

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

MECHANICAL ENGINEERING

INNER FRONT COVER PAGE

College Vision & Mission (To be included from our side)

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road

Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT VISION

Quality Education in Design, Materials, Thermal and Manufacturing with emphasis on Research, Sustainable technologies and Entrepreneurship for Societal Symbiosis

DEPARTMENT MISSION

- 1. Imparting knowledge in basic and applied areas of Mechanical Engineering
- 2. Providing state-of-art laboratories and infrastructure for academics and research
- 3. Facilitating faculty development through continuous improvement programs
- 4. Promoting research, education and training in frontier areas of nanotechnology, advanced composites, surface technologies, MEMS and sustainable technology
- 5. Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy
- 6. Imbibing social and ethical values in students, staff and faculty through personality development programs

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Successful professional careers with sound fundamental knowledge in Mathematics, Physical Sciences and Mechanical Engineering leading to leadership, entrepreneurship or pursuing higher education.

PEO2: Expertise in specialized areas of Mechanical Engineering such as Materials, Design, Manufacturing and Thermal Engineering with a focus on research and innovation.

PEO3: Ability of problem solving by adopting analytical, numerical and experimental skills with awareness of societal impact.

PEO4: Sound communication skills, team working ability, professional ethics and zeal for lifelong learning.

PSO	Description			
PSO1	Demonstrate basic knowledge in Mathematics, basic science, Materials Science and Engineering to formulate and solve mechanical engineering problems			
PSO2	Design mechanical and thermal systems by adopting numerical, analytical and experimental techniques and analyse the results.			
PSO3	Function in multidisciplinary teams with sound communication skills.			
PSO4	Self-learn to acquire and apply allied knowledge and update the same by engaging in life-long learning, practice profession with ethics and promote entrepreneurship .			
	Lead Society: American Society of Mechanical Engineers – ASME			

PROGRAM SPECIFIC OUTCOMES (PSOS)

ιy ιy

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning	
1.	VTU	Visvesvaraya Technological University	
2.	BS	Basic Sciences	
3.	CIE	Continuous Internal Evaluation	
4.	SEE	Semester End Examination	
5.	CE	Professional Core Elective	
6.	GE	Global Elective	
7.	HSS	Humanities and Social Sciences	
8.	CV	Civil Engineering	
9.	ME	Mechanical Engineering	
10.	EE	Electrical & Electronics Engineering	
11.	EC	Electronics & Communication Engineering	
12.	IM	Industrial Engineering & Management	
13.	EI	Electronics & Instrumentation Engineering	
14.	CH	Chemical Engineering	
15.	CS	Computer Science & Engineering	
16.	TE	Telecommunication Engineering	
17.	IS	Information Science & Engineering	
18.	BT	Biotechnology	
19.	AS	Aerospace Engineering	
20.	PHY	Physics	
21.	СНҮ	Chemistry	
22.	MAT	Mathematics	

III Semester				
Sl. No.	Course Code	Course Title	Page No.	
1.	18MA31C	Engineering Mathematics - III	09	
2.	18ME32	Engineering Materials	11	
3.	18ME33	Mechanics of Materials	13	
4.	18ME34	Concepts of Metrology and Machine Drawing	16	
5.	18ME35	Thermal Engineering I	19	
6.	18ME36	Kinematics of Machines	21	

IVSemester				
Sl. No.	Course Code	Course Title	Page No.	
1.	18MA41C	Engineering Mathematics-IV	23	
2.	18BT42	Environmental Technology	25	
3.	18ME43	Manfacturing Process	27	
4.	18ME44	Thermal Engineering II	30	
5.	18ME45	Dynamic of Machines	33	
6.	18ME46	Fluid Mechanics	35	
7.	18ME47X	Design Thinking Lab	38	

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi)

MECHANICAL ENGINEERING

	THIRD SEMESTER CREDIT SCHEME						
S1.	Course Code	Course Title	BoS	Cre	dit Alloca	ation	Total Credits
No.	Course Code	Course Thie	005	L	Т	Р	Total Credits
1	18MA31C*	Engineering Mathematics-III	MA	4	1	0	5
2	18ME32**	Engineering Materials	ME	2	0	0	2
3	18ME33	Mechanics of Materials	ME	3	1	1	5
4	18ME34	Metrology& Machine Drawing	ME	3	0	1	4
5	18ME35	Thermal Engineering-I	ME	3	0	0	3
6	18ME36	Kinematics of Machines	ME	3	1	0	4
7	18DMA37***	Bridge Course Mathematics	MA	0	0	0	0
8	18HS38 #	Kannada course	HSS	0	0	0	0
		Total No. of Credits		18	3	2	23
		No. of hrs per week		18+4*	6	4	

*Engineering Mathematics - III

Sl.No	COURSE TITLE	COURSE	PROGRAMS
		CODE	
1.	Linear Algebra, Laplace Transform and Combinatorics	18MA31A	CS,IS
2.	Discrete and Integral Transforms	18MA31B	EC, EE ,EI,TE
3.	Engineering Mathematics -III	18MA31C	AS, BT,CH,CV,IM,ME

**

Γ

Sl.No	COURSE TITLE	COURSE	PROGRAMS
		CODE	
1.	Environmental Technology	18BT32A	All circuit Branches
2.	Biology for Engineers	18BT32B	BT&AS
3.	Engineering Materials	18ME32	ME & IM

*** Bridge Course Audit couse for lateral entry diploma students

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMS
1	Bridge Course Mathematics	18DMA37	AS,BT,CH,CV,EC,EE,EI,IM,ME,TE
2	Bridge Course C Programming	18DCS37	CS & IS

