

RV College of Engineering[®]

Biotechnology

Bachelor of Engineering (B.E)

Scheme And Syllabus Of III & IV Semester (2022 Scheme)

B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

	TIMES HIGHER EDUCATION WORLD UNIVERSITY RAINKINGS-2023		CURRICULUM STRUCTURE						
99 NIRF RANKING IN ENGINEERING (2024)	ISUIT TIMES HIGHER EDUCATION WORLD UNIVERSITY RENKINGS-2023 (ASIA) 501-600	61 PROFE	61 CREDITS PROFESSIONAL CORES (PC)		23 CREDITS BASIC SCIENCE				
	EDUFUTURE EXCELLENCE AWARD BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) BY ZEE DIGITAL		EDITS	18 PROJECT WORK		12 OTHER ELECTIVES			
1001+	801+	801+		INTERNSHIP		& AEC			
(ENGINEERING)		12 _{CREI} PROFESSIO ELECTIVES	12 PROFESSIONAL ELECTIVES		DITS S & IENCE	160			
ENGINEERING RANKING INDIA NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)	*ABILITY EN UNIVERSAL INDIAN KNO	*ABILITY ENHANCEMENT COURSES UNIVERSAL HUMAN VALUES (UHV INDIAN KNOWLEDGE SYSTEM (IKS			TOTAL			
17 Centers of Excellence 212	s of nce Centers of Competence		MOUS: 90+WITH INSDUSTRIES / ACADEMIC INSTITUTIONS IN INDIA & ABROAD						
Publications On Web Of Science	Publications Scopus (2023 - 24)								
1093 Citations	70 Patents Filed 39	EXE RS.4 SPO RES	EXECUTED MORE THAN RS.40 CRORES WORTH SPONSORED RESEARCH PROJECTS 8			THAN ORTH ECTS &			
Skill Based Laboratories Across Four Semesters	Patents Granted 61 Published Patents	CON	ISU CE 3	JLTANCY WO 3 YEARS		ORKS			

RV College of Engineering[®]

Biotechnology

Bachelor of Engineering (B.E)

Scheme And Syllabus Of III & IV Semester (2022 Scheme)

B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS 2024

DEPARTMENT VISION

A Premier Department in Biotechnology Education, Research and Innovation with a Focus on Sustainable Technologies for the Benefit of Society and Environment.

DEPARTMENT MISSION

- Create state-of-the-art infrastructure for research and training in Biotechnology.
- Develop graduates who are ethical and socially concerned.
- Promoting collaboration with academia, industries and research organizations at national and international level.
- Contribute to socioeconomic development through sustainable and inclusive technologies

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Have a strong foundation in scientific and engineering fundamentals that prepare them for a successful career in Biotechnology and allied fields

PEO2: Function at a technically competent level in formulating and solving problems in Biotechnology

PEO3: Organize and utilize the knowledge to develop Biological processes and gene manipulation techniques

PEO4: Exhibit professionalism, ethical attitude, oral and written communication skills, team work and develop an outlook for lifelong learning

PSODescriptionPSO1Gain knowledge in Basic sciences, Mathematics and Biology to understand the Engineering problems related
to Biotechnology and Bioinformatics.PSO2Develop the skills in the area of Biotechnology, Chemical Engineering and Informatics to solve
complex Biological problems.PSO3Acquire technical knowledge to design, analyse, optimize and scale up Bio processes to develop value added
products.PSO4Develop intellectual, personal and professional abilities through experiential learning and
interdisciplinary projects

PROGRAM SPECIFIC OUTCOMES (PSOs)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	PY	Physics
9.	CY	Chemistry
10.	MA	Mathematics
11.	AS	Aerospace Engineering
12.	AI & ML	Artificial Intelligence & Machine Learning
13.	BT	Biotechnology
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	CV	Civil Engineering
17.	EC	Electronics & Communication Engineering
18.	EE	Electrical & Electronics Engineering
19.	EI	Electronics & Instrumentation Engineering
20.	ET	Electronics & Telecommunication Engineering
21.	IM	Industrial Engineering & Management
22.	IS	Information Science & Engineering
23.	ME	Mechanical Engineering

INDEX

	III Semester									
Sl. No.	Course Code	Course Title	Page No.							
1	MAT231TB*	Statistics, Laplace Transform and Numerical Methods	1-2							
2	CV232TA/ME232TB/BT232TC	Environment & Sustainability / Material Science for	3-8							
		Engineers / Bio Safety Standards and Ethics								
3	BT233AI	Cell and Molecular Biology	9-11							
4	BT234AI	Unit Operations	12-14							
5	BT235AI	Thermodynamics and Bioanalytical Techniques	15-17							
6	BT237DL	Design Thinking Lab	18-19							
7	CS139AT**	Bridge Course: C Programming	20-22							

	IV Semester								
Sl. No.	Course Code	Course Title	Page No.						
1	BT241AT	Biostatistics	23-24						
2	CV242TA/ME242TB/	Environment & Sustainability / Material Science for Engineers/ Bio	25-30						
	BT242TC	Safety Standards and Ethics							
3	BT343AI	Programming for Computational Biology	31-33						
4	BT344AI	Biochemistry	34-36						
5	BT345AT	Bioprocess Calculations	37-38						
6	BT246TX	Professional Core Electives – Group A	39						
7	HS247LX ***/	ABILITY ENHANCEMENT COURSE	39-53						
8	HS248XT	Universal Human Values	54-55						
9	MAT149AT***	Bridge Course: Mathematics	56-57						

RV College of Engineering[®]

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Go, change the world"

Bachelor of Engineering in BIOTECHNOLOGY

III Semester

Sl. No.	Course Code	Course Title	Cre	dit 1	Alloca	ation	Bo S	Category	Max Ma CIE	arks	SEE Duratio n	Max Mark SEI	K IS E
			L	Т	Р	Total			Theory	Lab	(H)	Theory	Lab
1	MAT231TB*	Statistics, Laplace Transform and Numerical Methods	3	1	0	4	MA	Theory	100	***	3	100	***
2	XX232TX	Basket Courses - Group A	3	0	0	3	BT/ CV/ ME	Theory	100	***	3	100	***
3	BT233AI	Cell and Molecular Biology	3	0	1	4	BT	Theory + Lab	100	50	3	100	50
4	BT234AI	Unit Operations	3	0	1	4	BT	Theory + Lab	100	50	3	100	50
5	BT235AI	Thermodynamics and Bioanalytical Techniques	3	0	1	4	BT	Theory + Lab	100	50	3	100	50
6	BT237DL	Design Thinking Lab	0	0	2	2	BT	Lab	***	50	2	***	50
7	CS139AT**	Bridge Course: C Programming	2(A)	0	0	AUDI T	CS	Theory	50	***	***	***	***
		Total				21							

Group A: Basket Courses	
(Students can select any ONE COURSE out of THREE COURSES in ODD Sem &	
ONE COURSE out of remaining courses in EVEN Sem)	

	CV	CV232TA	Environment & Sustainability	3	0	0	3	Theory
2	ME	ME232TB	Material Science for Engineers	3	0	0	3	Theory
	BT	BT232TC	Bio Safety Standards and Ethics	3	0	0	3	Theory

RV College of Engineering[®]

Mysore Road, RV Vidyaniketan Post, **Bachelor of Engineering in BIOTECHNOLOGY** Bengaluru - 560059, Karnataka, India

IV Semester

			C	redit	Allo	cation			Max Ma	Max Marks		Max	¢		
SI.	Course	Course Title					BoS	Categor	CIE	CIE Du		CIE Durati		Marl	KS 7
INO	Code		_		-		-	У		(n)		SEE			
			L	Т	P	Total			Theory	Lab		Theory	Lab		
1	BT241AT	Biostatistics	3	0	0	3	BT	Theory	100	***	3	100	***		
2	XX242TX	Basket Courses - Group A	3	0	0	3	BT/CV/ ME	Theory	100	***	3	100	***		
3	BT343AI	Programming for Computational Biology	3	0	1	4	BT	Theory + Lab	100	50	3	100	50		
4	BT344AI	Biochemistry	3	0	1	4	BT	Theory + Lab	100	50	3	100	50		
5	BT345AT	Bioprocess Calculations	3	0	0	3	BT	Theory	100	***	3	100	***		
6	BT246TX	Professional Core Electives Group B	2	0	0	2	BT	NPTEL	50	***	***	50	***		
7	HS247LX	Ability Enhancement Course- Group C	0	0	2	2	HSS	Lab	***	50	2	***	50		
8	HS248AT	Universal Human Values	2	0	0	2	HSS	Theory	50	***	2	50	***		
9	MAT149A T	Bridge Course: Mathematics	2 (A)	1	0	AUDI T	MA	Theory	50	***	***	***	***		
		Total				23									

Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem)

•	CV	CV232TA/CV242TA	Environment & Sustainability	3	0	0	3	Theory
2	ME	ME232TB/ ME242TB	Material Science for Engineers	3	0	0	3	Theory
	BT	BT242TC/ BT242TC	Bio Safety Standards and Ethics	3	0	0	3	Theory

GROUP B: PROFESSIONAL CORE ELECTIVES (NPTEL COURSES)- Courses are subject to change based								
		on the availability of courses in NPTEL platform						
Sl. No.	Course Code	Course Title	Duration					
1	BT246TA	Computational neuroscience	8 Weeks					
2	BT246TB	Environmental biotechnology	8 Weeks					
3	BT246TC	Experimental biotechnology	8 Weeks					
4	BT246TD	Introduction to developmental biology	8 Weeks					
5	BT246TE	Introduction to dynamical models in biology	8 Weeks					
6	BT246TF	Introduction to Cell Biology	8 Weeks					
7	BT246TG	Cell Culture Technologies	8 Weeks					
8	BT246TH	Computer Aided Drug Design	8 Weeks					
9	BT246TI	Introduction to Mechanobiology	8 Weeks					
10	BT246TJ	Introduction to Biostatistics	8 Weeks					
11	BT246TK	Bioengineering: An Interface with Biology and Medicine	8 Weeks					
12	BT246TL	Biostatistics and Design of experiments	8 Weeks					
13	BT246TM	Data Analysis for Biologists	8 Weeks					
14	BT246TN	Medical Biomaterials	8 Weeks					
15	BT246TO	Nanotechnology in Agriculture	8 Weeks					

Dı	Group C: Ability Enhancement Courses During III Sem: AS, CH, CV, EC, EE, EI, ET, IM & ME. During IV Sem: AI, BT, CD, CS, CY & IS.										
Sl.	BoS	Course Code	Course Title	Category	Credits						
INO.											
7	HS	HS247LA	National Service Scheme	LAB	2						
	HS	HS247LB	National Cadet Corps	LAB	2						
	HS	HS247LC	Physical Education : Sports & Athletics	LAB	2						
	HS	HS247LD	Music	LAB	2						
	HS	HS247LE	Dance	LAB	2						
	HS	HS247LF	Theater (Light Camera & Action)	LAB	2						
	HS	HS247LG	Art Work & Painting	LAB	2						
	HS	HS247LH	Photography & Film Making	LAB	2						

