

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

Scheme and Syllabus of I to IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in PRODUCT DESIGN AND MANUFACTURING

DEPARTMENT OF
MECHANICAL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work and Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysore Road Bengaluru – 560059

Scheme and Syllabus of I to IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in PRODUCT DESIGN AND MANUFACTURING

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

PROGRAM OUTCOMES (PO)

M. Tech. in Product Design and Manufacturing graduates will be able to:

- PO1: Independently carry out a research / investigation and development work to solve practical problems related to product design & manufacturing.
- PO2: Write and present a substantial technical report / document in the field of product design & manufacturing.
- PO3: Demonstrate a degree of mastery over the areas of product design. The mastery would be at a level higher than the requirements in the bachelor's in Mechanical Engineering
- PO4: Use modern tools for the design and analysis of static and dynamic systems and mechanisms.
- PO5: Adopt safety, ethical and environmental factors in product design and processes
- PO6: Perform in multidisciplinary teams with sound interpersonal and management skills with a commitment to lifelong learning

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	MCA	Master of Computer Applications
24.	MST	Structural Engineering
25.	MHT	Highway Technology
26.	MPD	Product Design & Manufacturing
27.	MCM	Computer Integrated & Manufacturing
28.	MMD	Machine Design
29.	MPE	Power Electronics
30.	MVE	VLSI Design & Embedded Systems
31.	MCS	Communication Systems
32.	MBS	Bio Medical Signal Processing &Instrumentation
33.	MCH	Chemical Engineering
34.	MCE	Computer Science & Engineering
35.	MCN	Computer Network Engineering
36.	MDC	Digital Communication
37.	MRM	Radio Frequency and Microwave Engineering
38.	MSE	Software Engineering
39.	MIT	Information Technology
40.	MBT	Biotechnology
	MBI	Bioinformatics
41.	MIDI	Diomiormatics

RV College of Engineering®

CONTENTS

	I Semester						
Sl.	Course Code	Course Title	Page No.				
No.							
1	18MAT11A	Applied Mathematics	1				
2	18MPD12	Product Design & Development	3				
3	18MPD13	Finite Element Analysis	5				
4	18HSS14	Professional Skills Development	7				
	GROUP A: PROFESSIONAL ELECTIVES						
1.	18MPD1A1	Product Design for Quality	9				
2.	18MMD1A2	Tribology	11				
3.	18MCM1A3	Design of Hydraulic & Pneumatic Systems	13				
	GROUP B: PROFESSIONAL ELECTIVES						
1.	18MPD1B1	Product Data Management	15				
2.	18MCE1B2	Intelligent Systems	17				
3.	18MCM1B3	Non-Traditional Machining & Testing	19				

	II Semester					
Sl.	Course Code	Course Title	Page No.			
No.						
1.	18MMD21	Robust Design	21			
2.	18MPD 22	Product Life Cycle Management	23			
3.	18IM 23	Research Methodology	25			
4.	18MPD24	Minor Project	27			
		GROUP C: PROFESSIONAL ELECTIVES	·			
1.	18MPD 2C1	Creative Engineering	29			
2.	18MPD 2C2	Design for Manufacture and Assembly	31			
3.	18MPD 2C3	Reliability Engineering	33			
		GROUP D: PROFESSIONAL ELECTIVES	·			
1.	18MPD 2D1	Product Cost Analysis & Optimization	35			
2.	18MCM2D2	Robotics & Automation	37			
3.	18MPD 2D3	Systems Engineering	39			
		GROUP G: GLOBAL ELECTIVES				
1.	18CS2G01	Business Analytics	41			
2.	18CV2G02	Industrial & Occupational Health and Safety	43			
3.	18IM2G03	Modelling using Linear Programming	45			
4.	18IM2G04	Project Management	47			
5.	18CH2G05	Energy Management	49			
6.	18ME2G06	Industry 4.0	51			
7.	18ME2G07	Advanced Materials	53			
8.	18CHY2G08	Composite Materials Science and Engineering	55			
9.	18PHY2G09	Physics of Materials	57			
10.	18MAT2G10	Advanced Statistical Methods	59			

RV College of Engineering®

	SEMESTER : III						
Sl. No.	Course Code	Course Title	Page No.				
1.	18MPD31	Advanced Materials & Processes	62				
2.	18MPD32	Internship	64				
3.	18MPD33	Major Project : Phase I	66				
4.	18XXX3EX	Professional Elective -E	67-72				
	GROUP E: PROFESSIONAL ELECTIVES						
1.	18MPD3E1	Sheet Metal Forming and Plastic Moulding	67				
2.	18MPD3E2	Surface Engineering	69				
3.	18MCM3E3	Advanced Manufacturing Practices	71				
		SEMESTER: IV					
Sl. No.	Course Code	Course Title	Page No.				
1.	18MPD41	Major Project : Phase II	73				
2.	18MPD42	Technical Seminar	75				

RV COLLEGE OF ENGINEERING®, BENGALURU - 560059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech in PRODUCT DESIGN AND MANUFACTURING

	FIRST SEMESTER CREDIT SCHEME							
Sl.				Credit Allocation				
No.	Course Code	Course Title	BoS	L	T	P	Total Credits	
1	18 MAT11A	Applied Mathematics	MAT	4	0	0	4	
2	18 MPD12	ME	4	0	1	5		
3	18MPD13	Finite Element Analysis	ME	4	0	1	5	
4	18HSS14	Professional Skills Development	HSS	0	0	0	0	
5	18XXX1AX	Elective – A	ME	3	1	0	4	
6	18XXX1BX	Elective – B	ME/CSE	4	0	0	4	
	Tota	l number of Credits	•	19	1	2	22	
	Total Nu	umber of Hours / Week		19	2	4	25	

	SECOND SEMESTER CREDIT SCHEME							
Sl.				Credit Allocation				
No.	Course Code	Course Title	BoS	L	Т	P	Total Credits	
1	18 MPD 21	Robust Design	ME	4	0	1	5	
2	18 MPD 22	Product Life Cycle Management	ME	3	1	0	4	
3	18 IM 23	Research Methodology	IEM	3	0	0	3	
4	18MPD24	Minor Project	ME	0	0	2	2	
5	18XXX2CX	Elective – C	ME	4	0	0	4	
6	18XXX2DX	Elective – D	ME	4	0	0	4	
7	18XXX2GXX	Global Elective	Respective boards	3	0	0	3	
	Total number of Credits			21	1	3	25	
	Total Nu	mber of Hours / Week		21	2	6	29	

RV College of Engineering®

	I Semester				
		GROUP A: PROFESSIONAL ELECTIVES			
Sl. No.	Course Code	Course Title			
1.	18MPD1A1	Product Design for Quality			
2.	18MMD1A2	Tribology			
3.	18MCM1A3	Design of Hydraulic & Pneumatic Systems			
		GROUP B: PROFESSIONAL ELECTIVES			
1.	18MPD1B1	Product Data Management			
2.	18MCE1B2	Intelligent Systems			
3.	18MCM1B3	Non-Traditional Machining & Testing			
		II Semester			
		GROUP C: PROFESSIONAL ELECTIVES			
1.	18 MPD 2C1	Creative Engineering			
2.	18 MPD 2C2	Design for Manufacture and Assembly			
3.	18 MPD 2C3	Reliability Engineering			
	GROUP D: PROFESSIONAL ELECTIVES				
1.	18 MPD 2D1	Product Cost Analysis & Optimization			
2.	18 MCM2D2	Robotics & Automation			
3.	18 MPD 2D3	Systems Engineering			

	GROUP E: GLOBAL ELECTIVES							
Sl. No.	Host Dept	Course Code	Course Title	Credits				
1.	CS	18CS2G01	Business Analytics	03				
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	03				
3.	IM	18IM2G03	Modelling using Linear Programming	03				
4.	IM	18IM2G04	Project Management	03				
5.	СН	18CH2G05	Energy Management	03				
6.	ME	18ME2G06	Industry 4.0	03				
7.	ME	18ME2G07	Advanced Materials	03				
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	03				
9.	PHY	18PHY2G09	Physics of Materials	03				
10.	MAT	18MAT2G10	Advanced Statistical Methods	03				

RV COLLEGE OF ENGINEERING®, BENGALURU - 560059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech in PRODUCT DESIGN AND MANUFACTURING

	THIRD SEMESTER CREDIT SCHEME							
CL M-	C C- 1-		D-C		Credit Allocation			
Sl. No.	Course Code	Course Title	BoS	L	Т	P	Credits	
1	18MCE31	Operating System Design	ME	4	1	0	5	
2	18MPD31	Advanced Materials & Processes	ME	0	0	5	5	
3	18MPD32	Internship	ME	0	0	5	5	
4	18MPD33	Major Project : Phase I ME		4	0	0	4	
	Total number of Credits			8	1	10	19	
	Total Number of Hours/Week			8	2	20	30	

	SEMESTER : III				
	GROUP E: PROFESSIONAL ELECTIVES				
Sl. No.	Sl. No. Course Code Course Title				
1	18MPD3E1	Sheet Metal Forming and Plastic Moulding			
2	18MPD3E2	Surface Engineering			
3	18MCM3E3	Advanced Manufacturing Practices			

	FOURTH SEMESTER CREDIT SCHEME							
SI No	Course Code	G W	DoC	Credit Allocation				
Sl. No.	Course Code	Course Title	BoS	L	T	P	Credits	
1	18MPD41	Major Project : Phase-II	CS	0	0	20	20	
2	18MPD42	Technical Seminar	CS	0	0	2	2	
	Total number of Credits				0	22	22	
	Total Number of Hours / Week			0	0	44	44	

SEMESTER: I							
	APPLIED MATHEMATICS						
(C	om	mon to MPD,M	MD,MCM,MPE,MBT	,MBI,MCH,MST,	MHT	<u>.</u>	
Course Code	:	18MAT11A		CIE Marks	:	100	
Credits L: T: P : 4:0:0 SEE Marks : 100							
Hours	:	52L		SEE Duration	:	3 Hrs	

Unit – I 10 Hrs

Statistics: Method of least squares, fitting of straight line, linearization of nonlinear laws, curve fitting by polynomials, correlation, coefficient of correlation, lines of regression, Spearman rank correlation.

Unit – II 10 Hrs

Probability distributions: Introduction to probability, Random variables-discrete and continuous random variables, important measures and moment generating functions, Standard distributions-Binomial, Exponential, Normal and Gamma distributions.

Unit – III 11 Hrs

System of linear equations and eigen value problems: System of linear equations-LU decomposition and Gauss-Jordan method, Eigen value problems—bounds on eigen values, Power method and Inverse Power method, Eigen values and eigen vectors of real symmetric matrices-Jacobi method.

Unit – IV 11 Hrs

Numerical solution of differential equations: Boundary value problems (BVP's)—finite difference method for linear and nonlinear problems, Shooting method and Galerkin method. Finite differences-implicit and explicit scheme, Finite difference methods for parabolic, elliptic and hyperbolic partial differential equations, Finite element method and simple problems.

Unit – V 10 Hrs

Engineering optimization: Engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function and objective function surface. Multivariable optimization with inequality constraints-Kuhn-Tucker conditions, Constraint qualification, Genetic operators, Neural-Network-based Optimization. Optimization of Fuzzy systems.

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Identify and interpret the fundamental concepts of statistics, distributions, linear algebra, differential equations and optimization arising in various field engineering.
- **CO2:** Apply the knowledge and skills of statistical/numerical/optimization techniques to solve problems of least squares, probability distributions, linear equations, eigen value problems and differential equations.
- **CO3:** Analyze the physical problem to establish a statistical / mathematical model and use an appropriate method to solve and optimize the solution.
- **CO4:** Distinguish the overall mathematical knowledge gained to demonstrate the problems of least squares, probability distributions, linear equations, eigen value problems, differential equations and optimization arising in practical situations.

Reference Books:

- 1 Theory and Problems of probability, Seymour Lipschutz and Marc lars Lipson, Schaum's Outline Series, 2nd edition, ISBN: 0-07-118356-6.
- 2 Introductory method of numerical analysis, S. S. Sastry, Prentice-Hall India Pvt. Ltd. 4th edition, 2009, ISBN: 81-203-1266-X.
- Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R. K. Jain, New Age International Publishers, 6th edition; 2012, ISBN-13:978-81-224-2001-2.
- Engineering Optimization Theory and Practice, Singiresu S. Rao, 3rd edition, New Age International (P)Ltd., ISBN: 81-224-1149-5.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: I						
		PRODUC	CT DESIGN & DEVEL	LOPMENT		
			(Theory &Practice)			
Course Code	:	18MPD12		CIE Marks	:	100+50
Credits L: T: P	:	4:0:1		SEE Marks	:	100+50
Hours	:	52L+26P		SEE Duration	:	3 Hrs

Unit – I 10 Hrs

Design as a Discipline: Mass production and professional designers-quality of life- get more, pay less-cost reduction and higher sophistication- products of dynamic culture.

Product life cycle: Various stages of product life cycle- design stage-manufacturing and marketing/implementation- usage and maintenance- the death of a product.

Design phases: Design methodology- formulation- idea rack- short listing and selecting TWO ideadetailing- prototype preparation.

Unit – II 11 Hrs

User centred Design survey: Importance on problem formulation, primary focus on people, target domain, clients and users, interaction, integrated approach, kinds of knowledge, style and peer group, user centred feedback.

Need statement and Design requirements: Need statement, guidance for designers, independent of physical embodiment, major requirements and articulation.

Specifications and Constraints: Quantitative and qualitative specifications and constraints, design space, refinement of design space, side stepping, various approaches like engineering, architectural, hybrid.

Unit – III 11 Hrs

Idea-Rack: Seeking several concepts, Usability considerations: flexibility, interdisciplinary design and interaction, design activities like original design, adaptive design, and variant design. Tools helpful in generating ideas like deep encounter, analogy, reversal, fusion of opposites, brainstorming, realizing new constraints.

Optimization configuration Exploration: Conventional optimization vs configuration optimization, thumb rules, yield to nature's forces, light weight components, use of standard parts, design for manufacturing, material selection.