Mandatory Audit course for all students

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) MECHANICAL ENGINEERING

	FOURTH SEMESTER CREDIT SCHEME						
SI.	Course Code	Course Title	BoS	Credit Allocation			Total Credita
No.	Course Code	Course Thie		L	Т	Р	
1	18MA41C*	Engineering Mathematics-IV	MA	4	1	0	5
2	18BT42A**	Environmental Technology	BT	2	0	0	2
3	18ME43	Manufacturing Process	ME	3	0	1	4
4	18ME44	Thermal Engineering-II	ME	3	0	1	4
5	18ME45	Dynamics of Machines	ME	3	1	0	4
6	18ME46	Fluid Mechanics	ME	2	1	1	4
7	18ME47	Design thinking lab	ME	0	0	2	2
8	18HS47	Professional Practice-I	HSS	0	0	1	1
9	18DCS48***	Bridge Course C Programming	CS	0	0	0	0
		Total No. of Credits		17	3	6	26
		No. of hrs per week		17+2*	6	12+2*	

*ENGINEERING MATHEMATICS – IV

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMS
1.	Graph Theory, Statistics and Probability Theory	18MA41A	CS ,IS
2.	Linear Algebra, Statistics and Probability Theory	18MA41B	EC, EE, EI, TE
3.	Engineering Mathematics -IV	18MA41C	AS, CH, CV, ME

**

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMS
1.	Engineering Materials	18EC42	EC,EE,EI,TE
2.	Biology for Engineers	18BT42B	CS,IS
3.	Environmental Technology	18BT42A	All Non circuit
			branches

*** Bridge Course

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMS
1	Bridge Course Mathematics	18DMA48	CS, IS
2	Bridge Course C Programming	18DCS48	AS,BT,CH,CV,EC,EE,
			EI,IM,ME,TE

Note:Internship to be taken up during the vacation (After 4th semester)

18ME47 Design thinking lab					
18 ME47	Industrial Internet of things				
18 ME47	Automotive Mechatronics				
18 ME47	Product development				
18 ME47	Electrical Mobility				
18 ME47	Design of mechanisms				

	Semester: III									
	ENGINEERING MATHEMATICS – III									
Cou	rse Code	:	18MA31C		CIE	:	100 Marks			
Credits: L:T:P		:	4:1:0		SEE	:	100 Marks			
Total Hours		:	36L+24T+35 P		SEE Duration	:	3.00 Hours			
Cou	rse Learning	Ob	jectives: The stude	ent will be able to			·			
1	Understand v	varia	ation and extremal of	of functionals.						
2	Analyze the	con	cept of periodic phe	enomena and dev	elop Fourier serie	s.				
3	Solve initial	valı	e problems using I	Laplace transform	1.					
4	4 Determine the approximate solutions of algebraic/transcendental and partial differential									
	equations using numerical methods.									
5	Use mathema	atica	al IT tools to analyz	ze and visualize v	various concepts.					

Unit-I			
CALCULUS OF VARIATIONS	09 h		
Introduction to variation of functionals, extremal of a functional, Euler's equation –			
special cases, problems. Geodesics – problems, Hanging cable and Brachistochrone			
problems. Exploring geodesics graphically using MATLAB.			
Unit – II			
FOURIER SERIES	12 h		
Introduction, periodic function, even and odd functions. Dirichlet's conditions,			
Euler's formula for Fourier series, complex Fourier series, problems on time			
periodic signals (square wave, half wave rectifier, saw-tooth wave and triangular			
wave). Fourier sine series. Fourier cosine series. Exploring Fourier series using			
MATLAB.			
Unit –III			
LAPLACE AND INVERSE LAPLACE TRANSFORM	12 h		
Existence and uniqueness of Laplace Transform (LT), transform of elementary			
functions, region of convergence. Properties - Linearity, scaling, s – domain shift.			
differentiation in the s – domain, division by t, differentiation and integration in the			
time domain. Transform of periodic functions (square wave, saw-tooth wave,			
triangular wave, full and half wave rectifier).			
Inverse Laplace transform – properties, evaluation using different methods.			
Convolution theorem (without proof), problems, Solution of ordinary differential			
equations. Exploring Laplace and inverse Laplace transform using MATLAB			
commands			
Unit –IV			
NUMERICAL METHODS – I	09 h		
Roots of algebraic and transcendental equations. Fixed point iteration method.			
Newton- Raphson method for multiple roots. Solution to system of linear equations			
- LU decomposition method partition method Sparse linear systems – Thomas			
algorithm for tridiagonal matrices. Computing numerical solutions using MATI AR			
Unit –V			
NUMERICAL METHODS - II	09 h		
Numerical solutions to partial differential equations – Finite difference	07 H		
approximation to derivatives solution of Laplace equation in two dimension heat			
and wave equations in one dimension (explicit methods). Exploring solution of PDF			
· MATTAD			

Course outcomes: On completion of the course, the student should have acquired the ability to

- 1 Understand the fundamental concepts of variation of functionals, periodic phenomena, Laplace and inverse Laplace transforms of different functions, need for numerical techniques.
- 2 Demonstrate the knowledge of extremal of functional, concept of Dirichlet's conditions to obtain Fourier series of continuous and discontinuous functions, the properties of Laplace and inverse Laplace transforms, root finding methods and finite differences for partial derivatives.
- 3 Apply Euler's equation to solve variational problems, Euler's formula to obtain half range series, Laplace and inverse Laplace transform technique to solve differential equations, solution to system of linear equations and finite difference technique to solve PDEs.
- 4 Analyze and interpret applications of functionals, complex Fourier series, solution of IVP and BVP using LT, solution to sparse linear systems and PDEs occurring in Engineering problems.