Semester: III											
STATISTICS, LAPLACE TRANSFORM AND NUMERICAL METHODS											
			()	(Theory) S BT CH IM MF)							
Course	Code	:	MA231TB	<i>5</i> , <i>b</i> 1, <i>c</i> 11, 11, 111, 1112)	CIE	:	100 Marks				
Credits	L: T: P	:	3:1:0		SEE	:	100 Marks				
Total H	ours	:	45L+30T		SEE Duration	:	3.00 Hours				
			Ī	U nit-I			09 Hrs				
Statistic	Statistics:										
Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Correlation analysis, rank											
correlati	on, curve fitting,	lin	ear and multivariate reg	ression analysis. Implem	entation using MATLAB						
Unit – II 09 Hrs											
Comple	x Analysis:	4.	function Coucher Diam	···· ······	functions Construction	. f .	nalestia fromation				
Milno	Franction, analy	นต 1 า	Tunction, Cauchy-Riema	ann equations, narmonic	lunctions. Construction	or a	manytic function				
MATLA	B	1. 1	ayior, Maciaurii, Laur	ent series. Zeros and po	nes, Residue meorem. n	npic	mentation using				
			U	nit –III			09 Hrs				
Laplace	Transform:						I				
Existenc	e and uniquenes	s c	of Laplace transform, tra	insform of elementary fu	unctions, region of conv	erge	nce. Properties -				
linearity	, scaling, s - don	nair	h shift, differentiation in	the s - domain, division l	by t, differentiation and in	nteg	ration in the time				
domain.	Laplace transfor	m	of time domain periodic	functions, Heaviside uni	it step function, unit impu	ılse	function, t - shift				
property	. Implementation	n us	sing MATLAB.	•4 •••			00 11				
Turnanaa	Laulaas Tuonaf	0	U1	nit –IV			09 Hrs				
Dofiniti	Laplace I ransi	orr vol	n: uation using different r	notheds. Convolution th	acrom Application to a	alv	ordinary linear				
different	ial equations In	vai mle	ementation using MATL	AR	corem. Application to s	0170	s ofulliary fillear				
uniterent	iui equations. m	ip ic	U	nit –V			09 Hrs				
Numeri	cal Methods for	Pa	rtial Differential Equa	tions:			<u></u>				
Numeric	al solutions to p	arti	ial differential equations	- Finite difference appr	roximation to derivatives	, so	lution of Laplace				
equation	in two-dimensio	on, l	heat and wave equations	in one dimension (explic	eit methods). Implementat	ion	using MATLAB.				
Course	Outcomes: Aft	ord	completing the course of	the students will be able	e to						
	Illustrate the f		lamental concepts of sta	atistics complex analysi	t tu is Lanlace & inverse La	mla	ce transform and				
	numerical met	hod	ls.	unsues, complex analysi		ipia					
CO2:	Apply the acq	uire	ed knowledge of statisti	cs, complex analysis, L	aplace transform and nu	mer	rical methods for				
	partial differen	tial	l equations to solve the p	roblems of engineering a	applications.						
CO3:	Analyze the so	luti	on of the problems obtain	ned from appropriate tech	nniques of statistics, comp	lex	analysis, Laplace				
	transform and	nur	nerical methods to the re	eal - world problems.							
CO4:	Interpret the ov	vera	all knowledge of statistic	s, complex analysis, Lapl	lace transform and numer	ical	methods to solve				
	partial differen	tia	equations arising in ma	ny practical situations.							
Doform	co Rooks										
Keieren	Advanced Eng	ine	ering Mathematics Dar	nis G Zill Warran C	Wright 7 th Edition 2020	ηг	ones and Rartlatt				
1	publishers ISF	,me N∙	13-978-1284105902		Tright, / Eution, 202	J, J(mes and Dartiett				
-	Numerical Me	tho	ds for Scientific and En	gineering Computation.	M.K. Jain, S.R.K. Iveng	er a	nd R.K. Jain. 6 th				
2	Edition, 2012,	Ne	w Age International Pub	lishers, ISBN: 97881224	33234, 8122433235.		· · · · · · · · · ·				
3	Advanced Eng	ine	ering Mathematics, Erwi	n Kreyszig, 9th Edition, 2	2007, John Wiley & Sons	, IS	BN: 978-81-265-				
3	3135-6.										
4	Higher Engine	erir	ng Mathematics, B.S. Gro	ewal, 44 th Edition, 2015,	Khanna Publishers, ISB	N: 8	1-7409-195-5.				

R

R

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted (Two regular tests & One optional Improvement test). Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

		I	RUBRIC	FOR SE	EMESTE	R END	EXAMI	NATION	(THEO	RY)				
Q. NO.	CONTENTS						\mathbf{M}	IARKS						
						PART	A							
1	Objective	type que	stions co	vering er	ntire sylla	bus							20	
				(Max	timum of	PART TWO Su	B 1b-divisio	ons only)						
2	Unit 1: (C	Compulso	ry)										16	
3 & 4	Unit 2: Question 3 or 4 16					16								
5&6	Unit 3: Question 5 or 6 16					16								
7&8	Unit 4: Question 7 or 816													
9 & 10	Unit 5: Question 9 or 10 16													
	TOTAL 100				100									
					CC)-PO Ma	pping							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PC	011 PO12		
CO1	3	2	-	-	-	-	-	-	-	1		-	2	
CO2	3	2	2	1	1	-	-	-	1	1		-	2	
CO3	3	3	2	2	1	-	-	-	1	2		- 2		
CO4	3	3	3	2	-	-	-	-	1	1		-	3	

High-3: Medium-2: Low-1

			Semester: III/IV		
		ENVIR	ONMENT & SUSTAINABILITY		
		Categ	gory: Basket Courses - Group A		
		Strea	m: (Common to all Programs)		
			(Theory)		
Course Code	:	CV232TA/	CIE	:	100 Marks
		CV242TA			
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3Hours

ENVIRONMENT AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management.

Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

RENEWABLE SOURCES OF ENERGY

Energy management and conservation, New Energy Sources: Need of new sources. Different types of new energy sources. Energy Cycles, carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socioeconomical and technological change.

Applications of - Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

SUSTAINABILITY AND MANAGEMENT

Introduction to Environmental Economics, Environmental Audit, Development, GDP, Sustainability - concept, needs and challenges-economic, social and aspects of sustainability - from unsustainability to sustainability-millennium development goals and protocols.

Linear vs. cyclical resource management systems, need for systems thinking and design of cyclical systems, circular economy, industrial ecology, green technology. Specifically apply these concepts to: Water Resources, Energy Resources, Food Resources, Land & Forests, Waste management.

Sustainable Development Goals - targets, indicators and intervention areas Climate change - Global, Regional and local environmental issues and possible solutions. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry.

SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment.

Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports.

Unit –V8 HrsCorporate Social Responsibility (CSR) - Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity,
Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder
Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of
CSR in India.

Sustainability Reporting: Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

8 Hrs

10 Hrs

8 Hrs

8 Hrs

Unit – II

Unit –III

Unit –IV

Unit-I

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Understand the basic elements of Environment and its Biodiversity.					
CO 2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.					
CO 3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.					
CO 4	Recognize the role of Corporate social responsibility in conserving the Environment.					
1						

Reference	ee Books
1.	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 - 978- 9387432352
2.	'Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3rd edition, Pearson Education, 2006. ISBN-13 - 978-0132339346.
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
4.	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS					
	PART A					
1	1Objective type questions covering entire syllabus20					
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

SEMENSTERSemester: III / IV						
		MATERIALS	SCIENCE FOR ENGINE	ERS		
Category: Professional Core						
			(Theory)			
Course Code	:	ME232TB / 242TB		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
		Un	it-I			06 Hrs
The Fundamentals o	f M	laterials				
The electronic structur	re o	f atoms, types of atomic and	molecular bonds: ionic bond	d, covalent bond, me	tallic l	oond, secondary
bonds, mixed bondin	g, 1	nybridization. Energy band	s in metals, insulators, and	d semiconductors. E	Basic o	crystallography.
Defects and dislocation	ons.	Types of materials: polymer	rs, metals and alloys, ceram	ics, semiconductors,	comp	osites.
		Uni	t – II			10 Hrs
Material behavior:	The	rmal properties: thermal co	nductivity, thermoelectric	effects, heat capacit	y, the	rmal expansion
coefficient, thermal si	hoc	k, thermocouple. Electrical	Properties: dielectric behav	viours and temperatu	ire dep	pendence of the
dielectric constant, ins	sula	ting materials, ferroelectricit	y, piezoelectricity, super co	nductor. Optical prop	perties	: luminescence,
optical fibers, Mechar	nica	l Properties: Stress-strain dia	agram, elastic deformation,	plastic deformation,	hardn	ess, viscoelastic
deformation, impact e	ner	gy, fracture toughness, fatig	ue.			
		Unit	t –III			10 Hrs
Materials and their	· A]	pplications: Semiconductor	rs, dielectrics, optoelectror	nics, structural mate	erials,	ferrous alloys,
nonferrous alloys, ce	mer	nt, concrete, ceramic, and g	lasses. Polymers: thermose	ts and thermoplastic	cs, co	mposites: fiber-
reinforced, aggregated	d co	mposites, electronic packag	ing materials, biomaterials,	processing of structu	ıral m	aterials.
		Uni	t –IV			07 Hrs
Heat Treatment: Po	ost	processing heat treatment	of electronic devices: the	rmal oxidation, diff	fusion	, rapid thermal
processing. Heat treat	mei	nt of ferrous materials: annea	aling, spheroidizing, normal	lizing, hardening, ter	mperir	ng. formation of
austenite, construction	n of	Time Temperature Transfo	rmation (TTT) curves. Spec	cial heat treatment p	rocess	es: carburizing,
nitriding, cyaniding, flame, and induction hardening. Defects in heat treatment.						
Unit-V 07 Hrs						
Nanomaterials: Synthesis of nanomaterials: ball milling, sol-gel, vapour deposition growth, pulse laser, magnetron						
sputtering, lithography. Nano porous materials: zeolites, mesoporous materials, carbon nanotubes, graphene, nano FRPs,						
nano fabrics, bioresorbable and bio-erodable materials, nano ceramic, nano glasses, nano biomaterials, nano implant						
associated materials.	Cha	racterization of nano structu	res, spectroscopic technique	es, automatic force n	nicros	copy.

Course (Course Outcomes: After completing the course, the students will be able to:				
CO1	Understand the classification of materials, their atomic structure, and properties.				
CO2	Investigate the properties and applications of different materials.				
CO3	Analyze the effect of different heat treatment processes.				
CO4	Recognize different types of nanomaterials, synthesis methods and characterisation techniques.				

Refe	rence Books
1	Material Science and Engineering, William D Callister, 6th Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-
1.	5
2.	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6
3	Material Science and Engineering, William F Smith, 4th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-
5.	066717-9
4	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996,
т.	ISBN:978-0849322749

RV College of Engineering®
1ysore Road, RV Vidyaniketan Post,
engaluru - 560059, Karnataka, India

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#		COMPONENTS	MARKS		
1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.					
2. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.					
3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.					
		MAXIMUM MARKS FOR THE CIE THEORY	100		
	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO. CONTENTS					
	PART A				
1	1 Objective type questions covering entire syllabus		20		
		PART B			
		(Maximum of TWO Sub-divisions only)			
2		Unit 1 : (Compulsory)	16		
3 & 4		Unit 2 : Question 3 or 4	16		
5&6		Unit 3 : Question 5 or 6	16		
78	28	Unit 4 : Question 7 or 8	16		
9&	10	Unit 5: Question 9 or 10	16		
		TOTAL	100		

R

R

			Ser	mester: III/IV			
			BIO SAFETY ST	TANDARDS AND	ETHICS		
Course	se Code : BT232TC/BT242TC CIE : 100 Marks						
Credits	s: L: T:P	:	3:0:0		SEE	:	100 Marks
Total H	Iours	:	45 L		SEE Duration	:	3 Hours
			Unit-	I			09 Hrs
Biohaz Study of fabricat	ards, Bio safety le of various types of tion, sensors, filters	e vel Bio , pu	s and cabinets: Introduc safety cabinets. Various mps, compressors)	tion to Biohazards, s parameters for des	Biological Safety leve sign of Biosafety cabin	els, B nets (io safety Cabinets, Materials used for
			Unit –	II			08 Hrs
Biosafe Commi applica Cartage	ttee, RCGM (Revi tions in food and a ena Protocol.	osat ew Igric	committee o Genetic man ulture. Overview of National	iment of India, GM ipulation), GEAC (onal Regulations an	Os & LMOs, Roles of Genetic Engg Approva d relevant Internationa	t Inst il Co il Agi	ntutional Biosafety mmittee) for GMO reements including
			Unit –I	II			10 Hrs
Food H in the fo Quality in food Hazard	Iygiene: General processing and compliance food chain (raw mather of foods, Microbia processing and hur Analysis Critical C	rinci eria al fo nan Cont	s. ples of food microbiology ls, water, air, equipment, o ood spoilage and Foodbor nutrition, Food Analysis a rol Point (HACCP). Unit –J	v and overview of fo etc.) ne diseases, Overvie and Testing, General	odborne pathogens, so w of beneficial micro principles of food safe	urces organ ty ma	of microorganisms isms and their role magement systems, 09 Hrs
Food Preservations, processing, and packaging							
Food Processing Operations, Principles, Good Manufacturing Practices HACCP, Good production, and processing practices (GMP, GAP, GHP, GLP, BAP, etc) Overview of food preservation methods and their underlying principles including novel and emerging							
method	s/principles.Overvi	iew	of food packaging method	ls and principles inc	luding novel packaging	g mat	erials.
Unit-V09 HrsFood safety and Ethics: Food Hazards, Food Additives, Food Allergens Drugs, Hormones, and Antibiotics in Animals.Factors That Contribute to Foodborne Illness, Consumer Lifestyles and Demand, Food Production and Economics, History of Food Safety, The Role of Food Preservation in Food Safety. Ethics: Clinical ethics, Health Policy, Research ethics, ethics on Animals. Biosafety and Bioethics.							
Course	Hove a comprehe	con	inpleting the course, the s	ds and his sofaty law			
	Lindorstand the h		foty guidelines and their is	us allu bio salety lev	cið		
CO_2	A course los course la	iosa	with managet to the East of	inportance to the soc	ad processing and the		
	Acquire knowled	ge v	The respect to the Food sta	andards, Hygiene, fo	oou processing and pac	кıng	
CO4	Appreciate the fo	od s	arety, Ethics, biosatety an	a bio ethics			