Unit – IV 10 Hrs

Simplicity, Complexity and Richness: Axiom and KISS, value consideration, tools for simplification, simple and complex, richness, value for complexity.

Decision Making: Indecision is a negative act, delegating responsibilities, decisions on scanty data, important elements of decision making like analysis, synthesis, emotions, intuitions, risk and management of failures.

Unit – V 10 Hrs

Uncoupled, Decoupled and coupled designs: Functional domain and functional requirements, physical domain and design parameters, mathematical representation like design matrix and coupled design, uncoupled, decoupled. Additional expenditure.

Products static and Dynamic Societies: Form, context and misfits, products of static societies, products of dynamic societies, products of dynamic cultures, short comings, comparison and middle path.

Unit -VI Composites Lab

26 Hrs

- 1. Understanding of various CAD commands and creating simple objects
- 2. Understanding of holes, cuts and model tree relations
- 3. Creation shafts, rounds, chamfers and slots
- 4. Sketch Tools & Datum planes
- 5. Creation of objects by revolved features, patterns and copies, sweeps and blends
- 6. Creation of engineering drawing details such as dimensioning, sectional views, adding esthetics

- 7. Assembling of part models using constraints
- 8. Assembly operations -part modifications, adding another assembly features –display.

Course Outcomes:

After going through this course the student will be able to

- **CO1:** Understand the design phases
- **CO2:** Formulate need statement and specifications
- **CO3:** Apply decision making statement
- **CO4:** Learn Computer Aided Modelling concepts.

Re	Reference Books:					
1	Product Design, Prashant Kumar, PHI Learning Pvt. Ltd., 2012, ISBN:978-81-203-4427-3					
2	Product Design and Development, Karl.T.Ulrich, Steven D Eppinger, McGrawHill ,2000, ISBN-13:					
	978-0078029066					
3	Product Design and Manufacturing, A C Chitale and R C Gupta, PH1, - 3rd Edition, 2003.ISBN-					
	13: 978-8120342828.					
4	SOLIDWORKS 2018 for Designers, Sham Tickoo, CADCIM Technologies,16th revised Edition					
	Paperback, 2018.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

SEMESTER: I						
		FINITE	ELEMENT ANAI	LYSIS		
		(7)	Theory &Practice)			
Course Code	:	18MPD13		CIE Marks	:	100+50
Credits L: T: P	:	4:0:1		SEE Marks	:	100+50
Hours	:	52L+26P		SEE Duration	:	3 Hrs

Unit – I 10 Hrs

Introduction: Introduction: Need for numerical methods to solve engineering problems — mathematical modeling — discrete and continuum modeling — relevance and scope of finite element methods — engineering applications of FEA. Weighted residual methods — Rayleigh Ritz method — application to bar element and beam elements

Unit – II 11 Hrs

TWO Dimensional Problems: Natural co-ordinates, Elemental equations for bar element, quadratic element, truss element, nodal approximation – development of shape functions –element matrices and vectors – example problems

Unit – III 11 Hrs

Two Dimensional Problems : Three nodedtriangular elements – four nodedrectangular elements – higher order elements – Lagrange approach - iso-parametric, super-parametric, sub-parametric elements

Unit – IV 10 Hrs

Dynamic Problems: Formulation of dynamic problems, consistent and lumped mass matrices for bar and beam elements, evaluation of Eigenvalue and Eigen vector (characteristic polynomial technique)

Heat Transfer Problems: 1-D element, steady state heat transfer, TWO dimensional heat conduction, TWO dimensional heat transfer in thin fins, problems

Unit – V 10 Hrs

Finite element Modeling of Machining considerations: formulation, meshing, boundary conditions, material modeling, chip separation-chip breakage, high speed machining modeling, 3D machining modeling. **Beams:** Finite element formulation, evaluation of shear force and bending moment for various loading conditions, problems

Unit -VI Composites Lab

26 Hrs

Part-II

Introduction to ANSYS, element library, applicability for engineering analysis, analysis of bars, trusses, beams and shafts, static analysis of 2D plates – subject to plane load, bending load and shells with internal pressure

Part-II

Dynamic and Thermal Analysis – Normal modal analysis of beams, bars and truss elements, harmonic analysis of beam structures, conductive, convective and radiative heat transfer problems, coupled field analysis

Course Outcomes:

After going through this course the student will be able to

CO1: Understand the fundamentals of finite element methods

CO2: Develop the knowledge to analyze structures in static and dynamic conditions

CO3: Assess the numerical techniques for solving engineering problems

CO4: Formulate finite element model to implement industrial projects

Refe	erence Books:
1	Fundamentals of FEM, Hutton, Tata McGraw Hill education Pvt. Ltd, 2005, ISBN: 0070601224
2	First Course in Finite element methods, Daryl L Logan, 5 th Edition, Thomson Brooks, 2011, ISBN: 10:0495668257
3	Introduction to FE in engineering, T R Chandrupatla, A D Belegondu, 3 rd Edition, Prentice Hall, 2004
4	Finite Element method in machining processes, Angelos.P.Markopoulos, Srpinger series, 2013, ISBN: 978-1-4471-4330-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

SEMESTER: I						
	PROFESSIONAL SKILL DEVELOPMENT					
			(Common to all Program	ns)		
Course Code	:	18HSS14		CIE Marks	:	50
Credits L: T: P	:	0:0:0		SEE Marks	:	Audit Course
Hours	:	24 L				

Unit – I 03 Hrs

Communication Skills: Basics of Communication, Personal Skills & Presentation Skills – Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis. **Resume Writing:** Understanding the basic essentials for a resume, Resume writing tips Guidelines for

better presentation of facts. Theory and Applications.

Unit – II

08 Hrs

Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Simple equations – Linear equations, Elimination Method, Substitution Method, Inequalities.

Reasoning – a. **Verbal** - Blood Relation, Sense of Direction, Arithmetic & Alphabet.

b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification.

Analytical Reasoning - Single & Multiple comparisons, Linear Sequencing.

Logical Aptitude - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.

Verbal Analogies/Aptitude – introduction to different question types – analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving

Unit – III

03 Hrs

Interview Skills: Questions asked & how to handle them, Body language in interview, and Etiquette – Conversational and Professional, Dress code in interview, Professional attire and Grooming, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on Stress Interviews, Technical Interviews, and General HR interviews

Unit-IV

03 Hrs

Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender sensitivity; capability and maturity model, decision making ability and analysis for brain storming; Group discussion (Assertiveness) and presentation skills

Unit - V

07 Hrs

Motivation: Self-motivation, group motivation, Behavioral Management, Inspirational and motivational speech with conclusion. (Examples to be cited).

Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Course Outcomes:

After going through this course the student will be able to:

CO1: Develop professional skill to suit the industry requirement.

CO2: Analyze problems using quantitative and reasoning skills

CO3: Develop leadership and interpersonal working skills.

CO4: Demonstrate verbal communication skills with appropriate body language.

Reference Books:

1. The 7 Habits of Highly Effective People, Stephen R Covey, 2004 Edition, Free Press, ISBN:

RV College of Engineering®

	0743272455						
2.	How to win friends and influence people, Dale Carnegie, 1 st Edition, 2016, General Press, ISBN: 9789380914787						
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204						
4.	Ethnus, Aptimithra: Best Aptitude Book, 2014 Edition, Tata McGraw Hill ISBN: 9781259058738						
	Scheme of Continuous Internal Examination (CIE) Evaluation of CIE will be carried out in TWO Phases.						
Phase	Activity						
I	After the completion of Unit 1 and Unit 2, students are required to undergo a test set for a total of 50 marks. The structure of the test will have two parts. Part A will be quiz based, evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be 50 (15 + 35).						
II	Students will have to take up second test after the completion Unit 3, Unit 4 and Unit 5. The structure of the test will have two parts. Part A will be quiz based evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be 50 (15 + 35).						
FINAL CIE COMPUTATION							

the two tests. The CIE score in this course, which is a mandatory requirement for the award of degree, must be greater than 50%. The attendance will be same as other courses.

Continuous Internal Evaluation for this course will be based on the average of the score attained through

SEMESTER: I						
	PRODUCT DESIGN FOR QUALITY					
		(Group A: Pro	ofessional Elective)			
Course Code	:	18MPD1A1	CIE Marks	:	100	
Credits L: T: P	:	3:1:0	SEE Marks	:	100	
Hours	:	36L+26T	SEE Duration	:	3 Hrs	

Unit – I 07 Hrs

Design for quality: Taguchi's Approach to Quality, On-line and Off-line Quality Control, , Quality Loss Function, System Design, Parameter Design, Design for Environment, Human factor design, Design for casting and forging, Causes of Variation.

Unit – II

08 Hrs

Quality Function Deployment –Introduction, QFD team, benefits, voice of customer, organisation of information, house of quality, QFD process

Design of Experiments: Basic methods- Two factorial experiments-Extended method reduced tests and fractional experiments, orthogonality, base design method, higher dimensional fractional factorial design.

Unit – III

08 Hrs

Failure Mode Effect Analysis: Refining geometry and layout, Failure tree analysis, Defects and failure modes, Techniques of failure analysis, Field inspection of failure, Macroscopic and Microscopic examination, Additional tests, Analysis of data and report of failure.

Unit – IV

08 Hrs

Statistical Consideration In Product Design and Development

Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto diagrams-Cause and Effect diagrams-Box plots- Probability distribution- Statistical Process control–Scatter diagrams – Multivariable charts.

Unit – V 08 Hrs

Six Sigma – Overview, Basics and history of the approach for six sigma, Methodology and focus, the application of Six Sigma in production and in service industries, Relationship of Six Sigma and Lean Management, linking Six Sigma project goals with organizational strategy.

Course Outcomes:

After going through this course the student will be able to

CO1: Identify the importance of various principles of quality in product or service

CO2: Use statistical tools in product development

CO3: Apply basic risk analysis and experiment design techniques into practical cases

CO4: Demonstrate knowledge about Six sigma, Design of Experiments

Refe	rence Books:
1	Total quality Management Kevin Otto & Kristin Wood, Product Design Techniques in Reverse Engineering and New Product Development, Pearson Education (LPE), 2001.
	ISBN10:0130212717
2	Product Design and Development, Karl T. Ulrich, Steven D. Eppinger, TATA McGraw-HILL-3rd Edition, 2003. ISBN:13:978-0073404776
3	The Management and control of Quality, James R. Evens, William M Lindsay, 6th edition- South-Western Publishers ISBN: 0314062157
4	Engineering Design, George E Dieter, 3 rd Edition, McGraw Hill International Edition, ISBN: 0-07-116204-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			SEMESTER: I			
			TRIBOLOGY			
		(Gro	up A: Professional Elec	ctive)		
Course Code	:	18MMD1A2		CIE Marks	:	100
Credits L: T: P	:	3:1:0		SEE Marks	:	100
Hours	:	39L+26T		SEE Duration	:	3 Hrs

Unit – I 07 Hrs

Introduction to Tribology: Introduction, Friction, Wear, Wear Characterization, Regimes of lubrication, Classification of contacts, lubrication theories, Effect of pressure and temperature on viscosity. Newton's Law of viscous forces, Flow through stationary parallel plates. Hagen's poiseuille's theory, viscometers. Numerical problems, Concept of lightly loaded bearings, Petroff's equation, Numerical problems

Unit – II 08 Hrs

Hydrodynamic Lubrications: Pressure development mechanism. Converging and diverging films and pressure induced flow. Reynolds's 2D equation with assumptions. Introduction to idealized slide bearing with fixed shoe and Pivoted shoes. Expression for load carrying capacity. Location of center of pressure, effect of end leakage on performance, Numerical problems.

Journal Bearings: Introduction to idealized full journal bearings. Load carrying capacity of idealized full journal bearings, Somerfield number and its significance, partial bearings, Comparison between lightly loaded and heavily loaded bearings, effects of end leakage on performance, Numerical problems.

Unit – III 08 Hrs

Hydrostatic Bearings: Hydrostatic thrust bearings, hydrostatic circular pad, annular pad, rectangular pad bearings, expression for discharge, load carrying capacity and condition for minimum power loss, numerical problems

Antifriction bearings: Advantages, selection, nominal life, static and dynamic load bearing capacity, probability of survival, equivalent load, cubic mean load, bearing mountings.

Unit – IV 08 Hrs

EHL Contacts: Introduction to Elasto - hydrodynamic lubricated bearings. Introduction to 'EHL' constant. Grubin type solution

Porous Bearings: Introduction to porous and gas lubricated bearings. Governing differential equation for gas lubricated bearings, Equations for porous bearings and working principal, Fretting phenomenon and its stages.

Unit – V 08 Hrs

Magnetic Bearings: Introduction to magnetic bearings, Active magnetic bearings. Different equations used in magnetic bearings and working principal. Advantages and disadvantages of magnetic bearings, Electrical analogy, Magneto-hydrodynamic bearings

Course Outcomes:

After going through this course the student will be able to:

CO1: fundamentals of tribology, lubricants and methods of lubrication

CO2: Analyze bearings for load carrying capacity, frictional force and power loss CO3: Illustrate the different modes of lubrication system for various applications.

CO4: Design the different bearing system such as antifriction bearings, magnetic bearings and

porous bearings for various applications

Re	Reference Books:					
1	Lubrication of Bearings - Theoretical principles and design, Radzimovsky, Oxford press Company,					
	2000					
2	Theory and practice of Lubrication for Engineers, 1. Dudley D.Fuller, New YorkCompany.1998					
3	Principles and applications of Tribology, Moore, Pergamon press, 1975					
4	Engineering Tribology, G W Stachowiak, A W Batchelor Elsevier publication 1993.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: I						
	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS					
		(Gro	up A: Professional Elec	ctive)		
Course Code	:	18MCM1A3		CIE Marks	:	100
Credits L: T: P	:	3:1:0		SEE Marks	:	100
Hours	:	39L+26T		SEE Duration	:	3 Hrs

Unit – I 07 Hrs

Introduction to Hydraulic System: Introduction, Basic hydraulic system, classification of hydraulic motors, hydraulic pumps, Performance of hydraulic motors, Hydraulic actuators, types of hydraulic actuators.