Refe	erence Books
1.	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers,
	ISBN: 81-7409-195-5.
2.	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill,
	ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X.
3.	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley &
	Sons, ISBN: 978-81-265-3135-6.
4.	Numerical methods for scientific and engineering computation, M.K. Jain, S.R.K.
	Iyenger and R.K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN:
	9788122433234, 8122433235.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	Semester: III									
	ENGINEERING MATERIALS									
Cou	rse Code		18ME32		CIE	:	100 Marks			
Credits: L:T:P		:	2:0:0		SEE	:	100 Marks			
Total Hours		••	28L+0T+0P		SEE Duration	:	3.00 Hours			
Cou	rse Learning O	bje	ectives:							
1	Understand th	e b	ehavior of materials	for different loading	conditions					
2	Analyze differ	rent	t phase diagrams, rel	ated composition and	l microstructure					
3	3 Understand heat treatment methods of steel and their properties									
4	4 Understand solidification process in casting and material degradation									
5	Discuss Non I	Discuss Non Destructive methods of testing materials								

UNIT-I	
Mechanical behavior of Materials : Plastic deformation of metals, Mechanism of plastic deformation, role of dislocation in plastic deformation and Work Hardening. Fracture- mechanism of Ductile and brittle fracture, Ductile to brittle transition, Fatigue- Types of loading, S-N curve	06 hr
UNIT-II	
Phase Diagram and Fe-C equilibrium diagram : Phase, Gibbs phase rule, Solid solutions, Hume Rothery Rules, Isomorphous alloy system, Binary eutectic and Eutectoid system (Problems to find chemical composition and relative amount of phases present). Iron-Iron carbide phase diagram- Invariant reactions, Development of microstructure in iron carbon alloys (Slow cooling of steels). Steel & Cast Iron-composition, properties and applications.	07 hr
UNIT-III	
Phase transformation in steel : Heat treatment of steel, Annealing-Full annealing, spheroidizing, process annealing, Normalizing, Hardening, TTT diagram of eutectoid steel and its phase transformation. Tempering, austempering, martempering, Hardenability, Jominy End quench test. Surface Heat treatment methods- Carburizing, Nitriding and Flame hardening.	07 hr
UNIT-IV	
 Foundry Metallurgy: Casting and Solidification process, Nuclei, Dendrite and grain, Nucleation: Homogeneous and Heterogeneous Nucleation, Dendritic growth and Cast structure. Shrinkage of liquids and metals. Environmental Degradation of Materials: Different forms of environmental degradation, forms of corrosion- Galavanic, Intergranular, pitting, stress related corrosion. Corrosion control. Materials selection, protective coating. 	04 hr
UNIT-V	
NON DESTRUCTIVE TESTING : Non Destructive Testing basic principles and testing method for Radiographic testing, Ultrasonic testing, Magnetic particle inspection and Liquid penetrant inspections	04h

Course Outcomes: After completing the course, the students will be able to							
1.	Understand behavior of various materials such as metals, composites and special materials						
2.	Analyze materials, composition and their phase transformation						
3.	Investigate solidification process during casting and materials degradation						
4.	Recognize different types of Nondestructive testing methods to find subsurface defects in the materials.						

Ref	erence Books
1.	William D Callister, "Material Science and Engineering", John Wiley and Sons, 1997 6 th edition, ISBN 9812-53-052-5
2.	Sydney H Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994, ISBN 0-07-Y85018-6
3.	William F Smith, "Material Science and Engineering", Mc Graw Hill Book Company, 2008, 4 th edition, ISBN0-07-066717-9

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	Semester: III								
	MECHANICS OF MATERIALS								
Cou	rse Code	:	18ME33		CIE	:	100 Marks		
Credits: L:T:P		:	4:0:1		SEE	:	100 Marks		
Total Hours		:	56 L+0T+28P		SEE Duration	:	3.00 Hours		
Cou	rse Learning C)bje	ectives:						
1	Understand r	nec	hanics of deformable	e bodies and apply t	hem in analysis and	desig	gn problems		
2	Analyze bodie	es s	ubjected to two dime	ensional stress system	ms.				
3	Understand be	ehav	viour of structural m	embers in flexure ar	nd Torsion.				
4	Evaluate slope	e an	d deflection in beam	ns subjected to loadi	ng.				
5	Understand stability of columns and struts.								
6	Predict the str	ess	distribution in beam	s, pressure vessels a	nd shafts				

PART A							
UNIT-I							
Review of stress, strain & Elastic Constants: Stress, Strain, relationship among elastic constants, Volumetric strain. (No questions to be set on these topics) Thermal stresses and strains (compound bars not included). Numericals	09 h						
UNIT-II							
 Two-Dimensional Stress System: Introduction, Stress components on inclined planes, Principal Stresses, Principal planes, Mohr's circle of stress Numericals Bending moment and shear force in beams: Introduction, Types of beams, Loads and Reactions, Shear forces and bending moments, Rate of loading, Sign conventions, Relationship between shear force and bending moments, Shear force and bending moment diagrams subjected to concentrated loads, uniform distributed load (UDL) for different types of beams. (UVL not included) 	14 h						
UNIT-III							
 Bending stress in beams: Introduction, Assumptions in simple bending theory, Derivation of Bernoulli's equation, Modulus of rupture, Section modulus, Flexural rigidity, Bending stress distribution in beams of various sections, Beam of uniform strength (No numerical on beam of uniform strength). Shear stresses in beams: Expression for horizontal shear stress in beam, Shear stress diagram for simple rectangular and I section and T sections only. Numericals. Deflection of determinate Beams: Introduction, Definitions of slope, Deflection, Elastic curve, Derivation of differential equation of flexure, Sign convention, Double integration method, Slope and deflection using Macaulay's method for prismatic beams 	14 h						
and overhanging beams subjected to point loads, UDL and couple. Numerical problems.							
UNIT-IV							
Thick and thin cylinders: Stresses in thin cylinders, Changes in dimensions of cylinder (diameter, length and volume), Thick cylinders subjected to internal and external pressures (Lame's equation), (Compound cylinders not included).	09 h						
UNIT -V							

Analysis of columns and struts: Introduction, Euler's theory on columns, Effective	10 h
length, Slenderness ratio, Short and long columns, Radius of gyration, Buckling load,	
Assumptions, Derivation of Euler's Buckling load for different end conditions,	
Limitations of Euler's theory, Rankine's formula. Numerical problems	

