2	-	2	-	-	2	-	2	2

-								
	Semester: V							
	NUMERICAL METHODS IN CIVIL ENGINEERING							
	(Group A: Pr	ofessional Core Elective)						
Cou	rse Code:16CV5A1	CIE Marks: 100						
Cree	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hou	Hours: 34L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	Impart students the concept of numeric	al methods and its application to various civil engineering						
1	problems							
2	Help students formulate the mathematical models for a given physical problem							
2	Provide students the basic skill for solving civil engineering problems using simple arithme							
3	operations							
4	Promote the use of coding and progra	mming tools and its implementation in solving everyday						
4 civil engineering problem								

UNIT-I					
Introduction:	07 Hrs				
Historical development of Numerical techniques, Sources of error in numerical solutions:					
Truncation error, Round Off error.					
Methods for Solution of System of Linear Equations: Gaussian elimination method,					
Gauss-Jordan method, Gauss-Siedel method, Factorization method					
UNIT-II					
	07 Hrs				
Application of solution of linear system of equations to Civil Engineering problems:					
Construction planning, Truss analysis, Beam analysis.					
Numerical Integration: Trapezoidal rule and Simpson's one third rule and its application					
for computation of area of BMD drawn for statically determinate beams.					
UNIT-III					
Application of Root Finding to Civil Engineering problems: Picard's Iteration method,	06 Hrs				
Bisection method, Regula-Falsi Method, Newton- Raphson method and applications for					
solution of Nonlinear algebraic and transcendental equations for problems in Civil					
Engineering					
UNIT-IV					
Finite difference Method as a method to solve partial differential equations:	07 Hrs				
Introduction, Forward, backward and central difference technique, application of the					
method to obtain the bending moment and deflections of determinate and indeterminate					
beams for different load combinations.					
UNIT-V					
Integration technique applied to Structural analysis using New Mark's method:	07 Hrs				
Introduction, Application of the method to obtain the shear force, bending moment, slope					
and deflections of determinate and indeterminate beams for different load combinations.					
Course Outcomes: After completing the course, the students will be able to					
1 Formulate numerical models and find its relevance in solving civil engineering problems	5.				

4 Evaluate shear force, bending moment and deflection for various structural members

Refe	erence Books
1.	Numerical methods for Engineers - Chapra S.C&R.P. Canale: Mc Graw Hill,1990. ISBN-13:978-
	0-07-063416-9
2.	Numerical methods in engineering Problem - N. Krishna Raju, K.U. Muthu: Mac Millon Indian
	Limited,1990 ISBN-0333924240
3.	Numerical Methods for Engineers and Scientists, Iqubal H Khan.Q.Hassan, Galgotia, New
	delhi.1997.ISBN62-187-0745-4
4.	Jain, Iyenger and Jain, "Numerical Methods for Scientific and Engineering Computation", Wiley,
	New Delhi. 2000.ISBN81-224-0597-5

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	1	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	-	2	1	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	1	-	-	-	-	-	-	-

	Semester: V							
	ENVIRONMENTAL IMPACT ASSESSMENT							
	(Group A: Professional Core Elective)							
Cou	Course Code:16CV5A2 CIE Marks: 100							
Crec	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hou	Hours: 36L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students will be	able to						
1	To study factors to be considered for preparing	g an Environmental Impact Statement						
2	To study the principles, methodologies and techniques of Environmental Impact Assess							
4	2 (EIA)							
3	To study mitigation techniques and study of al	ternatives.						
4	To prepare EIA for specific case studies.							

4 | To prepare EIA for specific case studies.

Г

UNIT.I

UNII-I					
Introduction:	08 Hrs				
Impact of developmental projects – sustainable development – Need for Environmental					
Impact Assessment (EIA), Rapid and Comprehensive EIA, Environmental Impact					
statement (EIS) - EIA capability and limitations - Legal provisions on EIA - stages of					
EIA.					
UNIT-II					
Role of NEPA in EIA, CEQ, Environmental documents.	07 Hrs				
EIA/ EIS& FONSI relationship, processing of EIA/EIS, Environmental attributes.					
Methodologies: Criteria to be considered for the selection of EIA methodologies, Adhoc,					
overlays, Check lists - Matrices - Networks - Cost-benefit analysis with their					
advantages and limitations.					
UNIT-III					
Guidelines for preparation of EIA	07 Hrs				
Prediction and Assessment: Assessment of Impact on land, water, air and noise. social					
and cultural activities and on flora and fauna – mathematical models – public					
participation.					
UNIT-IV					
Environment management plan : Plan for mitigation of adverse impact on Environment	07 Hrs				
- Options for mitigation of impact on water, air, land and on flora and fauna - Addressing					
the issues related to project affected people. Post project monitoring. ISO 9000, 14000 &					
18000.					
UNIT-V					
Case Studies	07 Hrs				
EIA for the infrastructure projects -Airport, Dam, Highway, Multi- storey buildings,					
water supply and drainage projects, Hazardous waste landfill site.					

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Carryout scoping and screening of developmental projects for environmental and social							
	assessments.							
2	Explain different methodologies for environmental impact prediction and assessment.							
3	Prepare environmental management plans.							
4	Evaluate environmental impact assessment reports and roles, actions that citizens and interest							
	groups can take to influence the EIA process and outcome.							

Refe	rence Books
1.	Environmental Impact Analysis, 2 nd Edition, R.K.Jain, Mc Graw-Hill, Newyork, 2002, ISBN -
	9780071370080
2.	Environmental Impact Assessment, Y.Anjaneyulu CRC press, ISBN 10-0415665566, 13- 9780415665568, 2011
	7700115005500, 2011.

3.	Environmental Impact Assessment, Larry W Canter, McGraw-Hill Inc. ISBN: 10-0071141030,
	13-9780071141031, 1996,
4.	Environmental Impact Analysis Handbook, John G. Rau and David C Hooten (Ed), McGraw- Hill Book Company, 10-0070512175, 13-9780070512177, 1980 Reprint 2013.
5.	Concepts in Environmental Impact Analysis, Shukla, S.K. and Srivastava, P.R., Common Wealth Publishers, New Delhi, 10-8171692087, 13-9788171692088, 1992 Reprint 2013.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	1	1	3	2	1	1	1	1	-
CO2	3	2	2	2	-	1	2	2	1	-	-	-
CO3	2	2	2	2	-	2	2	1	1	1	-	-
CO4	2	1	2	2	1	2	2	2	2	1	-	-

High-3 : Medium-2 : Low-1

	Semester: V							
	GROUND WATER HYDROLOGY							
	(Group A: Professional Core Elective)							
Cou	rse Code: 16CV5A3	CIE Marks: 100						
Crec	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hou	Hours: 36L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students w	ill be able to						
1	Understand the structural formation of wa	ater bearing strata.						
2	Study of Ground Water flow phenomeno	n in steady & unsteady strata.						
3	Experimental methods of determining Aquifer parameters with limitations.							
4	4 The importance of Ground Well Hydraulics.							
5	Application of Geophysics in determination of Ground Water Resources.							

UNIT-I

Vertical distribution of subsurface water. Types of water bearing formation. Aquifer	08 Hrs				
parameters, specific yield, specific retention, porosity, storage coefficient, land					
subsidence due to withdrawal of ground water, Darcy's law, intrinsic permeability,					
Hydraulic conductivity, Transmissivity, permeability determination by lab & traces					
methods.					
UNIT-II					
Steady unidirectional flows in confined aquifers, unconfined aquifers- Dupit's equation,	06 Hrs				
Base flow to a stream, Steady Radial flow to well - Confined aquifer, unconfined aquifer					
with uniform recharge.					
UNIT-III					
Unsteady radial flow in a confined aquifer - Non equilibrium pumping equation, Theis	07 Hrs				
method, Cooper-Jacob method and Chow method, unsteady radial flow in an					
unconfined aquifer, Image well theory.					
UNIT-IV					
Geophysical investigation and well design: Wenner's and Schlumberger method.	07 Hrs				
Seismic refraction method. Well design- design of diameter, depth, spacing and casing.					
Well losses.					
UNIT-V					
Ground water pollution: Sources Attenuation of pollution (Filtration, Sorption,	08 Hrs				
Dilution) Mass transport of pollution Fick's law. Advection-Dispersion equation in					
Saturated porous media. Monitoring of ground water quality and methods of remediation.					

Cou	Course Outcomes: After completing the course, the students will be able to								
1	Describe the concepts of ground water flow phenomenon. (L1)								
2	Understand the different flow conditions and problems associated with ground water								
	pollution.(L2)								
3	Apply the concepts, techniques necessary to determine aquifer parameters. (L3)								
4	Analyze the various aspects of groundwater assessment, development and management.(L4)								

Refe	erence Books
1.	Ground water Hydrology, Todd and Mays, 3 rd Edition, Wiley Indian Pvt. Ltd , Reprint 2014, ISBN 9788126530038
2.	Ground water Hydrology, H.M.Raghunath, 3 rd Edition, New Age international Pvt.Ltd., New Delhi, Reprint 2014, ISBN 9788122419047
3.	Ground water Assessment development and Management, Karanth.K.R., 2 nd Edition, Tata Mc Graw Hill company Ltd., New Delhi, twelfth reprint 2008, ISBN 9780074517123.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	-	-	-	2	2	-	2	-	-	2
CO2	-	2	-	2	-	1	-	2	2	-	-	1
CO3	2	2	3	2	-	2	2	-	2	2	-	2
CO4	2	2	1	2	-	2	2	-	2	-	2	1

	Semester	: V						
	ALTERNATIVE BUILDING MATERIALS AND TECHNOLOGIES							
	(Group A: Professiona	al Core Elective)						
Cou	rse Code:16CV5A4	CIE Marks: 100						
Cree	lits: L:T:P:S :3:0:0:1	SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students will be a	ble to						
1	To study process that is environmental appropriate and resource-efficient throughout a							
I	building's life-cycle							
2	To study innovative solutions using state-of-the-	art technologies and building materials						
2	To study how to minimize environmental impact by facilitating to use local and recycled							
3	³ materials to lessen energy in buildings							
4	To study the behavior of masonry materials and structures							
5	To study the cost effective methods in building technology and design							
6	To induce sustainable and inclusive technology							

UNIT-I	
Introduction to Energy in building materials and buildings	08 Hrs
Energy in building materials, Environmental issues concerned to building materials,	
Global warming, Environmental friendly and cost effective building technologies,	
Buildings in different climatic region. Energy evaluation of building materials.	
UNIT-II	
Introduction to Masonry units, materials and Types:	07 Hrs
Types and Characteristics of alternative masonry units - stabilized mud blocks, Geo	
polymer, FaL- G Blocks, Aerated concrete blocks - strength, modulus of elasticity and	
water absorption.	
Mortars, Types, Preparation, Properties, Masonry materials-Classification and properties	
of mortars, selection of mortars.	
UNIT-III	
Alternative Building Technologies	07 Hrs
Alternative Technology for wall construction, Types, Construction Techniques, Masonry	
mortars, Types, Preparation, Properties, Ferro cement and ferroconcrete building,	
components, Materials and specifications, Properties, Construction methods,	
Applications, Alternative roofing systems-Concepts, Filler slabs, Composite beam panel	
roofs, Masonry vaults and domes.	
UNIT-IV	
Fibre Reinforced Cement composites:	07 Hrs
Introduction, Materials, Mechanical Properties of FRC, and Applications.	
Fibre Reinforced Polymer Composites:	
Introduction, Materials, Manufacturing process, Applications	
UNIT-V	
Cost Effective Building Design:	07 Hrs
Concept of Cost Effectivebuildings and Cost saving techniques adopted in planning,	
design and construction	

Cou	rse Outcomes: After completing the course, the students will be able to
1	Understand need of Alternative Building Materials in Construction industry
2	Analyze embodied energy, structural behavior of alternative materials
3	Evaluate properties of mortar and other alternative construction materials
4	Design methods for cost effective buildings by adopting cost effective materials and cost saving
	techniques

Refe	erence Books
1.	Alternative building Materials and Technologies, K.S.Jagadish, B.V.Venkatarama Reddy and
	K.S.NanjundaRao, New Age International Publishers. 2009;ISBN 978-81-224-2037-1
2.	Building Alternatives for housing. Lecture notes on Alternative Building, K.S. Jagadish, Dept of
	Civil Engg, Indian Institute of Science ,1997
3.	Adobe and Rammed Earth Buildings: Design and Construction, Paul Graham McHenry, New
	edition (15 September 1989), Publisher: University of Arizona Press; ISBN-10: 0816511241,
	ISBN-13: 978-0816511242
4.	Structural Masonry, A.W.Hendry, Macmillan Press, London, ISBN 9780333733097
5.	Structural Masonry, Sven Sahlin, Prentice Hall Inc., Englewood Cliffs, New Jersey, ISBN
	9780138539375

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	3	2	-	-	1	-	1
CO2	-	-	2	-	-	1	2	-	-	-	-	1
CO3	2	-	-	-	-	1	1	-	-	-	-	1
CO4	-	-	1	-	-	-	2	-	-	-	-	1

	Semester: V						
		BIOINFORMATICS					
		(Group B: Global Elective)					
Cou	rse Code: 16G5B01		CIE Marks: 100				
Cred	lits :L:T:P:S: 4:0:0:0		SEE Marks: 100				
Hou	Hours:04 SEE Duration: 3Hrs						
Cou	rse Learning Objectives:						
1	Understand the underlying te	chnologies of Bioinformatics and	d Programming				
2	Explore the various algorithms behind the computational genomics and proteomic structural						
	bioinformatics, modeling and simulation of molecular systems.						
3	3 Apply the tools and techniques that are exclusively designed as data analytics to investigate the						
	significant meaning hidden behind the high throughput biological data.						
4	Analyze and evaluate the outcome of tools and techniques employed in the processes of						
	biological data preprocessing and data mining.						

Unit-I

Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy, Genes and Genomes. **Bioinformatics & Biological Databases**: Introduction to Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological databases – Sequence, structure, Special Databases and applications - Genome, Microarray, Metabolic pathway, motif, and domain databases. Mapping databases – genome wide maps. Chromosome specific human maps.

Unit – II

Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and Multiple sequence alignment, Alignment algorithms (Needleman & Wunch, Smith & Waterman and Progressive global alignment). Database Similarity Searching- Scoring matrices – BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next Generation Sequencing – Alignment and Assembly. Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based & Character-Based Methods and Phylogenetic Tree evaluation.

Unit -III

Predictive methods:Predicting secondary structure of RNA, Protein and Genes –
algorithms to predict secondary structure of RNA, Protein and Gene.09 Hrsalgorithms to predict secondary structure of RNA, Protein and Gene.Prediction of Tertiary
structure of Protein, Protein identity and Physical properties of protein.MolecularModeling and Drug Designing:Introduction to Molecular Modeling.Methods of
Molecular Modeling and Force Fields used in Molecular Modeling.Drug designing process
and Molecular Docking.

Unit –IV

Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions (REGEX), Components of REGEX - Operators, Metacharacters and Modifiers. Subroutines – types of functions, defining and calling functions in Perl, calling function - call by value and call by reference. Object Oriented Programming in Perl–Class and object, Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package. Perl Module – writing and calling module.

Unit –V	
BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence retrieval from Database and submission of sequence to online Database, Indexing and accessing local databases, Transforming formats of database record, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Restriction mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.	09 Hrs

Cours	e Outcomes: After completing the course, the students will be able to
1	Understand the Architecture and Schema of online databases including structure of
	records in these databases.
2	Explore the Mind crunching Algorithms, which are used to make predictions in
	Biology, Chemical Engineering, and Medicine.
3	Apply the principles of Bioinformatics and Programming to the problems related to
	process simulation and process engineering in Biological system.
4	Use Bioinformatics tools and Next Generation Technologies to model and simulate
	biological phenomenon.