D.A						
Refe	Reference Books					
1.	Deepa Goel, Shomini Parashar, IPR, Biosafety and Bioethics 1st Edition, 2013, ISBN: 978-8131774700.					
2.	Cynthia A Roberts, The Food Safety, Oryx Press, first edition, 2001, ISBN: 1-57356-305-6.					
3.	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.					
4.	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: (Internal Choice)	16					
5&6	Unit 3: (Internal Choice)	16					
7 & 8	Unit 4: (Internal Choice)	16					
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					

Semester: III							
		CELL AND MOL	ECULAR BIOLOGY	Category			
(Theory and Practice)							
Course Code	:	BT233AI		CIE	: 100 + 50 Marks		
Credits: L:T:P	:	3:0:1		SEE	:	100 + 50 Marks	
Total Hours	:	45L+30P		SEE Duration	:	3 hrs	-
		Un	nit-I				08 Hrs
Cell: Structure of Prokat	ryoti diita	c and Eukaryotic cel	I. DNA as the Generation	etic material: Griff	ith,	Hershey	-Chase
Programmed cell death. Str	uctu	re and functions of Chl	oroplast and Mitochon	dria.	iuci		sponse.
		Uni	$t - \Pi$				10 Hrs
Central Dogma of Molecu	ılar	Biology: Replication of	f DNA in Prokaryotic o	cell and Eukaryotic c	ell.	Mechanis	sm of action
of telomerase, DNA dama	ge, a	and repair: Base excisi	on repair, mismatch e	xcision repair, photo	o-re	activation	, nucleotide
retrotransposons Transcrip	. н tion	in the prokaryotic and β	eukarvotic cell. Initiatio	on elongation and t	DN erm	A Trans	posons and rocessing of
mRNA. Translation in the	pro	okaryotic and eukaryot	tic cell: Initiation, elor	ngation, and termin	atio	n. Post- t	ranslational
modification of proteins. Se	cret	ory and nonsecretory (C	Chloroplast and Mitoche	ondria) protein-sortii	ng p	athways ii	n eukaryotic
cells.							
		Unit	t –III				09 Hrs
Gene Regulation: Regulat	ion	of gene expression in p	prokaryotes (lac-operor	n and trp-operon). Po	ositi	ve and ne	gative gene
processing Translational a	nd P	ost-translational level	Regulation of gene exp	ression by Hormones	es. s (st	eroid horn	none auxin
and gibberellic acid) in eu	kary	otes. Gene silencing: a	intisense technique, RI	NA interference (mi	iRN	A and si	RNA) and
Ribozymes. Genome editin	ng sy	stems (CRISPR/Cas9,	Zinc finger nucleases				
and TALENs).		T I \$	4 187				00 II
Microbiology: Structure o	f Ra	cteria (Escherichia col	i) Blue green algae (S	nirulina) Fungi (Sa	cch	aromyces	cerevisiae)
Protozoa, (Amoeba), and	Vir	uses (Bacteriophage,	Coronavirus). Horizon	tal gene transfer in	n b	acteria: C	Conjugation,
Transformation and Transd	ucti	on. Culture of microorg	anisms: Nutrient media	a preparation, Sterili	zati	on of med	ia, Isolation
of microorganisms from s	soil	sample, Growth and N	Measurement of bacter	ria, replica-plating	tech	nique. S	imple and
environment, and industry.	ng Hur	nan diseases caused by	fungi, protozoa, bacter	ins, agriculture,			
Unit –V 09 Hrs							
Immunology: Immune sy	sten	n, Innate and adaptive	immune response, H	uman antibody: Stru	uctu	re, types,	and
functions. Vaccines: Inacti	vate	d, attenuated, viral vec	tor, protein subunit, D	NA, and RNA vacc	ines	. Cancer:	Causes
and Genetics, Oncogenes	, tu	mour suppressor gene	es, signalling pathway	ys in tumorigenesis	s. I and	mmunolog	gical
Techniques. Ininiunoriuore	scer	LARORAT	ORY EXPERIMEN	uio-minuno-assay, a	anu	ELISA.	
Isolation of microorganis	ms	from soil sample by s	erial dilution techniq	ue: spread plate, st	real	k plate, ai	nd pour
plate technique.		1 5	1			1 /	1
Culture of microorganism	ns: s	tudy of bacterial grow	wth curve				
Staining of microorganisms: Simple (Fungi) and Differential (Gram) staining. Isolation							
of cellulase/pectinase/am	of cellulase/pectinase/amylase producing microorganisms from soil sample. Antibiotic						
sensitivity testing of bacteria.							
of chloroplast from plant	A II cell	om dacteria. Isolation	L				
Study of divisional stage	sof	 mitosis and meiosis i	n plants (Onion) Roc	ket			
immunoelectrophoresis (RIE	P)					
Enzyme linked Immunos	orbe	ent Assay (ELISA)					
		<u> </u>					

RI₩

Experiential learning

Innov	vative Projects:					
Isolat	ion of industrially important microbes.					
Produ	Production of useful compounds from microbes.					
Plant-	Plant-microbe interaction.					
Form	ulation of bio pesticides.					
Form	ulation of biofertilizers.					
Detec	tion of microbial contamination in water and food.					
Isolat	ion of genomic DNA from bacteria/plant/animal cells.					
Extra	Extraction of total proteins from plant seeds.					
Early	Early detection of diseases in plants/humans.					
Students can pick up any one project as part of experiential learning						
Course	Outcomes: After completing the course, the students will be able to					
CO1	Acquire knowledge on various molecular mechanisms/processes of the cell.					
CO2	Compare and contrast various cellular and molecular mechanisms of the cell.					
CO3	Apply various techniques required for isolation, culture and manipulation of cells, and detection of					
	proteins/DNA/enzymes/antigens/antibodies in the sample.					
CO4	Analyse and articulating the biological information, designing experiment and interpret the results.					

Refe	rence Books
1.	Molecular Cell Biology, Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Martin KC, Yaffe
	M, Amon A, 9 th Edn, 2021, MacMillan, ISBN-978-1319426736, ISBN-978-1319365042.
2.	Karp's Cell and Molecular Biology, 9th Edn, 2020, John Wiley & Sons Inc, ISBN-10:1119598249, ISBN-13: 978-
	1119598244
3.	Kuby Immunology Punt J, Stranford S, Jones P, Owen JA, 8th Edn, 2018, W.H. Freeman Publication, ISBN-10:
	1319114709, ISBN-13: 978-1319114701.
4.	Prescots Microbioogy, 10th Edn, 2017, McGraw Hill, ISBN: 9813151269, ISBN-13: 978-9813151260

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY AND PRACTICE))
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

R

RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	30		
3	Viva	10		
	TOTAL	50		

			Semester: III				
		UN	IT OPERATIONS				
		Category :PRO	FESSIONAL CORE	COURSE			
		(Th	neory and Practice)				
Course Code	:	BT234AI		CIE	:	100 + 50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100 + 50 Marks	
Total Hours	:	45L + 30P		SEE Duration	:	03 Hours	
		L L	nit-I		L	09 Hrs	
Introduction to Fluid Me	echa	anics: Fluid Statics- Hy	drostatic equilibrium, I	Barometric equation	, Pres	ssure measurements-	
Manometers-U tube, Diff	erei	ntial U tube. Fluid dynar	nics - Shear stress, Shea	r strain, Newton's la	wof	viscosity, Newtonian	
and Non Newtonian	flui	ds. Fluid flow: Con	tinuity equation, Ber	noulli's equation,	Hag	en-	
Poiseulle'sequation, simp	ole r	iumerical.	• •			00 11	
T 1 (1		Ur		1	•	09 Hrs	
Flow metering and meas	sure	ement: Construction and	l working of Centrifug	al pump, reciprocat	ing p	ump, cavitation,	
Heat Transfer: Modes of	f h	eat transfer Steady sta	te conductions through	single-layer comp	osite_	laver clabs	
cylinders spheres with c	onst	tant thermal conductivity	v Natural and forced co	onvection Film co-	effici	ent overall Heat	
transfer co-efficient. Log	me	an temperature difference	e (LMTD), simple prob	lems	ciller	ent, overan neur	
		Un	nit –III			09 Hrs	
Heat Exchange Equipme	nt:	Construction and eleme	ntary design of double	pipe heat exchange	r, she	ell and tube heat	
exchanger. Simple numer	rical	l to calculate heat transfe	er area in heat exchange	rs.			
Evaporation: Single effect	et an	nd multiple effect evapor	ators, Capacity and eco	nomy, types of feed	ing ar	rangements in	
multiple effect evaporator	rs						
		Ur	nit –IV			09 Hrs	
Particle Size Analysis: Size reduction- Laws of Size reduction, Work Index, Equipment for size reduction- Ball mill, drop							
weight crusher. Settling:	Dra	g, drag coefficient. Type	es of settling, Terminal s	ettling velocity for o	one di	mensional motion of	
spherical particle through	gra	avitation force and exter	nal force. Motion of par	ticles in Stoke's, Ne	wton	's and	
drum filter leaf filter		silication of illitration, v	naracteristics of filter	media and filter ald	s, ma	ustrial filters- rotary	
		U	nit –V			09 Hrs	
Distillation: Types of distillation: simple flash steam distillation Distillation with and without reflux types of feed line							
reflux ratio, minimum ref	flux	ratio. McCabe Thiele N	Aethod to find number	of plates. Liquid – 1	iauid	Extraction:	
Single stage and multista	age	extraction and number	of theoretical stages for	or continuous count	er cu	rrent, multistage	
extraction operation when	n lic	uids are insoluble. Num	ericals			, C	
LAB EXPERIMENTS							
1. Determination of perce	enta	ge of extraction of biolo	gical compounds.				
2. Determination of Frence		ch and Langmiur isother	ms for adsorption of bio	ological compounds.	c	C'1, C	
3. Determination of specific cake resistance ' α 'and filter medium resistance 'Rm' using a leaf filter for filtration of							
biological compounds 4. Varification of Payloigh's equation for simple distillation of biological compounds							
5 Determine the discharge co-efficient (Cd) of Orifice meter							
6. Determine the discharge co-efficient (Cd) of Venturimeter.							
7. Determination of the friction factor for the flow of water through a packed bed using Ergun's equation.							
8. Determine the friction factor for the flow of water in the pipes							
9. Determine the heat tran	nsfe	r coefficient in shell and	tube heat exchanger				
10. Determine the heat tra	ansf	fer coefficient in double	pipe heat exchanger				
11. Determine the emissiv	vity	of a cylinder and sphere	e 12. Steam distillation f	or biological sample			

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the basic fluid flow principles and solve the problems with the application of conservation laws.				
CO2	Design and analyze the performance of heat exchangers and Single stage evaporator				
CO3	Apply the knowledge of solid-solid and fluid -solid separation techniques for various applications including environmental pollution control				
CO4	Apply the mass transfer concepts in the design of an extraction and distillation column				

Reference Books

1.	W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations in Chemical Engineering, McGraw-Hill, New York,
	7 th Edition, 2005,ISBN2005978-0071247108.
2.	R.K.Bansal, Fluid Mechanics and Hydraulics of Machines, Laxmi Publications, New Delhi, 9th Edition. 2010. ISBN:
	978-81-318-0815-3.
3.	J.M.Coulsonand J.F.Richardson: Chemical Engineering Vol1. Fluid flow, Heat Transferrin Mass Transfer.
	Butterworth Heinemann, animprint of Elservier, 6 th Edition, Indian Reprint, 2006. IS BN: 13:978-0387-25116-5.
4.	C. J. Geankoplis, Transport processes and Unit Operations, Prentice Hall India, 3 rd Edition,
	2007, ISBN-0205059392, 9780205059393.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY AND PRACTICE) # COMPONENTS

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS.	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5&6	Unit 3: Question 5 or 6	16		
7&8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	30		
3	Viva	10		
	TOTAL	50		

