

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

BACHELOR OF ENGINEERING (B.E.) 2021 SCHEME

SCHEME & SYLLABUS SECOND YEAR B.E. PROGRAMS

ELECTRONICS & COMMUNICATION ENGINEERING

ACADEMIC YEAR 2022-23

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome-based Quality education, emphasizing on experiential learning with the state-of-the-art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics, and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering.

DEPARTMENT MISSION

- 1. To impart quality technical education to produce industry-ready engineers with a research outlook.
- 2. To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- 3. To create centers of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- 4. To develop entrepreneurial skills among the graduates to create new employment opportunities.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PROGRAM EDUCATIONAL OBJECTIVES

- **PEO1:** To apply concepts of mathematics, science and computing to Electronics and Communication Engineering
- **PEO2:** To design and develop interdisciplinary and innovative systems.
- PEO3: To inculcate effective communication skills, team work, ethics, leadership in preparation for a successful career in industry and R & D organizations.

PROGRAM SPECIFIC OUTCOMES

- **PSO1:** Should be able to clearly understand the concepts and applications in the field of Communication/networking, signal processing, embedded systems, and semiconductor technology.
- **PSO2:** Should be able to associate the learning from the courses related to Microelectronics, Signal processing, Microcomputers, Embedded and Communication Systems to arrive at solutions to real world problems.
- **PSO3:** Should have the capability to comprehend the technological advancements in the usage of modern design tools to analyze and design subsystems/processes for a variety of applications.
- **PSO4:** Should possess the skills to communicate in both oral and written forms, the work already done and the future plans with necessary road maps, demonstrating the practice of professional ethics and the concerns for societal and environmental wellbeing.

LEAD SOCIETY

Institute of Electrical and Electronics Engineers (IEEE)

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Abbreviations

Sl. No.	Abbreviation	Meaning						
1.	VTU	Visvesvaraya Technological University						
2.	BS	Basic Sciences						
3.	CIE	Continuous Internal Evaluation						
4.	SEE	Semester End Examination						
5.	CE	Professional Core Elective						
6.	GE	Global Elective						
7.	HSS	Humanities and Social Sciences						
8.	CV	Civil Engineering						
9.	ME	Mechanical Engineering						
10.	EE	Electrical & Electronics Engineering						
11.	EC	Electronics & Communication Engineering						
12.	IM	Industrial Engineering & Management						
13.	EI	Electronics & Instrumentation Engineering						
14.	СН	Chemical Engineering						
15.	CS	Computer Science & Engineering						
16.	TE	Telecommunication Engineering						
17.	IS	Information Science & Engineering						
18.	BT	Biotechnology						
19.	AS	Aerospace Engineering						
20.	PY	Physics						
21.	CY	Chemistry						
22.	MA	Mathematics						
23.	AEC	Ability Enhancement Courses						

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

INDEX

III Semester						
Sl. No.	Course Code Course Title					
1.	21MA31B	Linear algebra, Integral transforms, and Fourier series	01			
2.	21BT32A	Environmental Technology (Common to AI, CS, CV EC, EE, EI, ET & IS)	03			
3.	21EC33	Analog Microelectronic Circuits	05			
4.	21EC34	Analysis and Design of Digital Circuits (Common to EC/EE/ EI/ET)	08			
5.	21EC35	Network Analysis and Control Systems	11			
6.	21EC36	Digital System Design Using Verilog HDL	13			
7.	21DMA37	Bridge Course: Mathematics	15			
8.	21HS38A / 21HS38V	Kannada Course: AADALITHA KANNADA / VYAVAHARIKA KANNADA	i/ii			
9.	21HSAE39A/ B/C/D/E	Ability Enhancement course	17			
10.	21ECI310	Summer Internship- I	33			

IV Semester						
Sl. No.	Course Code	Course Title	Page No.			
1.	21MA41	Statistics and Probability for Data Science	35			
2.	21EC42	Materials for Electronics Engineering (Common to EC/EE/ EI/ET)	37			
3.	21EI43	Microcontroller & Programming (Common with EC/EE/ EI/ET)	39			
4.	21EC44	Signals and Systems (Common with EC/EI)	42			
5.	21EC45	Electromagnetic Fields and Applications	45			
6.	21EC46	Design Thinking Lab	47			
7.	21DCS47	Bridge Course: C Programming	49			
8.	21HSU48	Universal Human Values and Professional Ethics	51			
9.	21EC4AX	Professional Core Elective (Group A)	53			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Bachelor of Engineering in

Electronics & Communication Engineering

		III	SEM	IEST	ER							
SI. No.	Course Code	Course Title		Credit Allocation				Category	Max Marks CIE		Max Marks SEE	
			L	Т	Р	Total			Theory	Lab	Theory	Lab
1	21MA31B	Linear algebra, Integral transforms, and Fourier series	3	1	0	4	MA	Theory	100	****	100	****
2	21BT32A	Environmental Technology (Common to AI, CS, CV EC, EE, EI, ET & IS)		0	0	2	ВТ	Theory	50	****	50	****
3	21EC33	Analog Microelectronic Circuits	3	0	1	4	EC	Theory +Lab	100	50	100	50
4	21EC34	Analysis and Design of Digital Circuits (Common to EC/EE/ EI/ET)	3	0	1	4	EC	Theory +Lab	100	50	100	50
5	21EC35	Network Analysis and Control Systems	3	0	0	3	EC	Theory	100	****	100	****
6	21EC36	Digital System Design Using Verilog HDL	3	0	0	3	EC	Theory	100	****	100	****
7	21DMA37	Bridge Course: Mathematics	2	0	0	AUDIT	MA	Theory	50	****	****	****
8	21HS38A / 21HS38V	Kannada Course: AADALITHA KANNADA / VYAVAHARIKA KANNADA	1	0	0	1	HSS	Theory	50	****	50	****
9	21HSAE39A/ B/C/D/E	Ability Enhancement Course	0	0	1	1	HSS	Lab	****	50	****	50
10	21ECI310	Summer Internship- I	0	0	1	1	EC	Internship	****	50	****	50
				Т	otal	23						

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Bachelor of Engineering in Electronics & Communication Engineering

		I	V SEM	1EST	ER							
Sl. No.	Course Code	Code Course Title Credit Allocation		BoS	Category	Max Marks CIE		Max Marks SEE				
				Т	Р	Total			Theory	Lab	Theory	Lab
1	21MA41*	Statistics and Probability for Data Science	2	1	0	3	MA	Theory	100	****	100	****
2	21EC42**	Materials for Electronics Engineering (Common to EC/EE/ EI/ET)	2	0	0	2	EC	Theory	50	****	50	****
3	21EI43	Microcontroller & Programming (Common to EC/EE/ EI/ET)	3	0	1	4	EI	Theory + Lab	100	50	100	50
4	21EC44	Signals and Systems (Common to EC/EI)	3	0	1	4	EC	Theory + Lab	100	50	100	50
5	21EC45	Electromagnetic Fields and Applications	3	0	0	3	EC	Theory	100	****	100	***
6	21EC46	Design Thinking Lab	0	0	2	2	EC	Lab	****	50	****	50
7	21DCS47	Bridge Course: C Programming	2	1	0	AUDIT	CS	Theory	50	****	****	****
8	21HSU48	Universal Human Values and Professional Ethics	2	0	0	2	HSS	Theory	50	****	50	****
9	21EC4AX	Professional Core Elective - Group A	2	0	0	2	EC	моос	50	****	50	****
				7	otal	22						

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ability Enhancement Courses								
Sl. No.	Course code	Course Title						
1	21HSAE39A	National Service Scheme (NSS)						
2	21HSAE39B	National Cadet Corps (NCC)						
3	21HSAE39C	Physical Education						
4	21HSAE39D	Music/Dance/Theatre						
5	21HSAE39E	Art work & Painting/ Photography & Film making						

	ELECTIVE: GROUP A							
	Professional Core Electives - NPTEL / SWAYAM							
Sl. No.	Course code	Course Title						
1	21EC4A1	Design and Analysis of Algorithms						
2	21EC4A2	Database Management System						
3	21EC4A3	Object Oriented Analysis and Design						
4	21EC4A4	Programming, Data Structure and Algorithms using Python						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III									
LIN	EAR	ALGEBRA, INT	EGRAL TRANSF	ORMS AND FOU	RI	ER SERIE	S		
Category: PROFESSIONAL CORE COURSE									
(Common to AS, EC, EE, EI, ET)									
(Theory)									
Course Code	:	21MA31B		CIE	:	100 Marks	3		
Credits: L: T:	P :	03:01:00		SEE	:	100 Marks	3		
Total Hours	:	45L+15T		SEE Duration	:	03 Hrs			
			Unit-I				09 Hrs		
Linear Algebr	a I:								
Vector spaces,	subspac	es, linear dependent	e and independence, l	basis and dimension,	fou	r fundament	al subspaces.		
Rank and nullit	y theor	em (without proof).	Linear transformation	ns - matrix represent	tatic	n, kernel an	d image of a		
linear transform	ation, o	dilation, reflection, j	projection and rotation	n matrices.			C		
			Unit – II				09 Hrs		
Linear Algebr	a II:								
Inner Products,	orthog	onal matrices, ortho	gonal and orthonorma	l bases, Gram-Schm	idt j	process, QR	-		
factorization. E	igen va	lues and Eigen vector	ors, diagonalization of	f a matrix (symmetrie	c ma	trices) and	singular		
value decompo	sition.								
	~		Unit –III				09 Hrs		
Laplace Trans	form:					6 1	C		
Laplace Transf	orm: E	xistence and unique	eness of Laplace tran	storm (LT), transfor	rm (of elementai	ry functions,		
region of conve	rgence	. Properties - lineari	ty, scaling, s - domain	n shift, differentiatio	n in	the s - dom	ain, division		
by t, differentia	triona	u integration in the t	1 une domain. LT of spectration of the spectral spectras spectras spectras	ectal functions - Peri-	ould	unit impul	square wave,		
saw-tootii wave	, triang	ulai wave, luli & lla	Unit –IV	aviside unit step fund	1101	, unit impui	09 Hrs		
Inverse Lanla	e Trar	sform:					07 1115		
Definition, pro	perties.	evaluation using d	lifferent methods. Co	nvolution theorem	wit	hout proof)	- problems.		
Application to a	solve or	dinary linear differe	ential equations.		(now proor)	procreme		
		•	Unit –V				09 Hrs		
Fourier series	and Fo	urier Transforms:							
Periodic function	on, ever	n and odd functions	Dirichlet's condition	ns, Euler's formulae	for	Fourier serie	es, problems		
on time period	c signa	lls (square wave, ha	lf wave rectifier, sav	v-tooth wave and tri	ang	ular wave),	Fourier sine		
series, Fourier	cosine	series. Fourier integ	ral theorem, complex	Fourier and inverse	e Fo	ourier transfo	orm, Fourier		
sine transform, Fourier cosine transform, properties - linearity, scaling, time-shift and modulation - problems.									
				•••••					
Course Outcon	nes: Al	ter completing the	course, the students	will be able to: -	1		. .		
COI Illustr	ate the f	rundamental concep	ts of linear algebra, L	aplace and inverse L	apla	ce transform	ns, Fourier		
CO2 Apply	the acc	uner transforms.	linear algebra Lanla	e and inverse Lanla	co t	anoforma E	ourier series		
and F	urier fi	ansforms to	inical algebra, Lapla	e and inverse Lapia	ce ti	анятотнія, г	ourier series		
CO3 solve	he prob	plems of engineering	applications.						
CO4 Analy	ze the s	olution of the proble	ems using appropriate	techniques of linear	alø	ebra, integra	al transforms		
and Fe	ourier s	eries to the real	asing appropriate			cera, megre			

Reference Books								
1.	Linear Algebra and its Applications, Gilbert Strang, 4 th Edition, 2014, Cengage Learning India Edition,							
	ISBN: 9788131501726, 8131501728.							

RV Educational Institutions [®] RV College of Engineering [®]

RV

Autonomous Institution Affiliated to Visvesvaraya

-	Technological Jniversity, Belagavi						
2.	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010, Lakshmi Publications, ISBN: 978-81-7008-992-6.						
3.	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN 933284-9-1.	N: 978- 81-					
4.	Linear Algebra and its Applications, David C. Lay, 4 th Edition, 2012, Pearson Education In 13: 970321385178, ISBN-10: 0321385171.	dia, ISBN-					
RUBRI	CS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)						
#	COMPONENTS	MARKS					
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be						
	conducted & each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20					
	WILL BE THE FINAL QUIZ MARKS.						
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity						
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,						
	Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be	40					
	evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE						
	REDUCED TO 40 MARKS.						
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and						
	practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO	40					
	40 MARKS.						
	MAXIMUM MARKS FOR THE CIE THEORY	100					

RUBRI	RUBRICS FOR SEMESTER END EXAMINATION (THEORY)							
Q.NO	CONTENTS							
PART A								
1	1 Objective type questions covering entire syllabus							
	PART B							
	(Maximum of THREE Sub-divisions only)							
2	Unit 1: (Compulsory)	16						
3 & 4	Unit 2: Question 3 or 4	16						
5&6	Unit 3: Question 5 or 6	16						
7 & 8	Unit 4: Question 7 or 8	16						
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			l L	Semester: III						
			ENVIRONMI	ENTAL TEC	CHNOLOGY					
	Category: PROFESSIONAL CORE COURSE									
	(Common to AI, CS, CV EC, EE, EI, ET & IS)									
(Theory)										
Course	Code	:	21BT32A		CIE	:	50 Marks			
Credits	s: L: T: P	:	02:00:00		SEE	:	50 Marks			
Total H	Iours	:	26 L		SEE Duration	:	02 Hrs			
			Uni	t-I				09 Hrs		
Introdu	uction:							L		
Climate	e action – Par	ris	convention, Sustainable De	evelopmental (Goals in relation to e	nvi	ronment, Co	omponents of		
environ	ment, Ecosy	stei	n. Environmental educatio	n, Environmer	tal acts & regulation	s, 1	ole of non-g	governmental		
organiza	ations (NGO	s), [EMS: ISO 14000, Environn	mental Impact	Assessment. Environ	me	ntal auditing	g.		
			Uni	t – II				09 Hrs		
Pollutio	on and its re	me	dies:							
Air poll	ution – point	an	d non-point sources of air p	ollution and th	eir controlling measu	ares	s (particulate	e and gaseous		
contam	inants). Nois	e p	ollution, Land pollution (s	sources, impac	ts and remedial mea	sur	es), Water	management:		
Advanc	ed water trea	atm	ent techniques, water cons	ervation metho	ods. Waste managem	ent	: Solid wast	te, e-waste &		
biomed	ical waste –	sou	rces, characteristics & disp	osal methods.	Concepts ofReduce,	Re	use and Rec	cycling of the		
wastes.					•					
Waste t	o Energy: Di	iffe	rent types of Energy, Conv	entional sourc	es & Non-convention	nal	sources of e	nergy: Solar,		
Hydro I	Electric, Win	d, 1	Nuclear, Biomass & Biogas	s Fossil Fuels a	nd Hydrogen.					
			Unit -	– III	• •			08 Hrs		
Enviro	nmental des	ign	:							
Green	buildings, g	ree	n materials, Leadership in	n Energy and	Environmental Des	sign	(LEED), I	Hydroponics,		
Organic	Farming, B	ioft	els, IC engine to E mobility	y transition and	l its impacts, Carbon	Čr	edits, Carbo	n Foot Prints,		
Opportu	unities for C	Gree	en Technology Markets, C	Carbon Seques	stration. Resource re	eco	very system	: Processing		
techniq	ues, Materia	ls r	ecovery systems, Biologic	al conversion	(composting and an	aer	obic digesti	on). Thermal		
convers	sion products	s (C	Combustion, Incineration,	Gasification,	Pyrolysis, use of Re	efus	se Derived	Fuels). Case		
studies.										
Course	Outcomes:	Af	ter completing the course	, the students	will be able to: -					
CO1	Identify the	eco	mponents of environment a	nd exemplify t	he detrimental impac	t of	anthropoge	nic activities		
	on the envi	ron	ment.							
CO2	Differentia	te t	he various types of wastes	and suggest ap	propriate safe techno	olog	gical method	ls to manage		
	the waste.									
CO3	Apply diffe	erer	t renewable energy resource	ces and can and	alyse the nature of wa	aste	and propos	e methods to		
	extract clea	an e	energy.							
CO4	Adopt the a	app	ropriate recovering method	ls to recover th	e essential resources	fro	m the waste	s for reuse or		
	recycling.									
Dafer	noo D c - 1									
Keferei	Charle' C	- 1	a A Tarth - 1 C T		MaCourse II'll E 1		ion 2017 1			
1.	Shashi Cha 125900638	awl 37.	a, A Textbook of Environ	imental Studie	s, McGraw Hill Edu	icat	10n, 201/, 1	12RN:		

G. Tyler Miller (Author), Scott Spoolman (Author), (2020) Environmental Science - 15th edition,

3.

