

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

CHEMICAL ENGINEERING (2021-2022)

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

DEPARTMENT OF
CHEMICAL ENGINEERING

DEPARTMENT VISION

Imparting quality technical education in Chemical Engineering to promote leadership in research, innovation and sustainable technology through team work.

Department Mission

- Impart quality education in basic and applied areas of Chemical Engineering.
- .Enable students and faculty to achieve proficiency in Chemical Engineering through innovative teaching and state of the art laboratories.
- Encourage faculty and students to make career in research through development of novel process and products.
- Develop inclusive technologies with a focus on sustainability.
- Collaborate with industries and research institute to cater social needs.
- Inculcate leadership qualities, entrepreneurial skills, societal and ethical vaues in students and faculty.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- PEO 1: Exhibit knowledge of basic sciences, concepts and principles of Chemical Engineering.
- **PEO 2**: Comprehend, analyze, design and implement engineering systems with a focus on research, innovation and sustainability.
- **PEO 3**: Work in multidisciplinary team and cater to the needs of process industries with appropriate safety, health and environmental regulations.
- **PEO 4**: Demonstrate effective communication skills, leadership qualities and develop into successful entrepreneurs.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Gain knowledge of Chemical Engineering fundamentals and demonstrate problem formulation capabilities
PSO2	Analyse and solve engineering problems with a focus on environment and sustainability
PSO3	Contribute to multidisciplinary research using relevant Chemical Engineering tools

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	ET	Electronics and Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

VII Semester					
Sl. No.	Course Code	Course Title	Page No.		
1.	18HS71	Constitution of India and Professional Ethics	01		
2.	18CH72	Transport Phenomena	03		
3.	18CH73	Process Simulation and Modeling	05		
4.	18CH74	Internship	07		
		GROUP F: PROFESSIONAL ELECTIVES			
5.	18CH7F1	Advanced polymer composites	09		
6.	18CH7F2	Pilot plant studies and scale up methods	11		
7.	18CH7F3	Nanotechnology	13		
8.	18CH7F4	Energy conversion systems	15		
		GROUP G: PROFESSIONAL ELECTIVES	·		
9.	18CH7G1	Process optimization	17		
10.	18CH7G2	Solar photovoltaic systems and technology	19		
11.	18CH7G3	Water conservation and management	21		
12.	18CH7G4	Pollution control engineering	23		
		GROUP H: GLOBAL ELECTIVES			
13.	18G7H01	Unmanned aerial vehicles	25		
14.	18G7H02	Bioinformatics	27		
15.	18G7H03	Industrial safety and risk management	29		
16.	18G7H04	Web programming	31		
17.	18G7H05	Solid waste management and statutory rules	33		

RV College of Engineering® – Bengaluru - 59

18.	18G7H06	Image processing and machine learning	35
19.	18G7H07	Renewable energy sources and storage system	37
20.	18G7H08	MEMS and applications	39
21.	18G7H09	Project management	41
22.	18G7H10	Cyber forensics and digital investigations	43
23.	18G7H11	Robotics and automation	45
24.	18G7H12	Space technology and applications	47
25.	18G7H13	Introduction to astrophysics	49
26.	18G7H14	Materials for advanced technology and spectroscopic	51
		characterization	31
27.	18G7H15	Applied psychology for engineers	54
28.	18G7H16	Advanced course in entrepreneurship	56

	VIII Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18CHP81	Major Project	58			

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)
CHEMICAL ENGINEERING

	SEVENTH SEMESTER CREDIT SCHEME								
Sl.	Course	Course Title	BoS	Credit Allocation			Total		
No.	Code	004130 1111	200	L	T	P	Credits		
1.	18HS71	Constitution of India and Professional Ethics	HSS	3	0	0	3		
2.	18CH72	Transport Phenomena	СН	3	0	1	4		
3.	18CH73	Process Simulation and Modeling	СН	3	1	1	5		
4.	4. 18CH74 Internship		СН	0	0	2	2		
5.	18CH7FX	Elective F (PE)	СН	3	0	0	3		
6.	18CH7GX	Elective G (PE)	СН	3	0	0	3		
7.	7. 18G7HXX Elective H (GE) Res. BOS					0	3		
	Total Number of Credits					04	23		
	Total number of Hours/Week					10			

	EIGHT SEMESTER CREDIT SCHEME								
Sl.	Course	Course Title	BoS	Credit Allocation			Total		
No.	o. Code	200	L	T	P	Credits			
1.	18CHP81	Major Project	СН	0	0	16	16		
	Total Number of Credits					16	16		
	Total number of Hours/Week					32			

VII Semester						
		PROFESSIONAL ELECTIVES (GROUP F)				
Sl. No.	Course Code	Course Title	Credits			
1.	18CH7F1	Advanced polymer composites	03			
2.	18CH7F2	Pilot plant studies and scale up methods	03			
3.	18CH7F3	Nanotechnology	03			
4.	18CH7F4	Energy conversion systems	03			

VII Semester							
	PROFESSIONAL ELECTIVES (GROUP G)						
Sl. No.	Course Code	Course Title	Credits				
1.	18CH7G1	Process optimization	03				
2.	18CH7G2	Solar photovoltaic systems and technology	03				
3.	18CH7G3	Water conservation and management	03				
4.	18CH7G4	Pollution control engineering	03				

			VII Semester	
Sl. No.	Course Code	GLC Host	DBAL ELECTIVES (GROUP H) Course Title	Cuadita
				Credits
1.	18G7H01	AS	Unmanned aerial vehicles	03
2.	18G7H02	BT	Bioinformatics	03
3.	18G7H03	СН	Industrial safety and risk management	03
4.	18G7H04	CS	Web programming	03
5.	18G7H05	CV	Solid waste management and statutory rules	03
6.	18G7H06	EC	Image processing and machine learning	03
7.	18G7H07	EE	Renewable energy sources and storage system	03
8.	18G7H08	EI	MEMS and applications	03
9.	18G7H09	IM	Project management	03
10.	18G7H10	IS	Cyber forensics and digital investigations	03
11.	18G7H11	ME	Robotics and automation	03
12.	18G7H12	TE	Space technology and applications	03
13.	18G7H13	PY	Introduction to astrophysics	03
14.	18G7H14	CY	Materials for advanced technology and	03
			spectroscopic characterization	
15.	18G7H15	HSS	Applied psychology for engineers	03
16.	18G7H16	HSS	Advanced course in entrepreneurship	03

	Semester: VII						
	CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS (Common to All Programs)						
Cou	rse Code	:	18HS71		CIE	:	100 Marks
Cred	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	Ob	jectives: Th	ne students will be able to			
1	Apply the kn	ow	ledge of the	constitutional literacy to become	me aware of the fund	dam	nental rights and
	duties in the						
2	Understandi	ng (of ethical an	d legal aspects of advertising,	consumer problems	and	d their redressal
	mechanism i	ela	ted to produ	ct and service standards.			
3	Discuss the	kno	wledge of s	substantive Labor law and to	develop skills for l	ega	l reasoning and
	statutory interpretations.						
4	Evaluate ind	livi	dual role, re	sponsibilities and emphasize	on professional/ en	gin	eering ethics in
	shaping professions.						

Unit - I 10 H	Irs
---------------	-----

Indian Constitution- Salient features of Indian Constitution ,Preamble to the Constitution of India; Provisions Relating to Citizenship in India- at the Commencement of the Constitution and Later with latest amendments, Modes of Acquisition and Termination of Citizenship of India. Scope & Extent of Fundamental Rights-Articles 14-32 with case studies; Right to Information Act, 2005 with Case studies.

Unit – II 10 Hrs

Directive Principles of State Policy- Significance of Directive Principles of State Policy, Fundamental Duties in the Constitution of India; Union Executive- President and State Executive-Governor; Parliament & State Legislature; Council of Ministers; Anti-defection law; Union and State Judiciary; Emergency provisions; Elections, Administrative tribunals. Human Rights & Human Rights Commission.

Unit –III 06 Hrs

Consumer Protection Law - Definition and Need of Consumer Protection; Consumer Rights under the Consumer Protection Act, 2019; Unfair Trade Practice, Defect in goods, Deficiency in services; Product liability and Penal Consequences, False and Misleading Advertisement, E-Commerce, Alternate dispute Redressal mechanism; Redresses Mechanisms under the Consumer Protection Act, 2019.

An overview of Indian Penal Code 1860 (Law Of Crimes)

Unit – IV 06 Hrs

Introduction to Labour Legislations - Industrial Relation, Labour Problem and Labour Policy in India; Labour Welfare and Social Security- Factories Act, 1948, Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013; the Child Labour (Prohibition and Regulation) Act, 1986, Maternity Benefit (Amendment) Act, 2017; Industrial Dispute Act, 1947, Reference of Disputes to Boards, Courts or Tribunals.

Unit –V 07 Hrs

Scope and aims of engineering ethics (NSPE Code of Ethics), Responsibility of Engineers, Impediments to responsibility. Honesty, Integrity and reliability, Risks, Safety and Liability in Engineering. Corporate Social Responsibility. Statutory Provision regarding prohibition and prevention of Ragging.

Course	e Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability
	and to take affirmative action as a responsible citizen.
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to professional environment, strengthen the ability to contribute to the resolve of human rights & Ragging issues and problems through investigative and analytical skills.
CO3	Understanding process of ethical and moral analysis in decision making scenarios and inculcate ethical behavior as a trait for professional development.
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business Enterprises.
Refere	nce Books
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5th Edition, 2015, ISBN -13:978-9351452461
3	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6 th Edition, 2012, ISBN: 9789325955400
4	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics, Wadsworth Cengage Learning, 5th Edition, 2009, ISBN-978-0495502791

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: VII						
			TRA	ANSPORT PHENOR			
				(Theory & Practice	e)		
Cou	rse Code	:	18CH72		CIE	:	100 Marks
Credits: L:T:P		••	3:0:1		SEE		100 Marks
Tota	Total Hours : 39L+13P SEE Duration : 3.00 Hours					3.00 Hours	
Cou	rse Learning	g O	bjectives:				
1 Understand similarities and differences between heat, mass and momentum transfer							
2 Applications of shell momentum, heat and mass balances							
3 Formulation of boundary conditions							
4 Development of models for one-dimensional steady state problems							
5 Analytical solutions of these models							

Unit-I	08 Hrs				
Review of Newton's, Fourier's and Fick' law, Numerical problems on flux and profiles; Theory and					
Models for transport properties; Effect of temperature and pressure on transport pro					
Unit – II	08 Hrs				
Shell momentum balance and boundary conditions, Application of shell momentum	n balance for simple				
steady state flow models, falling film, circular pipe, annulus, narrow slit, Develop	ment of equation of				
continuity, equation of motion and their applications to solve steady state problems.					
Unit –III	07 Hrs				
Shell Energy balance and boundary conditions, Application of shell energy balance	e for simple steady				
state heat transfer models: electrical source, viscous heat, nuclear heat source, over-	all heat transfer co-				
efficient for composite plane, cylindrical and spherical walls.					
Unit –IV	08 Hrs				
C1. 11 1. 1 1. 1 1. 1					
Shell mass balance and boundary conditions, Application of shell mass balance to	simple steady state				
mass transfer models: diffusion through stagnant gas, heterogeneous reaction, hor	•				
	•				
mass transfer models: diffusion through stagnant gas, heterogeneous reaction, hor	•				
mass transfer models: diffusion through stagnant gas, heterogeneous reaction, hor Diffusion into a falling liquid film.	nogeneous reaction, 08 Hrs				
mass transfer models: diffusion through stagnant gas, heterogeneous reaction, hor Diffusion into a falling liquid film. Unit –V	08 Hrs				
mass transfer models: diffusion through stagnant gas, heterogeneous reaction, hor Diffusion into a falling liquid film. Unit –V Introduction to turbulent flow, Comparison of Laminar and turbulent flow (For circu	08 Hrs llar and non-circular stresses, Near wall				
mass transfer models: diffusion through stagnant gas, heterogeneous reaction, hor Diffusion into a falling liquid film. Unit –V Introduction to turbulent flow, Comparison of Laminar and turbulent flow (For circu conduits), Time smoothed equations of change-Reynold's decomposition and	08 Hrs llar and non-circular stresses, Near wall				

Laboratory component:

Flow visualization and analysis using CFD simulations are to be performed on the following systems using ANSYS package.

	to 15 package.						
Sl No	Details of the experiment						
Velocit	Velocity Profile, shear stress distribution, Pressure distribution, Streamlines in						
1	Circular Conduits						
2	Non-circular conduits						
3	Expansion and contraction						
4	Annulus						
Temper	rature Profile, flux distribution in						
5	Flow through heated pipe						
6	Composite wall						
7	Natural Convection						
Targete	geted effect studies in						
8	Simulation of Orifice meter						
9	Simulation of Venturimeter						

10	Effect of roughness
11	Boundary Layer
12	Reacting flows

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain the fundamentals of transport phenomena						
CO2:	Formulate transport problems for heat, mass and momentum transfer systems.						
CO3:	Apply shell momentum balance and model the transport behaviour.						
CO4 :	Solve the models and interpret the solutions						

Ref	Ference Books
1	R. Byron Bird et al, Transport Phenomena, 2nd Ed., Wiley, 2013, ISBN: 978-81-265-080082
2	Harry C. Hershey (Author), <u>Robert S. Brodkey</u> Transport Phenomena: A Unified Approach: A Unified Approach, Vol 1, Bordkey Publishing, 2013, ISBN 0-9726635-9-2.
3	Fundamentals of Momentum, Heat and Mass Transfer, James R. Welty et al., 4th Ed., Wiley India, 2007, ISBN: 978-81-265-1526-4.