Control Components in Hydraulic Systems: Introduction, Direction control valves, Solenoid actuated valve, Pilot operated valve, Rotary spool DCV, Pressure control valves, Hydraulic fuse, Flow control valve, graphic symbols.

Unit – II 08 Hrs

Maintenance of Hydraulic Systems: Prime function of hydraulic fluids, desirable properties of hydraulic fluids, general types of fluids, factors affecting the selection of fluids, sealing devices, reservoir systems, filters and strainers, heat exchangers, pressure switch, wear of moving parts, troubleshooting of hydraulic systems.

Unit – III 08 Hrs

Hydraulic circuit Design and Analysis: Control of a single acting cylinder, double acting cylinder, regenerative circuit, counter balance valve applications, Hydraulic cylinder sequencing circuits, automatic cylinder reciprocating systems, Locked cylinder using pilot check valves, cylinder synchronizing circuits, fail safe circuits.

Unit – IV 08 Hrs

Pneumatic Concepts: Introduction, comparison of hydraulics/pneumatics/and electrical system, air compressor system, types of compressors, compressed air behavior, pneumatic actuators, direction control valves, building a pneumatic circuits, application of logic valves.

Design of Pneumatic Circuits: Speed control circuits, Application of time delay valves. Position sensing in pneumatic cylinders, roller lever valve, pressure sensing in pneumatic circuits, pressure sequence valve, two cylinder movement, cascade method.

Unit – V 08 Hrs

Electro-Pneumatics: Introduction, Pilot operated solenoid valve, Electrical connection to the solenoid, Electro-pneumatic circuit, Electrical limit switches and proximity switches, Relays, Solenoid, PE converter, Concept of latching.

Servo Systemand PLC Applications in Pneumatics: Closed loop control with servo system, Hydromechanical servo system, Electro-hydraulic servo system, Conventional valve vs proportional valve, Proportional valve in hydraulic circuits, characteristics of proportional valve and servo valve. PLC application in fluid power, logic in ladder logic diagram and Mnemonics, Timer- on delay and off delay.

Course Outcomes:

After going through this course the student will be able to:

CO1: Describe the constructional features of hydraulic and pneumatic components

CO2: Apply hydraulic and pneumatic controls in the design of automated controls

CO3: Evaluate the design of hydraulic and pneumatic compTWOnts for building a circuit

CO4: Design the hydraulic and pneumatic based systems for industrial applications.

Refe	erence Books:
1	Introduction to Hydraulics and Pneumatics, S Ilango, V Soundararajan, PHI Publication, ISBN-978-81-203-3079-5.
2	Hydraulics and Pneumatics, Jagadeesha T, I K International Publication, ISBN: 978-93-84588-90-8
3	Introduction to fluid power, James L Johnson, Cengage Learning, first edition 2003, ISBN- 981-243-661-8
4	Hydraulic and pneumatic controls, R Srinivasan, Tata McGraw hill, second edition, 2010 ISBN – 978-81-8209-138-2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: I							
	PRODUCT DATA MANAGEMENT						
	(Group B: Professional Elective)						
Course Code	:	18MPD1B1	CIE Marks	:	100		
Credits L: T: P	:	4:0:0	SEE Marks	:	100		
Hours	:	52L	SEE Duration	:	3 Hrs		

Unit – I		10 Hrs					
Centralized systems: Client Server Systems, Paralle	Systems, Distributed Systems, N	etwork Types,					
Parallel Database, Distributed Database, Security and	Parallel Database, Distributed Database, Security and Integrity, Standardization views.						
Product Data Management: Complexity in Product							
functionality of PDM: Information architecture, PDM	A System architecture, Applications	used in PDM					
systems. Trends in PDM							
Unit – II		11 Hrs					
Product life cycle management - Need for PLM,	Components of PLM, Product Dat	a and Product					
workflow, Drivers for Change, The PLM Strategy, D	eveloping a PLM Strategy, A Five-s	step Process					
Unit – III		11 Hrs					
Document Management Systems: Document management	gement and PDM, Document life	cycle, Content					
Management, Document management and related to	echnologies, Document managemen	t resources on					
the Internet Workflow Management in PDM:	Structure Management, Engineer	ering Change					
Management, Release Management, Version Manage	ement, Configuration Management						
Unit – IV		10 Hrs					
Creating Product Structures: Part centric approach, CAD centric approach, Product Structure							
configuration, Managing Product Structures, PDM re	sources on the Internet.						
Unit – V		10 Hrs					
PDM Implementation Case Studies: Matrix One, Team Center, Windchill, Enovia. Standards in PDM,							

Course Outcomes:

CM, SCM and CMM.

After going through this course the student will be able to:

CO1: Understanding the Product data base systems

CO2: Select the Product data base systems based on material and product

CO3: Analyzing the Product data base and Product life cycle for new products

CO4: Evaluate the parameters for Product data base considerations based on process

Reference Books:

- 1 Implementing and Integrating Product Data Management and Software Configuration Management 20 Ivica Cmkovic Ulf Asklund AnnitaPerssonDahlqvist Archtech House Publishers.
- Product Data Management Rodger Burden Publisher: Resource Publishing- ISBN-10: 0970035225, ISBN-13: 978-0970035226 2003.
- 3 | Windchill 8.0 PDM Link User's Guide- Parametric Technology Corporation (PTC),2008
- The AutoCAD Database Book Accessing and Managing CAD Drawing Information Galgotia Publications Third Edition

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: I							
INTELLIGENT SYSTEMS							
	(Group B: Professional Elective)						
		(Comm	on to CSE, MPD, MD,	(CIM)			
Course Code	Course Code : 18MCE1B2 CIE Marks : 100						
Credits L: T: P : 4:0:0 SEE Marks : 100						100	
Hours	:	52L		SEE Duration	:	3 Hrs	

Unit – I 10 Hrs

Overview of Artificial Intelligence: Artificial Intelligence and its Application areas;

Knowledge Representation and Search: The Predicate Calculus: The Propositional Calculus, The Predicate Calculus, Using Inference Rules to Produce Predicate Calculus Expressions, Application: A Logic-Based Financial Advisor;

Structures and strategies for state space search: Introduction, Structures for state space search, Strategies for State Space Search, Using the State Space to Represent Reasoning with the Predicate Calculus; And/Or Graphs.

Unit – II 10 Hrs

Heuristic Search:Introduction, Hill Climbing and Dynamic Programming, The Best-First Search Algorithm, Admissibility, Monotonicity and Informedness, Using Heuristics in Games, Complexity Issues.

Control and Implementation of State Space Search: Introduction, Recursion-Based Search, Production Systems, The Blackboard Architecture for Problem Solving.

Unit – III

11 Hrs

Other Knowledge Representation Techniques: Semantic Networks, Conceptual Dependencies, Scripts and Frames, Conceptual Graphs.

Knowledge Intensive Problem Solving: Overview of Expert System Technology, Rule-Based Expert Systems, Model-Based, Case Based, and Hybrid Systems

Planning: Introduction to Planning, Algorithms as State-Space Search, Planning graphs.

Unit - IV

11 Hrs

Automated Reasoning: Introduction to Weak Methods in Theorem Proving, The General Problem Solver and Difference Tables, Resolution Theorem Proving;

Uncertain Knowledge and Reasoning:

Introduction to Uncertainty, Inference using Full-Joint Distribution, Independence, Bayes' Rule and its use.

Representing Knowledge in Uncertain Domain:

Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Exact Inference in Bayesian Network, Approximate Inference in Bayesian Network

Unit - V

10 Hrs

Introduction to Learning:Forms of Learning: Supervised learning, Unsupervised Learning, Semi-Supervised and Reinforcement Learning; Parametric Models & Non-Parametric Models, Classification and Regression problems

Artificial Neural Networks: ANN Structures, Single Layer feed-forward neural networks, Multi-Layer feed-forward neural networks, Learning in multilayer networks, networks.

Artificial Intelligence Current Trends: The Science of Intelligent Systems, AI: Current Challenges

and Future Directions.

Course Outcomes:

After going through this course the student will be able to:

CO1: Explore various Artificial Intelligence problem solving techniques.

CO2: Identify and describe the different AI approaches such as Knowledge representation, Search strategies, learning techniques to solve uncertain imprecise, stochastic and nondeterministic nature in AI problems.

CO3: Apply the AI techniques to solve various AI problems.

CO4: Analyze and compare the relative challenges pertaining to design of Intelligent Systems.

Reference Books

- 1. Artificial Intelligence Structures and Strategies for Complex problem Solving, George F Luger, 6th Edition, Pearson Publication, 2009, ISBN-10: 0-321-54589-3, ISBN-13: 978-0-321-54589-3
- 2. Artificial Intelligence A Modern Approach, Stuart Russel, Peter Norvig, 3rd Edition, Pearson Publication, 2015, ISBN-13: 978-93-325-4351-5
- 3. Artificial Intelligence, Elaine Rich, Kevin Knight, 3rd Edition, Tata McGraw Hill, 2009, ISBN-10: 0070087709, ISBN-13: 978-0070087705
- 4. Intelligent Systems-A Modern Approach, Grosan, Crina, Abraham, Ajith, Springer-Verlag Berlin Heidelberg 2011, ISBN 9783642269394, 2011.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: I							
NON TRADITIONAL MACHINING & TESTING							
	(Group B: Professional Elective)						
Course Code	:	18MCM1B3		CIE Marks	:	100	
Credits L: T: P	:	4:0:0		SEE Marks	:	100	
Hours	:	52L		SEE Duration	:	3 Hrs	

Unit – I 10 Hrs

Introduction: Need for unconventional machining processes, classification of non-traditional machining processes.

Abrasive Jet Machining (AJM): Abrasive Jet Machining Setup – Gas propulsion System, Abrasive feeder, Machining Chamber, AJM Nozzle; Parametric Analysis – Stand-off-distance, Abrasive flow rate, Nozzle pressure, Mixing ratio; Process Capabilities.

Ultrasonic machining (USM): Ultrasonic Machining System, Mechanics of cutting, Model proposed by Shaw – Grain Throwing Model, Grain Hammering Model; Parametric Analysis, Process Capabilities.

Unit – II 11 Hrs

Water Jet Cutting (WJC): WJC Machine, Process Characteristics, Process Performance. Applications, Advantage and Limitations.

Abrasive Water Jet Machining (AWJM): Working Principle, AWJM Machine – Pumping System, Abrasive Feed System, Abrasive Water Jet Nozzle, Catcher; Process Analysis—Water Jet Pressure during Slotting, Water Flow Rate, Abrasive Flow Rate, Abrasive Particle Size, Abrasive Material, Cutting Parameters – Traverse Speed, Number of Passes, Stand-Off-Distance, Process Capabilities.

Abrasive Flow Machining (AFM): Working Principle of Abrasive flow Machining System Process Variables,

Magnetic Abrasive Finishing (MAF) – Working Principle of MAF, Material Removal and Surface Finish – Type and Size of Grains.

Unit – III 11 Hrs

LASER Beam Machining (LBM): Production of LASERS, Working Principle of LASER Beam Machining, Types of Lasers – Solid State Lasers, Gas Lasers; Process Characteristics. Applications, Advantage and Limitations.

Plasma Arc Machining (PAM): Working Principle, Plasma Arc Cutting System, Elements of Plasma Arc Cutting System, Process Performance.

Electron Beam Machining (EBM): Working Principle, Electron Beam Machining System – Electron Beam Gun, Power Supply, Vacuum System and Machining Chamber; Process Parameters, Characteristics of the Process. Applications, Advantage and Limitations.

Unit – IV 10 Hrs

Electrochemical Machining (ECM): Electrolysis, ECM Principle, ECM Machine Tool-Power Source, Electrolyte supply and Cleaning System, Tool and Tool Feed System, Workpiece and Work Holding Device; Theory of ECM – Faraday's Laws of Electrolysis, Electrochemical Equivalent of Alloys, Material Removal Rate in ECM.

Chemical Processes: Introduction, Maskants – Cut and Peel, Screen Printing, Photoresist Maskant; Electropolishing – Introduction, Process Description, Process parameters, Process limitations, Applications, Advantage and Limitations.

Unit – V	10 Hrs
----------	--------

Non Destructive Testing: Scope and advantages of NDT, comparison of NDT with DT, classifications of NDT, introduction, principle, equipment, procedures and characteristics of Visual Inspection, Eddy Current Testing, Liquid Penetrant Testing, Magnetic Particle Testing and Radiographic Testing.

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Explain the principle, mechanism of metal removal of various unconventional machining processes
- CO2: Analyses the process parameters and their effect on the compTWOnt machined on various unconventional machining processes and tested using NDT techniques.
- **CO3:** Apply the concept for different NTM and NDT concepts industry.
- **CO4:** Evaluate appropriate NTM and non-destructive techniques.

Ref	erence Books:
1	Non Tradtional Machining Techniques, Bennedict, G. F., Marcel Decker, New York, 1990 ISBN 9780824773526
2	Modern Manufacturing Process, Pandey and Sha, Prentice Hall, New Delhi, 1997 ISBN: 978-81-7319-138-1
3	Unconventional Machining Process, Garry F. Benedict, Marcel Dekker Publication, New York, 1987. ISBN: 0-8247-7352-7
4	Non-Destructive Testing and Evaluation of Materials", I. J Prasad, C G K Nair, Tata McGraw Hill Education Private Limited

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (O+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			SEMESTER: II			
			ROBUST DESIGN			
			(Theory & Practice)			
Course Code	:	18MPD21		CIE Marks	:	100+50
Credits L: T: P	:	4:0:1		SEE Marks	:	100+50
Hours	:	52L+26P		SEE Duration	:	3 Hrs

Unit – I	10 Hrs
----------	--------

Quality by Experimental Design

Quality, western and Taguchi quality philosophy, Elements of cost, Noise factors, causes of variation, Quadratic loss function and variation of quadratic loss functions.