2022. ISBN: 9789332575134.

RV Educational Institutions [®] **RV College of Engineering**[®]

Autonomous

Approved by AICTE, New Delhi Institution Affiliated to Visvesvaraya

	lo horocraita ya
-	Technological
1	University, Belagavi
	Publisher: Brooks Cole, ISBN-13: 978-1305090446, ISBN-10: 130509044.
4.	Howard S. Peavy, Donald R. Rowe and George Tchobanoglous. 2000. Environmental Engineering,
	McGraw Hill Education, 1 st edition (1 July 2017). ISBN-10: 9351340260, ISBN-13: 978-9351340263
5.	A Textbook of Environmental Studies, Shashi Chawla, McGraw Hill Education, 2017, ISBN:
	1259006387.

RUBRI	CS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & each quiz will be evaluated for 5 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

RUBRI	RUBRICS FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO	IO CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	10					
	PART B						
	(Maximum of THREE Sub-divisions only)						
2	Unit 1: (Compulsory)	08					
3 & 4	Unit 2: Question 3 or 4	08					
5&6	Unit 3: Question 5 or 6	08					
7 & 8	Unit 4: Question 7 or 8	08					
9 & 10	Unit 5: Question 9 or 10	08					
	TOTAL	50					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: III								
	ANALOG MICROELECTRONIC CIRCUITS								
				Category:	PROFESSIONAL	CORE COURSE			
	(Theory & Practice)								
Course	Code	:	21EC	33		CIE	:	100+50 M	Iarks
Credits	: L: T: P	:	03:00	:01		SEE	:	100+50 N	Iarks
Total H	ours	:	42L+2	30P		SEE Duration	:	03 Hrs+03	3 Hrs
					Unit-I				09 Hrs
Binolar	Junction T	ran	sistors	(BITs).					
	uita at da E	iaai	ing in d	(DUIS).	malifier airquite em	all signal operation	and	models early	w offect DIT
DJT CIIC	ults at uc, E	asi Teta	ing in u	stage with d	amplifier circuits, sin	an signal operation	doc	inouels, earl	y effect, BJT
nair	ipinici – Ci	2 510	ige, CL	stage with u	egeneration, ee stag	e, discrete ampriller	ues.	ign problems	s, Darington
pun.					Unit II				00 Urs
MOSE	old Effort "	Гиот	ngistor	MOSEET	$\frac{1}{2} = 11$				07 111 5
Device of	tructure and	nhy	usical or	eration cur	0). rent voltage character	istics MOSEET cir	cuite	at de Riasir	a in discrete
MOS ar	nnlifier circ	pny nite	small (signal opera	tion and models, character	nel length modulat	tion	transconduc	tance Body
effect.		uno,	, sman	signai opera	tion and models, end	iner length modula	.1011,	uansconduc	tunce, body
					Unit –III				09 Hrs
MOSFI	ET as an Ar	npli	fier:						
Small si	gnal analysi	s (ir	ncluding	g CLM) of C	S stage with resistive	load, diode connec	ted 1	oad, current	source load.
CS stage	e with degen	erat	ion, CG	and CD stag	ges. MOSFET interna	l capacitors and high	n free	juency mode	el, frequency
response	e of CS amp	lifie	r.			1 0		1 2	1
	Î				Unit –IV				08 Hrs
Operati	ional Ampli	fier	s:						
Introduc	tion, Effect	of	finite of	open loop g	ain. Linear Opamp	Circuits – Analysis	s of	Inverting, N	Noninverting
configu	ations, Diff	eren	ice Amp	olifier, Instru	mentation Amplifier	Nonlinear Opamp	circu	its - Analysi	is of Schmitt
trigger,	Working an	d ap	plicatio	ons of IC555	Timer				
					Unit –V				07 Hrs
Feedba	ck Amplifie	rs a	and Lar	rge Signal A	mplifiers:				
Properti	es of negativ	ve te	edback	the four ba	sic feedback topologi	es, practical circuit	s of t	he two types	s of feedback
with op-	amps (Volta	.ge s	series fe	edback), cla	ssification of output s	tages, class A, class	BCI	rcuits, therm	nal resistance
and near	sinking of								
Course	Outcomes:	Aft	er com	pleting the	course, the students	will be able to: -			
CO1	Analyze th	le w	orking	of opamp, B	JTs and FETs under	various biasing conc	litio	18.	
CO2	Investigate	e the	e charac	cteristics of c	ircuits employing BJ	T, FET and opamp.	•		
CO3	Apply the	con	cepts of	t basic electi	onic devices to desig	n various analog cir	cuits	•	
CO4 Evaluate the performance parameters of various analog subsystems.									
Reference Books									
1.	Microelec	ron	ic Circ	uits Theory	and Applications, Ad	lel S Sedra, & Ken	neth	C Smith, a	dapted by A
	Chandorka	ır, I	Internati	ional versio	n, 7 th Edition, 2017,	Oxford University	Pres	ss, ISBN-13	: 978-
	01994762	99.							0.00.01.1.1
2.	Fundamen	tals	of Mici	roelectronics	s, Behzad Razavi, 3 rd	Edition, 2021, Wile	y, IS	BN:9781111	19695141
3.	Electronic	Dev	vices an	d Circuits, J	acob Millman, Christ	os C Halkias, Cheta	n D I	Parikh, 2 ^{na} E	dition, 2016,
	Tata McG	raw	Hill pu	blication, IS	BN:0070151423.			4 4 th	
4.	Electronic	De	vices an	d Circuit Th	eory, Robert L Boyle	stad & Louis Nashe	elsky	, 11 th Edition	n, 2017, PHI
	publication	n, IS	SBN: 97	881317252	90.				

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Practical's: Hardware Experiments

- 1. Design & testing of half wave and full wave rectifier circuits.
- 2. Design and Testing of Zener voltage Regulator
- 3. Design &testing of (a) Inverting amplifier (b) Non inverting amplifier (c) Summing circuit using operational amplifier.
- 4. Design &testing of (a) Comparator and design of voltage series feedback configuration in LT spice (b) Schmitt trigger, using operational amplifier.
- 5. Static characteristics of NMOS transistor
- 6. Design and testing of RC phase shift and Wien bridge oscillator circuits using operational amplifier.
- 7. Design & testing of an RC coupled amplifier using BJT in CE configuration.
- 8. Design & testing of Darlington emitter follower circuit with and without boot strapping.
- 9. LC Oscillators: Hartley and Colpitts oscillators using BJT
- 10. Design and testing of class B power amplifier circuits.

Innovative Experiments

- 1. Design of voltage series feedback configuration in LTspice.
- 2. Design of voltage Shunt feedback configuration in LTspice.

RUBRI	CS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & LAB)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & each quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
	WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	50
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	
	MAXIMUM MARKS FOR THE CIE	150
RUBRI	CS FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRICS FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	20
3	Viva	20
	TOTAL	50

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: III							
			ANALYSIS .	AND DESIGN OF DI	GITAL CIRCUIT	S		
			Categor	y: PROFESSIONAL C	ORE COURSE			
			ັ((Common to EC. EE. E	I & ET)			
				(Theory & Practic	ce)			
Course	Code	:	21EC34		CIE	:	100+50 N	Aarks
Credits:	L: T: P	:	03:00:01		SEE	:	100+50 N	/larks
Total H	ours	:	42L+30P		SEE Duration	:	03 Hrs+0	3 Hrs
				Unit-I				08 Hrs
Number	• System•							
Desimal	Dinory O	atal	Uavadaaimal	1's and 2's complement	Codes Dinery DC	וח	Evene 2 C	rov Codoo
Deciliar and Can	, Dillary, U	cial	f products and	I s and 2 s complements	s, Cours-Dillary, DC.	D, 1	EXCESS 5, U	imization
(Up to 4	Version. Su		n products and	roduct of sums, wintern	Digital Integrated (iaus Tiro	gn map win	Infization.
Equilion	· variables).	יע	Dorformance no	remeters	i. Digital integrated (_IIC	uns. Digital	I IC Logic
Tammes		y,	r er tor manée pa					10 11
	· • • •	•	D '	Umit – 11				10 Hrs
Combin	ational Log	gic	Design:		• • • • •	D		1 1 4 1 1
Design of	of Half and	. Fi	ill Adders, Hal	f and Full Subtractors u	sing Universal gates	., В	Sinary Paral	lel Adder
/Subtrac	tor– Carry	100	k ahead Adder	, BCD Adder, Multiplier	, Magnitude Compa	rato	or, Multiple	xer,
Demulti	plexer, Deco	ode	r, Encoder, Pric	ority Encoder, Parity Bit				
Generato	or/Checker.							0.0
				Unit –III				09 Hrs
Latches	and Flipflo	p:						
Introduc	tion, Latche	es a	nd Flip Flops,	Friggering of Flip Flops,	Characteristics Equa	tion	Flip Flop I	Excitation
Tables, I	Flip-Flop co	nve	ersions. Propaga	ation delay, setup and hole	d time.			
Synchro	onous Sequ	ent	ial Circuits De	sign:				
Introduc	tion to FSM	I (N	Aealy and Moor	e), Analysis of Clocked S	Sequential Circuits, S	tate	table and R	leduction,
State Dia	agram, Desi	gn	of synchronous	Counter (mod-n counter)	, Integrated Circuit S	ync	hronous Co	unter.
				Unit –IV				10 Hrs
Asynchi	ronous Sequ	uer	ntial Circuit De	sign:				
Design of	of Ripple/A	syn	chronous Coun	ter (mod-n counter), Effe	ects of Propagation of	lela	y in Ripple	Counter,
Integrate	ed Circuit R	ipp	le Counter.					
Register	:s:							
Register	s, Shift Reg	gist	ers and Variou	s Operations, Ring coun	ters, Johnson counte	ers,	Design of	Sequence
Detector	and Sequer	ice	Generators (PR	BS), Serial Adder/Subtra	ctor Design.		-	-
				Unit –V				08 Hrs
Arithme	etic Logic U	Jnit	t (ALU)design:					
Processo	or Organizat	ion	, Design of Arit	hmetic Unit, Design of Lo	ogic unit, Design of A	rith	metic and L	ogic unit,
Status Register, Design of Shifter, The Complete Processor unit and op-code generation.								
Course	Course Outcomes: After completing the course, the students will be able to: -							
CO1	Analyze ar	nd c	lesign different	types of digital circuits for	or area, delay and pov	ver	constraints.	
CO2	Comprehe	nd	the knowledge	of digital circuits to con	nstruct sub-systems u	ısef	ful for digit	al system
	designs.		U	C	2		0	-
CO3	Implement	di	gital circuits for	a particular application c	onsidering performar	ice	parameters.	
CO4	Evaluate th	ne r	erformance of o	lifferent digital circuits to	apply in real world a	lggl	ications.	
	Evaluate the performance of unreferring agriculture to upping in real world uppretations.							

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Referen	nce Books	
1.	Digital Logic and Computer Design, M. Morris Mano, Pearson Education Inc., 13 th I 2011, ISBN: 978-81-7758-409-7.	mpression,
2.	Fundamentals of Logic Design, Charles H. Roth (Jr.), West publications, 4th Edition, 19	992, ISBN-
	13: 978-0-314-92218-2.	
3.	Digital Fundamentals, Thomas Floyd, 11 th Edition, Pearson Education India, ISBN 292-07598-3, 2015.	13: 978-1-
4.	Digital Principle and Design, Donald D. Givone, McGraw-Hill, ISBN: 0-07-(ISE),2003.	-119520-3
5.	Digital Principles and Applications, Albert Paul Malvino and Donald P Leach, 7 th Ec McGraw Hill Education Private Limited, 2011, ISBN-13: 978-0-07-014170-4 and IS 07-014170-3.	lition, Tata SBN-10: 0-
Practic	al's:	
1. Tr	uth Table verification of NOT, AND, OR, XOR, XNOR, NAND, NOR gates using IC t	rainer
kit		
2. Re	alization of Binary Adder and SubtractorIC-7483.	
3. Re	ealization of Boolean Function using MUX/DEMUX (IC-74153, IC-74139.)	
4. De	esign of synchronous 3-bit up/down counter using IC-7476/IC-74112 on IC trainer kit.	
5. Re	ealization of Binary Adder and Subtractor using Verilog	
6. Re	ealization of Multiplexer/Decoders/Encoder in Verilog.	
7. Re	ealization of D, T, JK flip flop in Verilog using behavioral modelling on FPGA board.	
8. De	esign of synchronous (up/down/BCD counter in Verilog using behavioral modelling.	
9. De	esign of Shift register, ring counter, Johnson counter using Verilog	
10. De	esign of Sequence generator and detector.	
Innovat	tive Experiments:	
1. M	ultiplier Designs (Booth, Wallace)	
2. Ba	asic Processor Design	
RUBRI	CS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & LAB)	MADIZO
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES	• •
	will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF	20
	TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different	
	complexity levels (Revised Bloom's Laxonomy Levels: Remembering,	40
	Understanding, Applying, Analyzing, Evaluating, and Creating). IWO IESIS will be evaluated for 50 Marks, adding up to 100 Marks	40
	FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30	
	Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and	50
	Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	20
1	DTA 20 MUMIND	