Refere	nce Books
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text processing and scripting, O'Reilly Media, Inc., 4 th Edition, 2012, ISBN-13: 978-0596004927
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach, new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624
3	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and MySQL, Oxford University Press, 1st edition, 2009, ISBN
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

High-3 : Medium-2 : Low-1

	Semester: V							
	FUEL CELL TECHNOLOGY							
	(Group B	: Global Elective)						
Cou	rse Code: 16G5B02	CIE Marks: 100						
Cred	Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100							
Hou	Hours: 45L SEE Duration: 3Hrs							
Cour	se Learning Objectives: The students will	be able to						
1	Recall the concept of fuel cells							
2	Distinguish various types of fuel cells and their functionalities							
3	3 Know the applications of fuel cells in various domains							
4	Understand the characterization of fuel cells							

UNIT-I

Introduction: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties.	09Hrs
UNIT-II	
Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each .	09Hrs
UNIT-III	
Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation.	09Hrs
UNIT-IV	
Fuel Cell Characterization: current – voltage curve, in-situ characterization, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy and ex-situ characterization techniques.	09Hrs
UNIT-V	
Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen production, storage, handling and safety issues.	09 Hrs

Cou	rse Outcomes: After completing the course, the students will be able to
1	Understand the fundamentals and characteristics of fuel cells
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems
3	Analyze the performance of fuel cells using different characterization techniques
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems

Refe	erence Books
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

High-3 : Medium-2 : Low-1

	Semester: V								
	GEOINFORMATICS								
(Group B: Global Elective)									
Cou	Course Code:16G5B03 CIE Marks: 100								
Hrs/Week: L:T:P:S: 4:0:0:0 SEE Marks: 100									
Crea	Credits: 48L SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	1 To understand concept of using photographic data to determine relative positions of points								
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative land								
4	² information								
3	To analyze the data gathered from vario	bus sensors and interpret for various applications							
4	To understand the various applications	of RS, GIS and GPS							

UNIT-I

UNIT-	
Remote Sensing- Definition, types of remote sensing, components of remote sensing, Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition elements. Fundamentals of image rectification. Digital Image classification - supervised and unsupervised	10 Hrs
UNIT-II	
 Photogrammetry: Introduction types of Photogrammetry, Advantages of Photogrammetry, Introduction to digital Photogrammetry. Locating points from two phases determination of focal length. Aerial Photogrammetry: Advantages over ground survey methods - geometry of vertical phographs, scales of vertical photograph. Ground coordination- relief displacement, scale ground coordinates – flight planning 	10 Hrs
UNIT-III	
Geographic Information System- Introduction, Functions and advantages, sources of data for GIS. Database – Types, advantages and disadvantages. Data Management – Transformation, Projection and Coordinate systems. Data input methods, Data Analysis overlay operations, network analysis, spatial analysis. Outputs and map generation Introduction to GPS- components and working principles	10 Hrs
UNIT-IV	
Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources engineering and management (prioritization of river basins, water perspective zones and its mapping), Case studies on applications of GIS and RS in highway alignment, Optimization of routes, accident analysis, Environmental related studies. Case studies on applications of GIS and RS in Disaster Management (Case studies on post disaster management - Earthquake and tsunami and pre disaster management - Landslides and floods) Urban Planning & Management - mapping of zones layouts and infrastructures.	09 Hrs
floods) Urban Planning & Management - mapping of zones, layouts and infrastructures.	

	UNIT-V									
Арр	lications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping.	09 Hrs								
Case studies on infrastructure planning and management- Case studies on urban sprawl.										
Cha	nge detection studies - case studies on forests and urban area. Case studies on									
agrie	culture. Applications of geo-informatics in natural resources management: Geo									
Technical case Studies , site suitability analysis for various applications.										
Cou	rse Outcomes: After completing the course, the students will be able to									
1	Understand the principle of Remote Sensing (RS) and Geographical Information Syste	ems (GIS)								
	data acquisition and its applications.									
2	Apply RS and GIS technologies in various fields of engineering and social needs.									
3	3 Analyze and evaluate the information obtained by applying RS and GIS technologies.									
4	Create a feasible solution in the different fields of application of RS and GIS.									

Refe	erence Books								
1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3 rd Edition, Wiley India								
	Pvt. Ltd. New Delhi, 2009.								
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5 th Edition, John								
	Wiley Publishers, New Delhi, 2007.								
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008								
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi,								
	2009								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1
T 134	r 10	A TT' 1	1									

Semester: V								
GRAPH THEORY								
(Group B : Global Elective)								
Course Code:16G5B04	CIE Marks: 100							
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100							
Hours: 45L	SEE Duration: 3 Hrs							

Cou	rse Learning Objectives: The students will be able to
1	Understand the basics of graph theory and their various properties.
2	Model problems using graphs and to solve these problems algorithmically.
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.
4	Optimize the solutions to real problems like transport problems etc.,

UNIT-I	
Introduction to graph theory	09 Hrs
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees	1
and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	1
Basic concepts in graph theory	1
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	1
in digraphs.	1
	1
UNIT-II	
Graph representations, Trees, Forests	09 Hrs
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	1
properties of trees. Characterization of trees. Centers of trees. Rooted trees. Binary threes.	1
Spanning trees and forests. Spanning trees of complete graphs. An application to	1
electrical networks. Minimum cost spanning trees.	1
	1
UNIT-III	
Fundamental properties of graphs and digraphs	09 Hrs
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted	
graphs. Eulerian digraphs.	1
Planar graphs. Connectivity and Flows	1
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	1
theorem. Dual of a planar graphs.	1
	1
UNIT-IV	
Matchings and Factors	09 Hrs
Min-Max theorem. Independent sets and covers. Dominating sets, maximum bipartite	
matching.	1
Coloring of graphs	1
The chromatic number of a graph Results for general graphs. The chromatic polynomial	I
of a graph Basic properties of chromatic polynomial chordal graphs powers of graphs	1
Edge coloring of graphs	1
Luge coloring of graphs	1
UNIT-V	
Graph algorithms	09Hrs
Graph connectivity algorithms, Breadth first search and Depth first search. Shortest path	
algorithms. Dijikstra's shortest path algorithm. Minimum cost spanning tree algorithms.	1
Algorithm of Kruskal's and Prim's.	1
<i>σ</i>	1

Cou	Course Outcomes: After completing the course, the students will be able to							
1.	Understand and explore the basics of graph theory.							
2.	Analyse the significance of graph theory in different engineering disciplines							
3.	Demonstrate algorithms used in interdisciplinary engineering domains.							
4.	Evaluate or synthesize any real world applications using graph theory.							

Reference Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition,2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010,PHI, ISBN:9780262033848

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

Semester: V				
ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING				
(Group B: Global Elective)				
Course Code: 16G5B05			CIE Marks: 100	
Credits: L:T:P:S: 4:0:0:0			SEE Marks: 100	
Hours: 46L			SEE Duration: 3Hrs	
Course Learning Objectives: The students will be able to				
1	Define what is Neural Network and model a Neuron and Express both Artificial Intelligence			
1	and Neural Network			
2	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning,			
	Competitive learning and Boltzmann learning			
3	Implement Simple perception, Perception learning algorithm, Modified Perception learning			
	algorithm, and Adaptive linear combiner, Continuous perception, learning in continuous			
	perception.			
4	Analyze the limitation of Single layer Perceptron and Develop MLP with 2 hidden layers,			
	Develop Delta learning rule of the output layer and Multilayer feed forward neural network			
	with continuous perceptions			

 UNIT-I

 Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron, Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron, Artificial Neural Network architecture, ANN learning, analysis and applications, Historical notes.
 08 Hrs

UNIT-II

Learning Processes:Introduction, Error correction learning, Memory-based learning,
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,
learning with and without teacher, learning tasks, Memory and Adaptation.10 Hrs

UNIT-III

Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple
perception, Perception learning algorithm, Modified Perception learning algorithm,
Adaptive linear combiner, Continuous perception, Learning in continuous perception.10 HrsLimitation of Perception.10 Hrs

UNIT-IV

Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers, Simple layer
of a MLP, Delta learning rule of the output layer, Multilayer feed forward neural network
with continuous perceptions, Generalized delta learning rule, Back propagation algorithm10 Hrs

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the
DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks,
Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted
Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and
examples (Google, image/speech recognition)08 Hrs

Course Outcomes: After completing the course, the students will be able to			
1	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.		
2	Perform Pattern Recognition, Linear classification.		
3	Develop different single layer/multiple layer Perception learning algorithms		
4	Design of another class of layered networks using deep learning principles.		
Refe	erence Books		
------	---		
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson		
	Prentice Hall, ISBN-13: 978-0-13-147139-9		
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing		
	Company, ISBN: 9780534954604		
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-		
	262-11255-8		
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,		
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7		

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

Low-1 Medium-2 High-3

	Semester: V								
	HYBRID ELECTRIC VEHICLES								
	(Group B: Global Elective)								
Course Code : 16G5B06 CIE Marks : 100									
Cred	lits : L:T:P:S 4:0:0:0	SEE Marks : 100							
Hou	rs : 45L	SEE Duration : 3Hrs							
Cou	rse Learning Objectives: The students	will be able to,							
Explain the basics of electric and hybrid electric vehicles, their architecture, techr									
1	fundamentals.								
Explain plug – in hybrid electric vehicle architecture, design and component sizing and the									
2	electronics devices used in hybrid electric vehicles.								
3	Analyze various electric drives suitable for hybrid electric vehicles and Different energy storage								
5	technologies used for hybrid electric vehicles and their control.								
	Demonstrate different configurations	of electric vehicles and its components, hybrid vehicle							
4	configuration by different techniques,	, sizing of components and design optimization and energy							

Unit-I					
Introduction: Sustainable Transportation, A Brief History of HEVs, Why EVs Emerged and	07 Hrs				
Failed, Architectures of HEVs, Interdisciplinary Nature of HEVs, State of the Art of HEVs,					
Challenges and Key Technology of HEVs.					
Hybridization of the Automobile: Vehicle Basics, Basics of the EV, Basics of the HEV, Basics					
of Plug-In Hybrid Electric Vehicle (PHEV), Basics of Fuel Cell Vehicles (FCVs).					
Unit-II					
HEV Fundamentals: Introduction, Vehicle Model, Vehicle Performance, EV Powertrain	10 Hrs				
Component Sizing, Series Hybrid Vehicle, Parallel Hybrid Vehicle, Wheel Slip Dynamics.					
Plug-in Hybrid Electric Vehicles: Introduction to PHEVs, PHEV Architectures, Equivalent					
Electric Range of Blended PHEVs, Fuel Economy of PHEVs, Power Management of PHEVs,					
Component Sizing of EREVs, Component Sizing of Blended PHEVs, Vehicle-to-Grid					
Technology.					
Unit-III					
Power Electronics in HEVs: Power electronics including switching, AC-DC, DC-AC	10 Hrs				
conversion, electronic devices and circuits used for control and distribution of electric power,					
Thermal Management of HEV Power Electronics.					
Batteries, Ultracapacitors, Fuel Cells, and Controls: Introduction, Different batteries for EV,					
Battery Characterization, Comparison of Different Energy Storage Technologies for HEVs,					
Battery Charging Control, Charge Management of Storage Devices, Flywheel Energy Storage					
System, Hydraulic Energy Storage System, Fuel Cells and Hybrid Fuel Cell Energy Storage					
System and Battery Management System.					
Unit-IV					
Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor Drives,	10Hrs				
Permanent Magnet Motor Drives, Switched Reluctance Motors, Doubly Salient Permanent					
Magnet Machines, Design and Sizing of Traction Motors, Thermal Analysis and Modelling of					
Traction Motors. (only functional treatment to be given)					

Unit-V								
Integration of Subsystems: Matching the electric machine and the internal combustion engine	08Hrs							
(ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage								
technology, Communications, supporting subsystems.								
Energy Management Strategies: Introduction to energy management strategies used in hybrid								
and electric vehicle, classification of different energy management strategies, comparison of								
different energy management strategies, implementation issues of energy strategies.								
Course Outcomes: After completing the course, the students will be able to								
1 Explain the basics of electric and hybrid electric vehicles, their architecture, technologie	es and							
fundamentals.	fundamentals.							
2 Evaluate the performance of electrical machines and power electronics converters in HEVs.	Evaluate the performance of electrical machines and power electronics converters in HEVs.							
3 Analyse the different energy storage devices used for hybrid electric vehicles, their technologie	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies and							
control and select appropriate technology								
4 Design and evaluate the sizing of subsystem components and Energy Management strategies in H	HEVs.							
Reference Books:								
1. Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris, M	lasrur							
A.and Gao D.W. Wiley Publisher, 1st Edition, 2011, ISBN:0-824-77653-5	A.and Gao D.W. Wiley Publisher, 1 st Edition, 2011, <i>ISBN</i> :0-824-77653-5							
2. Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E. Gay							
Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.								
3. Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press,	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press.							
2001, ISBN 0 19 850416 0.								
4. Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao, G	Jiorgio							
Rizzoni, ISBN: 978-1-4471-6779-2.	U							

Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3 : Medium-2 : Low-1

V Semester							
OPTIMIZATION TECHNIQUES							
(Group B: Global Elective)							
Course Code : 16G5B07 CIE Marks : 100							
Credits : L: T: P: S:4:0:0:0 SEE Marks : 100							
Hours : 44L SEE Duration : 03 Hrs							
Course Learning Objectives: The students will be able to							
1. To understand the concepts behind optimization techniques.							
2. To explain the modeling frameworks for solving problems using optimization techniques.							
3. To design and develop optimization models for real life situations.							
4. To analyze solutions obtained using optimization methods.							
5. To compare models developed using various techniques for optimization.							
UNIT – I							
Introduction: OR Methodology, Definition of OR, Application of OR to Engineering and	09 Hrs						
Managerial problems, Features of OR models, Limitations of OR.	•••						
Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution							
Space, Types of solution – Feasible, Basic Feasible, Degenerate, Solution through							
Graphical Method. Problems on Product Mix, Blending, Marketing, Finance, Agriculture							
and Personnel.							
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables.							
UNIT – II							
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity							
analysis - changes in RHS, Changes in objectives, Primal-Dual relationships, Economic							
interpretation of duality, Post optimal analysis - changes affecting feasibility and							
optimality, Revised simplex method							
UNIT – III							
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution	08 Hrs						
using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods,							
Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in							
Transportation Problems							
Assignment Problem: Formulation of the Assignment problem, solution method of							
assignment problem-Hungarian Method, Variants in assignment problem, Travelling							
Salesman Problem (TSP).							
UNIT – IV							
Queuing Theory: Queuing system and their characteristics, The M/M/I Queuing system,	09Hrs						
Steady state performance analyzing of M/M/1 queuing models. Introduction to M/M/C and							
M/Ek/1 queuing models							
saddle point - Arithmetic method, Graphical Method, The rules of dominance							
UNIT – V							
Markov chains: Definition, Absolute and n-step transition probabilities, Classification of							
the states, Steady state probabilities and mean return times of ergodic chains, First passage							
times, Absorbing states. Applications in weather prediction and inventory management.							
Over view of OR software's used in practice.							

Cours	Course Outcomes: After going through this course the student will be able to					
1	Understand the various optimization models and their areas of application.					
2	Explain the process of formulating and solving problems using optimization methods.					
3	Develop models for real life problems using optimization techniques.					
4	Analyze solutions obtained through optimization techniques.					
5	Create designs for engineering systems using optimization approaches.					