Objective type questions for 20 marks covering the complete syllabus. Part B consists of five main CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: VII							
	PROCESS SIMULATION AND MODELING (Theory and Practice)							
Course Code : 18CH73 CIE : 100+50 Marks								
Credits: L:T:P		:	3:1:1		SEE	:	100+50 Marks	
Total Hours : 39L+13T SEE Duration : 03 + 03 Mark				03 + 03 Marks				
Cour	rse Learning	Ol	ojectives: The stud	dents will be able	to			
1 Apply numerical techniques to solve chemical engineering problems								
2 Analyze chemical engineering system in term of modeling principle								
3 Distinguish simulation from design of equipment								
4 Develop algorithm for modeling & solve the model								
5	Develop si	mp	le chemical engine	eering models				

\mathcal{E}					
Unit-I	6 Hrs				
Modeling in Chemical Engineering: Introduction, Fundamental laws, scope of cover	rage, principles				
of formulation, modeling aspects, classification of models. Continuity equation, equat	tions of motion,				
transport equations, equations of state, equilibrium, and chemical kinetics with exam	ıples.				
Unit – II	8 Hrs				
Models in Separation processes: Steady state single and multiple stage solvent extra	ction, unsteady				
state single stage solvent extraction, multistage gas absorption, single component vap-	orizer and ideal				
binary distillation column, batch distillation, multi-component flash drum.					
Unit –III	9 Hrs				
Models in reactors: Series of Isothermal, constant hold-up CSTRs, CSTRs with var	riable hold-ups,				
Non-isothermal CSTR, Batch reactor and reactor with mass transfer, gas phase pres	surized CSTR.				
Unit –IV 8 Hrs					
Models in heat transfer operation: Cooling of tanks, unsteady state heat transfer by conduction,					
unsteady state steam heating of Liquid.					
Models in fluid flow operation: Fluid through packed bed column, flow of a film on the outside of					
a circular tube, Basic tank model –Level V/s time, Two-heated tanks.					
Unit –V	8 Hrs				
Numerical analysis for simulation: Introduction to simulation, Role of computers	and numerical				
methods in simulation, iterative convergence methods, interval halving Newton Po	nhean method				

Numerical analysis for simulation: Introduction to simulation, Role of computers and numerical methods in simulation, iterative convergence methods – interval halving, Newton-Raphson method, False-position, Wegstein and Muller methods, numerical integration of ODEs – Euler and Runge-Kutta.

List of experiments:

•
1. Simulation of Shell and Tube Heat Exchanger
2. Simulation of Centrifugal Pump/Compressor
3. Simulation of Flash drum/Separator
4. Simulation of single stream gas heater/cooler
5. Simulation of CSTR
6. Simulation of Distillation Column
7. Simulation of Atmospheric distillation of crude oil
8. Simulation of aromatic stripper with recycling
9. Simulation of Benzene production
10. Simulation of methanol-water separation using RADFRAC
11. Simulation of various reactor types to model a single reaction
12. Simulation of cyclo hexane production

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Recall the fundamental laws in modeling chemical engineering systems							
CO2:	Explain modeling and simulation of simple chemical engineering systems							
CO3:	Apply mathematical tools to solve model equations							
CO4:	Analyze chemical engineering systems for model development							

Refere	Reference Books									
1	Process Modeling, Simulation and Control for Chemical Engineers, William L. Luyben McGraw Hill 2 nd Edition, 1999, ISBN: 978-0070391598.									
Process Plant Simulation, B V Babu, 1st Edition, 2004, Oxford University Press, ISBN: 978-0-19-566805-6.										
3	Elements of Chemical Reaction Engineering, H Scott Fogler, 3 rd Edition, Prentice Hall of India, 2004, ISBN: 7502741003.									
4	Process Heat Transfer, D.Q.Kern, 1 st Edition, 2012, Tata McGraw Hill, ISBN: 007034190.									

Objective type questions for 20 marks covering the complete syllabus. Part B consists of five main CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	1	1					2		
CO2	3	3	3	3	2	1	1			1		1		
CO3	3	3	3	2	3	1	1	1	1	1	1	2		
CO4	3	3	3	2	3	1	1	2	1	1		1		

High-3: Medium-2: Low-1

SEMESTER : VII													
	INTERNSHIP												
Course Code	:	18CH74		CIE Marks	:	50							
Credit L:T:P	:	0:0:2		SEE Marks	:	50							
Hours/week	:	4 Contact hours		SEE Duration	:	3 Hrs							
			GUIDELINES										

- 1) The duration of the internship shall be for a period of 6/8 weeks on full time basis after IV semester final exams and before the commencement of VII semester.
- 2) The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3) Internship must be related to the field of specialization of the respective UG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for UG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization: Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department
 - Chapter 3 Tasks Performed: summaries the tasks performed during 8-week period
 - Chapter 4 Reflections: Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

CO1: Apply engineering and management principles

CO2: Analyze real-time problems and suggest alternate solutions

CO3: Communicate effectively and work in teams

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries,	45%
	ability to comprehend the functioning of the organization/ departments,	43/0

Review-	Importance of resource management, environment and sustainability	
II	presentation skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

	Semester: VII												
	ADVANCED POLYMER COMPOSITES												
	(Group F: Professional Elective)												
				(Theory)									
Cou	rse Code	:	18CH7F1		CIE	:	100 Marks						
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours						
Cou			ectives: The students										
1	Understand 1	nee	d for polymer mati	rix composites for s	specific application	ns.							
2	Apply mater	ials	engineering to de	sign polymer matri	x composites.								
3													
4	Evaluate alte	rna	tives in design usi	ng polymer matrix	composites								

Unit-I	08 Hrs								
Introduction									
Advanced Polymer Composites (APC): Definition, Polymer matrices, Thermoplastics Matrices,									
Structure and properties of Poly propylene (PP)-Poly vinyl chloride (PVC)-Aramid- Polyether ether									
ketone (PEEK)- Polyphenylene sulfide(PPS)-Poly sulfone.									
Thermosetting Matrices: Structure and properties of Isophthalic polyester, Epoxy	y and Polyimide.								
Elastomeric matrices: Structure and properties of PB-SBR									
Unit – II	08 Hrs								
Reinforcement fibres : Structure and properties of Poly ethylene (PE) fibre/ Nylo	n/Glass fibres/								
Carbon fibres/Carbon nano tubes (CNT)/Aramid.									
Types of bonding at the interface, Glass fibre-polymer, Aramid fibre-polymer, PE	fibre-polymer								
Unit –III	08 Hrs								
Thermoplastic composite processing -Compression moulding, transfer mou	ulding, injection								
moulding, blow moulding, extrusion, calendaring, rotational moulding, thermoform	ning,								
Thermoset composite processing-Hand lay-up and spray technique, Filament win	nding, Pultrusion,								
Resin transfer moulding, Prepregs									
Unit –IV	08Hrs								
Evaluation of Polymer composites- Flexural tests-Single fibre pulls out test-Fragme									
spallation test. Fatigue and Creep behavior of composites. Thermal conductivity studies or	n composites								
Unit –V	07Hrs								
Application of Polymer Matrix Composites: Aircraft, Automotive, and Construction in	ndustries, Military,								
Space and Medical devices.									
Recycling and disposal methods									

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1	Understand the properties of polymers and fibers								
CO 2	Apply the principles of interfacial interaction in polymer matrix composites								
CO 3	Analyze mechanical/thermal performance of polymer matrix composites								
CO 4	Application of polymer composites in various fields.								

-						-			
ĸ	Δŧ	41	ra	n	CΔ	В	^	nΙ	ZC
	v	v				.,	•	.,,	•

- 1 Krishnan K Chawla, Composite Materials- Science and Engineering, 2nd Ed. Springer, ISBN 81-8128-490-9
- 2 M.H.Ferry, A.V.Becker, Hand book of Polymer science and Technology. CBS Publishers and Distributors. ISBN: 81-239-1132-7
- 3 V.R.Gowarikar, N.V.Viswanathan, Jayadev Sreedhar. Polymer Science.New Age International Pvt.Ltd.2012: ISBN: 0-85226-307-4
- 4 Fred W.Billmeyer, J.R.Text Book of Polymer Science, Wiley Inter Science, 3rd Edition: 2005. ISBN:0471-82834-3

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO		
												12		
CO1	3					2								
CO2	2	1	1			2				2				
CO3		2										1		
CO4	3	3	3	3	3	3	3				2	3		

High-3: Medium-2: Low-1

	Semester: VII											
	PILOT PLANT STUDIES AND SCALE UP METHODS											
			(Group F	: Professional Elective)								
				(Theory)								
Cou	rse Code	:	18CH7F2	CIE	:	100 Marks						
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks						
Tota	l Hours	:	39L	SEE Du	ıration :	3.00 Hours						
Cou	rse Learning O	bje	ectives: The students	s will be able to								
1	Identify the ne	eed	for pilot plants									
2	Explain the pr	inc	iples of similarity ar	nd relate to scale up studies								
3	Perform dime	nsio	onal analysis on diffe	erential equations defining the	system	_						
4	Establish and	val	idate similarity crite	ria.								
5	Scale-up vario	ous	process equipment									

Unit-I	07 Hrs							
Introduction: Process development, Need for pilot plants, Scale-up procedures, b	oasic terminologies-							
prototypes, models, scale ratios and elements								
Principles of Similarity: Geometric, Static, dynamic, kinematics, thermal and	chemical similarity							
with examples								
Unit – II	08 Hrs							
Dimensional Analysis: Significance of Dimensionless Numbers, Generali	zed dimensionless							
equations from Differential equation for static systems, flow systems, thermal systems, mass transfer								
equations from Differential equation for static systems, flow systems, thermal sys	tems, mass transfer							
equations from Differential equation for static systems, flow systems, thermal sys processes, Homogeneous and heterogeneous chemical processes.	tems, mass transfer							
	tems, mass transfer 08 Hrs							
processes, Homogeneous and heterogeneous chemical processes.	, 							
processes, Homogeneous and heterogeneous chemical processes. Unit –III	08 Hrs							
processes, Homogeneous and heterogeneous chemical processes. Unit –III Regimes: Concept of static, dynamic, thermal, chemical and mixed regimes	08 Hrs g, mixed regimes;							

Convection and Radiation controlled; Chemical – Mass transfer controlled, Surface reaction controlled and mixed, extrapolation and boundary effects.

Unit –IV 08 Hrs

Scale-up of Mixing Equipment – Scale-up based on Power number, Scale-up based on Peripheral speed, Scale-up of baffled and un-baffled mixers.

Scale-up of Heat Transfer Systems – Scale –up for Forced Convection and Natural Convection, Scale-up of Overall heat transfer coefficients by Wilson's method and Regression Analysis methods.

Unit –V 08 Hrs

Scale-up of Chemical Reaction systems - Equality of RTD, Scale-up rules for homogenous reactions, Scale-up rules for heterogeneous reaction systems.