150

MAXIMUM MARKS FOR THE CIE

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRICS FOR SEMESTER END EXAMINATION (THEORY)							
Q.NO ·	CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus		20				
	PART B						
	(Maximum of THREE Sub-divisions only)						
2	Unit 1: (Compulsory)		16				
3 & 4	Unit 2: Question 3 or 4		16				
5&6	Unit 3: Question 5 or 6		16				
7 & 8	Unit 4: Question 7 or 8		16				
9 & 10	Unit 5: Question 9 or 10		16				
		TOTAL	100				

RUBRICS FOR SEMESTER END EXAMINATION (LAB)						
Q.NO.	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	20				
3	Viva	20				
	TOTAL	50				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: III							
			NETWORK AN	ALYSIS AND CO	ONTROL SYSTE	EMS		
			Category:	PROFESSIONAL	CORE COURSE			
				(Theory)				
Course	Code	:	21EC35		CIE	:	100 Mark	KS
Credits:	: L: T: P	:	03:00:00		SEE	:	100 Mark	KS
Total H	ours	:	42L		SEE Duration	:	03 Hrs	
				Unit-I				09 Hrs
Fundam	nentals:							
Mesh Lo	oop and Nod	le a	nalysis with linear d	ependent and indeper	ndent sources for D	C and	d AC netwo	rks. Network
Theorem	ns: Superpos	sitic	on, Reciprocity, The	venin's, Norton's, Ma	aximum Power tran	sfer a	and Millmar	's theorems.
				TT				00 11
T			8 T.::4:-1 () 1:4:					09 Hrs
I ransie Evaluati	nt Benavior	ar e	x Initial Conditions in I	S: PIPCandPIC(Tircuits for DC nets	vork	Lanlacatr	ansformation
and appl	ications. Tv	vo t	ort Networks: Z. Y.	ABCD and Hybrid t	parameters, their inf	er-re	lationships	ansionnation
una appi	1044101151 1 1	1 0 1	, 1,	Unit –III				08 Hrs
Basic Id	leas of Cont	trol	Systems, Mathema	atical Models of Phy	vsical Systems:			
Classifi	cation of Co	onti	ol Systems, Open I	Loop and Closed Loo	op (in detail), Diffe	renti	al equations	s of Physical
Systems	and Transf	er I	Function (and electri	ical systems) Block l	Diagram Reduction	, Sig	nal Flow G	raphs(simple
example	s).							
				Unit –IV				08 Hrs
Time Ro	esponse of l	Fee	dback Control Syst	tems:	X 1 D	c	F 10	10.1
Standard	1 Test Signa	ls, i T-i	Step Response for F	irst and Second Orde	r, Impulse Respons	e for	First and So	econd Order,
t M (N)	lon derivation	лу N 9	Steady State Error A	system. Time Doma nalysis Error Consta	nts K K K	r sec	ond Order ,	System. t_r , t_d ,
up , 101 p (1		i), t	field y State Error A	Unit –V	III.5, IXp, IXv, IXa.			08 Hrs
Stability	v Analysis:			0				00 1115
Concept	s of Stabili	ty,	Types of Stability	, Asymptotic Stabil	ity, Root Locus '	Fech	nique and	Bode Plots,
Introduc	tion to Root	Ĺ	cus, Stability Analy	sis using Root Locus	Diagram, Bode Ple	ots.	•	
Course	Outcomes:	Af	ter completing the	course, the students	will be able to: -			
CO1	Apply the	ba	sic concepts and so	lve circuits with DC	c or AC excitation	usin	g theorems	and
COA	transforma	1101	ns.		·		<u> </u>	c .:
002	Compare t	nes	steady state and trans	ient response of a circ	cuit through applica	tion	of inverse tra	ansformation
CO3	Apply the	<u>g u</u> kno	wledge of mathema	tics & basic electrica	l concents to solve	nroh	ems in cont	rol systems
CO4	Evaluate th	ne r	performance of diffe	rent systems in time	& frequency domai	n ana	lvsis	for systems.
		F		can systems in time (e nequency domain		-,010.	
Referen	Reference Books							
1.	Network a	anal	ysis, M.E. Van Va	lkenberg, 2000, Pre	ntice Hall of Indi	a, 3 ^{re}	¹ Edition, I	SBN:
	97801361	109	58.	-				
2.	Networks	and	systems, Roy Chou	dhury, 2 nd Edition, N	lew Age Internation	nal P	ublications,	2006, ISBN:
	978812242	276	77.	111 0 5	x x 11			
3.	Modern Co	onti	ol Engineering, Kat	suhiko Ogata, Prentio	ce Hall.	-	D) 11 1 1 -	11.1 -th
4.	Control Sy	ste	ms Engineering, Nag	garath and M. Gopal,	New Age Internation	onal (P) limited P	ublishers, 5 th
	Edition, 20)07	, ISBN: 81-224-200	8-7.				

RV Educational Institutions ® **RV College of Engineering**[®]

Autonomous

to Visvesvaraya

Approved by AICTE, New Delhi Institution Affiliated

1	Technological	
ι	Jniversity, Belagavi	
RUBRI	CS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
	WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100
		•

RUBRI	CS FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

				Semester: III				
			DIGITAL SYST	TEM DESIGN US	ING VERILOG	HDL	1	
			Category: P	ROFESSIONAL	CORE COURSE			
				(Theory)				
Course	Code	:	21EC36		CIE	:	100 Mark	<u>s</u>
Credits	: L: T: P	:	03:00:00		SEE	:	100 Mark	ζ <u>s</u>
Total H	ours	:	42L		SEE Duration	:	03 Hrs	
				Unit-I				09 Hrs
Design	Flow Introd	lue	tion-FPGA Introdu	uction to Verilog.				
Design .				www.contorvernog.		1 17.		Varila Data
An Intro	Not Desist	riic	og History, System re	epresentation, Numb	er representation an		nog ports.	Verilog Data
Concate	net, Regist		ind Constant. Veni Inditional Modeling	styles Dataflow	Modeling: Boolean	i Fai	, Keudelloi	d Models of
Combin	ational Loo	ric	Propagation Delay	and Continuous	Assignments Stru	ctura	1 Modelino	" Design of
Combin	ational Logi	c.	Verilog Structural N	Iodels. Module Port	s. Top-Down Desig	eranan en an	d Nested M	Iodules. Gate
level mo	odelling	-,			-, <u>F</u>	>		
	U			Unit – II				09 Hrs
Structu	ral Modelir	lg:						
Design	of Combina	atio	nal Logic, Verilog	Structural Models,	Module Ports, To	p-Do	wn Design	and Nested
Modules. Gate level modeling Behavioral Modeling: Latches and Level-Sensitive Circuits in Verilog, Cyclic								
Behavio	Behavioral Models of Flip-Flops and Latches, Cyclic Behavior and Edge Detection. A Comparison of Styles for							
Behavio	ral modeling	g, E	Behavioral Models of	f Multiplexers, Encoc	ders, and Decoders.	Data	flow Model	s of a Linear-
Feedbac	k Shift Regi	ste	r.					
				Unit –III				08 Hrs
Algorit	hmic State I	Ma	chine Charts for Be	ehavioral Modeling:		• ,		·) T 1 0
Behavio	ral Models (of C	Counters, Shift Regis	sters, and Register Fi	les and Arrays of R	egist	ers (Memor	ies). Tasks &
Function	ns Algorithn		State Machine Chai	rts for Benavioral M	odelling, ASMD cl	harts,	Design of a	FSM(Mealy-
WIOOLE)	using verne	<u>,</u> ,	Design Example. Se	Init_IV	erator Reypau Scar			08 Hrs
Archite	ctures for A	rit	hmetic Processors:					00 1113
(Functio	onal Units for	or N	(ultiplication) - Sequ	uential Binary Multi	plier. Sequential M	ultipl	ier Design:	Hierarchical
Decom	osition ST	G-B	ased Controller De	sign. Efficient STG	-Based Sequential	Bina	rv Multiplie	er. Reduced-
Register	sequential	mul	tiplier, Multiplicatio	on of signed binary nu	umber.			,
0	•			Unit –V				08 Hrs
Archite	ctures for A	rit	hmetic Processors	(Functional Unit for	r Division):			•
Division	n of Unsign	ed	Binary Number, E	fficient Division of	Unsigned Binary	Num	bers, Redu	ced Register
Sequent	ial Divider.							
	0.1	1.0						
Course	Outcomes:	Af	ter completing the o	course, the students	will be able to: -			
	Analyze di	gita	al circuits and system	ns to model using ve	r110g HDL.		lassintian	
C02	Apply desi	gn mth	knowledge to FSNI t	oital avatam and varie	s using nigh-level F	$\frac{1DL}{fort}$	lescription.	
C03	Develop sy		esizable code for dig	gital system and vern	l sustema realized y	lor u	le same.	-1ro
CO4 Referen	Design and	ev	aluate the performan	ice of efficient digita	n systems realized t	ising	various blo	UKS.
1	Advanced	Die	rital Design with the	Verilog HDL MD	Ciletti Prentice H	11 2 ^r	^{ad} Edition 19	SBN
1.	013601928	5.		weinog HDL, WI.D.		un, 2		JJJIN .
2.	Verilog H ISBN: 978	DL	: A Guide to Digital	Design & Synthesis,	Samir Palnitkar, Su	nSof	t Press, 1 st E	dition, 1996,
	10011. 770	-81	-775-8918-4.		,			

4.

Approved by AICTE, New Delhi

University, Belagavi ISBN: 9788190935630.

Autonomous

Institution Affiliated

to Visvesvaraya Technological

Digital Systems Design using Verilog, Roth, Charles, John, Lizy K, Kil Lee, Byeong, ISBN-10: 1285051076, ISBN-13: 9781285051079.

RUBRI	CS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
	WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity	
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	
	Analyzing, Evaluating, and Creating). TWO TESTs will be conducted. Each test will be	40
	evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE	
	REDUCED TO 40 MARKS.	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO	40
	40 MARKS.	
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRI	ICS FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

L

RV Educational Institutions ® **RV College of Engineering**[®]

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

				Semester: III				
			Br	idge Course: MATHE	MATICS			
				(Mandatory Audit C	ourse)			
				(Common to all prog	rams)	•		
Course C	lode	:	21DMA37		CIE	:	50 Marks	
Credits:	L: T: P	:	02:00:00					
				Unit-I				10 Hrs
Multivar Partial D problems.	iable Calcul ifferentiatio	lus: on:	Introduction, si	mple problems. Total der	ivative, composite fu	inc	tions. Jacobia	ans – simple
Vector I	Differentiat	tior	1: Introduction	n, simple problems in t	erms of velocity a	nd	acceleration	n. gradient,
divergen	ce – solen	oid	al vector fun	ction, curl – irrotatio	nal vector function	n a	and Laplaci	an, simple
problems	5.							
				Unit – II				10 Hrs
Different	ial Equation	ns:						
Higher o	rder linear o	liff	erential equati	ions with constant coeff	icients, solution of	ho	mogeneous	equations -
Complen	Complementary functions. Non homogeneous equations –Inverse differential operator method of finding							
particula	r integral ba	asec	1 on input fund	ction (force function).				10 11
Numero	l Mathada.							10 Hrs
Numerica Solution	of algebra	ic	and transcond	lantal aquations Inte	rmadiata valua pr	on	arty Nowto	n Panhson
method	Solution of	fir	st order ordin	ary differential equation	rinculate value pr	nd	A^{th} order \mathbf{R}	unge-Kutta
methods	Numerical	int	$e_{\text{oration}} = \text{Sin}$	$n son's 1/3^{rd} 3/8^{th}$ and	Weddle's rules (Al	110 1 m	ethods with	out proof)
methous	1 (unioricui		<u>ogration</u> sin					iour proor).
Course C	utcomes: A	fte	r completing tl	he course, the students w	vill be able to: -			
CO1	Illustrate th	ne f	undamental cor	ncepts of partial different	iation, vector differen	ntia	tion, solution	ns of higher
	order linear	r di	fferential equation	ions and numerical metho	ds.			
CO2	Derive the	so	lution by apply	ying the acquired knowl	edge of total deriva	tive	es of implici	it functions,
	Jacobians,	hon	nogeneous linea	ar differential equations, v	velocity, and accelera	tio	n vectors to t	he problems
C03	of engineer	$\frac{1}{1}$	applications.	problems using appropr	into tochniques of d	liff	propriat calo	ulue voctor
005	differentiat	ion	differential eq	uations and numerical me	thods to the real-wor	ld r	roblems aris	ing in many
	practical si	tuat	tions.	dutions and numerical me		ia p		ing in many
CO4	Compile th	e o	verall knowleds	ge of differential calculus,	vector differentiation	n, d	ifferential eq	uations and
	numerical 1	met	hods gained to	engage in life – long leari	ning.			•
Referenc	e Books							
1.	Higher Eng 933284-9-1	gine I.	ering Mathema	ttics, B.S. Grewal, Khann	a Publishers, 44th Ec	litio	on, 2015, ISI	3N: 978-81-
2.	Higher En 07-063419	gin -0.	eering Mathema	atics, B.V. Ramana, 11th	Edition, 2010, Tata M	Ac(Graw-Hill, IS	SBN: 978-0-
3.	A Text Boo 2010, ISBN	ok o N: 9	f Engineering N 78-81-3180832	Aathematics, N.P. Bali & 2 20.	Manish Goyal, Laksh	mi	Publications	, 7 th Edition,
4.	Advanced ISBN: 978	Eng -04'	gineering Math 70458365.	ematics, E. Kreyszig, 10	th Edition (Reprint),	20	16. John Wil	ley & Sons,

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
# COMPONENTS	MARKS
1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QU conducted & Each Quiz will be evaluated for 05 Marks. THE SUM OF TW WILL BE THE FINAL QUIZ MARKS.	ZZES will be O QUIZZES 10
2. TESTS: Students will be evaluated in test, descriptive questions with differ levels (Revised Bloom's Taxonomy Levels: Remembering, Understand Analyzing, Evaluating, and Creating). TWO tests will be conducted. Ea evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MAR REDUCED TO 20 MARKS.	ent complexity ng, Applying, h test will be 20 S WILL BE
3. EXPERIENTIAL LEARNING: Students will be evaluated for their practical implementation of the problem. Phase I (10) & Phase II (10) AI 20 MARKS .	reativity and DING UPTO 20
MAXIMUM MARKS FOR THE	IE THEORY 50

to Visvesvaraya

Approved by AICTE, New Delhi Institution Affiliated Technological University, Belagavi