PART – B MECHANICS OF MATERIALS LABORATORY

20h

8h

Section I

- 1. Hardness Tests (Brinell, Rockwell, Vicker)
- 2. Tension test on Mild steel and HYSD (High Yield Strength Deformed) bars
- 3. Compression test of Mild Steel, HYSD, Cast iron.
- 4. Torsion test on Mild Steel circular sections.
- 5. Bending Test on Wood Under two point loading.
- 6. Shear Test on Mild steel.
- 7. Impact test on Mild Steel (Charpy & Izod)
- 8. Wear Test using Pin on disc Tribometer

Section – II (Non-destructive testing)

1. Magnetic Particle Test

- 2. Ultrasonic Test
- 3. Dye Penetrant Test
- 4. Eddy current inspection for metals

Course Outcomes: After completing the course, the students will be able to

1	Identify the different engineering materials, describe their properties and predict their behaviour under different types of loading
2	Compute the stresses, strains, moments, deflections, etc. and derive the expressions used from the fundamentals.
3	Select materials, sizes and sections for various applications such as beams, shafts, pressure vessels, columns, etc. and justify the selection
4	Determine mechanical properties by destructive and non-destructive methods

Reference Books

11011	
1.	Strength of Materials, S.S. Bhavikatti, 2012, Vikas Publications House Pvt. Ltd. New Delhi, ISBN 9788125927914
2.	Elements of Strength of Materials, Timoshenko and Young , 1976, Affiliated East-West Press, ISBN-10: 0442085478, ISBN-13: 978-0442085476.
3.	Mechanics of Materials, F.P. Beer and R. Johnston, 2006, McGraw-Hill Publishers, ISBN 9780073529387
4.	Strength of Materials, S. Ramamrutham, R. Narayanan, 2012, Dhanapath Rai Publishing Company, New Delhi, ISBN: 818743354X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of

the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	Semester: III										
	CONCEPTS OF METROLOGY AND MACHINE DRAWING										
Cour	rse Code	••	18ME34		CIE	:	100 Marks				
Cred	lits: L:T:P	:	3:0:1		SEE	:	: 100 Marks				
Tota	l Hours	:	42L+0T+26P		SEE Duration	:	3.00 Hours				
Cour	rse Learning O	bje	ectives:								
1	Inspection of	eng	ineering parts with v	various precision inst	ruments.						
2	Design of part	t, to	lerances and fits								
3	Students have	an	ability to apply know	wledge of Modeling,	science & engineerin	1g.					
4	Student can n	nod	eled the drawing ev	ven in CAD software	by applying the base	sic	knowledge of				
	machine drawing.										
5	Students will	abl	e to demonstrate an	n ability to design a	nd conduct experime	ents	, analyze and				
	interpret data	and	assembly and disas	sembly drawings kno	wledge will be provi	ided	1.				

			*
interpret data and assembly	y and disassembly	drawings knowle	edge will be provid

PART A	
UNIT-I	
Concept of measurements	07h
General concept - Generalised measurement system-Units and standards	s-measuring

instruments- sensitivity, readability, range of accuracy, precision-static and dynamic response-repeatability-systematic and random errors-correction, calibration, interchange ability.

Transducers: Characteristics transfer efficiency, primary and secondary transducers, Electrical, mechanical transducers, Signal transmission and processing: Devices and systems. Signal Display & Recording Devices

Unit-II

Mechanical, pneumatic and electrical applications. 11h **Comparators:** types, Angular measurements:-Sine bar, optical bevel protractor. Slip gauges and classification, interferometery, optical flats. Limits, fits and tolerances: Definition of tolerance, Principle of interchangability and selective assembly, Indian standards, concept of limits of size and tolerances, definition of fits, types of fits, hole basis system, shaft basis system, classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges-plain plug gauge, ring gauge, snap gauge, limit gauge and gauge materials.

Geometric Dimensioning and Tolerance: Introduction to GD &T, symbols, form tolerance-flatness. cylindricity, straightness, circularity, orientation tolerancesperpendicularity, parallelism and angularity. Elements of surface texture, factors affecting surface finish, reasons for controlling surface texture, methods of measuring surface finish, indication of surface roughness symbols used.

UNIT-III

 Advances in Metrology Precision instruments based on laser-Principles- laser interferometer-application in linear, angular measurements and machine tool metrology. Coordinate measuring machine (CMM)- Constructional features – types, applications – digital devices-computer aided inspection, 3D Metrology. Measurement of Torque, Force & Temperature related properties Force, torque: -mechanical, pneumatic, hydraulic and electrical type-Temperature: bimetallic strip, pressure thermometers, thermocouples, electrical resistance thermister. 	11h
UNIT-IV	
Machine Drawing Fundamentals-I Need of Graphical Language, Importance Machine Drawing, Tools (from Instruments to Current Softwares). Projections: Designation, Relative position of views. Principles of Drawings: Scales as per ISO standards, Importance of Title Block and Part list, Lines convention. Conventional Representations, Materials, Interrupted views and Braking of Shaft, Pipe, Bar, Surface finishing & Machining symbols. Classification of nuts, terminology used in the drawing of nuts and bolts. Drawing of orthographic projections of a bolt, empierical relations of dimensions of nut and bolt with respect to bolt head diameter.	07 h
UNIT-V	
Machine Drawing Fundamentals-II Screw Thread Form: Screw thread terminology, Basic profiles, Standard forms of V- threads (Whitworth thread, seller thread, ISO thread), Standard Square threads, Modified forms of square threads. Rivet and Riveting, applications, terminology. Classifications (Lap and Butt joints), Numericals. Types of Welded Joints, Representation of Welds, Symbols and its conventions	06h
PART – B	
	26 h

- Orthographic views: Conversion of pictorial views into orthographic views of simple machine parts with and without section (full, half, off, aligned and partial or local sections) Hidden line conventions, Precedence of lines. – 6 h
- Keys: Parallel, Taper, Gib-Head key, Cone key, pin-key and Woodruff key: 6 h
 Joints: Cotter joint (socket and spigot), Knuckle joint (pin joint)- 6 h