Scale-up of Mass Transfer Systems – Scale-up rules for overall-Mass Transfer Coefficients, Analysis of parameters like Liquid distribution, Flooding Velocities, Pressure Drop and height of Packing; Scale-up of Distillation systems, Absorption systems, Liquid Extraction systems

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1	Identify the need for pilot plant.								
CO 2	Explain the concept of Similitude and compare the regimes								
CO 3	Perform Dimensional analysis on flow, heat and mass transfer processes								
CO 4	Establish Similarity criteria and develop the scale equations for chemical processes								

Re	eference Books
1	Dimensional Analysis and Scale-up in Chemical Engineering, Marko Zlokarnik,1991, Springer-
	Verlag, ISBN 9783540541028
2	Scale up of Chemical Processes, Scale up of Chemical Processes, 1985, John Wiley & Sons, ISBN
	0471057479
3	Pilot Plants Models and scale up method in Chemical Engineering, Johnstone and Thring, 1957,
•	McGraw Hill, ISBN: 978-0071422949
4	Scale-up in Chemical Engineering, Marko Zlokarnik, 2006, Wiley-VCH, ISBN 9783527314218

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9										PO11	PO12
CO1	1	-	-	-	-	-	-	-	-	-	-	-
CO2	-	1	-	-	-	-	-	-	-	-	-	-
CO3	1	2	1	-	-	-	-	-	-	-	-	-
CO4	1	3	2	2	-	-	-	-	-	-	-	-

High-3: Medium-2: Low-1

Semester: VII NANOTECHNOLOGY (Group F: Professional Elective) (Theory)								
Cou	rse Code	:	18CH7F3	•	CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning	g O	bjectives: The stu	idents will be ab	le to			
1	Understand	l ba	sics of nanomater	ials and their pro	operties.			
2	2 Describe synthesis of nanomaterials by chemical techniques.							
3	Learn to analyze and assess parameters involved in synthesis and characterization.							
4	Compare n	nod	els involved in syr	nthesis of nanost	ructures.			

Unit-I 7 Hrs

Physics and Chemistry of Nanomaterials:

PHYSICS ASPECTS: Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area and aspect ratio- band gap energy- quantum confinement size

CHEMISTRY ASPECTS: Photochemistry and Electrochemistry of nanomaterials —Ionic properties of nanomaterialsNanocatalysis - Nanoscale heat transfer - Electron transport in transition metals and 11 semiconducting nanostructures.

Unit – II 8 Hrs

Different Classes of Nanomaterials: Classification based on dimensionality-Quantum Dots, Wells and Wires- Carbon- based nano materials (buckyballs, nanotubes, graphene)-Metalbased nano materials (nanogold, nanosilver and metal oxides) -Nanocomposites- Nanopolymers -Nanoglasses - Nano ceramics -Biological nanomaterials.

Unit –III 8 Hrs

Synthesis of Nanomaterials: Classification of synthesis: Top down and bottom up nanofabrication. Chemical Methods: Metal Nanocrystals by Reduction – Solvothermal Synthesis- Photochemical Synthesis – Sonochemical Routes- Chemical Vapor Deposition (CVD) -Metal Oxide – Chemical Vapor Deposition (MOCVD). Physical Methods: Ball Milling -Electrodeposition – Spray Pyrolysis – Flame Pyrolysis -DC/RF Magnetron Sputtering – Molecular Beam Epitaxy (MBE)

Unit –IV 8 Hrs

Imaging Techniques for Nanotechnology: Optical microscopy, Scanning Electron Microscopy, Transmission Electron microscopy, Atomic force miscroscopy, Scanning Tunneling Microscopy

Unit –V 8 Hrs

Applications: Solar energy conversion and catalysis – Molecular electronics and printed electronics -Nanoelectronics -Polymers with aspecial architecture – Liquid crystalline systems – Linear and nonlinear optical and electro-optical properties, Applications in displays and other devices -Nanomaterials for data storage – Photonics, Plasmonics- Chemical and biosensors -Nanomedicine and Nanobiotechnology -Nanotoxicology challenges.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Identify various nano materials and recall nano materials synthesis, characterization and							
	application.							
CO2:	Explain the methods of nanomaterial synthesis and characterization							
CO3:	Apply principles of nano materials in interdisciplinary areas							
CO4:	Analyze and select synthesis and characterization techniques.							

	Refere	ence Books
ĺ	1	A Textbook of Nanoscience and Nanotechnology, Pradeep T, 2012, Tata McGraw Hill
	1	Education Pvt. Ltd. ISBN: 9781259007323.

2	Nano-structured Materials and Nanotechnology, Hari Singh Nalwa, 2002, Gulf Professional
	Publishing, Academic Press, ISBN:0-12-513920-9.
	The Physics and Chemistry of Materials, Joel I. Gersten, Wiley, 2001. ISBN: 978-0-471-
3	05794-9
4	Nano Materials, K. Bandyopadhyay, 2007, New Age International Publishers; First edition;
4	ISBN:0-13-101400-5.
	Nanotechnologies Principles, Applications, Implications and Hands-on Activities, A Luisa
5	Filipponi and Duncan Sutherland, 2013, Edited by the European Commission
3	DirectorateGeneral for Research and Innovation Industrial technologies (NMP) programme
	Luxembourg: Publications Office of the European Union, ISBN 978-92-79-21437-0.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1											PO12	
CO1	-	3	3	2	-	-	-	-	-	-	-	-
CO2	-	3	1	3	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	ı	-
CO4	-	3	1	2	-	-	-	-	-	-	-	-

High-3: Medium-2: Low-1

	Semester: VII							
	ENERGY CONVERSION SYSTEMS							
			(Grouj	p F: Professiona	l Elective)			
				(Theory)				
Cou	rse Code	:	18CH7F4		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39L	SEE Duration			3.00 Hours	
Cou	rse Learning	O	bjectives: The stud	lents will be able	to			
1	Understand	the	various routes for	waste to energy	conversion.			
2	2 Assess the advantage and disadvantage of various energy conversion systems.							
3	Classify fee	dst	ocks for energy pro	oduction and ider	ntify suitable energ	y co	onversion technique	
4	Appreciate	the	concepts of bioche	emical routes in e	nergy production.			

Unit-I	7 Hrs
Introduction	

Definition of wastes and their classification, Important quality parameters of different types of waste, wastes suitable for energy production, Solid wastes and their classification, Waste water and their classification, routes for solid waste management, Need of energy production from wastes.

> Unit – II 8 Hrs

Characterization of wastes:

Physical characterization: specific density, moisture content, Chemical characterization: proximate analysis, ultimate analysis, Lignocellulosic composition, Energy content and heating value, Characteristics of waste water: physical, chemical and biological, analytical methods, Numerical problems on characterization of solid and liquid wastes

> Unit -III 8 Hrs

Energy production through organic wastes:

Anaerobic digestion: Definition, mechanism, microorganisms and pathway, Quantitative description of biomass degradation, Factors affecting, Flowsheet, Comparison of dry and wet process, Design of anaerobic digester, Numerical problems on anaerobic digestion.

Fermentation: Fermentation and energy production, Feedstocks and preprocessing, Production of ethanol from starchy crops through wet and dry process, Production of ethanol from lignocellulosic wastes. Mechanism of pretreatment lignocellulosic wastes, Numerical problems on fermentation.

Unit -IV 8 Hrs

Incineration:

Definition, Mechanism, Application, Feedstock characteristics, Factors affecting, Advantages and disadvantages, Process flowsheet, Environmental aspects, Case study and numerical problems on

Gasification: Definition and basic chemistry, Gasification reaction schemes and steps, Advantages, Typical process flowsheet, Gasifier types, Comparison of gasification and combustion, Numerical problems on gasification

Unit -V 8 Hrs

Pyrolysis:

Definition, Mechanism, Types of pyrolysis, Operating conditions and product distribution, Typical pyrolysis reactor, properties of bio-oil, various chemicals and fuels from bio-oil, Comparison of characteristics of bio-oil and diesel, Advantages and disadvantages of bio-oil, Numerical problems on pyrolysis

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Understand the fundamental concepts of proximate and ultimate analysis of wastes.								
CO2:	Estimate the energy production for various energy conversion systems								
CO3:	Apply the acquired knowledge to design an energy conversion reactor.								
CO4:	Establish the action plan for waste management and mitigate energy crisis.								

Refer	ence Books
1	Mark Crocker (Ed.), 2010. Thermochemical Conversion of Biomass to Liquid Fuels and
1	Chemicals. RSC Publishing, ISBN:9781849730358
2	Donald L. Klass, 1998. Biomass for Renewable Energy, Fuels and Chemicals. Academic
	Press, San diego, CA. ISBN: 978-0-12-410950-6
	Daizo Kunii and Octave Levenspiel. Fluid ization Engineering, 2 nd Edition. Butterworth-
3	Heinemann series in Chemical Engineering. ISBN 0-409-90233-0 1
4	Charles E. Wyman (Ed.), 1996. Handbook on Bioethanol: Production and Utilization.
4	CRC Press, New York. ISBN 1-56032055304
	Brigit Kamm, Patrick R. Gruber and Michael Kamm (Ed.), 2008. Biorefineries -
5	Industrial Processes and Products: Status Quo and Future Directions, Vol. 1 & 2. Wiley-
	VCH, Weinheim, Germany.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: VII							
				ROCESS OPTIMIZ				
			(Gre	oup G: Professional	Elective)			
				(Theory)				
C	ourse Code	:	18CH7G1		CIE	:	100 Marks	
C	Credits: L:T:P : 3:0:0 SEE : 100 Marks						100 Marks	
T	otal Hours	••	39L		SEE Duration	:	3.00 Hours	
C			bjectives: The stud					
1	Realize the ne	ed (of optimization in an	riving at optimum co	onditions			
2	2 Appreciate the importance of optimization in process industries							
3	3 Understand the need for waste recovery and optimal usage of process utilities							
4	Know the intri	icac	eies involved in opti	mizing industrial ope	erations			

Unit-I	08 Hrs				
Introduction to optimization: Introduction, examples of optimization applications, the essential features of					
optimization problems, general procedure for solving optimization problems					
Unit – II	08 Hrs				
Basic concepts of optimization: Continuity of functions, Nonlinear program problem stater	ment, numerical				
methods for optimizing a function of one variable, scanning and bracketing procedures					
Unit –III	08 Hrs				
Linear programming and its applications: Geometry of linear programs, basic linear	programming,				
simplex algorithm, sensitivity analysis, linear mixed-integer problems					
Unit –IV	07 Hrs				
Applications of optimization – heat transfer and energy conservation: Optimizing recover	y of waste heat,				
optimal STHE design					
Unit –V	08 Hrs				
Applications of optimization - separation and flow systems: optimal design and operation of a					
conventional staged distillation column, optimal pipe diameter, minimum work of compression.					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the principles of chemical process optimization						
CO2:	Apply optimization techniques on simple process problems						
CO3:	Analyze the industrial processes to recognize the possibilities of optimization						
CO4:	Evaluate the possibility of energy conservation through optimization						

Refere	ence Books
1	Optimization of Chemical Processes, T. F. Edgar and D. M. Himmelblau, 2 nd Edition, 2001, McGraw Hill, ISBN – 9780070189911
2	Engineering Optimization, Methods and Applications, A. Ravindran, K. M. Ragsdell, G. V. Reklaitis, 2 nd Edition, 2006, Wiley, ISBN – 9781118936337
3	Engineering Optimization: Theory and Practice, S.S. Rao, 4 th Edition, 2009, Wiley, ISBN – 9780470183526
4	Engineering Optimization – A modern approach, R. Ganguli, 1 st Edition, 2011, Universities Press, ISBN - 9781466511392

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	3	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

High-3: Medium-2: Low-1

		Sem	ester: VII				
;	SOI		SYSTEMS AND TECHNOLOGY				
		` -	ofessional Elective)				
		(1)	Theory)				
Course Code	:	18CH7G2	CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	39L	SEE Duration	:	3.00 Hours		
Course Learning	Course Learning Objectives: The students will be able to						
1 Understand need for solar photovoltaic systems in current energy scenario							
2 Apply basic semiconductor theory for characterization of solar photovoltaic systems							
3 Analyze perform	3 Analyze performance of solar photovoltaic systems						

Unit-I	8Hrs

Introduction

Classification of semiconductor materials-Crystals structures, atomic bonding, energy band diagram – direct & indirect band gap semiconductors. Doping and carrier concentration - Hall effect in semiconductors – diffusion and drift of carriers, continuity equation – optical absorption – carrier recombination-Effect of temperature. P-N junctions-I-V characteristics-Types of junctions- Rectifying-Schottky barriers, MIS, and its characteristics.