Robust Design

Steps in robust design, parameter design and tolerance design, illustration through numerical problems

Unit – II 11 Hrs

Experimental Design

Factorial experiments, terminology, factors, levels, Interactions, treatment combination, randomization, 2-level experimental design for two factors and three factors, Examples

Higher level experiment design

Two factors and three factors, factor effects, factor interactions, Fractional factorial design, Saturated design, Central composite designs, Illustration through numerical examples

Unit – III 11 Hrs

Measures of Variability: Measures of variability, Concept of confidence level, Statistical distributions: normal, log normal and Weibull distributions. Hypothesis testing, Probability plots, choice of sample size illustration through numerical examples

Analysis and interpretation of experimental data: Measures of variability, Ranking method, column effect method and plotting method, Analysis of variance (ANOVA), in factorial experiments, Regression analysis, Mathematical models from experimental data, illustration through numerical examples.

Unit – IV 10 Hrs

Taguchi's Orthogonal Arrays: Types of orthogonal arrays, Selection of standard orthogonal arrays, Linear graphs and interaction assignment, dummy level technique, Compound factor method, modification of linear graphs, Column merging method, Branching design, Strategies for constructing orthogonal arrays.

Signal to Noise ratio (S-N Ratios): Evaluation of sensitivity to noise, Signal to noise ratios for static problems, Smaller – the – better types, Nominal – the – better – type, larger – the- better – type. Illustrations through numerical examples.

Unit – V 10 Hrs

Parameter Design and Tolerance Design: Parameter and tolerance design concepts, Taguchi's inner and outer arrays, Parameter design strategy, Tolerance design strategy, illustrations through numerical examples.

Reliability Improvement Through Robust Design: Role of S-N ratios in reliability improvement, Case study; Illustrating the reliability improvement of routing process of a printed wiring boards using robust design concepts.

Unit – VI Robust Design Lab	26 Hrs

Industrial application problems on ANOVA, Taguchi's two level and three level factorial design, central composite design, regression analysis, S/N ratios, Orthogonal arrays and multi response optimisation to be solved using MINITAB.

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Understand the fundamentals of Robust design principles and techniques
- **CO2:** Develop the knowledge to analyze experimental data through design of experiments
- **CO3:** Assess the engineering design concepts for stability, reliability and tolerances
- **CO4:** Formulate mathematical models using robust design concepts

Refe	Reference Books:				
1	Quality Engineering using Robust Design - Madhav S. Phadake: Prentice Hall, Englewood				
	Clifts, New Jersey 07632, 1989.				
2	Design and analysis of experiments - Douglas Montgomery: Willey India Pvt. Ltd., V Ed.,				
	2007.				
3	Techniques for Quality Engineering - Phillip J. Ross: Taguchi 2nd edition. McGraw Hill Int.				
	Ed., 1996.				
4	Quality by Experimental Design - Thomas B. Barker - Marcel Dekker Inc ASQC Quality				
	Press, 1985				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

SEMESTER: II							
PRODUCT LIFE CYCLE MANAGEMENT							
Course Code	:	18MPD22		CIE Marks	:	100	
Credits L: T: P	:	3:1:0		SEE Marks	:	100	
Hours	:	39L+26T		SEE Duration	:	3 Hrs	

Unit – I	07 Hrs				
Product life cycle management- Need for PLM, Components of PLM, Product Data and Product					
workflow, Drivers for Change.					
Unit – II	08 Hrs				
The PLM Strategy, Developing a PLM Strategy, A Five-step Process Strategy Identification	on and				
Selection, Strategy Elements, Implications of Strategy Elements, Policies, Strategy Analysis	is,				
Communicating the Strategy					
Unit – III	08 Hrs				
Change Management for PLM, Configuration management, cost of design changes,	schemes for				
concurrent engineering, Design for manufacturing and assembly, robust design, failure	re mode and				
effect-analysis					
Unit – IV	08 Hrs				
Modeling, Current concepts, part design, sketching, use of datum's construction features, fr	ree ovulation,				
pattering, copying, and modifying features, reference standards for datum specification,	Standards for				
Engineering data exchange					
Unit – V	08 Hrs				
Tolerance mass property calculations, rapid prototyping and tooling, finite modeling	and analysis,				
general procedure, analysis techniques, Finite element modeling. Applicability of FEM, Se	tatic analysis,				
thermal analysis, dynamic analysis.					

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain product life cycle management concepts.

CO2: Analyze schemes of concurrent engineering.

CO3: Appraise modeling and analysis concepts.

CO4: Adapt change management concepts.

Refe	Reference Books:				
1	Product Lifecycle Management Paradigm for century Product Realization - John Stark, Springer-				
	Verlag, 21st, London, 3rd printing -2006, ISBN: 1-85233-810-5				
2	Implementing and Integrating Product Data Management and Software Configuration				
	Management, Crnkovic, Ivica; Asklund, Ulf; &Dahlqvist, AnnitaPersson, Artech House				
	Publishers, 2003. ISBN 1580534988.				
3	Product Lifecycle Management, Grieves, Michael, McGraw-Hill, 2006. ISBN 0071452303				
4	PDM: Product Data Management, Rodger Burden, Ronnie Bishop, Mary Ellen Lucas, , Resource				
	Publishing, 2003. ISBN 0970035225.				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			SEMESTER: II			
RESEARCH METHODOLOGY						
(Common to all programs)						
Course Code	:	18IM23		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 Hrs

Unit – I				
Overview of Research: Research and its types, identifying and defining research problem and introduction to different research designs. Essential constituents of Literature Review. Basic principles of experimental design, completely randomized, randomized block, Latin Square, Factorial.	07 Hrs			
Unit – II				
Data and data collection: Overview of probability and data types, Primary data and Secondary Data, methods of primary data collection, classification of secondary data, designing questionnaires and schedules.	08 Hrs			
Sampling Methods: Probability sampling and Non-probability sampling				
Unit – III				
Processing and analysis of Data: Statistical measures of location, spread and shape, Correlation and regression, Hypothesis Testing and ANOVA. Interpretation of output from statistical software tools	07 Hrs			
Unit – IV				
Advanced statistical analyses: Non parametric tests, Introduction to multiple regression, factor analysis, cluster analysis, principal component analysis. Usage and interpretation of output from statistical analysis software tools.	07 Hrs			
Unit-V				
Essentials of Report writing and Ethical issues: Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Ethical issues related to Research, Publishing, Plagiarism. Case studies: Discussion of case studies specific to the domain area of specialization	07 Hrs			

Course Outcomes: After going through this course the student will be able to:			
CO1	Explain the principles and concepts of research types, data types and analysis procedures.		
CO2	Apply appropriate method for data collection and analyze the data using statistical principles.		
CO3	Present research output in a structured report as per the technical land ethical standards		
CO4	Create research design for a given engineering and management problem situation.		

Ref	Reference Books:			
1	Kothari C.R., Research Methodology Methods and techniques, New Age International Publishers,			
	4th edition, ISBN: 978-93-86649-22-5			
2	Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology,			
	Pearson Education: New Delhi, 2006. ISBN: 978-81-77585-63-6			
3	William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3 rd Edition,			
	Atomic Dog Publishing, 2006. ISBN: 978-1592602919			
4	Levin, R.I. and Rubin, D.S., Statistics for Management, 7th Edition, Pearson Education: New			
	Delhi.			

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments

RV College of Engineering®

are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			SEMESTER: II			
			MINOR PROJECT			
Course Code	:	18 MPD 24		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:			SEE Duration	:	3 Hrs

GUIDELINES

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course O	Course Outcomes: After going through this course the student will be able to:			
CO1	Conceptualize, design and implement solutions for specific problems.			
CO2	Communicate the solutions through presentations and technical reports.			
CO3	Apply resource managements skills for projects			
CO4	Synthesize self-learning, team work and ethics.			

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members : guide, two senior faculty members and Head of the Department.

Phase	Activity	Weightage			
I	Synopsis submission, Preliminary seminar for the approval of selected	20%			
	topic and Objectives formulation				
II	Mid-term seminar to review the progress of the work and	40%			
	documentation				
III	Oral presentation, demonstration and submission of project report	40%			

^{**}Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be dTWO with weightage / distribution as follows:

 Selection of the topic & formulation of objectives 	10%
 Design and simulation/ algorithm development/experimental setup 	25%
• Conducting experiments / implementation / testing	25%
• Demonstration & Presentation	15%
Report writing	25%

RV College of Engineering®

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by TWO senior faculty from the department and TWO external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be TWO in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Presentation / Demonstration of the project	20%
3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

SEMESTER: II						
	CREATIVE ENGINEERING					
		(Gro	up C: Professional Elec	ctive)		
Course Code	:	18MPD2C1		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs

INTRODUCTION

Creative thinking, blocks to creativity, factors that influence creative design, engineering design and creative design, influence of society, technology and business on creativity, force field analysis, market pull & technology push, attribute of a creative person, creative thinking in groups, creating a creative climate.

CREATIVITY & PRODUCT DESIGN

Need or identification of a problem, market survey, data collection, review & analysis, problem definition, Kipling method, challenge statement, problem statement initial specifications,

Unit – II 11 Hrs

IDEA GENERATION

Brain storming, analogy technique or synectics, check list, trigger words, morphological method, interaction matrix method, analysis of interconnected decision making,

CREATIVE THINKING PROBLEM / OPPORTUNITY

Pictures of situation, environment, quantification, Heros, boundary conditions, record-discuss-clarify-verify, recording of ideas, evaluation of ideas, detail design, prototyping, product deployment, useful life assessment, recycling

Unit – III 11 Hrs

EMOTIONAL DESIGN

Emotional Design – Three levels of Design – Viceral, Behavioral and Reflective- design by individual and design in groups, designs with personality – machines that senses emotions and induce emotions-Robots, personality products, products for games, fun, people and places; Simulation – dimensional or mathematical, virtual simulation, physical simulation, scale down models;

Unit – IV 10 Hrs

THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ)

Common features of good solutions – resolve contradiction, use available resource, increase the ideality, trade-off, inherent contradiction, 30 key TRIZ principles – multifunction, preliminary action, compensation, nested doll, blessing in disguise, segmentation, separation, regional influences, symmetry change, opaque & porous, inflate and deflate, color, recycle & recover, phase transformation, energy, imaging, environment, composition, economical, surface response, equipotential, static & dynamic, continuous & intermittent, servo systems, smart systems, dimensions

Unit – V 10 Hrs

APPLICATION OF CEDA Approach: (a)Cooking stove for rural India; (b) utilizing solar energy; (c) water filtration systems; (d) automation in healthcare; (e) technologies for law enforcement; (f) application of robots to reduce human fatigue (g) Layout of berths in a railway coach

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the steps involved in the creative thinking process

CO2: Apply the various techniques for stimulating creativity and innovation thinking

CO3: Analyze the techniques to design and develop new products.

CO4: Synthesize the creative design with analysis to develop new products

Ref	Ference Books:
1	Creative Engineering Design Synthesis, AmareshChakrabarti, Springer, 2009
2	Rousing Creativity: Think New Now, Floyd Hurt, Crisp Publ Inc. 1999, ISBN 1560525479
3	Emotional Design, Donald A. Norman, Perseus Books Group New York , 2004, ISBN 123-1-118-027-6
4	Simplified TRIZ – II edn., KaleviRantanen& Ellen Domb, Auerbach Publications, Taylor & Francis Group, 2010, ISBN: 978-142-0062-748

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II				
DESIGN FOR MANUFACTURING AND ASSEMBLY				
	(Group C: Prof	Tessional Elective)		
Course Code	: 18 MPD2C2	CIE Marks	:	100
Credits L: T: P	: 4:0:0	SEE Marks	:	100
Hours	: 52L	SEE Duration	:	3 Hrs

Unit – I 10 Hrs

Introduction to Design for Manufacture & Assembly: Steps in DFMA, Advantages of DFMA, Design guidelines for Manual Assembly and High Speed Automatic and Robotic Assembly

Geometrical Dimensioning & Tolerance – Dimensions & Tolerance, Limits, Fits and Tolerances, Hole and Shaft Basis, Three datum – functional, machining and manufacturing, geometrical and form tolerance, conventional and advanced tools and techniques for measurements, numerical

Unit – II 11 Hr

Metal Casting Processes – Gravity Die Casting: compute the dimensions for Pattern, Mould, based on materials to be cast – ferrous and non-ferrous alloys, influence of parting line, cast holes, special sand cores, shrinkage compensation, numericals,

Pressure Die Casting: Die casting alloys, machine selection, operation, sub-systems, post-processing equipments, mould design, number of cavities, manufacturing and assembly of moulds, design principles.

Unit – III 11 Hrs

Design for Injection Molding – Injection moulding systems – injection subsystem, ejection system, clamping and feeding system, machine sizing, materials for injection moulding and its properties, injection mould design – cavity and core, manufacturing processes for moulds, operation and cycle time.

Unit – IV 10 Hrs

Design for Powder Metallurgy Processes: Introduction to PM process, blending and mixing, compaction, sintering processes. Tooling materials, heat treatment, surface treatments and preparation of green compacts, Press tools for PM process – load, tooling layout, capacity; sintering furnace and influence of process and materials parameters on shrinkage.

Unit – V 10 Hrs

Design for Sheet Metal Processing : Design of moulds for shearing, piercing, bending, deep drawing, progressive die operation, selection of press – hydraulic and electric, sub-systems, turret operation, cycle time calculation, laser cutting of sheet metals.

Cost Estimation for sand casting, pressure die casting, injection moulding, PM process and sheet metal processes.