		Seme	ster: III				
		ADALITHA	A KANN	NADA			
		Category: HUMANITIE	ES & SO	CIAL SCIENCES	S		
		(Common to	all Pro	grams)			
0 0 1	1		eory)	OIE	-	50 M 1	
Course Code	:	21HS38A / 21HS46A		CIE	:	50 Marks	
Credits: L:1:P	Credits: L:1:P : 1.0.0 SEE : 50 Marks Total Hours : 1.1 Hrs					50 Marks	
1 otal Hours	: 4 T		<u></u>		:	1 Hrs	06 Ung
	l-1 -	- ಲೇಖನಗಳು & ಆಧುನಕ	ಸ್ರೂಲಾ	೯ದ ಕಾವ್ಯ ಭಾಗ			00 1115
1. ಕರ್ನಾಟಕ ಸಂ	೦ಸ್ಕ	ೃತಿ - ಹಂಪ ನಾಗರಾಜಯ್ಯ					
2. ಕರ್ನಾಟಕದ	ಏಕಿ	ೇಕರಣ: ಒಂದು ಅಪೂರ್ವ ಚ	ಕರಿತ್ರೆ - ಜಿ	ತಿ. ವೆಂಕಟಸುಬ್ಬಯ	ಬ್ಯ		
3. ಆಡಳಿತ ಭಾಕ	ತೆಯ	ುಾಗಿ ಕನ್ನಡ - ಡಾ. ಎಲ್. ತಿವ	ಬ್ಮೀಶ ಮ	ುತ್ತು ಪ್ರೋ.ವಿ. ಕೇಶ	ವಾ	ಮೂರ್ತಿ	
1. ವಚನಗಳು: ಬ	ುಸಂ	ವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲ	್ಲಮ ಪ್ರಭ	ರು, ಜೇಡರ ದಾಸಿವ	ba	ಗ್ಯು, ಆಯ್ದಕ್ಕಿ	, ಲಕ್ಕಮ್ಮ
2. ಕೀರ್ತನೆಗಳು:	ಆ	ದರಿಂದೇನು ಫಲ ಇದರಿಂದೆ	ನು ಫಲ)- ಪುರಂದರದಾಸಂ	ರು		
ತಲ್ಲಣಿಸದ	ುರು	ಕಂಡ್ಯ ತಾಳು ಮನವೇ - ಕನ	ಕದಾಸಂ	ರು			
3. ತತ್ವಪದಗಳು	<u>ಸ</u> ಂ	ಎರ ಕೊಡಗಳ ಸಿಟ್ಟು - ಶಿಶು:	ನಾಳ ಶಣ	े (इं			
Unit	-II	I ಆಧುನಿಕ ಕಾವ್ಯ ಭಾಗ &	ತಾಂತ	ತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿ	स	ಯ	06 Hrs
1. ಡಿವಿಜಿರವರ ನ	ಮಂ	ುಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ	್ಗ ಕೆಲವು	ಭಾಗಗಳು			
2. ಕುರುಡು ಕಾಂ	ক্য	ಣ: ದಾ.ರಾ. ಬೇಂದ್ರೆ					
3. ಹೊಸಬಾಳಿನ	3 NC	ತೆ: ಕುವೆಂಪು					
1. ಡಾ.ಸರ್.ಎಂ). v)ಶ್ವೇಶ್ವರಯ್ಯ: ವ್ಯಕ್ತಿ ಮತ್ತು ಜ	ುತಿಹ್ಯ- ಕ	ಎ.ಎನ್. ಮೂರ್ತಿರ	<u>়</u>	$\Sigma_{\rm e}$	
2. ಕರಕುಶಲ ಕಂ	วํ๙๏	ಸು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜಾ	್ಞಾನ: ಕರಿ	೧೯೯೯ ಬೀಚನಹಳ	ళ్ళి		
		Unit –V ಕಥೆ ಮತ್ತು ಪ್ರತ	ನಾಸ ಕಂ	ಭನ			03 Hrs
1. ಯುಗಾದಿ: ವ	ಸುಧ	ನೇಂದ್ರ					
2. ಮೆಗಾನೆ ಎಂಬ	<u>ა</u> ჩ	ರಿಜನ ಪರ್ವತ: ಹಿ.ಚಿ.ಬೋರ	ಲಿಂಗದ	ಸ್ಯ			

Course	Outcomes: After completing the course, the students will be able to:-
CO1	ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯವಾಗುತ್ತದೆ.
CO2	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಆಸಕ್ತಿಯು ಮೂಡುತ್ತದೆ.
CO3	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಕಾವ್ಯಗಳ ಬಗ್ಗೆ ಆಸಕ್ತಿಯು ಮೂಡುತ್ತದೆ.
CO4	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ. ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ, ಸಾಮಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ
	ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ.

Refere	nce Books (ಪರಾಮಶಃ	Fನ ಪುಸ್ತಕ)
1	ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ	ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	RY)
	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted each will be evaluated for 5 Marks adding up to 10 Marks.	10
	THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS THE FINAL	10
	QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with	
	different complexity levels (Revised Bloom's Taxonomy Levels: Remembering,	
	Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS	20
	will be conducted. Each test will be evaluated for 25 Marks, adding up to 50	
	Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity	
	and practical implementation of the problem. Phase I (10) & Phase II (10)	20
	ADDING UPTO 20 MARKS.	
	MAXIMUM MARKS FOR THE CIE THEORY	50

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q.N O.	CONTENTS	MARKS
	PART A	
1	Question 1: Objective type questions covering entire syllabus	10
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	12
3 & 4	Unit 2: Question 3 or 4	14
5&6	Unit 3: Question 5 or 6	14
	TOTAL	50

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III VYAVAHARIKA KANNADA **Category: HUMANITIES & SOCIAL SCIENCES** (Common to all programs) (Theory) **Course Code** 21HS38V/21HS46V CIE 50 Marks : Credits: L:T:P : 1:0:0 SEE 50 Marks : **Total Hours** 15 **SEE Duration** 1 Hrs : : Unit-I 06 Hrs 1. Introduction, Necessity of learning a local language. Methods to learn the Kannada language. 2. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conversation, Listening and Speaking Activities, Key to Transcription. 3. ವೈಯಕ್ತಿಕ ಸ್ವಾಮ್ಯಸೂಚಕ/ಸಂಬಂಧಿತ ಸರ್ವನಾಮಗಳು ಮತ್ತು ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು- Personal Pronoun, Possessive Forms, Interrogative words. . 1. ನಾಮಪದಗಳ ಸಂಬಂಧಾರ್ಥಕ ರೂಪಗಳು, ಸಂದೇಹಾಸ್ಪದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಸಂಬಂಧವಾಚಕ ನಾಮಪದಗಳು.- Possessive forms of nouns, dubitive question and Relative nouns. 2. ಗುಣ, ಪರಿಮಾಣ ಮತ್ತು ವರ್ಣ/ ಬಣ್ಣ ವಿಶೇಷಣಗಳು, ಸಂಖ್ಯಾವಾಚಕಗಳು - Qualitative, Quantitative and Colour Adjectives, Numerals. 3. ಕಾರಕ ರೂಪಗಳು ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು - ಸಪ್ತಮಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯ -(ಅ, ಅದು, ಅವು, ಅಲ್ಲಿ) - Predictive Forms, Locative Case. Unit –II 06 Hrs 1. ಚತುರ್ಥಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯದ ಬಳಕೆ ಮತ್ತು ಸಂಖ್ಯಾವಾಚಕಗಳು - Dative Cases, and Numerals. 2. ಸಂಖ್ಯಾಗುಣವಾಚಕಗಳು ಮತ್ತು ಬಹುವಚನ ನಾಮರೂಪಗಳು. -Ordinal numerals and Plural markers. 3. ನ್ಯೂನ/ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು ಮತ್ತು ವರ್ಣ ಗುಣವಾಚಕಗಳು -Defective/Negative Verbs & Colour Adjectives. 1. ಅಪ್ಪಣೆ/ಒಪ್ಪಿಗೆ, ನಿರ್ದೇಶನ, ಪ್ರೋತ್ಸಾಹ ಮತ್ತು ಒತ್ತಾಯಾರ್ಥಕ ರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು Permission, Commands, encouraging and Urging words (Imperative words and sentences) 2. ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಗಳಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ಸಂಭವನೀಯ ಪ್ರಕಾರಗಳು Accusative Cases and Potential Forms used in General Communication 3. "ಇರು" ಮತ್ತು "ಇರಲ್ಲ" - ಸಹಾಯಕ ಕ್ರಿಯಾ ಪದಗಳು, ಸಂಭಾವ್ಯ ಸೂಚಕ ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು- Helping Verbs "iru and iralla", Corresponding Future and Negation Verbs 4. ಹೋಲಿಕೆ, ಸಂಬಂಧ ಸೂಚಕ ಪದಗಳು, ವಸ್ತು ಸೂಚಕ ಪೃತ್ಯಯಗಳು ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾ ಪದಗಳು- Comparitive, Relationship, Identification and Negation Words Unit –III 03 Hrs 1. ಕಾಲ ಮತ್ತು ಸಮಯದ ಹಾಗೂ ಕ್ರಿಯಾಪದಗಳ ವಿವಿಧ ಪ್ರಕಾರಗಳು- Different types of Tense, Time and Verbs 2. ದ್, ತ್, - ತು- ಇತು, ಆಗಿ -ಅಲ್ಲ, ಗ್, ಕ್ -ಇದೆ. ಕ್ರಿಯಾ ಪ್ರತ್ಯಯಗಳೊಂದಿಗೆ ಭೂತ, ಭವಿಷ್ಯ ಮತ್ತು ವರ್ತಮಾನ ಕಾಲ ವಾಕ್ಯ ರಚನೆ - Formation of Past, Future and Present Tense Sentences with Verb Forms 3. ಸಂಭಾಷಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ್ನಡ ಪದಗಳು -Daily usage Kannada Words in conversation.

CO1 To understand the necessity of learning of local language for leading life.	
CO2 To speak, read and write Kannada language as per the requirement.	
CO3 To communicate (converse) in Kannada language in their daily life.	
CO4 To Listen and understand the Kannada language properly.	

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

nce Books	
Balake Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Prasaranga	Visveshvaraya
University, Belgaum.	-
Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramar	nurthy and S.
Sathyanarayana, 5 th Edition, 2019, RV College of Engineering Bengaluru.	
Spoken Kannada, Kannada Sahithya Parishat, Bengaluru.	
C FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
COMPONENTS	MARKS
QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	Image: Books Balake Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Prasaranga University, Belgaum. Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramar Sathyanarayana, 5 th Edition, 2019, RV College of Engineering Bengaluru. Spoken Kannada, Kannada Sahithya Parishat, Bengaluru. C FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be

	conducted and each will be evaluated for 5 Marks adding up to 10 Marks. THE SUM	10
	OF TWO QUIZZES WILL BE CONSIDERED AS THE FINAL QUIZ MARKS.	
2.	TESTS : Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analysing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS .	20
3.	EXPERIENTIAL LEARNING : Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

RUBRI	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO	CONTENTS	MARKS		
	PART A			
1	Question 1: Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	12		
3 & 4	Unit 2: Question 3 or 4	14		
5&6	Unit 3: Question 5 or 6	14		
	TOTAL	50		

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: III			
NATIONAL SERVICE SCHEME(NSS)						
(Practical)						
Course Code	:	21HSAE39A		CIE	:	50 Marks
Credits: L: T: P	:	0:00:01		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs
Prerequisites:						
1. Students shou	ld h	ave service-oriented	mindset and social c	oncern.		.1
2. Students shou	la n Pent	for the other works	ork at any remote pla	ce, any time with av	ana	ble resources and proper
3 Students shou	ld h	e ready to sacrifice s	some of the timely w	ill and wishes to ach	nieve	e service-oriented targets
on time.		• • • • • • • • • • • • •				
			Content			13 Hrs
Students must take	up	any one activity on	below mentioned top	ics and must prepar	e co	ntents for awareness and
technical contents f	for i	mplementation of the	e projects and has to p	present strategies for	· imp	elementation of the same.
Compulsorily must	atte	end one camp.				
CIE will be evaluat	ed b	ased on their present	tation, approach, and	implementation stra	tegi	es. (Any one of the below
mentioned activity)						
1. Helping local education.	sch	ools to achieve good	d result and enhance	their enrolment in	Hig	her/technical/ vocational
2. Preparing an implementatio	acti n.	onable business pro	posal for enhancing	the village/ farmer	r ind	come and approach for
3. Developing Su	ıstai	nable Water manage	ement system for rura	l/ urban areas and in	nple	mentation approaches.
4. Setting of the	nfo	rmation imparting cl	ub for women leadin	g to contribution in s	socia	al and economic issues.
5. Spreading pub	lic a	wareness/ governme	ent schemes under ru	ral outreach program	1. (N	(inimum 5 programs)
6. Contribution to	o an	v national level initia	tive of Government o	f India. For eg. Digi	tal I	ndia. Skill India. Swachh
Bharat, Atmar	irbh	har Bharath, Make in	India, Mudra schem	e, Skill development	t pro	ograms etc
7. Social connect	and	l responsibilities		_	_	-
8. Plantation and	ado	ption of plants. Kno	w your plants			
9. Organic farmi	ng, l	Indian Agriculture (H	Past, Present and Futu	re) Connectivity for	· ma	rketing
10. Waste manage	mer	nt – Public, Private a	nd Govt organization	. 5 R's		C
11. Water conserv	atio	n techniques – Role	of different stakehold	lers - Implementatio	n	
12 Govt School I	Rein	venation and assista	nce to achieve good i	nfrastructure		
13 Organize Nati	onal	l integration and so	cial harmony events/	workshops / semin	ars	(Minimum 2 programs)
AND ONE NSS-CAMP.						
Course Outcomes	: Af	ter completing the	course, the students	will be able to: -		
CO1 Understan	nd tł	ne importance of his/	her responsibilities to	owards society.		
CO2 Analyze t	he e	environmental and so	ocietal problems/ issu	es and will be able t	o de	sign solutions for the
same.	. 1	• .• .		1	6	
CO3 Evaluate	the e	existing system and i	to propose practical s	olutions for the same	e foi	· sustainable

development.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EV	VALUATION PATTER	RN
WEIGHTAGE	50%	50%
	CIE	SEE
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****
Case Study-based Teaching-Learning	10	Implementation
Sector wise study & consolidation	10	strategies of the project
Video based seminar (4-5 minutes per student)	10	with report
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III							
NATIONAL CADET CORPS(NCC)							
			(Practical)				
Course Code	:	21HSAE39B		CIE	:	50 Marks	
Credits: L:T:P	:	00:00:01		SEE	:	50 Marks	
Total Hours	:	15P		SEE Duration	:	02 Hrs	
			Unit-I				07 Hrs
Drill: Foot Drill- D	rill	ki Aam Hidayaten, V	Word ki Command	, Savdhan, Vishram	n, Ara	am Se, Mur	dna, Kadvar
Sizing, Teen Line B	ana	na, Khuli Line, Nikat	Line, Khade Khad	e Salute Karna			
Unit – II 03 Hrs							
Weapon Training (V	VT)	: Introduction & Char	racteristics of 7.62	Self Loading rifle, I	denti	fication of ri	fle parts
			Unit –III				03 Hrs
Adventure activities: Trekking and obstacle course							
Unit –IV 02 Hrs							
Social Service and Community Development (SSCD): Students will participate in various activities throughout							
the semester e.g., Blood donation Camp, Swachhata Abhiyan, Constitution Day, All National Festival							
Course Outcomes	A f	ton completing the co	una the students	will be able to.			