 Couplings: Flange Coupling, Sleeve coupling, Pin (bush) type flexible coupling, Split muff coupling and Universal coupling. – 8 h

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Design tolerances and fits for selected product quality								
CO2	Choose appropriate method and instruments for inspection of various gear elements and								
	thread elements.								
CO3	Analysis of complex design systems related to mechanical Engineering.								
CO4	Making use of appropriate laboratory tools and design innovative methods								

Ref	erence Books
1.	Engineering Metrology and Measurements by NV Raghavendra, L Krishna murthy, Oxford publishers. ISBN-13: 978-0-19-808549-2
2.	Machine Drawing – Dhawan, S.Chand Publications, ISBN 9789385676499
3.	N V Raghavendra and L Krishnamurthy, Engineering Metrology and Measurements, ISBN: 9780198085492

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

Semester: III											
THERMAL ENGINEERING I											
Course Code	: 18ME35		CIE	: 100 Marks							
Credits: L:T:P	: 3:0:0		SEE : 100 Marks								
1 otal Hours : 42 L+01+0P SEE Duration : 3.00 Hours											
Course Learning	Objectives: The stu	dents snould be	able to								
1. Familiarize with	various definitions	involved in therr	rious processes	ng w	ork and heat						
2. Apply first and s	second law of therm	rollarias of sacor	d Law of thermodyr	omi	25						
4 Explain the con	skills to explain co	ilable and up avai	lu Law of thermouy	laiiii	cs.						
4. Explain the Cond 5. Understand the l	behavior of pure sul	nable and un-avai	help of property dia	aron	20						
6. Differentiate bet	ween real and ideal		neip of property dia	gran	15						
		INIT_I									
Fundamental	Concents and D	efinitions. Sys	tem control vo	lum	ue O6h						
Fundamental Concepts and Definitions: System, control volume, properties, state, process, exact and inexact differentials–Quasi-static process, Definition of Thermodynamic work and Heat, Thermodynamic equilibrium – adiabatic and diathermic walls 06h Temperature: Equality of temperature – Zeroth law of thermodynamics-thermodynamics 06h											
	1	UNIT-II									
 in various quasi-static processes - other types of work transfer, Pure substances and two property rule, Numericals First Law of Thermodynamics: First law of thermodynamics for a closed system undergoing thermodynamic cycle and processes — Perpetual Motion Machine of kind I – Internal energy - property of the system – Enthalpy –Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals 											
		UNIT-III									
Second Law of Thermodynamics: Limitations of first law 10h of thermodynamics – Thermal reservoirs – Heat engines, Refrigerator and 10h Heat pump – Statements of second law of thermodynamics – Equivalence of 10h Kelvin Planck and Clausius statements – Perpetual Motion Machine of kind II, 10h											
Carnot cycle – thermodynamic t	Carnot cycle – Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals										
		UNIT-IV									
Entropy: Claus of increase of equations), Th different process Introduction, Av of a flow process	ius Inequality, Ent entropy – The ermodynamic sses of Ideal gas ailability function f ses.	tropy - a proper combined first relations, s. Available an For a non-flow pr	ty of a system, Pr and second law Change of entrop nd Unavailable e ocess, availability fu	incij (T py ner g uncti	ple 08h -ds for gy: on						
		UNIT-V									

Deviation of Ideal gas, equation of state– Real 08h
ation of state - compressibility factor, Use of
Numericals
d cycles: Air standard assumptions, efficiency, and diesel cycle, simple Numericals.
Numericals d cycles: Air standard assumptions, efficiency, ad diesel cycle, simple Numericals.

Cou	Course Outcomes: After completing the course, the students will be able to											
1	Define and Explain basic concepts, properties of substances and Laws of											
	thermodynamics											
2	Analyse thermodynamic processes for heat and work transfer											
3	Apply the Laws of Thermodynamics for analyzing thermodynamic processes / cycles											
4	Adapt knowledge of thermodynamics to suggest solutions for thermodynamic problems											

References:

1	Engineering Thermodynamics, Nag P.K, 4 th Edition, 2011, Tata McGraw Hill,
	ISBN-13:978-0-07-026062-7: ISBN-10:0-07-026062-1
2	Thermodynamics, Yunus A Cengel and Boles M.A, 7 th Edition, 2009, Tata McGraw Hill,
	ISBN-13:978-0-07-107254-0; ISBN-10:0-07-107254-3
3	Fundamentals of Thermodynamics, R.E Sonntag, C. Borgnakke and G.J. Van Wylen, 2003,
	John Wiley, ISBN:0-471-15232-3
4	Engineering Thermodynamics, Rajput R.K, 3 rd Edition, 2007, Laxmi Publications Pvt.
	Ltd ,ISBN: 978-0-7637-8272-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