Unit – II 8 Hrs

Photovoltaic Fundamentals

Photovoltaic effect - Choice of semiconductor materials for fabrication of homojunction solar cells - equivalent circuit of a solar cell. Solar cell output parameters -Fill-factor, conversion efficiency, quantum efficiency. Effect of series and shunt resistance on the efficiency of solar cells. Variation of Open-circuit voltage and short circuit current with intensity of incident light. Effect of temperature on I-V characteristics. p-n heterojunction solar cells - criteria for choosing absorber and window layers.

Unit –III 8 Hrs

Silicon Photovoltaics

Single crystal silicon (c-Si) ingot growth – Float Zone and Czochrolski methods – silicon wafer fabrication – wafer to cell formation - I-V characteristics and spectral response of c-Si solar cells. Factors limiting the efficiency - Polysilicon wafer fabrication methods – EFG and SRG methods. Amorphous Silicon - differences in properties between crystalline silicon and amorphous (a-Si) silicon. a-Si deposition by glow discharge method – Electrical and optical properties of a-Si.

Unit –IV 8Hrs

Thin Film Solar Cells

Heterojunction Intrinsic Thin film solar cell –fabrication by PECVD - I-V characteristics

Principle of multi-junction cells—Structure and fabrication of GaInP/GaAs/Ge triple junction solar cell—Metamorphic solar cells. CdTe/CdS and CuInGaSe/CdS (CIGS) solar cells - Cell configuration — techniques used for the deposition of each layer- cell characteristics. Organic solar cells — Configuration and principle — Types of organic solar cells, Dye-sensitized (DS) solar cells — Principle — Configuration and performance, Basic concept of quantum dot, nano wire (NW), hot carrier and plasmonic solar cells

Unit –V 7 Hrs

Solar Photovoltaic Systems

Photovotaic Module Assembly: Description of steps involved in the fabrication of Silicon Photovoltaic Module - Performance of photovoltaic module - Module protection - Modules in series and in parallel - Use of bypass and blocking diodes, Solar photovoltaic system - components – PV Array, battery, invertor and load. Applications of solar photovoltaic systems. Stand alone, Hybrid and Grid connected PV systems

Course O	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the principles for conversion of solar energy to electrical energy.						
CO2:	Apply semiconductor theory to develop solar photovoltaic systems.						
CO3:	Evaluate performance of solar photovoltaic devices.						
CO4:	Analyze integrated solar modules and grid connectivity.						

R	eference Books
]	Introduction to semiconductor materials and devices, M. S. Tyagi, 2008, John Wiley & Sons,; ISBN: 978-812-6518-678.
2	Solar photovoltaics: Fundamentals, technologies and applications, C.S. Solanki, 3rd edition, 2015, Prentice Hall India,ISBN: 978-812-0343-863.
3	Fundamentals of solar cells, A.L. Farenbruch, R.H. Bube, 1st ed., 1983 Elsevier,; ISBN 9780323145381.
4	Terrestrial solar photovoltaics, Narosa Publishing House, T. Bhattacharya,1998; ISBN 978-8173192067.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	-	-	-	2	-	-	-	-	-	-	
CO2	3	3	1	-	-	2	-	-	-	-	-	-	
CO3	-	3	-	-	-	-	-	-	-	-	-	1	
CO4	3	3	3	3	2	3	3	-	-	2		3	

High-3: Medium-2: Low-1

	Semester: VII										
	WATER CONSERVATION AND MANAGEMENT										
	(Group G: Professional Elective)										
				(Theory)							
Cou	Course Code : 18CH7G3 CIE : 100 Marks										
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks				
Total Hours : 39 L SEE Duration : 3.00 Ho					3.00 Hours						
Cou	rse Learning	O	bjectives: The stud	dents will be able	to						
1	Understand	the	various aspects of	f water quality ma	anagement and pol	lutio	on issues.				
2	Assess water	er q	uality parameters	and properly use	water resources v	vith	minimum hazards to				
	natural resources.										
3	Classify tol	erai	nce limits for inlan	d surface water	_						
4	Appreciate	the	concepts of storm	and drought man	agement.						
5	Demonstrat	e th	ne action plan for w	vater conservation	1.						

Unit-I	8 Hrs
Management of Water Quality & Pollution Issues:	
Water quality standards, water quality categories, water pollution sources, and se	ource types, water
pollution causes, water pollution types-organic pollutants, inorganic pollutants,	Macroscopic and
microscopic pollutants.	
Unit – II	8 Hrs
Water quality parameters:	
Water quality environmental indicators-Chemical, Physical and biological asse	ssment, Importan
water quality parameters- pH, Colour, Taste and odour, turbidity, TS, TDS, TSS,	Dissolved oxygen
COD & BOD.	
Unit –III	8 Hrs
Water quality tolerance and classification: Classification of water based of	on type of utility
Tolerance Limits for Inland Surface Water, Water quality issues in India.	
Drought Management: Droughts, Assessment, Classification, Meteorol	logical droughts
Hydrological drawalts Amigustynal drawalts	
Hydrological droughts, Agricultural droughts	
Unit –IV	8 Hrs
, , , , , , , , , , , , , , , , , , , ,	8 Hrs
Unit –IV	
Unit –IV Storm Water and Flood Management:	control measures
Unit –IV Storm Water and Flood Management: Stormwater runoff; Harvesting, Integrated storm water management, storm water	control measures
Unit –IV Storm Water and Flood Management: Stormwater runoff; Harvesting, Integrated storm water management, storm water Urbanization Effects & Flooding, Urban flooding causes, Urban flooding problem	control measures
Unit –IV Storm Water and Flood Management: Stormwater runoff; Harvesting, Integrated storm water management, storm water Urbanization Effects & Flooding, Urban flooding causes, Urban flooding problem Unit –V	control measures

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the fundamental concepts of water quality management and pollution issues.									
CO2:	Estimate the important water quality parameters and assess water quality.									
CO3:	Apply the acquired knowledge to mitigate problems of flood and drought management.									
CO4:	Establish the action plan for water conservation.									

Refer	Reference Books										
1	Watershed: Planning and Management, Raj Vir Singh, 3 rd revised Edition 2016, Yash Publishing House, ISBN - 9788186882405										
2	Watershed Management, J.V.S. Murthy, 2 nd Edition 2017, New Age Publishers, ISBN: 8122435181										

3	Watershed development in India, A.K. Jaiswal and A.P. Purandare, 1995, NIRD Hyderabad, ISBN-8185542341.
4	Watershed Hydrology, Peter E. Black, 2 nd Edition 1996, CRC Press, ISBN-1575040271.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

High-3: Medium-2: Low-1

	Semester: VII										
	POLLUTION CONTROL ENGINEERING										
	(Group G: Professional Elective)										
	(Theory)										
Course Code : 18CH7G4 CIE : 100 Mar					100 Marks						
Credits: L:T:P		:	3:0:0		SEE	••	100 Marks				
Tot	Total Hours		39 L		SEE Duration		3.00 Hours				
Coı	ırse Learning										
1	To inculcate	aw	areness on env	ironmental, societ	al, ethical, health	an	d safety issues and their				
	relevance in	eng	gineering.								
2	2 To understand different types of pollutions.										
3											
4	To promote of	env	ironmental desi	gn							

|--|

Introduction:

Environment, Multidisciplinary nature of environmental studies, impact of human being on environment: pollution, resource depletion and global environmental issues, Environment and environmental pollution from chemical process industries, characterization of emission and effluents, environmental Laws and rules, standards for ambient air, noise emission and effluents standards, Environmental Impact Assessment, ISO14000

Unit – II 8 Hrs

Pollution Prevention:

Process modification, alternative raw material recovery by co-product from industrial emission effluents, recycle and reuse of waste, energy recovery and waste utilization. Material and energy balance for pollution minimization. Water use minimization, leakages and their control-housekeeping and maintenance

Noise Control: Noise control criteria, administrative and engineering controls, acoustic absorptive materials.

Unit –III 8 Hrs

Air Pollution Control:

Types of air pollutants. Ambient air sampling: collection of gaseous air pollutants, collection of particulate air pollutants. Stack sampling: Sampling system, particulate sampling, and gaseous sampling, Movement of pollutants in the atmosphere, Source collection methods: raw material changes, process changes, and equipment modification, Particulate emission control by mechanical separation and electrostatic precipitation, wet gas scrubbing, gaseous emission control by absorption and adsorption, Cyclones, ESP, fabric filters and absorbers. Case Studies of thermal power plant and mining industries.

Unit –IV 7 Hrs

Water Pollution Control:

Characteristics of waste water, Physical treatment, pre-treatment, solids removal by setting and sedimentation, filtration centrifugation, coagulation and flocculation, Biological Treatment: Anaerobic and aerobic treatment biochemical kinetics, trickling filter, activated sludge and lagoons, aeration systems, sludge separation and drying

Unit –V 8 Hrs

Solids waste management:

Types of solid waste, composition and properties of solids waste, collection and transport methods, Material and energy recovery from solid waste, disposal - composting, landfill, briquetting / gasification and incineration. E-waste management Nuclear wastes: health and environment effects, sources and disposal methods. Chemical wastes: health and environmental effects, treatment and disposal: treatment and disposal by industry, off site treatment and disposal, treatment practices in various countries. Biomedical wastes: types of wastes and their control.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Define environment and its pollution.								
CO2:	Explain the various technologies to address the pollution problem.								
CO3:	Select the suitable pollution control and prevention methods for the given scenario.								
CO4:	Apply the engineering knowledge to prevent, mitigate and control the environmental								
	Pollution.								

Refere	ence Books
1	Environmental Pollution Control Engineering, C.S. Rao, 2 nd Edition (Reprint), 2015, New Age International, ISBN: 978-81-224-1835-4.
2	Waste Water Engineering Treatment Disposal Reuse, Metcalf and Eddy, 4 th Edition, 2003, Tata McGraw Hill, ISBN: 978-0071241403.
3	Pollution Control in Process Industries, S.P. Mahajan, 27 th Edition, 2012, Tata McGraw Hill, ISBN: 9780074517727.
4	Waste Management Practices: Municipal, Hazardous and Industrial, Pichtel J, 1 st Edition, 2005, CRC, ISBN: 9780849335259.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Experiential Learning is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	3	3	3	3	3	2	-	-	-	-	1	
CO2	3	3	3	3	1	1	1	-	-	-	-	1	
CO3	3	3	3	2	2	1	3	-	-	-	-	1	
CO4	3	3	3	2	1	2	3	-	-	-	-	1	

High-3: Medium-2: Low-1

Semester: VII										
UNMANNED AERIAL VEHICLES										
		(Gro	oup H: Global Elective)							
Course Code	:	18G7H01	CIE	:	100 Marks					
Credits: L:T:P:S	:	3:0:0:0	SEE	••	100 Marks					
Hours	:	39L	SEE Duration:	:	3Hrs					

Cou	rse Learning Objectives: The students will be able to
1	Get an overview of the history of UAV systems
2	Understand the importance of aerodynamics, propulsion, structures and avionics in the design of UAV
3	Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion systems, integration with manned systems
4	Comprehend the importance of guidance and navigation of a UAV

Unit-I	07 Hrs
Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unmanned aeria	l systems,
Overview of UAV Systems-System Composition, Classification of UAVs based on size, r	ange and
endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.	

Unit – II 08 Hrs

Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characteristics, Basic aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flapping wings, Airframe configurations-HTOL, VTOL and Hybrids.

Unit -III 08 Hrs

Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV (general introduction), Selection criteria for structure, Types of structural elements used in UAV their significance and characteristics.

UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Piston, Rotary, Gas turbine engines, electric or battery powered UAVs.

Unit -IV 08 Hrs

Payloads of UAVs: Non-dispensable Payloads- Electro-optic Payload Systems, Radar Imaging Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads.

Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehicles- Rail Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO Launch of UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute Recovery, VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery.

Unit -V 08 Hrs

UAV Navigation and Guidance Systems

Navigation, Dead Reckoning, Inertial, Radio Navigation, Satellite-Way point Navigation, UAV Guidance, Types of guidance, UAV communication systems, Ground control station, Telemetry, UAS future.