Reference Books:

1.	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw
	Hill, ISBN 13: 978-0-07-133346-7
4.	Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education
	Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

Low-1	Medium-2	High-3
-------	----------	--------

	V Semester						
	SENSORS & APPLICATIONS						
	(Group B: Global Elective)						
Course Code:16G5B08 CIE Marks: 100							
Cred	lits/Week: L:T:P:S:4:0:0:0	SEE Marks: 100					
Hours:44L SEE Duration: 3Hrs							
Cour	Course Learning Objectives: The students will be able to						
1	Impart the principles and working modes	of various types of Resistive, Inductive, Capacitive,					
	Piezoelectric and Special transducers.						
2	2 Give an idea about the applications of various transducers and selection criteria of a transducer						
	for a particular application.						
3	3 Give an insight into the static and dynamic characteristics of different orders of instruments.						
4	Describe different data conversion techniq	ues and their applications.					

UNIT-I	
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs
Advantages of Electrical transducers.	
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, Applications and Problems.	
UNIT-II	
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs
compensation, advantages and disadvantages of thermocouple.	
LVDT: Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	
between plates and change of dielectric constants, Applications of Capacitive Transducers	
and problems.	
UNIT-III	
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs
electric materials, equivalent circuit, loading effect, and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic	
of the design of sensor, applications.	
UNIT-IV	
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs
potential sensor.	
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled	
device.	
Tactile sensors: Construction and operation, types.	
UNIT-V	
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary	07 Hrs
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and	
Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain	
Amplifier.	

Course	Outcomes: After completing the course, the students will be able to
1	Remember and understand the basic principles of transducers and smart sensors.
1	Apply the knowledge of transducers and sensors to comprehend digital instrumentation
	systems.
3	Analyze and evaluate the performance of different sensors for various applications.
4	Design and create a system using appropriate sensors for a particular application

Referen	nce Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

	Semester: V		
INTRODUCTION TO	MANAGEMENT INFORMATION SYSTEMS		
Course Code: 16G5B09	CIE Marks: 100		
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100		
Hours:45L	SEE Duration: 3Hrs		
Course Learning Objectives: The st	udents will be able to		
1 To understand the basic principle	s and working of information technology.		
2 Describe the role of information t	echnology and information systems in business.		
3 To contrast and compare how processes.	internet and other information technologies suppor	t business	
4 To give an overall perspective	of the importance of application of internet techn	ologies in	
business administration.			
	UNIT I		
Information Systems in Global Bu	siness Today: The role of information systems in	09 Hrs	
business today, Perspectives on in	formation systems, Contemporary approaches to		
information systems, Hands-on MIS	projects. Global E-Business and Collaboration :		
Business process and information	systems, Types of business information systems,		
A Case study on E business	vork, The mormation systems function in business.		
A Case study on E business.	LINIT II		
Information Systems Organizatio	ns and Strategy: Organizations and information	AQ Hrs	
systems How information systems	impact organization and business firms Using	07 1115	
information systems to gain competitive advantage management issues Ethical and			
Social issues in Information Systems: Understanding ethical and Social issues related to			
Information Systems, Ethics in an information society, The moral dimensions of			
information society. A Case study on	business planning.		
	UNIT III		
IT Infrastructure and Emerging	Technologies : IT infrastructure, Infrastructure	09 Hrs	
components, Contemporary hardware	e platform trends, Contemporary software platform		
trends, Management issues. Securing Information Systems: System vulnerability and			
abuse, Business value of security and control, Establishing framework for security and			
control, Technology and tools for p	protecting information resources. A case study on		
cybercrime.			
Achieving Operational Excellence	UNIT IV	00 Um	
Supply Chain Management (SCM) s	vstems Customer relationship management (CRM)	09 1115	
systems Enterprise application E-	commerce: Digital Markets Digital Goods. E-		
commerce and the internet. E-comm	herce-business and technology. The mobile digital		
platform and mobile E-commerce, B	uilding and E-commerce web site. A Case study on		
ERP.			
	UNIT V		
Managing Knowledge: The kno	wledge management landscape, Enterprise-wide	09 Hrs	
knowledge management system, K	nowledge work systems, Intelligent techniques.		
Enhancing Decision Making: Dec	ision making and information systems, Business		
intelligence in the enterprise. Busines	s intelligence constituencies. Building Information		
Systems: Systems as planned organiz	ational change, Overview of systems development.	1	

Course	Outcomes: After completing the course, the students will be able to
1	Understand and apply the fundamental concepts of information systems.
2	Develop the knowledge about management of information systems.
3	Interpret and recommend the use information technology to solve business problems.
4	Apply a framework and process for aligning organization's IT objectives with business
	strategy.
Referen	nce Books
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane
	P. Laudon, 14th Global Edition, 2016, Pearson Education, ISBN:9781292094007
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10th Edition,
	2011, Global McGraw Hill, ISBN: 978-0072823110
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson
	Education, ISBN:978-0130617736
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:
	9780070616349

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

	Semester: V					
	INDUSTRIAL AUTOMATION					
	(Gro	up B: Global Elective)				
Cou	rse Code: 16GB510	CIE Marks: 100				
Cred	lits: L:T:P:S : 4:0:0:0	SEE Marks: 100				
Hou	rs: 44L	SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students	should be able to:				
1	Identify types of actuators, sensors and	switching devices for industrial automation				
2	2 Explain operation and controls of Hydraulic and Pneumatic systems					
3	3 Understand fundamentals of CNC, PLC and Industrial robots					
4	4 Define switching elements and sensors which are interfaced in an automation system					
5	5 Describe functions of Industrial switching elements and Inspection technologies for automation					
6	6 Select sensors to automatically detect motion of actuators					
7	7 Develop manual part programs for CNC and Ladder logic for PLC					
8	8 Develop suitable industrial automation systems using all the above concepts					
		UNIT-I				
Auto	omation in Production Systems:		08 Hrs			
Man	Manufacturing support systems, Automation principles and strategies, Levels of Automation,					

Production Concepts and Mathematical models, Numericals

Automated Production Lines:

Fundamentals, Applications, Analysis with no storage, Analysis with storage buffer, Numericals

UNIT-II

Switching theory and Industrial switching elements	08 Hrs
Binary elements, binary variables, Basic logic gates, Theorems of switching algebra, Algebraic	
simplification of binary function, Karnough maps, Logic circuit design, problems.	
Electromechanical relays, Moving part logic elements, Fluidic elements, Timers, Comparisons	
between switching elements, Numericals	
Industrial Detection Sensors and Actuators:	
Introduction, Limit switches, Reed switches, Photoelectric sensors- methods of detection, Hall	
effect sensors, Inductive proximity sensors, Capacitive proximity sensors, Pneumatic back	
pressure sensors, Absolute encoder, Incremental encoder, Pressure switches and temperature	
switches; their working principles and applications, Brushless DC motors, Stepper motors and	
Servo motors	
UNIT-III	
Hydraulic Control circuits	10 Hrs
Components, Symbolic representations, Control of Single and Double Acting Cylinder,	
Regenerative Circuit application, Pump unloading circuit, Double Pump Hydraulic System, speed	
control circuits, accumulator circuits	
Pneumatic Control circuits	
Components, Symbolic representations as per ISO 5599, Indirect control of double acting	
cylinders, memory control circuit, cascading design, automatic return motion, quick exhaust valve	
circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits.	
UNIT-IV	
Introduction to CNC	08 Hrs
Numerical control, components of CNC, classification, coordinate systems, motion control	
strategies, interpolation, programming concepts	
Industrial Robotics	
Components of Robots, base types, classification of robots, end of arm tooling, robot precision of	
movement, programming, justifying the use of a robot, simple numericals	

UNIT-V	
Programmable logic control systems	10 Hrs
Difference between relay and PLC circuits, PLC construction, principles of operation, latchir	g,
ladder diagrams, programming instructions, types of timers, forms of counters, writing simp	le
ladder diagrams from narrative description and Boolean logic.	
Programming exercises on PLC with Allen Bradley controller	
Programming exercises on motor control in two directions, traffic control, annunciator flash	er,
cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequent	al
process, and continuous filling operation on a conveyor.	
	· · · ·
Course Outcomes: After completing the course, the students will be able to	
1 Illustrate applications of sensors actuators, switching elements and inspection technologies	in industrial
automation	

	automation
2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its application
	areas
3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres

- 3 Evaluate CNC programs for 2D complex profiles performed on machining and turning centres interfaced with Robots
- 4 Develop suitable industrial automated system integrating all of the above advanced automation concepts

Reference Books

-	
1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls, Joji P, 1st Edition, Wiley India, ISBN - 978-81-265-1542-4
3.	Fluid Power with Applications, Anthony Esposito, 7th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

	Semester: V							
	TELECOMMUNICATION SYSTEMS							
	(Group B: Global Elective)							
Cou	Course Code: 16G5B11 CIE Marks: 100							
Cree	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100							
Hou	Hours: 46L SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The students w	ill be able to						
1	Represent schematic of communication system and identify its components.							
2	Classify satellite orbits and sub-systems for communication.							
3	Analyze different telecommunication services, systems and principles.							
4	Explain the role of optical communication system and its components.							
5	Describe the features of wireless technologies	ogies and standards.						

UNIT-I					
Introduction to Electronic Communication: The Significance of Human	09 Hrs				
Communication, Communication Systems, Types of Electronic Communication,					
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of					
Communication Applications.					
The Fundamentals of Electronics : Gain, Attenuation, and Decibels.					
UNIT-II					
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	10 Hrs				
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.					
Wideband Modulation: Spread spectrum, FHSS, DSSS.					
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time					
division multiplexing					
Multiple Access: FDMA, TDMA, CDMA, Duplexing.					
UNIT-III					
Satellite Communication:					
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,					
Satellite Applications, Global Positioning System.					
UNIT-IV					
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-					
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division					
Multiplexing, Passive Optical Networks.					
UNIT-V					
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.					
Advanced Mobile Phone System (AMPS)					
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell					
Phones.					
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless					
Networks, WiMAX and Wireless Metropolitan-Area Networks.					
,					

Cours	Course Outcomes: After completing the course, the students will be able to							
1	Describe the basics of communication systems.							
2	Analyze the importance of modulation and multiple access schemes for communication							
	systems.							
3	Compare different telecommunication generations, wired and wireless communication.							
4	Justify the use of different components and sub-system in advanced communication systems.							

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

	Semester: V								
	COMPUTATIONAL ADVANCED NUMERICAL METHODS								
	(Group B: Global Elective)								
Course Code:16G5B12 CIE Marks: 100									
Cred	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100						
Hou	rs: 44L		SEE Duration: 3Hrs						
Cou	Course Learning Objectives:								
1	Adequate exposure to learn alternative methods and analyze mathematical problems to								
	determine the suitable numer	ical techniques.							
2	Use the concepts of interpol	ation, eigen value problem tech	niques for mathematical problems						
	arising in various fields.								
3	3 Solve initial value and boundary value problems which have great significance in engineering								
	practice using ordinary differential equations.								
4	Demonstrate elementary pro	gramming language, implemen	tation of algorithms and computer						
	programs to solve mathemati	cal problems.							

Unit-I	
Algebraic and Transcendental equations:	08 Hrs
Roots of equations in engineering practice, Polynomials and roots of equations, Fixed point	
iterative method, Aitken's process, Muller's method, Chebychev method.	
Unit – II	
Interpolation:	08 Hrs
Introduction to finite differences, Finite differences of a polynomial, Divided differences	
and Newton's divided difference interpolation formula, Hermite interpolation, Spline	
interpolation–linear, quadratic and cubic spline interpolation.	
Unit -III	
Ordinary Differential Equations:	09 Hrs
Solution of second order initial value problems-Runge-Kutta method, Milne's method,	
Boundary value problems (BVP's)–Shooting method, Finite difference method for linear	
and nonlinear problems, Rayleigh-Ritz method.	
Unit –IV	-
Eigen value problems:	09 Hrs
Eigen values and Eigen vectors, Power method, Inverse Power method, Bounds on Eigen	
values, Greschgorin circle theorem, Jacobi method for symmetric matrices, Givens method.	
Unit –V	
Computational Techniques:	10 Hrs
Algorithms and Matlab programs for Fixed point iterative method, Aitken's-process,	
Muller's method, Chebychev method, Newton's divided difference method, Hermite	
interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta	
method, Milne's method, Shooting method, Rayleigh-Ritz method, Jacobi method and	
Givens method.	

Course	e Outcomes: After completing the course, the students will be able to
1	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen
	value problems, Differential equations and corresponding computational techniques.
2	Apply the knowledge and skills of computational techniques to solve algebraic and
	transcendental equations, Ordinary differential equations and eigen value problems.
3	Analyze the physical problem and use appropriate method to solve roots of equations,
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems
	numerically using computational techniques.
4	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value

	problems arising in engineering practice.
Refere	ence Books
	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar
1	and R. K. Jain, New Age International Publishers, 6th Edition, 2012, ISBN-13: 978-81-224-
	2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9th Edition,
2	2012, ISBN-13: 978-81-315-1654-6.
2	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
3	Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
4	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

Semester: V							
BASICS OF AEROSPACE ENGINEERING							
(Group B: Global Elective)							
Course Code: 16GE5B13		CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:0		SEE Marks: 100					
Hours: 44L		SEE Duration: 3Hours					

Course Learning Objectives:

To er	hable the students to:
1	Understand the history and basic principles of aviation

- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I					
Introduction to Aircraft : History of aviation, International Standard atmosphere,					
Atmosphere and its properties, Temperature, pressure and altitude relationships,	00 II.ma				
Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and	UO HIS				
their functions, Introduction to Unconventional and Autonomous Air vehicles.					
Unit – II					
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an	1				
Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance,	1				
Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil					
nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on					
lift and drag.					
Unit -III					
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types					
of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan					
engines, Introduction to ramjets and scramjets, Comparative merits and demerits of	07 Hrs				
different types Engines.					

Unit -IV	
Introduction to Space Flight : History of space flight, Evolution of Indian Space	
Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic	
concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories.	08 Hrs
Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets,	
Types of rockets.	
Unit -V	
Aerospace Structures and Materials : Introduction, General types of construction,	
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage	
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum	07 Hrs
alloy, titanium, stainless steel and composite materials, Low temperature and high	
temperature materials.	

Cou	urse Outcomes: At the end of this course the student will be able to :
1	Appreciate and apply the basic principles of aviation
2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and
Z	aircraft materials during the development of an aircraft
3	Comprehend the complexities involved during development of flight vehicles.