Code			WATIC OF MAC			100 Marks
vurse Coae		1 8 WIE 30		CIE SEF		100 Marks
ctal Hours		$\frac{3.0.0}{4.41} + 0T + 0D$		SEE SEE Duration	•	3 00 Hours
ourse Learning ()hi	actives. The studer	ts should be able t	SEE Duration	•	5.00 110015
Explain types of	וען f די	elative motion	its should be able	.0		
Differentiate be	tw	een Machine Me	chanism and Stri	icture		
Draw velocity a	nd	acceleration diag	rams of linkages			
Design Cam pro	ofi	le for the desired f	follower motion.	••		
Determine gear	pa	rameters and dete	ermine train value	e & fixing torque in g	ear tr	ains
U	1		LINIT_I			
Simple Mechar	nis	m•	0111-1			06h
Definition of	lin	k. pair. kinemat	ic chain, mech	anism. machine. in	versio	on.
structure – Tv	pe	s of motion : c	constrained. unco	onstrained and succ	essfu	llv
constrained mot	tio	ns, Grashof's crit	erion, Inversions	of 4 bar chain, sing	le sli	der
crank chain and	d d	louble slider cran	k chain – Degre	es of freedom – Gr	ueble	r's
criterion for mo	bil	ity of mechanisms	S.			
			UNIT-II			ł
Mechanisms:						12 h
Drag link and to	ogg	gle mechanisms –	Straight line mec	hanisms, Condition f	or ex	act
straight line me	oti	on, Peaucellier a	nd Hart mechan	isms – Intermittent	moti	on
mechanisms, Ra	atc	het and pawl and	d Geneva wheel	 Pantograph, Condi 	tion	for
perfect steering	, .	Steering gear me	chanisms, Davis	and Ackermann- I	Hook	e's
joint						
X 7.1		1				
Velocity and A	CCC	eleration:	lanation of a main	t/link in simple mast	honia	
by relative velo	л vi	ty mathed (graph	vical) Coriolia	component of accel	lanis	ills on
Instantaneous c		ty method (grapi tra Cantrodas	Kennedy's the	orem To determin	o lind	on.
velocity and an		lar velocity of li	- Konnouy's the	echanisms by instan	tonec	
centre method	igu	iai velocity of in	liks of shiple in	centainsins by instan	lance	Jus
contro motilot			UNIT-III			
Klein's Constr	uc	tion for velocity	and acceleration	of slider crank mec	hanis	m. 12h
Complex algeb	ra	method: Analysi	is of velocity and	acceleration of sing	le slic	der
crank chain and	fo	ur bar chain by co	omplex algebra m	ethod		
	- 5		1			
Toothed Gearing	ng	: Classification of	toothed wheels	– Gear terminology -	-Law	of
gearing -Veloci	ty	of sliding – Lengt	th of path of cont	act, Arc of contact –	Cont	act
ratio – Interfei	ren	ce in involute	gears, Methods	of avoiding interfer	rence	-
Minimum numb	ber	of teeth to avoid	interference on p	vinion meshing with g	gear a	nd
on pinion mesh	ing	g with rack. Chara	acteristics of invo	olutes action, Compa	rison	of
involute and cyc	clo	idal teeth profiles	. Numerical prob	lems.		
			UNIT-IV			
	7 1		· · 1 m	<u> </u>	<u>a</u> .	1 0.4
Gear Trains-	Vel	locity ratio & T	rain value, Typ	es of gear trains–	Simp	ole, 06h
Compound, Re	Vel ve	locity ratio & T rted & Epicyclic	rain value, Typ gear trains. A	es of gear trains– lgebraic/Tabular me	Simp thod	ole, 06h of
Compound, Re finding Train	Vel ve val	locity ratio & T rted & Epicyclic ue of Epicyclic	rain value, Typ gear trains. A gear trains, Bev	es of gear trains– lgebraic/Tabular me vel gear Differentia	Simp thod l of	ole, 06h of an

UNIT-V

Cams: Types of cams, Types of followers and types of follower motion – Displacement, velocity and acceleration curves for SHM, Uniform velocity, UARM and cycloidal motion – To draw cam profile for disc cam with reciprocating follower (knife edge, roller and flat faced) and disc cam with oscillating roller follower – To find maximum velocity and acceleration in each case

Cou	Course Outcomes: After completing the course, the students will be able to									
1	Define the basic mechanisms for developing a machine.									
2	Construct velocity and acceleration diagram for mechanism.									
3	Design and synthesize mechanisms for specific type of relative motion									
4	Estimate kinematic parameters for industrial mechanisms									
Ref	erences:									

1 Thomas Bevan, 'Theory of Machines', 3rd Edition, CBS Publishers, 1984, ISBN: 9788131729666

- 2 Shigley, Theory of Machines, Tata McGraw Hill, 3rd Edition, 2003, ISBN:9780071137478
- Sadhu Singh, 'Theory of Machines', 2nd Edition, Pearson Education Publications, 2007, ISBN: 9788177581270
- 4 Rattan S.S. 'Theory of Machines', 3rd Edition, Tata McGraw Hill Publications, 2008, ISBN: 9780070144774

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

ENGINEERING MATHEMATICS – IV										
Cou	rse Code	:	18MA41C		CIE	:	100 Marks			
Crec	lits: L:T:P	:	4:1:0		SEE	:	100 Marks			
Tota	l Hours	:	44 L+12T+0P		SEE Duration	:	3.00 Hours			
Cou	rse Learnin	g Ol	bjectives: The stu	dent will be able	to					
1	1 Understand certain practical situations in various areas of engineering and science to									
	formulate linear programming problems to get optimum solution.									
2	Apply the	kno	wledge of differe	ential and integra	al calculus to fund	ction	s of complex			
	variables.									
3	Analyze the	e set	of data and fit sui	table approximat	ing curves.					
4	Interpret co	once	pt of probability	to solve random	physical phenome	na a	nd implement			
	the proper of	distr	ibution model.							
5	Use mather	natio	cal IT tools to anal	lyze and visualize	e various concepts.					
	Unit-I									
LINEAR PROGRAMMING 09 h										
Mathematical formulation of Linear Programming Problem (LPP). Solving							ng			
LPP using Graphical, Simplex and Big M methods. Exploring optimization										
tec	hniques usin	ng M	ATLAB.							
			***	Unit –II						
	OMPLEX A	NA		,	. • • • •	c	12 h			
Ar	alytic functi	$\log -$	- Cauchy-Rieman	n equations in c	artesian and polar	torm	s,			
ha	rmonic func	tion	s. Construction c	of analytic funct	ions by Milne-Th	omso	on			
me	thod. Com	plex	potential, strea	am and potenti	$\frac{1}{2}$ and $\frac{1}{2}$ includes. Co	mple	ex			
int	egration – C		ny s theorem, 1a	ylor's and Laure	ent s series, singula	aritie	s,			
po	les, lesidues,	, resi	idue meorem, prot		ns without proof).					
57	ATISTICS			01111 –111			12 h			
	ntral mome	nte	mean variance	coefficients of s	kewness and kurte	ncie	in 12 11			
ter	ms of mome	nts,	Curve fitting by	method of least s	courses fitting of c	urve				
no	lvnomial ex	none	ential and power f	unctions correla	tion and linear regr	essio	n			
an	alvsis applic	point	n problems Simul	lation using MAT	TAR	Coon				
un	arysis, appire	auto	ii problems. Sind	Unit –IV						
PF	ROBARILIT	TY A		TIONS			09 h			
Ra	ndom variał	oles -	- discrete and cor	tinuous. Probabi	lity distribution fur	nctio	n,			
cu	mulative dis	tribu	tion function. Bi	nomial. Poisson	Exponential and N	Jorm	al			
dis	tributions. S	imu	lation using MAT	LAB.	r					
				Unit –V			1			