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the concept of DFMA and GD&T

CO2: Apply engineering products and suggest suitable manufacturing process

CO3: Evaluate the influence of design, material and manufacturing processes on product assembly

CO4: Develop appropriate manufacturing and assembly processes for a given product

Ref	erence Books:
1.	Product Design for Manufacture and Assembly, Geoffrey Boothroyd, Peter Dewhurst, Winston Knight Marcel Dekker, Inc., Newyork - Second Revision, ISBN 0-8247-0584-X
2.	Designing for Manufacturing, Harry Peck, Pitman Publications, 1983, ISBN: 1-85233-810-5
3.	Dimensioning and Tolerance for Quantity Production, Merhyle F Spotts, Englewood Cliffs, Prentice Hall, 5th edition, ISBN: 2-95433-956-3
4.	Design for manufacturing – a structured approach, CorradoColig. BH publishers, ISBN:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

.

	SEMESTER: II					
	RELIABILITY ENGINEERING					
	(Group C: Professional Elective)					
Course Code	:	18 MPD 2C3	C	CIE Marks	:	100
Credits L: T: P	:	4:0:0	S	EE Marks	:	100
Hours	:	52L	S	EE Duration	:	3 Hrs

Unit – I 10 Hrs

Basic Probability Theory: Basic concepts – Definitions of Reliability, Parameters and Reliability concepts, Rules for combining Probabilities of events, Failure Density and Distribution functions, Bernoulli's trials, Binomial distribution, Expected value and standard deviation for binomial distribution, Numericals

Introduction to Probability Distributions: Normal, Poisson and Binomial distribution.

Control Charts: Variable Chart – X Bar chart, R-chart and Sigma chart. Attribute Chart: P – Chart, nP Chart, C-Chart and U – Chart. Numericals.

Unit – II 11 Hrs

Network Reliability Evaluation: Basic concepts – Evaluation of network Reliability and Unreliability, Series systems, Parallel systems, Series - Parallel systems, partially redundant systems – Types of redundancies - Evaluation of network Reliability Unreliability using conditional probability method – Paths based and cutset based approach – complete event tree and reduced event tree methods. Numericals

Unit – III 11 Hrs

Acceptance Sampling and Failure Data Analysis: Fundamentals of acceptance sampling, types of acceptance sampling, OC Curve, AQL, LTPD, AOQL. Introduction to Failure data analysis, Failure Data, Quantitative measures, MTTF, MTBF, Bathtub Curve, Mean Life, Life Testing, Problems, Introduction to Failure Mode and Effect Analysis. Numericals.

Reliability Improvement and Allocation: Difficulty in achieving reliability, Methods for improving reliability during design, Different techniques available to improve reliability, Optimization, Reliability-Cost trade off, Prediction and Analysis.

Unit – IV 10 Hrs

Discrete Markov Chains & Continuous Markov Processes

Basic concepts, Stochastic transitional Probability matrix, time dependent probability evaluation, Limiting State Probability evaluation, Absorbing states, Markov Processes-Modelling concepts, Statespace diagrams, time dependent reliability evaluation of single component repairable model, Evaluation of Limiting State Probabilities of TWO, two component repairable models – Frequency and duration concepts, Frequency balance approach. Numericals.

Unit – V 10 Hrs

Reliability Life Testing Methods: Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the expTWOntial distribution, Mann's test for the weibull distribution, Kolmogorov, smirnov test for normal and lognormal distributions and tests for the power law process model.

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the concepts of reliability and probability theory.

CO2: Evaluate network Reliability and Unreliability for systems.

CO3: Analyse the various sampling and failure data analysis for reliability improvement

CO4: Develop Reliability Life Testing Methods for a given model

Ref	erence Books:
1	Reliability Engineering - A K Govil - Prentice Hall – 1981.
2	Reliability Engineering - E. Balagurusamy, Tata McGraw Hill, 2003.
3	Reliability Evaluation of Engineering Systems - Roy Billinton and Ronald N. Allan, Reprinted in
	India B. S. Publications, 2007.
4	Concepts in Reliability Engineering- Srinath L S - Affiliated East-West Press Private Limited,
	New Delhi, India. – 1985.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

.

SEMESTER: II						
	PRODUCT COST ANALYSIS AND OPTIMIZATION					
		(Gro	oup D: Professional Ele	ctive)		
Course Code	:	18MPD2D1		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs

Unit – 1	10 Hrs
Introduction: New products, New product strategy, Sequential Decision Process, Mark	cet definition
and entry strategy, Idea generation, introduction to the design process, forecasting sales po	tential
Unit _ II	11 Hrc

Consumer Measurement process, Research Methods, Sampling, Attitude Scaling, Perceptual Mapping: Perceptual Positioning, Perceptual Maps and Analytical methods to Perceptual Maps Product Positioning: Preference in Product Positioning, Proactive Product Positioning, Benefit Segmentation, Managerial use of Preference Models

Unit – III 11 Hrs

Manufacturing Planning: Selection of optimum process, standardization. Break even analysis-application and area of use -problems -multi - product analysis and Process planning.

Value Analysis: Steps in selection, analysis and implementation, Selection of cutting speed for optimum cost - problems.

Unit – IV 10 Hrs

Cost Accounting

Cost estimation -difference -types -steps involved in cost estimation. Types of Cost: Cost Centres, Direct -indirect, material cost -direct indirect material cost Overhead cost

Elements in overheads: Preparation of cost sheet, machine hour rate, apportioning methods Variance Analysis – Labour variance, Material variance and Overhead variance, Activity based costing - Introduction to target costing

Unit – V 10 Hrs

Cost Calculation

Cost calculation for machined compTWOnts, welding, casting, Sheet Metal and forged compTWOnts illustrations - calculation of sales cost. Launching the product: Launch Planning, Track Launching, Durable and Industrial Products.

Course Outcomes:

After going through this course the student will be able to:

CO1: Describe the Value Analysis and new product strategy

CO2: Apply suitable manufacturing process based on material and product

CO3: Analyzing the Cost Accounting machined compTWOnts for a given material

CO4: Evaluate the parameters for design considerations based on process

Refer	ence Books:
1	Design and Marketing of New Products, Glen L Urban, John R Hauser, Prentice Hall. New
	Jersey, 1980, ISBN: 40:0257-02-0001
2	Mechanical Estimating and Costing, T.R.Ranga and S C Sharma, Khanna Publishers- 2015.
	ISBN: 40:0257-02-0001
3	Cost management in the New Manufacturing Age, Yasuhiro Monden Productivity Press-1992,
	1980, ISBN: 90:0777-02-0001
4	Technique for Value Analysis And Engineering, Miles Lewrence, McGraw Hill, New york-
	1972, ISBN: 65:0257-22-0004

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II						
	ROBOTICS & AUTOMATION					
		(Gro	up D: Professional Elec	etive)		
Course Code	:	18MCM2D2		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs

Unit – I 10 Hrs

Automation and Robotics - Historical Development, Definitions, Basic Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Factors related to use Robot Performance, Basic Robot Configurations and their Relative Merits and Demerits, Types of Drive Systems and their Relative Merits, the Wrist & Gripper Subassemblies. Concepts and Model about Basic Control System, Control Loops of Robotic Systems, PTP and CP Trajectory Planning, Control Approaches of Robots

Unit – II 11 Hrs

Kinematics of Robot Manipulator: Introduction, General Description of Robot Manipulator, Mathematical Preliminaries on Vectors & Matrices, Homogenous Representation of Objects, Robotic Manipulator Joint Co-Ordinate System, Euler Angle & Euler Transformations, Roll-Pitch-Yaw(RPY) Transformation, Relative Transformation, Direct & Inverse Kinematics' Solution, D H Representation & Displacement Matrices for Standard Configurations, Geometrical Approach to Inverse Kinematics. Homogeneous Robotic Differential Transformation: Introduction, Jacobian Transformation in Robotic Manipulation

Unit – III 11 Hrs

Robotic Workspace & Motion Trajectory: Introduction, General Structures of Robotic Workspaces, Manipulations with n Revolute Joints, Robotic Workspace Performance Index, Extreme Reaches of Robotic Hands, Robotic Task Description. Robotic Motion Trajectory Design: – Introduction, Trajectory Interpolators, Basic Structure of Trajectory Interpolators, Cubic Joint Trajectories. General Design Consideration on Trajectories: 4-3-4 & 3-5-3 Trajectories, Admissible Motion Trajectories.

Unit – IV 10 Hrs

Dynamics of Robotic Manipulators: Introduction, Bond Graph Modeling of Robotic Manipulators, Examples of Bond Graph Dynamic Modeling of Robotic Manipulator. Brief Discussion on Lagrange—Euler (LE) Dynamic Modeling of Robotic Manipulators: - Preliminary Definitions, Generalized Robotic Coordinates, Dynamic Constraints, Velocity & Acceleration of Moving Frames, Robotic Mass Distribution & Inertia Tensors, Newton's Equation, Euler Equations, The Lagrangian& Lagrange's Equations. Application of Lagrange—Euler (LE) Dynamic Modeling of Robotic Manipulators: - Velocity of Joints, Kinetic Energy T of Arm, Potential Energy V of Robotic Arm, The Lagrange L, Two Link Robotic Dynamics with Distributed Mass, Dynamic Equations of Motion for A General Six Axis Manipulator.

Unit – V 10 Hrs

Autonomous Robot: Locomotion Introduction, Key issues for locomotion Legged Mobile Robots Leg configurations and stability Examples of legged robot locomotion Wheeled Mobile Robots Wheeled locomotion: the design space Wheeled locomotion: case studies Mobile Robot Kinematics Introduction Kinematic Models and Constraints Representing robot position Forward kinematic models Wheel kinematic constraints Robot kinematic constraints, Mobile Robot Maneuverability Degree of mobility Degree of steerability Robot maneuverability.

Course Outcomes:

After going through this course the student will be able to:

CO1: Analyze the manipulator design including actuator, drive and sensor issues

CO2: Calculate the forward kinematics, inverse kinematics and Jacobian industrial robots

RV College of Engineering®

CO3:	Solve trajectory and dynamic related robotic problems
CO4:	Evaluate the different configurations and stability of autonomous robots

Ref	erence Books:
1	A Robot Engineering Textbook, Mohsen Shahinpoor, Harper & Row publishers, New York. ISBN:006045931X
2	Robotics, control vision and intelligence, Fu, Lee and Gonzalez, McGraw Hill International. ISBN:0070226253
3	Introduction to Robotics, John J. Craig, Addison Wesley Publishing, ISBN:0201543613
4	Autonomous mobile robots, Roland Illah R. SiegwartNourbakhsh, The MIT Press Cambridge,
	Massachusetts London, England, 2004.ISBN:0262015358

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			SEMESTER: II		
		SY	STEMS ENGINEERING		
		(Gro	up D: Professional Elective)		
Course Code	:	18MPD2D3	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	52L	SEE Duration	:	3 Hrs

Unit – I 10 Hrs

System Engineering and the World of Modem System: Definition, Origin, Examples of Systems Requiring Systems engineering, System Engineering view point, System Engineering as a Profession, The power of System Engineering, Problems.

Structure of Complex Systems: Systems building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions.

The System Development Process: System Engineering through the system Life cycle, Evolutionary Characteristic of the development process, The system engineering method, Testing throughout system development, problems

Unit – II 11 Hrs

System Engineering Management: Managing system development and risks, Work break down structure (WBS), System Engineering Management Plane (SEMP), Risk Management, Organization of System Engineering Capability Maturity Assessment, System Engineering standards, Problems.

Needs Analysis: Origination of a new system, Operation analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, Problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, Problems.

Unit – III 11 Hrs

Concept Definition: Selecting the system concept, Performance requirements analysis, Functional analysis and formulation, Concept selection, Concept selection, Concept validation, System Development planning, System Functional Specification, Problems.

Advanced Development: Reducing program risks, Requirement analysis, Functional analysis and Design. Prototype development, Development testing, Risk reduction, problems.

Unit – IV 10 Hrs

Engineering Design: implementing the System Building blocks, Requirements analysis, Functional analysis and design, Concept design, Design validation, Configuration Management, Problems.

Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and preparation, System integration, Developmental system testing, Operational test and evaluation, problems.

Unit – V 10 Hrs

Production: System Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, Problems.

Operation and support: Installing, maintenance and up grading the system, Installation and test, In-

service support, Major system upgrades: Modernization, Operational factors in system development, problems

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Explain the role of Stake holders and their need in organizational system.
- **CO2:** Develop and document the knowledge base for effective system engineering processes
- **CO3:** Apply available tool, methods and technologies to support high technology systems.
- **CO4:** Create the framework for quality processes to ensure high reliability of systems.

Refe	erence Books:
1	System Engineering-Principles and Practic, Alexander Kossoakoff, William N Sweet, John
	Wiley & Sons, Inc, Edition: 2012, ISBN: 978-81-265-2453-2
2	Hand book of System Engineering And Management, Andrew P. Sage, William B. Rouse, John
	Wiley & sons, Inc., Edition: 1999, ISBN 0-471-15405-9
3	General System Theory: Foundation, Development, Application, Ludwig von
	Bertalanffy, Penguin University Books, 1973, Revised, ISBN: 0140600043, 9780140600049
4	System Engineering and analysis, Balanchard, B., and Febrycky, W.Saddle river, NJ, USA:
	Prentice Hall, 5 th Edition, 2010

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

		SEMI	ESTER: II		
			SANALYTICS		
		(Group G:	Global Elective)		
Course Code	:	18CS2G01	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 Hrs

Unit – I	
Business analytics: Overview of Business analytics, Scope of Business analytics, Business	08 Hrs
Analytics Process, Relationship of Business Analytics Process and organization,	
competitive advantages of Business Analytics.	
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of	
probability distribution and data modelling.	
Unit – II	
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple	07 Hrs
Linear Regression. Important Resources, Business Analytics Personnel, Data and models	
for	
Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics	
Technology.	
Unit – III	•
Organization Structures of Business analytics, Team management, Management	08 Hrs
Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring	
contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive	
Analytics, Predicative Modelling, Predictive analytics analysis.	
Unit – IV	
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting	07 Hrs
Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time	
Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression	
Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.	
Unit-V	ı
Decision Analysis: Formulating Decision Problems, Decision Strategies with and without	06 Hrs
Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision	
Making.	

