

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V &VI Semesters

2018 SCHEME

CHEMICAL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V &VI Semesters

2018 SCHEME

DEPARTMENT OF CHEMICAL ENGINEERING

DEPARTMENT VISION

Imparting quality technical education in Chemical Engineering to promote leadership in research, innovation and sustainable technology through team work.

Department Mission

- Impart quality education in basic and applied areas of Chemical Engineering.
- .Enable students and faculty to achieve proficiency in Chemical Engineering through innovative teaching and state of the art laboratories.
- Encourage faculty and students to make career in research through development of novel process and products.
- Develop inclusive technologies with a focus on sustainability.
- Collaborate with industries and research institute to cater social needs.
- Inculcate leadership qualities, entrepreneurial skills, societal and ethical vaues in students and faculty.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1: Exhibit knowledge of basic sciences, concepts and principles of Chemical Engineering.

PEO 2: Comprehend, analyze, design and implement engineering systems with a focus on research, innovation and sustainability.

PEO 3: Work in multidisciplinary team and cater to the needs of process industries with appropriate safety, health and environmental regulations.

PEO 4: Demonstrate effective communication skills, leadership qualities and develop into successful entrepreneurs.

PSO	Description
PSO1	Gain knowledge of Chemical Engineering fundamentals and demonstrate problem
	formulation capabilities
PSO2	Analyse and solve engineering problems with a focus on environment and sustainability
PSO3	Contribute to multidisciplinary research using relevant Chemical Engineering tools

PROGRAM SPECIFIC OUTCOMES (PSOs)

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	PE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	9. ME Mechanical Engineering			
10.	EE Electrical & Electronics Engineering			
11.				
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PY	Physics		
21.	СҮ	Chemistry		
22.	MA	Mathematics		

ABBREVIATIONS

INDEX

	V Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18HEM51	Introduction to Management & Economics	1			
2.	18CH52	Mass Transfer I	3			
3.	18CH53	Chemical Reaction Engineering (Theory & Practice)	5			
4.	18CH54	Process Dynamics and Control (Theory & Practice)	7			
5.	18CH55	Instrumental Methods of Analysis	10			
	GROU	JP A: PROFESSIONAL ELECTIVES(MOOC Courses				
6.	18CH5A1	Fluidization Engineering	12			
7.	18CH5A2	Polymers: Concepts, Properties, Uses and Sustainability	14			
8.	18CH5A3	Principles of Downstream Techniques in Bioprocess	16			
9.	18CH5A4	Fundamentals of Micro and Nanofabrication	18			
10.	18CS5A5	The Joy of Computing using Python	20			
11.	18G5BXX	GROUP B: GLOBAL ELECTIVES	GE-B1 to GE-B38			

		VI Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18HSI61	Intellectual Property Rights and Entrepreneurship	58
2.	18CH62	Chemical Equipment Design and Drawing (Theory & Practice)	60
3.	18CH63 (Theory & Practice)		62
4.	18CH64	Minor Project	64
		GROUP C: PROFESSIONAL ELECTIVES	
5.	18CS6C1	Internet of Things (Common to all branches)	66
6.	18CH6C2	Industrial safety and Risk Management	68
7.	18CH6C3	Biochemical Engineering	70
8.	18CH6C4	Food Technology	72
		GROUP D: PROFESSIONAL ELECTIVES	
9.	18CS6D1	Machine Learning	74
10.	18CH6D2	Biofuel Engineering	76
11.	18CH6D3	Heterogeneous Reaction Engineering	78
12.	18CH6D4	Chemical Process Integration	80
13.	18G6EXX	GROUP E: GLOBAL ELECTIVES	GE-E1to GE-E35
	•	•	
14.	18HSE68	Professional Practice – II (Employability Skills and Professional Development of Engineers)	117

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) CHEMICAL ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME						
Sl. No	Course Code	Course Code Course Title	BoS	Credit Allocation			Total
				L	Т	P	Credits
1.	18HEM51	Introduction to Management & Economics	HSS	3	0	0	3
2.	18CH52	Mass Transfer I	СН	3	0	0	3
3.	18CH53	Chemical Reaction Engineering (Theory & Practice)	СН	3	1	1	5
4.	18CH54	Process Dynamics and Control (Theory & Practice)	СН	3	0	1	4
5.	18CH55	Instrumental Methods of Analysis	СН	3	0	0	3
6.	6. 18CH5AX Group A: Professional Electives (MOOC Courses) CH					0	3
7.	18G5BXX	3	0	0	3		
	Total Number of Credits						24
		Total number of Hours/Week		21	0	7.5	

	GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)						
Sl. No.							
1.	18CH5A1	Fluidization Engineering	12 Weeks				
2.	2. 18CH5A2 Polymers: Concepts, Properties, Uses and Sustainability						
3.	3. 18CH5A3 Principles of Downstream Techniques in Bioprocess						
4.	18CH5A4	Fundamentals of Micro and Nanofabrication	12 Weeks				
5.	18CS5A5	The Joy of Computing using Python	12 Weeks				

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) CHEMICAL ENGINEERING

		SIXTH SEMESTER CREDIT	Г SCI	IEM	E		
SI.			DC	Cred	it Allo	cation	Total
No.	Course Code	Course Title	BoS	L	Т	Р	Credits
1.	18HSI61	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	3
2.	18CH62	Chemical Equipment Design and Drawing (Theory & Practice)	СН	3	0	1	4
3.	18CH63	Mass Transfer II (Theory & Practice)	CH	4	0	1	5
4.	18CH64	Minor Project**	CH	0	0	2	2
5.	18CH6CX	Elective C : Professional Electives	СН	3	0	0	3
6.	18CH6DX	Elective D: Professional Electives	CH	3	0	0	3
7.	7. 18G6EXX Elective E: Global Elective Resp .BoS					0	3
8.	B.18HSE68Professional Practice-IIHSS					1	1
	·	Total Number of Credits					24
		Total number of Hours/Week		18	2	10+2 .5	

	GROUP C: PROFESSIONAL ELECTIVES						
Sl. No.	Sl. No. Course Code Course Title						
1.	18CS6C1	Internet of Things	03				
	1005001	(Common to all branches)					
2.	18CH6C2	Industrial safety and Risk Management	03				
3.	18CH6C3	Biochemical Engineering	03				
4.	18CH6C4	Food Technology	03				

	GROUP D: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title	Credits			
1.	18CS6D1	Machine Learning	03			
		(Common to 9 branches)				
2.	18CH6D2	Biofuel Engineering	03			
3.	18CH6D3	Heterogeneous Reaction Engineering	03			
4.	18CH6D4	Chemical Process Integration	03			

		V Semester	
		GROUP B: GLOBAL ELECTIVE	
Sl. No.	Course Code	Course Title	Credits
1.	18G5B01	Fundamentals Of Aerospace Engineering	03
2.	18G5B02	Nanotechnology	03
3.	18G5B03	Fuel Cell Technology	03
4.	18G5B04	Intelligent Systems	03
5.	18G5B05	Remote Sensing And Geographic Information System	03
6.	18G5B06	Automotive Electronics	03
7.	18G5B07	e-Mobility	03
8.	18G5B08	Smart Sensors & Instrumentation	03
9.	18G5B09	Operations Research	03
10.	18G5B10	Management Information Systems	03
11.	18G5B11	Automotive Mechatronics	03
12.	18G5B12	Telecommunication Systems	03
		Courses offered by Science Departments and HSS Board	·
13.	18G5B13	Quantum Mechanics Of Hetero/Nano Structures	03
14.	18G5B14	Thin Films And Nanotechnology	03
15.	18G5B15	Advances In Corrosion Science And Technology	03
16.	18G5B16	Computational Advanced Numerical Methods	03
17.	18G5B17	Mathematics For Machine Learning	03
18.	18G5B18	Engineering Economy	03

		VI Semester	
		GROUP E: GLOBAL ELECTIVE	
Sl. No.	Course Code	Course Title	Credits
1.	18G6E01	Aircraft Systems	03
2.	18G6E02	Bio Inspired Engineering	03
3.	18G6E03	Sustainable Technology	03
4.	18G6E04	Graph Theory	03
5.	18G6E05	Disaster Management	03
6.	18G6E06	Wearable Electronics	03
7.	18G6E07	Energy Auditing and Management	03
8.	18G6E08	Virtual Instrumentation & Applications	03
9.	18G6E09	Systems Engineering	03
10.	18G6E10	Introduction To Mobile Application Development	03
11.	18G6E11	Industrial Automation	03
12.	18G6E12	Mobile Network System And Standards	03
		Courses offered by Science Departments and HSS Board	·
13.	18G6E13	Thin Film Nano Device Fabrication Technology	03
14.	18G6E14	Chemistry of advanced energy storage devices for E-Mobility	03
15.	18G6E15	Advanced Statistical Methods	03
16.	18G6E16	Mathematical Modelling	03
17.	18G6E17	Foundational course in Entrepreneurship	03

	V Semester							
	INTRODUCTION TO MANAGEMENT & ECONOMICS							
~	~ .	-		THEORY)				
Co	urse Code	:	18HEM51/61		CIE	:	100 Marks	
Cre	edits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tot	Total Hours: 39LSEE Duration: 03					03 Hrs		
Co	urse Learning C	bje	ectives: The students w	rill be able to			•	
1	Understand the	eve	olution of management	thought.				
2	2 Acquire knowledge of the functions of Management.							
3								
4	Understand the	co	ncepts of macroeconom	nics relevant to dif	fferent organizationa	al co	ntexts.	

Unit-I	07 Hrs
Introduction to Management: Management Functions, Roles & Skills, Management	History –
Classical Approach: Scientific Management & Administrative Theory, Quantitative	Approach:
Operations Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: S	Systems &
Contingency Theory.Case studies	
Unit – II	09 Hrs
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans	, Strategic
Management Process, Corporate & Competitive Strategies. Case studies	
Organizational Structure & Design: Overview of Designing Organizational Structu	re: Work
Specialization, Departmentalization, Chain of Command, Span of Control, Central	zation &
Decentralization, Formalization, Mechanistic & Organic Structures. Case studies	
Unit –III	09 Hrs
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Need	s Theory,
McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary T	neories of
Motivation: Adam's Equity & Vroom's Expectancy Theory. Case studies	
Managers as Leaders: Behavioral Theories: Ohio State & University of Michigan Studies	·
Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's S	
Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership	ship. Case
studies	
Unit –IV	07 Hrs
Introduction to Economics: Importance of Economics, Microeconomic	
Macroeconomics, Theories and Models to Understand Economic Issues, An Overview of	
Systems.Demand, Supply, and Equilibrium in Markets for Goods and Services,Price El	
Demand and Price Elasticity of Supply, Elasticity and Pricing, Changes in Income and Prices	Affecting
Consumption Choices, Monopolistic Competition, Oligopoly.	1
Unit –V	07Hrs
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic proc	· · ·
,components of GDP,the Labor Market,Money and banks,Interest rate,Macroeconomic n	
overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The	
model, The complete Keynesian model, The neo-classical synthesis, Exchange rate determine	nation and
the Mundell-Fleming model	

Refe	erence Books
1	Stephen Robbins, Mary Coulter & NeharikaVohra, Management, Pearson Education
	Publications, 10th Edition, ISBN: 978-81-317-2720-1.
2	James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, ISBN: 81-203-0981-2.
3	Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Edition,ISBN:978-1- 947172-34-0

4	Dwivedi.D.N, Macroeconomics: Theory and Policy, McGraw Hill Education; 3rd
	Edition,2010,ISBN-13: 978-0070091450.
5	Peter Jochumzen, Essentials of Macroeconomics, e-book(www.bookboon.com), 1st Edition.,
	2010, ISBN:978-87-7681-558-5.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain the principles of management theory & recognize the characteristics of an organization.
CO2:	Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.
CO3:	Select & Implement the right leadership practices in organizations that would enable systems orientation.
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconomics.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

50% weightage should be given to case studies. Total CIE is 30(Q) + 50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

	CO-PO Mapping											
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1			3		3	3	3	3	3
CO2	3	2						1	2	3	2	2
CO3			1			2		2	2	3	3	3
CO4	2		2			3	1	3	2	2	3	3

				Semester: V				
			MA	SS TRANSFER I				
(Theory)								
Cou	rse Code	:	18CH52		CIE	:	100 Marks	
Cree	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	al Hours	:	39L+0T		SEE Duration	:	3 Hours	
Cou	rse Learning (ectives: The studen	ts will be able to	1		I	
1	<u> </u>	, i			cesses for fluid mixt	ires.		
2					lication to separation			
	processes		-		-		-	
3			ability to design and					
4	Know the pri	nci	ple and operations o	of mass transfer equ	ipment's			
			U Diffusion in Fluids	J nit-I			08 Hrs	
and	calculation of	dif	fusivities in station		ion, N and J type flu plar, counter diffusi			
coef	ficients, theorie	es o	f mass transfer.				1	
			Uninsfer and Crystall	nit — II			08 Hrs	
curre Crys	ent. processes, stallization: So	NT olul	U and HTU concept	ts. Im curve, theories	s operations in co-cu of crystallization Ma			
	,		,	nit –III			08 Hrs	
Basi			ling towers-classific	ation and design.	ulb temperature Hu	ımic		
			U	nit –IV			07 Hrs	
	ilibria, drying r		curves, batch and c eriod for batch and		quipments, mechani	sm o	of drying, and	
			U	nit –V			08 Hrs	
Adso	A		of adsorption, indus perations and calcul		ngle and multistage	cros	ss current and	
Cou			fter completing the		nts will be able to			
CO1			ic concepts of the m					
	CO2: Understand the principles of mass transfer operations							
CO3: Estimate factors governing the transfer operation								
CO4	1: Identify the	e fa	ctors that influence	the mass transfer of	perations			
Dafe	manaa Daalea							
<u>Refe</u> 1		-		r Operation", Mc G	raw Hill, New York,	, 3 rd	edition, 1980,	
ISBN: 0070651760 2 Mc Cabe and Smith W L, "Unit Operations in Chemical Engineering", Mc Graw Hill, New York, 7 th edition, 2007, ISBN: 0072848235.								

4thedition, 2000. ISBN: 8120326148.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-1	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	1	-	1	-	-	-	-	-	1
CO2	3	2	-	-	-	-	1	-	-	1	-	-
CO3	2	2	-	1	-	1	-	-	-	-	1	-
CO4	2	2	-	1	-	-	-	1	1	-	-	-

Semester: V									
	CHEMICAL REACTION ENGINEERING								
			(T)	heory & Practi	ce)				
Cou	rse Code	:	18CH53		CIE	:	100+50 Marks		
Credits: L:T:P		:	3:1:1		SEE	:	100+50 Marks		
Total Hours			39L+13T+30P		SEE Duration		03+03 Hours		
Cou	rse Learning (Dbj	ectives: The studen	ts will be able t	0				
1	Understand th	ie s	cope and purpose o	f reaction engin	eering				
2	Learn the me	tho	ds of analysis of kin	etics of single a	and multiple reaction	ons			
3	Understand the procedure for design of reactors								
4	Plan experim	enta	al work to get design	n data					
5	Understand a	nd	model non-ideality	in reactors					

Unit-I	07 Hrs			
Introduction: classification of reactions, rate, order, molecularity. Single reactions: Integra	l method,			
differential method of analysis, constant volume, variable volume reactions, half-life, total	l pressure			
method. Temperature dependent term and kinetic modelling.				
Unit – II	08 Hrs			
Reactor Design: Type of reactors, Design of batch, plug flow and mixed flow ideal reac	ctors both			
constant volume and variable volume reactions, space time, mean residence time.				
Unit –III	08 Hrs			
Multiple reactor systems: Size comparison of reactors, Analysis of different types of idea	l reactors			
in series and parallel combination, Design of combination of reactors, optimum combi	nation of			
reactors.				
Unit –IV	08 Hrs			
Multiple reactions: Kinetics of series, parallel, series-parallel combination and reversible	reactions,			
Design of ideal batch, plug flow and mixed flow reactors for series and parallel reactions.				
Unit –V	08 Hrs			
Residence Time Distribution : Non-ideality and its causes, Residence Time Distribution studies, E				
and F curves, mean residence time, segregated model, tanks in series model, axial dispersion	on model.			

Laboratory Component

_	v l
1	Batch Reactor-Equimolar
2	Plug Flow Reactor.
3	Mixed Flow Reactor
4	Residence Time Distribution in Packed Bed Reactor
5	Residence Time Distribution in Tubular vessel
6	Residence Time Distribution in Constantly Stirred Tank Reactor.
7	Semi Batch Reactor
8	Batch Reactor-Non-equimolar
9	Temperature effect on kinetics
10	Reactors in series
11	Fluidised Bed Reactor
12	Adiabatic Reactor
-	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Recall the fundamentals, terminology and basic principles in reaction engineering						
CO2:	Analyze batch, plug flow and mixed flow reactors						
CO3:	Interpret reactor data for kinetics and for reactor design						
CO4:	Design ideal reactors for single and multiple reaction						

Reference Books							
1	Chemical Reaction Engineering, Octave Levenspiel, 3rd Edition, 2004, ISBN 9780471254						
2	Elements of Chemical Reaction Engineering, H.Scott Fogler, 5th Edition, 2016, ISBN 9780133887822						
3	Chemical Engineering Kinetics, J M Smith, 3rd Edition, 1981, ISBN 9780070587106						

Objective type questions for 20 marks covering the complete syllabus. Part B consists of five main **CIE** is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1								
CO2	3	3	1	2								
CO3	2	2	1	3							1	
CO4	3	3	3	2		2						

PROCESS DYNAMICS AND CONTROI (Theory & Practice)		
Course Code:18CH54CIE	:	100+50 Marks
Credits: L:T:P : 3:0:1 SEE	:	100+50 Marks
Total Hours:39L+30PSEE Duration	:	03+03 Hours
Course Learning Objectives: The students will be able to		
Course Learning Objectives: The students will be able to1Formulate dynamic models based on fundamental laws and analy	tically so	lve linear dynamic
models of first and second order system	lically so	nve intear dynamie
 2 Understand the different modes of control system and component 	s of cont	rol system
3 Analyze the response of controllers for various types of inputs		5
4 Determine the stability of a closed-loop feed-back control system		
Unit-I		8 Hrs
First order Systems: Transfer functions, transient response, Forcing fu	nctions,	physical examples
of first order systems: mercury in glass thermometer, liquid level syste		ng process in tanks
and stirred tank reactors, Linearization of non-linear first order systems		
Unit – II Second order Systems: Examples of second order systems: U-tube m Overdamped, critically damped and terms for second order under dam		
lag Unit –III		07 Hrs
Controllers: Controllers, components of a control system, closed loop a Transfer functions for two position, proportional, Proportional +Reset (P+I), Proportional + Rate (P+D), Proportional + Reset +Rate of Final Control element: actuators, valve body, valve characteristics	-	
Unit –IV		08 Hrs
		ansfer function for
Closed Loop Systems: Control System, servo and regulator problem, C single-loop systems and multi loop control system, overall transfer fur and load change.		
Closed Loop Systems: Control System, servo and regulator problem, C single-loop systems and multi loop control system, overall transfer fur and load change.		
Closed Loop Systems: Control System, servo and regulator problem, C single-loop systems and multi loop control system, overall transfer fur and load change. Transient response of simple control systems		08 Hrs
Closed Loop Systems: Control System, servo and regulator problem, C single-loop systems and multi loop control system, overall transfer fur and load change. Transient response of simple control systems Unit –V Stability: Concept of Stability, Stability criterion, Routh Herwitz test for		08 Hrs ty, Root Locus
Closed Loop Systems: Control System, servo and regulator problem, C single-loop systems and multi loop control system, overall transfer fur and load change. Transient response of simple control systems	or stabilit	ty, Root Locus
Closed Loop Systems: Control System, servo and regulator problem, C single-loop systems and multi loop control system, overall transfer fur and load change. Transient response of simple control systems Unit –V Stability: Concept of Stability, Stability criterion, Routh Herwitz test for nethod. Frequency Response:Bode diagrams for first, second order systems and	or stabilit	ty, Root Locus

List of experiments:

1	Time constant determination and response to step change of single tank system: First order
2	Time constant determination and response to step change of non-interacting tanks in series

3	Time constant determination and response to step change of interacting elements in series
4	Time constant determination and response to step change of thermometer: First order
6	Study of ON/OFF controller for level process
7	Analysis of a closed loop response for a level process analyzer
	(P, PI, PID controllers)
8	Analysis of a closed loop response for a Pressure controller (P, PI, PID controllers)
9	Analysis of a closed loop response for a Temperature controller (P, PI, PID controllers)
10	Effect of Gain (Kc) and Band width
11	Control Valve Characteristics
12	Controller Tuning

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Recall the concepts of Laplace transforms and first & second order systems					
CO2:	Compute transfer functions for first, second order and control systems					
CO3:	CO3: Analyze the response of first & second order systems and controllers for various inputs					
CO4:	CO4: Determine the overall transfer function of single and closed loop control system and					
	evaluate the stability of control systems					

Refere	nce Books
1	Process system Analysis and Control: Steven E. LeBlanc, Donald R. Coughanowr, Third Edition, 2017, McGraw Hill, ISBN- 978-1259098437
2	Chemical Process Control: George Stephanopoules, First edition, 2015, Pearson Education, ISBN- 978-9332549463
3	Coulson and Richardson's Chemical Engineering: Richardson J. F. Et. Al, 4th Edition, 2006, Elsevier, ISBN 978-8131204528
4	Process modeling, simulation and Control for Chemical Engineers: Luyben, 2ndEdition, 2013, McGraw Hill Education, 978-9332901681
5	Process Dynamics and Control; <u>Seborg, Edgar, Mellichamp, Doyle</u> ; 3rd Edition, Wiley, 2013, ISBN- 978-8126541263

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks

covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and

V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2							
CO2	3	3										1
CO3	3	3	3		2			2				
CO4	3	3	2	2	3							

Low-1 Medium-2 High-3

	Semester: V						
	INSTRUMENTAL METHODS OF ANALYSIS						
				(Theory)			
Cour	rse Code	:	18CH55		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours		:	39L		SEE Duration	:	3 Hrs.
Cou	rse Learning (Obj	jectives: The stud	lents will be able to)		
1	1 Use suitable technique for analysis						
2	2 Interpret results of analysis using various instrumental methods						
3							

UNIT-I	
General Introduction to Spectroscopy: Types of spectroscopy, representation of a	08 Hrs
spectrum, nature and interaction of electromagnetic radiation, energies corresponding	
to various kinds of radiations, atomic and molecular transitions, selection rules,	
spectral width, factors influencing positions and intensity of spectral lines.	
Electronic Spectroscopy (Absorption Spectroscopy): Quantitative aspects of	
absorption measurements - Beer's law and its limitations, terminology associated with	
electronic spectroscopy, types of absorption bands and theoretical interpretation, effect	
of solvent and structure on lmax, Instrumentation for Qualitative and Quantitative	
analysis, structure determination.	
UNIT-II	
Infrared Spectroscopy: Theory of IR absorption, types of vibrations, theoretical	08 Hrs
number of fundamental nodes of vibrations and group frequencies, factor affecting the	
group frequencies and band shapes. Instrumentation - FITR Instrument and its	
advantages, sample handling techniques. Qualitative applications of IR.	
Applications of IR to structural elucidation of sample organic molecules.	
UNIT-III	
Flame Photometry and Atomic Absorption Spectroscopy: Introduction, principle,	08 Hrs
flames and flame spectra, variation of emission intensity with flame, metallic spectra	
in flame, flame ground, role of temperature on absorption emission and fluorescence.	
Comparative study of flame emission spectroscopy (FES) and Atomic absorption	
spectroscopy (AAS). Application – Qualitative and	
Quantitative determination of alkali and alkaline earth metals.	
UNIT-IV	1
Nephelometry and Turbidometry: Theory, effect of concentration, particle size and	08 Hrs
wavelength on scattering instruments, Instrumentation and applications of	
Nephelometry and Turbidometry.	
Polarography: Theory of classical polarography, polarographic measurements,	
polarograms, polarographic currents, current and concentrations relationship, factors	
influencing the diffusion currents half wave potential instrumentation and applications.	
UNIT-V	
Chromatography: General description, definitions, terms and parameters used in	07 Hrs
chromatography, classification of chromatographic methods, working principle,	
Instrumentation and applications of high pressure liquid chromatography (HPLC), Gas	
chromatography (GC).	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO 1	Recollect the basic principles of spectroscopy and chromatography;					
CO 2	Interpret and communicate an analytical result					
CO 3	Identify suitable technique for analysis.					