			Semester: III				
TH	IEF	RMODYNAMICS & BI	OANALYTICAL TEC	CHNIQUES Catego	ory:		
		PROFESS	SIONAL CORE COUR	RSE	•		
		(Tł	neory and Practice)				
Course Code	:	BT235AI		CIE	:	100 + 5	50 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 +	50 Marks
Total Hours	:	45L+30P		SEE Duration	:		3 Hrs
		τ	Init-I				09 Hrs
Introduction: The Scope	e of	Thermodynamics, Dime	ensions and Units, Meas	ures of amount size,	force	e, temper	ature,
pressure, work, energy an	nd h	neat.					
The First Law and oth	ler	Basic Concepts: Intern	al energy, The first law	w of thermodynamic	cs for	open an	nd close
systems, Thermodynamic	c sta	ate and state functions, E	quilibrium, the phase ru	ıle, Enthalpy, Heat c	apaci	ty.	
		Ur	nit — II				09 Hrs
The Second Law of Th	err	nodynamics: Statement	, heat engines, heat pur	nps, Entropy, entropy	y chai	nges for	ideal gas
(constant volume, pressu	re, 1	temperature and adiabati	c processes), Carnot cyc	cle.			
Vapor/Liquid Equilibr	iun	n: Introduction, criteria	for phase equilibrium	n, T-x,y, P-x,y, an	d x-y	/ diagra	ms and
numerical for Ideal system	m.						•
		Un	it –III				09 Hrs
Solution Thermodynan	nics	: Fugacity and fugacity	coefficient. Partial mo	olar properties, Che	mical	potentia	al, and Gibbs
Duhem equation. Numer	ical						
Chemical Reaction Equ	ilib	ria: The reaction coordin	nate, application of equi	librium criteria			
to chemical reactions, T	he s	standard Gibbs-Energy (Change and the Equilib	rium constant, Effect	ct of	temperat	ure on
the equilibrium constant	, ev	valuation of equilibrium	constants, Relation of	equilibrium consta	nts to	o compo	sition,
equilibrium conversions	for	single reactions.					1
Unit –IV 09 Hrs							
Electrophoresis and C	hro	matography - Principle	e, types and application	ns of agarose gel e	lectro	phoresis	, native gel
electrophoresis, sodium	dod	lecyl sulphate polyacryl	amide gel electrophores	sis (SDS PAGE) an	d 2D	gel elec	ctrophoresis.
Chromatographic tec	hni	ques: Affinity chron	natography, ion excl	hange chromatogra	aphy,	gel f	iltration
chromatography, Thin	lay	er chromatography, H	ligh performance Liq	uid chromatograph	ıy, F	ast Prot	tein Liquid
chromatography, Gas chi	om	atography					
		U	nit –V				09 Hrs
Centrifugation and Sp	ecti	roscopic Analytical Te	chniques: Centrifugation	on – Principle, type	es and	applica	tions of
Preparative, analytical an	d u	ltracentrifugation. Centr	ifugation standards.				
Spectroscopic Analytic	Spectroscopic Analytical Techniques: Basic concepts and principles of spectroscopy, UV-Visible, infrared and						
atomic absorption spectroscopy, Mass Spectrometry, Fluorescence spectroscopy, Raman spectroscopy, Nephelometry							
and Turbidometry.							
LAB EXPERIMENTS							
1. Determination of prote	in c	concentration					
2. Determination of nucleic acid concentration							
3. Determination of absorbance maxima of biologically important samples: Pigments / DNA/Protein.							
4. Ion Exchange chromat	4. Ion Exchange chromatography						
5. Thin layer chromatogra	aph	У					
6. Gel filtration chromato	graj	phy					
'. Analysis of DNA using Agarose gel electrophoresis							
8. Flash and pour Point c	alcu	ilation.					

Open ended experiment

- 1. Analysis of Proteins using SDS PAGE
- 2. Separation of Molecules using Centrifugation technique
- 3. Estimation of sulphate in a given sample using Turbidometer.
- 4. Determine the partial molar volume of a component in a binary mixture at ambient condition (given
- temperature and pressure)
- 5. Study the characteristics response of the different types of temperature devises.
- All students should do 8 lab experiments and any 2 open ended experiments.

Course Outcomes: After completing the course, the students will be able to

CO1	Apply the laws of thermodynamics on closed and open systems.
CO2	Evaluate the thermodynamic properties of ideal and real gases.
CO3	Use different bioanalytical techniques to solve biological problems and to analyze biological systems/samples.
CO4	Design simple experiments to isolate and characterize biomolecules.

Reference Books

- **1.** A text book of chemical Engineering thermodynamics, Narayan K V, Second Edition, 2013, Prentice Hall Publication, ISBN9788120347472
- 2. Physical chemistry for life sciences, Atkins P and D Paula, WH Freeman and company, New York 2nd, 2011, Prentice Hall of India, New Delhi, ISBN-81-203-1145-0
- **3.** Introduction to Chemical Engineering Thermodynamics, J M Smith and D C Vanes, Eighth Edition, 2018, Mcgraw Hill, ISBN-1259696529
- **4.** Principles and Techniques of Instrumentation, Keith M. Wilson, John M. Walker., 8th Edition, 2017, Cambridge University Press. ISBN-13: 978-1316614761 ISBN-10: 131661476X

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY AND PRACTICE)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			

Department of Biotechnology

7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	30		
3	Viva	10		
	TOTAL	50		

Semester: IV **DESIGN THINKING LAB** Category: PROFESSIONAL CORE COURSE (Lah)

			()			
Course Code	:	BT237DL		CIE	••	50 Marks
Credits: L:T:P	:	00:00:02		SEE	:	50 Marks
Total Hours	:	30 P		SEE Duration	:	3Hours
			Guidelines			

STAGE-I

Empathy: The Empathy phases of the process are focused on understanding the experiences, emotions and motivations of others. Designers use specific empathy methods to learn more about the needs of the users for whom they are designing. Empathy is the centerpiece of a human-centered design process. The Empathize mode is the work you do to understand people, within the context of your design challenge. Methods: Interviewing Probes, survey and Observations.

STAGE-II

Define: The Define phase of the process is focused on developing a point of view about the need of your user. During this stage of process, designers narrow from lots of information to a statement that is inspiring and specific. Methods: Empathy Mapping, Point of View.

STAGE-III

Ideate: The Ideate phase of the process is focused on generating as many solutions to a problem as possible. Once many solutions have been generated, students will select one to move forward to prototyping. Methods: Brainstorming and Selection

STAGE-IV

Prototype: The Prototype phase is where designers construct representation of their solutions. These representations are intended to elicit feedback and answer specific questions about a concept. Methods: Improve, Rapid and Experiential Prototyping

STAGE-V

Test: The Test phase of the process is focused on getting specific feedback about how ideas can improve. It is important to remember during this phase that prototypes are imperfect, but feedback is gift. Methods: Testing Guidelines

for Design Thinking Lab:

1. The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.

2. Each student in a team must contribute equally in the tasks mentioned below.

3. Each group has to select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the department

4. Each group should follow the stages of Empathy, Design, Ideate, Prototype and Test for completion of DTL.

5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation

will be done for each student separately.

6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

Design Thinking Lab Tasks

1. Carry out the detailed questionnaire to arrive at the problem of the selected theme.

2. The empathy report shall be prepared based on the response of the stake holders.

3. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL

4. Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.

5. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.

Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing

6. Demonstrate the functioning of the prototype along with presentations of the same.

7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be

submitted covering the difficulties and challenges faced in each stage of DTL.

8. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.

Course (Outcomes: After completing the course, the students will be able to:-
CO1	Apply the knowledge of engineering and technology to empathize with the stake holder requirements and draw insights through effective communication
CO2	Formulate, analyze and ideate sustainable solutions considering societal and environmental needs, aligning with SDGs.
CO3	Validate the knowledge effectively and pursue through intra-disciplinary or interdisciplinary teams to develop prototypes/ pretotypes
CO4	Apply 21st century skills and Education 4.0 to enhance the solutions and engage in lifelong learning

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION			
Phase	Activity	Marks	
1.	Empathy and Define Phase	20	
2.	Ideate Phase	20	
3.	Prototype & Testing Phase	10	
MAXIMUM MARKS FOR THE CIE			
	RUBRIC FOR SEMESTER END EXAMINATION		
Q.NO.	CONTENTS	MARKS	
1.	Write Up	10	
2.	Presentation and Demonstration	30	
3.	Viva	10	
	TOTAL	50	

Semester: III								
			BRIDG	E COURSE: C PI	ROGRAMMING			
				(Mandatory Audi	t Course)			
	(Common to all Programs)							
Course	Code	:	CS139AT		CIE	:	50 Ma	arks
Credits:	L:T:P	:	2:0:0(Audit)		SEE	:		
Total H	ours	:	30L		SEE Duration	:		
				Unit-I				6 Hrs
Introdu	ction to Prog	ran	nming					
Definitio	on of a comput	ter.	Components of com	puter system, Progra	amming Languages.			
Design a	nd implement	atic	on of efficient prograi	ms. Program Design	Tools: Algorithms, Fl	owch	arts and	l Pseudo codes. Types
of Errors	5.				-			
			U	J nit – II				6 Hrs
Introdu	ction to C							
Introduc	tion, structure	of	a C program, Writin	g the first program,	Files used in a C pro	gram	. Comp	iling and executing C
Program	s using comn	nen	ts, C Tokens, Chara	acter set in C, Key	words, Identifiers, B	asic 1	Data Ty	ypes in C, Variables,
Constant	ts, I/O stateme	nts	in C.					-
Operator	s in C, Type c	onv	version and type cast	ing, scope of variab	les.			
			U	Init –III				6 Hrs
Decision	Control and	Lo	oping Statements					
Introduc	tion to decisio	n c	ontrol, conditional b	ranching statements	, iterative statements,	Nest	ed loop	s, Break and continue
statemen	its, goto staten	nen	ts	C			1	
Arrays								
Introduc	tion, Declarat	ion	of Arrays, Accessin	ng elements of an	array, Storing values	in aı	rays, C	perations on Arrays-
Traversi	ng, Inserting a	nd	Deletion of element	in an array. Two dir	nensional arrays- Ope	ratior	ns on tw	o dimensional arrays.
	Unit –IV 6 Hrs							
Strings								
Introduc	tion, Operation	ns o	n strings- finding len	gth of a string, conv	erting characters of a s	tring	into upp	percase and lowercase,
Concate	nating two str	ing	s, appending a strin	ig to another string	, comparing two string	ng, re	eversing	g a string. String and
character	r Built in func	tior	18.			-	-	
Function	ns							
Introduc	tion, Using fur	ncti	ons, Function declara	ation/function protot	ype, Function definition	on, Fu	inction of	call, Return statement.
			τ	U nit-V				6 Hrs
Function	ns							
Passing	parameters to	a fu	nction, Built-in func	tions. Passing array	s to functions. Recurs	sion.		
Structur	res and Point	ers						
Introduc	tion: Structure	e D	eclaration, Typedef	declaration, initializ	ation of structures, a	ccess	ing mer	mbers of a structures,
Introduc	tion to pointer	s, d	leclaring pointer vari	ables.				
Course	Outcomes: Af	fter	[•] completing the cou	rse, the students w	ill be able to:-			
CO 1	Analyse prol	bler	ns and design solution	on using program de	sign tools.			
CO 2	Evaluate the	app	propriate method/dat	a structure required	in C programming to	devel	op solut	tions by investigating
	the problem.		-	*			-	
CO 3	Design a sus	tair	able solution using (C programming with	n societal and environ	nenta	l conce	rn by engaging in
	lifelong learn	ning	g for emerging technol	ology				
CO 4	Demonstrate	pro	ogramming skills to s	solve inter-disciplin	ary problems using mo	odern	tools et	ffectively by
	exhibiting te	am	work through oral pr	resentation and writ	ten reports.			
	. 0				•			
Reference Books								

Department of Biotechnology

Turbo C: The Complete Reference, H. Schildt, 2000, 4th Edition, Mcgraw Hill Education, ISBN-13: 9780070411838. 3. Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5 4.