Joint distribution of random variables – Expectation, covariance and correlation. Markov chain – Stochastic matrices, higher transition probabilities, regular stochastic matrices, probability vector. Course outcomes: On completion of the course, the student should have acquired the ability to 1 Understand the concept of formulation of linear programming problems (LPP), analytic functions, statistical measures, method of least squares and random variables. 2 Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
 correlation. Markov chain – Stochastic matrices, higher transition probabilities, regular stochastic matrices, probability vector. Course outcomes: On completion of the course, the student should have acquired the ability to 1 Understand the concept of formulation of linear programming problems (LPP), analytic functions, statistical measures, method of least squares and random variables. 2 Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
probabilities, regular stochastic matrices, probability vector. Course outcomes: On completion of the course, the student should have acquired the ability to 1 Understand the concept of formulation of linear programming problems (LPP), analytic functions, statistical measures, method of least squares and random variables. 2 Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
 Course outcomes: On completion of the course, the student should have acquired the ability to 1 Understand the concept of formulation of linear programming problems (LPP), analytic functions, statistical measures, method of least squares and random variables. 2 Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
 to 1 Understand the concept of formulation of linear programming problems (LPP), analytic functions, statistical measures, method of least squares and random variables. 2 Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
 Understand the concept of formulation of linear programming problems (LPP), analytic functions, statistical measures, method of least squares and random variables. Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
 functions, statistical measures, method of least squares and random variables. 2 Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
2 Solve LPP graphically, construct analytic functions, find correlation between two variables and probability distribution functions.
variables and probability distribution functions.
3 Apply gained knowledge for curve fitting, to find optimal solution of LPP using simplex
method, Taylor's and Laurent's series and different distributions.
4 Estimate optimal solution of LPP using Big M method, regression lines, singularities
residues, regular stochastic matrices and probability vector.

Re	ference Books
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers,
	ISBN: 81-7409-195-5.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill,
	ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X.
3	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley &
	Sons, ISBN: 978-81-265-3135-6.
4	Probability, Statistics and Random Processes, T. Veerarajan, 3 rd Edition, 2008, Tata
	McGraw-Hill ISBN: 978-0-07- 066925-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

		Semeste	r IV			
		Environmental	Technology			
Course Code	:	18BT42A	CIE	:	50 M	arks
Credits: L:T:P	:	2:0:0:0	SEE	:	50 M	arks
Total Hours	:	44 L+0T+0P	SEE Duration	:	90 mi	in
Course learning objectiv	es: 7	The student will be able to	,			
1. Understand the vario	us co	mponents of environment	t and the significance of the sustaina	ıbili	ty of h	ealthy
environment.						
2. Recognize the impli	catio	ns of different types of t	the wastes produced by natural and	d ar	nthropo	ogenic
activity.						
3. Learn the strategies to	o reco	over the energy from the	waste.			
4. Design the models	that 1	help mitigate or prevent	the negative impact of proposed	act	ivity o	on the
environment.						
		Unit I				6 h
Introduction: Environ	ment	- Components of environ	ment, Ecosystem. Impact of anthro	pog	genic	
activities on environm	ent (agriculture, mining and	transportation), Environmental ed	uca	tion,	
Environmental acts &	regul	ations, role of non-gover	rnmental organizations (NGOs), EN	AS:	ISO	
14000, Environmental I	mpac	et Assessment. Environme	ental auditing.			
		Unit II				6 h
Environmental polluti	on: A	Air pollution – point and	non point sources of air pollution a	ind	their	
controlling measures (partic	culate and gaseous conta	aminants). Noise pollution, Land p	ollu	ution	
(sources, impacts and re	med	al measures).				
Water management:	Wate	r conservation technique	es, water borne diseases & water	indu	uced	
diseases, arsenic & fl	uoric	e problems in drinking	; water and ground water contan	iina	tion,	
advanced waste water th	eatm	ent techniques.				
		Unit III				6 h
Waste management,	Solic	l waste management, e	waste management & biomedica	ıl w	vaste	
management – sources	, cha	racteristics & disposal r	nethods. Concepts of Reduce, Re	use	and	
Recycling of the wastes		· 1				
Energy – Different typ	es or	energy, conventional sou	lices & non conventional sources of	ene	ergy,	
Hydrogen as an alternat	ive e	hergy, while energy, Nucl	lear energy, biomass & biogas ross	ПГ	ueis,	
Unit IV						5 h
Environmental design	: Pri	nciples of Environmenta	l design, Green buildings, green m	later	rials.	
Leadership in Energy	and	Environmental Design (LEED), soilless cultivation (hvdro	pon	ics).	
organic farming use of biofuels carbon credits carbon foot prints Opportunities for green						
technology markets. car	bon	sequestration.	···· · ······ · · · · · · · · · · · ·	Ð	,	
		Unit V				4 h
D	uctor	· Processing technique	a material recovery systems bi	مامر	ricol	

conversion (composting and anaerobic digestion). Thermal conversion products (combustion, incineration, gasification, pyrolysis, use of Refuse Derived Fuels). Case studies of Biomass conversion, e waste.