	Course Outcomes: At the end of this course the student will be able to:								
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs								
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs								
CO3	Determine and evaluate the performance of UAV designed for various Missions and applications								
CO4	Appreciate the guidance and navigation systems for enabling the versatility of UAV systems								

Ref	Ference Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4□
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition, 2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	2
CO3	1		3	3	-	-	-	-	-	-	-	2
CO4	3	3	3	3	-	2	1	2	-	-	-	2

High-3: Medium-2: Low-1

Semester: VII										
BIOINFORMATICS										
(Group H: Global Elective)										
Course Code	:	18G7H02	CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0:0	SEE	:	100 Marks					
Total Hours	:	39 L	SEE Duration	:	3.00 Hours					

- Course Learning Objectives: The students will be able to
- 1 Acquire the knowledge of biological database and its role in insilico research
- 2 Understand the essential algorithms behind the biological data analysis such as Dynamic programming, Dot plotting, Evolutionary and Clustering algorithms along with their implementation.
- 3 Use various tools and techniques for the prediction of linear & non-linear structures of both macro and micro molecules and study the dynamics of macromolecules and High Throughput Virtual Studies.
- 4 Perform annotation of unknown DNA and Protein sequences and explore the principles of molecular modelling
- 5 Apply the knowledge towards analyzing the sequences using programming languages and Drug development

Unit-I 08 Hrs

Biomolecules and Introduction to Bioinformatics:

Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy, Genes and Genomes. Introduction to Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological databases — Sequence, structure, Special Databases and applications - Genome, Microarray.

Unit – II 08 Hrs

Sequence analysis: Introduction, Types of sequence alignments, Pairwise sequence alignment, Multiple sequence alignment, Alignment algorithms Needleman & Wunch, Smith & Waterman and Progressive global alignment, Database Similarity Searching- Scoring matrices — BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next Generation Sequencing — Alignment and Assembly. **Molecular Phylogenetics:** Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation

Unit –III 09 Hrs

Predictive and structural bioinformatics: Gene prediction programs – ab initio and homology based approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. Predicting RNA secondary structure, Protein structure basics, structure visualization, comparison and classification. Protein structure predictive methods using protein sequence, Protein identity based on composition. Structure prediction - Prediction of secondary structure.

Unit –IV 07 Hr

PERL: Introduction to Perl, writing and executing a Perl program, Operators, Variables and Special variables. Object Oriented Programming in Perl–Class and object, Polymorphism, inheritance and encapsulation. Data Types – Scalar, Array and Associative array. Regular Expressions (REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.

Unit –V 07 Hrs

BioPERL: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence retrieval from Database and submission of sequence to online Database, Indexing and accessing local databases, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Parsing BLAST and FASTA results.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1	Demonstrate the knowledge of retrieval of the biological data in the essential formats and its									
	analysis.									
CO2	Analyse the gene, protein and RNA data to find the degree of similarities and identifying the									
	patterns									
CO3	Apply the drug designing methods for screening and inventing the new targets and drugs									
CO4	Predict the structure of a compound and design the molecule.									

Refere	nce Books
1.	Essential Bioinformatics, Jin Xiong, 2006, Cambridge University Press, ISBN: 978-05-216-00828.
2.	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

High-3: Medium-2: Low-1

Semester: VII							
INDUSTRIAL SAFETY AND RISK MANAGEMENT							
			(Gı	roup H: Global E	Elective)		
Course Code			18G7H03 CIE		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0	S	SEE	:	100 Marks
Total Hours		:	39 L	S	SEE Duration		3.00 Hours
Cou	rse Learning	g O	bjectives: The stu	idents will be able	to		
1 Select appropriate risk assessment techniques.							
2	2 Analyze public and individual perception of risk.						
3	Relate safety, ergonomics and human factors.						
4	Carry out risk assessment in process industries						

Unit-I 08 Hrs

Introduction: Introduction to industrial safety engineering, major industrial accidents, safety and health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard actuation, Actuation transition, Causal factors, Hazard recognition.

Unit – II 08 Hrs

Risk assessment and control: Individual and societal risks, Risk assessment, Risk perception, Acceptable risk, ALARP, Prevention through design.

Hazard Identification Methods: Preliminary Hazard List (PHL): Overview, methodology, worksheets, case study. Preliminary Hazard Analysis (PHA): Overview, methodology, worksheets, risk index, example.

Unit –III 08 Hrs

Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Process parameters, Guide words, HAZOP matrix, Procedure, Example. Failure Modes and Effects Analysis (FMEA): Introduction, system breakdown concept, methodology, example.

Unit –IV 08 Hrs

Application of Hazard Identification Techniques: Case of pressure tank, system breakdown structure, safety ontology, Accident paths, HAZOP application, risk adjusted discounted rate method, probability distribution, Hiller's model

Unit –V 07 Hrs

Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safety glasses, face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, types of foot PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical plant explosion and fire.

Course Outcomes: After completing the course, the students will be able to							
CO1:	Recall risk assessment techniques used in process industry.						
CO2:	Interpret the various risk assessment tools.						
CO3:	Use hazard identification tools for safety management.						
CO4:	Analyze tools and safety procedures for protection in process industries.						

Refer	ence Books
	Functional Safety in the Process Industry: A Handbook of practical Guidance in the
1	application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina,
	Lulu publication, ISBN:1291187235
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and
2	William M., 2005, Pensulvania ISA publication, ISBN:155617909X
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003,
	The University of alberta press, Canada, ISBN: 0888643942.
4	Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao,
4	4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	-	-	1	-	1	-

High-3; Medium-2; Low-1

	Semester: VII							
	WEB PROGRAMMING							
	(Group H: Global Elective)							
Cou	rse Code	:	18G7H04		CIE	:	100 Marks	
Credits: L:T:P		••	3:0:0		SEE	:	100 Marks	
Tota	Total Hours		39 L		SEE Duration	:	3.00 Hours	
Cou	Course Learning Objectives: The students will be able to							
1	1 Understand the standard structure of HTML/XHTML and its differences.							
2	2 Adapt HTML and CSS syntax & semantics to build web pages.							
3	3 Learn the definitions and syntax of different web programming tools such as JavaScript,							
	XML and Ajax to design web pages.							
4	Design and	de	velop interactive,	client-side, serv	er-side executable	we	b applications using	
	different techniques such as CSS, JavaScript, XML and Ajax.							

Unit-I 07 Hrs

Introduction to Web, HTML and XHTML:

Fundamentals of Web(Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox), XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links, Lists, Tables, Forms, Frames.

HTML 5: Core HTML attributes, headings, paragraphs and breaks, quotations, preformatted text, lists, horizontal rules, block-level elements, text-level elements The audio Element; The video Element; Organization Elements; The time Element, Syntactic Differences between HTML and XHTML.

Unit – II 08 Hrs

CSS (Cascading Style Sheet)

Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

The Basics of JavaScript:

Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements.

Unit –III 09 Hrs

JavaScript (continued):

Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts.

JavaScript and HTML Documents:

The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object.

Unit –IV 08 Hrs

Dynamic Documents with JavaScript:

Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements.

Introduction to PHP:

Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling; Cookies; Session Tracking.

Unit –V 07 Hrs

XML:Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets

Ajax: Overview of Ajax; Basics of Ajax: The Application; The Form Document; The Request Phase; The Response Document; The Receiver Phase.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic syntax and semantics of HTML/XHTML.
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style
	Sheet.
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and
	utilize the concepts of XML & Ajax to design dynamic web pages.
CO4:	Develop web based applications using PHP, XML and Ajax.

Refer	ence Books
1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013, ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

High-3: Medium-2: Low-1

Semester: VII								
SOLID WASTE MANAGEMENT AND STATUTORY RULES								
(Group H: Global Elective)								
Cou	rse Code	:	18G7H05		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours		:	39 L		SEE Duration	:	3.00 Hours	
Course Learning Objectives: The students will be able to								
1	Impart the kn	owl	edge of present met	hods of solid waste	management systen	n and	l to analyze the	
	drawbacks.							
2	Understand various waste management statutory rules for the present system.							
3	Analyze diffe	rent	elements of solid w	vaste management ar	nd design and develo	op re	cycling options	
	for biodegradable waste by composting.							
4	Identify haza	rdou	is waste, e-waste, p	lastic waste and bio	o medical waste and	d the	ir management	
	systems.							

Unit-I 08 Hrs

Introduction: Present solid waste disposal methods. Merits and demerits of open dumping, incineration, pyrolysis, composting, sanitary landfill. Scope and importance of solid waste management. Definition and functional elements of solid waste management.

Sources: Sources of Solid waste, types of solid waste, composition of municipal solid waste, generation rate, Problems.

Collection and transportation of municipal solid waste: Collection of solid waste- services and systems, Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to collection system.

Unit – II 08 Hrs

Composting Aerobic and anaerobic composting - process description, process microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.

Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site visit to landfill site.

Unit –III 08 Hrs

Hazardous waste management: Definitions, Identification of hazardous waste, Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016 with amendments. Site visit to hazardous landfill site

Unit –IV 08 Hrs

Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Biomedical waste management (Management & Handling Rules) 2016 with amendments. Site visit to hospital to observe biomedical waste collection and transportation system and visit to biomedical waste incineration plant.

Unit –V 07 Hrs

E-waste management: Definition, Components, Materials used in manufacturing electronic goads, Recycling and recovery integrated approach. e-waste (Management) Rules 2016 and amendments. Site visit to e- waste treatment plant.

Plastic waste management: Manufacturing of plastic with norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with amendments.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the current solid waste management system and statutory rules.
CO2:	Analyse drawbacks in the present system and provide recycling and disposal options for each
	type of waste in compliance to rules.
CO3 :	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management
	system.
CO4 :	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal
	waste management as per the rules laid by Ministry of Environment, Forest and Climate change.

Refere	ence Books :
1	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993,
1	McGraw hill publication. ISBN 978-0070632370
	Electronic waste management, R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC
2	Publication, ISBN 9780854041121
3	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change
3	Notification, New Delhi, 8 th April 2016
4	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016,
7	Ministry of Environment, Forest and Climate Change Notification, New Delhi, 04 th April, 2016.
5	Biomedical waste management (Management & Handling Rules) 2016,. Ministry of
	Environment & Forest Notification, New Delhi, amendment on 28th March, 2016.
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change
U	Notification, New Delhi, 23 rd March, 2016.
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of
/	Environment, Forest and Climate Change Notification, New Delhi, 27th March, 2018

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	2	1	-	1	-	2
CO2	2	2	2	2	-	1	2	1	-	-	-	-
CO3	1	-	2	2	-	1	2	1	-	1	-	-
CO4	2	-	-	3	-	1	2	1	-	-	-	1

High-3: Medium-2: Low

	Semester: VII IMAGE PROCESSING AND MACHINE LEARNING (Group H: Global Elective)										
Cou	Course Code : 18G7H06 CIE : 100 Marks										
Credits: L:T:P : 3:0:0											
Tota	Total Hours : 40 L SEE Duration : 3.00 Hours										
Cou	rse Learning O	bje	ectives: The	students will be able to							
1 Understand the major concepts and techniques in image processing and Machine Learning											
2 To explore, manipulate and analyze image processing techniques											
3 To become familiar with regression methods, classification methods, clustering methods.											
Demonstrate image processing and Machine Learning knowledge by designing and implementing algorithms to solve practical problems											

Unit-I 08 Hrs	
---------------	--

Introduction to image processing:

Introduction to image processing, Applications of image processing, Components of an image processing system, Fundamental steps in image processing, Image formation and representation, Color imagery, basic definitions, Pixels, Image resolution, PPI and DPI, Bitmap images, Lossless and lossy compression, Image file formats, Color spaces, Bezier curve, Ellipsoid, Gamma correction, Examples of zooming and shrinking in image processing Advanced image concepts.

Unit – II 08 Hrs

Basics of Python, Scikit image & Advanced Image Processing using Open CV:

Basics of python, variables & data types, data structures, control flow & conditional statements, uploading & viewing an image, Image resolution, gamma correction, determining structural similarities.

Unit –III 08 Hrs

Advanced Image processing using Open CV

Blending Two Images, Changing Contrast and Brightness Adding Text to Images Smoothing Images, Median Filter, Gaussian Filter, Bilateral Filter, Changing the Shape of Images, Effecting Image Thresholding, Calculating Gradients, Performing Histogram Equalization

Unit –IV 08 Hrs

Image Processing using Machine Learning

Feature mapping using SIFT algorithm, Image registration using the RANSAC algorithm, Image classification using Artificial Neural Networks, Image classification using CNNs, Image classification using machine learning Approaches.