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Understand that drill as the foundation for discipline and to command a group for common goal.
CO2	Understand the importance of a weapon its detailed safety precautions necessary for prevention of
	accidents and identifying the parts of weapon.
CO3	Understand that trekking will connect human with nature and cross the obstacles to experience army way
	of life.
CO4	Understand the various social issues and their impact on social life, Develop the sense of self-less social
	service for better social & community life.

Reference Books					
1.	NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R- 1991,				
	ISBN: 978-93-87918-57-3, HSN Code: 49011010				
2.	nccindia.ac.in				

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project			
Video based seminar (4-5 minutes per student)10					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III							
		P	PHYSICAL EDUCA	ATION			
			(SPORTS & ATHLE	CTICS)			
			(Practical)				
Course Code	:	21HSAE39C		CIE	:	50 Marks	
Credits: L:T:P	:	00:00:01		SEE	:	50 Marks	
Total Hours	:	30P		SEE Duration	:	2.5 Hrs	
Content				30 Hrs			

Topics for Viva:

- 1. On rules and regulations pertaining to the games / sports
- 2. On dimensions of the court, size / weight of the ball and standards pertaining to that sports / game
- 3. Popular players and legends at state level / National level/ International level
- 4. Recent events happened and winner / runners in that sport / game
- 5. 5. General awareness about sport / game, sports happenings in the college campus

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Understand the basic principles and practices of Physical Education and Sports.
CO2	Instruct the Physical Activities and Sports practices for Healthy Living.
CO3	To develop professionalism among students to conduct, organize & Officiate Physical Education and
	Sports events at schools and community level.

Referen	nce Books
1.	Health, Exercise and Fitness, Muller, J. P. (2000), Delhi: Sports.
2.	Play Field Manual, Anaika ,2005, Friends Publication New Delhi.
3.	IAAF Manual.
4.	Track and Field Marking and Athletics Officiating Manual, M.J Vishwanath, 2002, Silver Star
	Publication, Shimoga.
5.	Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinestics.
Note: S	Skills of Sports and Games (Game Specific books) may be referred

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN		
WEIGHTAGE	50%	50%
	CIE	SEE
Presentation 1- Selection of topic- (phase 1)		
Justification for Importance, need of the hour	10	****
with surveyed data.		
EXPERIENTIAL LEARNING		
Presentation 2 (phase 2)	10	****
Content development, strategies for		
implementation methodologies.		
Case Study-based Teaching-Learning	10	Implementation strategies of the project with report
Sector wise study & consolidation	10	
Video based seminar (4-5 minutes per student)	10	
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III **MUSIC** (Practical) **Course Code** 21HSAE39D1 CIE 50 Marks : : Credits: L: T: P 00:00:01 SEE 50 Marks : : **Total Hours** 13P **SEE Duration** 02 Hrs : : Content 13 Hrs 1. Introduction to different genres of music 2. Evolution of genres in India: Inspiration from the world

- 3. Ragas, time and their moods in Indian Classical Music
- 4. Identification of ragas and application into contemporary songs
- 5. Adding your touch to a composition
- 6. Maths and Music: A demonstration
- 7. Harmonies in music
- 8. Chords: Basics and application into any song
- 9. Music Production-I
- 10. Music Production-II

Students have to form groups of 2-4 and present a musical performance/ a musical task which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach, and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -	
CO1	Understand basics of Music and improve their skills.
CO2	Appreciate the impacts on health and well-being.
CO3	Perform and present music in a presentable manner.
CO4	Develop skills like team building and collaboration.

Reference Books		
1.	Music Cognition: The Basics by Henkjan Honing.	
2.	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory Answer Book by Glory	
	St Germain.	
3.	Elements Of Hindustani Classical Music by Shruti Jauhari.	
4.	Music in North India: Experiencing Music, Expressing Culture (Global Music Series) by George E.	
	Ruckert.	

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with	10	****				
surveyed data.	10					
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

13 Hrs

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

University, Belagavi Semester: III DANCE (Practical) **Course Code** 21HSAE39D2 CIE 50 Marks : : Credits: L: T: P 0:00:01 SEE 50 Marks : : **Total Hours** 13P **SEE Duration** 02 Hrs : : Contents

- 1. Introduction to Dance
- 2. Preparing the body for dancing by learning different ways to warm up.
- 3. Basics of different dance forms i.e. classical, eastern, and western.
- 4. Assessing the interest of students and dividing them into different styles based on interaction.
- 5. Advancing more into the styles of interest.
- 6. Understanding of music i.e., beats, rhythm, and other components.
- 7. Expert sessions in the respective dance forms.
- 8. Activities such as cypher, showcase to gauge learning.
- 9. Components of performance through demonstration.
- 10. Introduction to choreographies and routines.
- 11. Learning to choreograph.
- 12. Choreograph and perform either solo or in groups.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Understand the fundamentals of dancing.				
CO2	Adapt to impromptu dancing.				
CO3	Ability to pick choreography and understand musicality.				
CO4	To be able to do choreographies and perform in front of a live audience.				

Reference Books

1. Dance Composition: A practical guide to creative success in dance making, Jacqueline M. Smith

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III							
			Semester. III				
			THEATRE				
			(Practical)				
			(Tractical)		_		
Course Code	:	21HSAE39D3		CIE	:	50 Marks	
Credits: L:T:P	:	0:00:01		SEE	:	50 Marks	
Total Hours	:	0:00:01		SEE Duration	:	02 Hrs	
Contents					13 Hrs		

1. Break the ICE

2. Introduction to freedom Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over social anxiety, Shyness and Nervousness.

- 3. Ura
- 4. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing Voice projection is the strength of speaking or singing whereby the voice is used powerfully and clearly. It is a technique employed to command respect and attention, as when a teacher talks to a class, or simply to be heard clearly, as used by an actor in a theatre.
- 5. It's Leviosa, Not Leviosaaa!
- 6. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The art of dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from the dramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue delivery skills:
- 7. Elementary, My dear Watson.
- 8. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.
- 9. Show time
- 10. Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Mono acting: different types of characters

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Develop a range of Theatrical Skills and apply them to create a performance.					
CO2	Work collaboratively to generate, develop, and communicate ideas.					
CO3	Develop as creative, effective, independent, and reflective students who are able to make informed					
	choices in process and performance.					
CO4	Develop an awareness and understanding of the roles and processes undertaken in contemporary					
	professional theatre practice.					

Referen	Reference Books					
1.	The Empty Space by Peter Brook.					
2.	The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina					
	Landau.					

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III							
ART WORK & PAINTING							
(Practical)							
Course Code	:	21HSAE39E1		CIE	:	50 Marks	
Credits: L: T: P	:	0:00:01		SEE	:	50 Marks	
Total Hours	:	13P		SEE Duration	:	02 Hrs	
Contents					13 Hrs		

- 1. Use points, line and curves to create various shapes and forms
- 2. Use of shapes and forms to create various objects and structures
- 3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions of perspective
- 4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.
- 5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization to create a composition.
- 6. Learn how to use which materials and for what types of art and textures.
- 7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie and dye.
- 8. Real world application of the above concepts in the form of book cover design and illustration, cartoon, poster, advertisements, magazine, computer graphics and animation
- 9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY

Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorily take part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presented art style.

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Use lines, shapes, and colors to depict the various sentiments and moods of life and nature.
CO2	Use one's creativity to develop forms and color schemes, as well as the ability to portray them effectively
	in drawing and painting on paper.
CO3	develop the ability to properly use drawing and painting materials (surfaces, tools and equipment, and so
	on).
CO4	Improve their observation abilities by studying everyday items as well as numerous geometrical and non-
	geometrical (i.e., organic) shapes found in life and nature and to hone their drawing and painting talents
	in response to these insights.

Referen	nce Books
1.	Catching the Big Fish: Meditation, Consciousness, and Creativity, David Lynch
2.	Art & Fear: Observations on the Perils (and Rewards) of Artmaking, David Bayles & Ted Orland

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III							
		РНОТОС	GRAPHY & FIL	M MAKING			
			(Practical)				
Course Code	:	21HSAE39E2		CIE	:	50 Marks	
Credits: L: T: P	:	0:00:01		SEE	:	50 Marks	
Total Hours	:	13P		SEE Duration	:	02 Hrs	
			Contents				13 Hrs
1. Introduction to	pho	tography.					
2. Understanding t	he t	terminologies of DSL	R.				
3. Elements of pho	otog	raphy.					
4. Introduction to	scrij	pt writing, storyboard	ing.				
5. Understanding t	he	visualization and desig	gning a set.				
6. Basics of film a	ctin	g					
7. Video editing us	7. Video editing using software						
8. Introduction to	8. Introduction to cinematography.						
9. Understanding about lighting and camera angles.							
10. Shooting a short film.							

Students must form groups of 2-4 and present a short film which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they

participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Understand basics of photography and videography and improve their skills.				
CO2	Appreciate the skills acquired from photography.				
CO3	Perform and present photos and films in a presentable manner.				
CO4	Develop skills like team building and collaboration.				

Referen	Reference Books				
1.	Read This If You Want to Take Great Photographs – Henry Carroll				
2.	The Digital Photography Book: Part 1 – Scott Kelby				

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1)						
Justification for Importance, need of the hour with	10	****				
surveyed data.						
EXPERIENTIAL LEARNING						
Presentation 2 (phase 2)	10	****				
Content development, strategies for implementation						
methodologies.						
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III							
	SUMMER INTERNSHIP - I						
	(Practical)						
Course Code	:	21ECI310		CIE	:	50 Marks	
Credits: L: T: P	:	00:00:01		SEE	:	50 Marks	
Total Hours:3 WeeksSEE Duration:02 Hrs							
Students can opt the internship with the below options						3 Weeks	

A. Within the respective department at RVCE (Inhouse) Departments may offer internship opportunities to the students through the available tools so that the students come out with the solutions to the relevant societal problems that could be completed within THREE WEEKS.

B. At RVCE Center of Excellence/Competence

RVCE hosts around 16 CENTER OP EXCELLENCE in various domains and around 05 CENTER OP COMPETENCE. The details of these could be obtained by visiting the website https://rvce.edu.in/rvce-center-excellence. Each centre would be providing the students relevant training/internship that could be completed in three weeks.

C. At InternShala

Intern Shala is India's no.1 internship and training platform with 40000+ paid internships in Engineering. Students can opt any internship for the duration of three weeks by enrolling on to the platform through https: / /internshala.com

D. At Engineering Colleges nearby their hometown

Students who are residing out of Bangalore, should take permission from the nearing Engineering College of their hometown to do the internship. The nearby college should agree to give the certificate and the letter/email stating the name of the student along with the title of the internship held with the duration of the internship in their official letter head.

E. At Industry or Research Organizations

Students can opt for interning at the industry or research organizations like BEL, DRDO, ISRO, BHEL, etc.. through personal contacts. However, the institute/industry should provide the letter of acceptance through hard copy/email with clear mention of the title of the work assigned along with the duration and the name of the student.

Procedures for the Internship:

- 1. Request letter/Email from the office of respective departments should go to Places where internships are intended to be carried out with a clear mention of the duration of Three Weeks. Colleges/Industry/ CoEs/CoCs will confirm the training slots and the number of seats allotted for the internship via confirmation letter/ Email.
- 2. Students should submit a synopsis of the proposed work to be done during internship program. Internship synopsis should be assessed or evaluated by the concerned Colleges/Industry/CoEs/CoC. Students on joining internship at the concerned Colleges/Industry/ CoEs/CoCs submit the Daily log of student's dairy from the joining date.
- 3. Students will submit the digital poster of the training module/project after completion of internship.
- 4. Training certificate to be obtained from industry.

	-
Course	Outcomes: After completing the course, the students will be able to: -
CO1	Develop interpersonal, critical skills, work habits and attitudes necessary for employment.
CO2	Assess interests, abilities in their field of study, integrate theory and practice and explore career
	opportunities prior to graduation.
CO3	Explore and use state of art modern engineering tools to solve the societal problems with affinity towards
	environment and involve in ethical professional practice.
CO4	Compile, document and communicate effectively on the internship activities with the engineering
	community.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

#	RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION COMPONENTS	MARKS
1.	REVIEW I: Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments, exhibiting professional and ethical practice, communication skills (oral and body language).	20
2.	REVIEW II : Presentation in the form digital poster, report writing, exhibiting ethics in report writing, oral presentation.	30
	MAXIMUM MARKS FOR THE CIE THEORY	50

	RUBRICS FOR SEMESTER END EXAMINATION					
The SEE examination shall be conducted by an external examiner (domain expert) and an internal examination shall be conducted by an external examiner (domain expert) and an internal examination of the second se						
Q.NO.	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	20				
3	Viva	20				
	TOTAL	50				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	SEMESTER: IV										
	STATISTICS AND PROBABILITY FOR DATA SCIENCE										
			Category: P	ROFESSIONAL	CORE COURSE						
	(Common to ALL Programs)										
Course	Cada		2111441	(Theory)	СІЕ	Γ.	100 Mort				
Course	urse Code : 21NIA41 CIE : 100 Marks adita: L : T: D : 2:01:00 SEE : 100 Marks										
Crealis Total II	Ats: L: T: P : 2:01:00 SEE : 100 Marks										
Total H	ours	÷	30L+131	Unit I	SEE Duration	•					
Statisti	00.			01111-1				00 1118			
Central	noments me	an	variance coefficier	ts of skewness and k	urtosis in terms of mo	me	nts Correlat	ion analysis			
rank cor	relation line	an Par	and multivariate reg	ression analysis – pro	blems	me		ion anarysis,			
	Telution, Inte	Jui		Unit – II	Jorems.			06 Hrs			
Randor	n Variables:	:		0				00 1115			
Random	n variables-d	isc	rete and continuous.	probability mass fu	nction, probability d	ens	ity function	, cumulative			
density	function, m	ean	and variance. Two	or more random va	ariables - Joint prob	abi	lity mass fu	nction, joint			
probabil	lity density f	unc	ction, conditional dis	tribution and indepen	ndence, Covariance a	nd	Correlation.	C C			
				Unit –III				06 Hrs			
Probab	ility Distrib	uti	ons:								
Discrete	e distribution	s -	Binomial, Poisson.	Continuous distributi	ons – Exponential, N	orn	nal and Weil	oul.			
				Unit –IV				06 Hrs			
Sampli	ng and Estir	nat	tion:	1. / .1 1		1	c) C	1.			
Populati	ion and samp	ple,	Simple random sar	npling (with replacer	nent and without rep	lac	ement). Sam	ipling			
distribut	tions of mean	15 (:) n o	sigma known), Samp	Chi squarad distrib	nean (sigma unknow)	n):⊺ ∕Iov	i - distributio	on, Sampling			
Estimati	(MIF)	inc	e (sigilia ulikilowil).	Cili - squared distrib	ution. Estimation - w	Тал		liloou			
LStillat	Estimation (WLE).										
Inferen	tial Statistic	s:						00 1115			
Principl	es of Statisti	cal	Inference, Test of h	ypothesis – Null and	l alternative hypothe	sis,	Procedure f	for statistical			
testing,	Type I and T	Гур	e II errors, level of s	significance, Tests in	volving the normal d	istr	ibution, one	- tailed and			
two – ta	iled tests, P-	- V	alue, Special tests of	significance for large	e and small samples	(F,	Chi – square	e, Z, t – test).			
Course	Outcomes:	Af	ter completing the	course, the students	will be able to: -						
CO1	Illustrate t	he	fundamental concep	ts of statistics, rando	m variables, distribu	tior	is, sampling	, estimation,			
	and statisti	cal	hypothesis.								
CO2	Apply the statistical h	acc ivn	juired knowledge of othesis to solve the	statistics, random va problems of engineer	triables, distributions ing applications.	s, sa	ampling, esti	imation, and			
CO3	Analyze th	le s	olution of the proble	ms using appropriate	statistical and proba	bili	ty technique	s to the real-			
	world prob	oler	ns arising in many p	ractical situations.	F	-					
CO4	Interpret th	ne	overall knowledge of	of statistics, probabil	ity distributions and	sa	mpling theor	ry gained to			
	engage in l	life	-long learning.	-				-			
Referen	nce Books										
1.	Theory and	d P	roblems of Probabil	ity, Seymour Lipsch	utz & Marc Lars Lip	son	. 2nd Editio	n. Schaum's			

Theory and Troblems of Trobability, Seymout Lipsenutz & Marc Lars Lipson, 2nd Edition, Senauli s
Outline Series, McGraw – Hill, 2000, ISBN: 9780071386517.
Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 7th
Edition, John Wiley & Sons, 2019, ISBN: 9781119570615.
Probability & Statistics for Engineers & Scientists, Ronald E. Walpole & Raymond H. Myers, 9 th Edition,
2016, Pearson Education, ISBN-13: 9780134115856.