4 Evaluate and criticize the design strategy involved in the development of airplanes

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York, ISBN:1118174208, 9781118174203.
3	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

High-3 : Medium-2 : Low-1

V/V	I SEMESTER				
INTELLECTUAL PROPERTY	Y RIGHTS AND ENT	REPRENEURSHIP			
(Common to BT	(Theory) CHE CV E&I IE	M ME)			
Course Code: 16HSI51/61		CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100			
Hours: 36L		SEE Duration: 03Hrs			
Course Learning Objectives: The students	will be able to				
1 To build awareness on the various form and to develop the linkages in technolog	ms of IPR and to build gy innovation and IPR	d the perspectives on the .	concepts		
2 To equip students on the need to prostandards governing ethical works.	otect their own intelle	ectual works and develo	p ethical		
3 To motivate towards entrepreneurial starting building and growing a viable	careers and build str	rong foundations skills t	o enable		
Develop an entrepreneurial outlook an	nd mind set along wit	h critical skills and know	vledge to		
4 manage risks associated with entreprene	eurs.		10080 10		
	UNIT-I				
Introduction: Types of Intellectual Property,	WIPO, WTO, TRIPS.		07 Hrs		
Patents: Introduction, Scope and salient feat	tures of patent; patent	able and non-patentable			
inventions, Patent Procedure - Overview, Tran	nsfer of Patent Rights;	Biotechnology patents,			
protection of traditional knowledge, Infringen	nent of patents and ren	edy, Case studies			
Trade Secrets: Definition, Significance, Tool	IS TO PROTECT TRACE SECT	ets in mula.			
Trade Marks: Concept function and di	fferent kinds and fo	orms of Trade marks	04 Hrs		
Registrable and non- registrable marks. Reg	istration of trade mar	k: Deceptive similarity:	••••		
Assignment and transmission; ECO Lab	el, Passing off; Ot	ffences and penalties.			
Infringement of trade mark with Case studies	-	-			
UNIT-III					
Industrial Design: Introduction, Protection	on of Industrial De	esigns, Protection and	09 Hrs		
Requirements for Industrial Design. Pro	ocedure for obtaining	ng Design Protection,			
Revocation, Infringement and Remedies, Case	e studies Dichts conformed hu	convinisht Convinisht			
protection, transfer of copy rights, right of	broad casting organiz	copy right, copy right ations and performer's			
Inglis, Case Subjects. Intellectual property and cyberspace: Emergence of cyber-crime: Grant in software					
patent and Copyright in software; Software pi	racy; Data protection i	n cyberspace			
	UNIT-IV	1			
Introduction to Entrepreneurship – Learn Identify six entrepreneurial myths and uncove	how entrepreneurship er the true facts. Explor	has changed the world. re E-cells on Campus	08 Hrs		
Listen to Some Success Stories: - Global leg	ends Understand now	ordinary people become			
Understand how ordinary people from the	eir own countries h	ave become successful			
entrepreneurs.	en own countries na	we become successful			
Characteristics of a Successful Entreprener learn the concept of different entrepreneuria style based on your personality traits, stren Model, each of the five entrepreneurial styles other. Communicate Effectively: Learn h opinions about people can negatively impa which cause communication breakdown, such learn how to overcome them.	ur Understand the entral al styles. Identify you ngths, and weaknesses in the model, and ho ow incorrect assump act our communication as miscommunication	repreneurial journey and r own entrepreneurship s. Learn about the 5M w they differ from each tions and limiting our n. Identify the barriers and poor listening, and			

Com	munication Best Practices. Understand the importance of listening in communication						
and learn to listen actively. Learn a few body language cues such as eye contact and							
hand	shakes to strengthen communication. (Practical Application)						
	UNIT-V						
Desi	gn Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs					
solvi	ng process. Describe the principles of Design Thinking. Describe the Design Thinking						
proc	ess.						
Sale	s Skills to Become an Effective Entrepreneur: - Understand what is customer focus						
and	how all selling effort should be customer-centric. Use the skills/techniques of personal						
selli	ng, Show and Tell, and Elevator Pitch to sell effectively.						
Man	aging Risks and Learning from Failures: - Identify risk-taking and resilience traits.						
Und	erstand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical						
App	lication) Appreciate the role of failure on the road to success, and understand when to						
give	up. Learn about some entrepreneurs/risk-takers. (Practical Application).						
Are	You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real						
pictu	ire of the benefits and challenges of being an entrepreneur. Identify the reasons why						
peop	le want to become entrepreneurs. Help participants identify why they would want to						
beco	me entrepreneurs.						
Cour	se Outcomes: After completing the course, the students will be able to						
1	Comprehend the applicable source, scope and limitations of Intellectual Property v	within the					
	purview of engineering domain.	•••					
2	Knowledge and competence related exposure to the various Legal issues pert	aining to					
2	Intellectual Property Rights with the utility in engineering perspectives.	6					
3	Enable the students to have a direct experience of venture creation through a l	facilitated					
4	It allows students to be used and be been to the best mostly de been from the set of the best from the best from the best from the best from the s	4					
4	It allows students to learn and apply the latest methodology, frameworks and tools that	t					
	entrepreneurs use to succeed in real file.						
Refe	rence Books						
1.	Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law	Pub Co.					
	LtdDelhi, ISBN: 9789350350300						
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st	^t Edition,					
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.						
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K.	., ISBN:					
	8180380025, 9788180380020.						
4.	Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delh	ni, ISBN:					
	9780198072638.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

	Semester: VI							
	GEOTECHNICAL ENGINEERING							
	(Theory)							
Cou	rse Code:16CV62	CIE Marks: 100+50						
Crea	lits: L:T:P:S: :: 3:1:1:0	SEE Marks: 100+50						
Hours: 36L + 24T SEE Duration: 3Hrs + 3 Hrs								
Cou	Course Learning Objectives: The students will be able to							
1	1 Understand the importance of soil and its properties in Civil Engineering applications							
Demonstrate the index properties and engineering properties of different soils and Soil		roperties of different soils and Soil						
² Structure								
3	3 Intrepret the various factors influencing the soil behavior							
4	Summarize the significance of soils and its behaviour in various applications of Civil							
⁴ lengineering								

UNIT-I			
Index Properties : Definition, Basic Terminology, Phase Systems of Soil Mass, Void	08 Hrs		
ratio, Porosity, Degree of saturation, Air content, Percentage Air Voids, Water content,			
Unit weight, Specific gravity - Interrelations and related problems, Tests for water			
content and specific gravity, Particle Size Distribution (Sieve analysis and Hydrometer			
analysis), Consistency of Soils- Atterberg Limits, Field Density and Density Index.			
Clay Mineralogy and Soil Structure- Common clay minerals in soil and their			
structures- Kaolinite, Illite and Montmorillonite.			
UNIT-II			
Classification of Soil and Permeability: Soil Classification Purpose, Unified Soil	07 Hrs		
Classification System, Indian Standard Soil Classification System			
Darcy's Law and its Limitations, Discharge Velocity and Seepage Velocity, Factors			
affecting Permeability, Aquifers and flow through aquifers, Determination of Coefficient			
of Permeability, Permeability of Stratified Soil Deposits, related problems.			
UNIT-III			
Compaction: Introduction, Differences between Compaction and Compressibility,	06 Hrs		
Standard Proctor Test, Modified Proctor Test, Zero air voids line, Field Compaction			
Method, Placement Water Content, Field Compaction Control, Factors affecting			
Compaction, Effect of Compaction on Soil Properties, Compaction equipments.			
UNIT-IV			
Consolidation: Introduction, Piston-Spring Analogy, Primary and Secondary	07 Hrs		
Consolidation, Terzaghi's Theory of One Dimensional Consolidation (no derivation),			
Normally consolidated, under consolidated and over consolidated soils, Pre-consolidation			
pressure and its determination by Casagrande's method. Laboratory one dimensional			
consolidation test – Determination of Compression index and co-efficient of			
consolidation, Determination of co-efficient of consolidation by square root of time fitting			
method and logarithmic time fitting method .			
UNIT-V			
Shear Strength of Soils: Introduction, Mohr Circle for Two Dimensional Stress System,	08 Hrs		
Mohr-coulomb failure theory, Effective stress theory, Total and effective shear strength			
parameters, Determination of Shear Parameters - Direct Shear Test, Triaxial Compression			
Test, Types of Shear Test based on Drainage Conditions, Unconfined Compression Test,			
Vane Shear Test, Shear Strength of sands and clays, Sensitivity and Thixotropy			
LABORATORY			
5. Moisture Content Determination			
6. Specific Gravity Determination			
7. Grain size distribution for Coarse-grained and fine grained Soils			
8 Attarbarg Limits and Indians			

- 9. Compaction Test
- 10. Field Density Test (Core Cutter Method and Sand Replacement Method)
- 11. Determination of permeability of soils (Constant Head & Variable Head Tests)
- 12. Determination of strength of soils
 - a) Direct Shear Test b) Triaxial Test (UU only)c) Unconfined Compression Testd) Vane shear Test
- 13. Demonstration
 - a) Rapid Moisture Meter
 - b) Proctor Needle
 - c) Relative density apparatus
 - d) Standard Penetration Test
 - e) Differential Free Swell Test
 - f) Consolidation of soils

Course Outcomes: After completing the course, the students will be able to

- 1 Interpret the type of soil in the field or in the laboratory
- 2 Predict the Suitability of soil for a particular project based on its Engineering properties
- 3 Calculate the rate and amount of settlement of foundation and compaction behaviour of soils
- 4 Evaluate the index and engineering properties and application to Civil engineering problems

Reference Books

1.	Soil Engineering in Theory and Practice, Alam Singh and Chowdhary G.R, CBS Publishers and
	Distributiors ltd., New Delhi, 2001, ISBN 9788123900391
2.	Foundation Analysis and Designs, Bowles JE, 5th Edition, McGraw Hill Publishing co., New
	York,1996, ISBN 978-0071188449
3.	Soil Mechanics and Foundation Engineering, VNS Murthy, First Edition, UBS Publishers and
	Distributors, New Delhi, 2007, ISBN 9788174763228

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	2	2	-	-	-	1	-	-	-	-	-	1
CO3	-	2	2	-	-	-	-	-	-	-	-	1
CO4	-	2	1	-	-	-	-	-	-	-	-	1

	Semester: VI								
	PRE STRESSED CONCRETE								
	(Theory)								
Cou	Course Code:16CV63 CIE Marks: 100								
Crec	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Explain the fundamental concepts of stress analysis								
2	Apply systems of pre-stressing for various sections of structural elements								
3	Evaluate and analyze the stresses under	r various conditions							

4 Design and detail the prestressed concrete members for various loading conditions

UNIT-I	
Introduction to Pre stressed concrete and codal provisions	07 Hrs
Introduction: Historic development- general principles of Prestressing, Types of pre stressing, pre-tensioning and post tensioning, advantages and limitation of prestressed concrete, Materials for pre stressed concrete- high strength steel and concrete, properties, Stress-strain characteristics of high strength steel and concrete	
Codal Provisions: Basic principles of pre stressing, fundamentals of prestressing, Load balancing concept, Stress concept, center of thrust, Pretensioning and post tensioning methods-Analysis of post tensioning, Systems of pre stressing, End anchorages	
UNII-II Analusis of sostions for Elements	07 II
Analysis of sections for Flexure: Elastic analysis of pre stressed concrete beams with straight, parabolic, triangular, trapezoidal cable profiles, Eccentric and concentric pre stressing, Numerical problems	07 Hrs
UNIT-III	
Losses of Pre stress:	08 Hrs
Loss of prestress in pretensioned and post tensioned members due to elastic shortening of concrete, shrinkage of concrete, creep of concrete, relaxation of steel, slip in anchorage and frictional losses, Numerical problems	
UNIT-IV	
 Deflection of pre stressed concrete beams: Short term and long term deflections, Elastic deflections under transfered loads and due to different cable profiles, Deflection limits as per IS 1343, Effect of creep on deflection, Load versus deflection curve, methods of reducing deflection, Numerical problems. Limit state of Collapse: Flexure- IS code recommendations, Ultimate flexural strength of sections, IS code recommendations on shear strength, Shear resistance of sections, shear reinforcement, Limit state of serviceability- Control of deflection and cracking, Numerical Problems 	07 Hrs
UNIT-V	
Design of Beams:	07 Hrs
Design of pre stressing force and eccentricity for post tensioned prismatic beams, permissible stresses, Limiting zone and cable profile	

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Understand the fundamental concepts of stress analysis						
2	Apply systems of pre-stressing for various sections of structural elements						
3	Analyse and evaluate the stresses under various conditions						
4	Design the prestressed concrete members for various loading conditions						

Refe	erence Books								
1	Pre stressed concrete, N Krishna Raju, Tata McGraw Hill Publishers, 2009,ISBN								
	9780070634442								
2	Pre stressed Concrete, P Dayarathnam, Oxford and IBH Publishing Co., 2000, ISBN								
	9780136916352								
3.	Design of pre stressed concrete structures, T Y Lin and Ned H Burns, John Wiley & Sons, New								
	York, 2008, ISBN 9789812531179								
4.	Fundamental of pre stressed concrete, N C Sinha and S K Roy, 3rd Edition, S Chand and								
	Company Ltd, 2011, ISBN 9788121924276								
5.	Code Books: IS 1343:2012; Pre stressed Concrete: Code of practice								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	1	-	-
CO2	-	2	-	-	-	-	-	-	-	1	-	-
CO3	1	-	3	-	-	-	2	-	-	1	-	-
CO4	-	-	1	-	-	-	-	-	-	1	-	-

	Semester VI						
TRANSPORTATION ENGINEERING							
	(Theory)						
Course Code: 16CV64	CIE Marks: 100						
Credits: L:1:P:S:: 3:0:0:0	SEE Marks: 100	211					
Hours: 36L	SEE Duration :0	SHrs					
Course Learning Objectives:							
1 Understand the components of var	ious transportation systems						
2 Evaluate the characteristics of tran	sportation system						
3 Analyze various factors for plannin	g of transportation system						
4 Design various components of tran	sportation system.						
		07 Hrs					
	UNIT – I						
Railway Engineering - Location surve	ys and alignment - Permanent way - Gauges - Components -						
Functions and requirements - Geometric	design						
	UNIT – II	07 Hrs					
Geometric Design: Track Junctions-Po	ints and crossings - types and functions - design and layout -						
simple problems - Railway stations and	l yards. Signaling and interlocking - control systems of train						
movements.							
	UNIT – III	07 Hrs					
Airport Engineering-Aircraft character	ristics - Airport obstructions and zoning - Runway - taxiways						
and aprons- Terminal area planning	¥ 78.1¥/41 - ¥¥ 7						
		07 Hrs					
Docks and Harbours - Types - Layou	t and planning principles- breakwaters - docks- wharves and						
quays - Transit sneds- warehouses- navi	gation aids	00.11					
Transla Classification of Transla Classification	UNIT – V	08 Hrs					
Tunnels-Classification of Tunnels, Size	e and snape of a tunnel, Alignment of a Tunnel, Methods of						
Tunneling in Hard Rock and Soft ground, Lighting and Ventilation in tunnel, Dust control,							
Drainage of tunnels.							
1 M M Agarwal "Railway Engineering" Prabha & Co. 2007							
1. W. M. Agarwai, "Ranway Engineering", Habia & Co. 2007.							
2. Kobert M Joronjett, "Planning and design of Airports", 5 th edition, 2010, Mc Graw-III publication ISBN:-13;978:0071446419							
3. Oza and Oza, "Elements of Doc	k and Harbour Engineering", Charotar Publishing House, 1996						
4. Thomas R Kuesel, "Tunnel Eng	ineering Handbook"Springer US,1995, ISBN:0412992914						

Course	Course Outcomes: After completing the course, the students will be able to						
1	Classify and discuss different modes of transportation						
2	Understand surveys and geometric elements for different modes of transportation.						
3	Identify various design principles of different modes of transportation.						
4	Examine the applications of various modes of transportation						

Referen	ace Books
1	Railway Engineering, M.M. Agarwal, Prabha & Co. 2007.
2	Planning and design of Airports, Robert M Joronjeff, 5th edition, 2010, Mc Graw-ill publication,
	ISBN:-13;978:0071446419
3.	Elements of Dock and Harbour Engineering, Oza and Oza, Charotar Publishing House, 1996.
4.	Tunnel Engineering Handbook, Thomas R Kuesel, Springer US, 1995, ISBN:0412992914

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	1	-	-
CO2	-	2	2	2	-	-	-	-	-	1	-	-
CO3	-	2	2	2	-	-	-	-	-	1	-	-
CO4	-	-	2	2	-	-	-	-	-	-	1	-

	Semester: VI							
	STRUCTURAL MASONRY							
	(Group C: Pro	fessional Core Elective)						
Cou	Course Code:16CV6C1 CIE Marks: 100							
Crec	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hou	Hours: 36L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students v	will be able to						
1	To understand masonry materials and its	s mechanical properties						
2	To understand the factors influencing the performance of masonry structures							
3	To understand the behavior of masonry structures under various loading conditions							
4	To present the analysis and design methodology adopted for masonry buildings							
5	To understand the Construction specific	ations and field inspection of masonry buildings						