Course Ou	Course Outcomes: After going through this course the student will be able to:					
CO1	Explore the concepts, data and models for Business Analytics.					
CO2	Analyze various techniques for modelling and prediction.					
CO3	Design the clear and actionable insights by translating data.					
CO4	Formulate decision problems to solve business applications					

Refer	rence Books:
1	Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Business analytics Principles, Concepts, and Applications FT Press Analytics, 1 st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402
2	Evan Stubs , The Value of Business Analytics: Identifying the Path to Profitability , John Wiley & Sons, ISBN:9781118983881 DOI:10.1002/9781118983881,1st edition 2014
3	James Evans, Business Analytics, Pearsons Education 2 nd edition, ISBN-13:978-0321997821ISBN-10:0321997824
4	Gary Cokins and Lawrence Maisel, Predictive Business Analytics Forward Looking Capabilities

to Improve Business, Wiley; 1st edition, 2013.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II						
INDUSTRIAL & OCCUPATIONAL HEALTH AND SAFETY						
	(Group G: Global Elective)					
Course Code	:	18CV2G02		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 Hrs

UNIT – I	
Industrial safety : Accident, causes, types, results and control, mechanical and electrical hazards,	07Hrs
types, causes and preventive steps/procedure, describe salient points of factories act 1948 for	
health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure	
vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.	
UNIT – II	
Occupational health and safety: Introduction, Health, Occupational health: definition, Interaction between work and health, Health hazards, workplace, economy and sustainable	07Hrs
development, Work as a factor in health promotion. Health protection and promotion Activities	
in the workplace: National governments, Management, Workers, Workers' representatives and	
unions, Communities, Occupational health professionals. Potential health hazards: Air	
contaminants, Chemical hazards, Biological hazards, Physical hazards, Ergonomic hazards,	
Psychosocial factors, Evaluation of health hazards: Exposure measurement techniques,	
Interpretation of findings recommended exposure limits. Controlling hazards: Engineering	
controls, Work practice controls, Administrative controls. Occupational diseases: Definition,	
Characteristics of occupational diseases, Prevention of occupational diseases.	
UNIT – III	
HazardousMaterials characteristics and effects on health: Introduction, Chemical Agents,	08Hrs
Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and	
Oxidizers, General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens,	
Mutagens, Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical	
Exposure Limits. Physical Agents, Noise and Vibration, Temperature and Pressure,	
Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health	
Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.	
UNIT – IV	
Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction	07Hrs
methods, lubricants-types and applications, Lubrication methods, general sketch, working and	
applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity	
lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition,	
principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.	
UNIT – V	
Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing,	07Hrs
cleaning and repairing schemes, overhauling of mechanical components, over hauling of electrical	
motor, common troubles and remedies of electric motor, repair complexities and its use,	
definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic	
and preventive maintenance of: I. Machine tools, ii. Pumps,	
iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive	
maintenance of mechanical and electrical equipment, advantages of preventive maintenance.	
Repair cycle concept and importance.	

Course O	Course Outcomes: After going through this course the student will be able to:					
CO1	Explain the Industrial and Occupational health and safety and its importance					
CO2	Demonstrate the exposure of different materials, occupational environment to which the					
	employee can expose in the industries.					
CO3	Characterize the different type materials, with respect to safety and health hazards of it.					
CO4	Analyze the different processes with regards to safety and health and the maintenance required					
	in the industries to avoid accidents.					

Refe	rence Books:
1	Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services
2	Maintenance Engineering Principles, Practices & Management, H. P. Garg, S. Chand and Company, New Delhi, 2009. ISBN:9788121926447
3	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition, International Labour Office – Geneva: ILO, 2008. ISBN 978-92-2-120454-1
4	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II						
	MODELING USING LINEAR PROGRAMMING					
		(G	Group G: Global Electiv	ve)		
Course Code	:	18IM2G03		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 Hrs

Unit – I	
Linear Programming: Introduction to Linear Programming problem	7 Hrs
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables	
Unit – II	
Advanced Linear Programming: Two Phase simplex techniques, Revised simplex method	7 Hrs
Duality: Primal-Dual relationships, Economic interpretation of duality	
Unit – III	
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes	7 Hrs
in RHS, Changes in objectives, Post optimal analysis - changes affecting feasibility and	
optimality	
Unit – IV	
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution	8 Hrs
using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods,	
Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in	
Transportation Problems.	
Unit-V	
Assignment Problem: Formulation of the Assignment problem, solution method of	7 Hrs
assignment problem-Hungarian Method, Variants in assignment problem, Travelling	
Salesman Problem (TSP).	

Course Outcomes: After going through this course the student will be able to:				
CO1	Explain the various Linear Programming models and their areas of application			
CO2	Formulate and solve problems using Linear Programming methods.			
CO3	Develop models for real life problems using Linear Programming techniques.			
CO4	Analyze solutions obtained through Linear Programming techniques.			

Refer	rence Books:
1	Taha H A, Operation Research An Introduction, PHI, 8th Edition, 2009, ISBN: 0130488089.
2	Philips, Ravindran and Solberg - Principles of Operations Research - Theory and Practice,
	John Wiley & Sons (Asia) Pvt Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0
3	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9th
	Edition, 2012, ISBN 13: 978-0-07-133346-7
4	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4 th
	Edition, 2009, ISBN 13: 978-0-23-063885-3.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II					
PROJECT MANAGEMENT					
		(Group G: G	Hobal Elective)		
Course Code	:	18 IM2G04	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 Hrs

Unit – I		
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles,	7 Hrs	
Responsibility and Team Work, Project Planning Process, Work Breakdown Structure		
(WBS), Introduction to Agile Methodology.		
Unit – II		
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital	7 Hrs	
budgeting, levels of decision making, facets of project analysis, feasibility study – a	7 1113	
schematic diagram, objectives of capital budgeting		
Unit – III		
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital	8 Hrs	
Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement,	O III S	
Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit		
Analysis		
Unit – IV		
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined	7Hrs	
activities, logic diagrams and networks, Project evaluation and review Techniques (PERT)	7 111 5	
Critical Path Method (CPM), Computerized project management		
Unit-V		
Project Management and Certification: An introduction to SEI, CMMI and project	7 Hrs	
management institute USA – importance of the same for the industry and practitiTWOrs.		
PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing		
Agile.		
Domain Specific Case Studies on Project Management: Case studies covering project		
planning, scheduling, use of tools & techniques, performance measurement.		

Course	Course Outcomes: After going through this course the student will be able to:					
CO1	Explain project planning activities that accurately forecast project costs, timelines, and quality.					
CO2	Evaluate the budget and cost analysis of project feasibility.					
CO3	Analyze the concepts, tools and techniques for managing projects.					
CO4	Illustrate project management practices to meet the needs of Domain specific stakeholders					
	from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity					
	organizations					

Refer	rence Books:
1	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review, Tata McGraw Hill Publication, 8 th Edition, 2010, ISBN 0-07-007793-2.
2	Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5 th Edition, 2013, ISBN: 978-1-935589-67-9
3	Harold Kerzner, Project Management A System approach to Planning Scheduling & Controlling, John Wiley & Sons Inc., 11 th Edition, 2013, ISBN 978-1-118-02227-6.
4	Rory Burke, Project Management – Planning and Controlling Techniques, John Wiley & Sons, 4 th Edition, 2004, ISBN: 9812-53-121-1

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II							
	ENERGY MANAGEMENT						
		(Group G: G	lobal Elective)				
Course Code	:	18CH2G05	CIE Marks	:	100		
Credits L: T: P	:	3:0:0	SEE Marks	:	100		
Hours	:	36L	SEE Duration	:	3 Hrs		

Unit — I	
Energy conservation: Principles of energy conservation and energy audit, types of energy audit, Energy conservation approaches, Cogeneration and types of cogeneration, Heat recuperators- classification, liquid/gas and gas/liquid heat exchangers	07 Hrs
Unit – II	
Wet Biomass gasifiers: Introduction, Classification of feedstock for biogas generation. Biomass conversion technologies: Wet and dry processes, Photosynthesis, Biogas generation, Factors affecting bio-digestion, Classification of biogas plants, Floating drum plant and fixed dome plant their advantages and disadvantages, Biogas from aquatic weed.	07 Hrs
Unit – III	
Dry Biomass Gasifiers : Biomass energy conversion routes, Thermal gasification of biomass, Classification of gasifiers, Fixed bed systems: Construction and operation of up draught and down draught gasifiers. Pyrolysis.	08 Hrs
Unit – IV	
Solar Photovoltaic : Principle of photovoltaic conversion of solar energy, types of solar cells and fabrication. Wind Energy: Atmospheric circulations, classification, factors influencing wind, wind shear, turbulence, wind speed monitoring, Betz limit, WECS: classification, characteristics, and applications	07 Hrs
Unit – V	
Alternative liquid fuels: Introduction. Ethanol production: Raw materials, Pre-treatment, Conversion processes, Fermentation systems. Methanol production: Raw materials, Gasification of wood, Gas purification and shift conversion, Synthesis, Gasification equipment.	07 Hrs

Course Outcomes: After going through this course the student will be able to:				
CO1 Understand the use alternate fuels for energy conversion				
CO2	Develop a scheme for energy audit			
CO3	Evaluate the factors affecting biomass energy conversion			
CO4	Design a biogas plant for wet and dry feed			

Refe	Reference Books:						
1	Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.						
2	Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II,						
	Tata McGraw Hill Publishing Co. Ltd., 1983.						
3	Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons,						
	1996.						
4	C. S. Solanki, Solar Photovoltaics: Fundamental Applications and Technologies, Prentice Hall of						
	India, 2009, ISBN:9788120343863						

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II							
	INDUSTRY 4.0						
		(Group G: Global Electi	ive)			
Course Code	:	18ME2G06		CIE Marks	:	100	
Credits L: T: P	:	3:0:0		SEE Marks	:	100	
Hours	:	39L		SEE Duration	:	3Hrs	

Unit – I 07 Hrs

Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and Artificial Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data Management.

Unit – II 08 Hrs

The Concept of the HoT: Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical Perspective, Middleware Architecture.

Unit – III 08 Hrs

Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing, Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with Komatsu, Quality Prediction in Steel Manufacturing.

Internet of Things and New Value Proposition, Introduction, Internet of Things Examples, IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.

Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of Robotic Things, Cloud Robotics.

Unit – IV 08 Hrs

Additive Manufacturing Technologies and Applications: Introduction, Additive Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling, Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive Manufacturing.

Advances in Virtual Factory Research and Applications, The State of Art, The Virtual Factory Software , Limitations of the Commercial Software

Unit –V 08 Hrs

Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0, Introduction, AR Hardware and Software Technology, Industrial Applications of AR, Maintenance, Assembly, Collaborative Operations, Training.

Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories, The way forward.

A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models, Increase Operational Efficiency, Develop New Business Models.

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Understand the opportunities, challenges brought about by Industry 4.0 for benefits of organizations and individuals
- CO2: Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services
- **CO3:** Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
- **CO4:** Evaluate the effectiveness of Cloud Computing in a networked economy

Reference Books:

- 1 INDUSTRY 4.0 THE INDUSTRIAL INTERNET OF THINGS, Alasdair Gilchrist, Apress Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
- 2 Industry 4.0: Managing The Digital Transformation, Alp Ustundag, EmreCevikcan, Springer, 2018 ISBN 978-3-319-57869-9.
- Designing the industry Internet of things connecting the physical, digital and virtual worlds, OvidiuVermesan and Peer Friess, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
- 4 The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Christoph Jan Bartodziej, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II							
	ADVANCED MATERIALS						
		(Group G:	Global Elective)				
Course Code	:	18ME2G07	CIE Marks	:	100		
Credits L: T: P	:	3:0:0	SEE Marks	:	100		
Hours	:	39L	SEE Duration	:	3 Hrs		

Unit – I 07 Hrs

Classification and Selection of Materials: Classification of materials. Properties required in Engineering materials, Criteria of selection of materials. Requirements / needs of advance materials.

Unit – II 08 Hr

Non Metallic Materials: Classification of n on metallic materials, Rubber: Properties, processing and applications. Plastics: Thermosetting and Thermoplastics, Applications and properties. Ceramics: Properties and applications. Adhesives: Properties and applications. Optical fibers: Properties and applications. Composites: Properties and applications.

Unit – III 08 Hrs

High Strength Materials: Methods of strengthening of alloys, Materials available for high strength applications, Properties required for high strength materials, Applications of high strength materials

Unit – IV 08 Hrs

Low & High Temperature Materials

Properties required for low temperature applications, Materials available for low temperature applications, Requirements of materials for high temperature applications, Materials available for high temperature applications, Applications of low and high temperature materials.

Unit –V 08 Hrs

Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and nanocomposites, Physical and mechanical properties, Applications of nanomaterials

Course Outcomes:

After going through this course the student will be able to:

CO1: Describe metallic and non-metallic materials

CO2: Explain preparation of high strength Materials

CO3: Integrate knowledge of different types of advanced engineering Materials

CO4: Analyse problem and find appropriate solution for use of materials.