RV Educational Institutions [®] **RV College of Engineering**[®]

Autonomous

to Visvesvaraya Technological

Approved by AICTE, Institution Affiliated New Delhi

University, Belagavi 4. The Elements of Statistical Learning - Data Mining, Inference, and Prediction, Trevor Hastie Robert Tibshirani Jerome Friedman, 2nd Edition, 2009 (Reprint 2017), Springer, ISBN-10: 0387848576, ISBN-13: 9780387848570.

	RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
	WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity	
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	
	Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be	40
	evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE	
	REDUCED TO 40 MARKS.	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO	40
	40 MARKS.	
	MAXIMUM MARKS FOR THE CIE THEORY	100

MAXIMUM MARKS FOR THE CIE THEORY

	RUBRICS FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO · CONTENTS				
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of THREE Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5&6	Unit 3: Question 5 or 6	16		
7&8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL 100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SEMESTER: IV MATERIALS FOR ELECTRONICS ENGINEERING Category: PROFESSIONAL CORE COURSE (Common to EC, EE, EI & TE) (Theory) **Course Code** 21EC42 CIE 50 Marks : : Credits: L: T: P 2:00:00 SEE 50 Marks : : **Total Hours** 28L **SEE Duration** : : 02 Hrs 10 Hrs Unit-I **Introduction:**

Classification and Properties of Materials, Materials Used in Electrical and Electronic Industries, Requirements and Future Developments of Electronic Materials, Case studies of advanced electronics materials and applications.

Classical Theory of Electrical Conduction and Conducting Materials:

Resistivity, TCR (Temperature Coefficient of Resistivity) and Matthiessen's Rule, Traditional Classification of Metals, Insulators and Semiconductors, Drude's Free Electron Theory, Hall Effect, Wiedemann–Franz Law, Resistivity of Alloys, Nordheim's Rule, Resistivity of Alloys, and Multiphase Solids

Unit – II

Thin Film Electronic Materials:

Techniques for Preparation of Thin Films, Thin Film Conducting Materials, Thin Film Resistors, Transparent and Conductive Thin Films, Thin Film Magnetic Materials. Organic Electronic Materials: Conducting Polymers, Charge carriers, Semiconducting Organic Materials, Organic Light Emitting Diode, Organic FET

			Unit –III	09 Hrs
~	-			

Semiconductor devices:

Intrinsic & Extrinsic Semiconductors, temperature dependence of conductivity, direct and indirect recombination minority carrier life time Nanomaterials for Electronic Device Applications: Micro-/Nano-devices Using Nanostructured Materials: CNT transistor, Single electron transistor

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Explain material classification, physical properties, and identify material for electronic applications.
CO2	Summarize various fabrication, characterization techniques for the electronics and nanomaterials used
	in thin film fabrication.
CO3	Calculate electronic properties including electrical conductivity, resistivity,
	magnetic and optical properties in materials.
CO4	Evaluate the transport mechanisms (in solid state & organic) of electronics material in practical
	applications.

Referer	nce Books
1.	Introduction to Electronic Materials for Engineers, Wei Gao & Zhengwei Li, Nigel Sammes, 2 nd Edition,
	World Scientific Publishing Co. Pvt. Ltd, ISBN:9789814293693
2.	Principles of Electronic Materials and Devices, S O Kasap, 4 th Edition, 2018, McGraw Hill Education,
	ISBN-13: 978-0-07-802818-2.
3.	Electronic Properties of Materials, Rolf E. Hummel, 4 th Edition, 2011, Springer, ISBN-13:
	9781489998415.

09 Hrs

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRI	CS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 5 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

RUBRI	CS FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	10
	PART B	
	(Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	08
3 & 4	Unit 2: Question 3 or 4	08
5&6	Unit 3: Question 5 or 6	08
7 & 8	Unit 4: Question 7 or 8	08
9 & 10	Unit 5: Question 9 or 10	08
	TOTAL	50

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

				SEMESTER: I	V			
MICROCONTROLLERS & PROGRAMMING								
	Category: PROFESSIONAL CORE COURSE							
	(Common to EI, ET, EC & EE)							
				(Theory and Pract	ice)			
Course	Code	:	21EI43		CIE	:	100+50 Ma	rks
Credits	: L:T:P	:	3:0:1		SEE	:	100+50 Ma	rks
Total H	ours	:	45L+30P		SEE Duration	:	03 Hrs+03 I	Hrs
				Unit-I				09 Hrs
Introdu	ction to Pro	oces	ssing units:					
Comput	er System,	Pro	cessor, Block diagra	am, Processor logic u	unit, Control unit, Ir	istr	uction format	, Assembly
languag	e, High leve	el la	nguage, Embedded	computing applicatio	ons, Microcontroller,	Ins	truction set a	rchitectures
(CISC, I	RISC), Harv	ard	and Von Neumann,	Floating and fixed po	ount, Introduction of o	con	roller familie	es: 8-bit, 16-
bit,32 bi	it, 64 bit, Af	KΜ	Processor families,	Cortex A, Cortex R a	nd Cortex M, Thum	b 2	instruction se	t.
				Unit – II				09 Hrs
Cortex	M Architec	tur	e:					
Advanta	iges of Cort	ex]	M CPUs, Programm	er's model: Operation	on modes & states, F	Regi	sters, Special	l Registers,
APSR,	Memory Sys	ster	n, Low power mode	es, Instruction Set: M	lemory access instru	ctic	ns, Arithmeti	ic, Logical,
Shift, Pi	ogram flow	cor	trol instructions, Pro	ogramming examples	s, IDEs, SI-Link deb	ugg	ger.	00 11
D'-:4-1	J. A J	10	-					09 Hrs
	and Analog		: A Momory organiza	tion Poset & Cleak	Control CDIO Proc		amina, intarf	aning LEDa
AKW C	onex M4 M	And	s, Memory organiza	uton, Reset & Clock	Collitol, GFIO, FIOg	gi ai	DC Progra	mming and
interfaci	ing an analo	σse	ensor Digital to Ana	$\log Converter (DAC)$) Programming	<u>, 11 1</u>	ADC, Hogra	inning and
meriae	ing an anaio	g sc	lisol, Digital to Alla		, i iogramming			1
				Unit –IV				09 Hrs
Serial P	Port USAR	[:			~	_		
Basics of	of serial con	nmu	inication (Synchron	ous, asynchronous),	Framing, Sampling,	Baı	id rate genera	ation,
Program	iming USAI	KT :	for character transmi	ission, Serial Periphe	ral Interface, Program	mm	ing SPI for da	ata transfer.
T	4 17			Unit –v				09 Hrs
Interru	pts and Tin	ners	S:			T 4		Data att
Types of Decomposition	a interrupts,	INE	Timora Controllin	a the energy in NVIC)	in Cortex-M cores,	Inte	rrupt vectors	, Priorities,
Program	ming meet	upu late	s, Timers, Controllin	lg the operation, Pro	gramming with time	rs,	Puise width I	nodulators,
Tiogram	inning modu	late		wave for given spec	incations.			
Course	Outcomes:	Af	ter completing the o	course, the students	will be able to: -			
CO1	Analyse th	ie a	rchitecture. instruct	ion set and memory	organization of pro	ces	sing units us	ed to build
001	computers	and	l embedded systems.		8		8	
CO2	Compile th	ne in	nformation of ADCs	, DACs, Serial ports	and interrupts availa	ble	on embedded	processors
	to map to r	eal	world requirements.		1			1
CO3	Apply the l	cno	wledge of microcont	roller for programmin	ng peripherals using i	regi	sters and API	s generated
	using auto	cod	le generators.			-		-
CO4	Formulate	and	design different app	lications on embedde	ed processors to solve	e pro	blems related	l to society.
Referen	ce Books							
1.	The Defir	nitiv	e Guide to the AR	M Cortex-M3& M4	4 Processors, Joseph	ιY	iu, 3 rd Editio	on, Newnes
	(Elsevier),	201	14, ISBN:978-93-51	07-175-4.	· 1			
2.	STM32 A	m	Programming for E	mbedded Systems, S	hujen Chen, Eshrag	gh (Shaemi, Muha	ammad Ali
	Mazidi, Microdigitaled, ISBN: 978-0997925944.							

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

3.	Reference manuals: STM32F411, STMcubeMX, SPI	
4.	White Paper: Cortex-M for Beginners - An overview of the Arm Cortex-M processor t	family and
	comparison.	
Practi	cal's: Programming in ARM Assembly using Keil	
1. D	ata Transfer Programs: Block Moves & Exchange (With & Without Overlap) with & without St	ring
In	istructions.	U
2. A	rithmetic Operations: Addition, Multiplication & Division on 32-Bit Data.	
3. Se	earch for a Key in an Array of Elements using Linear Search, Binary Search.	
Progra	amming in Keil usingembedded C in STMCubeMx	
4. Pi	rogram digital IOs control LEDs, seven segment interface, push buttons.	
5. Pi	rogram digital IOs to control stepper and motor drivers for given specifications.	
6. P	rogram ADC and show analog to digital conversion. Display digital value on suitable interface.	
7. P	rogram ADC and show interfacing of analog sensor for given specifications.	
8. Pi	rogram USART and serial data transfer.	
9. Pi	rogram SPI and show the configuration and data transfer between SPI slave device and master.	
10. Pi	rogram to configure NVIC and writing interrupt service routines.	
Innov	ative Experiments	
1. Pi	rogram SPI and show the configuration and data transfer between SPI slave device and master.	
2. Pi	rogram ADC and show interfacing of analog sensor for given specifications.	
3. D	ata transfer in polling, interrupt and DMA based modes.	
4. R	eal time Audio applications: Flanging effect.	
KUBK	ICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	MADIZO
#		MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	20
	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
2	TESTS: Students will be evaluated in test descriptive questions with different complexity	
2.	levels (Revised Bloom's Taxonomy Levels: Remembering Understanding Applying	
	Analyzing Evaluating and Creating) TWO TESTS will be conducted Each test will be	40
	evaluated for 50 Marks adding up to 100 Marks FINAL TEST MARKS WILL BE	40
	REDUCED TO 40 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
5.	practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO	40
	40 MARKS.	-0
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks).	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	50
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	
	MAXIMUM MARKS FOR THE CIE	150
RUBR	ICS FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO	CONTENTS	MADIZO
•	ΓΑ ΤΓ Α	MARKS
1	Chiective type questions covering entire syllabus	20
1	DADT R	20
	(Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRICS FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	20
3	Viva	20
	TOTAL	50

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

SEMESTER: IV SIGNALS AND SYSTEMS **Category: PROFESSIONAL CORE COURSE Common to EC/EI** (Theory and Practice) **Course Code** 21EC44 100+50 Marks : CIE : Credits: L: T: P 03:00:01 SEE 100+50 Marks : : **Total Hours** 45L+30P **SEE Duration** 03 Hrs + 03 Hrs : : Unit-I **09 Hrs Introduction to Signals and Systems:** Definition of Signals, Types and Classification of Signals with examples, Basic Operations on Signals, definition of Systems, Properties of Systems, System Viewed as Interconnection of Operations. Conversion of analog to digital signals. Unit – II **09 Hrs** Time domain representations of Linear Time Invariant Systems: Convolution Sum, concepts of Convolution Integrals, Interconnections of LTI System, Relations between LTI Systems, Properties of LTI systems, Applications. 09 Hrs Unit –III **Applications of Fourier Representations:** Review of Fourier transform, Concepts of DTFS and DTFT with properties (no derivation), computation of DTFT for basic periodic and non-periodic signals, Applications. **09 Hrs** Unit –IV The Discrete Fourier transforms - Properties and Applications: Concept of DFT, Properties of DFT, Periodicity, Linearity and Symmetry properties, Multiplication of two DFTs, circular correlation and circular convolution. Linear filtering methods based on the DFT. Filtering of long data sequence. Efficient computation of Radix - 2 FFT Algorithms up to 4-point FFT Unit -- V **09 Hrs** Time and frequency domain features: Time domain features like mean, variance, correlation, skewness, energy, envelop of signal etc., Frequency domain features like dominant frequency, peak value etc, Classification of signals based on feature extraction.

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Apply the knowledge of mathematics to understand the concept of signals and systems.
CO2	Analyze the fundamental concepts of both continuous & discrete signals and systems.
CO3	Design discrete systems to meet specific requirements for signal processing applications.
CO4	Compile and simulate MATLAB/Python programs to validate the functionality of discrete systems.

Referen	nce Books
1.	Signals and Systems, Simon Haykin and Barry Van Veen, John Wiley & Sons, 2 nd Edition, 2008.
2.	Digital Signal Processing, Proakis G & Dimitris G. Manolakis, PHI, 4 th Edition, 2007.
3.	Signals and Systems, V. Oppenheim, Alan Willsky and A. Hamid Nawab, Pearson Education Asia/ PHI, 2 nd Edition, 2006.
4.	Digital Signal Processing: A Practical Approach, Emmanuel C. Ifeachar, Barrie E. Jervis, Pearson Education, 2 nd Edition, 2003.