CO 4	Formulate analytical	procedure to characterize	samples
------	----------------------	---------------------------	---------

Ref	erence Books				
1.	R.M. Silverstein and W.P. Webster; Spectrometric Identification of organic				
	compounds;Wiley & Sons; 6thEdition; 1999; ISBN 0-471-13457-0.				
2.	Ewing G.W; Instrumental methods of Chemical Analysis; Mc Graw Hill International;				
	1985;ISBN:07-085210-3				
3.	3. Chatwal Anand; Instrumental Methods of Chemical Analysis; Himalaya Publishing				
	House;1980; ISBN: 81-8318-083-3				
4.	Skoog, D.A."Principles of Instrumental Analysis", 3rdEdition, Saunders college, 1985; ISBN				
	:0-03-001229-5				

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

				Semester: V					
			FLUI	DIZATION ENGI	NEERING				
	(Gro	up A: PROFES	SSIONAL ELECTI	VES, MOOC COU	RSE			
Cou	Course Code:18CH5A1CIE Marks:100								
Credits: L:T:P		:	3:0:0		SEE Marks	:	100		
Total Hours:39LSEE Duration:Online Exam									
Cou	rse Learning	Obj	jectives: The stu	dents will be able to					
1.	Understand	the l	basic principles	of fluidisation pheno	mena				
2.	Acquire kno	wle	dge on flow patt	erns in a fluidised be	ed				
3.	Solve indust	rial	problems concer	rning the fluidised st	ate				
4.	Model two p	has	e and three phas	e systems					
5.	Do research	in n	nultiphase syster	n in chemical and al	lied programs				

Flow pattern of fluidization system: Flow patter, flow pattern transition, flow pattern map, Friction pressure drop and its model to analyze, Solid movement, mixing, segregation and staging. Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor. Unit – III Bubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Munit – IV Munit – IV Murit – IV Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Unit – I	8 Hrs
Characteristics of solids: Classification of solids; Flow characteristics and its outline in the differe types of fluidization. Unit – II 8 Hrs Flow pattern of fluidization system: Flow patter, flow pattern transition, flow pattern map, Friction pressure drop and its model to analyze, Solid movement, mixing, segregation and staging. Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor. Unit – III 8 Hrs Bubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Introduction: The phenomenon of fluidization; Advantages and disadvantages of fluid	ized beds;
types of fluidization.Unit – II8 HrsFlow pattern of fluidization system: Flow patter, flow pattern transition, flow pattern map, Friction pressure drop and its model to analyze, Solid movement, mixing, segregation and staging.Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor.Unit – III8 HrsBubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds.Unit – IV8 HrsAttrition:Attrition mechanism and its analysis by modelMass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling.7 HrsHeat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Industrial applications of fluidized beds.	
Unit – II8 HrsFlow pattern of fluidization system: Flow patter, flow pattern transition, flow pattern map, Friction pressure drop and its model to analyze, Solid movement, mixing, segregation and staging.Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor. Unit – III8 HrsBubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds.Unit – IV8 HrsMitter IV8 HrsMitter III8 HrsBubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds.Unit – IV8 HrsMitter IV8 HrsUnit – IV8 HrsMitter IV8 HrsMitter IV8 HrsBubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds.Unit – IV8 HrsMitter IVMitter IVMitter IVPhenomena:Unit – IVMitter IVMitter IVMitter IVIVMass transfer phenomena: </td <td>Characteristics of solids: Classification of solids; Flow characteristics and its outline in th</td> <td>e different</td>	Characteristics of solids: Classification of solids; Flow characteristics and its outline in th	e different
Flow pattern of fluidization system: Flow patter, flow pattern transition, flow pattern map, Friction pressure drop and its model to analyze, Solid movement, mixing, segregation and staging. Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor. Unit – III Bubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	types of fluidization.	
pressure drop and its model to analyze, Solid movement, mixing, segregation and staging. Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor. Unit – III 8 Hrs Bubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Unit – II	8 Hrs
Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor. Unit – III 8 Hrs Bubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Flow pattern of fluidization system: Flow patter, flow pattern transition, flow pattern map,	Frictional
Unit – III 8 Hrs Bubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	pressure drop and its model to analyze, Solid movement, mixing, segregation and staging.	
Bubbling fluidized beds:Gas dispersion and gas interchange in bubbling beds, mixing characteristic Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Gas distribution: Type of gas distributors in small and large scale industries, Design of dist	ributor.
Entrainment and elutriation from fluidized beds. Unit – IV 8 Hrs Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Transfer phenomena: Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Unit – III	8 Hrs
Unit – IV8 HrsAttrition:Attrition mechanism and its analysis by modelMass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in twand three phase system and modelling.Unit – V7 HrsHeat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Bubbling fluidized beds: Gas dispersion and gas interchange in bubbling beds, mixing chara	ucteristics
Attrition:Attrition mechanism and its analysis by model Mass transfer phenomena:Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Entrainment and elutriation from fluidized beds.	
Mass transfer phenomena: Particle to gas mass transfer phenomena and its analysis by model in tw and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Unit – IV	8 Hrs
and three phase system and modelling. Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Attrition: Attrition mechanism and its analysis by model	
Unit – V 7 Hrs Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	Mass transfer phenomena: Particle to gas mass transfer phenomena and its analysis by mo	del in two
Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modelling	and three phase system and modelling.	
	Unit – V	7 Hrs
D	Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modellin	ıg
Design of Huidized ded reactors: Design for physical operation, catalytic and non-catalytic systems	Design of fluidized bed reactors: Design for physical operation, catalytic and non-catalytic	systems

Course	Course Outcomes: After completing the course, the students will be able to				
CO 1:	Understand the fluidization behavior in fluidized bed				
CO 2:	Evaluate the characterization of particles in fluidization regimes				
CO 3:	Develop models for two phase and three phase systems				
CO 4:	Design fluidized bed reactors in chemical industries				

Refer	rence Books:
1.	D. Kunii and O. Levenspiel, Fluidization Engineering, Butterworth, 1991,
2.	D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory description, Elsevier Science & Technology Books, 1993
3.	L.G. Gibilaro, Fluidization-dynamics, Butterworth-Heinemann, 2001
4.	S. K. Majumder, Hydrodynamics and Transport Processes of Inverse Bubbly Flow, 1 st edition. Elsevier, Amsterdam ,2016

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	1
CO2	1	-	1	-	-	-	-	-	-	-	-	1
CO3	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	2	2	-	1	-	-	1	1	1	-	2

				Semester: V				
				FS, PROPERTIES, U				Y
6		(Gr		CSSIONAL ELECTI		URS	1	
	rse Code	:	18CH5A2		CIE Marks	:	100	
	lits: L:T:P	:	3:0:0		SEE Marks	:	100	-
	l Hours	: 01-3	39L		SEE Duration	:	Online	Exam
		Ů		idents will be able to				
6.	Study the fur	ndar	mentals and defi	nitions on polymers a	nd its properties.			
7.	Acquire kno	wle	dge of polyelect	rolyte, composites, co	polymers and blen	ds.		
8.	Evaluate the	Me	chanical and die	electric properties of v	iscosity polymers a	and ł	olends.	
9.	Understand t	he c	concepts of adhe	sives, paints, coating	and polymer proce	sses		
10.	Learn the ad	vano	ced thermal char	racterization and biod	egradation studies	on p	olvmer.	
					8	r		
				TT •4 T				0.11
τ.,	1 (° D 1		N 1 1 4	Unit – I cture and synthesis an	11 • 4			8 Hrs
in po State blene	olymers, Optica es in environn ds, copolymers	al ap nent s an	pplications; Glas :: Copolymers, d composites. P	talline and liquid cryst ss transition. Blends, Microstructu olymer additives; Ble	e in blends and c	copo	lymers,	Properties of
and o	composites in	recy	cling	Unit – III				8 Hrs
Mec	hanical proper	ties	of polymers. F	Physical and chemical	aging Conducting	, pol	vmers I	
	lucting propert		or polymens. I	ngstear and enemiear	uging, conducting	5 Por	<i>yey</i>	leieeune une
Poly	mers at differe	ent to	emperatures:Vis	coelasticity in polyme	ers; Damping			
				Unit – IV				8 Hrs
Recy comp Poly	vele, Value ac posites. mer processin	lditi g: C	ion, Upcycle, d Cutting, crushing	ner packaging, Diffus owncycle Polymer g and grinding. Paints eric materials in nature	interfaces, Comp and coatings, Adh	oatib	ilizers in	n blends and
	- , , = ~ - ,		, z e z j m	Unit – V				7 Hrs
chara	acterization of	pol	ymers.	Aicroplastics, Therma		of p	olymers	

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Recall the basic concepts in Polymer
CO 2:	Understanding the states in environment and interactions in polymers
CO 3:	Demonstrate the process and properties of polymers.
CO 4:	Experimental techniques and evaluation of polymers
Referen	ce Books:
1.	Polymer Science and Technology, JR Fried, 1st edition, 2014, Prentice Hall, ISBN: 10-0137039557

2.	Material Science of Polymers for Engineers, Tim A. Oswald, George Menges, 3rd Revised edition,
	2012, Hanser Publications, ISBN: 978-1-56990-514-2
3.	Introduction to Polymers, Robert Joseph Young and PA Lovell, 2 nd Edition, 1991, Chapman and
	Hall London, ISBN: 0-412-30640-9
4.	Hand book of Polymer Science and Technology V-I, M.H.Ferry/A.V.Becker, 7 th edition 2012,
	CBS Publishers and Distributors, ISBN: 81-239-1132-7.
5.	Polymer Science, V.R.Gowarikar, N.V.Viswanathan, Jayadev Sreedhar, 2012, New Age
	International Pvt.Ltd, ISBN: 0-85226-307-4.
6.	Text Book of Polymer Science, Fried W.Billmeyer, J.R 3 rd Edition, 2005, Wiley Inter Science,
	ISBN: 0471-82834.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	1
CO2	1	-	1	-	-	-	-	-	-	-	-	1
CO3	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	2	2	-	1	-	-	1	1	1	-	2

				Semester: V					
	PRINCIPLES OF DOWNSTREAM TECHNIQUES IN BIO PROCESS								
		(Gr	oup A: PROFE	SSIONAL ELECTI	<u>VES, MOOC COU</u>	JRS	E)		
Cou	Course Code:18CH5A3CIE Marks:100								
Credits: L:T:P		:	3:0:0		SEE Marks	:	100		
Tota	Total Hours:36LSEE Duration:Online Exam								
Cou	rse Learning	Obj	ectives: The stu	dents will be able to					
1.	Understand	the i	mportance of pu	rification technology	for bio products in i	indu	strial scale		
2.	Comprehene	d va	rious primary pu	rification techniques	for bio products				
3.	Learn purific	catio	on Techniques fo	or isolation of product	s from complex biol	logi	cal mixtures		
4.	Impart know drying for pu	•		al separation techniqu	ues of distillation, e	xtra	ction, adsorption and		
5.	Apply the kr	ıow	ledge towards ad	lvanced techniques for	r purification of bio	logi	cal products		

Unit – I	7 Hrs
Introduction to downstream techniques, Mass balance, Heat Balance, flow sheet, Cos	ting Physical and
chemical principles in Downs stream, Problems in Mass balance, flow sheet Cell Brea	akage
Unit – II	8 Hrs
Solid Liquid Separation, Solid Liquid separation-problems, Pre-treatment and Filters,	Adsorption
Unit – III	7 Hrs
Liquid-Liquid Extraction, Reverse micellar and aqueous two phase extraction	
Unit – IV	8 Hrs
Membranes, Chromatography	

Course Outcomes: After completing the course, the students will be able to						
CO 1	Understand the concepts separation processes and carryout material and energy balances					
CO 2	Explain the principles of various separation techniques					
CO 3	Analyze the various separation techniques and select the best technique for the separation.					
CO 4	Design various separation equipments					

Referen	ice Books:
1.	Bioseparation: Downstream processing for Biotechnology, Belter, P.A. and Cussler, E.L. Hu, W.S (1988), Wiley, New York.
2.	Bioseparation Engineering: Principles, Practice and Economics, Ladisch, M.R., (2001), Wiley, Interscience.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	1
CO2	1	-	1	-	-	-	-	-	-	-	-	1
CO3	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	2	2	-	1	-	-	1	1	1	-	2

	Semester: V								
	FUNDAMENTALS OF MICRO AND NANOFABRICATION								
	(Gro	up A: PROFES	SIONAL ELECTIV	ES, MOOC COUR	SE			
Cou	rse Code	:	18CH5A4		CIE Marks	:	100		
Crec	lits: L:T:P	:	3:0:0		SEE Marks		100		
Tota	l Hours	:	39L		SEE Duration	:	Online Exam		
Cou	rse Learning (Obj	ectives: The stud	lents will be able to					
1.	Work in clea	n ro	oom, make substra	ates for further proce	ssing				
2.	Deposition of	of n	anomaterials on v	various substrates for	electronic Application	ons			
3.	3. Fabricate nano devices applicable for electronic applications								
4.	Make the complex chips for electronic applications								
5.	Apply nanon	nate	rials for solar cel	ls					

Unit – I	9 Hrs					
Substrate and Cleaning: Introduction, substrate, Introduction to clean room.						
Additive Processing: Contamination and surface cleaning, Advanced cleaning techniques,						
DefectsDiffusion, Diffusion Advanced Concepts, Ion Implantation						
Additive Processing: Native film Ion Implantation, Native Film advanced concepts, Def	fects at					
Si/SiO2						
Chemical Vapor Deposition: Basics, Precursor Transport, Types of CVD Equipment, Nucleat	ion and					
Growth, Other Details						
Unit – II	8 Hrs					
Material Deposition: Atomic layer deposition, Physical Vapor Deposition: Evaporation, sputt	ering					
Mettalisation and Optical Lithography: Mettalisation, Contact resistance, Electromigration	on and					
Epilogue, Basics of pattern transfer, Basics of Optical Lithography Resist Process 1, Resist Pr	ocess 2					
Unit – III	9 Hrs					
Optical Lithography: Contact and Proximity printing, Stepper and Scanner, surface reflection						
Projection Lithography: Image formation basics, Image formation in photo resist						
Optical Lithography and E beam Lithography:						
Optical Lithography: Mask Technology, Lithography process technology glossary, Res	olution					
enhancement						
Electrobeam Lithography: Basics, Resist process, Emerging lithography techniques						
Unit – IV	8 Hrs					
Wet Etching: Etching Figures of merit, wet etching basics, wet etching recipes						
Dry Etching: Plasma Basics, Plasma etching Basics, Plasma tool configuration, etch mechanism,						
etch chemistry						
Chemical Mechanical polish and Design for Manufacturability: Basics, Tool and Process, Design						
Manufacturability 1, 2 and case study						
Unit – V	5 Hrs					
Process Integration, PV Integration, CMOS Integration, CMOS process for photonics application						

Course Outcomes: After completing the course, the students will be able to							
CO 1:	Work with various nano fabricating equipments in a clean room						
CO 2:	Process the substrates for making nanodevices						
CO 3:	Design Silicon Solar cells, nanodevices for electronic applications						
CO 4:	Develop modules with electron deposition						

Reference Books:

1.	Nanofabrication Fundamentals And Applications, Ampere A Tseng, 1st February 2008,
	World Scientific, ISBN: 9789812700766

2.	Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set, Marc J. Madou,
	Published July 12, 2011 by CRC Press, ISBN 9780849331800
3.	Nano- and Microfabrication for Industrial and Biomedical Applications, 2nd Edition, Regina
	Luttge, Hardcover ISBN: 9780323378284, eBook ISBN: 9780323389280

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	1
CO2	1	-	1	-	-	-	-	-	-	-	-	1
CO3	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	2	2	-	1	-	-	1	1	1	-	2

Semester: V									
	THE JOY OF COMPUTING USING PYTHON								
	(0	Gro	up A: PROFES	SSIONAL ELECTIV	'ES, MOOC COUR	SE			
Cou	Course Code : 18CS5A5 CIE Marks : 100								
Credits: L:T:P :			3:0:0		SEE Marks		100		
Tota	l Hours	:	39L		SEE Duration	:	Online Exam		
Coui	rse Learning (Obj	ectives: The stu	idents will be able to					
1.	Understand v	vhy	Python is a use	ful scripting language	for developers.				
2.	2. Learn how to use lists, tuples, and dictionaries in Python programs.								
3.	3. Define the structure and components of a Python program.								
4.	Develop cost	-ef	fective robust ap	plications using the la	test Python trends an	nd t	echnologies		

Unit – I	8 Hrs
Motivation for Computing, Welcome to Programming!!, Variables and Expressions : Design	your own
calculator, Loops and Conditionals : Hopscotch once again. Lists, Tuples and Conditionals :	Let's go on
a trip, Abstraction Everywhere : Apps in your phone.	
Unit – II	8 Hrs
Counting Candies : Crowd to the rescue, Birthday Paradox : Find your twin, Google Transla	te : Speak
in any Language, Currency Converter : Count your foreign trip expenses.	_
Unit – III	8 Hrs
Monte Hall : 3 doors and a twist, Sorting : Arrange the books, Searching : Find in seconds, S	ubstitution
Cipher : What's the secret !!, Sentiment Analysis : Analyse your Facebook dataPermutations	: Jumbled
Words,Spot the similarities : Dobble game	
Unit – IV	8 Hrs
Count the words : Hundreds, Thousands or Millions, Rock, Paper and Scissor : Cheating not	allowed !!,
Lie detector : No lies, only TRUTH, Calculation of the Area : Don't measure, Six degrees of	separation,
Image Processing : Fun with images	•
Unit – V	7 Hrs
Tic tac toe : Let's play, Snakes and Ladders : Down the memory lane, Recursion : Tower	of Hanoi,
Page Rank : How Google Works !!	

Page Rank :	How	Googl	e Works !!

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	xplore and apply the concept of python to solve real world problems.								
CO 2:	Design Classes and establish relationships among Classes for various applications from problem definition.								
CO 3:	Develop applications using google translator and gaming application.								
CO 4:	Implement real time application such as browser automation, NLP, Image processing etc using python								

Refere	Reference Books:								
1.	Head First Python, Paul Barry,10th Edition,2016, O'Reilly, ISBN 978-9352134823.								
2.	Python Cookbook: Recipes for Mastering Python 3, David Beazley, Brian K. Jones, 9 th Edition, 2017, O'Reilly, ISBN 978-1449340377.								
3.	Python: The Complete Reference, Martin C Brown, 7 th Edition, 2018, McGraw Hill Education, ISBN 978-9387572942.								

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	1	-	-	1	-	-	-	2
CO2	3	3	2	1	1	-	-	1	-	-	-	2
CO3	3	3	3	2	1	-	-	2	-	-	-	2
CO4	3	3	3	2	1	-	-	2	-	-	-	2

	Semester: V									
	FUNDAMENTALS OF AEROSPACE ENGINEERING									
	(GROUP B: GLOBAL ELECTIVE)									
Com	(Theory) Course Code : 18G5B01 CIE : 100 Marks									
		:		•		:				
Cred	lits: L:T:P	:	3:0:0			:	100 Marks			
Hou	rs	:	39L	SI	EE Duration	:	3.00 Hours			
Cou	rse Learning	g O	bjectives: To enable	the students to:						
1	Understand	l th	e history and basic pri	inciples of aviation						
2	Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion									
3	Comprehend the importance of all the systems and subsystems incorporated on an air vehicle									
4	Appraise th	ne s	ignificance of all the	subsystems in achieving a succ	cessful flight					

Unit-I	08 Hrs						
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosphere and its							
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an							
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard						
Atmospheric Properties.							
Unit – II	08 Hrs						
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Type	s of drag,						
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclar	ure, Basic						
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	lg.						
Unit -III	07 Hrs						
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Brayton Cycle,							
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	engines,						
Comparative merits and demerits of different types Engines.	-						
Unit -IV	09 Hrs						
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics	, Kepler's						
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.							
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rock	ets: Solid,						
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific	Impulse,						
Exhaust Velocity, Simple Problems on rocket performance.	•						
Unit -V	07 Hrs						
Aerospace Structures and Materials: Introduction, General types of construction, Monocod	jue, Semi-						
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	_						
Course Outcomes: At the end of this course the student will be able to:							

Course	Course Outcomes: At the end of this course the student will be able to:							
CO1:	Appreciate and apply the basic principles of aviation							
CO2:	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and							
GO2	aircraft materials during the development of an aircraft							
CO3:	Comprehend the complexities involved during development of flight vehicles.							
CO4 :	Evaluate and criticize the design strategy involved in the development of airplanes							

]	Reference Books									
	-	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN								
	I	9780071086059.								
		Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:								
2	1118174208, 9781118174203.									

	3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
-		Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
	4	978-1-85617-932-4

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

Semester: V									
	NANOTECHNOLOGY								
			(GROUP B:	: GLOBAL ELEC	CTIVE)				
				(Theory)					
Cour	rse Code	:	18G5B02		CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks		
Tota	l Hours	:	39L		SEE Duration	••	3.00 Hours		
Cour	rse Learning ()bj	ectives: The student	ts will be able to					
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	inthesize and		
	characterize t	he	nanoparticles.						
2	Learn about	Na	ano sensors and th	heir applications ir	n mechanical, elect	rica	l, electronic,		
	magnetic, che	emi	cal fields.						
3	Apply the con	nce	pt of nanotechnolog	y in sensing, transdu	icing and actuating r	nec	hanism.		
4 Design the nanoscale products used in multidisciplinary fields.									
. <u> </u>									
			Ū	J nit-I			08 Hrs		

Omt-1	UO IIIS					
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon					
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like					
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid					
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicological/inorganic, protein & DNA based nanostructures.	gy health					
effects caused by nanoparticles.						
Unit – II	09 Hrs					
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and						
Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica	1 Vapour					
deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft litho	ography).					

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III							
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors							
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,	Magnetic						
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Bi	osensors:						
Biosensors in modern medicine.							

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ Hrs
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanica	al cutting
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.	

Course (Course Outcomes: After completing the course, the students will be able to										
CO1:	Understand the structures of nano materials and their properties.										
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization										
	results.										
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its										
	knowledge in various fields.										
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.										