Reference Books:

- 1 The Science & Engineering of Materials, Donald R. Askeland, and Pradeep P. Fulay, 5th Edition, Thomson, 2006, ISBN-13-978-0534553968
- 2 Nanotechnology, Gregory L. Timp, 1999th Editionmm Springer, 1999 ISBN-13: 978-0387983349
- Material Science and Metallurgy, Dr. VD Kodgire and Dr. S V Kodgire, 42nd Edition 2018, Everest Publishing House ISBN NO: 81 86314 00 8
- 4 Processing and Fabrication of Advanced Materials, N Bhatnagar, T S Srivatsan, 2008, IK International, ISBN: 978819077702

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II							
	COMPOSITE MATERIALS SCIENCE AND ENGINEERING						
	(Group G: Global Elective)						
Course Code	:	18CHY2G08	CIE Marks		:	100	
Credits L: T: P	:	3:0:0	SEE Marks		:	100	
Hours	:	36L	SEE Duration	n	:	3 Hrs	

Unit – I	
	05 II
INTRODUCTION TO COMPOSITE MATERIALS Fundamentals of composites – need for composites – Enhancement of properties – Classification based on matrix- Polymer matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix composites (CMC) – Constituents of composites, Interfaces and Interphases, Distribution of constituents, Types of Reinforcements, Particle reinforced composites, Fibre reinforced composites. Fiber production techniques for glass, carbon and ceramic fibers Applications of various types of composites. Unit – II	07 Hrs
POLYMER MATRIX COMPOSITES (PMC)	08 Hrs
Polymer resins – Thermosetting resins, Thermoplastic resins & Elastomers, Reinforcement fibres-Types, Rovings, Woven fabrics. PMC processes – Hand Layup Processes, Spray up processes – Compression Moulding – Injection Moulding – Resin Transfer Moulding – Pultrusion – Filament winding – Injection moulding. Glass fibre and carbon fibre reinforced composites (GFRP & CFRP). Laminates- Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Mechanical Testing of PMC- Tensile Strength, Flexural Strength, ILSS, Impact Strength- As per ASTM Standard. Applications of PMC in aerospace, automotive industries.	00 1113
Applications of PMC in aerospace, automotive industries. Unit – III	
CERAMIC MATRIX COMPOSITES AND SPECIAL COMPOSITES	07 Hrs
Engineering ceramic materials – properties – advantages – limitations – monolithic ceramics – need for CMC – ceramic matrix – various types of ceramic matrix composites-oxide ceramics – non oxide ceramics – Aluminium oxide – silicon nitride – reinforcements – particles- fibres- whiskers. Sintering – Hot pressing – Cold Isostatic Pressing (CIPing) – Hot isostatic pressing (HIPing). Applications of CMC in aerospace, automotive industries-Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel technique- Processing of Ceramic Matrix composites.	
Unit – IV	
METAL MATRIX COMPOSITES Characteristics of MMC, various types of metal matrix composites alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface-measurement of interface properties-applications of MMC in aerospace, automotive industries.	07 Hrs
Unit – V	0= 11
POLYMER NANO COMPOSITES Introduction and Significance of polymer Nano composites. Intercalated And Exfoliated Nanocomposites. Classification of Nano fillers- nanolayers, nanotubes, nanoparticles. Preparation of Polymer Nano composites by Solution, In-situ Polymerization and melt mixing techniques. Characterization Of polymer nanocomposites- XRD, TEM, SEM and AFM. Mechanical and Rheological properties of Polymer Nano composites. Gas barrier, Chemical-Resistance, Thermal and Flame retardant properties of polymer nanocomposites. Optical properties and Biodegradability studies of Polymer nanocomposites, Applications of polymer nanocomposites.	07 Hrs

Course	Course Outcomes: After going through this course the student will be able to:						
CO1	Understand the purpose and the ways to develop new materials upon proper combination of						
	known materials.						
CO2	Identify the basic constituents of a composite materials and the list the choice of materials available						
CO3	Will be capable of comparing/evaluating the relative merits of using alternatives for important engineering and other applications.						
CO4	Get insight to the possibility of replacing the existing macro materials with nanomaterials.						

Refe	rence Books:
1	Krishan K Chawla- Composite Materials Science and Engineering, Springer-verlag Gmbh, 3rd Edition, ISBN: 9780387743646, 0387743642
2	K Balani, Donald R Askeland, - The Science Engineering of Materials,6th Edition- Cengage, ISBN: 9788131516416
3	Joel R Fried- Polymer Science and Technology, 2nd Edition, Prentice Hall, ISBN: 9780137039555
4	Rajendra Kumar Goyal-Nanomaterials and nanocomposites, 2nd Edition, CRC Press-Taylor & Francis, ISBN: 9781498761666, 1498761666

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (O+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II							
	PHYSICS OF MATERIALS						
		(0	Group G: Global Electi	ve)			
Course Code	:	18PHY2G09		CIE Marks	:	100	
Credits L: T: P	:	3:0:0		SEE Marks	:	100	
Hours	:	36L		SEE Duration	:	3 Hrs	

Unit – I CRYSTAL STRUCTURE				
Symmetry elements-seven crystals systems-Reciprocal lattice-Packing fraction, Lattice	7 Hrs			
Vibration-Brillouin zones, Analysis of Crystal structure using XRD, Thermal properties.				
Unit – II DIELECTRIC MATERIALS				
Basic concepts-Langevin's Theory of Polarisation-Clausius-Mossotti Relation-Ferro	7 Hrs			
electricity-Piezoelectricity-Properties of Dielectric in alternating fields-The complex				
Dielectric Constant and Dielectric Loss, Polarizability as a function of frequency-Complex				
dielectric constant of non-polar solids-Dipolar relaxation, Applications.				
Unit – III MAGNETIC MATERIALS				
Dia and Paramagnetic materials-Quantum theory of paramagnetic materials-Paramagnetic	8 Hrs			
susceptibility of conduction electrons-Ferro-anti ferromagnetic materials-Superconductors				
and Applications.				
Unit – IV SEMICONDUCTING MATERIALS				
Semiconductor-Direct and Indirect bonding characteristics-Importance of Quantum	7 Hrs			
confinement-quantum wires and dots-Ferro electric semiconductors-applications-Polymer				
semiconductors-Photo conductive polymers, Applications.				
Unit – V NOVEL MATERIALS				
Smart materials-shape memory alloys-shape memory effects-Martensitia Transformation	7 Hrs			
functional properties-processing-texture and its nature.				

Course Outcomes: After going through this course the student will be able to:			
CO1	Analyse crystals using XRD technique.		
CO2	Explain Dielectric and magnetic materials.		
CO3	Integrate knowledge of various types of advanced engineering Materials.		
CO4	Use materials for novel applications.		

Ref	Reference Books:			
1	Solid State Physics, S O Pillai, 2015, New Age International Publishers, ISBN 10-8122436978.			
2	Introduction to Solid State Physics, C.Kittel, Seventh Edition, 2003, John Wiley & Sons, ISBN			
	9971-51-180.			
3	Material Science, Rajendran V and Marikani, , Tata McGraw Hill, 2013, ISBN 10-007132871.			
4	The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, Sixth Edition,			
	2012 Cengage Learning, ISBN-13:978-0-495-66802-2.			

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: II						
ADVANCED STATISTICAL METHODS						
(Group G: Global Elective)						
Course Code	:	18MAT2G10	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 Hrs	

Unit-I			
Sampling Techniques:	07 Hrs		
Random numbers, Concepts of random sampling from finite and infinite populations,			
Simple random sampling (with replacement and without replacement). Expectation and			
standard error of sample mean and proportion.			
Unit-II			
Estimation:	07 Hrs		
Point estimation, Estimator and estimate, Criteria for good estimates - unbiasedness,			
consistency, efficiency and sufficiency, Method of moment's estimation and maximum			
likelihood estimation, Properties of maximum likelihood estimator (no proofs), Confidence			
intervals-population mean (large sample), population proportion.			
Unit –III			
Tests of Hypothesis:	07Hrs		
Principles of Statistical Inference, Formulation of the problems with examples,			
Simple and composite hypothesis, Null and alternative hypothesis, Tests - type I and type II			
error, Testing of mean and variance of normal population (TWO sample and two samples),			
Chi squared test for goodness of fit.			
Unit –IV			
Linear Statistical Models:	07 Hrs		
Definition of linear model and types, TWO way ANOVA and two way ANOVA models-			
TWO observation per cell, multiple but equal number of observation per cell.			
Unit –V			
Linear Regression:	08 Hrs		
Simple linear regression, Estimation of parameters, Properties of least square estimators,			
Estimation of error variance, Multivariate data, Multiple linear regressions, Multiple and			
partial correlation, Autocorrelation-introduction and plausibility of serial dependence,			
sources of autocorrelation, Durbin-Watson test for auto correlated variables.			

Course Outcomes: After going through this course the student will be able to:							
CO1	Identify and interpret the fundamental concepts of sampling techniques, estimates and						
	types, hypothesis, linear statistical models and linear regression arising in various fields						
	engineering.						
CO2	Apply the knowledge and skills of simple random sampling, estimation, null and						
	alternative hypotheses, errors, TWO way ANOVA, linear and multiple linear						
	Regressions.						
CO3	Analyze the physical problem to establish statistical/mathematical model and use						
	Appropriate statistical methods to solve and optimize the solution.						
CO4	Distinguish the overall mathematical knowledge gained to demonstrate the problems of						
	sampling techniques, estimation, tests of hypothesis, regression and statistical model						
	arising in many practical situations.						

Ref	Reference Books:				
1	A. M. Goon, M. K. Gupta and B. Dasgupta-Fundamentals of Statistics (Vol. I and Vol. II),				
	World Press Private Limited, 3rd Edition, 1968, ISBN-13: 978-8187567806.				
2	D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, John				
	Wiley & Sons, Inc., 3rd Edition, 2003, ISBN 0-471-20454-4.				
3	S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistic - A Modern Approach, S				
	Chand Publications, 10th Edition, 2000, ISBN 81-7014-791-3.				
4	Regression Analysis: Concepts and Applications – F. A. Graybill and H. K. Iyer, Belmont,				
	Calif.: Duxbury Press, 1994, ISBN-13: 978-0534198695.				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SYLLABUS FOR SEMESTER III & IV

			SEMESTER : III			
ADVANCED MATERIALS & PROCESSES						
(Theory)						
Course Code	:	18MPD31		CIE Marks	:	100
CreditsL:T:P	:	4:1:0		SEE Marks	:	100
Hours	:	52L+26T		SEE Duration	:	3Hrs
Unit – I					10 Hrs	

Structure-Property Relations & Newer Materials: Introduction, Atomic structure, atomic bonds, secondary bonds, crystal structure, Crystal structure, crystal defects, grain structure, elastic and plastic deformation in single crystals, strain /work hardening, plastic deformation in polycrystalline metals, fracture of metals.

Newer Materials: Plastics, polymerization thermosetting and thermoplastic materials and properties. Ceramic materials and their properties. Composite materials – classification, matrix and reinforcement materials, properties, rule of mixtures, longitudinal strength and modulus (isostrain model), transverse strength and modulus (isostress model), applications of composites.

Unit – II 12 Hrs

Processing of Composites: Processing of MMCs: matrix and reinforcement materials, diffusion bonding, squeeze casting, reocasting, arc spray forming, superplastic forming, in situ process. Processing of CMCs: matrix and reinforcement materials, fabrication of glass fibers, boron fibers, carbon fibers, alumina fibers, silicon carbide fibers. Processing- slurry infiltration process, melt infiltration process, direct oxidation or Lanxide process.

Processing of PMCs: matrix and reinforcement materials, processing of polyethylene fibers, aramid fibers. Processing of PMCs – hand layup process, spray-up technique, filament winding process, pultrusion process, autoclave moulding.

Unit – III 12 Hrs

Powder Metallurgy: Introduction, Production of Powder, Characterization & Testing of Powders, Powder Conditioning, Powder Compaction, Sintering, Finishing operations, Applications of PM components.

Surface Treatment: Introduction, Surface Engineering, Surface quality & integrity concepts, Mechanical treatment, Thermal spraying processes and applications, Vapour depositions processes and applications, Ion-implantation.

Unit – IV 08 Hrs

Environmental Degradation of Materials: Different forms of environmental degradation, cost of corrosion, electrochemical nature, forms of corrosion- Galavanic, Intergranular, pitting, stress related corrosion. Corrosion control- Materials selection, protective coating.

Smart materials: Smart materials and their properties, Piezoelectric, magneto structure, shape memory materials, Electro Rheological fluids, optical fibres.

Unit – V 10 Hrs

RV College of Engineering®

Thin film: Sol-gel, spin coating, sputtering deposition, ion implementation, cathedoic arc deposition, pulsed laser deposition

Characterization—Scanning probe microscopy, Atomic force microscopy, Scanning tunneling microscopy, Profilometer, applications of thin films in different areas.

Course Outcomes

After going through this course the students will be able to:

- CO1: Explain the concepts and principles of advanced materials and manufacturing processes
- CO2: Analyze the materials and processes for particular application
- CO3: Evaluate the principles and application of surface treatment methods.

Reference Books:

- 1. Materials and Processing in Manufacturing, E. Paul Degarmo, J.T. Black, and Ronald A Kohser, John Wiley and Sons Inc., 12th Edition, 5thJuly 2017, ISBN: 978-1118987674.
- 2. Composite Materials: Science & Engineering, K.K.Chawla,Springer-Verlag, NewYork, 3rd Edition, 2012, ISBN: 978-0387743646.
- 3. Structure and Properties of Engineering Materials, V. S. R Murthy, A. K. Jena, K. P. Gupta and G.S.Murthy, Tata McGraw Hill Education, 2003, ISBN: 9780070482876.
- 4. Nanotechnology, Rakesh Rathi, S.Chand and Company, 1stDecember 2010, ISBN:978-8121930826.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks

			SEMESTER: III		
			INTERNSHIP		
Course Code	:	18MCE32	CIE Marks	:	100
Credits L:T:P	:	0:0:5	SEE Marks	:	100
Hours/week	:	10	SEE Duration	:	3 Hrs

- GUIDELINES

 1) The duration of the internship shall be for a period of 8 weeks on full time basis after II semester final
- 2) The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3) Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization

exams and before the commencement of III semester.