RV SUSAAAA

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Practical's: Signal Processing lab

- 1. Generation of the following discrete signals using MATLAB. (i) unit step (ii) unit impulse (iii) unit ramp (iv) Sinc (v) Gaussian Perform basic operations: time shifting, time scaling and time reversal for the above signals and plot.
- 2. Write a MATLAB program to FT of basic signals. Also plot its magnitude and phase spectrum.
- 3. Write a MATLAB program for calculating DFT and IDFT discrete time sequences using analytical calculation and inbuilt function.
- 4. Write a Python program for linear and circular convolution of two discrete time sequences. Plot all the sequences and verify the result by analytical calculation.
- 5. Write a Python program for circular correlation of two discrete time sequences. Plot all the sequences and verify the result by analytical calculation.
- 6. Write a python code to extract features in time domain for any signal
- 7. Write a python code to extract features in frequency domain for any signal
- 8. Develop a Simulink model to demonstrate Amplitude modulation and Demodulation.

Innovative Experiments

- 1. Write a python Code to classify two signals using various features.
- 2. Demonstrate of any real time applications using microcontroller.

RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40	
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50	
	MAXIMUM MARKS FOR THE CIE	150	
RUBRI	CS FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO ·	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1: (Compulsory)	16	
3 & 4	Unit 2: Question 3 or 4	16	
5&6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

RV Educational Institutions [®] RV College of Engine

 RV College of Engineering
 *

 Autonomous
 Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRICS FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	20
3	Viva	20
	TOTAL	50

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			SEMESTER: I	IV			
		ELECTROM	AGNETIC FIELDS A	AND APPLICAT	ION	S	
		Catego	ory: PROFESSIONAL (CORE COURSE			
Course Code	•	21EC45	(Ineory)	CIF	•	100 Mark	2
Credits: L: T: P	•	03:00:00		SEE	•	100 Mark	<u>s</u>
Total Hours	:	42L		SEE Duration	:	03 Hrs	5
			Unit-I		-		09 Hrs
Review of Vector	Calc	ulus and Colum	b's Law.				•
Electrostatic field	ls:						
Gauss's Law Flux	Flux	density, Gauss'	s Law, Divergence Theor	em (qualitative treat	ment), Applicati	on of Gauss's
Law (Field due to	Cor	tinuous Line C	harge, Sheet Charge, Me	etal Sphere, Spheric	al sh	ell), : Elect	ric Potential,
Relation between	E ar	nd V, Applicatio	ons (Field and potential	due to Line charge	dist	ribution, Su	irface charge
distribution- shee	t), P	oisson's and La	aplace's Equations, App	lications of Laplac	e's a	and Poisson	n's Equations
(Different capacite	ors).						
			Unit – II				09 Hrs
Review of Biot -S	avart	Law.					
Magnetics:	1 7	A 11 /1					
Ampere's Circuit	il La	w, Applications	(Infinite line current, sl	heet current, coaxial	l tran	smission li	ne), Stroke's
Potentials Poisson	ve ti ve an	d Laplace's Equ	ations in Magnetics Illus	s, Scalar Magnetic	Pole	ntials, veci	or Magnetic
		u Laplace's Equ	Init –III	strative examples.			08 Hrs
Time Varving Fi	alds:						00 1115
Introduction, Fara	dav's	s Law, Transfor	mer and Motional EMFs	s. Displacement Cur	rent.	Maxwell's	Equations in
Final Forms, Time	-Vai	ying Potentials,	Time-Harmonic Fields,	Illustrative example	s, Bo	oundary Va	lued Problem
in Electrostatics (lieleo	ctric-dielectric,	dielectric-conductor), Ma	agnetics, In time var	rying	fields, Illu	strative
Examples				-			•
		_	Unit –IV				
Transmission line	es:						09 Hrs
Lumped-Element	Mod						09 Hrs
Reflection Coeffic	wiou	el, Transmissio	n-Line Equations, Wave	e Propagation on a	Trar	smission L	ine, Voltage
Circuited Line, P	cient,	lel, Transmissio Standing Wave	n-Line Equations, Wave es, Wave Impedance of	e Propagation on a the Lossless Line,	Trar Shor	smission L t-Circuited	ine, Voltage Line, Open-
	viou cient, ower	lel, Transmissio Standing Wave Flow on a Le	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin	e Propagation on a the Lossless Line, ne, Instantaneous F	Trar Shor Ower	nsmission L rt-Circuited r, Time-Av	ine, Voltage Line, Open- erage Power
1	ower les.	lel, Transmissio Standing Wave Flow on a Lo	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin	e Propagation on a the Lossless Line, ne, Instantaneous F	Trar Shor Yower	nsmission L t-Circuited r, Time-Av	ine, Voltage Line, Open- erage Power
The Smith Chart:	vient, ower les.	el, Transmissio Standing Wave Flow on a Lo	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V /R Voltage Maxima and	e Propagation on a the Lossless Line, ne, Instantaneous F	Trar Shor ower	smission L t-Circuited , Time-Av	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element
The Smith Chart: Matching, Single-	vient, ower les. Wave	lel, Transmissio Standing Wave Flow on a Lo Impedance, SW Matching, Probl	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance	Trar Shor Ower	smission L t-Circuited ; Time-Av	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element
The Smith Chart: Matching, Single- Plane Wave Prop	Wave Stub	lel, Transmissio Standing Wave Flow on a Lo Impedance, SW Matching, Probl	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance	Trar Shor Yower	asmission L t-Circuited c, Time-Av	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics,	Wave Stub Plan	el, Transmissio Standing Wave Flow on a Lo Impedance, SW Matching, Probl ion: e Waves in Loss	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space,	Trar Shor Power	e Waves	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics, in Good Conducto	Wave Stub Plan rs, Po	el, Transmissio Standing Wave Flow on a Lo Impedance, SW Matching, Probl ion: e Waves in Loss ower and the Poy	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W /nting Vector, Reflection	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space, of a Plane Wave at I	Trar Shor Power Mat Plan	e Waves al Incidenc	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element e. Illustrative
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics, in Good Conducto examples.	Wave Stub Plan rs, Po	el, Transmissio Standing Wave Flow on a Le Impedance, SW Matching, Probl ion: e Waves in Loss ower and the Poy	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W /nting Vector, Reflection	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space, of a Plane Wave at I	Trar Shor ower e Mat Plan Norm	e Waves al Incidenc	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element e. Illustrative
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics, in Good Conducto examples.	Wave Stub Plan rs, Pc	el, Transmissio Standing Wave Flow on a Lo Impedance, SW Matching, Probl ion: e Waves in Loss ower and the Poy	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W /nting Vector, Reflection	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space, of a Plane Wave at I	Trar Shor Ower Mat Plar Norm	e Waves al Incidenc	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element e. Illustrative
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics, in Good Conducto examples.	Wave Stub Plan rs, Po	lel, Transmissio Standing Wave Flow on a Le Impedance, SW Matching, Probl ion: e Waves in Loss ower and the Poy	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W /nting Vector, Reflection the course, the students	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space, of a Plane Wave at I	Trar Shor Yower Mate Plar Norm	e Waves al Incidenc	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element e. Illustrative
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics, in Good Conducto examples. Course Outcome CO1 Explain electrom	Wave Stub Plan rs, Pc	el, Transmissio Standing Wave Flow on a Le Impedance, SW Matching, Probl ion: e Waves in Loss ower and the Poy ter completing amental laws ge	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W /nting Vector, Reflection the course, the students overning electromagnetic ntensity. Flux density etc.	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space, of a Plane Wave at I s will be able to:- c fields and evalua	Trar Shor Power Plan Norm	e physical	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element e. Illustrative quantities of mental laws
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics, in Good Conducto examples. Course Outcome CO1 Explain electrom	Wave Wave Stub Bagat Plan rs, Pc	lel, Transmissio Standing Wave Flow on a Le Impedance, SW Matching, Probl ion: e Waves in Loss ower and the Poy ter completing amental laws ge ic fields (Field in electromagnetic	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W /nting Vector, Reflection the course, the students overning electromagnetic ntensity, Flux density etc c fields everted on chara	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space, of a Plane Wave at I s will be able to:- c fields and evalua c.), in different media	Trar Shor Power Mat Plar Norm te th a usin	e physical ng the funda	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element e. Illustrative quantities of mental laws.
The Smith Chart: Matching, Single- Plane Wave Prop Lossy Dielectrics, in Good Conducto examples. Course Outcome CO1 Explain electrom CO2 Determin	Wave Stub Bagat Plan rs, Pe S: Aff funda agnet	el, Transmissio Standing Wave Flow on a Lo Impedance, SW Matching, Probl ion: e Waves in Loss ower and the Poy ter completing amental laws go ic fields (Field i e electromagnetic ctric and electro	n-Line Equations, Wave es, Wave Impedance of ossless Transmission Lin Unit –V VR, Voltage Maxima and lems sless Dielectrics, Plane W /nting Vector, Reflection the course, the students overning electromagnetic ntensity, Flux density etc c fields exerted on charg	e Propagation on a the Lossless Line, ne, Instantaneous F Minima, Impedance Vaves in Free Space, of a Plane Wave at I s will be able to:- c fields and evalua c.), in different media ged particles, current sion devices and tran	Trar Shor Power e Mat Plar Norm te th a usin c elen smis	e physical ng the funda nents, work	ine, Voltage Line, Open- erage Power 08 Hrs ped-Element e. Illustrative quantities of mental laws. ing principle

electrical systems and power transfer in Transmission lines.

RV Educational Institutions ® **RV College of Engineering**[®]

Autonomous Approved by AICTE, New Delhi Institution Affiliated to Visvesvaraya Technological

University, Belagavi Deduce and justify the concepts of electromagnetic waves, means of transporting energy or information **CO4** in the form of radio waves, TV signals, radar beams, light rays and transmission lines.

Referen	ice Books			
1.	Principles Of Electromagnetics, Matthew N O Sadiku Oxford University Press, 6th Edition, 2007, ISBN-			
	13:978-0199461851.			
2.	Engineering Electromagnetics, William H. Hayt Jr. and John A. Buck, Tata McGraw Hill, 6 th Edition,			
	2001, ISBN: 978-0071089012.			
3.	Introduction to Electromagnetic Engineering, Roger E. Harrington, Dover Books on Electrical			
	Engineering, 2003, ISBN-13: 978-1580539395.			
4.	Fundamentals of Applied Electromagnetics, Fawwaz Ulaby, Umberto Ravaioli, Pearson Education			
	Limited 7 th Edition ISBN-13: 978-1292082448.			
RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be			

	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
	WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

MAXIMUM MARKS FOR THE CIE THEORY

RUBRICS FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of THREE Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5&6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

26 Hrs

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SEMESTER: IV DESIGN THINKING LAB Category: PROFESSIONAL CORE COURSE (Practical) **Course Code** 21EC46 CIE 50 Marks : : Credits: L:T:P : 0:00:02 SEE : 50 Marks **Total Hours** 26P **SEE Duration** 02 Hrs : :

Guidelines for Design Thinking Lab (DTL):

- 1. DTL is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group must select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the by the department
- 4. Each group should follow the stages of Empathy, Design, Ideate, prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.:

The Design Thinking lab tasks would involve:

- 1. Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.
- 2. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 3. Once the idea of the solution is ready, detailed design must be formulated in the Design stage considering the practical feasibility.
- 4. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 5. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.
- 6. Demonstrate the functioning of the prototype along with presentations of the same.
- 7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 8. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.
- 9. The students are required to submit the Poster and the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Interpret the process of Design Thinking to solve real world problems from the end user view				
	point.				
CO2	Apply design thinking tools to make decisions and attain a feasible solution.				

RV Educational Institutions [®] RV College of Engineering [®]

Г

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

CO3 Identify and solve a Capstone project with sustainable goals using Design Thinking.
 CO4 Develop a pretotype and optimize it further through demonstrations.

	RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	Empathy, Ideate evaluation	10
2.	Design evaluation	15
3.	Prototype evaluation, Digital Poster presentation and report submission	25
	MAXIMUM MARKS FOR THE CIE	50

RUBRICS FOR SEMESTER END EXAMINATION					
#	COMPONENTS	MARKS			
1.	Written presentation of synopsis: Write up	05			
2.	Presentation/Demonstration of the project	15			
3.	Demonstration of the project	20			
4.	Viva	05			
5.	Report	05			
	MAXIMUM MARKS FOR THE SEE	50			

Go, change the world

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

				SEMESTER: I	V			
			Brid	ge Course: C Prog	ramming			
				Iandatory Audit (Course)			
	(Common to all programs)							
Course	Code	:	21DCS47	• • •	CIE	:	50 Marks	
Credits	: L: T: P	:	02:01:00					
				Unit-I				08 Hrs
Introdu	iction-Pers	pect	ives					
Busines	s Domains	Pro	gramming.		C		G	
Applica	ations: Desi	gn g	ames, GUI, DBMS	, Embedded Systems	, Compilers and Op	erati	ng Systems.	'umog
Introdu	iction to C	omp nrog	ramming. Program	nming paradigms Ba	sic structure of C pr	twai	m Process of	ypes.
and run	ning a C pro	proe	m. Features of C lar	nguage. Character set	. C tokens. Keyword	ls ar	nd Identifiers	S. Constants.
Variabl	es, Data type	es, F	Pre-processor direct	ives.	, e toneno, neg tion			, constants,
Handli	ng Input an	d O	utput operations a	and operators: Form	atted input/output f	unct	ions, Unforr	natted
input/ou	utput function	ons v	vith programming e	xamples using all fur	nctions.			
				Unit – II				10 Hrs
Operat	ors: Introd	uctio	on to operator se	t, Arithmetic opera	tors, Relational op	erat	ors, Logica	l Operators,
Assignt	nent operato	ors,	Increment and Dec	rement operators, Co	onditional operators	, Bi	t-wise opera	tors, Special
operato	rs. zioza Auith			alustion of summosi	ana Draadaraa af	.	demostic ana	natana Tama
convers	ion in expre	nnei esio	ns Operator preced	ence and associativit	v	an	unnetic ope	rators, Type
Decisio	n Making a	and	Branching: Decis	ion making with 'if'	statement. Simple	ʻif'	statement. tl	he 'if else'
stateme	nt. nesting of	of 'i	felse' statements.	The 'else if' ladder.	The 'switch' state	ment	t. The '?:' of	perator. The
'goto' s	tatement.			· · · ·			· 1	
				Unit –III				12 Hrs
Programming Constructs: Decision making and looping: The 'for,' 'while', 'do-while' statements with								
examples, Jumps in loops.								
Arrays	: Introductio	on to	Arrays, Types of a	rrays, Declaration an	rays, Initializing din	nens	ional arrays	(One
String	Dimensional and Multidimensional Array) with examples.							
functions with examples								
Functions: Need for Functions. Types of functions (User Defined and Built –In) working with functions								
Definiti	on, declarat	ion,	and its scope.	× ×			U	,
Pointer	Pointers: Introduction, Benefits of using pointers, Declaration, and Initialization of pointers, Obtaining a value							
of a var	iable.							
Course	Outcomes:	Aft	er completing the	course, the students	will be able to: -			
CO1	Apply logi	ical	skills to solve the e	ngineering problems	using C programmi	ng co	onstructs.	
CO2	Evaluate t	he a	appropriate method	/data structure requin	red in C programm	ing	to develop s	solutions by
a a a	investigati	ng t	he problem.					
CO3	Design a engaging i	sust	ainable solution us	sing C programming	y with societal and	en	vironmental	
	666	n m	elong learning for e	emerging technology				concern by
CO4	Demonstra	n m ate p	rogramming skills	merging technology to solve inter-discipli	nary problems using	g mo	dern tools et	concern by ffectively by
CO4	Demonstra	n m ate p tear	elong learning for e rogramming skills n work through ora	emerging technology to solve inter-discipli l presentation and wr	nary problems using	g mo	odern tools e	concern by
CO4 Referen	Demonstra exhibiting	n m ate p tear	elong learning for e programming skills n work through ora	emerging technology to solve inter-discipli l presentation and wr	nary problems using itten reports.	g mo	odern tools et	concern by ffectively by