Unit –V 08 Hrs

Real time use CASES

Exhaustive vs. Stochastic Search, Shapes, Contours, and Appearance Models. Mean-shift tracking; Contour-based models, finding palm lines, Face Detection / Recognition, Tracking movements.

Course	e Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Gain knowledge about basic concepts of Image Processing							
CO2:	Identify machine learning techniques suitable for a given problem							
CO3:	Write programs for specific applications in image processing							
CO4:	Apply different techniques for various applications using machine learning techniques.							

Refer	rence Books
1	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, 3 rd Edition, ISBN 978-81-317-2695-2.
2	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python, Himanshu Singh, 1 st Edition, Apress, ISBN:978-1-4842-4149-3
3	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer, 2008, ISBN: 978-0387-31073-2
4	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition, Prentice Hall India 2004, ISBN: 978-0136085928

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for assignment is 20. The total marks of CIE are 100.

Total CIE is 30(Q)+50(T)+20(EL)=100Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	-	-	-	-	-	-	1
CO2	-	3	-	1	2	-	-	1	2	-	-	1
CO3	3	-	2	1	3	-	-	1	1	1	-	1
CO4	3	3	3	3	2	-	-	1	1	1	-	1

High-3; Medium-2; Low-1

	Semester: VII											
	RENEWABLE ENERGY SOURCES AND STORAGE SYSTEM											
			(Gr	oup H: Global Elective	e)							
Co	ourse Code	:	18G7H07		CIE	••	100 Marks					
Cr	Credits: L:T:P : 3:0:0											
To	Total Hours : 39 L SEE Duration : 3.00 Hours											
C	ourse Learning	Ob	jectives: The stu	dents will be able to								
1	Understand Co	nce	pts of nonconven	tional energy sources ar	nd allied technological	ogy	required for					
	energy convers	sion	•									
2	2 Analyse the Basics of battery working and sizing of battery for a given application.											
3	3 Design aspects of solar and wind power systems.											
4												

UNIT-I 08 Hrs

Basics of Renewable Energy: Energy balance of the earth, Solar radiation, wind energy, geothermal energy.

Geothermal Energy – principles, technical description, heat supply by hydro-geothermal systems, heat supply by deep wells, geothermal generation, economic and environmental analysis.

Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification, Theory of Gasification, Gasifier and Their Classifications, Updraft, Downdraft and Cross-draft Gasifiers, Applications of Biomass Gasifier.

Tidal Energy: Introduction, Tidal Energy Resource, Tidal Power Basin, Advantages and Disadvantages of Tidal Power.

Unit – II 08 Hrs

Photo Voltaic Systems: PV Cell, Module and array; Equivalent electrical circuit, Open –circuit voltage and short circuit current, I-V and P-V curves, Array design, Peak power Tracking, System Components,

Grid Connected Solar PV Power System: Introduction to grid connected PV system, Configuration of Grid-connected solar PV system, Components of Grid –connected solar PV systems, Grid connected PV system Design for small power Applications, Grid-connected PV system design for power plants.

Unit -III 08 Hrs

Wind Power: Introduction, site selection, Advantages and Disadvantages, Wind power installations in the world.

Wind Speed and Energy: Speed and Power Relations, Power Extracted from the wind. Rotor-Swept Area, Air Density, Global Wind Patterns, Wind Speed Distribution, Weibull Probability, Distribution, Mode and Mean Speeds, Root Mean Cube Speed, Mode, Mean, and RMC Speeds, Energy Distribution, Digital Data Processing, Effect of Hub Height, Importance of Reliable Data, Wind Speed Prediction, Wind Energy Resource Maps.

Wind Power Systems: System Components, Tower, Turbine, Blades, Speed Control, Turbine Rating, Power vs Speed and TSR.

Unit –IV 08 Hrs

Wind Power Systems: Maximum Energy Capture, Maximum Power Operation Constant-TSR Scheme, Peak-Power-Tracking scheme, System-Design Trade-offs, Turbine Towers and Spacing, Number of Blades, Rotor Upwind or Downwind, Horizontal vs. Vertical Axis.

System Control Requirements: Speed Control, Rate Control.

Environmental Aspects: Audible Noise, Electromagnetic Interference (EMI), Effects on Birds.

Unit –V	07 Hrs
---------	--------

Energy storage

Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charging, Battery management

Flywheels: Energy Relations, Components, Benefits over battery

Other Storage devices: Superconducting magnetic energy storage, Compressed air, Pumped storage

hydropower, Hydrogen Energy storage

Course	Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Understand the concepts of power generation from various renewable sources.							
CO2:	Design the Size of the battery required for solar PV applications.							
CO3:	Design main components of solar and wind power systems.							
CO4:	Execute projects in renewable power generation.							

Refere	nce Books
1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt,
1	Wolfgang Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013),
	PHI, Learning private limited New Delhi ISBN: 978-81-203-4711-3
2	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition.
3	CRC Group ,Taylor and Francis group, New Delhi ,ISBN 978-0-8493-1570-1
4	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN
4	978-0-12-812902-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping						
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	2	3	2	-	-	-	-	-	1	-	1	
CO2	3	3	2	1	1	2	-	-	-	1	-	1	
CO3	3	2	2	2	2	2	2	1	-	1	-	1	
CO4	3	3	3	3	2	3	1	1	1	3	1	3	

High-3: Medium-2: Low-1

	Semester: VII											
	MEMS AND APPLICATIONS											
	(Group H: Global Elective)											
Co	ourse Code	:	18G7H08		CIE	••	100 Marks					
Cı	Credits: L:T:P : 3:0:0											
To	Total Hours : 39 L SEE Duration : 3.00 Hou						3.00 Hours					
Co	ourse Learning	Ot	jectives: The	students will be able to								
1	Understand the	e ru	diments of Mic	ero fabrication techniques.								
2 Identify and associate the various sensors and actuators to applications.												
3	3 Analyze different materials used for MEMS.											
4	Design applica	tio	ns of MEMS to	disciplines.								

Unit-I 06 Hrs

Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and microsystem products, Evolution of micro fabrication, Microsystems and microelectronics, Multidisciplinary nature of Microsystems, Design and manufacture, Applications of Microsystems in automotive, healthcare, aerospace and other industries.

Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acoustic, Chemical, Optical, Pressure, Thermal.

Unit – II 09 Hrs

Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and electrostatic forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and micropumps, microaccelerometers, microfluidics.

Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling in Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanics.

Unit –III 09 Hrs

Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materials, Silicon as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelectric Crystals, Polymers and packaging materials. Three level of Microsystem packaging, Die level packaging, Device level packaging, System level packaging. Interfaces in microsystem packaging. Essential packaging technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.

Unit –IV 08 Hrs

Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion Implantation, Diffusion, Oxidation, CVD,PVD-Sputtering, Deposition by Epitaxy, Etching, LIGA process: General description, Materials for substrates and photoresists, Electroplating and SLIGA process.

Unit –V 07 Hrs

Micro Sensors, Actuators, Systems and Smart Materials: An Overview

Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Fibre-optic sensors, Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable blood analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection, Micro-PCR Systems, Smart materials and systems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the operation of micro devices, micro systems and their applications.						
CO2:	Apply the principle of material science to sensor design.						
CO3:	Analyze the materials used for sensor designs.						
CO4:	Conceptualize and design micro devices, micro systems.						

Reference Books						
	1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata				
	1	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.				

2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015, Wiley Publications, ISBN-:978-81-265-2715-1.
3	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.
4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006, Wiley-INDIA, ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-		-	1	-	1
CO3	3	3	2	2	1	-	-		-	1	-	1
CO4	3	3	3	3	1	-	-		1	1	1	1

High-3; Medium-2; Low-1

	Semester: VII							
	PROJECT MANAGEMENT							
			(Gre	oup H: Global E	lective)			
Course Code		:	18G7H09		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours		:	39L		SEE Duration	:	3.0 Hours	
Cou	Course Learning Objectives: The students will be able to							
1	1 To understand the principles and components of project management.							
2	2 To appreciate the integrated approach to managing projects.							
3								

Unit-I	07 Hrs				
Introduction : What is project, what is project management, relationships	among portfolio				
management, program management, project management, and organizational pro-	ject management,				
relationship between project management, operations management and organi	zational strategy,				
business value, role of the project manager, project management body of knowled	ge.				
Unit – II	09 Hrs				
Organizational influences & Project life cycle: Organizational influences on project					
management, project state holders & governance, project team, project life cycle.					
Project Integration Management: Develop project charter, develop project management plan,					
direct & manage project work, monitor & control project work, perform integrated change control,					
close project or phase.					
Unit –III	09 Hrs				
Project Scope Management: Project scope management, collect requirements define scope, create					
WBS, validate scope, control scope.					
Project Time Management : Plan schedule management, define activities, sequence activities, estimate activity resources, estimate activity durations, develop schedule, control schedule.					

Unit –IV 07 Hrs

Project Cost management: Project Cost management, estimate cost, determine budget, control

costs.

Project Quality management: Plan quality management, perform quality assurance, control quality.

Unit -V 07 Hrs

Project Risk Management: Plan risk management, identify risks, perform qualitative risk analysis, perform quantitative risk analysis, plan risk resources, control risk.

Project Procurement Management: Project Procurement Management, conduct procurements, control procurements, close procurement.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the concepts, tools and techniques for managing large projects.							
CO2:	Explain various knowledge areas and process groups in the project management framework.							
CO3:	Analyze and evaluate risks in large and complex project environments.							
CO4:	Develop project plans for various types of organizations.							

Refer	ence Books
1	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5 th Edition, 2013, ISBN: 978-1-935589-67-9
2	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7 th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10 th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

Low-1 Medium-2 High-3

	Semester: VII						
	CYBER FORENSICS AND DIGITAL INVESTIGATIONS						
			(Gro	oup H: Global Elective)			
Cou	rse Code	:	18G7H10		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning (Obje	ectives: The student	s will be able to			
1 To provide an understanding Computer forensics fundamentals and comprehend the impact of							
cybercrime and forensics.							
2 Describe the motive and remedial measures for cybercrime, detection and handling.							
3 Demonstrate and investigate the use of Tools used in cyber forensics.							
4							у.

Unit-I 09 Hrs

Introduction to Cybercrime: Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, Who are Cybercriminals, Classifications of Cybercrimes, Cybercrime Era: Survival Mantra for the Netizens.

Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social Engineering, Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing.

Unit – II 08 Hrs

Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Handling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

Unit –III 07 Hrs

Tools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks. **Phishing and Identity Theft**: Introduction, Phishing, Identity Theft (ID Theft).

Unit –IV 08 Hrs

Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics, Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory: Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats, Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Techniques, Forensics Auditing, Anti-forensics.

Unit –V 07 Hrs

Cybercrime And Cyber Security: The Legal Perspectives-Introduction, Why Do We Need Cyber laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Interpret the basic concepts of cyber security, cyber law and their roles.						
CO2:	Articulate evidence collection and legal challenges.						
CO3:	Discuss tool support for detection of various attacks.						
CO4:	Demonstrate through use of proper tools knowledge on the cyber security, Cybercrime and						
	forensics						

Refere	ence Books :				
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives, Sunit				
	Belapure and Nina Godbole, , Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.				
Introduction to information security and cyber laws, Dr. Surya Prakash Tripathi, R					
2	Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.				
2	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J.				
3	Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 -1-118 84965 -1				
4	Cyber Forensics, Technical Publications, I. A. Dhotre, 1st Edition, 2016, ISBN-13: 978-				
4	9333211475				

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	-	-	-	-	-	-	3	1	-	-	
CO2	1	2	-	2	2	-	-	2	2	3	1	2	
CO3	2	3	-	2	2	2	-	2	3	2	-	-	
CO4	3	2	3	2	3	1	-	2	3	2	1	1	

High-3: Medium-2: Low-1

	Semester: VII									
	ROBOTICS AND AUTOMATION									
	(Group H: Global Elective)									
Co	ourse Code	:	18G7H11	CIE	:	100 Marks				
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks				
	otal Hours			SEE Duration	:	3.00 Hours				
Co	ourse Learning	g O	bjectives: The s	students will be able to						
1	Understand th	e c	oncepts of robot	tics and automation.						
2	Impart the know	owl	edge of robotic	programming and robotic operation control						
3										
4	4 Importance of automation manufacturing techniques and processing industries									
5										

Unit-I	06 Hrs
Introduction - Basics of kinematics, Anatomy of robot, Robot configuration, Robot joints	s, Sensors
and drive system, Control modes, Specification of robots, Robot programming methods.	
Unit II	00 Hrc

Robot Kinematics - Position and orientation of objects, Objects coordinate frame, Rotation matrix, Euler angles roll, pitch and yaw angles coordinate transformations, Joint variables and position of end effector, Homogeneous transformation.