Refere	ence Books
	B.S. Murty., P. Shankar., B.Raj, BB. Rath, and J. Murday, Textbook of Nanosciences and
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.
	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1st Edition,
2	2013, ISBN 9781439827123 (Unit III).
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.
	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,
4	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

				Seme	ester: V							
			I		FECHNOLO(Ϋ́Υ						
					DBAL ELEC							
			(-		eory)							
Cour	rse Code	:	18G5B03			CIE	:	100 Marks				
Cred	lits: L:T:P	:	3:0:0			SEE	:	100 Marks				
Tota	l Hours	:	39L			SEE Duration	:	3.00 Hours				
Cour	Ŭ			students will b	be able to							
1	Recall the c	-										
	2 Distinguish various types of fuel cells and their functionalities											
3		_		el cells in vario								
4	Understand	the c	haracterizat	tion of fuel cel	ls							
				Unit-I				07 Hrs				
Intro	oduction – I:							07 1115				
		, hist	orical deve	lopments, wor	king principle	of fuel cell, compo	nen	ts of fuel cell,				
				-	ls and their pro							
				Unit – Il				07 Hrs				
Туре	es of fuel cells	– II:										
Class	ification of fu	a1 aa	11 11 11	C 1 11 1		C 1 11 1 1						
	sincation of fu	er ce	lls, alkaline	e ruei ceii, poly	ymer electrolyt	e fuel cell, phospho	oric	acid fuel cell,				
					•	e fuel cell, phospho lisadvantages of eac		acid fuel cell,				
					lvantages and o			acid fuel cell,				
molte	en carbonate fu iencies, losses	and	ll, solid oxi kinetics – I	ide fuel cell, ad Unit –III	lvantages and c	lisadvantages of eac	ch	07 Hrs				
molte Effic Intrin	en carbonate fu iencies, losses asic maximum	and efficient	ll, solid oxi kinetics– I ciency, vol	ide fuel cell, ac Unit –III III: taic efficiency	Ivantages and c	lisadvantages of eac	cien	07 Hrs				
molte Effic Intrin losses	en carbonate fu iencies, losses asic maximum s, fuel crosso	and efficient	ll, solid oxi kinetics– I ciency, vol nd internal	ide fuel cell, ac Unit –III III: taic efficiency current, ohm	Ivantages and c	lisadvantages of eac	cien	07 Hrs				
molte Effic Intrin losses	en carbonate fu iencies, losses asic maximum	and efficient	ll, solid oxi kinetics– I ciency, vol nd internal	ide fuel cell, ac Unit –III II: taic efficiency current, ohm	Ivantages and c I , faradaic efficient ic losses, mas	lisadvantages of eac	cien	07 Hrs				
molte Effic Intrin losse activa	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode	ael ce and efficient ver a e/reac	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic	ide fuel cell, ac Unit –III III: taic efficiency current, ohm	Ivantages and c I , faradaic efficient ic losses, mas	lisadvantages of eac	cien	07 Hrs				
molte Effic Intrin losse activa Fuel	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characte	ael ce and efficience ver a e/reac	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV:	ide fuel cell, ac Unit –III III: taic efficiency current, ohm cs Unit –IV	Ivantages and c I , faradaic efficient ic losses, mas	lisadvantages of eac ciency, overall effic s transport/concentr	cien ratic	07 Hrs ocy, activation on losses, and 08 Hrs				
molte Effic Intrin losse activa Fuel In-sit	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Character au characteriza	ael ce and efficience ver a c/reace eristi	kinetics – I ciency, vol nd internal tion kinetic cs – IV: I-V curve	ide fuel cell, ac Unit –III III: taic efficiency current, ohm es Unit –IV	Ivantages and c I , faradaic efficiencies , faradaic , faradaic , faradaic , faradaic , faradaic , far	lisadvantages of eac	cien ratic	07 Hrs ocy, activation on losses, and 08 Hrs				
molte Effic Intrin losse activa Fuel In-sit cyclio	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry	ael ce and efficience eristi ation: , elec	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica	ide fuel cell, ac Unit –III II: taic efficiency current, ohm s Unit –IV , current – vol il impedance sp	Ivantages and o I , faradaic efficience ic losses, mas	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interr	cien ratio	07 Hrs acy, activation on losses, and 08 Hrs measurement,				
molte Effic Intrin losse activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz	ael ce and efficience ver a eristi ation: , elec ation	kinetics– I kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques	ide fuel cell, ac Unit –III III: taic efficiency current, ohm cs Unit –IV , current – vol l impedance sp s: Proton conc	Ivantages and o I , faradaic efficiencies, mas disclosses, flosses, disclosses, disclo	lisadvantages of eac ciency, overall effic s transport/concentr	cien ratio	07 Hrs acy, activation on losses, and 08 Hrs measurement,				
molte Effic Intrin losse activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz	ael ce and efficience ver a eristi ation: , elec ation	kinetics– I kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques	ide fuel cell, ac Unit –III II: taic efficiency current, ohm s Unit –IV , current – vol l impedance sp s: Proton conce ectrochemical a	Ivantages and o I r, faradaic effici ic losses, mas r ltage measurer pectroscopy luctivity, flexu activity	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interr	cien ratio	07 Hrs ocy, activation on losses, and 08 Hrs measurement, conductivity,				
molte Effic Intrin losse activa Fuel In-sit cyclic Ex-si elect	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characterizi rochemical sur	and a efficience ver a eristi ation: , election ation	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele	ide fuel cell, ac Unit –III III: taic efficiency current, ohm s <u>Unit –IV</u> , current – vol il impedance sp s: Proton conc	Ivantages and o I r, faradaic effici ic losses, mas r ltage measurer pectroscopy luctivity, flexu activity	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interr	cien ratio	07 Hrs acy, activation on losses, and 08 Hrs measurement,				
molte Effic Intrin losse: activa Fuel In-sit cyclic Ex-si electn Appl	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur lications of fue	and a efficience of the second	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele Is – V:	ide fuel cell, ac Unit –III III: taic efficiency current, ohm cs Unit –IV , current – vol l impedance sp s: Proton conc ectrochemical a Unit –V	Ivantages and o I r, faradaic efficiencies, mas r Itage measurer pectroscopy Iuctivity, flexu activity	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interru tral strength, electr	cien ratic upt ical	07 Hrs ocy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs				
molte Effic Intrin losses activa Fuel In-sit cyclia Ex-si electu Appl Appl	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur lications of fue	and a efficiency ver a eristi ation: , election face = el cel l cella	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele Is – V: s in air, roa	ide fuel cell, ac Unit –III II: taic efficiency current, ohm s Unit –IV , current – vol l impedance sp s: Proton conce ectrochemical a Unit –V d and rail trans	Ivantages and o I r, faradaic efficiencies, mas r Itage measurer pectroscopy Iuctivity, flexu activity	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interr	cien ratic upt ical	07 Hrs ocy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs				
molte Effic Intrin losses activa Fuel In-sit cyclia Ex-si electri Appl Appl	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur lications of fue	and a efficiency ver a eristi ation: , election face = el cel l cella	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele Is – V: s in air, roa	ide fuel cell, ac Unit –III II: taic efficiency current, ohm s Unit –IV , current – vol l impedance sp s: Proton conce ectrochemical a Unit –V d and rail trans	Ivantages and o I r, faradaic efficiencies, mas r Itage measurer pectroscopy Iuctivity, flexu activity	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interru tral strength, electr	cien ratic upt ical	07 Hrs ocy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs				
molte Effic Intrin losse: activa Fuel In-sit cyclic Ex-si electn Appl Appl Produ	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur lications of fue uction and stor rse Outcomes	and a efficience ver a e/reac eristi ation: , elec ation face a el cel cel cel cage c cage c	Il, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs - IV: I-V curve, trochemica techniques area and ele ls - V: s in air, roa- of hydrogen er completi	ide fuel cell, ac Unit –III III: taic efficiency current, ohm cs Unit –IV , current – vol l impedance sp s: Proton conc ectrochemical a Unit –V d and rail trans	Ivantages and o Ivantages and o I and one of the second se	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interru tral strength, electr storage, handling a will be able to	cien ratic upt ical	07 Hrs ocy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs				
molte Effic Intrin losses activa Fuel In-sit cyclia Ex-si electri Appl Produ Cour CO1	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur ications of fue uction and stor se Outcomest Understand	and a efficiency ver a eristication: , electrication face = el celle rage c cage c cage c	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele Is – V: s in air, roa of hydrogen er completi fundamenta	ide fuel cell, ac Unit –III II: taic efficiency current, ohm Unit –IV , current – vol l impedance sp s: Proton conce ectrochemical a Unit –V d and rail trans ing the course als and charact	Ivantages and o Ivantages and o I ic losses, mas diage measurer bectroscopy ductivity, flexu activity sport, hydrogen , the students eristics of fuel	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interru tral strength, electr storage, handling a will be able to cells	cien ratic upt ical	07 Hrs acy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs safety issues.				
molte Effic Intrin losse: activa Fuel In-sit cyclic Ex-si electn Appl Appl Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur ications of fue uction and stor se Outcomest Understand	and a efficiency ver a eristication: , electrication face = el celle rage c cage c cage c	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele Is – V: s in air, roa of hydrogen er completi fundamenta	ide fuel cell, ac Unit –III II: taic efficiency current, ohm Unit –IV , current – vol l impedance sp s: Proton conce ectrochemical a Unit –V d and rail trans ing the course als and charact	Ivantages and o Ivantages and o I ic losses, mas diage measurer bectroscopy ductivity, flexu activity sport, hydrogen , the students eristics of fuel	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interru tral strength, electr storage, handling a will be able to	cien ratic upt ical	07 Hrs acy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues.				
molte Effic Intrin losses activa Fuel In-sit cyclia Ex-si electri Appl Produ Cour CO1	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur ications of fue uction and stor se Outcomest Understand	and a efficiency ver a eristication: , electrication face = el celle rage c cage c cage c	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele Is – V: s in air, roa of hydrogen er completi fundamenta	ide fuel cell, ac Unit –III II: taic efficiency current, ohm Unit –IV , current – vol l impedance sp s: Proton conce ectrochemical a Unit –V d and rail trans ing the course als and charact	Ivantages and o Ivantages and o I ic losses, mas diage measurer bectroscopy ductivity, flexu activity sport, hydrogen , the students eristics of fuel	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interru tral strength, electr storage, handling a will be able to cells	cien ratic upt ical	07 Hrs acy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues.				
molte Effic Intrin losses activa Fuel In-sit cyclia Ex-si electri Appl Produ Cour CO1	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characte	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face a el cell age content age conten	II, solid oxi kinetics– I ciency, vol nd internal tion kinetic cs – IV: I-V curve, trochemica techniques area and ele ls – V: s in air, roat of hydrogen er completi fundamenta l engineeri	ide fuel cell, ac Unit –III II: taic efficiency current, ohm Unit –IV , current – vol l impedance sp s: Proton conc ectrochemical a Unit –V d and rail trans ing the course als and charact ng principles	Ivantages and o Ivantages and o I ic losses, mas v ltage measurer bectroscopy luctivity, flexu activity sport, hydrogen , the students eristics of fuel to distinguish	lisadvantages of eac ciency, overall effic s transport/concentr nent, current interru tral strength, electr storage, handling a will be able to cells	cien ratic upt ical nd s	07 Hrs acy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues. ntional energy				

Refere	Reference Books								
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287								
1	2009, Universities Press, ISBN – 13: 978 1420 060287								
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John								
2	Wiley & Sons, ISBN – 978 0470 848579								

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

	Semester: V									
	INTELLIGENT SYSTEMS									
	(GROUP B: GLOBAL ELECTIVE)									
				(Theory)						
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks			
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks			
	al Hours	:	39L		SEE Duration	:	3.00 Hours			
Cou	rse Learning	g Obj	ectives: The stu	dents will be able to						
1.	Understand	func	lamental AI con	cepts and current issues.						
2.	Understand	and	apply a range of	AI techniques including sear	ch, logic-based re	easc	oning, neural			
	networks an	nd rea	asoning with une	certain information.						
3.	Recognize	comp	outational proble	ms suited to an intelligent sys	stem solution.					
4.	Identify and	d list	the basic issues	of knowledge representation,	blind and heurist	ic s	earch.			
	1									
				Unit – I			07 Hrs			
Intr	oduction: Th	ne Fo	undations of Ar	tificial Intelligence, History of	of Artificial Intell	ige	nce, The State			
of th	ne Art, Intelli	igent	Agent: Introdu	ction, How Agents Should A	ct, Structure of I	ntel	ligent Agents,			
Prol	blem-solving	: Sol	lving Problems	by Searching Search Strate	egies, Avoiding	Re	peated States,			
Avo	iding Repeate	ed Sta	ates							
				Unit – II			08 Hrs			
Info	rmed Searc	h M	ethods: Best-F	irst Search, Heuristic Funct	tions, Memory	Bou	inded Search,			
	tive Improve		e							
				as Search Problems, Perfect			Person, Games			
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an E	lement of Chance	e				
				Unit – III			08 Hrs			
	wledge Infer									
	0 1			n based system, Frame base	•					
	-		-	ue approach, Fuzzy reasonin			s, Bayes Rule,			
Unce	ertainty Princ	iples	, Bayesian Theo	ry-Bayesian Network-Demps	ter - Shafer theor	y.				
-		~ 1		Unit – IV			08 Hrs			
	0			neral Model of Learning Age			0			
		-		heory, Learning General Log	gical Description	s, \	why Learning			
			Learning Theor	•		т				
	Reinforcement Learning: Passive Learning in a Known Environment, Passive Learning in an									
Unknown Environment, Active Learning in an Unknown Environment										
F	aut Cristana	Com	nonanta Dra-1	Unit – V	ing portaints f-	otor	08 Hrs			
_			-	tion rules, Statistical reason	-					
				ledge, Introspection. Expert	•		-			
-		-	-	Knowledge Acquisition –Met	ia kilowieuge, H	curi	istics. Typical			
expe	expert systems - MYCIN, DART, XOON, Expert systems shells.									

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	CO 1: Understand and explore the basic concepts and challenges of Artificial Intelligence.						
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.						
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.						
CO 4:	Assess their applicability by comparing different Intelligent System techniques						

Reference Books:

AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
ISBN-13: 978-0-13-604259-4
Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
Hill, ISBN: 9780070087705
Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3rd Edition, 2007, ISBN-
13: 978-0134771007
Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

			Semester: V					
R	EMOT		ND GEOGRAPHIC II JP B: GLOBAL ELI		YSTI	EM		
			(Theory)					
Course Code : 18G5B05 CIE : 100 Mar								
Credits: L:T:P		3:0:0		SEE	:	100 Marks		
Total Hours	:	39 L		SEE Duration	:	3.00 Hours		
Course Learn	ng Ob	jectives: The stu	dents will be able to					
1 Understan	d conc	ept of using pho	ographic data to determ	ine relative position	s of p	ooints.		
2 Study the	nethoo	ls of collection of	land data using Terrest	rial and Aerial cam	era.			
3 Analyze th	e data	gathered from v	rious sensors and interp	oret for various appl	icatio	ons.		
4 Apply the	4 Apply the principles of RS, GIS and GPS in various scopes of Civil Engineering.							
ł								
			Unit-I			07 Hı		

Unit-I	07 Hrs					
Remote Sensing- Definition, types of remote sensing, components of remote sensing, electromagnetic						
spectrum, Black body, Atmospheric windows, energy interaction with earth surface feature	es. Spectral					
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian	n and other					
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key	remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key elements.					
Unit – II	08 Hrs					
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry,	Introduction					
to digital Photogrammetry.						
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,					
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –					
flight planning.						
Unit –III	08 Hrs					
Geographic Information System- Introduction, Functions and advantages, sources of da	ata for GIS.					
Database - Types, advantages and disadvantages. Data Analysisoverlay operations, netwo	ork analysis,					
spatial analysis. Outputs and map generation.						
GPS- components and working principles.						
Unit –IV	08 Hrs					
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and management						
(prioritization of river basins, water perspective zones and its mapping), Highway and tra	ansportation					
(highway alignment, Optimization of routes, accident analysis), Environmental Engineering (Geo-						
statistical analysis of water quality, rainfall).						
Unit –V						
Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, ur	ban sprawl,					
Change detection studies, forests and urban area, agriculture, Disaster Management. La	youts: Dead					
and Dedict Cristian Constant						
end, Radial, Grid iron, Circular system.						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand and remember the principle of Remote Sensing (RS) and Geographical Information						
	Systems (GIS) data acquisition and its applications.						
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs						

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	Reference Books								
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3rd Edition, Wiley								
	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.								
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,								
2	John Wiley Publishers, New Delhi, ISBN – 8126532238.								
2	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,								
3	ISBN: 8122438121								
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.								
5	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,								
	ISBN - 0198072392								

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V									
	AUTOMOTIVE ELECTRONICS									
	(GROUP B: GLOBAL ELECTIVE)									
		1	100	(Theory)		100 3 5 1				
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks				
Credits: L:T:P		:	3:0:0	SEE Marks	:	100 Marks				
He	ours	:	39L	SEE Duration	ı :	3.00 Hours				
Co	ourse Learning	Ob	jectives: The s	tudents will be able to						
1	Acquire the kn	ow	ledge of autom	otive domain fundamentals, need of Electronics a	nd co	ommunication				
I	interfaces in A	utoi	motive systems							
2	Apply various	typ	es of sensors, a	ctuators and Motion Control techniques in Autom	otive	systems				
2	Understand digital engine control systems and Embedded Software's and ECU's used in automotive									
3	3 systems.									
4	Analyse the co	nce	pts of Diagnost	ics, safety and advances in Automotive electronic	Syst	ems.				

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and					
	communication interfaces in Automotive systems.					
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive					
	systems					
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in					
	automotive systems.					
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.					

Referen	ice Books						
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier						
	science, Newness publication, ISBN-9780080481494.						
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-						
	0471288357						
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3rd Edition, Elsevier Butterworth-						
	Heinemann. ISBN 0-7506-62190.						
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-						
	Heinemann. ISBN 0-75-066991-8.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

	Semester: V							
	e- MOBILITY							
			(GROUP E	B: GLOBAL ELE	ECTIVE)			
				(Theory)				
Co	ourse Code	:	18G5B07		CIE	:	100 Marks	
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks	
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours	
Co	ourse Learning	g O	bjectives: The stud	ents will be able to				
1	Understand th	ne b	asics of electric and	hybrid electric vehi	cles, their architectur	e ar	nd modelling.	
2	Explain differ	ent	energy storage tech	nologies used for el	ectric vehicles and th	leir	management	
	system.							
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for	
	electric vehicles.							
4	4 Design EV Simulator through performance evaluation and system optimization techniques							
	and need for t	the	charging infrastruct	ure.				

Unit-I	06 Hrs
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, BE	EV Fuel
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Power	ertrains,
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Com	parison
of Automotive and Other Transportation Technologies.	_
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle
Comparisons	
Unit – II	09 Hrs
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery
Charging, Protection, and Management Systems, Battery Models, Determining the Co	ell/Pack
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.	
Battery Charging: Basic Requirements for Charging System, Charger Architecture	es, Grid
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, W	Vireless
Charging, The Boost Converter for Power Factor Correction.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	atteries,
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Funct	ionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pro	otection,
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commun	ication:
Dedicated analog and digital wires.	
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	used in
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric
machines, electric machine and power electronics integration Constraints.	
Unit –V	07 Hrs
EV Simulation: system level simulation, EV simulator, simulator modules, perfo	ormance
evaluation, system optimization.	
EV Infrastructure: Domestic charging infrastructure, Public charging infrast	ructure,
Standardization and regulations, Impacts on power system.	

Course	e Outcomes: After completing the course, the students will be able to							
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies							
	and modelling.							
CO2:	Discuss and implement different energy storage technologies used for electric vehicles							
	and their management system.							
CO3:	Analyze various electric drives and its integration techniques with Power electronic							
	circuits suitable for electric vehicles.							
CO4 :	Design EV Simulator for performance evaluation and system optimization and							
	understand the requirement for suitable EV infrastructure.							

Refe	erence Books
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN
	9781119063667.
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,
2	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions
3	Technip, Paris, ISBN 978-2-7108-0994-4.
1	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford
-	university press, ISBN 0 19 850416 0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

	Semester: V						
	SMART SENSORS & INSTRUMENTATION						
			(GR	OUP B: GLOBAL ELECTIVE)			
		_		(Theory)			
Cour	Course Code : 18G5B08 CIE : 100 Mai				100 Marks		
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Tota	l Hours	:	39L	SEE Dura	ation :	3.00 Hours	
Cour	rse Learnin	g ()	bjectives: The	students will be able to			
1	Understand	l th	e fundamentals	of transducers and sensors.			
2	2 Demonstrate the working principles of different transducers and sensors.						
3	3 Apply the principles of different type of sensors and transducers on state of art problems.						
4	4 Create a system using appropriate transducers and sensors for a particular application.						

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, A	dvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and problem	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potenti	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	.ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	l Sensors,
Gas flame detectors	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basic principles of different transducers and sensors.						
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation						
	systems.						
CO3:	Analyze and evaluate the performance of different transducers and sensors for various						
	applications.						
CO4:	Create a system using appropriate transducers and sensors for a particular application.						

Refere	ence Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
1	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
2	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
1	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
-	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	-	-	-	-	-	-	-	-	-		
CO2	2	3	-	-	2	2	-	-	-	-	-	-		
CO3	1	2	2	-	1	1	-	-	-	-	-	2		
CO4	-	-	-	-	1	1	-	-	-	3	-	1		

				Semester: V								
			OI	PERATIONS RESEARCH								
				UP B: GLOBAL ELECTI								
			× ×	(Theory)	,							
Cour	rse Code	:	18G5B09	× × /	CIE	:	100 Marks					
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	otal Hours:39 LSEE Duration:3.00 Hours											
Cour	rse Learning (Dbje	ectives: The stu	idents will be able to								
1	Develop the	ski	lls in the appl	cation of operations resear	rch models for	con	nplex decision-					
	making situat	ions	s	-			-					
2	Implement th	e m	ethodology and	tools of operations research	to assist decision	n-m	aking.					
	1			1								
				UNIT-I			07 Hrs					
Intro	oduction: OR	metl	hodology, Defii	ition of OR, Application of	OR to Engineeri	ng	and Managerial					
probl	lems, Features	of C	OR models, Lin	itations of OR.								
Line	ar Programm	ing	Definition, Ma	thematical Formulation, Sta	ndard Form, Sol	utio	n Space, Types					
	-	-		e, Solution through Graphic								
			•	ad assignments only)	e	,						
10 40		(ue	monstrations a	UNIT-II			10Hrs					
Sim	olex Method &	k Se	ensitivity Anal	ysis: Simplex methods, Arti	ficial Stating So	luti						
				nalysis - Graphical sensitiv	-							
	-		-	tput from software packages	• •	-	fulle sensitivity					
unury	sis. interpretat	1011	of grupineur ou	UNIT-III	buen us mis Like	01	10 Hrs					
Tran	sportation P	rob	lem:Formulatio	on of transportation mode	el. Basic feasib	le						
	-			hods, Unbalanced transpo			-					
	portation prob			n Transportation Problem	-							
probl		1011	is, variants	in multiportution recordin	s, rippiloutions	01	mansportation					
•		em	Formulation	of the Assignment problen	n Solution meth	hod	of assignment					
-	-			method of assignment problem			-					
-	-		raveling Salesm			icu	iou, variants in					
•	•		e									
Usag	ge of software t	0015	s to demonstrate	Transportation and Assignment	nent problems		06 11					
Droi	oot Managam	mt	Liging Notwork	UNIT-IV Analysis:Network construct	ation Datarmina	tion	06 Hrs					
-	-		-				-					
		, CI	PM - Elements	of crashing, Usage of softw	are tools to dem	ons	strate N/W flow					
probl	lems											
C	- The	1		UNIT-V			06 Hrs					
	=		-	son Zero Sum game, Pure st	-		-					
-			ne rules of do	minance, solution method	of games with	iou	t saddle point,					
Arith	metic method.											
Corre	man Autoomore	A 6	ton 00m-1-4:	the course the stordards	ll he able to							
				the course, the students wi			augh					
CO1			ie basic conce	pts of different models	or operations r	ese	arch and then					
	application			Models and Assignment M								

CO2:	Build and	solve Transp	portation M	odels and Assignment M	Iodels.
000	D :	. 1	1 1 1 1 1		1

CO3:	Design new simple models, like: CPM, MSPT to improve decision -making and develop
	critical thinking and objective analysis of decision problems.
CO4:	

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	-	3	2	2	-	-	-	1	-	-	1		
CO2	-	2	-	-	-	-	-	-	-	1	-	1		
CO3	2	-	-	2	2	-	-	1	-	-	-	-		
CO4														

			Semester: V								
		MANAGEN	IENT INFORMATION SYS	TEMS							
		(GROU	P B: GLOBAL ELECTIV	E)							
		T	(Theory)								
Course Code	:	18G5B10		CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total Hours	:	39L		SEE Duration	:	3.00 Hours					
Course Learning	Obje	ectives: The stude	nts will be able to								
1 To understa	nd the	e basic principles	and working of information tec	hnology.							
2 Describe the	role	of information tec	hnology and information syste	ms in business.							
3 To contrast	To contrast and compare how internet and other information technologies support business processes.										
4 To give an	overa	all perspective of	he importance of application of	of internet technol	ogie	es in business					
administrati											
			Unit-I			08 Hrs					
Information system	ns in '	Global Business	Foday:								
The role of inform	nation	n systems in busi	ness today, Perspectives on	information system	ms,	Contemporar					
approaches to inform	natio	on systems, Hands	on MIS projects. Global E-Bu	siness and Collal	bor	ation: Busines					
process and information	ation	systems, Types of	business information systems	, Systems for colla	aboı	ation and tear					
work, The informati	on sy	stems function in	business. A Case study on E bu	isiness.							
			Unit – II			08 Hrs					
Information System	ns, O	Organizations and	Strategy:								
Organizations and	inforr	mation systems, H	low information systems impa	act organization a	nd	business firms					
Using information s	syster	ms to gain compe	itive advantage, management	issues, Ethical an	d S	ocial issues in					
Information System	ns: U	Understanding eth	cal and Social issues related t	o Information Sys	stem	ns, Ethics in an					
information society,	The	moral dimensions	of information society. A Case	study on business	pla	nning.					
			Unit –III			08 Hrs					
IT Infrastructure a	ınd E					08 Hrs					
		Emerging Techno		tform trends, Cont	emj						
IT infrastructure, In	frastr	Emerging Techno ructure component	logies:		-	porary softwar					
IT infrastructure, In platform trends, M	frastr Ianag	Emerging Techno ructure component gement issues. Se	l ogies: s, Contemporary hardware pla	s: System vulner	abil	porary softwar ity and abuse					
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System	s: System vulner	abil	porary softwar ity and abuse					
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi	s: System vulner	abil	porary softwar ity and abuse					
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulner	abil	porary softwar ity and abuse ology and tool					
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. See ty and control, Est n resources. A cas Excellence and C	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulnera ty and control, Tea	abil chn	porary softwar ity and abuse ology and tool 08 Hrs					
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operatie Enterprise systems,	frastr Ianag ecurit nation onal I Supp	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage	logies: s, Contemporary hardware pla curing Information Systems ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy:	s: System vulnera ty and control, Tea ner relationship ma	abil chn ana	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM					
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the internet					
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne					
IT infrastructure, In platform trends, M Business value of se for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne					
IT infrastructure, In platform trends, M Business value of se for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli ss an A Ca	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interner Building and E					
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle	frastr lanag ecurit nation onal l Supp appli ass an A Ca dge:	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, H	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs					
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle The knowledge mage	frastr Ianag ecurit nation onal I Supp appli ess an A Ca dge: anage	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (e mobile digital platform and r Unit –V	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, F	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs nowledge wor					

Systems as planned organizational change, Overview of systems development.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and apply the fundamental concepts of information systems.
CO2:	Develop the knowledge about management of information systems.
CO3:	Interpret and recommend the use information technology to solve business problems.
CO4:	Apply a framework and process for aligning organization's IT objectives with business strategy.