PRACTICE PROGRAMS

Implement the following programs using cc/gcc compiler

- Familiarization with programming environment: Concept of creating, naming and saving the program file in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment. 2.
 - Implementation and execution of simple programs to understand working of
 - Formatted input and output functions- printf() and scanf(). •
 - Escape sequences in C.
 - Using formula in a C program for specific computation: For example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define).
- 3. Execution of erroneous C programs to understand debugging and correcting the errors like:
 - Syntax / compiler errors.
 - Run-time errors.
 - Linker errors.
 - Logical errors.
 - Semantical errors.
- Implementation and execution of simple programs to understand working of operators like: 4.
 - Unary. •
 - Arithmetic.
 - Logical.
 - Relational.
 - Conditional.
 - Bitwise.
- 5. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.
- 6. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.
- 7. Develop a C program for Matrix multiplication.
- 8. Develop a C program to search an element using Binary search and linear search techniques.
- 9. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.
- 10. Develop a C program to compute average marks of 'n' students (Name, Roll No, Test Marks) and search a particular record based on 'Roll No'.
- 11. Develop a C program using pointers to function to find given two strings are equal or not.
- 12. Develop a C program using recursion, to determine GCD, LCM of two numbers and to perform binary to decimal conversion.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 05 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 25 Marks, adding upto 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS.	20		
	MAXIMUM MARKS FOR THE CIE THEORY	50		

				Semester: IV				
	BIOSTATISTICS							
	Category: PROFESSIONAL CORE COURSE							
				(Theory)				
Cours	e Code	:	BT241AT		CIE	:	100	Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100	Marks
Total	Hours	:	45 L		SEE Duration	:	3 H	Irs
		<u> </u>	τ	U nit-I				9 Hrs
Introd	uction and Data	pr	esentation: Basic cond	cepts, definitions, formu	lae, common terms in	stati	stics.	Tools and
applica	tion of Biostatist	ics.	Types of numerical d	ata - Nominal data, Or	dinal data, Ranked dat	a, D	iscret	te data and
Contin	uous data. Tables	- Fr	equency distribution and	d Relative frequency, Gra	aphical representation, S	amp	ling T	Theory
– Simp	le Random Sampl	ing,	Systematic Sampling, S	Stratified Sampling, Clus	ter Sampling.			
Unit –	II							9 Hrs
Measu	res of central ter	ndei	ncy and dispersion: Co	entral Limit Theorem, G	raphical representation	of d	ata in	central
tenden	cy, Mean, Median	and	Mode. Frequency data	. Measures of variation-	Dispersion, Range, Mea	n de	viation	n and
Standa	rd deviation.		T	• • • • • • • • • • • • • • • • • • • •				0.11
D 1					D 1 1 11			9 Hrs
Proba distribut	bility and distri	but	ions: Theorems of pr	obability, Bayes' theor	em. Probability distrib	outio	ns- L	Discrete
uisuito	ution (Binomiai ui	suit		nit IV	s (Chi square lest, t lest a		lest).	0 IIma
Unit –IV 9 Hrs								
Corre	iation and Regre	SSIU Doml	n: Introduction, Types	of correlation, Correlations	agression concents Tyr	on s	corre	
Simple	L inear Regression	n M	Iultiple Regression I og	and men applications. R	on validation Goodness	of fi	t iegit	
Shipk	Ellicar Regressio	II, IV.	Interior Regression, 102	nit –V	on vandation, Goodness	01 11		9 Hrs
Mathe	Mathematical modelling in Biotechnology & Experimental Design: Letter Volterra Model of Production Mutation							
Selecti	on Matrix Model	of F	Rase Substitution mathe	ematical model for Inher	itance such as Genetic I	nbre	eding	Model and
Menda	lian Model of G	enet	ics. Growth equations	of microbial population	s. Experimental Design	n: In	trodu	ction of an
experi	mental design, ba	sic	Concepts, principles ar	nd designing of an expe	riment. Randomized B	lock	Desi	gn
(RBD)	, completely Rand	omi	zed Design (CRD), Fac	torial Design and Split Pl	ot Design.			C
Cours	e Outcomes: Afte	r co	mpleting the course, th	he students will be able	to			
CO1	Understand and e	expl	ain the fundamental con	cepts of statistics in Bios	tatistics			
CO2	Organize Data, c	omr	nunicate essential featur	res of data both numerica	lly and graphically			
CO3	Provide interpret	atio	ns/conclusions of statist	ical problems as mathem	atical modelling.			
CO4	Identify research	que	stions and experimental	l design questions that ma	ay be answered using sta	atisti	cal m	ethods and
	to translate the questions into the appropriate analysis procedure.							
Refere	ence Books							

1.	Dr. K S. Chandrashekar, Engineering Mathematics-IV, Sudha publications, 2017, ISBN: 8193001087
2.	Pranab Kumar Banerjee, Introduction to Biostatistics, S. Chand & Co. Ltd, 2011, ISBN:9788121923293
3.	Khan and Khanum, Fundamentals of Biostatistics, Ukaaz publications, 2020, ISBN: 9788190044103.
4.	Marcello Pagano and Kimberlee Gauvreau, Principle of Biostatistics, Thomson Asia Pvt., Ltd., 2 nd ed. 2018,
	ISBN: 9781138593145

R

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1: (Compulsory)	16	
3 & 4	Unit 2: Question 3 or 4	16	
5&6	Unit 3: Question 5 or 6	16	
7&8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

Semester: III/IV							
	ENVIRONMENT & SUSTAINABILITY						
		Categ	gory: Basket Courses - Group A				
		Strea	m: (Common to all Programs)				
			(Theory)				
Course Code	:	CV232TA/	CIE	:	100 Marks		
		CV242TA					
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	42L	SEE Duration	:	3Hours		

ENVIRONMENT	AND BIODIVERSITY	7
-------------	------------------	---

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management.

Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

RENEWABLE SOURCES OF ENERGY

Energy management and conservation, New Energy Sources: Need of new sources. Different types of new energy sources. Energy Cycles, carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socioeconomical and technological change.

Applications of - Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

SUSTAINABILITY AND MANAGEMENT

Introduction to Environmental Economics, Environmental Audit, Development, GDP, Sustainability - concept, needs and challenges-economic, social and aspects of sustainability - from unsustainability to sustainability-millennium development goals and protocols.

Linear vs. cyclical resource management systems, need for systems thinking and design of cyclical systems, circular economy, industrial ecology, green technology. Specifically apply these concepts to: Water Resources, Energy Resources, Food Resources, Land & Forests, Waste management.

Sustainable Development Goals - targets, indicators and intervention areas Climate change - Global, Regional and local environmental issues and possible solutions. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry.

SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment.

Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports.

Unit –V 8 Hrs Corporate Social Responsibility (CSR) - Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity, Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of CSR in India.

Sustainability Reporting: Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

8 Hrs

10 Hrs

8 Hrs

8 Hrs

Unit – II

Unit –III

Unit –IV

Unit-I

Course (Course Outcomes: After completing the course, the students will be able to: -			
CO 1	Understand the basic elements of Environment and its Biodiversity.			
CO 2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.			
CO 3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.			
CO 4	Recognize the role of Corporate social responsibility in conserving the Environment.			

Reference	Reference Books						
2.	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 - 978-						
	9387432352						
2.	'Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3rd edition,						
	Pearson Education, 2006. ISBN-13 - 978-0132339346.						
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.						
4	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David						
4.	Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179.						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			SEMEN	STERSemester: III / IV			
			MATERIALS	SCIENCE FOR ENGINE	ERS		
			Catego	ory: Professional Core			
(Incory)							
Cours	e Code	:	MIE2321B / 2421B		CIE		100 Marks
Total	US: L: I : F	•	3.0.0 40I		SEE SEE Duration	•	3 Hours
10141	110015	•	III	nit-I	SEE Duration	•	06 Hrs
The F	undamentals o	fM	aterials	IIIt-1			001113
The el	ectronic structur	reo	f atoms, types of atomic and	molecular bonds: ionic bon	d. covalent bond. me	etallic	bond. secondary
bonds	, mixed bondin	g, 1	hybridization. Energy band	ls in metals, insulators, and	d semiconductors. I	Basic (crystallography.
Defec	ts and dislocatio	ons.	Types of materials: polyme	ers, metals and alloys, ceram	ics, semiconductors	, comp	posites.
			Uni	it – II		_	10 Hrs
Mater	ial behavior: '	The	rmal properties: thermal co	onductivity, thermoelectric	effects, heat capaci	ty, the	rmal expansion
coeffi	cient, thermal sl	hoc	k, thermocouple. Electrical	Properties: dielectric behav	viours and temperation	ire de	pendence of the
dielec	tric constant, ins	sula	ting materials, ferroelectrici	ty, piezoelectricity, super co	nductor. Optical pro	perties	s: luminescence,
optica	l fibers, Mechar	nica	l Properties: Stress-strain di	agram, elastic deformation,	plastic deformation,	hardn	ess, viscoelastic
deform	nation, impact e	ner	gy, fracture toughness, fatig	gue.			
			Uni	t –III			10 Hrs
Mater	rials and their	· A]	pplications: Semiconducto	ors, dielectrics, optoelectron	nics, structural mat	erials,	ferrous alloys,
nonfei	rous alloys, cer	mer	it, concrete, ceramic, and g	glasses. Polymers: thermose	ets and thermoplasti	cs, co	mposites: fiber-
reinfo	rced, aggregated	d co	mposites, electronic packag	ging materials, biomaterials,	processing of struct	ural m	aterials.
	Unit – IV U/ Hrs Heat Treatment Dest measure heat met an electronic devices thermal evidation diffusion movid thermal						
Heat	Treatment: Po	ost	processing heat treatment	of electronic devices: the	rmal oxidation, dif	fusion	, rapid thermal
proces	ssing. Heat treat	mei	it of ferrous materials: anne	caling, spheroidizing, norma	lizing, hardening, te	mperii	ng. formation of
nitridi	ng cyaniding f	1 01 19m	a and induction bardening	Defects in heat treatment	cial neat treatment p	rocess	ses: carburizing,
munui	ng, cyantung, i	1411	e, and modelion nardening.	beleets in heat treatment.			07 Hrs
Nano	materials: Syn	thes	is of nanomaterials ball	milling sol-gel vapour de	position growth n	ulse la	aser magnetron
sputte	ring lithograph	v N	Jano porous materials: zeol	ites mesoporous materials	carbon nanotubes	granhe	ene nano FRPs
nano	fabrics, bioreso	rbal	ble and bio-erodable mate	rials, nano ceramic, nano	glasses, nano bioma	aterials	s. nano implant
associ	ated materials.	Cha	racterization of nano structu	res, spectroscopic techniqu	es, automatic force 1	nicros	copy.
				· · · · ·			
Cours	se Outcomes: A	fte	r completing the course, th	ne students will be able to:			
CO1	Understand	l the	e classification of materials,	their atomic structure, and	properties.		
CO2	Investigate	the	properties and applications	of different materials.			
CO3	Analyze the	e ef	fect of different heat treatme	ent processes.			
CO4	Recognize	diff	erent types of nanomaterial	s, synthesis methods and ch	aracterisation techni	ques.	
Refer	ence Books			~			
1.	1. Material Science and Engineering, William D Callister, 6^{in} Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-						

	5
2.	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6
3.	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-066717-9
4.	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996, ISBN:978-0849322749

R

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8		16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

R

RI₩

	Semester: III/IV						
	BIO SAFETY STANDARDS AND ETHICS						
Course	e Code	:	BT232TC/BT242TC		CIE	:	100 Marks
Credit	s: L: T:P	:	3:0:0		SEE	:	100 Marks
Total I	Hours	:	45 L		SEE Duration	:	3 Hours
			Unit-	I			09 Hrs
Biohaz	ards, Bio safety l	evel	s and cabinets: Introduc	ction to Biohazards,	Biological Safety lev	els, B	io safety Cabinets,
Study of	of various types of	Bi	o safety cabinets. Variou	s parameters for dea	sign of Biosafety cabi	nets (Materials used for
fabrica	tion, sensors, filters	s, pu	imps, compressors)	TT			00 11
D' 6						<u> </u>	
Biosafe	ety Guidelines: Bi	losai	tety guidelines of Govern	iment of India, GM	Os & LMOs, Roles (Constis Enga Ammou	of Inst	itutional Biosafety
applica	tions in food and a	ew oric	commutee o Genetic mai	onal Regulations an	d relevant Internation	al Coi	reements including
Cartage	ena Protocol.	igin		onar Regulations an	a relevant internation	ai rigi	coments meruding
			Unit –	III			10 Hrs
Food s	safety standards:	FSS	AI (Food Safety and Sta	andards Authority o	f India), Functions, I	licens	e, types of FSSAI
Licence	es and compliance	rule	S.	2			
Food H	Iygiene: General p	rinc	iples of food microbiology	y and overview of fo	odborne pathogens, so	urces	of microorganisms
in the f	ood chain (raw mat	teria	ls, water, air, equipment,	etc.)			
Quality	v of foods, Microbi	al fo	od spoilage and Foodbor	ne diseases, Overvie	ew of beneficial micro	organ	isms and their role
11 food	processing and hur	nan	nutrition, Food Analysis a	and Testing, General	principles of food safe	ety ma	nagement systems,
Tiazaru	Analysis Chucar C	2011	<u>Unit –]</u>	IV			09 Hrs
Food F	Preservations, proc	ress	ing, and nackaging				
Food P	rocessing Operation	ns, F	Principles, Good Manufact	turing Practices HAC	CCP, Good production.	and p	rocessing practices
(GMP,	GAP, GHP, GLP,	BÁI	P, etc)	0	, I	1	01
Overvi	ew of food pro	eser	vation methods and t	their underlying	principles including	nove	el and emerging
method	ls/principles.Overv	iew	of food packaging method	ds and principles inc	luding novel packagin	g mat	erials.
			Unit-	V			09 Hrs
Food s	afety and Ethics:	Foo	d Hazards, Food Additiv	es, Food Allergens	Drugs, Hormones, and	l Antil	piotics in Animals.
Factors	That Contribute to	Fo	odborne Illness, Consume	r Lifestyles and Den	nand, Food Production	and E	Economics, History
of Food	a Safety, The Role	of F	ood Preservation in Food	Safety.	· · · · f · (· · · · · 1 D · · · / 1 · · ·		
Ethics:	Clinical ethics, He	aith	Policy, Research ethics, e	ethics on Animals. B	losatety and Bioethics	•	
Course	e Outcomes: After	cor	npleting the course, the	students will be abl	e to:		
CO1	Have a comprehe	nsiv	ve knowledge of Biohazar	ds and bio safety lev	vels		
CO2	Understand the b	iosa	fety guidelines and their i	mportance to the soc	ciety		
CO3	Acquire knowled	ge v	vith respect to the Food st	andards, Hygiene, fo	ood processing and pag	cking	
CO4	Appreciate the fo	od s	afety, Ethics, biosafety ar	nd bio ethics		0	
	rr the troat		<i>, , , , , , , , , ,</i>				
r							