- Acknowledgement
- Synopsis
- Table of Contents
- Chapter 1 Profile of the Organization : Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
- Chapter 2 -Activities of the Department
- Chapter 3 Tasks Performed: summaries the tasks performed during 8 week period
- Chapter 4 Reflections: Highlight specific technical and soft skills that you acquired during internship
- References & Annexure

Course Outcomes

After going through the internship the student will be able to:

CO1: Apply engineering and management principles

CO2: Analyze real-time problems and suggest alternate solutions

CO3: Communicate effectively and work in teams

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage					
Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments,	45%					
Review-II	Importance of resource management, environment and						
	sustainabilitypresentation skills and report writing						

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and aninternal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

SEMESTER: III						
MAJOR PROJECT : PHASE-I						
Course Code	:	18MCE33	CIE	Marks	:	100
Credits L:T:P	:	0:0:5	SEE	Marks	:	100
Hours/week	:	10	SEE	Duration	:	3 Hrs
CUIDELINES						

- 7. The Major Project work comprises of Phase-I and Phase-II. Phase-I is to be carried out in third semester and Phase-II in fourth semester.
- 8. The total duration of the Major project Phase-I shall be for 16 weeks.
- 9. Major project shall be carried out on individual student basis in his/her respective PG programme specialization. Interdisciplinary projects are also considered.
- 10. The allocation of the guides shall be preferably in accordance with the expertise of the faculty.
- 11. The project may be carried out on-campus/industry/organization with prior approval from Internal Guide, Associate Dean and Head of the Department.
- 12. Students have to complete Major Project Phase-I before starting Major Project Phase-II.
- 13. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

After going through this course the students will be able to:

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics, societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in tworeviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of the topic, Literature Survey, Problem Formulationand Objectives	45%
Review-II	Methodology and Report writing	55%

Scheme for Semester End Evaluation (SEE):

Major Project Phase-I evaluation shall be done by an external examiner (domain expert) and respective guide as per the schedule. Maximum of four candidates per batch shall be allowed to take examination. The batches are to be formed based on specific domain of work.

SEMESTER : III							
SHEET METAL FORMING AND PLASTIC MOULDING							
(Professional Elective-E1)							
Course Code	:	18MPD3E1		CIE Marks	:	100	
CreditsL:T:P	:	4:0:0		SEE Marks	:	100	
Hours	:	52L		SEE Duration	:	3 Hrs	
			Unit – I		•	10 Hrs	

Sheet Metal Operations: Classification of presses, sheet metal operations, shearing theory, cutting force, clearance between punch and die, shut height and daylight, press tonnage calculation.

Strip Layout: Basic rules, economic layout, bridge size, calculation of plug point/center of pressure

Unit – II 10 Hrs

Bending Die: Theory of bending, development of bend, spring back, correcting spring back, bending tools, U bending, V bending, bending on press brake, bending force, different methods of compensation for spring back in V-bending and U-bending.

Drawing: Theory of drawing, blank development, calculation of number of stages of drawing, circular draw, draw force calculation, lubrication.

Unit – III 10 Hrs

Design of Press Tool Elements: Design of die plates, punches, punch holder plates, stripper plates, and calculation of stripping force, bolster plates, pilots, ejectors, shedders, pillar, bush, slender punches, stock guides and feeding device and die sets.

Types of Press Tools: Stage tools, progressive tools, compound tools, and combination tools

Unit – IV 10 Hrs

Mould construction: Design of various injection mould elements, cores, cavities, and Inserts, fitting core and cavity inserts, guide pillars and bushes. Feed systems: Design of gates, runners, impressions, layout, sprue, sprue pullers. Parting Surfaces: Straight, stepped, curved parting surface.

Ejector System: Types of ejection, ejector pin, sleeve ejection, plate ejection, blade ejection, air ejection, ejection from fixed half, double ejection, delayed ejection. Cooling System:Need for cooling, cooling solid cores and cavities, insert cooling, cooling long cores, cooling elements, baffles etc., and cooling calculation.

Unit –V 12 Hrs

Design of Moulds with External under Cuts: Split moulds, Actuation of splits, Guiding of splits, side cores. Design of external threaded components. Special Moulds, 3 Plate moulds, hot runner moulds.

Moulds with internal under cuts: Form pins, split cores, side cores, and stripping internal undercut. Design of internally threaded component. Thermoset plastic moulding: Compression moulding tools, transfer moulding tools. Defects in moulding and its remedies.

After going through this course the student will be able to:

- CO1: Explain the necessity of press tool and mould for manufacturing of different tools
- CO2: Analyse the design constraints in the given problem
- CO3: Apply the design rule for manufacturing of press tools and moulds
- CO4: Design of press tools and mould for considering real time issues of Manufacturing, Testing and Assembly.

Reference Books

- 1. Die Design Fundamentals, Paquin J.R. & Crowley, Industrial Press Inc. 3rdEdition 2006. ISBN 13: 9780831131197
- 2. Handbook of Die Design, Ivana Suchy, New York-Mc GRAW-HILL: 2nd Edition, 2005, **ISBN:**9780071462716, 0071462716
- 3. Injection Mould Design, R. G. W Pye, Affiliated East-West Press Pvt. Ltd.-New Delhi, 4th Edition, 2000, ISBN: 9788176710107, 8176710105
- 4. Injection Molding Handbook, D.V. Rosato, Marlene G. Rosato, Springer, 3rdEdition, 2000, ISBN: 0792386191, 9780792386193

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: III SURFACE ENGINEERING (Professional Elective-E2) **Course Code 18MPD3E2 CIE Marks** 100 Credits L:T:P 4:0:0 **SEE Marks** 100 Hours 52L **SEE Duration** 3 Hrs Unit – I

Surface cleaning – classification, and selection of cleaning processes-alkaline cleaning, solvent cold cleaning and vapour degreasing, eemulsion cleaning, pickling and descaling Tribology - surface degradation, wear and corrosion, types of wear, roles of friction and lubrication- overview of different forms of corrosion.

> Unit – II 12 Hrs

Surface Engineering of ferrous and non ferrousmaterials: cast iron, carbon and alloy steels, aluminium and alloys, copper and alloys, magnesium and alloys. Nickel and alooys, Conversion coatings: Chemical and electrochemical polishing, significance, specific examples, phosphate, chromating, chemical coloring, anodizing of aluminum alloys, thermo chemical processes -industrial practices

> Unit – III 10 Hrs

Surface pre-treatment, deposition of copper, zinc, nickel and chromium - principles and practices, alloy plating, electro composite plating, electroless plating of copper, nickel phosphorous, nickel-boron; Environmental protection issues; Environmental regulation of surface engineering, cadmium elimination vapour degreasing alternatives, compient organic coating.

> Unit – IV 10 Hrs

Sputter technique – Methods, applications, plasma treatments, nitriding, carbonizing, boriding, titanising methods, applications Laser coatings: Laser alloying, sources, variables, methods, applications, specific industrial applications

> Unit –V 10 Hrs

Thermal spraying- techniques, advanced spraying techniques - plasma surfacing, D-Gun and high velocity oxy-fuel processes, Laser surface alloying and Cladding - specific industrial applications, tests for assessment of wear and corrosion behaviour.

Course Outcomes

After going through this course the student will be able to:

- CO1: Explain various forms of corrosion and basic concepts of surface engineering
- CO2: Evaluate the different surface engineering processes with respect to industrial practices
- CO3: Apply the knowledge of different spraying techniques in surface engineering
- CO4: Analyzetests for assessment of wear and corrosion behaviour.

Reference Books

- Surface modification technologies An Engineer's guide, Sudarshan T S, Marcel Dekker, Newyork, 1989, ISBN: 781560327127. Electroplating and Other Surface Treatments - A Practical Guide, Varghese C.D, TMH, 2 1993, ISBN: 0871707055
- Surface Engineering Practice, Strafford, K.N., Datta, P.K., and Gray, J.S., Processes, Fundamentals 3 and Applications in Corrosion and Wear, Ellis Harwood (1990)., ISBN: 1351412574, 9781351412575
- Advanced Surface Coatings: A Hand book of Surface Engineering, Mathews, A., Spinger (1991). 4 ISBN:9780216928992

10 Hrs

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER : III								
ADVANCED MANUFACTURING PRACTICES								
(Professional Elective-E3)								
Course Code	:	18MCM3E3		CIE Marks	:	: 100		
Credits L:T:P	:	4:0:0		SEE Marks	:	100		
Credits	:	52L		SEE Duration	: 3 Hrs		S	
Unit –I						10Hrs		

Just in Time Production – Primary purpose, profit through cost reduction, elimination of over production, quality control, quality assurance, respect for humanity, flexible work force, JIT production adapting to changing production quantities, process layout for shortened lead Times, standardization of operation, automation.

Sequence and Scheduling Used by Suppliers: Monthly and daily Information. sequenced withdrawal system by sequenced schedule table, problems and counter measures in applying the Kanban system to sub contractors

Unit -II 12Hrs

Toyota Production System-The philosophy of TPS, basic frame work of TPS, Kanbans. determining the number of Kanbans in Toyota Production System, Kanban number under constant quantity withdrawal system, constant cycle, non-constant quantity withdrawal system.

Kanban Systems- Supplier Kanban and the sequence schedule for use by suppliers - Later replenishment system by Kanban, Sequenced Withdrawal System and Circulation of the Supplier Kanban within Toyota. production smoothing in TPS, production planning, production smoothing, adaptability to demand fluctuations, sequencing method for the mixed model assembly line to realize smoothed production of goal.

Unit -III 10 Hrs

Just-in-Time Production with Total Quality Control just in time concept, cutting lot sizes, cutting set-up times, cutting purchase order costs, the JIT cause-Effect chain,

Quality Improvements: scrap/quality improvements, motivational effects, responsibility effects, small group improvement activities, withdrawal of buffer inventory, the total quality control concept.

Unit -IV 10 Hrs

Total Quality Control-Introduction-Total Quality Control concepts, responsibility, learning from the west, TQC concepts categorized, goals, habit of improvement, perfection, basics, process control, easy to see quality control as facilitator, small lot sizes, housekeeping,

Scheduling: Capacity scheduling, daily machine checking, techniques and Aids, exposure of problems, fool proof devices, tools of analysis, QC circles, TQC in Japanese-owned US electronics plant, TQC in Japanese-owned automotive plants.

Unit -V 10 Hrs

Plant Configurations: Introduction-ultimate plant configuration, job shop fabrication, frame welding, forming frame parts from tubing, dedicated production lines, overlapped production, the daily schedule, forward linkage, physical merger of processes, adjacency,

Material Handling Systems: mixed models, automated production lines, pseudo robots, robots, CAD and manufacturing, conveyors and stacker cranes, automatic quality monitoring

After going through this course the student will be able to:

- CO1: Explain the role of JIT, TPS and TQC strategies in production system
- CO2: Analyze the various concepts of modern manufacturing practices
- CO3: Apply the concepts of JIT and TPS in real time applications
- CO4: Evaluate the various process requirement to decide the plant configruation.

Reference Books:

- Japanese Manufacturing Techniques, Richard Schonberger, Pearson Higher Education, 1982 ISBN:0029291003
- 2 An Integrated Approach To Just In Time, Yasuhiro Monden, Toyota Production system, ISBN: 978-1-4398-2097-1
- 3 Adult Lean Thinking, James Womack, Simon & Schuster, ISBN: 0743249275, 2003.
- The machine that changed the World The story of Lean production, James P. Womack, Daniel T Jones, and Daniel Roos, Harper Perennial edition published, 1991.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

MAJOR PROJECT: PHASE-II Course Code : 18MCE41	SEMESTER: IV							
	MAJOR PROJECT: PHASE-II							
Credits L:T:P : 0:0:20 SEE Marks : 100	Course Code	:	18MCE41	CIE Marks	:	100		
	Credits L:T:P	:	0:0:20	SEE Marks	:	100		
Hours/Week : 40 SEE Duration : 3 Hrs	Hours/Week	:	40	SEE Duratio	n :	3 Hrs		

- **GUIDELINES**
- 1. Major Project Phase-II is continuation of Phase-I.
- 2. The duration of the Phase-II shall be of 16 weeks.
- 3. The student needs to complete the project work in terms of methodology, algorithm development, experimentation, testing and analysis of results.
- 4. It is mandatory for the student to present/publish the work in National/International conferences or Journals
- 5. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

After going through this course the students will be able to:

CO1: Conceptualize, design and implement solutions for specific problems.

CO2: Communicate the solutions through presentations and technical reports.

CO3: Apply project and resource managements skills, professional ethics, societal concerns

CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning.

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in threereviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Review and refinement of Objectives, Methodology and Implementation	20%
Review-II	Design, Implementation and Testing	40%
Review-III	Experimental Result & Analysis, Conclusions and Future Scope of Work,	40%
	Report Writing and Paper Publication	40%

Scheme for Semester End Evaluation (SEE):

Major Project Phase-II SEE shall be conducted in two stages. This is initiated after fulfilment of submission of project report and CIE marks.

Stage-1Report Evaluation

Evaluation of Project Report shall be done by guide and an external examiner.

Stage-2Project Viva-voce

Major Project Viva-voce examination is conducted after receipt of evaluation reports from guide and external examiner.

Both Stage-1 and Stage-2 evaluations shall be completed as per the evaluation formats.

RV College of Engineering®

SEE procedure is as follows:

	Internal Guide	E	xternal E	xamine	•	TOTAL		
SEE Report Evaluation	100 marks		100 m	arks			200 marks	
						(A)	(200/2) = 100 marks	
Viva-Voce	Jointly evaluated External Evaluator	•	Internal	Guide	&	(B)	100 marks	
Total M					larks	[(A)+(B)]/2 = 100		

SEMESTER: IV							
TECHNICAL SEMINAR							
Course Code	:	18MCE42		CIE Marks	:	50	
Credits L:T:P	:	0:0:2		SEE Marks	:	50	
Hours/Week	:	4		SEE Duration	:	30 Mins	
CUIDELINES							

- 1. The presentation shall be done by individual students.
- 2. The seminar topic shall be in the thrust areas of respective PG programs
- 3. The seminar topic could be complementary to the major project work
- 4. The student shall bring out the technological developments with sustainability and societal relevance.
- 5. Each student must submit both hard and soft copies of the presentation along with the report.
- 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

After going through this course the student will be able to:

- CO1: Identify topics that are relevant to the present context of the world
- CO2: Perform survey and review relevant information to the field of study.
- CO3: Enhance presentation skills and report writing skills.
- CO4: Develop alternative solutions which are sustainable.

Scheme of Continuous Internal Evaluation (CIE): Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of Topic, Review of literature, Technical Relevance, Sustainability and Societal Concerns, Presentation Skills	45%
Review-II	Technological Developments, Key Competitors, Report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.