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.										
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10 th Edition, 2011, ISBN: 978-0072823110.										
3	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4 th Edition, 2002, ISBN:978-0130617736.										
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.										

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	3	-	-	-	-	-	-	-	1	-	1			
CO3	3	3	1	-	2	-	-	-	-	1	-	1			
CO4	3	3	2	1	2	-	-	-	-	1	-	1			

V Semester								
				'E MECHATRONICS				
			`	LOBAL ELECTIVE)			
(Theory)								
	se Code	:	18G5B11		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours		:	39 L		SEE Duration	:	3.00 Hours	
Course Learning Objectives: The students will be able to								
1	Identify vario	us N	Iechatronics systems of a	a modern automobile				
2	Describe how the proper quantity/grade of fuel affects engine performance.							
3	3 Understand Bharat-VI / EURO-VI emission norms							
4	Apply the know	wle	dge of engineering and s	cience to analyse the per	rformance of Me	cha	tronics	
	system							
5	Analyse vehic	ele s	ub-systems comprising o	f sensors and actuators				

Unit-I	06 Hrs
Automobile Engines	
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.
Unit-II	10 Hrs
Engine Auxiliary Systems:	
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.	
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Re	turn line,
Quantity control valve, Injectors – solenoid and piezo injectors.	
Unit-III	10 Hrs
Vehicular Auxiliary Systems:	
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,
Caster and Camber angle. Classification of tyres, Radial, Tubeless.	
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator	and air
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.	
Unit-IV	07 Hrs
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	rol units and
On-Board Diagnostic kit.	
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling
system- Components, working principle, Properties, Viscosity.	
Unit-V	06 Hrs
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	ensor,
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Describe the functions of Mechatronic systems in a modern automobile						
CO2:	Evaluate the performance of an engine by its parameters						
CO3:	Analyse the automotive exhaust pollutants as per emission norms						
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit						

Refere	Reference Books						
1.	Automotive Technology - A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage						
	Learning, ISBN-13: 978-1428311497						
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,						
	SAE International, ISBN: 0768009871						
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527						
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-						
	Heinemann, ISBN 0-7506-7008-8						

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	1	2	1	-	-	1	2	3	-	-
CO2	2	1	2	1	3	-	-	2	2	3	-	-
CO3	1	2	2	1	2	-	-	2	2	3	-	-
CO4	1	2	2	1	2	-	-	2	2	1	-	1

	Semester: V								
	TELECOMMUNICATION SYSTEMS								
	(GROUP B: GLOBAL ELECTIVE)								
(Theory)									
Course Code		:	18G5B12		CIE	:	100 Marks		
Credits: L:T:P		:	3:0:0		SEE		100 Marks		
Tota	l Hours	:	39L		SEE Duration		3.00 Hours		
Cou	rse Learning C	bje	ectives: The student	s will be able to			·		
1	1 Represent schematic of communication system and identify its components.								
2	Classify satell	ite	orbits and sub-syste	ms for communication	on.				
3	3 Analyze different telecommunication services, systems and principles.								
4	Explain the ro	le d	of optical communic	ation system and its	components.				
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds				

UNIT-I	06 Hrs				
Introduction to Electronic Communication: The Significance of Human Communication,					
Communication Systems, Types of Electronic Communication, Modulation and Multiplexing,					
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.					
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.					
Radio Receivers: Super heterodyne receiver.					
UNIT-II	10 Hrs				
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.					
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.					
Wideband Modulation: Spread spectrum, FHSS, DSSS.					
Multiple Access: FDMA, TDMA, CDMA.					
UNIT-III	09 Hrs				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,				
Ground Stations, Satellite Applications, Global Positioning System.					
UNIT-IV	07 Hrs				
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical	c Cables,				
Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Networks.					
UNIT-V					
0111-1					
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	Internet				
	Internet				
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,					

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basics of communication systems.						
CO2	Analyze the importance of modulation and multiple access schemes for communication						
	systems.						
CO3	Analyze the operational concept of cell phone and other wireless technologies.						
CO4	Justify the use of different components and sub-system in advanced communication systems.						

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

· · · · · · · · · · · · · · · · · · ·				Semester: V				
	(QUA	NTUM MECHA	NICS OF HETERO	/NANO STRUCT	JRES	5	
(GROUP B: GLOBAL ELECTIVE)								
(Theory)								
	se Code	:	18G5B13		CIE	:	100 M	
Credits: L:T:P		:	3:0:0 39L		SEE SEE Duration	:	100 M 3.00 H	
	Fotal Hours: 39LSEE Duration: 3.00 HoCourse Learning Objectives: The students will be able to							lours
	8	÷		chanics in physical pr	coossos os wo rodu	o dir	ansion	
				of low dimensional s				
	-		-					lig.
				l in transport propertie	es of low dimension	ai ma	aterials.	
			heterostructures in		1 (1 ((1	
	-	now	ledge to design and	d develop smart devic	ces and sensors that	runs	on the q	uantum
1	technology.							
				Unit-I				08 Hrs
Dovio	w of Quantu	m M	Iechanics and Soli					U8 Hrs
	-			tainty Principle, grou	n valaaity. Tima in	1	donton	d damam dami
	•	•	•	• • • •	•	•		•
	•			, Perturbation theory				
	•		•	states and its depend		•		
-		-		ons and holes in b	ands, Effective ma	ass, o	listinct	regimes of
condu	ction and the	imp	ortant parameters c					
			ors and lower dim	Unit – II				08 Hrs
differe (From	ent geometrie 0-Dim to 3 I	es-Sq		l and intra-band pro Friangular and their	cess. Quantum we	lls o	t nanos	
Wells and Excitonic effects in them.								s and wells
			-	and its effect on band		n Dot		s and wells in Quantum
	tum Nano sti	c eff	-	Unit –III		n Dot		s and wells
Quant Archit Homo Lattice genesi	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III	semiconductor cont on and strain doped ling Approximation nechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga.	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r	semiconductor cont on and strain doped ling Approximation nechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs) in details, Vells. Super lattice. The ocus will be per lattices:
Quant Archit Homo Lattice genesi on Ga. Stark e	ecture and w -junction, He e: Kronig Pe as of Quantun As), hot elect effect.	c efference ructor vorkie etero nney n Tr trons	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr 2. Perpendicular tra	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur	semiconductor cont on and strain doped ling Approximation nechanism, experin neling. Electric fiel	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs 0 in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form antum point contacts ircuit laws for quantu- c field. Landau qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantue c field. Landau qua Effect-integer and qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The per lattices: 08 Hrs to explain d rings and ide. Density gnetic field.
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta Shubn	tecture and w -junction, He e: Kronig Pe is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol ttes of a 2D ikov-de Haas	c eff ructivork: etero nney n Tr crons str ance lation syst	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua Unit –V	semiconductor cont on and strain doped ling Approximation mechanism, experim meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	After successful completion of the course the student will be able to identify the different domains						
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and						
	Photonics.						
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at						
	the core of nano and meso technology.						
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)						
CO4 :	The student can apply the concepts in an interdisciplinary manner and can create new ideas and						
	products related to appliances and sensors, that use the said concepts.						

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
1	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
3	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
3	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1 st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
(Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
6	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	3	2	2	-	-	-	1
CO2	3	3	3	2	1	2	1	1	-	-	-	1
CO3	3	3	3	2	1	1	1	1	-	-	-	1
CO4	1	2	1	2	1	2	2	1	2	2	-	1

				Semester: V				
			THIN FILM	IS AND NANOTE	CHNOLOGY			
			(GROU	P B: GLOBAL EI	LECTIVE)			
<u> </u>	~ .	1	100 -	(Theory)			400.35	
Credits: L:T:P : 3:0:0 SEE : 100 Marks							100 Marks	
		:)bic	39L ectives: The students	will be able to	SEE Duration	:	3.00 Hours	
$\frac{cou}{1}$			asics of thin films st		X 7			
2					y. us techniques and the	air ch	aracterization	
4	methods.	now	ledge of unit time p	reparation by vario	us teeninques and the		aracterization	
3		w1	day to salast the mo	et potential mathe	ls to produce thin fill	me fo	r wonted	
3	applications.	JWIE	uge to select the III	si potential metho	is to produce thin fill	115 10	n wanteu	
4	**	thin	film applications.					
-+	Asses typical	um	min applications.					
				Unit-I			08 H	Hre
Non	ostructures an			0			001	
Type dime Quai	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st	ructures, Multilayer	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) 1 ge
Type dime Quan and	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st sis.	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic	nsional nano-struct thin films and sup cal-chemical prop	tured materials. Carl	bon N ynthe	Nano Tubes (CN esis through Sol and challenges	NT) l gel s of
Type dime Quar and nanc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lictur lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) l ge s of
Type dime Quan and nanc Thir	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lime lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup cal-chemical prop Unit – II	tured materials. Carl per lattice clusters. S erties. Current tren	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H	NT) 1 ge ⁻ s of Hrs
Type dime Quan and nanc Thir Vac	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nan Film Prepara uum technolog	lime lime ll st sis. note tion y- I	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit	NT) 1 ge s of Hrs ition
Type dime Quar and nanc Thir Vac (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT). 1 gel s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum nal evaporation, E Sputtering, Magne	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering.	NT) 1 gel s of Hrs ition
Type dime Quan and nanc Thir Vac (PV) depc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter	ictur lime ll st sis. note tion y- I :: E ring	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT) 1 gei s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV) depo	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter	ictum lime ll st sis. note tion y- I :: E ring	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and	bon N ynthe nds sical S pration	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H	NT) 1 ge ² s of Hrs ition e arc Hrs
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret	ictum lime ll st sis. note tior y- I : E : E : ing on a	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and p paration & Engineer	bon N ynthe nds sical S pration Ion b	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov	NT) 1 ge s of Hrs ition e arc Hrs
Type dime Quar and nance Thir Vace (PV) depoe Surf Nucl Clea	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat	ictum lime ll st sis. note tion y- I :: E ring on a tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre uing, Base Coats an	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s of <u>Hrs</u> ition e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o <u>Hrs</u> itior e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence rowth. Properties	NT) 1 ge s or Hrs itior itior e arc Hrs wwth ce of es of
Type dime Quan and nance Thir Vace (PV) depce Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D Films: Adhesio	tion y - I y - I y - I y - I i : E ing on a tical tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Thern : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Fhickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre hing, Base Coats an Effect of Deposition Physical, Chemical Unit –IV	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grow growth: Sequenc	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o
Type dime Quar and nancc Thir Vacu (PV) depcc Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o	tion tion y- H ing on a tical ion Defe on, '	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV S:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S pration Ion b ing fo iing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H	NT) 1 ge s o Hrs ition e ard Hrs wwth ce o es o Hrs
Type dime Quan and nance Thir Vacu (PV) depce Surf Nucl Clea thin Thin Thin Film	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o n thickness me	tion y- I tical tical tical tical tical tical tical tical tical tical tical tical tical	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, min Film Properties rement: Quartz cry	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer and Top Coats. Thin F on Parameters on fil and Mechanical.	bon N ynthe nds sical S oration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H r methods. Surf	NT) 1 ge s or Hrs itior e ard Hrs with ce of es of Hrs rface
Type dime Quar and nance Thir Vact (PV) depo Surf Nucl Clea thin Thin Thin Thin Thin Thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D a Films: Adhesio racterization o a thickness met phology and to	tion y- I is: E ing on a tical tical f T asun	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, in Film Properties rement: Quartz cry raphy by SEM, A	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo FM. Film compos	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil and Mechanical.	bon N ynthe nds sical S ration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence owth. Properties 08 H r methods. Surf ctron Spectrosco	NT) l ge s o Hrs ition e ard Hrs with ce o es o Hrs copy

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.

Unit –V

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic mechanism of surface modification and thin film growth.
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization
	methods.
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted
	applications.
CO4:	Detailed knowledge of thin film selection for various applications.

Refere	ence Books
1	Thin Film Phenomenon, K.L.Chopra, 1 st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
4	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

				Semester	: V			
	4	ADV	VANCES IN C		ENCE AND TECHNOL	OGY	7	
	-			ROUP B: GLOBA				
			X -	(Theory				
Course Code : 18G5B15 CIE : 100 Marks								
Credits: L:T:P : 3:0:0 SEE : 100 Marks								ırks
Total Hours : 39L SEE Duration : 3.00 Hours								
Cou	rse Learning (Dbje	ectives: The stu	dents will be able	0			
1	Understand th	ne fi	Indamental & so	ocio, economic asp	pects of corrosion.			
2	Identify pract	ices	for the prevent	ion and remediatio	n of corrosion.			
3	Analyzing me	etho	dologies for pre	edicting corrosion t	endencies.			
4					nt suitable corrosion contr	ol me	asures.	
-	L'unduce vuil	040	corrosion situat	ions and impremen		01 1110	ubui obi	
				Unit-I				08 Hrs
Intr	oduction to con	rros	ion and its effe					00110
					on, economic losses, In	direct	losses -	Shutdown
					nvironmental damage, I			
			-	•	ustries, corrosion map of	-		CONTOSION
-				-	-			:1 and as
		_			on, chemical processing	indu	stries, o	ii and gas
Indu	stries, pulp and	pap	per plants, corro	sion effect in elect	ronic industry.			I
				Unit – II				08 Hrs
		nic	-	•	pes: Galvanic corrosion, stress corrosion, seas			
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling- r corrosion, o perature corros nanism of diffe	erosion corrosion sion, bacterial corro rential aeration co	pes: Galvanic corrosion, , stress corrosion, seas osion, corrosion in polyme rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling-H r corrosion, on perature corros	erosion corrosion sion, bacterial corro rential aeration co s.	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o	nic nula tem necl of m	series, Pilling-H ar corrosion, on perature corros manism of diffe metals and alloys	erosion corrosion sion, bacterial corre- rential aeration co s. Unit –III	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe	nic nula tem necl of m	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials	, stress corrosion, seas osion, corrosion in polymo rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com Con	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures,	nic nula tem necl of m ren	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for und	hydrogen terials. lerstanding 07 Hrs
corre emb Crev com Corre Corre	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj	series, Pilling-H ar corrosion, o aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nic ourbaix diagram	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs 0ys. on and its
corre emb Crev com Con Con Con The calce	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The calcu	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u>	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in	son c er (pla theor n and metal	stic) mat stic) mat y for und Super all corrosid	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs
corre emb Crev com Cor Cor Cor The calce Adv	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro	nic nula tem necl of m ren fic du ific Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV naterial selection,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	son c er (pla theory n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment
corrections control co	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic,
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating
corrections of the correction of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj fic 1 of Cu, 1 Osion Sion Sion	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren fic 1 of Cu, 1 osion city, oppo	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV material selection, moval oxidizer, Chromium, physic Unit –V	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, res er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corrections of the second seco	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem mecl of n ren fic 1 of Cu, 1 of Cu, 1 osion city, oppe	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys tengineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, re- passivity, re- er, Nickel and O hods: Specime ray, service test	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment, ss.	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	on control on and metal control tors, ering,	Super all corrosid	hydroger terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- organic ess plating 09 Hrs Accelerated

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the causes and mechanism of various types of corrosion					
CO2:	CO2: Identify, analyze and interpret corrosion with respect to practical situations.					
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.					
CO4:	Develop practical solutions for problems related to corrosion.					

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

				Semester: V				
	COMPUTATIONAL ADVANCED NUMERICAL METHODS							
	(GROUP B: GLOBAL ELECTIVE)							
	(Theory)							
	rse Code	:	18G5B16		CIE	:	100 Marks	
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours 								
Total Hours:39LSEE Duration:3.00 HoursCourse Learning Objectives: The students will be able to								
	0	•			1 1 1			
1	-		•	lternative methods to s	solve algebraic and	trans	cendental equations	
2	•		merical techniques		· C. 11			
2		-	_	echniques arising in va			<u> </u>	
3		val	ue and boundary	value problems whi	ich have great sigr	nfica	nce in engineering	
	practice.			1 •	1.1.1.1.1.1	1		
4	·	nce	pts of eigen value	e and eigen vector to c	obtain the critical va	alues	of various physical	
	phenomena.				1 1 0 1			
5				nming language, imp	plementation of alg	gorith	ims and computer	
	programs to s	solve	e mathematical pro	oblems.				
				TT •4 T			07.11	
Alac	hunia and Tua		endental Equatio	Unit-I			07 Hrs	
0			-		ive method Aitken	nrook	Muller method	
			nulation using MA	ce - Fixed point iteration	ive method, Altken	proce	ess, wunter method,	
Chei	bysnev method.	. 511					07 11	
Into	rpolation:			Unit – II			07 Hrs	
	-	e di	fferences Finite d	lifferences of a polyno	mial Divided differ	ence	Newton's divided	
				te interpolation, Spline				
	-		nulation using MA		e interpolation - ini	cal, (quadratic and cubic	
spin		. 51		Unit –III			08 Hrs	
Diff	erential Equat	ions	s I•				001115	
	-			methods to solve diffe	erential equations B	Round	ary value problems	
		-	-	ing method, Differen	-			
			using MATLAB.	ing method, Differen		104 1		
equu	dions. Sindian			Unit –IV			08 Hrs	
Diff	erential Equat	ions	s II:	Cint IV			UO III S	
				blems - Runge-Kutta r	nethod, Milne metho	od. C	ubic spline method.	
			-	ear, Nonlinear differen			-	
				Unit –V			09 Hrs	
Eige	en Value Probl	ems	5:				07 1115	
0				ver method, Inverse	Power method. Bo	ounds	on Eigen values.	
-		-					-	
	ershgorin circle theorem, Jacobi method for symmetric matrices, Given's method. Simulation using							

MATLAB.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and
	corresponding computational techniques.
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application
	problems.
CO3:	Analyze the physical problem and use appropriate method to solve numerically using
	computational techniques.
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems
	arising in engineering practice.

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.
L	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage
2	Learning, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private
5	Ltd., ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata
-	Mcgraw Hill, ISBN-10: 0-07-063416-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	-	-	-	-	-	-	-	2		
CO2	3	2	1	-	-	-	-	-	-	-	-	2		
CO3	2	3	2	2	-	-	-	-	-	-	-	1		
CO4	3	3	1	2	1	-	-	-	-	-	-	3		

MATHEMATICS FOR MACHINE LEARNING (GROUP B: GLOBAL ELECTIVE) (Theory) Course Code : 1865B17 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Code : 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Vector Calculus and Continuous					Semester: V										
(Theory) Course Code : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 3:0:0 More SEE Duration : 3:0:0 Acquire practical knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge or techniques. Signamental knowledge or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems.				MATHEMAT		E LEARNING									
Course Code : 18G5B17 CIE : 100 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Hours of machine intelligence.															
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 391 SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Indextand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Intel Interization and Multivariate Taylor Series, Optimization. Unit - II 07 Hrs Orthogonal Projections, Rotation															
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learnin algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decisi problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit -I Of Hrs Vector Calculus and Continuous Optimization Inter I OT Hrs Sign colspan= 2 Unit - II OT Hrs Vector S															
Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit - II Vector Calculus and Continuous Optimization Unit - III <td col<="" th=""><th></th><th colspan="11"></th></td>	<th></th> <th colspan="11"></th>														
1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Brobability and Distributions: Onstruction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit -IV Unit -IV Unit -IV															
foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -III 08 Hrs <td <="" colspan="2" td=""><td></td><td colspan="12"></td></td>	<td></td> <td colspan="12"></td>														
2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs <td>I</td> <td colspan="11"></td>	I														
algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Inear Algebra: 7 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2														
3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Linear Algebra: 07 Hrs 8 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement 1 Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs 1 Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert 1 Unit – II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2														
learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	3			<u>^</u>	nd distributions to	analyze possible a	annlia	cations of machine							
4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	U		leept	s of probability a	nd distributions to	unaryze possible a	ippin	cations of machine							
5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II O7 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV Unit –IV 08 Hrs	4		ncer	ts of regression and	estimation to solve a	problems of machin	e lea	rning							
problems. O7 Hrs Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	-							-							
Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 07 Nrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	5	•	чрр	iopriate mathemati	cur teeninques 101 (and the and th	Pun								
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs		Problems.													
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs				l	Unit-I			07 Hrs							
Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Line	ar Algebra:						·							
Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Revi	ew of Vector	Spac	ces-Linear Independ	dence, Basis, Rank a	and Linear Mappin	gs. A	Affine Spaces, Inner							
Unit – II07 HrsVector Calculus and Continuous Optimization:Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing GradientBackpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, OptimizationUsing Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization.Unit –III08 HrsProbability and Distributions:Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule aBayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of VariableInverse Transform.Unit –IV08 HrsLinear Regression:	Prod														
Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs															
Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression: 08 Hrs	Inner	-		-											
Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:		r Product of Fu	Incti	ons, Orthogonal Pro	jections, Rotations, S nit – II										
Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect	r Product of Fu	nction	ons, Orthogonal Pro U Continuous Optimi	ojections, Rotations, S nit – II zation:	Singular Value Dec	ompo	osition. 07 Hrs							
Unit –III08 HrsProbability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:08 Hrs	Vect Grad	r Product of Fu cor Calculus an lients of Vect	nction nd C	ons, Orthogonal Pro U: Continuous Optimiz /alued Functions,	ojections, Rotations, S nit – II zation: Gradients of Matri	Singular Value Dec	ompo Cor	mputing Gradients							
Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization							
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus an lients of Vect cpropagation an g Gradient Des	nd C tor-V nd A	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Des	nd C tor-V nd A scent	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim Un butions:	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C	Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs							
Unit –IV08 HrsLinear Regression:08	Vect Grad Back Usin Prob	r Product of Fu cor Calculus and lients of Vecto coropagation and g Gradient Des coability and Distruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Linear Regression:	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Problem Formulation, Parameter Estimation, Bayesian Linear Regression, Maximum Likelihood	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu for Calculus and lients of Vector g Gradient Des pability and Di struction of a I es' Theorem, C rse Transform.	nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Des Dability and Di struction of a H es' Theorem, O rse Transform.	inction nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discu- sian Distribution, C Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim butions: ability Space, Discr sian Distribution, O U: Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve vlor S conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the setting of the setting of the setting.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri istri Prob Gaus istri ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Class	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Orthogonal Projection. Density Estimation with Gaussian Mixture Models:	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, C	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
Density Estimation with Caussian Mixture Models.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	05 ition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
Density Estimation with Gaussian Mixture Woulds.	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim t, Constrained Optim Un butions: ability Space, Discussian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve ylor S Conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the provide the setting of the provide the setting of the perspective of the per	Vect Grad Back Usin Prob Cons Baye Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Perspective	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri istri Prob Gaus istri ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Cow- Persp Clas	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Orthe Dens Gaus Persp Dime Prob Low- Persp Clas Sepa	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ese' Theorem, O rse Transform. Car Regression lem Formulate ogonal Projections sian Mixture H pective. ensionality Re lem Setting, N -Rank Approx pective. sification with arating Hyperp	inction nd C tor-V nd A scent istri istri ion, ion, ion, ion, Mod educ Aaxi imat a Suj blane	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							

Course	urse Outcomes: After completing the course, the students will be able to									
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.									
CO2:	Drient the basic concepts of mathematics towards machine learning approach.									
CO3:	Apply the linear algebra and probability concepts to understand the development of different									
	machine learning techniques.									
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical									
	problems.									

Refere	ence Books
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,
1	2020, Cambridge University Press.
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge
4	Press, ISBN: 0692196382, 9780692196380.
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-
5	978-81-203-4160-9.
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd
4	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	-	-	-	-	-	-	-	2		
CO2	3	2	1	-	-	-	-	-	-	-	-	2		
CO3	2	3	2	2	-	-	-	-	-	-	-	1		
CO4	3	3	1	2	1	-	-	-	-	-	-	3		

			V Semester									
ENGINEERING ECONOMY												
(GROUP B: GLOBAL ELECTIVE)												
(Theory)												
Course Code	:	18G5B18		CIE	:	100 Marks						
Course Code	:	18G5B02		SEE	:	100 Marks						
Total Hours	:	39L		SEE Duration		03 Hours						
Course Learnin	ng O	bjectives: Stud	lents are expected to									
1. To inculcate an understanding of concept of money and its importance in the evaluation of												
projects.												
2. Analyze	the p	present worth o	f an asset.									
3. Evaluate	the	alternatives ba	sed on the Equivalent Annual Wort	h.								
4. Illustrate	e con	cept of money	and its importance in evaluating th	e projects.								