Refe	Reference Books					
2.	Deepa Goel, Shomini Parashar, IPR, Biosafety and Bioethics 1st Edition, 2013, ISBN: 978-8131774700.					
2.	Cynthia A Roberts, The Food Safety, Oryx Press, first edition, 2001, ISBN: 1-57356-305-6.					
3.	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.					
4.	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: (Internal Choice)	16					
5&6	Unit 3: (Internal Choice)	16					
7 & 8	7 & 8 Unit 4: (Internal Choice)						
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					

			Semester: IV				
		PROGRAMMING F	OR COMPUTATIONA	L BIOLOGY			
		Category: PRC	OFESSIONAL CORE C	OURSE			
		(T)	heory and Practice)				
Course Code	:	BT343AI		CIE	:	100 + 50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100 + 50 Marks	
Total Hours	:	45L+30P		SEE Duration	:	3Hours	
		τ	J nit-I				09 Hrs
Introduction to Genome	an	d Proteomic database	s - types and examples,	databases of Proteor	nic	, Genomic	data,
Metabolic pathway and	Μ	lolecular structures. (S	Suffix trie and suffix	tree, Parallel Gene	erali	ized Suffi	x Tree
Construction for Genomic	Da	ata)					
		Ui	nit – II				09 Hrs
Dynamic Programming:			D	(T 1 1	P		ъ ·
Introduction to dynamic	P	rogramming. Dynamic	Programming method	s (Top down and	Bo	ottom up)	. Dyanmıc
Programming Problem. S	tep	s to solve Dynamic Pro	bgramming Problem. Dy	namic Programming	g A	Igorithms	- Fibonacci
chaining zukar algorithm	un D	minimum cost, giodal	alignment and local al	ignment of sequen	ces	, exon	
	, D		nit _III				09 Hrs
Machine learning algori	thn	ns I:					071113
Introduction to Machine I	ea	rning Types of Machine	e Learning classification	regression and clus	steri	ng Classi	fication
algorithms – Decision Tr	ee.	Bavesian Network. SV	M. Random forests. HM	IM and ANN. Case	stu	dies Predie	ction of
protein functional sites, Biological activity of molecules, and classification of cancer.							
		Uı	nit –IV				09 Hrs
Machine learning algori	thn	ns II:					
ESTs using K-Means clu	ster	ring, brain tumor segme	entation and genes using	P-DBSCAN, Self-	Or	ganizing N	Maps in
Sequence analysis, UPC	βM.	A and NJ, Clustering	algorithm for Protein	-Protein Interaction	n (1	PPI) netw	vorks
identification and Identifi	cati	on of Metabolic Pathwa	ays.				
		U	nit –V				09 Hrs
Hadoop and Big Data a	naly			1 1 4 1 1/1	c	о ·	
Introduction to Hadoop an		Control Myrma MAD	oop Architecture. Hadoo	p based Algorithms	tor	Genomics	s and
Proteonnics – CloudAlign	er,	Contrant, Myrna, MAPF	EDUCE, GPU-DLAST	and Tundee. Case s	tua	les.	
		LABORA	TORY EXPERIMENT	S			
1. Design, Develop and	Ex	ecute Python program f	or Fibonacci series and T	ree traversal with m	inir	num cost.	
2. Design, Develop and	Ex	ecute Python program b	based on Needleman and	Wunch algorithm for	or G	lobal Sequ	ience
Alignment.							
3. Design, Develop and	3. Design, Develop and Execute Python program based on Smith and Waterman for Local Sequence Alignment.					ent.	
4. Design, Develop and	4. Design, Develop and Execute Python program to implement random classifier for Image classification.						
5. Design, Develop and	Ex	ecute Python program t	o construct Phylogenetic	Tree based on UPG	MA	algorithm	1.
6. Design, Develop and	d E	Execute Python program	n to identify diseased g	enes based on Nee	dlei	man and V	Wunch
algorithm.	р	(h					
/. Develop and Execute	7. Develop and Execute Python program to implement bowtie algorithm for Genome Maping.						

- 8. Develop and deploy Python program Workflow for Network Analysis.
- 9. Perform differential gene expression assay for large RNA-seq datasets using Myrna.
- 10. Perform Parallel Genome Assembly using Contrail.

Course	Outcomes: After completing the course, the students will be able to
CO1	Understand Dynamic programming based and Machine Learning based algorithms for Big Data Analytics in Computational Biology.
CO2	Explore Applications Computational algorithms in Data Mining, Computational Genomics and Proteomics and Medical Imaging.
CO3	Apply the Algorithmic applications to solve the problems related to process modelling, simulation and process engineering in Life Sciences.
CO4	Use Python Programming skills to implement Dynamic programming based and Machine Learning based algorithms for Big Data Analytics in Computational Biology.

Ref	erence Books						
1.	Pradipta Maji, Sushmita Paul, Scalable Pattern Recognition Algorithms, Springer International Publishing 2014,						
	ISBN: 9783319056302.						
2.	Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning - From Theory to Algorithms,						
	Cambridge University Press 2014, ISBN: 9781107057135.						
3.	Loveleen Gaur, Samuel Fosso Wamba, Arun Solanki, Advanced AI Techniques and Applications in						
	Bioinformatics, CRC Press 2021, ISBN: 9781000462982.						
4.	Tim J. Stevens, Wayne Boucher, Python Programming for Biology - Bioinformatics and Beyond, Cambridge						
	University Press 201, ISBN: 9780521895835.						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY AND PRACTICE)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40		
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50		
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
PART A						
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Department of Biotechnology

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

			Semester: IV					
BIOCHEMISTRY								
Category: PROFESSIONAL CORE COURSE								
(Theory and Practice)								
Course Code	:	BT344AI		CIE	:	100 + 50	Marks	
Credits: L:T:P	its: L:T:P : 3:0:1 SEE : 100 + 50 Marks							
Fotal Hours : 45L+30P SEE Duration : 3Hrs								
			 Unit-I				09 Hrs	
Foundations of Bioc	hemist	rv					07 1115	
Influence of hydroge	n Bond	ls and other weak inter	eractions in biomolec	ules, behavior of hyd	roph	ilic and h	vdrophobic	
substances in water, th	hermod	lynamics of transferring	g a nonpolar molecule	from an aqueous solut	ion	to a nonpo	lar solvent,	
types of solutions (hyp	pertoni	c, isotonic and hypoton	ic), osmosis and diffu	sion.		I	,	
Ionization of water, p	H, Her	derson hasselbagh equ	ation and its significa	nce, influence of acids	s and	l bases in	altering the	
pH, types of buffers a	nd prep	paration of buffers. The	blood buffering system	m.			-	
		U	nit – II				09 Hrs	
Carbohydrates and I	Nucleic	e acids						
Carbohydrates: Struct	ure and	d properties of monosa	ccharide, disaccharide	e and polysaccharide (struc	tural poly	saccharides	
and storage polysacch	narides)). Carbohydrate metabo	olism: Aerobic and an	naerobic glycolysis, tri	carb	oxylic acid	d cycle and	
gluconeogenesis.								
Nucleic acids- Nucleo	otides, b	bases, sugars, structure,	types, properties and	functions of DNA and	RN	A. Limited	l Flexibility	
of DNA. Forces stabi	lizing 1	nucleic acid structures	- Principles of base-s	tacking, base pairing a	ind I	Ribose		
puckering. DNA melting Curve-DNA denaturation and renaturation.								
Unit –III 09 Hrs								
Amino Acids: Classification, structure and properties of amino acids. Proteins: Primary, secondary (planar peptide group and its effect on limited polypeptide conformation, alpha helix, beta sheets), Ramachandran plot, Tertiary and quaternary structures. Globular and fibrous proteins. Biodegradation of amino acids- deamination, transamination and urea cycle. Lipid metabolism: Biosynthesis and biodegradation of fatty acids. Biochemical functions of fatty acids, triacylglycerols, phospholipids, glycolipids, lipoproteins and steroids.								
		U	nit –IV				09 Hrs	
Enzymes								
Enzyme classification	n. Enzy	me catalyzed reaction	s, factors affecting er	nzyme activity, co-fac	tors	and co-en	zymes.	
Extraction, purification	on and	characterization of en	zymes. Determination	n of molecular mass	of e	nzymes. E	Enzyme	
assays. Enzyme kiner	tics- M	lichaelis-Menten Equa	tion. Enzyme Inhibit	ion: Competitive, unc	omp	etitive and	d non-	
competitive. Determin	nation c	of inhibition constants.						
		t	J nit –V				09 Hrs	
Hormones and vitam	ins							
The major endocrine	system	ns and their target tiss	sues, Hormonal Regu	lation of Metabolism	Co	mmon en	docrine	
disorders: Diabetes Mellitus, Hypothyroidism, hyper thyroidism, Graves disease, Hashimoto's disease. Vitamins:								
i ypes and associated	ueficie	ncy diseases, case studi	es. Role of Nutraceuti	icals in nealth				
Laboratory Comp	mont							
Laboratory Component 1. Qualitative tests for amine acids								
1. Qualitative tests for annual actus								
2. Quantative tests for carbonydrates								
3. Estimation of the concentration of reducing sugars								
4. Estimation of the concentration of total sugars.								
5. Estimation of th	e conc	entration of total prot	teins					
6. Estimation of th	6. Estimation of the concentration of nucleic acids							

Open ended experiments:

- 1. Enzyme extraction and determination of enzyme activity.
- 2. SDS- PAGE
- 3. Estimation of ascorbic acid
- 4. Calculation of Km &Vmax for an enzyme catalyzed reaction
- 5. Effect of temperature on enzyme activity
- 6. Effect of pH on enzyme activity

Experiments 1-6 is performed by all students. Students should pick any 3 open ended experiments from the above list of open ended experiments and perform during the semester.

PART B

Innovative Experiments (IE)

- 1. Extraction and Purification of enzymes
- 2. Purification of industrially important compounds
- 3. Characterization of bioactive compounds
- 4. Extraction and purification of valuable compounds from waste.