UNIT-I	
Introduction to Masonry units, materials and Types:	06 Hrs
History of masonry, characteristics of masonry units- strength, modulus of elasticity and	
water absorption .Masonry materials-Classification and properties of mortars, selection of	
mortars.	
UNIT-II	
Strength of Masonry in Compression:	08 Hrs
Behaviour of masonry under compression, strength and elastic properties, influence of	
masonry unit and mortar characteristics, effect of masonry unit height on compressive	
strength, influence of masonry bonding patterns on strength, prediction of strength of	
masonry in Indian context.	
UNIT-III	
Failure theories of masonry under compression: Effects of slenderness and	08 Hrs
eccentricity, effect of rate of absorption, effect of curing, effect of ageing, workmanship	
on compressive strength.	
Permissible stresses: Permissible compressive, tensile and shear stresses, stress reduction	
and shape reduction factors, increase in permissible stresses for eccentric vertical and	
lateral loads.	
UNIT-IV	<u> </u>
Flexural and shear bond, flexural strength and shear strength:	08 Hrs
Bond between masonry unit and mortar, tests for determining flexural and shear bond	
strengths, factors affecting bond strength, effect of bond strength on compressive	
strength, orthotropic strength properties of masonry in flexure, shear strength of masonry,	
test procedures for evaluating flexural and shear strength.	
UNIT-V	<u></u>
Design of load bearing masonry buildings:	06 Hrs
Effective height of walls and columns, opening of walls, effective length, effective	
thickness, slenderness ratio, eccentricity, load dispersion, arching action, lintels, walls	
carrying Axial loads, eccentric loads with different eccentric ratios, wall with openings,	
freestanding wall; Design of load bearing masonry for building up to 2 to 3storeys for	
gravity loading using IS- 1905 Codal provisions	
	L

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Understand the concept of structural masonry, failure theories and strength under compression							
2	Define different masonry units, mortars and factors influencing masonry strength							
3	Choose appropriate masonry unit and mortar mixes for masonry construction and design							
4	Apply codal provision for design of load bearing masonry building based on IS 1905 – 1987							

Refe	erence Books
1.	Structural Masonry, K.S.Jagadish, I K International Publishing House Pvt. Ltd (30 November
	2015), ISBN-10: 9384588660, ISBN-13: 978-9384588663
2.	Sinha.B.P& Davis S R "Design of masonry structures "E & FN Spon
3.	A.W.Hendry, Structural Masonry Macmillan Press, London, ISBN 9780333733097
4.	Sven Sahlin, Structural Masonry, Prentice Hall Inc., Englewood Cliffs, New Jersey, ISBN
	9780138539375. IS:1905.SP-20 (S & T), New Delhi
5.	Robert G. Drysdale, Ahmad A. Hamid, Lawrie R. Baker, Masonry Structures: Behavior and
	Design, Prentice Hall College Div; 2nd edition (May 1993), ISBN-10: 0135620260, ISBN-
	13: 978-0135620267

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	1	-	-	-	-	1
CO2	2	2	-	-	-	-	1	-	-	-	-	1
CO3	1	-	1	-	-	-	-	-	-	-	-	1
CO4	-	-	2	-	-	-	-	-	-	-	-	1

	Semester: VI								
	TRAFFIC ENGINEERING AND TRANSPORTATION PLANNING								
	(Group C: Pr	ofessional Core Elective)							
Cou	Course Code:16CV6C2 CIE Marks: 100								
Cred	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Understand need and importance traff	fic studies							
2	Analyse traffic characteristics and sug	gest suitable traffic control measures							
3	Suggest suitable measure to reduce accidents and Understand the concept of level of service								
4	4 Understand stages in urban transport planning and analyse travel demand by various methods								
5	Understand mode choice methods for tr	ip assignment.							

UNIT-I					
Introduction & traffic studies. Definition-Objectives, Scope, National Urban Transport	07 Hrs				
Policy of India. Transportation planning in the developing world; international					
transportation policies.					
Road User and Vehicle Characteristics: -Static and Dynamic characteristics. Data					
collection and analysis of - Volume, spot speed, Origin and Destination, Speed and Delay					
UNIT-II					
Traffic Control: Road controls, Traffic Regulations-One Way- Traffic Signs- Traffic	07 Hrs				
markings-Traffic signals- vehicle actuated and synchronized signals -Signal Co-					
ordination - Webster's method of signal Design, IRC Method, - Numerical Problems					
except vehicle actuated signals. Parking: -On Street and off Street Parking.					
UNIT-III					
Highway capacity and level of service: Factors affecting, capacity analysis and level of	07 Hrs				
service criteria and estimation					
Intersections- Types including rotaries, design principles, Accident Studies: Causes, data					
collection, Analysis, Measures to reduce Accidents, Numerical Problems					
UNIT-IV					
Introduction Inter dependency of land use and traffic, System Approach to urban	07 Hrs				
planning. Stages In Urban Transport Planning.					
Urban Transport Survey - Definition of study area, Zoning- Inventory of Transportation					
facilities.					
Trip Generation: Trip purpose, Factors governing trip generation and attraction,					
Category analysis, No numerical on above.					
UNIT-V					
Trip Distribution: Methods, Growth factors methods, Synthetic methods.					
Modal Split: Factors affecting, characteristics of split, Model split in urban transport					
planning, No numerical problems on above.	l				
Trip Assignment-Introduction, Assignment Techniques.					

Course Outcomes: After completing the course, the students will be able to

- 1 Identify and predict the scope for traffic engineering and transport planning.
- 2 Illustrate and analyse the need for traffic and planning surveys.
- 3 Suggest traffic control measures and evaluate level of service.
- 4 Predict trip distribution and assignment in modal split.

Reference Books

1. Highway Engineering, Khanna, S.K. and Justo, C.E.G, Nemchand and Bros. Roorkee, 8th

	Edition, 2002, ISBN 8185240434, 9788185240435											
2.	Traffic Engineering, Kadiyali, L.R., 7th Edition, Khanna Publishers, 2001, ISBN											
	8174091653,97881740916											
3.	Traffic Engineering, Matson, Smith and Hurd., 3 rd Edition, McGraw Hill and Co, 2003, ISBN											
	0070409102											
4.	Principles of urban transport system planning, Hutchinson BG, Scripta Book Co., Washington											
	D.C. & McGraw Hill Book Co.1974, ISBN 0-07-031539-6											

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	2	2	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	3	-	3	-	-	-	-	-	-	-	2	-
CO4	3	-	2	-	-	2	2	-	-	-	-	-

Mapping of COs with POs

Semester: VI								
AIR POLLUTION AND CONTROL ENGINEERING								
(Group C: Professional Core Elective)								
Course Code:16CV6C3	CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100							
Hours: 36L	SEE Duration: 3Hrs							
Course Learning Objectives: The students	will be able to							
1 To study the sources and effects of air p	pollution.							
2 To learn the meteorological factors infl	uencing air pollution.							
3 To analyse air pollutant dispersion mod	els.							
4 To illustrate particulate and gaseous po	llution control methods.							
	UNIT-I							
Introduction:		07 Hrs						
Definition, Sources and classification of Air	Pollutants, Photochemical smog, Effects of							
air pollution on health, vegetation & materials	s, Global effects of air pollution.							
	UNIT-II							
Meteorology: Temperature lapse rates and Stability, Wind velocity and turbulence, plume								
behavior, Measurement of meteorological v	variables. Windrose diagram. Air pollution							
episodes.								
	UNIT-III							
Modeling of Dispersion of Air Pollutants:	Dispersion of Air pollutants. Theories on	07 Hrs						
modeling of Air pollutants. Gaussian dispe	ersion model. Equations for estimation of							
pollutant concentrations. Plume Rise - Equa	tions for estimation. Effective stack height							
and mixing depths. Numerical problems.								
	UNIT-IV							
Sampling and Particulate Pollution Control	Methods: Atmospheric sampling and stack	07 Hrs						
sampling methods. Air quality standards. Typ	es of particulate pollution control methods –							
Settling chambers, Cyclone separators, Scrul	obers, Filters and Electrostatic precipitators,							
design aspects and principle of these air pollu	tion control units.							
	UNIT-V							
Gaseous pollution control methods: Types	of gaseous pollution control methods -	07 Hrs						
absorption, adsorption and combustion processes. Emission standards for automobile								
pollution.								
Noise Pollution: Causes, Effects and control. Noise standards.								
SELF STUDY								
Measurement of ambient air quality parameter	rs.	12 Hrs						
Measurement of Automobile exhaust emission	1.							
Effect of air pollution on different parameters								

Cou	Course Outcomes: After completing the course, the students will be able to									
1	Identify the major sources of air pollution and understand their effects on environment,									
	economics and health.									
2	Evaluate the dispersion of air pollutants in the atmosphere and to develop air quality models.									
3	Ascertain and evaluate sampling techniques for atmospheric and stack pollutants.									
4	Choose and design control techniques for particulate and gaseous emissions.									

Ref	erence Books
1.	Air Pollution, M. N. Rao and H V N Rao., Tata Mc-Graw Hill Publication, ISBN 10-
	0074518712, 13- 9780074518717, 2001, reprint 2013.
2.	Air Pollution, H. C. Perkins, Tata McGraw Hill, ISBN 10-0070493022, 13-978-0070493025,
	1974, Reprint 2013.
3.	Air Pollution Control Engineering, Noel De Nevers, Waveland Pr Inc, ISBN 10-1577666747,
	13-978-1577666745, 2010.
4.	Text book of Air Pollution and Control Technologies, Anjaneyulu Y, Allied Publishers, ISBN
	13-9788177641844, 2002.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	1	1	3	2	1	1	1	1	-
CO2	3	3	3	1	1	1	2	2	2	1	2	1
CO3	2	2	-	2	1	2	2	2	2	2	1	1
CO4	3	1	3	2	-	2	2	2	2	2	2	2

High-3 : Medium-2 : Low-1

Semester: VI								
WATERSHED MANAGEMENT								
(Group C: Professional Core Elective)								
Course Code:16CV6C4	CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:1	SEE Marks: 100							
Hours: 36L	SEE Duration: 3Hrs							
Course Learning Objectives: The stud	ents will be able to							
1 Introduce the concepts of watershed management and its impact on the natural water cycle.								
2 Preparation of different thematic m	haps and its analysis.							
3 Determination of watershed charac	teristics, runoff and soil loss estimation.							
4 Introduce various methods of wate	r conservation and water harvesting in watershed.							
		00 77						
Introduction: Watershed definition and	importance, delineation of watershed, watershed	08 Hrs						
characteristics, causes, consequences of	watershed deterioration. Watershed management							
Issues in watershed menogement land de	aradation							
issues in watersned management-rand de								
Man Propagation: Introduction differen	UNII-II	07 Ung						
map land use/land cover hydrogeomorp	hology soil slope lineament etc. map undation	07 1115						
change detection and analysis	nology, son, slope, inteament etc., map updation,							
Drainage analysis: Definition drainage	a nattern-different types. Horton's and Strahler's							
method of stream ordering analysis of	linear aspects areal aspects relief aspects and							
inferences	inical aspects, area aspects, rener aspects and							
	UNIT-III							
Runoff Estimation : Introduction, neces	ssity, runoff different methods, factors affecting	07 Hrs						
runoff, SCS Curve Number method.	, , , , , , , , , , , , , , , , , , ,							
Soil Loss Estimation: Introduction, im	portance, types of erosion, resources mapping,							
urbanization effect on hydrological cycle	, soil loss estimation (USLE method).							
	UNIT-IV							
Erosion Control: measures and land	reclamation, Management techniques-vegetation	07 Hrs						
measures, forest lands, grass lands, struc	tural measures- erosion control, sediment control							
and flood control.								
Water conservation: Introduction, con	servation, methods for crop land, treatment for							
catchments, small storage structures,	objectives and data required types of storage							
structures, design data.								
UNIT-V								
Water Harvesting: Small earthen dams	s –planning, construction sequence, computation	07 Hrs						
of storage capacity, small weirs,, drought from ponds, nala bunds, groundwater recharge,								
extraction.								
Course Outcomes: After completing th	the course, the students will be able to							
1 Describe the process of implementing land use and water management practices within a watershed								

	watershed.			
2	Understand the methods of watershed management to protect and improve the quality of the			
	water and other natural resources.			
3	Determine the watershed characteristics, runoff and soil loss estimation.			
4	Analyse various technique of conserving natural resources within the watershed.			

Refe	Reference Books				
1.	Watershed Management – Guidelines for Indian Conditions, Tideman E.M, 1st Edition, Omega				
	Publishers, New Delhi,2011, ISBN-9788185399348				
2.	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W.Kiefer, 5 th Edition,				
	John Wiley and Sons, New York, 2004, ISBN: 0-471-15227-7				
3.	Remote Sensing: The Quantitative Approach, Ven Te Swain and Shirley M .Davis. Mc Grawl				
	Hill Book Company, Fifth Edition.				
4.	Engman E T and Gurney R J "Remote Sensing in Hydrology", Springer Netherlands, ISBN:				
	9789401066709.				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	-	-	-	3	2	3	3	-	3	2
CO2	-	2	-	-	-	3	2	2	3	-	2	3
CO3	3	3	3	-	2	2	2	-	3	2	-	2
CO4	2	2	3	-	-	2	-	-	-	-	-	3

	Semester: VI					
	STRUCTURAL DYNAMICS					
	(Group D: Professional Core Elective)					
Cou	Course Code:16CV6D1 CIE Marks: 100					
Crec	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100					
Hou	Hours: 36L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Understand principles of structural dynamics					
2	2 Describe the dynamics of single, multi degree and responses of shear buildings					
3	Evaluate the responses of various systems using different approaches					
4	Apply the structural dynamics theory to real world problems like seismic analysis					

UNIT-I

Introduction: Introduction to dynamic problems of Civil Engineering, Concept of	07 Hrs	
degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy,		
Single degree of freedom systems, Examples of Single degree of freedom systems in		
Engineering,		
UNIT-II		
Dynamics of Single-degree-of-freedom systems: Mathematical models of un-damped		
and damped SDOF system, Free vibration response of damped and un-damped systems,		
response to harmonic loading, support motion.		
UNIT-III		
Evaluation of damping, vibration isolation, transmissibility, response to periodic forces.		
Response of Single degree of freedom systems to arbitrary excitation, Duhamel integral		
solution, Response to suddenly applied load and triangular pulse loading.		
UNIT-IV		
Mathematical models of un-damped and damped MDOF systems, Free vibration of un-	07 Hrs	
damped MDOF systems, Natural frequencies and mode shapes, Orthogonality conditions.		
UNIT-V		
Introduction to engineering seismology, seismic waves, characteristics of earthquake and	07 Hrs	
its quantification – Magnitude and Intensity scales, seismic instruments. Seismic response		
of buildings, structures and sites, study of response of buildings and structures during		
earthquakes.		

Cou	Course Outcomes: After completing the course, the students will be able to				
1	Apply knowledge of mathematics and mechanics for solving problems on structural dynamics.				
2	Develop equations of motion for discrete and vibratory systems.				
3	Evaluate the frequencies for various undamped and damped structures subjected to free excitation.				
4	Understand and implement concepts of engineering seismology and working principles of vibration measuring instruments.				

Ref	Reference Books					
1.	Structural Dynamics : Vibrations and Systems, 1 st Edition, Madhujit Mukophadhyay,					
	Publisher: ANE Books ISBN: 9788180520907, 8180520900, 2008					
2.	Structural Dynamics: Theory and Computation, Mario Paz, 2nd Edition, CBS Publisher					
	ISBN: 9788123909783, 8123909780, 2004					
3.	Dynamics of Structures, R,W.clough and J.Penzien, 2 nd revised Edition, McGraw – Hill					
	Education, 1993, ISBN -10: 0071132414, ISBN -13: 978-0071132411.					