D-H parameters and conventions, D-H matrix, Direct kinematic and inverse analysis of planar and 3 DoF robots.

Unit –III 10 Hrs

Trajectory planning - Introduction, Path versus trajectory, Joint-space versus Cartesian-space descriptions, Basics of trajectory planning, Joint-space trajectory planning, Third-order and Fifth-order polynomial trajectory planning.

Automation in Production Systems - Manufacturing support systems, Automation principles and strategies, Levels of Automation, Production Concepts and Mathematical models, Numericals.

Unit –IV 08 Hrs

Machine Vision - Object recognition by features, Basic features used for object identification, Moments, Template matching, Discrete Fourier descriptors, Computed Tomography (CT), Depth measurement with vision systems, Scene analysis versus mapping, Range detection and Depth analysis, Stereo imaging, Scene analysis with shading and sizes, Specialized lighting, Image data compression, Intraframe spatial domain techniques, Interframe coding, Compression techniques, Colour images, Heuristics, Applications of vision systems

Unit –V 06 Hrs

Flexible Manufacturing Systems - Introduction to FMS - concepts, integration in the data processing systems, FMS scheduling. Case studies.

 $\label{thm:material} \begin{tabular}{l} Material Handling systems - Conveyors - AGVs - industrial robots in material handling - Automated Storage and retrieval system. \end{tabular}$

Distributed data processing in FMS - Database Management System and their applications in CAD/CAM and FMS - distributed systems in FMS - Integration of CAD and CAM

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Understand the characteristics and working principle of robots.							
CO2:	Apply the related mathematical model to formulate the kinematics and trajectory planning							
	of industrial robot.							
CO3:	Analyse the machine vision for effective Flexible Manufacturing Systems.							
CO4:	Develop model and integrate drives for industrial robots and automation systems.							

Refer	ence Books							
1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3rd							
	Edition, New York, ISBN:006045931X							
2	John J. Craig, "Introduction to Robotics", Pearson Education International, 3rd Edition,							
2	ISBN:109876543, 1-13-123629-6							
2	Mikell P Groover, "Automation, Production Systems, and Computer-integrated							
3	Manufacturing", Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2							
4	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and							
4	Simulation", CRC Press, 1987, ISBN 9780824777180							

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	2	-	2
CO2	3	3	1	3	1	1	-	-	-	2	-	2
CO3	2	-	2	-	1	1	-	-	2	-	-	2
CO4	3	3	2	3	1	1	-	2	3	-	3	2

High-3: Medium-2: Low-1

	Semester: VII									
	SPACE TECHNOLOGY AND APPLICATIONS (GROUP H: GLOBAL ELECTIVE)									
Co	Course Code : 18G7H12 CIE : 100 Marks									
Cı	Credits: L:T:P :		3:0:0	SEE	:	100 Marks				
To	otal Hours	:	39 L	SEE Duration	:	3.00 Hours				
Co	ourse Learning	Ob	jectives: The students	s will be able to						
1	Define the eaconcepts.	rth	environment and its b	behavior, launching vehicles for satelli	tes	and its associated				
2	2 Analyze satellites in terms of technology, structure and communications.									
3	3 Use satellites for space applications, remote sensing and metrology.									
4	Apply the space technology, technology mission and advanced space systems to nation's growth.									

UNIT-I 08 Hrs

Earth's environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiation belts, Interplanetary medium, Solar wind, Solar- Earth Weather Relations.

Launch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic engines, Control and Guidance system, Ion propulsion and Nuclear Propulsion.

UNIT-II 07 Hrs

Satellite Technology: Structural, Mechanical, Thermal, Power control, Telemetry, Telecomm and Quality and Reliability, Payloads, Classification of satellites.

Satellite structure: Satellite Communications, Transponders, Satellite antennas.

UNIT-III 08 Hrs

Satellite Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, Multiple Access Techniques.

Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Education, Telemedicine, Satellite navigation, GPS.

UNIT-IV 08 Hrs

Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land use, Land mapping, geology, Urban development resource Management, and image processing techniques. **Metrology:** Weather forecast (Long term and Short term), weather modelling, Cyclone predictions, Disaster and flood warning, rainfall predictions using satellites.

UNIT-V 08Hrs

Space Missions: Technology missions, deep space planetary missions, Lunar missions, zero gravity experiments, space biology and International space Missions.

Advanced space systems: Remote sensing cameras, planetary payloads, space shuttle, space station, Inter-space communication systems.

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain different types of satellites, orbit and associated subsystems.						
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.						
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrology						
CO4	Study technology trends, satellite missions and advanced space systems.						

Refe	erence Books
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009,
	ISBN- 10 :0415465702.
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN: 9788120324015.
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0- 471- 37007 -9,
	ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009,
	ISBN: 108176496308.

CIE is executed by the way of Tests (T), Quizzes (Q) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	1	-
CO2	2	2	1	1	-	-	-	-	-	-	1	-
CO3	2	2	1	-	-	-	-	-	-	-	1	-
CO4	2	2	1	-	-	-	-	-	-	-	1	-

High-3: Medium-2: Low-1

	Semester: VII								
			INTRO	DDUCTION TO ASTROPHY (Group H: Global Elective)	SICS				
Co	ourse Code	:	18G7H13		CIE	:	100 Marks		
Cı	edits: L: T:P	:	3:0:0		SEE	••	100 Marks		
To	Total Hours		39 L		SEE	:	3.00 Hours		
					Duration				
Co	ourse Learning	; Ol	bjectives: The	students will be able to					
1	Familiarize w	ith 1	the various cel	estial bodies and the laws gove	rning their beha	vio	ſ		
2		e fi	undamental co	oncepts of relativity and establish	ish the relation b	etv	veen light and		
	matter								
3	3 Study the methods used to identify and investigate the nature of different stellar bodies								
4	Determine the characteristic features of any star by understanding its spectral properties								
5	Contemplate the complex system of the milky way galaxy and its components								

Unit-I 07 Hrs

Fundamental concepts in Astronomy:

Origin of the Universe, Major constituents of the universe, Cosmic Microwave Radiation (CMR) background, Geocentric Universe, Retrograde Motion of planets, Brief introduction to the Copernican Revolution, Positions of the Celestial Sphere: Altitude-Azimuth Coordinate System, Equatorial Coordinate System, Solar System, Planets - laws of motion of planets, inner planets, outer planets,

Unit – II 08 Hrs

Theory of Special Relativity:

Galilean Transformations, Failure of Galilean Transformations, Lorentz Transformations, Derivation, Time & Space in Special Relativity, Momentum & Energy in Relativity, Doppler Effect for light (Red & Blue Shift), The equivalence principle, the principle of minimal gravitational coupling, Schwarzschild spacetime, Past-Present-Future (Light Cone diagram).

Unit –III 08 Hrs

Stellar Astrophysics:

Blackbody radiation, Connection between Color and Temperature, Stellar Parallax, Magnitude Scale, Life cycle of stars (Birth, Life & Death), Hertzsprung-Russel Diagram, Classification of Binary Stars, Mass Determination using Visual Binaries, Eclipsing Spectroscopic Binaries, Formation of Spectral Lines, Schrodinger's time-dependent and independent equations, Boltzmann-Saha Equation, Chandrashekar's Limit, black holes (qualitatively).

Unit –IV 08 Hrs

Light and Matter:

Dispersion of light (Prism & Grating), Spectral Lines, de-Broglie's Wavelength and Frequency, Heisenberg's Uncertainty Principle, Broadening of Spectral lines

Spectral Characterization of Stars:

Description of the Radiation Field, Stellar Opacity, Transfer Equation, Profile of Spectral Lines, Optical Telescopes, Radio Telescopes (Case Studies)

Unit –V 08 Hrs

Galaxy Astronomy:

The Milky way Galaxy, Counting the Stars, Historical Models, Differential & Integrated Star Counts, Extrasolar planets, Methods of detection of extrasolar planets, Distance to the Galactic Centre, Galactic Coordinate System, Classification of Galaxies, Introduction to Elliptical galaxies, Irregular galaxies, Dwarf galaxies.

Course Ou	tcomes: After completing the course, the students will be able to					
CO1:	Contemplate the nature of our universe by identifying and studying the behavior of					
	celestial bodies.					
CO2:	Explain the usefulness of the theory of relativity, light and matter in establishing the					
	fundamental behavior of stellar bodies.					
CO3:	Utilize various techniques to discover the components of our universe and conclude					
	their celestial properties.					
CO4:	Interpret the spectral properties of any astronomical body to illustrate its properties.					
CO5:	Inspect the milky way galaxy to identify the proponents and their characteristic					
	features.					

Ref	Ference Books
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2 nd Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press, ISBN- 9780521016278.
3	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-0935702057.
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-0387949437.
5	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st Edition, 1983, Wiley, ISBN: 9780471873167.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 20.

Total CIE is 30(Q) + 50(T) + 20(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1		
0	1	2	3	4	5	6	7	8	9	0	1	2		
CO1	3	3	1	2	-	-	1	-	1	-	-	2		
CO2	3	2	2	2	-	-	1	-	1	-	-	2		
CO3	2	3	1	2	2	1	1	-	2	1	-	2		
CO4	3	3	1	2	2	1	2	-	3	3	-	2		

High-3, Medium-2, Low-1

	Semester: VII										
	MATERIALS FOR ADVANCED TECHNOLOGY AND SPECTROSCOPIC										
	CHARACTERIZATION										
				(Group H: Global Elective)							
Co	ourse Code	:	18G7H14		CIE	:	100 Marks				
Cı	Credits: L:T:P		3:0:0	S	SEE	:	100 Marks				
To	otal Hours	:	40L	S	SEE Duration	:	3.00 Hours				
Co	ourse Learning	O	bjectives: Th	e students will be able to							
1	Apply the bas	ic c	concepts of C	nemistry to develop futuristic n	naterials for high-	tec	h applications				
	in the area of	Eng	gineering.								
2	Impart sound	kn	owledge in tl	ne different fields of material	chemistry so as t	o a	pply it to the				
	problems in engineering field.										
3											
				oply knowledge gained in solvi							

Unit-I	08 Hrs

Coating and packaging materials

Surface Coating materials:

Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.

Properties required in a pigment and extenders.

Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, molybdate orange, chrome green, ultramarine blue, iron blue, cadmium red.

Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders.

Developments in new polymers such as dendrimers, biopolymers & biodegradable polymers.

Packaging materials:

Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminum, tin, paper, plastics, composites.

Pharmaceutical products: Injectables and tablet packaging materials.

Unit – II 08 Hrs

Adhesives

Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One-part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength-adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.

Unit –III 08 Hrs

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication. - Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes. Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Unit –IV 08 Hrs

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

Unit –V 08 Hrs

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent –magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	CO1: Identify sustainable engineering materials and understand their properties.									
CO2:	Apply the basic concepts of chemistry to develop futuristic materials for high-tech									
	applications in different areas of engineering.									
CO3:	Analyze and evaluate the specific application of materials.									
CO4:	Design the route for synthesis of material and its characterization.									

Refer	rence Books
1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38 th Edtion, Tata McGraw-Hill
1	Publishing Company Limited-2015, ISBN: 9780074517963
2	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-
2	1-4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
2	Spectroscopy of organic compounds by P.S.Kalsi, New Age International (P) ltd, Publisher,
3	2005, ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill
4	Publishing Company Limited, 1996, ISBN :0074622382 9780074622384.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	-	-	-	-	-	-	-	-	-	-	-		
CO2	3	-	-	-	-	2	2	-	-	1	-	-		
CO3	-	3	-	2	-	-	-	-	-	-	-	-		
CO4	-	-	3	-	-	1	1	-	-	-	ı	1		

High-3: Medium-2: Low-1

	Semester: VII											
	APPLIED PSYCHOLOGY FOR ENGINEERS											
	(Group H: Global Elective)											
Course	Course Code : 18G7H15 CIE : 100 Marks											
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total l	Hours	:	39 L		SEE Duration	:	3.00 Hours					
Course	e Learning	Ob	jectives: The	students will be able to								
1	To apprec	iate	human behav	ior and human mind in the cor	ntext of learner's i	mn	nediate society					
	and enviro											
2	To unders	tano	d the importan	ce of lifelong learning and per	sonal flexibility t	o st	stain personal					
	and Profes	ssio	nal developme	ent as the nature of work evol	ves.							
3	To provid	e st	udents with ki	nowledge and skills for buildi	ing firm foundation	on f	or the suitable					
	engineerin	ng p	rofessions.									
4	To prepare	e st	udents to func	tion as effective Engineering	Psychologists in	an I	ndustrial,					
	Governmental or consulting organization.											
5	To enable	st	udents to use	psychological knowledge,	skills, and values	s in	occupational					
	pursuits in	ı a v	variety of setti	ngs that meet personal goals a	and societal needs	S.	_					

Unit-I 07 Hrs

Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the Society: Today's Perspectives (Branches of psychology). Psychodynamic, Behavioristic, Cognitive, Humanistic, Psychological Research and Methods to study Human Behavior: Experimental, Observation, Questionnaire and Clinical Method.