Students can pick up any one project as part of experiential learning

Course Outcomes: After completing the course, the students will be able to

	• •
CO1	Comprehend biochemical principles and fundamentals of biochemistry and apply them to a given scenario
CO2	Analyze complex biochemical pathways within living cells to solve a given problem
CO3	Review research literature, analyze biochemical problems and present the data following professional ethics
CO4	Conduct basic biochemical experiments, analyze, interpret and present the data

Ref	Cerence Books
1.	Principles of Biochemistry, Donald Voet, Judith G. Voet, Charlotte W. Pratt, 4th Edition, 2012, John Wiley &
	Sons, ISBN-10: 1 9781464126116, ISBN-13: 978-1464126116
2.	Lehninger Principles of Biochemistry, David L. Nelson, Michael M. Cox, 67 ^h Edition, 2017, W.H. Freeman,
	ISBN-10: 9781464126116, ISBN-13: 978-1464126116
3.	Biochemistry, U Satyanarayana, 5th Edition, 2017, Books & Allied Ltd, ASIN: B073Y7XGH4
4.	Biochemistry, Denise Ferrier, Lippincott, 2017, Williams & Wilkins, ISBN: 149636354X, 9781496363541

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY AND PRACTICE)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40			
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50			
	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)								
Q. NO.	Q. NO. CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B							
	(Maximum of TWO Sub-divisions only)							
2	Unit 1: (Compulsory)	16						
3 & 4	Unit 2: Question 3 or 4	16						
5&6	Unit 3: Question 5 or 6	16						
7 & 8	Unit 4: Question 7 or 8	16						
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

				Semester: IV				
	BIOPROCESS CALCULATIONS							
Category: PROFESSIONAL CORE COURSE								
(Theory)								
Cou	rse Code	:	BT345AT		CIE	:	100 Marks	
Cre	dits: L:T:P	:	3:0:0		SEE	: 100 Marks		
Tota	al Hours	:	45L		SEE Duration	:	3 Hrs	
			l	Unit-I			09 Hrs	
Basi Intro Expr of m	Basic Concepts of Units and Conversion Introduction: Dimensions and System of Units, Fundamental and derived units, Mole Concept, Concept of mole. Expressions for composition of mixtures of solids, liquids and gases, percentage by weight, mole and volume. Composition of mixtures and solutions.							
Mat	anial halance for you		U.				09 1118	
Mat	erial balance for val	r01	is Separation Processe	S action crystallization ave	anoration driving Contir		s filtration batch	
mixi	ing Continuous ferm	ent	ation Simple numerical	examples	aporation, drynig. Conti	luou	s muation, baten	
	ing, continuous term	ciiu	U	nit –III			09 Hrs	
Mat	erial balance for var	riou	18 Bioprocesses					
Mate	erial balance Involvir	ng C	Chemical reactions: Prin	ciples of Stoichiometry,	Concept of limiting and	exce	ess reactants;	
fract	tional conversion, per	cen	ntage of conversion, per	centage yield. Material ba	alance involving reaction	ns w	ith reference to	
etha	nol production.							
				nit –IV			09 Hrs	
Mat	erial balance for Re	cyc	le, Bypass and Purging	g Operation			,	
stres	ycle by-pass and Pu	rge	d purge streams Prob	lems involving recycle	and purge streams Sim	-pass	s; and purge	
exar	nples.		iu purge streams, 1100	tems involving recycle	and purge streams. Sin	ipic	numericai	
	Unit –V 09 Hrs							
Stoi	chiometry for Micro	bia	al Process				I	
Mic	robial stoichiometry -	- S1	toichiometry of microbi	ial growth and product for	ormation, Growth Stoich	iom	etry and electron	
bala	nces, Biomass yield,	Pro	oduct stoichiometry, The	eoretical Oxygen demand	d, Oxygen consumption	in a	erobic microbial	
cultures, Maximum possible yield in bioprocess.								
Cou	rse Outcomes: After	r co	ompleting the course, the	he students will be able				
CO.	Apply the concep	t of ecif	t dimension and unit con fic terms used in process	version to check dimens	ional consistency of bala	ince	d equation and	
CO	2 Perform material	hal	ance problems without	chemical reactions				
CO	3 Develop material	bal	ance equations for bioc	hemical processes with re	eactions.			
CO ₄	4 Formulate growth	n me	edium based on stoichic	metry and elemental bala	inces.			
Reference Books								
1.	1. Bioprocess Engineering principles, Pauline M Doran., Second Edition, 2013, Academic press, Elsevier, UK, ISBN: 9780122208515							
2.	Basic Principles and of India, New Delhi	Ca , IS	lculations in Chemical BN-81-203-1145-0	Engineering, Himmelblau	D.M., Sixth Edition, 20	007,	Prentice Hall	
3.	3. Bioprocess Engineering Basic Concepts, Shuler M.L., and Kargi F., Second Edition, 2002, Prentice Hall of India, New Delhi, ISBN-0130819085							
4.	 Stoichiometry, Bhatt B. I., Vora S. M., Fourth Edition,2004, Tata McGraw Hill Publishing Ltd., New Delhi , ISBN 0-07-462039-8 							

R

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)								
Q. NO.	Q. NO. CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B							
	(Maximum of TWO Sub-divisions only)							
2	Unit 1: (Compulsory)	16						
3 & 4	Unit 2: Question 3 or 4	16						
5&6	Unit 3: Question 5 or 6	16						
7&8	Unit 4: Question 7 or 8	16						
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

Semester: IV

NATIONAL SERVICE SCHEME(NSS)

(Practical)

Course Code	:	HS247LA	СІЕ	:	50 Marks
Credits: L: T: P	:	0:0:2	SEE	:	50 Marks
Total Hours	:	13P	SEE Du	uration :	02 Hrs

Prerequisites:

1. Students should have service-oriented mindset and social concern.

2. Students should have dedication to work at any remote place, any time with available resources and proper time management for the other works.

3. Students should be ready to sacrifice some of the timely will and wishes to achieve service-oriented targets on time.

Students must take up any one activity on below mentioned topics and must prepare contents for awareness and technical contents for implementation of the projects and has to present strategies for implementation of the same. Compulsorily must attend one camp.

CIE will be evaluated based on their presentation, approach, and implementation strategies. (Any one of the below mentioned activity)

1. Helping local schools to achieve good result and enhance their enrolment in Higher/technical/ vocational education.

2. Preparing an actionable business proposal for enhancing the village/ farmer income and approach for implementation.

3. Developing Sustainable Water management system for rural/ urban areas and implementation approaches.

4. Setting of the information imparting club for women leading to contribution in social and economic issues.

5. Spreading public awareness/ government schemes under rural outreach program. (Minimum 5 programs)

6. Contribution to any national level initiative of Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc...

7. Social connect and responsibilities

8. Plantation and adoption of plants. Know your plants

9. Organic farming, Indian Agriculture (Past, Present and Future) Connectivity for marketing

10. Waste management – Public, Private and Govt organization, 5 R's

11. Water conservation techniques – Role of different stakeholders - Implementation

12. Govt. School Rejuvenation and assistance to achieve good infrastructure.

13. Organize National integration and social harmony events/ workshops / seminars. (Minimum 2 programs) and ONE NSS-CAMP.

Course Outcomes: After completing the course, the students will be able to: -					
CO1	Understand the importance of his/her responsibilities towards society.				
CO2	Analyze the environmental and societal problems/ issues and will be able to design solutions for thesame.				
CO3	Evaluate the existing system and to propose practical solutions for the same for sustainabledevelopment.				

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1)						
Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING						
Presentation 2 (phase 2)	10	****				
Content development, strategies for implementation methodologies.						
Case Study-based Teaching-Learning	10	Implementation strategies				
Sector wise study & consolidation	10	of the project with report				
Video based seminar (4-5 minutes per student)	10					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

			NATI	Semester: III	NCC)		
				(Practical)			
Course	Code	:	HS247LB		CIE	:	50 Marks
Credits	s: L:T:P	:	0:0:2		SEE	:	50 Marks
Total H	Iours	:	15P		SEE Duration	:	02 Hrs
				Unit-I			07 Hrs
Drill: F Line Ba	oot Drill- Di anana, Khuli	rill ki Line	Aam Hidayaten, , Nikat Line, Khao	Word ki Command, Savdh de Khade Salute Karna	an, Vishram, Aram Se, Murdr	ia, K	advarSizing, Teer
				Unit – II			03 Hrs
Weapor	n Training (V	WT):	Introduction & Ch	aracteristics of 7.62 Self L	pading rifle, Identification of r	ifle p	arts
				Unit –III			03 Hrs
Advent	ure activities	s: Tre	kking and obstacle	e course			
				Unit –IV			02 Hrs
Social S	Service and outthe seme	Comr ester e	nunity Developmo	ent (SSCD): Students will j n Camp Swachhata Abhiy	participate in various activitie an Constitution Day All Nati	s onal	Festival
unougn	ioutine seme		.g., Diood donatio	ir earlip, 5 waennaar 7 tonry		onai	i estivai
Course	Outcomes:	Afte	r completing the	course, the students will b	e able to: -		
CO1	Understand	d that	drill as the founda	tion for discipline and to co	ommand a group for common	goal.	
CO2	2 Understand the importance of a weapon its detailed safety precautions necessary for prevention of accidents and identifying the parts of weapon.						
CO3	Understand that trekking will connect human with nature and cross the obstacles to experience army way of life.						
CO4	Understand the various social issues and their impact on social life, Develop the sense of self-less social service for better social & community life.						

Kululu	ICC DOORS
1.	NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R- 1991, ISBN: 978-93-
	87918-57-3, HSN Code: 49011010
2.	nceindia.ac.in

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1)						
Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING						
Presentation 2 (phase 2)	10	****				
Content development, strategies for implementation methodologies.						
Case Study-based Teaching-Learning	10	Implementation strategies				
Sector wise study & consolidation	10	of the project with report				
Video based seminar (4-5 minutes per student)	10					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

	Semester: III							
PHYSICAL EDUCATION								
		(5	(Dreastical))				
		1	(Practical)					
Course Code	:	HS247LC		CIE	:	50 Marks		
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks		
Total Hours	:	30P		SEE Duration	:	2.5 Hrs		
	Content 30 Hrs							

Topics for Viva:

- 1. On rules and regulations pertaining to the games / sports
- 2. On dimensions of the court, size / weight of the ball and standards pertaining to that sports / game
- 3. Popular players and legends at state level / National level/ International level
- 4. Recent events happened and winner / runners in that sport / game
- 5. General awareness about sport / game, sports happenings in the college campus

Course Outcomes: After completing the course, the students will be able to: -				
CO1	Understand the basic principles and practices of Physical Education and Sports.			
CO2	Instruct the Physical Activities and Sports practices for Healthy Living.			
CO3	To develop professionalism among students to conduct, organize & Officiate Physical Education and Sports events			
	at schools and community level.			

Refere	nce Books					
1.	Health, Exercise and Fitness, Muller, J. P. (2000), Delhi: Sports.					
2.	Play Field Manual, Anaika ,2005, Friends Publication New Delhi.					
3.	IAAF Manual.					
4.	Track and Field Marking and Athletics Officiating Manual, M.J Vishwanath, 2002, Silver Star					
	Publication, Shimoga.					
5.	Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinestics.					
Note: S	Note: Skills of Sports and Games (Game Specific books) may be referred					

ASSESSMENT AND EVALUATION PATTERN							
WEIGHTAGE	50%	50%					
	CIE	SEE					
Presentation 1- Selection of topic- (phase 1)							
Justification for Importance, need of the hour with surveyed data.	10	****					
EXPERIENTIAL LEARNING							
Presentation 2 (phase 2)	10	****					
Content development, strategies for implementation methodologies.							
Case Study-based Teaching-Learning	10	Implementation strategies					
Sector wise study & consolidation	10	of the project with report					
Video based seminar (4-5 minutes per student)	10						
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS					

Bengaluru - 560059, Karnataka, India

	Semester: III						
	MUSIC (Practical)						
Course	Code	:	HS247LD		CIE	:	50 Marks
Credits:	L: T: P	:	0:0:2		SEE	:	50 Marks
Total Ho	ours	:	13P		SEE Duration	:	02 Hrs
				Content			13 Hrs
1. Introd	luction to diff	erei	nt genres of music				
2. Evolu	tion of genres	s in	India: Inspiration	from the world			
3. Ragas	s, time and the	eir n	noods in Indian Cl	assical Music			
4. Identi	fication of rag	gas	and application in	o contemporary songs			
5. Addin	ng your touch	to a	a composition				
6. Maths	s and Music: A	A de	emonstration				
7. Harm	onies in musi	с					
8. Chorc	ls: Basics and	l app	plication into any s	song			
9. Music	Production-	l T					
10. Music	e Production-	II					
Students	have to form	gro	oups of 2-4 and pre	esent a musical performance/ a musi	ical task which sha	ll be g	given by the experts.
The expe	erts shall judg	e th	e groups and awa	rd marks for the same.			
CIE will	be evaluated	bas	sed on their presen	tation, approach, and implementat	ion strategies. Stud	lents	need to submit their
certificat	es of any eve	nt tl	hey participated or	bagged prizes in. This shall also be	e considered for C	IE ev	aluation.
Course Outcomes: After completing the course, the students will be able to: -							
CO1	Understand	bas	ics of Music and in	nprove their skills.			
CO2	Appreciate	the	impacts on health	and well-being.			
CO3	Perform and	l pre	esent music in a pr	esentable manner.			
CO4	Develop ski	lls 1	ike team building	and collaboration.			

Referen	ce Books
1.	Music Cognition: The Basics by Henkjan Honing.
2.	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory Answer Book by Glory
	St Germain.
3.	Elements Of Hindustani Classical Music by Shruti Jauhari.
4.	Music in North India: Experiencing Music, Expressing Culture (Global Music Series) by George E. Ruckert.