Unit – I	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engineering	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Futu	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR miscon	nceptions,
Problems.	
Unit – IV	06 Hrs
Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in	adequacy,
economic life for cyclic replacements, Exercises, Problems.	
Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	
Unit – V	06 Hrs
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, I	Exercises,
Problems.	
Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	8.
Course Outcomes: After going through this course the student will be able to	
CO 1: Explain the time value of money, and how to sketch the cash flow diagram	

	1
CO 2:	Compare the alternatives using different compound interest factors, Select a feasible alternative
	based on the analysis.
CO 3:	Formulate a given problem for decision making

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Referen	Reference Books:										
1.	Engineering Economy, Riggs J.L., 5 th Edition, Tata McGraw Hill, ISBN 0-07-058670-5										
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN – 81-										
	203-1743-2.										
3.	Cost Accounting, Khan M Y, 2 nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248										
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna										
	Publishers, ISBN 8174091009										

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	1	1	-	-	-	-	-	-	-	-	1		
CO2	2	1	1	-	-	-	-	-	-	-	-	-		
CO3	1	1	1	-	1	-	-	-	-	-	-	-		
CO4	-	1	2	-	1	1	-	-	-	-	1	-		

				VI Semester		DOTT	
	INTE	CLLE	ECTUAL PROPH		AND ENTREPRENEU	RSHI	P
Co	urse Code	•	18HSI51/61	(Theory)	CIE	•	100 Marks
	edits: L:T:P	•	3:0:0		SEE	•	100 Marks
						:	
	tal Hours				SEE Duration	:	03Hrs
			ectives: The stude				
1					o build the perspectives o	n the	concepts and
2			tages in technolog		nd disclosure of new Tecl	molo	gy and to
Ζ			ard innovativenes		id disclosure of new Tech	111010	gy and to
3					l strong foundations skill	s to e	nable starting
5			ing a viable as we			5100	naore starting
4					with critical skills and kn	owle	dge to manag
т			ith entrepreneurs.	ind mind set along	, with critical skins and ki		uge to manag
			th endepreneurs.				
				Unit-I			08 Hr
Int	troduction: Ty	pes o	of Intellectual Prop	perty, WIPO			
					nt; patentable and non-pat		
				•	otechnology patents, prot	ection	n of tradition
			ent of patents and				
Tr	ade Secrets: D	efinit	tion, Significance	· · · · · · · · · · · · · · · · · · ·	Trade secrets in India.		
				Unit – II			08 Hr
					forms of Trade marks, R		
					e similarity; Transfer of	Trad	le Mark, EC
Lal	bel, Passing off	í, Infr	ringement of Trad		studies and Remedies.		
-				Unit –III			09 Hr
					eatures of Industrial, De		Procedure for
					d Remedies, Case studies		
					ferred by copy right, Co		
					s and performer's rights,]	Excep	ptions of Cop
			Copy Right with		1	1 1.00	
Int		ertv	and cyberspace:		vber-crime. Meaning and	1 ditt	erent types of
	· · · · · · · · · · · · · · · · · · ·		of Information To				0
	percrime. Over				0 and IT Amendment Ac		
cył		view		Unit –IV	0 and IT Amendment Ac	t 200	06 Hr
cyt Int	troduction to H	view Entre	epreneurship – Le	Unit –IV earn how entrepre	0 and IT Amendment Ac neurship has changed the	t 200	06 Hr
cyt Int ent	roduction to I repreneurial m	view E ntre yths a	epreneurship – Le and uncover the tr	Unit –IV earn how entrepre rue facts. Explore	0 and IT Amendment Ac neurship has changed the E-cells on Campus	t 200 e worl	06 Hr d. Identify si
cyt Int ent Lis	troduction to I repreneurial m sten to Some S	Entre Syths a ucces	epreneurship – Le and uncover the tr ss Stories: - Globa	Unit –IV earn how entrepre rue facts. Explore al legends Underst	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people	t 200 worl	06 Hr d. Identify si
cyt Int ent Lis glo	troduction to H repreneurial m sten to Some S al entreprene	Entre Entre Syths a ucces eurs,	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories	t 200 worl	06 Hr d. Identify si
cyt Int ent Lis glo	troduction to I trepreneurial m sten to Some S abal entreprene linary people fi	Entre Entre Lyths a ucces Eurs, rom th	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries	Unit –IV earn how entrepre rue facts. Explore al legends Unders heir challenges, a s have become suc	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs.	t 200 worl becc s. Un	06 Hr d. Identify si ome successfu derstand how
Cyb Int ent Lis glo ord Ch	troduction to H repreneurial m sten to Some S bal entreprene linary people fi aracteristics o	Entre Entre yths a ucces eurs, com th of a S	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo	t 200 worl beccs. Un urney	06 Hr d. Identify sime successful derstand how
Int ent Lis glo ord Ch cor	troduction to I repreneurial m sten to Some S abal entreprene linary people fr aracteristics on cept of different	Entre yths a ucceseurs, rom th of a S ent en	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo	t 200 worl becc s. Un urney tyle l	06 Hr d. Identify signature ome successfunderstand how and learn the based on you
cyt Int ent Liss glo ord Ch cor per	troduction to I repreneurial m sten to Some S abal entreprene linary people fr aracteristics of neept of differen- rsonality traits	Entre yths a ucces com th of a S ent er	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn	00 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model,	t 200 worl becc s. Un urney tyle l each	06 Hr d. Identify side successful derstand how and learn the based on you of the five
cyt Int ent Lis glo ord Ch cor per ent	troduction to I repreneurial m sten to Some S abal entreprene linary people fr aracteristics of neept of difference rsonality traits repreneurial st	Entre yths a ucces curs, com th of a S ent er a, stre yles i	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and	Unit –IV earn how entrepre rue facts. Explore al legends Underss heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f	00 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu	t 200 worl becc s. Un urney tyle l each nicat	06 Hr d. Identify since ome successfunderstand how and learn the based on you of the five the Effectively
cyt Int ent Liss glo ord Ch cor per ent Lea	troduction to H repreneurial m sten to Some S abal entreprene linary people finaracteristics of neept of different sonality traits repreneurial st arn how incorr	Entre yths a ucces curs, rom th of a S ent en s, stre yles i rect as	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and issumptions and li	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f imiting our opinio	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu ons about people can neg	t 200 worl becc becc becc becc becc becc becc bec	06 Hr d. Identify since ome successful derstand how and learn the based on you of the five the Effectively ely impact ou
cyt Int ent Lis glo ord Ch cor per ent Lea cor	troduction to I repreneurial m sten to Some S abal entreprene linary people fr aracteristics of neept of different repreneurial st arn how incorr mmunication.	Entre yths a ucces eurs, rom th of a S ent er yles i rect as Iden	preneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and issumptions and lintify the barrie	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f imiting our opinio rs which cause	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu ons about people can neg e communication brea	t 200 worl becc becc becc becc becc becc becc bec	06 Hr d. Identify since ome successful derstand how and learn the based on you of the five the Effectively ely impact ou
Int ent Lis glo ord Ch cor per ent Lea cor mis	troduction to I repreneurial m sten to Some S abal entreprene linary people fr aracteristics of ncept of different sonality traits repreneurial st arn how incorr mmunication.	Entre yths a uccess com th of a S ent er s, stro yles i rect as Iden on and	preneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and issumptions and lintify the barrie d poor listening, and	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f imiting our opinio rs which cause nd learn how to op	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu ons about people can neg e communication brea vercome them.	t 200 worl becc s. Un urney tyle l each nicat gative	06 Hr d. Identify side ome successfunderstand how and learn the based on you of the five the Effectively ely impact ou with such a
Int ent Lis glo ord Ch cor per ent Lea cor mis Co	troduction to I repreneurial m sten to Some S abal entreprene linary people fr aracteristics of concept of different sonality traits repreneurial st arn how incorr mmunication. scommunication	Entre yths a uccess com th of a S ent er s, stre yles i rect as Iden on and Best	preneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and assumptions and li- ntify the barrie d poor listening, an Practices. Under	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f imiting our opinio rs which cause nd learn how to ov stand the importa	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu ons about people can neg e communication brea vercome them. nce of listening in comm	t 200 worl becc s. Un urney tyle l each nicat gative ukdov	06 Hr d. Identify side successful derstand how and learn the based on you of the five e Effectively ely impact ou win, such a
Int ent Lis glo ord Ch cor per ent Lea cor mis Co to	troduction to H repreneurial m sten to Some S abal entreprene linary people finaracteristics of neept of different sonality traits repreneurial strain arn how incorr mmunication. scommunication listen actively.	Entre yths a uccess corrs, rom th of a S ent er s, stre yles i rect as Iden on and Best Lear	epreneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and assumptions and li- ntify the barrie d poor listening, an Practices. Under m a few body lang	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f imiting our opinio rs which cause nd learn how to ov stand the importa	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu ons about people can neg e communication brea vercome them.	t 200 worl becc s. Un urney tyle l each nicat gative ukdov	06 Hr d. Identify side successful derstand how and learn the based on you of the five e Effectively ely impact ou win, such a
Int ent Lis glo ord Ch cor per ent Lea cor mis Co to	troduction to H repreneurial m sten to Some S abal entreprene linary people finaracteristics of neept of different sonality traits repreneurial strain arn how incorr mmunication. scommunication listen actively.	Entre yths a uccess corrs, rom th of a S ent er s, stre yles i rect as Iden on and Best Lear	preneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and assumptions and li- ntify the barrie d poor listening, an Practices. Under	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f imiting our opinio rs which cause nd learn how to ov stand the importa guage cues such a	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu ons about people can neg e communication brea vercome them. nce of listening in comm	t 200 worl becc s. Un urney tyle l each nicat gative ukdov	06 Hr d. Identify siderstand how wand learn the based on you of the five ely impact ou you, such a stion and lears
cyt Int ent Lis glo ord Ch cor per ent Lea cor mis Co to	troduction to I repreneurial m sten to Some S abal entreprene linary people finar aracteristics of neept of different resonality traits repreneurial st arm how incorr mmunication. scommunication listen actively. mmunication. (Entre yths a ucces eurs, rom th of a S ent er yles i rect as Iden on and Best Lear Practi	preneurship – Le and uncover the tr ss Stories: - Globa their journeys, th heir own countries Successful Entrep ntrepreneurial sty engths, and wea in the model, and ussumptions and line thify the barries d poor listening, an Practices. Under rn a few body lang- ical Application)	Unit –IV earn how entrepre rue facts. Explore al legends Underst heir challenges, a s have become suc oreneur Understa les. Identify your knesses. Learn how they differ f imiting our opinio rs which cause nd learn how to ov stand the importa guage cues such a	0 and IT Amendment Ac neurship has changed the E-cells on Campus tand how ordinary people and their success stories ccessful entrepreneurs. nd the entrepreneurial jo own entrepreneurship s about the 5M Model, from each other. Commu ons about people can neg e communication brea vercome them. nce of listening in comm	t 200 worl beccs. Un urney tyle l each nicat gative kdov unica hakes	06 Hr d. Identify si ome successfu derstand how and learn the based on you of the five ely impact ou you, such a ation and lears to strengthe 07Hrs

Sales Skills to Become an Effective Entrepreneur: - Understand what customer focus is and how all selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Reference Books

- 1. Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law Pub Co. Ltd.-Delhi, ISBN: 9789350350300
- 2. Intellectual Property Rights: Unleashing Knowledge Economy, PrabuddhaGanguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
- **3.** Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
- **4.** Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

Course Outcomes: After completing the course, the students will be able to

	o accoment finter compressing the course, the statements (in se asie to
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the
	purview of engineering domain.
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to
	Intellectual Property Rights with the utility in engineering perspectives.
CO3:	Enable the students to have a direct experience of venture creation through a facilitated learning
	environment.
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that
	entrepreneurs use to succeed in real life.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

Semester: VI										
CHEMICAL EQUIPMENT DESIGN AND DRAWING										
				(Theory & Practic	ce)					
Cou	rse Code:	:	18CH62		CIE	:	100+50Marks			
Credits: L:T:P:		:	3:0:1		SEE		100 +50 Marks			
Total Hours:			38L+10P SEE Duration		SEE Duration	:	03+03 Hours			
Cou	rse Learning C	bje	ectives:							
1	Understand th	ne (chemical engi	neering principles ap	plicable to desig	gn	chemical engineering			
	equipment.									
2	Apply standard codes for design of chemical plant equipment.									
2	Davidon glvill to design measure any imment used widely in the chemical industry									

- 3 Develop skill to design process equipment used widely in the chemical industry.
- 4 Impart practical knowledge on the shape and drawing of the process equipment.

Unit-I	08 Hrs
Process Design of Heat Exchanger: Types of Heat exchanger, process design of Dou	ıble pipe
heat exchanger and shell and tube heat exchanger. (The detailed line diagram shall	include
sectional front view, Full Top/side view).	
Unit – II	07 Hrs
Process Design of Condenser: Types of condensers, process design of horizontal and	vertical
condensers. (The detailed line diagram shall include sectional front view, Full Top/side	view)
Unit -III	08 Hrs
Process Design of evaporator: Introduction, types of evaporators, methods of fe	eding of
evaporators, general design consideration of Single Effect evaporator. (The detailed line	diagram
shall include sectional front view, Full Top/side view)	-
Unit –IV	08 Hrs
Process design of distillation column: Design of bubble cap distillation column. (The	detailed
line diagram shall include sectional front view, Full Top/side view and bubble cap view).
Unit –V	07Hrs
Process design of absorption column: Design of packed bed absorption column. (The	detailed
line diagram shall include sectional front view, Full Top/side view)	

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand design procedure of process equipments.									
CO2:	Apply chemical engineering principles to design process equipments.									
CO3:	Estimate physical dimensions of various parts of chemical process equipments and									
	accessories									
CO4:	Analyze various design options at all design stages									

Reference Books

Ittitit	
1	Chemical Engineers Handbook, R.H.Perry and D.W.Green, 7th Edition, 1998, McGraw Hill, ISBN: 0-07-115982-7.
2	Chemical Engineering, J.M.Coulson and J.F.Richardson, Vol.6, 3 rd Edition 1993, Pregman Press, ISBN: 0750641428.
3	Process Equipment Design, Brownell and Young, 1 st Edition, 1959, Wiley publications, ISBN: 0471113190.
4	Process Equipment Design, M.V.Joshi, 3rd Edition, Reprint 1998, Macmillan and Co. India, Delhi, ISBN 023-063-8104.

1

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	-	-	-	-	1	-	-
CO2	3	3	2	2	1	1	-	-	1	-	-	-
CO3	1	1	2	2	2	1	2	-	-	-	-	-
CO4	3	3	2	3	2	2	3	1	1	1	1	-

Semester: VI										
MASS TRANSFER – II										
			(Theo	ory & Practice)						
Course Code:	:	18CH63		CIE	:	100+50Marks				
Credits: L:T:P:	:	4:0:1		SEE	:	100 +50 Marks				
Total Hours:	:	52L+30P		SEE Duration	:	03+03 Hours				

Course Learning Objectives:

1 Identify suitable equipment for Vapor-liquid, gas solid and liquid-solid contacts

- 2 Understand the concepts of stage operations
- 3 Understand the working principles and constructional details of mass transfer equipment's
- 4 Design equipment's for mass transfer operations

UNIT-I	10 Hrs					
Gas liquid contacting systems: Types, construction and working of plate and packed colu	ımns. Types					
and properties of industrial packing, plate efficiencies. HTU and NTU concepts, HETP.						
Packed tower absorption: Liquid phase holdup and pressure drop in absorption towers. I	Design of					
packed towers-height and diameter. Problems encountered in packed towers	-					

UNIT-II

11 Hrs

11 Hrs

10 Hrs

10 Hrs

Distillation: Introduction, vapor liquid equilibria, relative volatility, prediction of VLE from vapor pressure data using Raoult's law, VLE for multi-component systems, Non-ideal systems, Azeotropes, Immiscible systems, Flash distillation.

UNIT-III

Distillation: Multi-stage rectification column. Design using McCabe Thiele method for binary mixtures. Side stream in distillation columns, Multiple feed to distillation columns. Plate to platecalculations-Lewis Sorel Method. Ponchon-Savarit method. Extractive, azeotropic distillations. Molecular, vacuum distillations.

UNIT-IV

Liquid-liquid Extraction: Ternary equilibrium, solvent selection, single stage, multistage cross current, counter current extraction. Equipment for liquid-liquid extraction. Numerical problems on miscible and immiscible systems of extraction.

UNIT-V

Leaching operation: Equipment for leaching, preparation of solids for leaching, equilibrium and phase diagrams. Calculations for single stage and multistage leaching operations. Numerical problems

Laboratory Component

List of experiments:

1	Diffusion of Organic vapors in Air						
2	Simple /Differential Distillation						
3	Packed Column distillation						
4	Steam Distillation						
6	Solid Liquid Leaching						
7	Surface Evaporation						
8	Tray Dryer						
9	Adsorption Studies						
10	Liquid Liquid/Vapor Liquid Equilibrium						
11	Liquid Extraction (Cross Current: Single and multi-Stages)						
12	Holdup Studies in Packed Columns						
13	Wetted Wall Column/Mass Transfer Coefficient Estimation						
Cou	Course Outcomes: After completing the course, the students will be able to						

1	Understand the concepts of equilibrium, stage operations and carryout material balance
2	Explain the working principles and construction of mass transfer equipment's
3	Analyze separation in various mass transfer equipment's and their graphical representations
4	Process design of various mass transfer equipment's and evaluate the performance of
	mass transfer equipment's

Reference Books

1.	Mass Transfer Operations, Robert E Treybal, 3rd Edition, McGraw Hill, 1981,
	ISBN:978007065760.
2.	Unit Operations in Chemical Engineering, McCabe & Smith, 6thEdition,McGrawHall,
	2001.ISBN:9780072848236.
3.	Coulson and Richardson, "Chemical Engineering Volume 1 and Volume 2", 4thEdition,
	Pergemen Press, 1998. ISBN: 0750644451.
4.	Badger and Banchero, "Introduction to Chemical Engineering", Edition 1997, Tata McGraw
	Hill.ISBN:9780070850279.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks

covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	-	-	-	-	-	-	1
CO2	3	2	2	1	-	-	-	-	-	-	-	1
CO3	3	3	3	2	1	-	-	-	-	-	-	2
CO4	3	3	3	2	1	-	-	-	-	-	-	2

	Semester: VI									
	MINOR PROJECT									
Cou	Course Code		18CH64	CIE		:	50 Marks			
Crea	lits: L:T:P	:	0:0:2	SEE	SEE		50 Marks			
Hou	rs	:	26P	SEE	Duration	:	02 Hours			
Cou	rse Learning O	bje	ectives: To ena	ble the students to:						
1	Knowledge Application: Acquire the ability to make links across different areas of knowledge and									
2				cills to communicate effectively as in both the written and oral forms		nt i	deas clearly and			
3	Collaboration	:Â	cquire collabor	ative skills through working in a t	eam to achi	eve	e common goals.			
4	Independent Learning: Learn on their own, reflect on their learning and take appropriate action									

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Interpreting and implementing the project in the chosen domain by applying the concepts							
	learnt.							
CO 2:	The course will facilitate effective participation by the student in team work and development							
	of communication and presentation skills essential for being part of any of the domains in his							
	/ her future career.							
CO 3:	Appling project life cycle effectively to develop an efficient product.							
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area or carry							
	out research work in an industrial environment.							

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, Problem	10M
	definition, Literature review, formulation of objectives,	
	methodology	
II	Mid-term evaluation to review the progress of implementation,	15M
	design, testing and result analysis along with documentation	
III	Submission of report, Final presentation and demonstration	25M
	Total	50M
	10181	JUNI

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	Н	Н	Н	М	М	L	М	М	М	M	М	
CO2	Н	Н	Н	Н	M	M	L	M	M	М	М	М	
CO3	Н	Н	Н	Н	M	M	L	Μ	M	M	M	М	
CO4	L	L	L	L	L	L	L	М	L	М	L	L	

				Semester: VI						
			IN	ERNET OF THI	NGS					
	(Elective C: Professional Elective)									
(Common to All Branches)										
Cou	Course Code:18CS6C1CIE Marks:100									
Cre	dits: L:T:P	:	3:0:0		SEE Marks	:	100			
Tota	al Hours	:	39L		SEE Duration	:	3 Hrs			
Cou	rse Learning	g Ob	jectives: The stude	s will be able to						
1.	Understand	desi	gn principles in Io	edge, fog compu	ting and its challen	ges				
2.	Identify the	Inte	rnet Connectivity,	curity issues and	its protocols					
3.	Explore and	1 imp	lement Internet of	hings (IoT) and N	New Computing Par	adig	ms			
4.	4. Apply and analyze the Orchestration and resource management inioT, 5G, Fog, Edge, and Clouds									
				nit – I			8 Hrs			
Inter	•		•	÷	la -Internet of Thing		•			

Internet of Things Strategic Research and Innovation Agenda -Internet of Things Vision ,IoT Strategic Research and Innovation Directions , IoT Applications , Internet of Things and Related Future Internet Technologies , Infrastructure , Networks and Communication , Processes , Data Management , Security, Privacy & Trust , Device Level Energy Issues

Unit – II	8 Hrs
Internet of Things Standardisation - Status, Requirements, Initiatives and Organisations - In	troduction
, M2M Service Layer Standardisation , OGC Sensor Web for IoT , IEEE and IETF , ITU-T	'. Simpler
IoT Word(s) of Tomorrow, More Interoperability Challenges to Cope Today-Physical vs Virt	ual, Solve
the Basic First — The Physical Word, The Data Interoperability, The Semantic Interoperab	oility, The
Organizational Interoperability, The Eternal Interoperability, The Importance of Standard	lisation —
The Beginning of Everything	
Unit – III	8 Hrs
	01 .

Internet of Things Privacy, Security and Governance-Introduction, Overview of Activity Chain — Governance, Privacy and Security Issues, Contribution From FP7 Project, Security and Privacy Challenge in Data Aggregation for the IoT in Smart Cities-Security, Privacy and Trust in Iot-Data-Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach

	Unit – IV	8 Hrs									
	Internet of Things (IoT) and New Computing Paradigms Fog and Edge Computing Completing the										
Cloud,	Cloud , Advantages of FEC: SCALE , How FEC Achieves These Advantages: SCANC 9, Hierarchy of										
Fog and	og and Edge Computing, Business Models, Addressing the Challenges in Federating Edge										
Resource	Resources , The Networking Challenge, The Management Challenge, Integrating IoT + Fog + Cloud										
	Unit – V 7 Hrs										
Manage	ement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Int	roduction									
,Backgr	ound, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Netwo	rk Slicing									
Manage	ment in Edge and Fog										
Course	Outcomes: After completing the course, the students will be able to										
CO 1:	Understand and Explore Internet of Things (IoT) with New Computing Paradigme	s like 5G,									
	Fog, Edge, and Clouds										
CO 2:	Analyze Prototyping and demonstrate resource management concepts in New C	omputing									
	Paradigms										

CO 4:	Propose	IoT-enabled	applications	for	building	smart	spaces	and	services	with	security	
	features,	resource mar	nagement and	edg	ge comput	ing						

Refer	rence Books:
1.	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers, 2013ISBN: 978-87- 92982-73-5(Print) ISBN: 978-87-92982-96-4(E-Book).
2.	Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya, Satish Narayana Srirama, 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498- 4.
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, 2017, TMH Publications, ISBN:9789352605224.
4.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, 1 st Edition, 2013, Willy Publications ,ISBN: 978-1-118- 47347-4.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1									PO12				
CO1	2	1	1	1	-	2	2	-	-	1	-	2		
CO2	2	2	1	1	-	2	2	-	1	1	-	3		
CO3	1	2	1	1	-	2	2	-	1	1	-	2		
CO4	1	2	2	2	-	3	3	1	2	2	-	3		

				Semester: VI								
		IN	IDUSTRIAL SA	AFETY AND RISK M	IANAGEMENT							
(Group C: Professional Elective)												
(Theory) Course Code : 18CH6C2 CIE : 100 Marks												
		:			CIE	:	100 Marks					
	Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 3 91 SEE Duration : 3 Hours											
	Total Hours : 39L SEE Duration : 3 Hours											
Course Learning Objectives: The students will be able to 1 Select appropriate risk assessment techniques.												
1												
2				rception of risk.								
3		_	gonomics and hu									
4	Carry out risk	c as	sessment in proc	ess industries								
				Unit-I			08 Hrs					
Con	eral –I:			Unit-1			00 111 8					
Tech Gene	nniques and M eral, risk adju	leth uste	ods –II: d discounted 1	Unit – II cate method, certainty pution, coefficient of va	y equivalent coefi	icie	07 Hrs					
	er''s model, Hei				anation method, sin	uiut	ion method,					
				Unit –III			08 Hrs					
Eme inter	nal emergency	Syst pla	ems, Diers prog anning, risk mai	ram, bench scale expe nagement plan, risk m Mond index Method.			nanagement					
				Unit –IV			08 Hrs					
			Assessment –IV:									
				, liability insurance and alysis, event tree analys								
				Unit –V			08 Hrs					
plant		otec		tries–V: Handling an s. Environmental risk a								
				the course, the studen								
CO1: Recall risk assessment techniques used in process industry.												