Civil Engineering
4. Theory of vibration with applications, Willaim Thomson, 4th Edition, CRC Press, 1996, ISBN -10: 0748743804, ISBN -13: 978-0748743803.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	1	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	-	2	1	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	1	-	-	-	-	-	-	-

	Semester: VI						
	REMOTE SENSING & GIS						
	(Group D: Professional Core Elective)						
Cou	rse Code:16CV6D2	CIE Marks: 100					
Crea	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hours: 36L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to					
1	1 Understand concept of using photographic data to determine relative positions of points						
2	Study the use of electromagnetic energy for acquiring qualitative and quantitative lan						
2	information						
3	Analyze the data gathered from various sensors and interpret for various applications						
4	Understand the various applications of RS, GIS and GPS in Civil Engineering						

UNIT-I

Remote Sensing- Definition, types of remote sensing, components of remote sensing,	07 Hrs
electromagnetic spectrum, Black body, Atmospheric windows, energy interaction with earth surface features, spectral reflectance curve- spectra reflectance curve, false color	
composite Platforms and sensors. Sensor resolutions. Types of satellites- Indian and	
other remote sensing satellites (IRS IKONS and Landsat) Concept of image	
interpretation and analysis Dringiple of visual interpretation recognition alements	
Fundamentals of image restification. Digital Image classification, supervised and	
Fundamentals of image rectification. Digital image classification - supervised and	
unsupervised	
UNIT-II	
Photogrammetry: Introduction types of Photogrammetry, Advantages of	07 Hrs
Photogrammetry, Introduction to digital Photogrammetry. Photogrammetry- Locating	
points from two phases determination of focal length. Aerial Photogrammetry:	
Advantages over ground survey methods- geometry of vertical photographs, scales of	
vertical photographs. relief displacement, scale ground coordinates – flight planning.	
UNIT-III	
Geographic Information System- Introduction, Functions and advantages, sources of	07 Hrs
data for GIS. Database – Types, advantages and disadvantages. Data Management –	
Transformation, Projection and Coordinate systems. Data input methods, Data Analysis.	
overlay operations network analysis spatial analysis Outputs and man generation	
Introduction to GPS- components and working principles	
LINIT IV	
Applications of CIS Domoto Songing and CDS: Case studies on Water Descurees	00 II.mg
Applications of GIS, Kelliote Selising and GPS. Case studies of water Resources	US HIS
engineering and management (prioritization of river basins, water prospectus zones and	
its mapping),	
Case studies on applications of CIS and DS in Highway and transportation (highway	
case studies on applications of GIS and KS in Highway and transportation (highway	
angnment, Optimization of routes, accident analysis), Environmental Engineering (Geo-	
statistical analysis of water quality, rainfall analysis)	
Case studies on applications of GIS and RS in Disaster Management (Case studies on	
post disaster management - Earthquake and tsunami and pre disaster management -	
Landslides and floods) Urban Planning & Management - mapping of zones, layouts and	
infrastructures.	
UNIT-V	
Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping.	07 Hrs
Case studies on infrastructure planning and management- Case studies on urban sprawl.	
Change detection studies - case studies on forests and urban area. Case studies on	

agriculture.

Applications of geo-informatics in natural resources management: Geo-Technical case Studies, site suitability for dams, solid waste disposal. GPS applications in land survey.

Cou	Course Outcomes: After completing the course, the students will be able to						
1	To remember and understand the principle of Remote Sensing (RS) and Geographical						
	Information Systems (GIS) data acquisition and its applications.						
2	To apply RS and GIS technologies in various fields of engineering and social needs						
3	To analyze and evaluate the information obtained by applying RS and GIS technologies.						
4	To create a feasible solution in the different fields of application of RS and GIS						

Refe	erence Books
1.	Geographic Information System-An Introduction , Tor Bernharadsen, 3 rd Edition, Wiley India Pvt.
	Ltd. New Delhi, 2009.
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5th Edition, John
	Wiley Publishers, New Delhi, 2007.
3.	Remote Sensing and GIS, Bhatta B., Oxford University Press, New Delhi, 2008
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi, 2009

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

S	emester: VI						
CONSTRUCTION MANAGEMENT							
(Group D: Professional Core Elective)							
Course Code: 16CV6D3	CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hours: 36L SEE Duration: 3Hrs							
1 Study the construction planning and sch	will be able to						
2 To study the applications of operations	research to Construction Industries						
3 Study the principles and applications of	Engineering Economics to Construction Indu	stries					
4 Understand importance of construction	quality and safety	54105					
F							
	UNIT-I						
Construction planning: Introduction to construction project management, time estimates, planning methods of projects- Bar and Mile stone charts, PERT and CPM network analysis including numerical problems on CPM and PERT.							
	UNIT-II						
Network crashing and cost time relationship: Construction cost-Direct cost, indirect cost, total cost, optimum cost. Optimum duration of project by network crashing, including simple numerical problems.							
	UNIT-III						
Transportation problems: Introduction, Mathematical formulation, optimal solution of Transportation Problem -methods for initial basic feasible solution, summary of methods of initial BFS, North west corner method, Lowest cost entry method, Vogel's approximation method. Optimization using MODI method.							
	UNIT-IV						
Introduction to Engineering economics: B and Macro analysis, project feasibility, ecc formula, present worth, future worth, Ann alternatives, rate of return method, break ev above.	asic Concepts of economic analysis, Micro onomic and financial feasibility, , interest nual equivalent. Basis for comparison of en analysis, benefit cost ratio problems on	07 Hrs					

UNIT-V

QUALITY AND SAFETY MANAGEMENT -

Construction Quality, Inspection and Testing, Quality Control, Quality Assurance, Total Quality Management, Critical Factors of TQM; Benchmarking, , third party certification. Safety laws and standards. Safety Hazards . Safety Management in Construction Industry-Safety rules in construction, Types and use of personal protective equipment's.

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Understand the elements of engineering economics, selection of equipment's, transportation and						
	project planning & scheduling						
2	Apply the principles of engineering economics and planning and scheduling techniques in						
	construction project management						
3	Analyze the applications of various techniques of planning in construction projects						
4	Evaluate the applied techniques /methods/safety and quality factors of planning in construction						
	projects						

07 Hrs

Ref	erence Books
1.	Construction Engineering and management, S.Seetharaman, 2 nd Edition, Umesh Publications,
	Delhi, 2000, ISBN 9788188114061.
2.	Construction Project Management, Chitkara McGraw Hill Education, 3rd edition (30 June
	2014), ISBN-13: 978-9339205447
3.	Operations Research Concepts, Problems and Solutions, V.K.Kapoor, 5th Revised Edition,
	Sultan Chand & Sons, New Delhi, 2011, ISBN 9788180548543.
4.	Engineering Economics, Pannerselvam, 2 nd Revised Edition, Prentice Hall India Learning
	Private Limited; (2013). ISBN-13: 978-8120348370
5.	Safety Management in Construction and Industry, David Gold Smith, Mc Graw Hill
	Publications.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	1	2	2	2	-	2	3	1
CO2	2	2	-	-	2	2	2	2	-	2	3	1
CO3	2	2	-	-	-	3	3	-	-	2	3	1
CO4	2	2	-	1	-	3	3	-	-	2	3	1

	Semester: VI							
	ADVANCED CONCRETE TECHNOLOGY							
	(Group D: Professional Core Elective)							
Cou	Course Code: 16CV6D4 CIE Marks: 100							
Cred	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hours: 36L SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students	will be able to						
1	Analyze the suitability of concrete for f	iled applications						
2	Assess the methods of determining ingredients for making concrete							
3	Outline the importance of durability and proportioning							
4	Describe various types of modern concu	retes						

UNIT-I

Microstructure and Dimensional stability -Structure of a Hydrated Cement Paste,	08 Hrs					
porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength						
and elasticity of concrete. Shrinkage, creep and thermal effects.						
UNIT-II						
Chemical admixtures- Mechanism of chemical admixture, Plasticizers and super	07 Hrs					
Plasticizers, dosage and their effect on concrete properties in fresh and hardened state,						
Mineral admixture-Fly ash, Silica fume, GGBS, metakoalin.						
UNIT-III						
Durability of concrete - Introduction, impermeability of concrete, acid attack, efflorescence, Corrosion- Factors influencing corrosion, pH, carbonation, Freezing and thawing, Alkali Aggregate Reaction, IS456-2000 requirement for durability. Remedial measures	07Hrs					
LINIT-IV						
Mix design · Concrete Mix Design by ACI and other methods – Numerical examples	07 Hrs					
Differences between ACI and IS methods of proportioning.	0. 110					
Geopolymer Properties and applications Geopolymer concrete.						
Self-compacting concrete Properties and applications of self-compacting concrete.						
UNIT-V						
Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression Applications	07 Hrs					
Light weight concrete materials properties and types. Typical light weight concrete mix						
High density concrete High performance concrete and High strength concrete						
meterials, properties and applications, typical mix						
Concent of disaster resistant concerts structures. Effect of ground shelling on structures	1					
Concept of disaster resistant concrete structures – Effect of ground shaking on structures-						
Ground fanure, i sunami and tidal waves, fire.						

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Understand dimensional stability, microstructure and properties of cement concrete					
2	Assess the methods of determining the suitable admixture and ingredients for making concrete					
3	Outline the importance of durability of conventional and other concretes					
4	Describe properties and applications of concretes					

Reference Books

Γ

1.	Shanthakumar.A.R, Concrete technology, Oxford University Press, New Delhi, 2007, ISBN 978
	0195671537
2.	Shetty. M.S., Concrete Technology Theory and Practice, S.Chand& Co Ltd., New Delhi, 2007
	ISBN-13: 978-8121900034

3.	Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materials, Indian Edition, Indian Concrete Institute, Chennai, 1997 ISBN-13: 978-9339204761
4.	Neville. A.M, Properties of concrete V Edition,(2012) Peaerson Education, Inc, and Dorling
	Kindersley Publishing Inc. ISBN-13: 978-8131791073
5.	Gambhir M L., Concrete Technology theory and Practice, Fifth Edition, Tata McGraw Hill
	Education private Ltd, New Delhi. 2013 ISBN-13: 978-1259062551

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	-	1	-	-
CO2	2	2	2	-	-	-	-	-	-	-	-	-
CO3	2	2	2	-	-	-	2	-	-	-	-	-
CO4	2	2	2	-	-	3	-	-	-	-	-	1

	Semester: VI							
	BIOINSPIRED ENGINEERING							
	(Group E: Globa	al Elective)						
Cou	rse Code: 16G6E01	CIE Marks: 100						
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives:							
1	To familiarize engineering students with basic b	iological concepts						
2	Utilize the similarities noted in nature for a	particular problem to bring inspiration to the						
	designer.							
3	Explain applications such as smart structures,	self-healing materials, and robotics relative to						
	their bio logical analogs							
4	To gain an understanding that the design principles from nature can be translated into novel							
	devices and structures and an appreciation for how biological systems can be engineered by							
	human design							

Unit-I					
Introduction to Biology : Biomolecules-Proteins, carbohydrates, lipids and Nucleic acids. Cell types- Microbial, plant, animal. Organ system- Circulatory, digestive, respiratory, excretory and nervous system. Sense organs. Plant process- Photosynthesis.	06 Hrs				
Unit – II					
Introduction to Biomimetics: Wealth of invention in nature as inspiration for human innovation: Mimicking and inspiration of nature- synthetic life. Nature as a model for structure and tools: Biological clock, honey comb as strong light weight structure. Materials and processes in biology- Spider web, honey bee as a multi-material producer, fluorescent materials in fire flies. Bird and insect as source of inspiring flight. Robotics as beneficiary for biomimetic technologies.	08 Hrs				
Unit -III					
Biological materials in Engineering mechanisms: Introduction, Comparison of biological and synthetic materials: Silk processing and assembly by insects and spiders-High performance fibers from nature, Seashells- High performance organic and inorganic composites from nature. Shark skin- Biological approaches to efficient swimming via control of fluid dynamics, Muscles- Efficient biological conversion from chemical to mechanical engineering.	08 Hrs				
Unit –IV					
Biological inspired process and products: Artificial neural networks, genetic algorithms, medical devices. Biosensors. Plant as Bioinspirations: Energy efficiency, Biomimetic super hydrophobic surfaces- lotus leaf effect. Bionic leaf and Photovoltaic cells.	08 Hrs				
Unit –V					
Implants in Practice : Artificial Support and replacement of human organs-Introduction, Artificial kidney, liver, blood, lung, heart, skin and pancreas. Total joint replacements- Visual prosthesis -artificial eye. Sense and sensors: Artificial tongue and nose, Biomimetic echolation. Limitations of organ replacement systems.	07 Hrs				

Cours	Course Outcomes: After completing the course, the students will be able to						
1	Remember and explain the fundamentals of Biology						
2	Describe the basic principles of design in biological systems.						
3	Differentiate biological phenomena to support inspiration for visual and conceptual design						
	problems						
4	Create engineered solutions to customer needs utilizing a variety of bio-inspiration						
	techniques.						

Refere	Reference Books					
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259					
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: 8123928726					
2	ISBN 13: <u>9788123928722</u>					
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press,					
	ISBN: 9780849331633					
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version.					
	Wiley John and Sons, 2012. ISBN: 1118092449.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3 : Medium-2 : Low-1

	Somostor: VI								
	GREEN TE	CHNOLOGY							
	(Group E: G	lobal Elective)							
Cou	rse Code: 16G6E02	CIE Marks: 100							
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs								
Cou	rse Learning Objectives:								
1	Learn the tools of green technology								
2	Know various forms of renewable energy								
3	Study the environmental consequences of energy conversation								
4	Understand energy audits and residential energy audit								
5	Understand the application of green technology	gy in various industries							

Unit-I

 Current Practices and Future Sustainability: Need for green technology, fundamentals of energy and its impact on society and the environment, the mechanics, advantages and disadvantages of renewable energy sources, energy conservation and audits, zero waste technology, life cycle assessment, extended product responsibility, concept of atom economy, tools of Green technology Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner production, cleaner production technologies. 	07 Hrs
Unit – II	
 Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's surface, solar radiation geometry, solar radiation measurements Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar heating of buildings), space cooling (or solar cooling of building), solar thermal electric conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar cooking 	08 Hrs
Geothermal Energy: Resource identification and development, geothermal power generation systems, geothermal power plants case studies and environmental impact assessment.	
Unit -III	
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas plants (KVIC model & Janata model), selection of site for biogas plant	07 Hrs
Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal gasification of biomass, classification of biomass gasifiers, chemistry of the gasification process, applications of the gasifiers.	
Unit –IV	
Wind Energy: Introduction basic components of WECS (Wind Energy Conversion	07 Hrs

Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion07 Hrssystem), classification of WEC systems, types of wind machines (Wind Energy Collectors),07 Hrs

horizontal-axial machines and vertical axis machines.

Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC), methods of ocean thermal electric power generation, open cycle OTEC system, the closed or Anderson, OTEC cycle, Hybrid cycle

Energy from Tides: Basic principles of tidal power, components of tidal power plants, operation methods of utilization of tidal energy, advantages and limitations of tidal power generation

Unit –V	
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for motor vehicle, safety and management, hydrogen technology development in India	07 Hrs
Application of Green Technology: Electronic waste management, bioprocesses, green composite materials, green construction technology	
Sustainability of industrial waste management: Case studies on cement industry, iron and steel industry, petroleum sectors, marble and granite industry, sugar industry	

Course Outcomes: After completing the course, the students will be able to			
1	Recall the fundamentals of various forms of energy		
2	Explain the principles of various forms of renewable energy		
3	Apply the concept of zero waste, atom economy for waste management		
4	Create a waste management plan incorporating tools of green technology in various industries		

Refere	ence Books
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

		Semester: VI			
	SOLID WASTE MANAGEMENT				
	(Group E: Global Elective)				
Cou	rse Code:16G6E03	CIE Marks: 100			
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hou	rs: 36L	SEE Duration: 3Hrs			
Cou	rse Learning Objectives: The students	will be able to	alura tha		
1	drawbacks.	mods of solid waste management system and to an	laryze the		
2	Understand various waste management	statutory rules.			
3	Analyze different elements of solid v biodegradable waste by composting.	waste management, design and develop recycling of	otions for		
4	Identify hazardous waste, e-waste, plas	tic waste and bio medical waste and their management	systems.		
-					
.		UNIT-I			
Intro waste pyro mana	Deduction: Land Pollution. Scope and in e disposal methods. Merits and demeri lysis, composting, sanitary landfill. D agement.	nportance of solid waste management. Present solid ts of open dumping, feeding to hogs, incineration, pefinition and functional elements of solid waste	08 Hrs		
Sour	ces: Sources of Solid waste, types of	solid waste, composition of municipal solid waste,	1		
gene	ration rate, Numerical Problems.		1		
Coll	ection and transportation of municipal	solid waste: Collection of solid waste- services and	1		
syste	ems, Municipal Solid waste (Managemen	nt and Handling) 2000 rules with 2016 amendments.	1		
Site	visit to collection system.				
	UNIT-II				
Com Vern	Composting Aerobic and anaerobic composting - process description, process microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.				
Sani occu visit	Sanitary land filling : Definition, advantages and disadvantages, site selection, methods, reaction occurring in landfill- visit to landfill site.				
		UNIT-III			
Haza haza wast site	ardous waste management: Definitions rdous waste, onsite storage, collection, tr e (Management and handling) rules 200	s, Identification of hazardous waste, Classification of ransfer and transport, processing, disposal, hazardous 08 with amendments. Site visit to hazardous landfill	06 Hrs		
		UNIT-IV			
Bio dispo amer biom	Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant.				
		UNIT-V			
E-wa good 2011 plast amer	aste management: Definition, Compose, Recycling and recovery integrated ap Site visit to e- waste processing facility. ic with norms. Plastic waste management adments.	onents, Materials used in manufacturing electronic oproach. E- waste (management and handling) rules Plastic waste management: Manufacturing of at. Plastic manufacture, sale & usage rules 2009 with	06 Hrs		

Cou	rse Outcomes: After completing the course, the students will be able to
1	Understand the existing solid waste management system and to identify their drawbacks.
2	Analyze drawbacks in the present system and provide recycling and disposal options for each
	type of waste.
3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management
	system.
4	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal
	waste management as per the rules laid by Ministry of Environment & Forest.

Refe	rence Books
1.	Integrated Solid Waste Management : Engineering principles and management issues George
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous,
	Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.
3.	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC
	Publication, 2009, ISBN 9780854041121
4.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
5.	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

S	emester :VI		
INTRODUCTION TO WEB PROGRAMMING			
(Group]	E: Global Elective)		
Course Code:16G6E04	CIE Marks: 100		
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100		
Hours: 36L	SEE Duration: 3 Hrs		

Cour	Course Learning Objectives: The students will be able to		
1	Understand the basic concepts used in web programming.		
2	Learn the definitions and syntax of different web technologies.		
3	Utilize the concepts of JavaScripts, XML and PHP.		
4	Design and develop web pages which are quick, easy and well-presented using different techniques such as CSS.XML and JavaScripts.		

Introduction to Web Concepts Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules, block-level elements, text-level elements.XHTML – 1: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox. XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.XHTML (continued): Lists, Tables, Forms, Frames.	07 Hrs
UNIT-II	
Cascading Style Sheets (CSS): Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution. The Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements</div>	09 Hrs
UNIT-III	
JavaScript (continued): Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts. JavaScript and HTML Documents: The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object; DOM tree traversal and modification.	09 Hrs
UNIT-IV	
Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements.	06 Hrs

Introduction to PHP:

Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling; Files; Cookies; Session Tracking.

UNIT-V	
XML:	05 Hrs
Introduction; Syntax; Document structure; Document Type definitions; Namespaces;	
XML schemas; Displaying raw XML documents; Displaying XML documents with CSS;	
XSLT Style sheets; XML processors; Web services.	

Cours	Course Outcomes: After completing the course, the students will be able to		
CO1.	Understand and explore internet related concepts that are vital for web development.		
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.		
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.		
CO4.	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.		

Refe	erence Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications, Chris Bates, 3 rd Edition, 2006, Wiley India,
	ISBN : 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4 th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

Semester: VI (Global Elective-E)										
AUTOMOTIVE ELECTRONICS (Group E: Clobal Elective)										
Cou	rse Code: 16G6E05		CIE Marks: 100							
Cred	its: L:T:P:S: 3:0:0:0		SEE Marks: 100							
Hou	rs:36L		SEE Duration: 3Hrs							
Cour	se Learning Objectives: The students	will be able to								
1	Understand the application of principles	s of sensing technology	y in automotive field							
2	Apply control systems in the automotiv	e domain								
3	Understand automotive specific commu	inication protocols / te	chniques							
4	Analyze fault tolerant real time embedd	led systems	A							
	•	•								
		UNIT-I								
Powe	er Train Engineering and Fundament	tals of Automotive:	Fundamentals of Petrol,	08 Hrs						
diese	l and gas engines, electric motors and	control systems. Bas	ic Automotive System,							
Syste	em Components, Evolution of Electroni	ics in Automotive. Al	ternators and charging,							
batte	ry technology, Ignition systems. Workin	g principles of various	s electronic components							
and	accessories used in Automotive. De	velopments in existi	ng engine forms and							
altern	natives. Hybrid designs (solar power, el	ectric/gasoline, LPG,	CNG, fuel cells). Basic							
Transmission systems.										
		UNIT-II								
Sens	or Technologies in Automotive:	In-vehicle sensors:	Working principles,	07 Hrs						
Char	acteristics, limitations and use within	the automotive con	text of the following:							
Temp	perature sensing e g. coolant, air intake.	Position sensing e.g. c	rankshaft, throttle plate.							
Press	ure sensing e.g. manifold, exhaust d	ifferential, tyre. Dista	ance sensing e.g. anti-							
Colli	sion, Velocity sensing e.g. speedomete	er, anti-skid. Torque	sensing e.g. automatic							
trans	mission. Vibration sensing e.g. Airbag	s. flow sensing and	measurement e.g. fuel							
injec	tion. Interfacing principles: Operation, to	pologies and limitation	ns of all sensors covered							
in th	e above to in-venicle processing or com	imunications nodes. U	se of Actuators: Types,							
WORK	ing principle, Characteristics, limitations	and use within the aut	context of each							
type.		UNIT III								
Auto	motive Control Systems: Control sy	stom approach in A	utomotivo: Analog and	07 Hrs						
Digit	al control methods stability augmen	stelli approach ill A	and Analog and Analog and Analog and	0/1115						
contr	ol System components and functions	a Cruise control tra	action control actuator							
limit	ing wind-up gain scheduling adaptive	e control Special Co	ntrol Schemes. Vehicle							
braki	ng fundamentals Antilock systems V	ariable assist steering	g and steering control							
Cont	rols for Lighting. Wipers. Air condition	ing /heating. Remote	kevless Entry and Anti-							
theft	System, Emission Course-system control	ol. Control techniques	used in hybrid system.							
Elect	ronic Engine control: Motion equations	, modeling of linear	and non-linear systems,							
nume	erical methods, system responses Objectiv	ve of Electronic Engin	e control. Spark Ignition							
and	Compression Ignition Engines and the	eir electronic control	s. Engine management							
testir	g: Engine management system strat	egies and implement	tation. Simulation and							
imple	ementation methods. Methods of improve	ing engine performanc	e and efficiency. Model							
Base	d Development (MBD) Technology. AU'	TOSAR: Objectives a	nd Architecture.							
		UNIT-IV								
Auto	motive Communication Systems: Com	munication interface	with ECU's: Interfacing	07 Hrs						
techr	iques and interfacing with infotainment	gadgets. Relevance of	internet protocols, such							
as T	CP/IP for automotive applications. W	ireless LANs standar	ds, such as Bluetooth,							
IEEE	802.11x. Communication protocols for	automotive application	ons. Automotive Buses:							
Use of	of various buses such as CAN, LIN, Flex	Ray. Recent trends in	automotive buses (Such							
as O	BDI1. MOST, IE, IELI.I, D2B and DS	I). Application of Tel	ematics in Automotive:							

Global Positioning Systems (GPS) and General Packet Radio Service (GPRS), for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system07 Hrsand Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system.Fault finding and corrective measures. Electronic transmission checks and Diagnosis,Diagnostic procedures and sequence. On board and off board diagnostics in Automotive.Safety in Automotive: Safety norms and standards. Passenger comfort and security systems.Future trends in Automotive Electronics.

Course Outcomes: After completing the course, the students will be able to

- 1 Acquire the knowledge of automotive domain fundamentals and need of electronics in Automotive systems
- **1** Apply various sensors and actuators for Automotive applications
- 3 Analyze different control systems and communication interfaces used in automotive systems.
- **4** Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial
	Information Technology Series, CRC press.
4.	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,
	Springer, 2 nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

	SEMESTER – VI									
	INDUSTRIAL ELECTRONICS									
Cours	Course Code: 16G6E06 CIE Marks: 100									
Credi	ts: L:T:P:S: 3:0:0:0	SEE Mar	·ks: 100							
Hours	Hours: 36L SEE Duration: 3Hrs									
Cours	Course Learning Objectives: The students will be able to									
1	Explain the working of	the devices used in power electronic circuits	in industrial application							
2	Analysing and designing power electronic circuits which handle the electrical energy efficiently and economically and Identify the typical practical problems with industrial exposure acquired									
3	Use basic concepts of de electrical energy.	sign and working of electronic circuits for con-	version and control of							
4	Apply the knowledge to industrial problems with	work as part of teams on multidisciplinary regard to application of Power Electronics.	projects and to discus							
Unit-I										
Powe	r semi-conductor Device	s and static characteristics:	08 Hr							

Construction, working & characteristics of MOSFET, SCR, IGBT. Comparison of Power BJT, MOSFET, SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design of R, R-C, and UJT (pulse train) Gate triggering methods of SCR

Unit-II

07 Hrs

Gate characteristics of SCR, Dynamic characteristics of SCR. Design of Snubber circuit for SCR, Line Commutation and Forced Commutation circuits with design, Gate protection & overvoltage protection of SCR.

Unit-III

Converters:	06 Hrs					
Single Phase Controlled Convertor- Full wave Half and Fully controlled line commutated bridge converters, Derivation of average load voltage and current. Three phase converters – Six pulse converters- with R load- Active inputs to the convertors with and without Freewheeling diode, Derivation of average load voltage and current. Converter applications: Industrial Applications of Half and Fully controlled converters to DC drives (Control of DC drives)						
Unit-IV						
Ullit-1 V						
Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and	07 Hrs					
Current limit control strategies -Derivation of load voltage and currents with R, RL of Step						
down, Step up Chopper, Step up/Down Chopper – load voltage expression.						
Application of choppers to subway cars, Industrial drives , battery operated vehicles.						
Unit-V						

Classification of Choppers and Applications:	08 Hrs
Type A, Type B, Type C, Type D, Type E choppers and their industrial Applications, AC Chopper –phase control type.	
Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter, bridge inverter(single phase) – Voltage control techniques for inverters Pulse width modulation techniques. – UPS-online, offline (Principle of operation only	

Course	Course Outcomes: After completing the course, the students will be able to									
1	Understand the comprehensive working of different devices and their applications.									
1	Analyze the application of skills in controlling and conversion of electrical energy.									
3	Evaluate and distinguish the performance of converters and inverters.									
4	Ability to implement their knowledge and skills in design of applications.									

Reference Books

1.	Power Electronics, M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
2.	Power Electronics : Circuits, Devices and Applications, M. H. Rashid, Prentice Hall of India, 2 nd
	Edition, ISBN : 0131228153, 9780131228153, 2004
3.	Power Electronics, P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	Power Electronics P S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th
	Edition.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	2	1	1	2	0	1
CO2	3	2	2	3	3	0	1	0	0	0	2	1
CO3	3	2	2	3	2	2	0	1	0	0	1	2
CO4	3	3	3	3	2	3	2	0	1	0	0	1

Semester End Evaluation (SEE); Theory (100 Marks)

High-3: Medium-2: Low-1

	VI Semester				
PROJECT MANAGEMENT					
(Group E: Global Elective)					
Course Code : 16G6E07 CIE Marks : 100					
Credits : L: T: P: S:3:0:0:0 SEE Marks : 100					
Hours: 33L		SEE Duration : 03 Hrs			
Course Learning Objectives: The stu	dents will be able to				
1. To understand the principles and con	nponents of project managem	nent.			
2. To appreciate the integrated approac	h to managing projects.				
3. To explain the processes of managing	g project cost and project pro	curements.			
	Unit – I				
Introduction: What is project, what is project management, relationships among portfolio management, program management, project management, and organizational project management, relationship between project management, operations management and organizational strategy, business value, role of the project manager, project management body of knowledge.		06 Hrs			
	UNIT – II				
Organizational influences & Project management, project state holders & ge Project Integration Management: De plan, direct & manage project work, r change control, close project or phase.	t life cycle: Organizational overnance, project team, proje evelop project charter, develo nonitor & control project wo	influences on project ect life cycle. op project management rk, perform integrated	08 Hrs		
	UNIT – III				
Project Scope Management: Project scope, create WBS, validate scope, con Project Time Management: Plan st activities, estimate activity resourcest control schedule.	scope management, collec trol scope. chedule management, define , estimate activity duration	t requirements define e activities, sequence ns, develop schedule,	07 Hrs		
	UNIT – IV				
 Project Cost management: Project Control costs. Project Quality management: Plan control quality. 	cost management, estimate co quality management, perfor	ost, determine budget, rm quality assurance,	06 Hrs		
	UNIT – V				
 Project Risk Management: Plan risk management, identify risks, perform qualitative risk analysis, perform quantitative risk analysis, plan risk resources, control risk. Project Procurement Management: Project Procurement Management, conduct procurements, control procurements, close procurement. 		06 Hrs			
Course Outcomes: After going throu	gh this course the student w	ill be able to			
CO1 Understand the concepts, tools an	nd techniques for managing la	arge projects.			
CO2 Explain various sub processes in	the project management fram	eworks			

CO2 Explain various sub processes in the project management frameworks.CO3 Analyze and evaluate risks in large and complex project environments.

CO4 Develop project plans for various types of organizations.

Refe	rence Books:
1.	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management
	Institute, 5 th Edition, 2013, ISBN: 978-1-935589-67-9
2.	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra,
	7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
3.	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner,
	10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4.	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry
	Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

	VI Semester					
	VIRTUAL INSTRUMENTATION					
	(Group E: Global Elective)					
Cours	Course Code:16G6E08 CIE Marks: 100					
Credi	its/Week: L:T:P:S: 3:0:0:0		SEE Marks: 100			
Hours	Hours: 35L SEE Duration: 3Hrs					
Cours	Course Learning Objectives: The students will be able to					
1	Understand the difference between conventional and graphical programming, basic data					
	acquisition concepts.					
2	2 Differentiate the real time and virtual instrument.					
3	3 Develop ability for programming in LabVIEW using various data structures and program					
	structures.					
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with					
	LabVIEW.					