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University Bologovi

3 The C Programming Language Kernighan B W and Denn	is M Ritchie 2015 2 nd Edition Prentice Hall			
ISBN-13:9780131103627.	is wi. Kitchie, 2013, 2 Dation, Frence Fun			
4. Turbo C: The Complete Reference, H. Schildt, 2000, 4 th	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, McGraw Hill Education, ISBN-13:			
9780070411838.				
5. Rasberry pi: https://www.raspberrypi.org/documentation/				
6. Nvidia: https://www.nvidia.com/en-us/				
7. Ardunio: https://www.arduino.cc/en/Tutorial/BuiltInExan	ples			
8. Scratch software: https://scratch.mit.edu/				
Practice Programs: Implement the following programs using co	/gcc compiler			
1. Develop a C program to compute the roots of the equation a	$x^{2} + bx + c = 0.$ 2. Develop a C program that			
reads N integer numbers and arrange them in ascending or dea	scending order using selection sort and bubble			
sort technique.				
2. Develop a C program for Matrix multiplication.				
3. Develop a C program to search an element using Binary searc	h and linear search techniques.			
4. Using functions develop a C program to perform the following	ig tasks by parameter passing to read a string			
from the user and print appropriate message for palindrome of	not palindrome.			
5. Develop a C program to compute average marks of 'n' studen	ts (Name, Roll_No, Test Marks) and search a			
particular record based on Koll No.	rue strings are equal or not			
7. Develop a C program using pointers to function to find given	We strings are equal of not.			
decimal conversion	In or two numbers and to perform offary to			
RUBRICS FOR THE CONTINUOUS INTERNAL EVALUAT	ION (THEORY)			
# COMPONENTS	MARKS			
1 OUIZZES: Ouizzes will be conducted in online/offline	mode TWO OUIZZES will be			
conducted & Each Quiz will be evaluated for 05 Marks.	THE SUM OF TWO OUIZZES 10			
WILL BE THE FINAL OUIZ MARKS.				
2. TESTS: Students will be evaluated in test, descriptive qu	estions with different complexity			
levels (Revised Bloom's Taxonomy Levels: Rememb	ering, Understanding, Applying,			
Analyzing, Evaluating, and Creating). TWO TESTS will	Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be 20			
evaluated for 25 Marks, adding up to 50 Marks. FINA	AL TEST MARKS WILL BE			
REDUCED TO 20 MARKS.				
3. EXPERIENTIAL LEARNING: Students will be eva	luated for their creativity and			
practical implementation of the problem. Phase I (10) &	Phase II (10) ADDING UPTO20			
20 MARKS.				
MAXIMUM MA	RKS FOR THE CIE THEORY 50			

RV SUKSHARA GARA

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SEMESTER: IV
UNIVERSAL HUMAN VALUES AND PROFESSIONAL ETHICS

(Theory)

(Common to all Programs)

Credits: L:1:P Total Hours	:	02:00:00 28L		SEE SEE Duration	:	50 Marks 02 Hrs	
	•	201	Unit-I		•	02 1115	10 Hrs

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Purpose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration 'Natural Acceptance' and Experiential Validation Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facility, Understanding Happiness and Prosperity correctly.

Practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility.

Understanding Harmony in the Human Being - Harmony in Myself! :Understanding human being as a coexistence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' Understanding the Body as an instrument of Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health;

Practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life.

Unit – II	10 Hrs
Understanding Harmony in the Family and Society- Harmony in Human Relationship: Understa	inding values
in human-human relationship; meaning of Justice and program for its fulfilment to ensure mutual hap	piness; Trust
and Respect as the foundational values of relationship. Understanding the meaning of Trust	

Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence: Understanding the
harmony in the Nature, Interconnectedness, and mutual fulfilment among the four orders of nature recyclability
and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all
pervasive space, Holistic perception of harmony at all levels of existence.08 Hrs

Practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	By the end of the course, students are expected to become more aware of themselves, and their				
	surroundings (family, society, nature); they would become more responsible in life, and in handling				
	problems with sustainable solutions,				
CO2	While keeping human relationships and human nature in mind. They would have better critical ability.				
CO3	They would also become sensitive to their commitment towards what they have understood (human				
	values, human relationship and human society).				
CO4	It is hoped that they would be able to apply what they have learnt to their own self in different day-to-				
	day settings in real life, at least a beginning would be made in this direction.				

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Reference Books	
1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.	
2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004	
3. The Story of Stuff (Book).	
4. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi	
5. Small is Beautiful - E. F Schumacher.	
6. Slow is Beautiful - Cecile Andrews.	

RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 5 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20	
	MAXIMUM MARKS FOR THE CIE THEORY	50	

RUBRICS FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO	Q.NO . CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	10				
	PART B					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	08				
3 & 4	Unit 2: Question 3 or 4	08				
5&6	Unit 3: Question 5 or 6	08				
7 & 8	Unit 4: Question 7 or 8	08				
9 & 10	Unit 5: Question 9 or 10	08				
TOTAL						

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

SEMESTER: IV DESIGN AND ANALYSIS OF ALGORITHMS Category: PROFESSIONAL CORE ELECTIVE(GROUP-A)

(Theory)

Course Code	:	21EC4A1		CIE	:	50 Marks	
Credits: L:T:P	:	02:00:00		SEE	:	50 Marks	
Total Hours	••	30L		SEE Duration	•••	02 Hrs	
Unit-I						10 Hrs	

Introduction, Examples and motivation, Asymptotic complexity: formal notation, examples, Searching in list: binary search, Sorting: insertion sort, selection sort, merge sort, quicksort, stability and other issues, programming assignment, Graphs: Graph exploration: BFS, Graph exploration: DFS, DFS numbering and applications, Directed acyclic graphs, programming assignment.

Unit – II	10 Hrs
Shortest paths: unweighted and weighted, Single source shortest paths: Dijkstra, Minimum cost sp	anning trees:
Prim's Algorithm, Kruskal's Algorithm, Union-Find data Structure, programming assignment.	Divide and
conquer: counting inversions, nearest pair of points, Priority queues, heaps, Dijstra/Prims revisited	using heaps,
programming assignment	
Search Trees: Traversals insertions deletions Balancing Interval scheduling Gready: Proof strateg	ioc Huffman

Search Trees: Traversals, insertions, deletions, Balancing, Interval scheduling, Greedy: Proof strategies, Huffman Coding, Dynamic Programming: weighted interval scheduling programming assignment.

Ollit –III	10 HIS	
Dynamic Programming: memorization, edit distance, longest ascending subsequence, matrix mu	Itiplication	
shortest paths: Bellman Ford, Floyd Warshall, programming assignment		
Intractability: NP completeness, reductions, examples		

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Apply knowledge of computing and mathematics to algorithm design.					
CO2	Employ graphs to model engineering problems, when appropriate. Construct algorithms that employ					
	graph computations as key components, and analyze them.					
CO3	Use divide-and-conquer techniques for solving suitable problems and greedy approach to solve an					
	appropriate problem for optimal solution.					
CO4	Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for					
	it. construct dynamic-programming algorithms, and analyze them.					

Referen	nce Books
1.	Introduction to the Design & Analysis of Algorithms, Anany Levitin, 2 nd Edition, Pearson Education
	2007.
2.	Introduction to Algorithms, T. H. Cormen, C. E. Leiserson, R. L. Rivest, Clifford Stein, 3 rd Edition, PHI.
3.	Computer Algorithms, Ellis Horowitz and Sartaj Sahni, Silicon press, 2008
4.	Algorithms, Dasgupta, Sanjoy, Christos Papadimitriou, and Umesh Vazirani., McGraw-Hill, 2006.
	ISBN: 9780073523408.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SEMESTER: IV DATABASE MANAGEMENT SYSTEM Category: PROFESSIONAL CORE ELECTIVE(GROUP-A)

(Theory)

Credits: L:T:P	:	02:00:00		SEE	••	50 Marks	
Total Hours	:	30L		SEE Duration	:	02 Hrs	
Unit-I						10 Hrs	

Overview, Introduction to RDBMS, Structured Query Language (SQL), Relational Algebra, Entity-Relationship Model.

 Unit – II
 10 Hrs

 Relational Database Design, Application Development, Case Studies, Storage and File Structure, Indexing and Hashing, Query Processing.
 Indexing and Ind

Query Optimization, Transactions (Serializability and Recoverability), Concurrency Control, Recovery Systems,

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Understand the fundamentals of Data Base management system, entity-relationship model, Relational				
	Algebra, Database Design, Transaction Management.				
CO2	Illustrate the working of data base & transactions by writing queries using SQL and Postgre SQL.				
CO3	Analyze an information storage problem and derive an information model expressed in the form of an				
	entity relation diagram and other optional analysis forms, such as a data dictionary				
CO4	Design a data model that satisfies relational theory and provides users with business Queries, business				
	forms and business reports.				

Referen	nce Books
1.	Fundamentals of Database Systems, Elmasri, Navathe, 5 th Edition, Pearson Education, 2007, ISBN-13:
	9780321369574.
2.	Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke, 3rd Edition, McGraw, ISBN-
	10: 0072465638.
3.	The art of Postgre SQL, Dimitri Fontain, 2 nd Edition, O'Reilly Media Inc., 2014, ISBN- 9781788472296.
4.	Data base System Concepts, Silberschatz, Korth, Sudharshan, 6 th Edition, McGraw-Hill, ISBN-
	10:9332901384

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> SEMESTER: IV OBJECT ORIENTED ANALYSIS AND DESIGN Category: PROFESSIONAL CORE ELECTIVE(GROUP-A)

(Theory)

Course Code	:	21EC4A3		CIE	••	50 Marks	
Credits: L: T:P	:	02:00:00		SEE	:	50 Marks	
Total Hours	:	30L		SEE Duration	:	02 Hrs	
Unit-I						10 Hrs	

Software Complexity: Understanding the challenges Object oriented analysis and design can address, Object Model: Defining the primitives of the OO paradigm, Classes and Objects: Bringing in the broader perspectives.

 Unit – II
 10 Hrs

 Classes and Objects: Identification approaches using Object oriented analysis and design, Unified Modeling Language-I.
 Modeling

Unit –III

Unified Modeling Language-II

Object oriented analysis and design Case Studies: Applying Object oriented analysis and design in different contexts.

Course Outcomes: After completing the course, the students will be able to: -			
CO1	Analyze and model software specifications and abstract object-based views for generic software systems.		
CO2	Select the basic elements of modeling such as Things, Relationships and Diagrams depending on the		
	views of UML Architecture.		
CO3	Design Class and Object Diagrams that represent Static Aspects of a Software System.		
CO4	Apply techniques of state chart diagrams and implementation diagrams to model behavioural aspects and		
	runtime environment of software Systems.		

Reference Books			
1.	The Unified Modeling Language User Guide, Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson		
	Education, ISBN 0-321-24562-8.		
2.	Fundamentals of Object-Oriented Design in UML, Meilir Page-Jones, 1 st Edition, Addison-Wesley.		
3.	Modeling Software Systems Using UML2, Pascal Roques, WILEY- Dreamtech India Pvt. Ltd.		
4.	Object Oriented Analysis & Design, Atul Kahate, The McGraw-Hill Companies.		

10 Hrs

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SEMESTER: IV PROGRAMMING, DATASTRUCTURES AND ALGORITHMS USING PYTHON Category: PROFESSIONAL CORE ELECTIVE(GROUP-A) (Theory)

			(Incory)			
Course Code	:	21EC4A4		CIE	:	50 Marks
Credits: L:T:P	:	02:00:00		SEE	:	50 Marks
Total Hours	:	30L		SEE Duration	:	02 Hrs
			IInit-I			10 Hrs

Informal introduction to programming, algorithms and data structures via GCD, Downloading and installing Python, GCD in Python: variables, operations, control flow - assignments, condition-als, loops, functions. Python: types, expressions, strings, lists, tuples, Python memory model: names, mutable and immutable values, List operations: slices, Binary search, Inductive function definitions: numerical and structural induction, Elementary inductive sorting: selection and insertion sort, In-place sorting.

Basic algorithmic analysis: input size, asymptotic, complexity, O () notation, Arrays vs lists, Merge sort Quicksort, Stable sorting.

Unit – II	
-----------	--

10 Hrs

Dictionaries, More on Python functions: optional arguments, default values, Passing functions as Arguments, Higher order functions on lists: map, lter, list comprehension, Exception handling, Basic input/output, Handling files, String processing.

Backtracking: N Queens, recording all solutions, Scope in Python: local, global, nonlocal names, Nested Functions, Data structures: stack, queue, Heaps. Unit –III 10 Hrs

 Unit –III
 10 Hrs

 Abstract datatypes, Classes, and objects in Python, linked lists: find, insert, delete, Binary search trees: find, insert, delete, Height-balanced binary search trees.
 10 Hrs

Efficient evaluation of recursive definitions: memorization, Dynamic programming: examples, other programming languages: C and manual memory management, other programming paradigms: functional programming.

Course Outcomes: After completing the course, the students will be able to: -		
CO1	Explain basic principles of Python programming language.	
CO2	Use existing data structures and algorithms found in python's libraries.	
CO3	Analyze time and space complexity of various algorithms and data structures.	
CO4	Apply data structures and algorithms to solve real world problems.	

Reference Books		
1.	Data Structures and Algorithms in Python, Michael T. Goodrich, Roberto Tamassia. Michael H.	
	Goldwasser, 1 st Edition, Wiley, 2013, ISBN:1118290275.	
2.	Fundamentals of Python Data Structures, Kenneth A. Lambert, 2 nd Edition, Course Technology Inc,	
	2018, ISBN-10: 0357122755, ISBN-13: 978-0357122754.	
3.	Introduction to the Design & Analysis of Algorithms, Anany Levitin, 2 nd Edition, Pearson Education	
	2007.	
4.	Computer Algorithms, Ellis Horowitz and Sartaj Sahani, Silicon press, 2008.	

RV Educational Institutions [®] RV College of Engineering

RV.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

No

Curriculum Design Process

Improve Program

Curriculum/Assessment Methods/Redefine CO's

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Process For Course Outcome Attainment

Final CO Attainment Process

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Program Outcomes Attainment Process

RV Educational Institutions [®] RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.