001.	Recall fish assessment teeningaes used in process industry.
CO2:	Interpret the various risk assessment tools.
CO3:	Use hazard identification tools for safety management.

CO4: Analyze tools and safety procedures for protection in process industries.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Refere	ence Books
	Functional Safety in the Process Industry : A Handbook of practical Guidance in the
1	application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North
	corolina, Lulu publication, ISBN:1291187235
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and
2	William M., 2005, Pensulvania ISA publication, ISBN:155617909X
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition,
	2003, The University of alberta press, Canada, ISBN: 0888643942.
4	Environmental Engineering – A Design Approach, Sincero A P and Sincero G A, 1996,
-	Prentice Hall of India, New Delhi, ISBN: 0024105643

Semester End Evaluation (SEE); Theory (100 Marks)

1

-

_

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping CO/PO **PO1** PO₂ PO6 PO7 PO9 PO10 **PO11** PO3 PO4 PO5 **PO8 CO1** 2 3 1 1 1 1 1 --_ _ **CO2** 2 3 1 1 1 ------**CO3** 3 2 2 1 1 -1 --1 1

_

_

-

1

-

1

-

3 Low-1 Medium-2 High-3

CO4

PO12

-

-

-

_

				Semester: VI							
BIOCHEMICAL ENGINEERING											
(Group C: Professional Elective)											
(Theory)											
	se Code	:	18CH6C3		CIE	:	100 Marks				
Credits: L:T:P : 3:0:0 SEE : 100 Marks											
Total Hours:39LSEE Duration:3 Hours											
Cours	e Learning (Dbj	ectives: The stu	dents will be able to							
1	Identify vario	ous	microorganism a	and its effect on nutrient	s or culture						
2	Select suitabl	e ei	nzyme kinetics f	or a process industry.							
3	Relate stoich	iom	etry cell growth	and microbial kinetics							
4	Carry out uni	t op	peration process	in fermentation technolo	ogy and product rec	ove	ry				
				Unit-I			07 Hrs				
				of microorganisms,							
				ion and reproduction in	bacteria. Eukaryot	ic co	ells: structure,				
				gi, Yeasts, molds.							
	•			Amino acids and pro			Mono and				
polysa	iccharides, Ni	lcle	ic acids, RNA a	nd DNA, Lipids, fats, st	eroids, Cell nutrien	ts.					
-				Unit – II		1	08 Hrs				
÷	•	1 R	eactions: Introd	uction, Enzyme kinetic	s, MM, BH approa	ach,	evaluation of				
	c parameters.	т	······································			•	1 11 - 4				
•	ds of immobi		• •	rs, Effects of temperatu	re and pH, Enzym	e in	imobilization,				
metho		IIZa		Unit –III			08 Hrs				
Stoich	niometry of (Cell	Growth and H	Product Formation: El	emental balances,	avai					
				coefficients of biomass							
	•		· •	, Oxygen consumption a	*						
				and batch sterilization, s							
				Unit –IV			08 Hrs				
Kineti	ics of Microb	ial	Growth and Pr	oduct Formation: Phase	es of cell growth an	d ki	netics in batch				
				equations, unstructure							
specifi	ic growth ra	te,	substrate limite	d growth, models with	growth inhibitors	s. Ir	troduction to				
structu	ured models, I	[dea	l Bioreactors, B	atch reactor, Ideal Chem	nostat						
				Unit –V			08 Hrs				
				ts: Removal of microbi							
				trifugation, cell disrupt	ion, chemical meth	nods	, liquid-liquid				
extrac	tion, chromat	ogr	aphy, membrane	separation, drying.							
			· ·	the course, the student	s will be able to						
CO1:				gy and enzymes							
CO2:	CO2: Explain the various product recovery operations										

CO3:	An	alyze the enzyn	ne kinetics and the factors affecting enzyme kinetics	

CO4: Predict appropriate sterilization Techniques and Design Bioreactors

Reference Books

Bio-Process Engineering, Shuler and Khargi, 3rd edition, 2017, PrenticeHall, ISBN-13: 978 0137062706
Fundamentals Bailey and Ollis 2ndedition 1986 McGraw-Hill Chemical Engineering

- 2 Fundamentals, Bailey and Ollis, 2ndedition, 1986, McGraw-Hill, Chemical Engineering Series ISBN-13: 978-0070032125
- Bioprocess Engineering Principles, Pauline M Doron, 1995, Elsevier Science & Technology Books, ISBN: 0122208552
 Biochemical Engineering, Mukesh Doble, Sathyanarayana N Gumaadi, First Edition, 2101
 - 4 Biochemical Engineering, Mukesh Doble, Sathyanarayana N Gumaadi, First Edition, 2101, PHI Learning 0 *ISBN*: 9788120330528

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

			Semester: VI			
			FOOD TECHNOLOGY			
		(G	roup C: Professional Elective)			
<u> </u>		100000	(Theory)	-	1	100361
Course Code	:	18CH6C4	CII		:	100 Marks
Credits: L:T:P	:	3:0:0	SE		:	100 Marks
Total Hours	:	39L	SE	E Duration	:	3 Hours
Course Learning						
			chemistry and quality attributes	of food		
2 Apply unit of						
			ives, food contamination/adulter			
4 Know variou	s me	thods of food	l processing, packaging and pres	ervation		
	-	• / • • •	UNIT-I	<u> </u>	• .	08 Hrs
		•	ood: Properties and significar			
	ipids	s, Proteins,	Vitamins, Minerals and Moist	ure. Nutritive	e asp	bects of food
constituents.						
			UNIT-II			08 Hrs
			earance factors, Textural factor			
			dditional quality; quality standar		ontrol	•
			on to sensory evaluation of food			
			eration: Types of adulterants	and contam	inan	ts, Intentiona
adulterants, incid	enta	l adulterants	and its effects			
			UNIT-III			08 Hrs
Food preservation	on:	Causes for	food deterioration. Aims and	objectives of	pres	servation and
			essing. Different methods of food	l preservation	-low	v temperature,
high temperature,	pres	ervatives, foo	d irradiation.			

Food Processing: Milk and dairy products, vegetables and fruits, cereals, meat and meat products, fats and oils, beverages.

	UNIT-IV	08 Hrs								
	Food additives: Introduction and need for food additives. Types of additives - antioxidants, chelating									
agents, o	agents, coloring agents, curing agents, emulsions, flavors and flavor enhancers, flavor improvers,									
	humecants and anti-caking agents, leavening agents, nutrient supplements, non - nutritive sweeteners,									
pH contr	rol agents, stabilizers and thickeners, other additives. Additives and food safety									
	UNIT-V	07 Hrs								
Enzyma	tic and non-enzymatic reactions during storage: Introduction to enzymes.	Nature and								
	of enzymes. Classification of enzymes. Hydrolases -Esterase, amylases, pecti									
Protease	s. Oxidoreductases - phenolases, glucose oxidase, catalos, peroxidase, lipoxygena	se, oxidase.								
Immobil	ized enzymes. Uses of enzymes in food processing. Non-enzymatic reactions.									
Modern	trends in food science: Biotechnology in food, Biofortification, Nutraceuticals,	Organic								
foods, P	ackaging of foods and nutrition labeling.	-								
Commo	Outcomes: After completing the course the students will be able to									
	Outcomes: After completing the course, the students will be able to									
CO1:	Comprehend the chemistry and the quality attributes of food.									
CO2:	Apply biocompatible additives and packaging for food products									

CO3: Identify sources of contaminants, adulterants with its prevention for safe and healthy food.

CO4: Evaluate different food processing and preservation technologies

Ref	ference Books
1	Food Science, Norman N. Potter and Joseph H., 5th Edition., 1995, Hotchkin Avi
1	Publishing Co., ISBN: 0-8342-1265-X.
2	Foods, Facts and Principles, N. ShakuntalaManay and M. Sadaksharamurthy, 2 nd Edition, 2005, New Age Publishers, ISBN: 81-224-1325-0.
	2005, New Age Publishers, ISBN: 81-224-1325-0.
2	Food Science, B. Srilakshmi, New Age International, 6th Edition, 2015, ISBN: 978-81-224-
3	3809-3.
4	Fundamentals of Food Process Engineering, Romeo T. Toledo, 2 nd Edition, 2007, Springer,
4	ISBN: 978-0-387-29019-5.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3										
CO2	3	3		3	2									
CO3				1			2							
CO4	2			3										
CO5	1	3	3	3					1	2	1			

	Semester: VI											
	MACHINE LEARNING											
	(Elective D: Professional Elective)											
	(Common to 9 Branches)											
Cou	irse Code	:	18CS6D1		CIE Marks	:	100					
Cre	dits: L:T:P	:	3:0:0		SEE Marks	:	100					
Tot	al Hours	:	39L		SEE Duration	:	3 Hrs	5				
Cou	ırse Learning	g Ob	jectives: The stu	idents will be able to								
5.	Understand	l the	concepts of supe	ervised and unsupervis	sed learning.							
6.	Analyze m	odel	s such as suppo	ort vector machines,	kernel SVM, naive	e Ba	ayes, d	lecision tree				
	classifier, r	ando	m forest classifi	er, logistic regression,	K-means clustering	g and	d more	in Python				
7.	Implement	and	work with state-	of-art tools in machine	e learning							
				Unit – I				08 Hrs				
Intr	oduction to	Ma	chine Learning	g:Introduction, What	is Human Learni	ng?	,Types	of Human				
Lea	rning, What is	s Ma	chine Learning?'	Types of Machine Lea	arning - Supervised	learı	ning, U	Insupervised				
lear	ning, Reinford	ceme	nt learning, Con	nparison – supervised,	unsupervised, and r	reinf	forcem	ent learning,				
Proł	olems Not To	Be S	olved Using Ma	chine Learning, Applie	cations of Machine I	Lear	ning, S	State-of-The-				
Art	Languages/To	ools I	In Machine Lear	ning, Issues in Machin	ne Learning.		-					
				Machine Learning Ac		es of	f Data	in Machine				
				, Data Quality and Rea								
	<u> </u>		•	Unit – II				08 Hrs				

Unit – II	08 Hrs
Modelling and Evaluation: Introduction, Selecting a Model, Training a Model (f	or Supervised
Learning), Model Representation and Interpretability, Evaluating Performance of a Mod	el, Supervised
learning - classification, Supervised learning - regression, Unsupervised learning	- clustering,
Improving Performance of a Model.	-

Basics of Feature Engineering, Introduction, Feature Transformation, Feature construction, Feature extraction, Feature Subset Selection, Issues in high-dimensional data, Key drivers of feature selection – feature relevance and redundancy, Measures of feature relevance and redundancy, Overall

 feature selection Approaches.

 Unit – III
 08 Hrs

 Bayesian Concept Learning: Introduction, Why Bayesian Methods are Important?, Bayes' Theorem, Bayes' Theorem and Concept Learning, Brute-force Bayesian algorithm, Concept of consistent learners, Bayes optimal classifier, Naïve Bayes classifier, Applications of Naïve Bayes classifier, Handling Continuous Numeric Features in Naïve Bayes Classifier, Bayesian Belief Network, Independence and conditional independence, Use of the Bayesian Belief network in machine learning

Unit – IV	08 Hrs
Supervised Learning: Classification Introduction, Example of Supervised Learning,	Classification
Model, Classification Learning Steps, Common Classification Algorithms, k-Neared	st Neighbour
(KNN), Decision tree, Random forest model, Support vector machines.	
Super vised Learning: Regression, Introduction, Example of Regression, Commo	on Regression
Algorithms, Simple linear regression, Multiple linear regression, Assumptions in Regres	sion Analysis,
Main Problems in Regression Analysis, Improving Accuracy of the Linear Regre	ession Model,
Polynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation	
Unit – V	07 Hrs
Unsupervised Learning, Introduction, Unsupervised vs Supervised Learning, A	pplication of
Unsupervised Learning, Clustering, Clustering as a machine learning task, Different type	s of clustering
techniques, Partitioning methods, K-Medoids: a representative object-based technique	, Hierarchical
clustering, Density-based methods - DBSCAN, Finding Pattern using Association Rule	, Definition of

common terms, Association rule, The apriori algorithm for association rule learning, Build the apriori principle rules.

Cours	Course Outcomes: After completing the course, the students will be able to									
1	Explore and apply the fundamentals of machine learning techniques.									
2	Understand different techniques of data pre processing.									
3	Analyze the strength and weakness of different machine learning models to solve real world problems.									
4	Implement and apply different supervised and unsupervised machine learning algorithms.									

Refere	nce Books:
1.	Machine Learning, Amit Kumar Das, SaikatDutt, Subramanian Chandramouli, Pearson
	Education India, April 2018 ISBN: 9789389588132.
2.	Introduction to Machine Learning, EthemAlpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-
	978-81-203-4160-9.
3.	Practical data science with R, Zumel, N., & Mount J, Manning Publications, 2014, ISBN
	9781617291562
4.	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence
	Algorithms, Nikhil Buduma, O'Reilly Publications, 2016 Edition, ISBN-13: 978-1491925614.
5.	Pattern Recognition and Machine Learning, Christopher M Bishop, Springer, February 2006,
	ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2.
6.	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
	Springer, Second Edition, April 2017, ISBN 978-0-387-84858-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2	1	-	-	-	-	-	-	1		
CO2	2	2	2	2	1	-	-	-	-	-	-	1		
CO3	3	3	3	3	2	-	-	-	-	-	-	1		
CO4	3	3	3	3	2	2	-	-	-	-	-	2		

			Semester:	VI		
		BI	O FUEL ENGI	NEERING		
		(Gro	oup D: Professio	-		
-			(Theory)			
	se Code	: 18CH6D2		CIE	:	100
	its: L:T:P	: 3:0:0		SEE	:	100
	Hours	: 36L		SEE Duration	:	3Hrs
	se Learning					
1		ential biomass feed				1 1
2				se appropriate pretreatment	t met	chod.
3 4				o energy technologies		
7	WIGCH KHOW	ledge on concept of	of biorennery and			
			Unit-I			07 Hrs
Intro	duction to Bi	iomass and its cho				0.1115
				and energy crops, Biomas	s cha	aracterization,
		ion, Classification				
			Unit – II			07 Hrs
		essing and Pre-tr				
			sm of pretreatme	nt, Types of pretreatment, A	Acid	pretreatment,
Alkal	ine pretreatme	ent. Densification	TT •/ TTT			00.11
D'	<u> </u>		Unit –III			08 Hrs
		ion Technologies:	Ivaia Diashami	al conversion, Bio-methan	atia	n and fastan
		anation, Bioethano		al conversion, bio-methan	allo	in and factors
ancei	ing bio-metha	anation, bioethano	Unit –IV			07 Hrs
Biofu	el Utilizatior	n and Bio Refiner				0.1115
				nery Classification, Building	g Blo	ock Chemicals
	o refinery.		0.7			
			Unit –V			07 Hrs
	studies:					
Bio-e	thanol from s	tarch and other bio	omass, Biogas fro	m water hyacinth and Biodi	iesel	Jatropa
Com	~ . Out	After commistin	<u>a tha aannaa tha</u>	atudanta millika akla ta		
Cour CO1:			U	students will be able to biomass energy extraction s	veta	ma
CO1:		^		els for different bio-energy	-	
CO2:		drivers and barrie			чрр	
CO4:	-			lering ecological and socio-	ecor	omic criteria
				0 0		
Refer	ence Books					
		cker (Ed.), 2010.	Thermochemical	Conversion of Biomass to	Liq	uid Fuels and
1		. RSC Publishing,			1	
-				ble Energy, Fuels and Che	mica	lls. Academic
2		diego, CA. ISBN:				
3				ation Engineering, 2nd Edit	tion.	Butterworth-
3	Heinemann	n series in Chemic	al Engineering. IS	SBN 0-409-90233-0 1		
4	Charles E.	Wyman (Ed.), 199	96. Handbook on	Bioethanol: Production and	Uti	ization.
		s, New York. ISBN				
	-			Kamm (Ed.), 2008. Biorefir		
5			ducts: Status Qu	o and Future Directions, V	ol. 1	& 2. Wiley-
	VCH, Wei	nheim, Germany.				

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	1	-	1	2	2	2	1	1	-	1		
CO2	2	2	2	2	-	1	3	2	1	1	1	1		
CO3	1	1	1	1	1	1	1	1	1	1	1	1		
CO4	1	1	1	1	1	1	3	3	1	1	1	1		

				Semester: VI									
HETEROGENEOUS REACTION ENGINEERING													
(Group D : Professional Core Elective)													
(Theory)													
	rse Code	:	18CH6D3		CIE	:	100 Marks						
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Total Hours : 39L SEE Duration : 3 Hours													
Cou	Course Learning Objectives: The students will be able to												
1													
2													
3													
	and 3 phase f												
4	The kinetics	and	Design of fluid – p	article reaction syste	ems								
			T	J nit-I			07 11						
Inte	aduation to U	ator		Systems: Examples	for hataraganaaus	aata	07 Hrs						
			-	, contacting patterns	-		•						
	-		-	for linear and nonlir		п5, г	Cale equations						
				tion of a model, Rat		hrinl	ing Spherical						
			on of rate controlling				ang opneneur						
1 01 01				nit – II			08 Hrs						
Cata	lysis: Introdu	ctio		oters, inhibitors. Pro	perties of catalysts	, cha							
of ca	talyst, mechan	ism	s of catalysis, cataly	yst preparation, catal	lyst poisoning.	- -							
				on of the surface are									
				croscopy, X-Ray Di									
				uir adsorption Isoth									
				face reaction and de	esorption. Wheelers	s mo	del, Types of						
diffu	ision in porous	cat	alysts, effectiveness				00 11						
Dagi	an of Nowldo	al 1		nit –III Distribution the D	TD Commission in	. NL	08 Hrs						
			sion Model, Tanks	Distribution, the R	1D, Conversion in	1 INC	on-ideal flow						
				s for mass transfe	r and reaction	rate	equation for						
				termediate rate, Ra									
				gimes, slurry reaction									
	slow reactions	,		8	,8.								
			U	nit –IV			08 Hrs						
Cata	lyst Deactiva	tion		deactivation,Mecha	nism of deactivation	on, p							
				, pore diffusion, Ra									
Dete	rmination of ra	ate f	from experimental d	lata for independent	deactivation for dif	ferei	nt reactors.						
			-	nit –V			08 Hrs						
Expo	erimental Met	thoo	ls For Finding Rat	es: Differential and	Integral Reactor an	alysi	is.						
Desi	gn of Reacto	rs:	Fluid-particle, flui	d- fluid reactor des	sign, Slurry Reacto	or, P	acked bed						
catal	ytic reactor, T	rick	le bed reactor, Thre	e phase fluidized be	d Reactor.								

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Define the rate equations for heterogeneous reactions
CO2:	Predict the rate controlling mechanism
CO3:	Analyze adsorption isotherms by conducting adsorption studies
CO4:	Interpret experimental data and determine rate equations, design the reactors for fluid-solid
	and fluid-fluid reactions

Reference Books

Reference	chee Books
1	Chemical Reaction Engineering, Levenspiel Octave, 3 rd Edition, 2006, John Wiley and Sons, 1999, ISBN 978-812651000
2	Chemical Engg Kinetics, J. M. Smith, 7 th Edition, 2004, Mc Graw Hill, , ISBN 978-0070145870
3	Elements of Chemical Reaction Engineering, 5th Edition, 2016, H. Scott Foggler, Prentice Hall, ISBN 978-8126510009
4	Chemical and Catalytic Reaction Engineering, James J. Carberry, Dover Publications; Dover ed edition, 2001, ISBN-13: 978-0486417363

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	-	-	-	-	-	1	-	1			
CO4	3	3	3	3	-	-	-	-	-	1	-	1			

			CHEMICAL	Semester: VI PROCESS INTEC	CRATION							
				Professional Core								
				(Theory)	Elective)							
Cours	e Code	:	16CH6D4		CIE	:	100 Mark					
	s: L:T:P	:	3:0:0		SEE	:	100 Mark					
Total]	Hours	:	36L		SEE Duration	:	3 Hours					
		Dbi	ectives: The studer	nts will be able to								
				d energy integration	l							
	Carry out quantification of a specific task using the concept of targeting Synthesize alternative routes for integration											
			rnatives and genera	<u> </u>								
			8	·····								
				Unit-I			07 H					
Introd	uction											
Proces	s Synthesis, I	Pro	cess Analysis, Targ	eting minimum was	ste, and strategies fo	r tar	gets					
	<u> </u>			nit – II	· · · · · · · · · · · · · · · · · · ·		07 H					
Overa	ll Mass Targ	geti	ng									
				Recycle Pinch Diag	ram							
			U	nit –III			08 H					
Mass l	Integration		U	nit –III			08 H					
	0	Ma		nit –III ch Diagram and A	lgebraic approach	to ta						
Mass	0	M			lgebraic approach	to ta						
Mass	Exchangers,	Ma	ass Exchange Pind		lgebraic approach	to ta						
Mass exchan	Exchangers,	Ma	ass Exchange Pind	ch Diagram and A	lgebraic approach	to ta	argeting ma					
Mass exchan Heat I	Exchangers, age networks ntegration		ass Exchange Pino U	ch Diagram and A			argeting ma					
Mass exchan Heat I Heat F	Exchangers, age networks ntegration	etwo	ass Exchange Pind U orks, Heat Exchan	ch Diagram and A nit–IV ge Pinch Diagram,			argeting ma					
Mass exchan Heat I Heat F	Exchangers, age networks ntegration Exchange Ne	etwo	ass Exchange Pind U orks, Heat Exchan	ch Diagram and A nit –IV			argeting ma					
Mass exchan Heat I Heat E Algebr Combi	Exchangers, age networks ntegration Exchange Ne aic Approact	etwo h	ass Exchange Pind U orks, Heat Exchan U Power Integration	ch Diagram and A nit –IV ge Pinch Diagram, Init –V	Minimum Utility	Targ	argeting ma 07 H geting throu 07 H					
Mass exchan Heat I Heat E Algebr Combi	Exchangers, age networks ntegration Exchange Ne aic Approact	etwo h	ass Exchange Pind U orks, Heat Exchan U Power Integration	ch Diagram and A nit–IV ge Pinch Diagram,	Minimum Utility	Targ	argeting ma 07 H geting throu 07 H					
Mass exchan Heat I Heat E Algebr Combi	Exchangers, age networks ntegration Exchange Ne aic Approact	etwo h	ass Exchange Pind U orks, Heat Exchan U Power Integration	ch Diagram and A nit –IV ge Pinch Diagram, Init –V	Minimum Utility	Targ	argeting ma 07 H geting throu 07 H					
Mass exchan Heat I Heat E Algebr Combi Heat en Course	Exchangers, age networks ntegration Exchange Ne aic Approach ined Heat ar ngines, heat p e Outcomes:	etwo h nd l	ass Exchange Pind U orks, Heat Exchan <u>U</u> Power Integration nps, placement of h	ch Diagram and A nit –IV ge Pinch Diagram, Init –V	Minimum Utility t pumps in heat exch	Targ	argeting ma 07 H geting throu 07 H					
Mass exchan Heat I Heat E Algebr Combi Heat en Course	Exchangers, age networks ntegration Exchange Ne aic Approach ined Heat ar ngines, heat p e Outcomess Understand	etwo h nd l oun : Af	ass Exchange Pind U orks, Heat Exchan U Power Integration nps, placement of h fter completing the e fundamentals, stra	ch Diagram and A nit –IV ge Pinch Diagram, Init –V eat engines and heat e course, the studen ategies and approach	Minimum Utility t pumps in heat exch nts will be able to nes of process integr	Targ	argeting ma 07 H geting throu 07 H e networks					
Mass exchan Heat I Heat F Algebr Combi Heat en Course CO1:	Exchangers, age networks ntegration Exchange Ne aic Approach ined Heat ar ngines, heat p e Outcomess Understand	etwo h nd l oun : Af	ass Exchange Pind U orks, Heat Exchan U Power Integration nps, placement of h fter completing the e fundamentals, stra	ch Diagram and A nit –IV ge Pinch Diagram, Init –V eat engines and heat e course, the studer	Minimum Utility t pumps in heat exch nts will be able to nes of process integr	Targ	argeting ma 07 H geting throu 07 H e networks					
Mass exchan Heat I Heat F Algebr Combi Heat er	Exchangers, age networks ntegration Exchange Ne aic Approach ined Heat ar ngines, heat p e Outcomes: Understand Apply proc targeting.	etwo h nd l oun : At l the cess	ass Exchange Pind U orks, Heat Exchan U Power Integration nps, placement of h fter completing the e fundamentals, stra s integration strateg	ch Diagram and A nit –IV ge Pinch Diagram, Init –V eat engines and heat e course, the studen ategies and approach	Minimum Utility t pumps in heat exch nts will be able to nes of process integr gineering systems for	Targ nange ration or ma	argeting ma 07 H geting throu 07 H e networks					