UNIT-I	
Graphical Programming Environment:	06 Hrs
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction	
to LabVIEW, Components of LabVIEW and Labels.	
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code	
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch	
actions, String data types, enum, ring, Dynamics.	
UNIT-II	
Fundamentals of Virtual Instrumentation Programming:	09 Hrs
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.	
Timing function : Timing VI, elapsed time, wait function.	
Case structures, formula node, Sequence structures, Arrays and clusters, visual display	
types- graphs, charts, XY graph. Local and Global variables.	
UNIT_III	
Frror Handling arror and warning default error node error node cluster automatic and	AQ Urc
manual error handling	00 1115
String Handling: Introduction String Functions LabVIEW String Formats	
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions	
Design natterns: Producer/consumer event handler derived design nattern Queued	
message handler. Producer/consumer (events). Producer/consumer (state machine)	
inessage nandier, i roducer/consumer (events), i roducer/consumer (state machine).	
UNIT-IV	
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal to	06 Hrs
board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.	
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,	
DAQ Assistants, Analysis Assistants.	
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,	
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.	
UNIT-V	
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process	
Communication, Notifier, Semaphore, Data Sockets.	
Simulation of systems using VI: Development of Control system, Image acquisition and	
processing.	

R. V. College of Engineering	- Bengaluru-59
-------------------------------------	----------------

Cours	Course Outcomes: After completing the course, the students will be able to				
1	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.				
1	Apply the theoretical concepts to realize practical systems.				
3	Analyze and evaluate the performance of Virtual Instrumentation Systems.				
4	Create a VI system to solve real time problems using data acquisition.				

Reference Books

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim Kring,
	3 rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					СО-Р	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

	Semester: VI			
INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT				
~	(Group E: Global Elective)			
Co	Course Code: 16G6E09 CIE Marks: 100			
Cr	edits: L:T:P:S: 3:0:0:0	SEE Marks: 100		
Ho	urs: 36L	SEE Duration: 3H	rs	
Co	urse Learning Objectives: The s	udents will be able to		
1	Learn Android application develo	pment platform for mobile devices and use i	.t.	
2	Understand mobile application ar	chitecture and its components.	<u> </u>	•
3	Define Android specific program	iming concepts such as activities, intents, i	tragments,	, services,
	broadcast receivers and content p	roviders.	1	
4	Describe sensors like motion s	ensors, environmental sensors, and positi	onal sense	ors; most
	commonly embedded in Android	devices along with their application program	iming inte	erface.
			1 (0.5.11
Ov	erview of Software platforms an	a Development: Mobile US: Android deve	lopment	07 Hrs
pia Em	tiorm and tools, Programming	language, Emulator, SDK and Deve	lopment	
En	vironments	tion. Introducing the Application Manife	ast Eilar	
	eating Applications and Activition	Architecture Detterns (MQC): Android Arc	est File;	
	Eaung Applications and Activities;	Architecture Patterns (MVC); Android App	plication	
	ecycle.	LINIT H		
Ua	an Interface Design. Eurodema	UNIT II ntal Android III Decient Introducing I	[avanta	07 II
US	Untroducing Fragments			0/ Hrs
Introducing Fragments.				
Pagainers				
Ke				
Do	UNIT III Detabase and Content Providence Interbasics Collins (07.11			07 IIma
	ntant Values and Cursors We	lying with SOLite Detebages, Creating	SQLIE,	07 H IS
Dro	Content values and Cursors; working with SQLite Databases; Creating Content			
FIC	Providers; Using Content Providers; Case Study: Native Android Content Providers.			
UNIT IV				
LO	Location Based Services, Telephony and SMIS: Using Location-Based Services; Using 08 Hrs			US HIS
Dre	Ine Emulator with Location-Based Services; Selecting a Location Provider; Using			
for	for Telephony: Using Telephony: Introducing SMS and MMS			
101				
	UNIT V			
Ha	rdware Support and Devices (A	UDIO, VIDEO, AND USING THE CAN	MERA):	07 Hrs
Us	ing Sensors and the Sensor M	lanager; Monitoring a Device's Movem	ent and	
Orientation; Introducing the Environmental Sensors; Playing Audio and Video; Using				
Au	Audio Effects; Using the Camera; Recording Video			

Course	Course Outcomes: After completing the course, the students will be able to						
1	Assess the basic framework and usage of SDK to build GUI and apply advanced						
	technologies in developing Android mobile applications.						
1	Differentiate techniques for persisting user data, such as shared preferences, traditional file						
	systems (internal and external storage), and SQLite database						
3	Articulate the communication programming features and capabilities of Android platforms.						
4	Design and create innovative, sophisticated mobile applications using Android platform.						

Ref	erence Books
1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace
	Independent Publishing Platform, ISBN: 9781519722089

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

	Semester: VI										
	AUTOMOTIVE ENGINEERING										
	(Group E: Global Elective)										
Cou	rse Code:	16G6E10	CIE Marks: 100								
Cree	lits: L:T:P:S	3:0:0:0	SEE Marks: 100								
Hou	rs:	36L	SEE Duration: 3Hrs								
Cou	rse Learning O	ojectives: The students will be	e able to								
1	Identify the dif	ferent sub-systems in automob	iles.								
2	Describe the fu	nctions of each of the sub-syst	ems and its effect.								
2	Discuss fuel in	jection, transmission, braking,	steering, suspension, air intake and exhaust								
3	s systems.										
Explain the importance of selection of suitable sub-system for a given performanc											
4	4 requirement.										

UNIT-I

Automobile Engines	06 Hrs			
Classifications of Internal Combustion Engines based on no. of cylinders, Arrangement of cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.	l			
Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine. Direct and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel, LPG and Natural Gas For automotive applications. Fuel properties- Octane number and Cetane number. Pollutants and Emission norms- Regulated pollutants and its effects, Regulations as per emission norms.				
UNIT-II				
Engine Auxiliary Systems:	08 Hrs			
AirIntake and Exhaust System- Working principle of Air filters, Intake manifold, Turbocharger, Intercooler, Exhaust manifold, Catalytic convertor, Exhaust Gas Recirculation system, Muffler.				
Cooling system- Components, working principle, Coolant.	l			
Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.	l			
Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter. Working of ignition system, Battery, Immobilizer.				
UNIT-III				
Transmission:	08 Hrs			
Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless.				
UNIT-IV				
Vehicular Auxiliary Systems:	06 Hrs			

Civil Engineering

Suspension- Front and rear suspension working, Types of springs.					
Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems.	1				
Steering- components and operation of power steering.					
Vehicle frame and body classification- Hatchback, Sedan, SUV.					
Safety systems- Passive safety systems, Active safety systems- Principle of Electronic Stability Program, Air bags, Crash testing methods.					
UNIT-V					
Demonstrations of Automobile Systems: Engine performance measurement in terms of Brake power, Emission measurement and principle, Drawing Valve Timing Diagram for multi-cylinder engine, Production and properties of biodiesel.	06 Hrs				

Cou	Course Outcomes: After completing the course, the students will be able to								
1	Describe the different types of automotive systems. (L1- L2)								
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)								
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)								
4	Evaluate the performance of engines by determining Brake Power. (L6)								
Ref	Reference Books								

Nele	erence books
1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,
	SAE International, ISBN: 0768009871
2.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527.
3.	Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,
	1 st Edition, 2009, ISBN: 9781856175784.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

	Semester: VI									
	MOBILE NETWORK SYSTEMS AND STANDARDS									
	(Group E: Global Elective)									
Cou	Course Code: 16G6E11 CIE Marks: 100									
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100										
Hou	Hours: 34L SEE Duration: 03Hrs									
Cou	rse Learning Objectives: The students	s will be able to								
1	Understand land mobile concepts, radi	o link design and cellu	ular network.							
2	Compare the standards of WPAN, WLAN and WMAN.									
3	Analyze WPAN, WLAN and WMAN standards and their architecture.									
4	Design and demonstrate wireless netwo	orks for various applie	cations.							

LINITLI									
Cellular Wireless Networks: Principles of cellular Networks, cellular system components and Operations, channel assignment, Attributes of CDMA in cellular system.	06 Hrs								
UNIT-II	UNIT-II								
Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE.									
UNIT-III									
Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in									
the network.									
UNIT-IV									
Wireless Personal Area Networks: Network architecture, components,	08 Hrs								
Applications, Zigbee, Bluetooth.									
Wireless Local Area networks: Network Architecture, Standards, Applications.									
UNIT-V									
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages,									
WMAN Network architecture, Protocols, Applications.	06 Hrs								

	Course Outcomes: After completing the course, the students will be able to								
CO1	Describe the architectures and characteristics of different mobile networks. (L1-L2)								
CO2	Apply the Network standards to a suitable application (L3)								
CO3	Analyze the operation of various network technologies and standards (L4)								
CO4	Evaluate the performance of various network technologies (L5)								

Refere	Reference Books										
1	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,										
	ISBN-13:978-0-19-806066-6.										
2	Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010,										
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.										
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,										
	Pearson, ISBN 97881-317-3186-4.										

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

	Semester: VI							
APPLIED PARTIAL DIFFERENTIAL EQUATIONS								
(Group E: Global Elective)								
Course Code: 16G6E12 CIE Marks: 100 Creation: Latter Latter Latter SEE Marks: 100								
Creatis: L: 1:P:S: 5:0:0:0 SEE Marks: 100 H 251 310								
Hours: 35L SEE Duration: 3Hrs								
Cou	rse Learning Objectives:							
1	1 Adaguate exposure to learn beside of partial differential equations and analyze mathematical							
1	1 Adequate exposure to learn basics of partial differential equations and analyze mathematical problems to determine the suitable analytical technique							
2	Use analytical techniques and	finite element technique for the	solution of elliptic para	bolic and				
-	hyperbolic differential equation	ons	solution of emptie, put	oone and				
3	Solve initial value and bound	lary value problems which have	great significance in en	gineering				
Č	practice using partial differen	tial equations.	great significance in en	Sincering				
4	Identify and explain the basic	cs of partial differential equation	is and use the same to an	alvze the				
-	behavior of the system.	······						
		Unit-I						
Part	ial Differential Equations of f	ïrst order:		07 Hrs				
Intro	duction to formation of partia	al differential equations, Cauchy	y problem, Orthogonal					
surfaces, First order non-linear partial differential equations-Charpit's method,								
Classification and canonical forms of partial differential equations.								
		OIIII - II						
Ellip	tic Differential Equations:			07 Hrs				
Deriv	vation of Laplace and Poisso	n equation, Separation of varia	able method, Dirichlet					
probl	em, Neumann problem, Solu	tion of Laplace equation in cy	lindrical and spherical					
coordinates.								
		Unit -III						
Para	bolic Differential Equations:			07 Hrs				
Form	ation and solution of Diffusion	n equation, Dirac-Delta function	, Separation of variable					
meth	od, Solution of Diffusion equa	tion in cylindrical and spherical of	coordinates.					
		Unit –IV						
Hype	erbolic Differential Equation	S:		07 Hrs				
Formation and solution of one dimensional wave equation D'Alembert's solution								
vibrating string Forced vibration Periodic solution of one dimensional wave equation in								
cylindrical and spherical coordinates. Vibration of Circular membrane.								
		Unit –V						
Num	erical solutions of Partial Dif	ferential Equations:		07 Hrs				
Finit	e difference method for El	liptic, Parabolic and Hyperbo	lic partial differential					
equa	tions, Introduction to the finite	element method-simple problem	IS.					

Course	e Outcomes: After completing the course, the students will be able to
1	Identify and interpret the fundamental concepts of formation and solution of parabolic,
	hyperbolic and elliptic differential equations using analytical and numerical methods.
1	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,
	hyperbolic and elliptic differential equations arising in the field of science and engineering.
3	Analyze the physical problem to establish mathematical model and use appropriate method to
	solve and optimize the solution using the appropriate governing equations.
4	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of
	parabolic hyperbolic and elliptic differential equations arising in practical situations

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012, ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978- 81-265-5423-2.
3	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005, ISBN 13: 9780072466850.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

Semo	ester: VI
AIRCRAI	T SYSTEMS
(Group E: 0	Global Elective)
Course Code: 16GE6B13	CIE Marks: 100
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100
Hours: 36L	SEE Duration: 3Hrs

Cou	Course Learning Objectives:							
To en	nable the students to:							
1	List the various systems involved in the design of an aircraft							
2	Demonstrate the technical attributes of all the subsystems of an aircraft							
3	Explain the significance of each systems and its subsystems for developing an airplane							
4	Demonstrate the integration of the systems with the airplane							

Unit-I	
Flight Control Systems : Primary and secondary flight controls, Flight control linkage system, Conventional Systems, Power assisted and fully powered flight controls.	07 Hrs
Unit – II	
Aircraft Hydraulic & Pneumatic Systems : Components of a typical Hydraulic system, Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism.	08 Hrs
Unit -III	
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.	07 Hrs
Unit -IV	
Environmental Control Systems : Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils	07 Hrs
and a typical lubricating system.	
Unit -V	
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments.	
Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.	07 Hrs

Cou	Course Outcomes:							
At t	he end of this course the student will be able to :							
1	Categorise the various systems required for designing a complete airplane							
2	Comprehend the complexities involved during development of flight vehicles.							
3	Explain the role and importance of each systems for designing a safe and efficient flight vehicle							
4	Demonstrate the different integration techniques involved in the design of an air vehicle							

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Moir, I. and Seabridge, A.,Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

High-3 : Medium-2 : Low-1
	V/VI Semester							
	PROFESSIONAL PRACTICE – III							
]	EMPLOYABILITY SKILLS AND PROFESSIONAL DEVELOPMENT OF ENGINEERS							
Co	urse Code: 16HS68	CIE Marks: 50						
Credits: L:T:P:S: 0:0:1:0 SEE Marks: NA								
Hours: 18 Hrs CIE Duration: 02 Hrs								
Co	Course Learning Objectives: The students will be able to							
1	Improve qualitative and quantitative problem solving skills.							
2	Apply critical and logical thinking process to specific problems.							
2	Ability to verbally compare and contrast words and arrive at relationships between concepts, based							
3	on verbal reasoning.							
4	Applying good mind maps that help in communicating ideas as well as in technical documentation							

V Semester							
UNIT-I							
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc. Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning.							
UNIT-II							
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion - Theory & Evaluation : Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD.	06 Hrs						
UNIT-III.A							
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.							
VI Semester							
UNIT-III.B							
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.							
UNIT-IV							
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.	06 Hrs						

UNIT-V						
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity						
Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making						
Analysis, Brain Storm. Adapting to the Corporate Culture.						

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Inculcate employability skill to suit the industry requirement.						
1	Analyze problems using quantitative and reasoning skills						
3	Exhibit verbal aptitude skills with appropriate comprehension and application.						
4	Focus on Personal Strengths and Competent to face interviews and answer						
Ref	Reference Books						
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:						
	0743272455						
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:						
	9789380914787						
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,						
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204						
4.	Aptimithra: Best Aptitude Book ,Ethnus,2014 Edition, Tata McGraw Hill ISBN: 9781259058738						

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage						
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35 Marks							
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18							
	hours of training sessions.							
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35 Marks							
	Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18							
	hours of training sessions.							
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for 50 marks (Average o							
	Test1 and Test 2 (T1+T2/2). The grading is provided by the Coe. The final CIE marks is							
	scrutinized by the committee comprising of HSS- Chairman, Training Co-ordinator, respective							
	department Staff Placement co-ordinator before submitting to CoE.							

SEE: NA

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					1		1	1	1	2	1
CO2	1	2	2					1	2	1	2	1
CO3			3			1		2	1	2	1	
CO4						1	3	1	1	1	1	

Low-1 Medium-2 High-3

Curriculum Design Process

Academic Planning and Implementation

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.