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1)						
Justification for Importance, need of the hour with surveyed	10	****				
data.						
EXPERIENTIAL LEARNING						
Presentation 2 (phase 2)	10	****				
Content development, strategies for implementation						
methodologies.						
Case Study-based Teaching-Learning	10					

Department of Biotechnology

Go, change the world $^{\circ}$

Sector wise study & consolidation	10	Implementation strategies
Video based seminar (4-5 minutes per student)	10	of the project with report
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

Semester: III DANCE (Practical) HS247LE CIE 0:0:2 SEE

Cou	rse Code	:	H8247LE		CIE	:	50 N	larks
Cree	lits: L: T: P	:	0:0:2		SEE	:	50 N	/larks
Tota	l Hours	:	13P		SEE Duration	:	02 H	Irs
			Content	īS .				13 Hrs
1.	Introduction to	Daı	nce					
2.	Preparing the b	ody	for dancing by learni	ng different ways to warm up.				
3.	Basics of differ	ent	dance forms i.e., class	sical, eastern, and western.				
4.	Assessing the i	nter	est of students and div	viding them into different styles	based on interaction	•		
5.	Advancing mo	re in	to the styles of interes	st.				
б.	Understanding	of r	nusic i.e., beats, rhyth	m, and other components.				
7.	Expert session	s in 1	the respective dance f	orms.				
8.	Activities such	as c	cypher, showcase to g	auge learning.				
9.	Components of	per	formance through der	nonstration.				
10.	Introduction to	cho	reographies and routi	nes.				
11	Loorning to ob	raa	graph					

- 11. Learning to choreograph.
- 12. Choreograph and perform either solo or in groups.

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Understand the fundamentals of dancing.
CO2	Adapt to impromptu dancing.
CO3	Ability to pick choreography and understand musicality.
CO4	To be able to do choreographies and perform in front of a live audience.

Reference Books

1. Dance Composition: A practical guide to creative success in dance making, Jacqueline M. Smith

ASSESSMENT AND EVAL	UATION PATTERN	
WEIGHTAGE	50%	50%
	CIE	SEE
Presentation 1- Selection of topic- (phase 1)		
Justification for Importance, need of the hour with surveyed data.	10	****
EXPERIENTIAL LEARNING		
Presentation 2 (phase 2)	10	****
Content development, strategies for implementation		
methodologies.		
Case Study-based Teaching-Learning	10	Implementation strategies
Sector wise study & consolidation	10	of the project with report
Video based seminar (4-5 minutes per student)	10	
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

Semester: III THEATER (LIGHT CAMERA & ACTION)

(Practical)

Course Code	:	HS247LF		CIE	:	50 Marks
Credits: L:T:P	:	0:0:1		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	••	02 Hrs
Contents 13 Hrs						

1. Break the ICE

2. Introduction to freedom Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over socialanxiety, Shyness and Nervousness.

3. Ura

4. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing Voice projection is the strength of speaking or singing whereby the voice is used powerfully and clearly. It is a technique employed to command respect and attention, as when a teacher talks to a class, or simply to be heard clearly, as used by an actor in a theatre.

5. It's Leviosa, Not Leviosaaa!

6. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The art of dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from thedramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue deliveryskills:

7. Elementary, My dear Watson.

8. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.

9. Show time

10. Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Mono acting: different types of characters

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Develop a range of Theatrical Skills and apply them to create a performance.
CO2	Work collaboratively to generate, develop, and communicate ideas.
CO3	Develop as creative, effective, independent, and reflective students who are able to make informed choices in
	process and performance.
CO4	Develop an awareness and understanding of the roles and processes undertaken in contemporary professional
	theatre practice.

Referen	ice Books
1.	The Empty Space by Peter Brook.
2.	The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina Landau.

ASSESSMENT AND EVALUATION PATTERN				
WEIGHTAGE	50%	50%		
	CIE	SEE		
Presentation 1- Selection of topic- (phase 1)				
Justification for Importance, need of the hour with surveyed data.	10	****		
EXPERIENTIAL LEARNING				
Presentation 2 (phase 2)	10	****		
Content development, strategies for implementation				
methodologies.				

Go, change the world $^{\circ}$

Case Study-based Teaching-Learning	10	Implementation strategies
Sector wise study & consolidation	10	of the project with report
Video based seminar (4-5 minutes per student)	10	
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

Semester: III

ART WORK & PAINTING

(Practical)

Course Code	:	HS247LG		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	••	50 Marks
Total Hours	:	13P		SEE Duration	••	02 Hrs
Contents 13					13 Hrs	

1. Use points, line and curves to create various shapes and forms

2. Use of shapes and forms to create various objects and structures

3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions of perspective

4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.

5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization create a composition.

6. Learn how to use which materials and for what types of art and textures.

7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie and dye.

8. Real world application of the above concepts in the form of book cover design and illustration, cartoon, poster, advertisements, magazine, computer graphics and animation

9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY

Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorilytake part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presented art style.

Course Outcomes: A	fter completing the course, the students will be able to: -
CO1 Use lines, sl	hapes, and colors to depict the various sentiments and moods of life and nature.
CO2 Use one's cr	eativity to develop forms and color schemes, as well as the ability to portray them effectively
in drawing a	and painting on paper.
CO3 Develop the	e ability to properly use drawing and painting materials (surfaces, tools and equipment, and so
on).	
CO4 Improve the geometrical response to	ir observation abilities by studying everyday items as well as numerous geometrical and non- (i.e., organic) shapes found in life and nature and to hone their drawing and painting talents in these insights.

Reference Books Catching the Big Fish: Meditation, Consciousness, and Creativity, David Lynch 1. 2. Art & Fear: Observations on the Perils (and Rewards) of Artmaking, David Bayles & Ted Orland

WEIGHTAGE 50% 50% CIE SEE Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed 10 *****

ASSESSMENT AND EVALUATION PATTERN

data.

EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****
Case Study-based Teaching-Learning	10	Implementation strategies
Sector wise study & consolidation	10	of the projectwith report
Video based seminar (4-5 minutes per student)	10	
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

1. 2. 3.

4. 5. 6.

		Sen	nester: IV				
		PHOTOGRAPH	IY & FILM MAKING				
		(P	'ractical)				
Course Code	:	HS247LH	СІЕ	:	50 Marks		
Credits: L: T: P	:	0:0:2	SEE	:	50 Marks		
Total Hours	:	13P	SEE Duration	:	02 Hrs		
		Contents			13 Hrs		
I. Introduction to ph	oto	graphy.					
2. Understanding the	Understanding the terminologies of DSLR.						
B. Elements of photo	Elements of photography.						
Introduction to ser	ript	writing, storyboarding.					
5. Understanding the	e vis	ualization and designing a set.					
5. Basics of film acti	ing						
Video aditing voing offeren							

- 7. Video editing using software 8. Introduction to cinematography.
- 9. Understanding about lighting and camera angles.
- 10. Shooting a short film.

Students must form groups of 2-4 and present a short film which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need tosubmit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -					
CO1	CO1 Understand basics of photography and videography and improve their skills.				
CO2	Appreciate the skills acquired from photography.				
CO3	Perform and present photos and films in a presentable manner.				
CO4	CO4 Develop skills like team building and collaboration.				

Reference Books

1.	Read This If You Want to Take Great Photographs – Henry Carroll
2.	The Digital Photography Book: Part 1 – Scott Kelby

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1)						
Justification for Importance, need of the hour with surveyed	10	****				
data.						
EXPERIENTIAL LEARNING						
Presentation 2 (phase 2)	10	****				
Content development, strategies for implementation methodologies.						
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

10 Hrs

SEMESTER: IV UNIVERSAL HUMAN VALUES Category: Common to all Programs

Stream: Theory

Course Code	:	HS248AT	CIE	:	50 Marks
Credits: L:T:P	•••	2:0:0	SEE		50 Marks
Total Hours	:	28L	SEE Duration	:	02 Hrs
		I Init-I			10 Hrs

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education:

Purpose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration 'Natural Acceptance' and Experiential Validation Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facility, Understanding Happiness and Prosperity correctly.

Practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility.

Understanding Harmony in the Human Being - Harmony in Myself!:

Understanding human being as a co- existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' Understanding the Body as an instrument of Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health;

Practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life.

Unit – II	
Understanding Harmony in the Family and Society- Harmony in Human Relationship:	

Understanding values in human-human relationship; meaning of Justice and program for its fulfilment to ensure mutual happiness; Trustand Respect as the foundational values of relationship, Understanding the meaning of Trust.

Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Unit –III	08 Hrs

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence:

Understanding the harmony in the Nature, Interconnectedness, and mutual fulfilment among the four orders of nature recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all pervasive space, Holistic perception of harmony at all levels of existence.

Practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions,				
CO2	While keeping human relationships and human nature in mind. They would have better critical ability.				
CO3	They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).				
CO4	It is hoped that they would be able to apply what they have learnt to their own self in different day-to- day settings in real life, at least a beginning would be made in this direction.				

Referen	Reference Books				
1.	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.				
2.	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004				
3.	The Story of Stuff (Book).				
4.	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi				
5.	Small is Beautiful - E. F Schumacher.				
6.	Slow is Beautiful - Cecile Andrews.				

RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 5 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20			
MAXIN	IUM MARKS FOR THE CIE THEORY	50			

	RUBRICS FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	Q.NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	10				
PART B						
	(Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	12				
3 & 4	Unit 2: Question 3 or 4	14				
5&6	Unit 3: Question 5 or 6	14				
	TOTAL	50				

	Semester: IV									
	Bridge Course: MATHEMATICS									
	(Mandatory Audit Course)									
			(Com	mon to ALL Bra	anches)					
Course	Code:MA149ATCIE:50 Marks									
Credits	: L: T: P :		2:0:0		SEE	:	NO SEE (AUDIT COURSE)			
Total H	lours :		30L							
				Unit-I				10 Hrs		
Multiva	ariable Calculus:									
Partial	Differentiation:	In	troduction, simple pro	oblems. Total de	erivative,	com	posite functions. Jacobian	s – simple		
problem	18.									
Vector	Differentiation: In	ntı	roduction, velocity and	acceleration, gra	dient, div	vergen	ce – solenoidal vector func	tion, curl –		
irrotatio	nal vector function	a	nd Laplacian, simple pr	oblems.						
D:00	(115) (1		U	nit – II				10 Hrs		
Differei	ntial Equations:		• 1 .• • .1 .		1	C 1				
Higher of	order linear differe	nt	al equations with const	ant coefficients,	solution (of hor	nogeneous equations - Com	plementary		
function	is. Non-homogeneo	ou	s equations – Inverse di	fferential operato	or method	1 OT T1	nding particular integral bas	ed on input		
Tunction	i (lorce lunction).		T	:4 TTT				10 11		
Numori	ical Mathada		U	IIII –III				10 HIS		
Solution	of algebraic and	tri	ancondental aquations	Intermediate v	valua prov	orty	Newton Penhson method	Solution of		
first ord	l of algebraic allu	u a an	tial equations Taylor	- intermediate v	rder Run	Jerty,	utta methods. Numerical in	Solution of		
Simpson	n's $1/3^{rd}$ $3/8^{th}$ and Y	W	eddle's rules (All meth	ods without proo	f)	ige-R	atta methous. Numericar m			
Shipsoi	ii 5 175 , 576 und	••	edule 5 rules. (7 m mem	ous while proo	•1)•					
Course	Outcomes: After	co	mpleting the course, t	he students will	be able t	0				
CO1:	Illustrate the fund	da	mental concepts of parti	ial differentiation	, vector d	liffere	ntiation, higher order linear	differential		
	equations and numerical methods.									
CO2:	Derive the soluti	or	n by applying the acquin	red knowledge of	f differen	tial ca	lculus, differential equation	ns, velocity,		
	and acceleration	ve	ectors to the problems o	f engineering app	<u>olicatio</u> ns	•				
CO3:	Evaluate the solu	ıti	on of the problems usin	g appropriate tec	hniques c	of diffe	erential calculus, vector diff	erentiation,		
	differential equat	tic	ons, and numerical meth	ods.						
CO4:	CO4: Compile the overall knowledge of differential calculus, vector differentiation, differential equations and numerical									
	methods gained t	o	engage in life – long lea	arning.						

Reference Books		
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9- 1.	
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.	
3	A Textbook of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010, Lakshmi Publications, ISBN: 978-81-31808320.	
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley & Sons, ISBN: 978-0470458365.	

R

R

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 30 Marks, adding upto 60 Marks. FINAL TEST MARKS WILL BE AVERAGE OF TWO TESTS .	30
	MAXIMUM MARKS FOR THE CIE THEORY	50

Curriculum Design Process

Process For Course Outcome Attainment

Program Outcome Attainment Process

KNOWLEDGE & ATTITUDE PROFILE

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM OUTCOMES (POs)

- * **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- * PO2: Problem Analysis: Identify, formulate, review research literature and analyze engineering problems reaching substantiated complex conclusions with consideration for sustainable development. (WK1 to WK4)
- * **PO3:** Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex * engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- * **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- PO6: The Engineer and The World: Analyze and evaluate societal and environmental * aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- * PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- * **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- * **PO9:** Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- * **PO10:** Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and * ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Professionalism, Commitment, Integrity, Team Work, Innovation

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India | +91-80-68188110 | www.rvce.edu.in

Scan Here

Go, change the world[®]