1	Process Integration, Mahmoud M El-Halwagi, 1 st Edition, 2006, Elsevier Academic Press, ISBN – 13: 978 0 12 370532 7
2	Chemical Process Design and Integration, Robin Smith, 2 nd Edition, 2005, John Wiley & Sons, ISBN – 0 471 48681 7
3	Pinch Analysis and Process Integration, Ian C. K., 2 nd Edition, 2007, Elsevier BH, ISBN – 13: 978 0 75068 260 2
4	Heat Exchanger Network Synthesis, Shenoy U. V., 1 st Edition, 1995, Gulf Professional Publishing, ISBN – 0 884 15391 6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are

conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	-	-	-	-	-	-	-	-	-	-			
CO2	-	2	2	-	-	-	-	-	-	-	-	2			
CO3	2	2	2	-	-	-	-	-	-	-	-	2			
CO4	3	-	3	-	3	-	-	-	-	-	-	3			

				Semester: VI								
	AIRCRAFT SYSTEMS											
	(GROUP E: GLOBAL ELECTIVE)											
(Theory)												
Cou	Course Code:18G6E01CIE:100 Marks											
Crec	lits: L:T:P		3:0:0	SI	EE	••	100 Marks					
Hou	rs	:	39L	SI	EE Duration		3.00 Hours					
Cou	rse Learning O	bje	ectives: To ena	ble the students to:								
1	List the variou	is s	ystems involve	d in the design of an aircraft								
2	Demonstrate t	he 1	technical attrib	utes of all the subsystems of an	n aircraft							
3	Explain the sig	gnif	ficance of each	systems and its subsystems for	r developing an	ai	rplane					
4	Demonstrate t	he i	integration of the	he systems with the airplane								

Unit-I	07Hrs							
Flight Control Systems: Primary and secondary flight controls, Flight control linkage system,								
Conventional Systems, Power assisted and fully powered flight controls.								
Unit – II 10Hrs								
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or							
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	e of bleed							
air, Landing gear and braking, Shock absorbers-Retraction mechanism.								
Unit -III	08Hrs							
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its con	mponents,							
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.								
Unit -IV	07Hrs							
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-							
icing system, Fire detection- warning and suppression. Crew escape aids.								
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical								
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system.	l a typical							
	a typical 07Hrs							
lubricating system.	07Hrs							
lubricating system. Unit -V	07Hrs							
lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	07Hrs Vavigation							

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane
CO2:	Comprehend the complexities involved during development of flight vehicles.
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
CO4 :	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A.,3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	3	1	1	3	2	2	-	-	-	1			
CO2	2	3	3	3	1	1	1	1	-	-	-	1			
CO3	2	2	3	3	1	-	-	-	-	-	-	2			
CO4	3	3	3	3	1	2	1	2	-	-	-	1			

	Semester: VI BIO INSPIRED ENGINEERING (GROUP E: GLOBAL ELECTIVE)							
Соц	rse Code	:	18G6E02	(Theory)	CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours	
Cou	rse Learning ()bj	ectives: The studen	ts will be able to				
1	To familiarize	e er	igineering students	with basic biologica	l concepts			
2	Utilize the si	mil	arities noted in nat	ture for a particular	problem to bring i	nsp	iration to the	
	designer.			_		_		
3	Explain appli	cat	ions such as smart	structures, self-heali	ng materials, and ro	bot	ics relative to	
	their biological analogs							
4								
	devices and structures.							

Unit-I	08 Hrs
Introduction to biological systems: General and Special biomolecules, Plant, an	imal and
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural	networks,
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsuper	vised and
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems	with case
study Harvesting Desert Fog.	
Unit – II	08 Hrs
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and	l physical
functions of biological composites of engineering – related case study: Camera from eyes	, clothing
designs and hooks from Velcro Criteria for future materials design and processing. Con	mputation
Cellular systems: Cellular automata - modelling with cellular systems with cellular s	systems –
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.	
Unit –III	08 Hrs
Engineering of synthetic organs: Growth, development and principle of artificial skins	s, hearing
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pa	acemaker,
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Appl	ication of
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods	
Unit –IV	07 Hrs
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequivalence.	uivalence,
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, I	ssues on
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar	Products,
Challenges involved in Biosimilars.	
Unit –V	08 Hrs
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural	systems,
learning in behavioural systems – co evolution of body and control. Behaviour in cognitiv	ve science
and artificial intelligence. Biological inspiration for robots, Robots as biological mo	
robotics behaviour, Application of sleek scale of shark skin.	
Course Outcomest After completing the course the students will be able to	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and explain the concepts of biological and physiological processes						
CO2:	Elucidate the basic principles for design and development of biological systems.						
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems						

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

MUICIC	LICC DOORS
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI
2	
_	Global, 2016. ISBN: 1466698128, 9781466698123.
	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN:
3	1606502255, 9781606502259.
	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature -
4	
-	Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	1	3	2	-	1	1	1	-
CO2	3	3	2	3	2	-	1	2	-	1	2	-
CO3	2	2	2	3	3	3	2	2	-	1	2	2
CO4	2	2	3	3	2	-	1	2	1	-	-	-

			Semester: VI			
		SUSTA	AINABLE TECHNO	DLOGY		
		(GROU	P E: GLOBAL ELE	CTIVE)		
			(Theory)			
Course Code	:	18G6E03		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	; Obj	ectives: The stud	ents will be able to			
			epts related to interact	tion of industrial and e	ecolo	gical systems
		•	life cycle assessment.			
			t methodology using a		es.	
4 Use concep	ts of s	systems-based, tr	ans-disciplinary appro	bach to sustainability.		
			TT •4 T			
Introduction to a			Unit-I			08 Hrs
Introduction to s		•	pts and Life Cycle	Analysis Matarial	flor	v and west
		•	ects, Character of Env	-	110	w and wast
management, enc	mea		Unit – II	nonnentar i robienis		07 Hrs
Environmental I)ata (Collection and L	CA Methodology:			07 111
			es, Statistical Analys	sis of Environmenta	l D	ata, Commo
			CA Methodology. – Go			,
•			Unit –III			08 Hrs
Life Cycle Assess	smen	t:				·
			cle Interpretation, LCA	A Benefits and Drawb	acks	
Wet Biomass Ga						
			ck for biogas generation			
-	•	0	ctors affecting bio-dia		1 of	biogas plants
Floating drum pla	nt and	a fixed dome plai	nt their advantages and Unit –IV	d disadvantages.		08 Hrs
Design for Susta	nahi	1:4	Unit –I v			
0		•	ental Design for Susta	inahility		
Dry Biomass Ga			chiai Design for Susta	maomry.		
v			rmal gasification of bi	iomass. Classification	of g	asifiers. Fixe
bed systems:		,	0	,	0	,
•			Unit –V			08 Hrs
Case Studies:						
	r Org	anics Treatment	Plant, Bio-methanatic	on, Bioethanol produc	tion.	Bio fuel from
water hyacinth.						
		<u> </u>	he course, the studer			
			challenges facing the	-	and	systems-base
approach	es req	uired to create su	stainable solutions fo	r society.		
CO2: Identify	oroble	ems in sustainab	ility and formulate a	ppropriate solutions	based	l on scientifi
research,	applie	ed science, social	and economic issues.			
	~ ~		stems-based, trans-dis		susta	inability
11 2		•	ns based on scientific			÷
	- upp			- research, applied s		e, social all

]	Refere	nce Books									
	1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge
	I	University F	ress, ISBN - 9	9781108333	726.						

economic issues.

	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VI								
	GRAPH THEORY							
		(GROUP E: O	GLOBAL ELECT	TIVE)				
			(Theory)					
Course Code	:	18G6E04		CIE Marks	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks		
Total Hours	:	39L		SEE Duration	:	3.00 Hours		

Cour	se Learning Objectives: The students will be able to
1	I understand the basics of smark the same and their requires a moment

Cour		ing Ob	jeen co.	Incs	luucin	9 WH						
1	Understa	and the	basics of	graph	theory	and	their	various	prope	erties.		
0	37 11	1.1	•	1	1.	1	.1	1.1	1		•	11

2

- Model problems using graphs and to solve these problems algorithmically. Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, 3 etc.
- Optimize the solutions to real problems like transport problems etc., 4

UNIT-I	07 Hrs
Introduction to graph theory	
Introduction, Mathematical preliminaries, definitions and examples of graphs, degree	es and regular
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	C
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	y in digraphs.
UNIT-II	09 Hrs
Graph representations, Trees, Forests	·
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	d properties of
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spann	ning trees and
forests, Spanning trees of complete graphs, An application to electrical networks, I	Minimum cos
spanning trees.	
UNIT-III	09 Hrs
Fundamental properties of graphs and digraphs	•
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in wei	ighted graphs
Eulerian digraphs.	0 0 1
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratow	ski's theorem
Dual of a planar graphs.	
UNIT-IV	07 Hrs
Matchings and Factors	
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite m	atching.
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynom	ial of a graph
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge color	ing of graphs
UNIT-V	07Hrs
Graph algorithms	
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest pa	ath algorithms
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm	•
and Prim's.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the basics of graph theory.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1.	Understand and explore the basics of graph theory.						
CO2.	Analyse the significance of graph theory in different engineering disciplines						
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.						
CO4.	Evaluate or synthesize any real world applications using graph theory.						

Reference	Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

			Semester: VI								
		DI	ISASTER MANAGE	MENT							
(GROUP E: GLOBAL ELECTIVE)											
			(Theory)								
Course Code : 18G6E05 CIE : 100 Marks											
Credits: L:T:P	:	3:0:0		SEE	: 100 Marks						
Total Hours	:	39L		SEE Duration	:	3.00 Hours					
Course Learning	Ob	jectives: The stu	dents will be able to		_	1					
1 Study the env	viror	nmental impact of	of natural and manmad	e calamities							
2 Learn to anal	yze	and assess risk i	nvolved due to disaster	rs.							
		ole of public part									
4 Learn the ma	nage	ement tools and	mitigation techniques.								
			Unit-I			08 Hrs					
Natural disasters				111 .1 1							
			Hazards- floods, land								
			ients, harmful gases, B								
			tivities. Preparation of Post disaster plans. Re								
organization and a			-	ner camp organizatio	II. N	ole of voluntary					
organization and a	inte	u torees during (Unit – II			07 11					
Diale analysis and			Unit – 11			07 Hrs					
Risk analysis and			alysis. Analytical te	abriques and tools	of	rick accomment					
			k characterization. Ris								
emergency respon					. 1010	inagement, i ii ii					
			Unit –III			08 Hrs					
Environmental In	npa	ct Assessment (
			ciples of EIA. Regula	atory framework in I	ndia	. Environmental					
inventory. Base lin				-							
			Unit –IV			08 Hrs					
Assessment and M	Met	hodologies									
		0	es, Socio economic an	d cultural environment	ntal	assessment. EIA					
			list approaches. Econo								
EIA. Public partic	cipa	tion in environn	nental decision makin	g. Procedures for rev	iewi	ng EIA analysis					
and statement. Dec	cisic	on methods for e	valuation of alternative	es.							
			Unit –V			08 Hrs					
Disaster Mitigati	on a	nd Managemer									
e		0	management, tools an	d techniques, primary	and	l secondary data					
Natural disasters its causes and remedies-Earthquake hazards-Causes and remedies, Flood and Drought											
assessment, causes and remedies, Landslides-causes and remedies. Fire hazards in buildings, Fire											
hazard management, Traffic management, Cyclones and hurricanes, inter department cooperation.											
Regional and global disaster mitigation.											
Course Outcome	s: A	fter completing	g the course, the stude	ents will be able to							
			f disasters and manage		ter s	ituation.					
CO2. Estimata			the might by conductin			1					

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	Reference Books							
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.							
2	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.							
3	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,							
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN:9780470052457.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-

			Sen	nester: VI				
			WEARABLI	E ELECTRONICS				
			(GROUP E: GI	LOBAL ELECTIVE)				
(Theory)								
Cou	Course Code		18G6E06	CIE	:	100 Marks		
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks		
Total Hours		:	39L	SEE Duration	:	3.00 Hours		
Cou	rse Learning	Obj	ectives: The students will	be able to				
1	Explain the t	ypes	and application of wearab	le sensor.				
2	Describe the	wor	king of sensitivity, conduc	tivity and energy generation in wear	abl	e devices.		
3								
4	Understand different testing and calibration in wearable devices.							

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III						
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of conductive t						
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,					
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case	studies, Hands					
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &. [Ref 3: Chapter						
6,9]						
Unit –IV						

	00 1115				
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradient,					
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input				
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,				
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]					

Unit –V	08 Hrs
Wearable antennas for communication systems: Introduction, Background of textile an	tennas, Design
rules for embroidered antennas, Integration of embroidered textile surfaces onto polyn	mer substrates,
Characterizations of embroidered conductive, textiles at radio frequencies, RF p	erformance of
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna							
CO2:	Analysis measurable quantity and working of wearable electronic devices.							
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges							
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem							
	statement.							

Refer	rence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
l	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
5	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

	Semester: VI								
	ENERGY AUDITING AND MANAGEMENT								
	(GROUP E: GLOBAL ELECTIVE)								
				(Theory)		_			
Co	Course Code:18G6E07CIE:100 Marks								
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks		
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours		
Co	ourse Learning	g O	bjectives: The stud	ents will be able to					
1	Understand th	ne r	eed for energy audi	t, energy manageme	nt and the concepts	of t	ooth.		
2	Explain Proce	esse	es for energy audit o	of electrical systems.					
3	3 Design and develop processes for energy audit of mechanical systems.								
4	Prepare the fo	orm	at for energy audit of	of buildings and ligh	ting systems.				

Unit-I 06 Hrs						
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of						
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing						
Options, Energy Monitoring and Training.						
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Measurement, Light M	urement,					
Speed Measurement, Data Logger and Data Acquisition System,						
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of						
Power Plants, Energy Audit of Power Plant.						
Unit – II	10 Hrs					
Electrical Load Management: Electrical Passiag Electrical Load Management, Variable	•					

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III 10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving
Measures in Furnaces, Furnace Efficiency
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy
Conservation Methods
Unit –IV 07 Hrs
Unit –IV 07 Hrs Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System.
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System. Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air – Conditioning

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	: Explain the need for energy audit, prepare a flow for audit and identify the instruments								
	needed.								
CO2:	Design and perform the energy audit process for electrical systems.								
CO3:	Design and perform the energy audit process for mechanical systems								
CO4 :	Propose energy management scheme for a building								

Reference Books

INCIG	LICHCE DOORS
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6 th Edition, 2015, CRC Press, ISBN: 0-88173-542-6
3	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

	Semester: VI									
	VIRTUAL INSTRUMENTATION & APPLICATIONS									
	(GROUP E: GLOBAL ELECTIVE)									
		1	ſ	(Theory)						
	rse Code	:	18G6E08		CIE	:	100 Marks			
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
	al Hours	:	39L		SEE Duration	:	3.00 Hours			
		<u> </u>	v	e students will be able to						
1				e between conventional and graph	ical programmin	g				
2				and virtual instrument.	6.1.4	•••	• • • • • •			
3	Analyzing LabVIEW	the	e dasies of dat	a acquisition and learning the conc	epts of data acqu	151t	tion with			
4		ר <u>א</u> ד	real time annl	cation using myRIO and myDAQ	programming co	nce	ents			
-	Developing	<u>,</u> u	icar time appi	ication using mytero and myDrig	programming ee					
				Unit-I			07 Hrs			
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Comp	onents of LabVI	EW	V and Labels.,			
Cont	troller, Indic	cato	rs data type	s, wiring tool, debugging tools	, Creating Sub-	Vis	s, Boolean, -			
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Typ	e Def, Strict Typ	e E	Def.			
				Unit – II			09 Hrs			
For	Loop, While	Lo	op , Shift reg	sters, stack shift register, feedbac	k node, and tunn	el,	elapsed time,			
				mula node, Sequence structures, L			^			
				Unit –III			09 Hrs			
Arra	ys and cluste	ers,	Visual displa	y types- graphs, charts, XY graph,	Introduction to	Stri				
	-		-	cal examples, File Formats, File I/C			-			
	0		, ,1	Unit –IV	, ,	1	07 Hrs			
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure Mo	odel, Master-Sla	ve	Model, State			
	•			n using Semaphore, Introduction to						
		-		ssistants, Analysis Assistants, I	· •					
			-	ured it as Virtual labs, Counters, L						
)	<u> </u>	Unit –V			07 Hrs			
Sign	al Processing	y A	pplication- Fo	purier transforms, Power spectrum,	Correlation met	hoc				
-				on using myRIO, Communication			-			
	e			re myRIO for speed control of D	·					
			•	and onboard sensors. Develop	•		• •			
~ ~	isition and p			and onboard sensors. Develop.	ment of control		, stem, mage			
acqu	instruori and p		coome							

Course Outcomes: After completing the course, the students will be able to								
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.							
CO2:	Apply the theoretical concepts to realize practical systems.							
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.							
CO4 :	Create a VI system to solve real time problems using data acquisition.							

	Refere	Reference Books									
	1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning									
		Pvt.Ltd , ISBN: 978-8120340305									

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017, Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
4	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
4	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	-	-	1	1	-	1
CO2	1	3	2	1	2	-	-	-	1	1	-	1
CO3	2	2	3	3	3	-	-	-	1	1	-	2
CO4	1	2	2	3	3	1	0	2	3	2	1	2

	Semester: VI								
	SYSTEMS ENGINEERING								
			(GROUP I	E: GLOBAL ELECT	IVE)				
		-		(Theory)		1	1		
Cou	rse Code	:	18G6E09	CI	E	:	100 Marks		
Crec	lits: L:T:P	:	3:0:0	SE	E	:	100 Marks		
Total Hours		: 39 L		SE	SEE Duration		3.00 Hours		
Cou	rse Learning (Obje	ectives:						
1.	Understand th	he L	ife Cycle of System	IS.					
2.	Explain the re	ole	of Stake holders and	their needs in organiz	ational system	ıs.			
3.	Develop and	Doc	cument the knowled	ge base for effective s	ystems engine	ering	g processes.		
4.	4. Apply available tools, methods and technologies to support complex high technology systems.								
5.	Create the fra	me	works for quality pro	ocesses to ensure high	reliability of s	syste	ems.		

UNIT-I	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, Or	rigins of
System Engineering, Examples of Systems Requiring Systems Engineering, System Eng	ineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	s.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of C	Complex
systems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evol	utionary
Characteristics of the description of the sector of the sector of the sector of the description of the sector of t	

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems10 Hrs

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs				
Engineering Design: Implementing the System Building blocks, requirements analysis, Fu	nctional				
analysis and design, Component design, Design validation, Configuration Management, proble	ems.				
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test plan	Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and				
preparation, System integration, Developmental system testing, Operational test and eva	aluation,				
problems.					
LINIT – V	06 Hrs				

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the Life Cycle of Systems.						
CO2:	Explain the role of Stake holders and their needs in organizational systems.						
CO3:	Develop and Document the knowledge base for effective systems engineering processes.						
CO4:	Apply available tools, methods and technologies to support complex high technology systems.						
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.						

Reference Books:

-	
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	1
CO2	-	2	3	-	1	-	-	1	-	-	2	-
CO3	-	3	-	-	-	2	2	1	-	3	2	-
CO4	-	-	2	1	-	-	-	-	-	-	-	-
CO5	1	1	-	2	-	1	2	-	3	-	-	-

			S	emester: VI										
	I	NTI	RODUCTION TO MOBI	LE APPLICATION I	DEVELOPMEN	JT								
			(GROUP E: C	GLOBAL ELECTIV	'E)									
		_		(Theory)			<u></u>							
	e Code	:	18G6E10		CIE	:	100 Marks							
	ts: L:T:P	:	3:0:0		SEE	:	100 Marks							
Total]		:	39L		SEE Duration	:	3.00 Hours							
			ctives: The students will b		1 1									
1	-		e knowledge on essentials		<u>^</u>									
2			e basic and advanced featu											
3	-		lls in designing and buildi		÷ .		rm.							
4		-	nd publish innovative mot			•								
5	Comprehen	d th	e knowledge on essentials	of android application	development.									
			T	•			00.11							
TA	1 4*		Un	it-I			08 H							
	luction:		. 1 . 1	1° (° T (1		1 т	/ 11° A 1							
		-	systems and smart phone				-							
	-		oid app project, deploying			JIL	Jesign: Building							
•			, Layouts, Views and Reso		•	• • • •	Intende Tredit							
			The Activity Lifecycle,		-									
-		ng s	upport libraries, The And	droid Studio Debugger	, Testing androi	ld a	ipp, The Andro							
Suppo	rt Library.		T T •/											
I. ann a			Unit	; – II			08 H							
	experience:	T	anut Controlo Monuo Co	man Naviation Dear	lan Wiener Deliel		1							
			nput Controls, Menus, Sch		-		-							
	-		Themes, Material Design,	Providing Resources in	or Adaptive Lay	out	s, resulig app (
Tesun	g the User Inte	eria		TTT			00 11							
Work	ing in the bac	lzar	Unit	-111			08 H							
	0	0	vncTask and Async Task	Loader Connect to th	a Internet Bree	daa	st Docoivors							
-			heduling and optimizing											
	Ferring Data E	-	v , v	background tasks - Iv	otifications, Sen	Cut	ning Alarins, a							
1141151		mer	Unit	IV			08 H							
All ah	out data:			- I V			00 11							
		ting	s, Storing Data, Shared Pro	eferences Ann Setting	s Storing data us	sinc	sol ite - SOL							
		-	e. Sharing data with conten		-	-								
			s and Debugging, Displayi		-		os and Fragmer							
-		-	ogramming: Internet, E	÷ •	-	-								
			web pages and maps, con											
		-	d services, Sensors.	municating with SND		au								
301 1100	lo - Location (Jase		t V			07 H							
			Uni	t - V			1 U/ H							
Hardy	vare Sunnort	8					0711							
	ware Support			curity Firebase and A	dMob Publish	and								

Form Factors, Using Google Services.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Comprehend the basic features of android platform and the application development process.					
	Acquire familiarity with basic building blocks of Android application and its architecture.					
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating					
	Android features in developing mobile applications.					
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android					
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting					
	tools.					
CO4:	Create innovative applications, understand the economics and features of the app marketplace by					
	offering the applications for download.					