Unit – II 09 Hrs

Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of Intelligence. Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.

Unit –III 09 Hrs

Personality: Concept and definition of personality, Approaches of personality- psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type approaches. Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Scales and Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Assessment. Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control

Unit –IV 07 Hrs

Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. Distance learning, Psychological consequences of recent developments in Information Technology. Type A and Type B Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.

Unit –V 07 Hrs

Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning (Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the application of psychology in engineering and technology and develop a route									
	to accomplish goals in their work environment.									
CO2:	Define learning and compare and contrast the factors that cognitive, behavioral, and									
	Humanistic theorists believe influence the learning process.									
CO3 :	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,									
	resulting in their enhancement and apply effective strategies for self-management and self-									
	improvement.									
CO4:	Apply the theories into their own and others' lives in order to better understand their									
	personalities and experiences.									

Refer	ence Books
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
3	3. Organizational Behaviour, Stephen P Robbins Pearson Education Publications, 13 th Edition, ISBN – 81-317 – 1132 – 3
4	4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

High-3: Medium-2: Low-1

	Semester: VII											
	ADVANCED COURSE IN ENTREPRENEURSHIP											
	(Group H: Global Elective)											
Cour	ourse Code : 18G7H16 CIE : 100 Marks											
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total	Hours	:	39 L		SEE Duration	:	3.00 Hours					
Cour	se Learning C	bje	ectives: The stude	ents will be able to								
1	Acquire add	itio	nal knowledge ar	nd skills for developing ear	ly customer tractio	n in	to a repeatable					
	business.											
2	Learn the to	ols	and methods for a	chieving sustainable growt	h, such as by refini	ng t	heir product or					
	service and l	ous	iness models, bui	lding brand strategy, makin	g a sales and finan	cial	plan					
3	Develop bra	and	strategy and cr	eate digital presence, Dev	elop channel stra	tegy	for customer					
	outreach.											
4	Leverage so	cia	media to reach	new customers cost effect	ively, Develop stra	ateg	ies to increase					
	revenues and	revenues and expand markets										

Unit-I	07 Hrs				
Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product I	Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product Life Cycle?				
Assess your Start-up's attractiveness					
Competition & testing: Conduct a Competition Analysis Identify your Competitive Advantage					
Unit – II	06 Hrs				
Market Validation: Market validation, Customer Usability Interviews, Analyzing Customer feedbac	k				
Delivering Value: Enlist marketing channels, Identify partners for your venture, Create a Sales p	olan				
Unit –III	07 Hrs				
Customer acquisition & growth channels: Types of Marketing Channels: Targeting Blogs,	Customer acquisition & growth channels: Types of Marketing Channels: Targeting Blogs,				
Unconventional PR, Search Engine Marketing, Search Engine Optimization, Social ads, display	ads and				
existing platforms, Email Marketing, Viral Marketing, Affiliate programs, Magazines, Newspaper, R	Radio and				
TV ads, Offline Ads, Trade Shows					
Unit –IV	10 Hrs				
Business model: Reiterate and Refine your Business Model Canvas, Choose the right business model for your start-					
up					
Financial Planning: Forecasting sales and revenue projections, Cash-flow statement					
Unit –V	09 Hrs				
Pitching: Create your funding plan, Build your pitch deck and compose your pitch.					

Experiential Learning: Student teams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Develop strategies to increase revenues and expand markets, Explore licensing and franchising					
	for business expansion.					
CO2:	Leverage technologies and platforms for growth stage companies, Develop key metrics to track					
	progress.					
CO3:	Basics of registering a company, Understanding business regulations and compliances.					
CO4:	Advanced concepts of business finance, Financial planning.					
Refer	rence Books					
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.					
2	Entrepreneurship. Roy, R., 2012. Oxford University Press					
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International					
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial					
4	Modern Classics					

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

Semester VIII							
MAJOR PROJECT							
Cour	se Code	:	18CHP81		CIE	:	100 Marks
Credits: L:T:P			0:0:16		SEE	:	100 Marks
Total Hours : 32 SEE Duration : 3.00 Hou				3.00 Hours			
Cour	se Learning Ol	bje	ctives: The stu	dents will be able to			
1.	Acquire the ability to make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.						
2.	2. Acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific audience in both written and oral forms.						
3. Acquire collaborative skills through working in a team to achieve common goals.							
4.	Self-learn, reflect on their learning and take appropriate action to improve it.						
5.	Prepare sched	dul	es and budgets	and keep track of the progr	ess and expenditu	re.	

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

Ш	Students are tree to choose their project partners from within the program or any other program.
	Each student in the team must contribute towards the successful completion of the project. The
	project may be carried out In-house / Industry / R & D Institution.
	The project work is to be carried out by a team of two to four students, in exceptional cases where
	a student is placed in a company and offered an internship through the competitive process or
	student is selected for internship at national or international level through competitive process,
	the student can work independently.
	The students are allowed to do either a project for full 5 days in the industry or full 5 days in the
	<u>college.</u>
	In case the project work is carried out outside Bengaluru, such students must be available during
	Project Evaluation process scheduled by the respective departments and they must also interact

with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's(Centre of Excellence) identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in *NPTEL* from the discipline of *Humanities and Social Sciences*, *Management, Multidisciplinary and Design Engineering*. The course chosen could be either of *4w/8w/12w* duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. *The same will be considered as one of the components during project evaluation of phase 2 and phase 5.*

Project Evaluation:

☐ Continuous monitoring of project work will be carried out and cumulative evaluation will be done.

	The students are required to meet their internal guides once in a week to report their progress
	in project work.
	Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project
	batch and the same has to be discussed with the Internal Guide regularly.
	In case of <i>Industry project</i> , during the course of project work, the internal guides will have
	continuous interaction with external guides and will visit the industry at least twice during the
	project period.
	For CIE assessment the project groups must give a final seminar with the draft copy of the
	project report.
	The presentation by each group will be for 20-30 minutes and every member of the team needs
	to justify the contributions to the project.
	The project team is required to submit Hard copies of the detailed Project Report in the
	prescribed format to the department.
П	For CIE 50% weightage should be given to the project guide and 50% weightage to the project
	evaluation committee.
	Before the final evaluations the project group is required to produce a No dues certificate from
	Industry, Central Library and Department.

Co	Course Outcomes of Major Project:				
1	Apply knowledge of mathematics, science and engineering to solve respective engineering				
	domain problems.				
2	Design, develop, present and document innovative/multidisciplinary modules for a complete				
	engineering system.				
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long				
	learning to follow technological developments.				
4	Function effectively as an individual, or leader in diverse teams, with the understanding of				
	professional ethics and responsibilities.				

CIE Assessment:

The following are the weightings given for the various stages of the project.

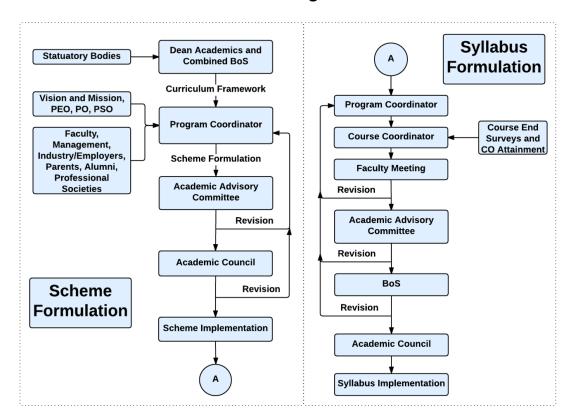
1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%

SEE Assessment:

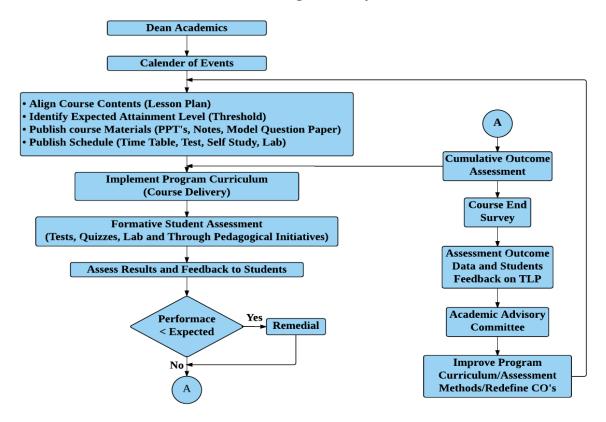
The following are the weightages given during Viva Examination.

1.	Written presentation of synopsis	10%	
2.	Presentation/Demonstration of the project		30%
3.	Methodology and Experimental Results & Discussion	30%	
4.	Report		10%
5.	Viva Voce		20%

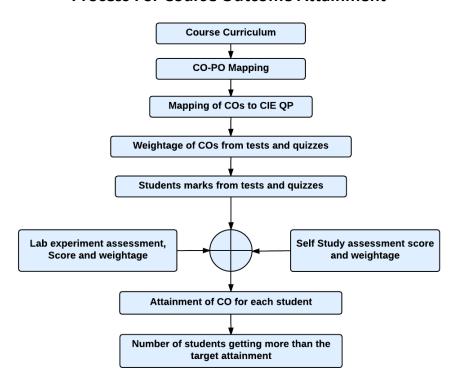
Calendar of Events for the Project Work:

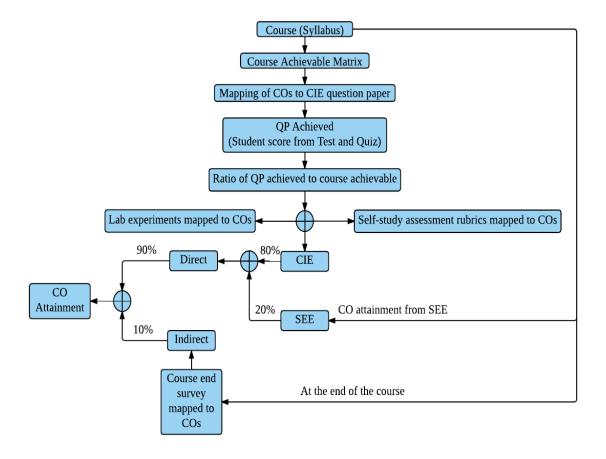

Week	Event
Beginning of 7 th	Formation of group and approval by the department committee.
Semester	
7 th Semester	Problem selection and literature survey
Last two weeks of	Finalization of project and guide allotment
7 th Semester	

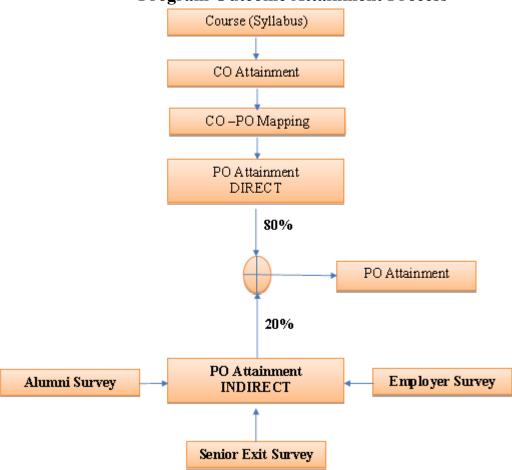
II Week of 8 th	Synopsis submission and preliminary seminar
Semester	
III Week	First visit of the internal guides to industry (In case of project being carried out
	in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by
	Department project Committee and guide for internal assessment. Finalization of CIE.


Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CIE	Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%
Project Evaluation II	25%	Project Demo / Presentation	30%
Project Evaluation III	25%	Methodology and Results Discussion	30%
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%
Total	100	Total	100


Curriculum Design Process


Academic Planning And Implementation


Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.