Refere	Reference Books							
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,							
1	2015, ISBN-13 978-0134171494							
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent							
2	Publishing Platform, ISBN: 9781519722089							
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370							
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1st Edition,							
4	2012, ISBN-13: 9788126525898							
=	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1st Edition, 2011, ISBN-13:							
5	978-1-4302-3297-1							
(Android Developer Training - https://developers.google.com/training/android/							
6	Android Testing Support Library - https://google.github.io/android-testing-support-library/							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	3	-	-	-	-	-	-	2
CO2	3	-	-	-	3	-	-	-	-	-	1	2
CO3	-	3	3	-	3	-	1	-	-	2	1	3
CO4	3	3	3	1	3	2	1	2	2	1	1	3

	Semester: VI								
	INDUSTRIAL AUTOMATION (GROUP E: GLOBAL ELECTIVE)								
				OBAL ELECTIVE) (OERY)					
Cour	Course Code : 18G6E11 CIE : 100 Marks								
Cred	Credits: L:T:P :		3:0:0	SEE	:	100 Marks			
Total Hours : 39 L SEE Duration : 3.00 Hours						3.00 Hours			
Cou	rse Learning (Dbj	ectives: The students will	be able to					
1	Identify the v	aric	ous types of Actuators, ser	nsors and switching devices us	sed in	n industrial			
	automation.								
2	Understand	the	fundamentals of CNC, PL	C and Industrial robots.					
3	Describe the	fun	ctions of hardware compo	nents for automation					
4	Prepare simple manual part programs for CNC and Ladder logic for PLC.								
5	Demonstrate	the	ability to develop suitable	e industrial automation system	is usi	ng all the concepts			

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation.
continuous and discrete control, basic elements of an automated system, advanced automation	functions,
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	ensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation s	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic mo	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	atic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	·
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,
	-

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection
	technologies in industrial automation.
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and
	identify its application areas.
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning
	centres interfaced with Robots.
CO4:	Develop a suitable industrial automated system integrating all of the above advanced
	automation concepts

Referen	ce Books
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0
	TTESS, 2010, ISBN - 978-1-4987-0540-0
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st
	Edition, 2011, ISBN -13-978-8126529889.
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-
	13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	-	3	1	-	-	-	1	-	1
CO2	2	2	3	2	2	-	-	-	1	2	-	1
CO3	2	2	3	3	2	-	-	-	-	2	-	-
CO4	3	3	3	2	2	-	-	-	-	2	-	1

	Semester: VI							
	MOBILE NETWORK SYSTEM AND STANDARDS (GROUP E: GLOBAL ELECTIVE) (Theory)							
Cou	Course Code:18G6E12CIE:100 Marks							
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks		
Hrs/	Week	:	40L	SEE Duration	:	3.00 Hrs		
Cou	rse Learning	; Ol	ojectives: The	students will be able to				
1	Understand the perform		•	ciples of cellular communication and	factors that	t might degrade		
2	2 Describe the second-Generation pan-European digital mobile cellular communication standards.							
3	3 Analyze the 3G cellular technologies including GPRS and UMTS.							
4								

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	eduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	r system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	f FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	
rippileutons, i in cless Locul in cu networks, i termore cleare, standards, i ippileuton	s.

architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the concepts and terminologies for Cellular Communication.							
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.							
CO3	Compare the performance features of 2G and 3G Cellular Technologies.							
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.							

Reference Books

Keitt									
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education								
1	Private Limited, ISBN: 978-0-07-068178-1.								
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,								
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.								
3	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,								
5	ISBN-13:978-0-19-806066-6.								
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,								
4	Pearson, ISBN 97881-317-3186-4.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

	Semester: VI						
	r	ΓH		EVICE FABRICAT		GY	7
			(GROU)	P E: GLOBAL ELE	CTIVE)		
C	(Theory)						
	rse Code	:	18G6E13		CIE	:	100 Marks
	lits: L:T:P	:	3:0:0		SEE	:	
	l Hours	:	39L		SEE Duration	:	3.00 Hours
-	<u> </u>		ctives: The students				
1			ing of vacuum and r		C (1) C'1 1		
2	-	_	-	nd characterization o		ostri	uctures
3	U 11 1		<u> </u>	for desired application			
4	Fabricate and	Eva	aluate thin film nand	devices for advanced	d applications		
				Unit-I			08 Hrs
Vacu	um Technolog	gy:					
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	nd pumping, Q-rate	e ca	lculation, Basics of
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo mo	olec	ular, and Cryogenic
	-		-	pump (TSP); differe			• •
				and Penning gauges.	I I G , H		
cone	ept of cupuoli			Unit – II			08 Hrs
Subs	strate Surfaces	&]	Thin Film Nucleation				00 1115
Aton	Atomic view of substrate surfaces, Thermodynamic aspects of nucleation, Kinetic processes in nucleation						
				tion and growth (Brie		•	
Defe	cts in Thin Fil	ms:					

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	CO1: Choose the right choice of material for the desired application						
CO2:	Improve the desired nanostructures and their properties						
CO3:	Fabricate appropriate Nanodevices						
CO4:	Optimize the nanodevice fabrication process for repeatability.						

Refere	Reference Books								
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-								
1	0030839931								
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.								
2	Microfabrication for Industrial Applications, Regina Luttge, 1st Edition, William Andrew,2011,								
3	ISBN: 9780815515821.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-		-	2
CO2	3	2	2	2	-	-	-	-	-		-	2
CO3	2	3	3	2	2	1	1	1	-	1	-	2
CO4	2	3	3	2	2	2	2	2	2	2	-	2

					Semeste	er: VI					
	CHEMIS	TRY	OF AD	VANCE	D ENERGY S		E DEVICES I	FOR E	2-N	IOBILIT	Y
				(GRO	OUP E: GLOB	BAL ELEC	CTIVE)				
(Theory)											
	e Code	:	18G6E	14			CIE		:	100 Mar	
						100 Mar					
Total]			39L				SEE Duration	n	:	3.00 Hou	irs
1					ents will be abl dvanced storag						
				-		•					mina
			-		e devices for E	· · ·					-
V	vehicles.				mistry to ana		•				ric/nybri
4 I	Develop kno	owled	lge of bat	ttery mar	nagement syste	em and recy	cling of stora	ge dev	vice	es.	
			~	~	Unit-I						07 Hrs
		0	•	•	ns in Electric						
-			-	•	es and sustaina	-			-		
	-				on. Vehicle pe				-		
			•	•••	and power re	•	ts for various	HEV	S	and EVs	Vehicle
Fundar	mentals of b	attery	y technol	ogy in hy	ybrid vehicles.						
					Unit – II						08 Hrs
Advan	ced Lithiu	m ior	a Battery	7 Techno	logy for Floot	twig wohigh	0.0.0				
				Ittimu	hogy for Elect	uric-venicio	es:				
Basic of	concepts of	lithiu	•		vanced Lithiun			y: Cel	1 c	onstructio	n, batter
	-		um batter	ries, Adv		n batteries	for E-mobilit	•			
compo	nents, prin	ciple	um batter of oper	ries, Adv ration, e	vanced Lithiun	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prin	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prinuction, wor	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr sulfide	nents, prinuction, wor	ciple king olid-s	um batter of oper and futur tate batte	ries, Adv ration, e re applica pries.	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	nd packs y, Li-iro
compo Constr sulfide Future	nents, prin uction, worl cells and so e Scope in n	ciple king blid-s	um batter of oper and futur tate batte	ries, Adw ration, e re applica pries. Batterie	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs
compo Constr sulfide Future Limita	nents, prin uction, word cells and so e Scope in r tions of lit	ciple king blid-s blid-s	um batten of oper and futur tate batte Lithium batteries	ries, Adv ration, e re applica eries. Batterie s. Const	vanced Lithium electrode fabri ations of Li-po Unit –III es:	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs n-Lithiur
compo Constr sulfide Future Limita batterie	e Scope in r tions of litters: Sodium-	ciple king blid-s blid-s non- l hium batte	um batter of oper and futur tate batte Lithium batteries ry, Magr	ries, Adv ration, e re applica eries. Batterie s. Const nesium b	vanced Lithiun electrode fabri ations of Li-po Unit –III es: ruction, comp	n batteries rication, el olymer batt ponents, we Metal Hyd	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery,	attery ttery, 1 pplicat Zebra		odules an Air batter	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterie iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s non- l hium batte es, l b-Aci	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterid iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt	ciple king blid-s bon- hium batte es, 1 b-Acie	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices:	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l	pplicat Zebra Sportat	m Li- ion ior es.	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu	e Scope in r tions of litters sed batterintal plate Pt tistry of Alter action to su	ciple king blid-s blid-s non- hium batte es, I b-Acid ernat	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin	pplicat zebra sportat batterio	ma Li- ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt istry of Alter action to su tors and Ul	ciple king blid-s blid-s blid-s blid-s bli	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E m	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors	pplicat Zebra sportat batterio g and s, Aqu	ion ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organio	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulicons and Ul	ciple king blid-s blid-s non-l hium batte es, l b-Acie ernat per c tra ca er ca	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitors,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa	n batteries fication, el olymer batt ponents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito	pplicat pplicat Zebra sportat batterio g and s, Aqu	ma Li- Lion ion es. ap ieo dva	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate Ptrivial plate and Ulic based supertor hybrids for the supertor set of the	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate Ptrivial plate and Ulic based supertor hybrids for the supertor set of the	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organic capacit Solar C	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f	ciple king blid-s blid-s on- l hium batte es, l b-Acie es, l b-Acie ernat per c tra ca for la coltaic	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Future Limita batterid iron-ba horizon Chemi Introdu capacit organid capacit Solar C Batter	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov	ciple king blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ection, workin per capacitors Ultra capacito on for transpor age devices fo	g and s, Aquors, Aquor	me Li- Li- ior es. ap leo dva ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar o	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulic based superior of Alteriant intal plate Ptroving and Ulic based superior of the corn hybrids for Cell (Photov y Maintena	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid es, 1 b-Acid ernat per c tra ca for la coltaic ance a ent Sy	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor; apacitor; c) hybridi and Recy ystems (E	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries fication, el olymer batt bonents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizations energy stors	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back	me Li- Lion ion es. ap eo dva ap -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithium dium and battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery	e Scope in re- tions of litters: Sodium- ased battering tal plate Pterson and Ul- cost and	ciple king blid-s blid-s non-l hium batte es, l b-Acie er cap for la oltaic ance a ent Sy Viana	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, coacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet cles, Batt ization, a ycling: BMS), Fu Passive o	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e <u>Unit –V</u> undamentals of cooling – PCN	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su acitors and hybridization energy stors f battery ma M systems,	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito on for transpor age devices fo anagement sys	g and sportat g and s, Aquors. A rtation or back stems a ng – L	me Li- Lion ior es. ap leo dv: ap -up	odules an Air batter Air batter ans of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of solar of ancel solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non-l hium batte es, l b-Acid ernat per c tra ca for la coltaic ance a coltaic ance a for la	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, c) hybridi and Recy ystems (E gement: 1 hnologies	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN pology and eco	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery Battery safety	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid ernat per c tra ca for la coltaid ent Sy Mana recy	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor; apacitor; apacitor; c) hybridi and Recy ystems (E gement: hnologies cling pro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn ocess. Re	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN ology and ecc egulations and	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric							
	vehicles.							
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion							
	devices for vehicle electrification.							
CO3:	Analyses of battery management, safety, global market trends for large format batteries.							
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy							
	consumption, reuse and recycling.							

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	-	-	-	1	-	1
CO2	3	3	2	2	2	-	-	-	1	1	-	1
CO3	2	2	3	3	2	-	-	-	3	1	2	1
CO4	3	3	2	3	2	-	-	-	2	1	3	1

				Semester: VI					
			ADVANCE	ED STATISTICAL	METHODS				
	(GROUP E: GLOBAL ELECTIVE)								
(Theory)									
	rse Code	:	18G6E15		CIE	:	100 Marks		
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks		
	ll Hours	:	39L		SEE Duration	:	3.00 Hours		
			ctives: The student		-1: C'				
T	1 Adequate exposure to understand the basic knowledge on classification and regression trees that form								
			analyzing data.						
2		-	•	and conjoint analysis	· ·				
3		-		analysis and factor	analysis which hav	ve g	reat significance in		
	engineering p	ract	ice.						
4	Demonstrate	the p	practical importance	e of regression and lo	glinear models.				
				Unit-I			07 Hrs		
Clas	sification and	Reg	ression Trees:						
			-	orical or Quantitative	-	ion [Frees, Classification		
Trees	s, Stopping Ru	les, l	Pruning and Cross-V	Validation, Loss func	tions, Geometry.				
				Unit – II			07 Hrs		
Clus	ster Analysis:								
Intro	duction, Types	s of	Clustering, Correlat	tions and Distances,	Hierarchical Cluster	ring,	Partitioning via K-		
mear	ns, Additive Tr	ees.							
				Unit –III			08 Hrs		
Conj	joint Analysis:	:							
Intro	duction, Addit	tive	Tables, Multiplicat	tive Tables, Comput	ting Table Margins	bas	sed on an Additive		
Mod	el, Applied Co	njoii	nt Analysis.	-					
		0	•	Unit –IV			08 Hrs		
Disc	riminant Anal	ysis	and Factor Analys	sis:			Ι		
Intro	duction, Linea	r Di	scriminant Model,	Linear discriminant	function, Discrimi	nant	analysis, Principal		
				nponents versus Fact			•		
	1 /			Unit –V	5 / 11		09 Hrs		
Logi	stic Regressio	n an	d Loglinear Mode				•> 115		
	0		0	ogit, Conditional Lo	git. Discrete Choice	e Lo	git. Stepwise Logit.		
	ng a Loglinear	-	-				5, Step Logit,		
1 1111	is a Dogimear	.,100							
Сош	rse Outcomes	Aft	er completing the	course, the students	will be able to				
CO1			1 0	of statistical methods		ielde	engineering		
	1								
002	CO2: Apply the knowledge and skills of statistical techniques to understand various types of analysis.								

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge goined to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Reference Books							
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.						
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4 th Edition, 2003, Marcel Decker, New York. ISBN: 0-8247-4052-1.						

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey, ISBN: 0-471-36091-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

				Semester:	VI					
			MA	THEMATICAL						
	(GROUP E: GLOBAL ELECTIVE)									
~	~ .		10000	(Theory			400.7.7.7			
	rse Code	:	18G6E16		CIE	:	100 Marks			
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
	al Hours):)::	39L	lanta mill ha ahla t	SEE Duration	:	3.00 Hours			
	0			lents will be able t		1:				
1	· ·				lge of mathematical mode	nng.				
	2 Use the concepts of discrete process models arising in various fields.									
3	3 Apply the concepts of modeling of nano liquids which have great significance in engineering practice.									
4	Demonstrate	the	practical impor	tance of graph th	eoretic models, variationa	ıl pro	blem and dynamic			
	programming	5 .								
				Unit-I			07 Hrs			
Eler	nentary Mathe	ema	tical Modeling:							
Basi	c concepts. Re	al v	world problems,	(Science and En	gineering), Approximatio	n of	the problem, Steps			
	-		-		l, Logistic model, Model					
		-	-	•	blems), Chemical reaction					
				0 01	trical circuits (LCR).	1, DI	ug ubsorption from			
0100		011 0	a projectile, et	Unit – II	inear chedits (LCK).		07 Hrs			
Dia	crete Process	Ма	dolar	0mt – 11			07 1115			
				T . 1			1 1 1 1 1			
			—		discrete models-simple of		-			
		diff	erence equation	is in economics,	modeling through difference equations in economics, finance, population dynamics and genetics and					
prob	bability theory.		probability theory.							
Mod	leling of Nano			Unit –III			08 Hrs			
		_	_				•			
	o liquids-Basic	_	_		of nano liquids-Buongio	rno]	•			
Nan	•	c co	oncepts, Mathem	natical modeling			Model (Two phase			
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio	vatio	Model (Two phase n equation for two			
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two			
Nan mod phas	lel): Relative in se nano liquids:	c co mpo The	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two			
Nan mod phas Gra	el): Relative in se nano liquids: ph Theoretic N	c co mpo The Mod	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum Unit –IV	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs			
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs			
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs cted graphs, signed			
Nan mod phas Gra Mat grap	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte	c co mpo The Mod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph raphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs			
Nan mod phas Gra Mati grap Var	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble	c co mpo The VIod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming:	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	e Continuity equates of the n continuity equation of the	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems y and Dynamic Pr es and techniqu s with engineerin	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple isiple isiple	encepts, Mathem ortance of the n e Continuity equa elels: g through graph raphs. Problems and Dynamic Pr es and techniqu s with engineerin ter completing t	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs olem and dynamic			
Nan mod phas Gra Mati grap Var Opti prog Cou	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	c co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to damental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic			
Nan mod phas Gra Mat grap Var Opti prog	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	c co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to damental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic			
Nan mod phas Gra Mati grap Var Opti prog Cou	 Relative in se nano liquids: ph Theoretic Mematical modules and weighte iational Problection princet gramming, Problection I: Explore the analysis. 	c co mpo The Mod elin, d gr em a ciple iem a ciple iem a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to idamental concep- wledge and skill	hatical modeling anoparticle transp ation, Momentum Unit –IV hs-Models in tern with engineering a Unit –V rogramming: hes, Mathematica ing applications. the course, the stup pts of mathematica is of discrete and	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prob	Model (Two phase n equation for two 08 Hrs eted graphs, signed 09 Hrs olem and dynamic lds engineering. nd various types of			

Refere	ence Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
1	81-224-0006-X.
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
2	Cheltonham, ISBN: 0470271779, 9780470271773.
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
4	Hall/CRC Textbook, ISBN 9781439854518.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	(GROUP E: GLOBAL ELECTIVE)								
	(Theory)								
Co	ourse Code : 18G6E17	CIE Marks	:	100 Marks					
Cr	redits: L:T:P : 3:0:0	SEE Marks	:	100 Marks					
	tal Hours : 39L	SEE Duration	:	3.00 Hours					
Co	ourse Learning Objectives:								
1	To make participants self-discover	their innate flow, entrepreneurial style, and identif	y pr	roblems					
	worth solving thereby becoming en	ntrepreneurs							
2	To handhold participants on lean methodology to craft value proposition and get ready with lean								
	canvas								
3	To create solution demo by conduc	cting customer interviews and finding problem-solu	itioi	n fit for					
	building Minimum Viable Product	(MVP)							
4	To make participants understand co	ost structure, pricing, revenue types and importance	e of	adopting					
	shared leadership to build good tea	um							
5	To help participants build a strong	brand and identify various sales channels for their	pro	ducts and					
	services								
		To take participants through basics of business regulations and other legal terms along-with							
6	understanding of Intellectual Property Rights								

Unit-I	08 Hrs
Self-Discovery and Opportunity Discovery	
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identify	ving
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Id	lentifying
the Entrepreneurial Style.	
Unit – II	08 Hrs
Customer, Solution and Lean Methodology	
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Ea	rly
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Mode	l and
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.	
Unit – III	07 Hrs
Problem-Solution Fit and Building MVP	
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce	-Raise-
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interview	vs;
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.	
Unit – IV	07 Hrs
Financial Planning & Team Building	
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Ide	ntifying
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping	and
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and	
Responsibilities.	
Unit – V	09 Hrs
Marketing, Sales, Regulations and Intellectual Property	
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business	

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	1 Showcase the ability to discern distinct entrepreneurial traits					
CO2	Know the parameters to assess opportunities and constraints for new business ideas					
CO3	Understand the systematic process to select and screen a business idea					
CO4	Design strategies for successful implementation of ideas					
CO5	Create Business Model and develop Minimum Viable Product					

Refer	Reference Books:					
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.					
2	Entrepreneurship. Roy, R., 2012. Oxford University Press					
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International					
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial					
4	Modern Classics					
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar					
	Publishing Ltd.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

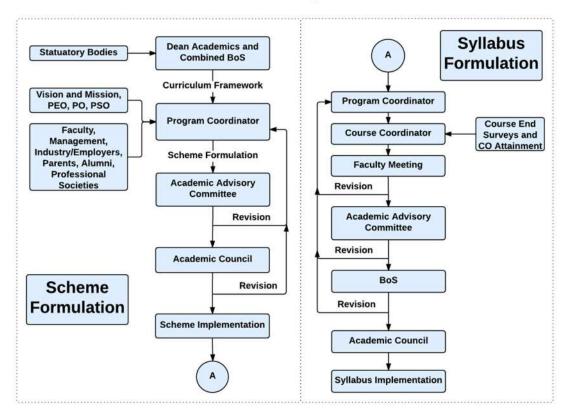
Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

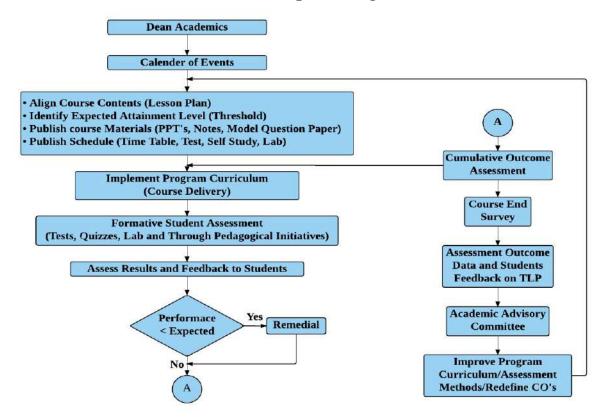
	V/VI Semester							
	Professional Practice – II							
	Employability Skills and Professional Development of Engineers							
Co	urse Code	18HSE68		CIE Marks: 50				
Credits: L:T:P		0:0:1		SEE Marks: 50				
Ho	ours:	18 Hrs/Semester		CIE Duration: 02 Hrs				
Co	urse Learning	Objectives: The students	will be able to					
1	1 Improve qualitative and quantitative problem solving skills.							
2	2 Apply critical and logical thinking process to specific problems.							
3 Ability to verbally compare and contrast words and arrive at relationships between				elationships between concepts, based				
3	on verbal reaso	on verbal reasoning.						

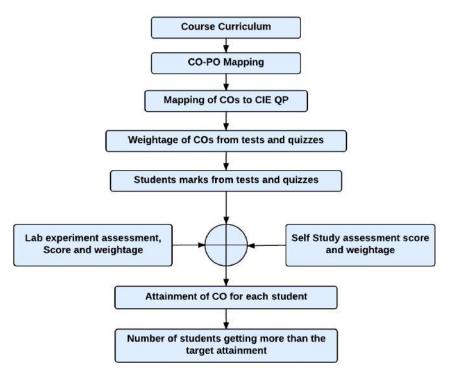
4 Applying good mind maps that help in communicating ideas as well as in technical documentation


V Semester	
UNIT-I	
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc. Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning	06 Hrs
UNIT-II	
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion- Theory & Evaluation : Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD	06 Hrs
UNIT-III.A	
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.	06 Hrs
VI Semester	
UNIT-III.B	
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.	06 Hrs
UNIT-IV	
Interview Skills - <i>a</i>) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.	06 Hrs
UNIT-V	1
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.	06 Hrs

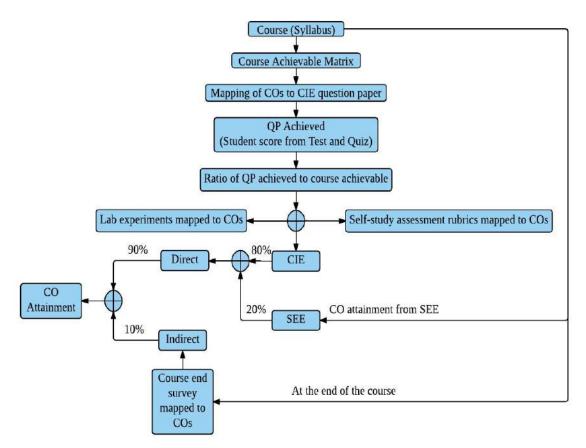
Cou	Course Outcomes: After completing the course, the students will be able to					
CO1	: Inculcate employability skill to suit the industry requirement.					
CO2	2: Analyze problems using quantitative and reasoning skills					
CO3	Exhibit verbal aptitude skills with appropriate comprehension and application.					
CO4	Focus on Personal Strengths and Competent to face interviews and answer					
Refe	erence Books					
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:					
	0743272455					
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:					
	9789380914787					
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,					
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204					

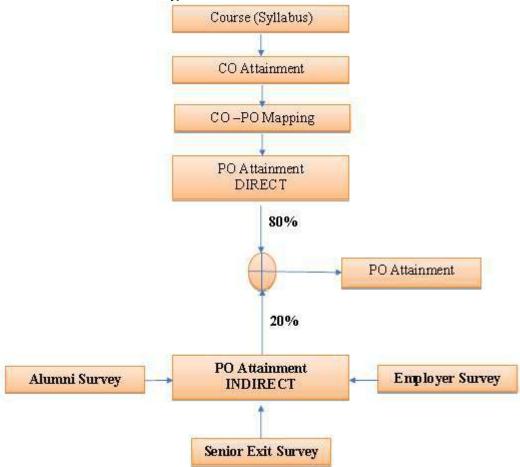
4. Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738


Scheme of Continuous Internal Examination and Semester End Examination


Phase	Activity	Weightage
Phase I	CIE will be conducted during the 5 th semester and evaluated for 50 marks.	50%
V Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 5 th semester The test will	
	have two components a Quiz evaluated for 15 marks and second component	
	consisting of questions requiring descriptive answers is evaluated for 35	
	marks.	
Phase II	During the 6 th semester a test will be conducted and evaluated for 50 marks.	50%
VI Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 6 th semester The test will	
	have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is evaluated	
	for 35 marks	
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of VI	At the end of the VI Sem Marks of SEE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
Sem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	

Curriculum Design Process


Academic Planning And Implementation



Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.