Co	ourse outcomes: After completing the course, the students will be able to	
CO1	Identify the components of environment and exemplify the detrimental impact of anthropo	ogenic
	activities on the environment.	
CO2	Differentiate the various types of wastes and suggest appropriate safe technological method	ods to
	manage the waste.	
CO3	Aware of different renewable energy resources and can analyse the nature of waste and pr	ropose
	methods to extract clean energy.	
CO4	Adopt the appropriate recovering methods to recover the essential resources from the wast	tes for
	reuse or recycling.	
	Text Books	
1.	Gilbert, M.M. Introduction to environmental engineering and science, Pearson Education. Indi	ia: 3rd
	Edition (2015). ISBN: 9332549761, ISBN-13: 978-9332549760.	
2.	Howard S. Peavy, Donald R. Rowe and George Tchobanoglous. 2000. Environmental Engine	eering,
	McGraw Hill Education, First edition (1 July 2017). ISBN-10: 9351340260, ISBN-13:	978-
	9351340263	
	Reference Books	
1.	G. Tyler Miller (Author), Scott Spoolman (Author), (2012) Environmental Science - 15th en	dition,
	Publisher: Brooks Cole, ISBN-13: 978-1305090446 ISBN-10: 130509044	
2.	Vijay Kulkarni and T. V. Ramachandra 2009. Environment Management. TERI Press;	ISBN:
	8179931846, 9788179931844	
3.	Suresh K. Dhameja (Author), Environmental Engineering and Management. S.K. Kataria and	d sons
	(2010). ISBN-10: 8185749450, ISBN-13: 978-8185749457.	
4.	Linvil Gene Rich 2003, Environmental Systems Engineering, McGraw-Hill: ISBN: 978007052	22503

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	MANFACTURING PROCESS						
Course Code :		:	18ME43		CIE	:	100 +50
Cred	lits: L:T:P	:	3:0:1		SEE	:	100 +50
Tota	l Hours	:	42L+0T		SEE	:	3h+2h
Course Learning Objectives: The students should be able to							
1	Understand, analyse the concepts used in metal cutting, cutting tool geometry and metrology to						d metrology to
1	solve real tin	ne metal cutt	ing probler	ns			
2	Apply knowl	ledge of tool	life, tool w	ear, machinability	y to minimise the	e machinir	ng cost, improve
4	production rate						
2 Understand metal cutting processes, machine tools and metrology to evaluate the selection of						e selection of	
machine tools for a specific product							
4	Classify and explain the working principle of different NTM processes and interpret						
-	4 their suitability for micro-machining different materials and geometries						

PART A UNIT-I

07h

11h

11h

Metal Cutting: Introduction to Chip Formation, Types of chips, Orthogonal and Oblique cutting. Single point cutting tool nomenclature. **Mechanics of Orthogonal Metal Cutting (Merchant's thin shear plane model)** – Assumptions, Force Calculations, Shear Angle, Chip thickness ratio, Velocity relationships, Strain rate, Work done in shear, Friction and total work done – Problems. **Cutting Tool Materials** – Properties, High-Speed Steel, Cemented Carbides, Coated Carbides, Ceramics, Diamond and Cubic Moron Nitride (CBN). **Thermal Aspects** – Methods for measuring chip-tool interface temperature, Tool-work thermocouple method.

UNIT-II

Tool Wear – Crater wear, Flank wear and Wear mechanism. **Tool Life** – Definition, Tool failure criteria, Variables affecting Tool Life, Taylor's Tool Life equation – Problems. **Machinability** – Factors affecting machinability, Machinability Index. Cutting Fluids – Functions, Types of cutting fluids and Cutting fluid selection.

Economics of Machining – Minimisation of the Machining Cost, Maximising the Production Rate and Maximising the Production Rate – Problems. **Drilling** – Twist drill geometry, Types of Drills, Drilling time estimation – Problems, Torque and thrust during drilling – Problems. **Broaching Machine** – Introduction, Classification and working principle of broaching machines, nomenclature of a pull broach.

UNIT-III

Milling Machine: Introduction, Types of Milling machines and Milling cutters, Milling cutter nomenclature, Milling operations. **Milling Mechanics** – Slab milling and Face milling – Problems. **Milling Time and Power Estimation** – Slab milling and Face milling – Problems. **Dividing Head** – Types of Indexing – Direct or Rapid Indexing, Simple indexing, Compound indexing and angular indexing – Problems. Milling cutter nomenclature.

Gear Generation Methods – Rack cutter generation process, Pinion cutter generation process, Gear hobbing and Gear Shaping. **Grinding:** Classification of Grinding, Creep feed grinding, Designation and Selection of grinding wheel, Wheel Balancing, Dressing and Truing of grinding wheel. **Surface Finishing Processes** – Lapping, Honing, Super finishing, Polishing and Buffing.

Non-Traditional Machining Processes: Need and classification of unconventional machining processes. Electric Discharge Machining (EDM) – Principle, Schematic, Dielectric fluid, electrodes, Wire EDM. Electrochemical Machining (ECM) – Principle, ECM equipment, Electrolyte, Tools, ECM System Analysis – Material Removal Rate (MRR) and Gap resistance – Problems. Chemical Machining (CHM) – Chemical Milling and Chemical Blanking, Masks and Etchants, Ultrasonic Machining (USM) – Principle, Schematic. Abrasive Water Jet Machining (AWJM) – Principle, Schematic. Laser Beam Machining (LBM) – Principle, Schematic.

UNIT-V

Manufacturing processes: Classification of Manufacturing Processes. Metal-Casting Processes: Advantages, Limitations, applications and casting terminology. Patterns – Pattern Materials, Types of patterns, Pattern allowances, Core prints. Moulding sand: Types of moulding sands, Properties of moulding sands, Moulding sand composition. Moulding Machines: Jolting, Squeezing, Jolt & Squeezing and Sand Slinger. Cores – Functions and Desired Characteristics of Cores, Core sands, Types of Cores, Core Prints and Chaplets. Die Casting – Pressure Die casting processes (Hot and cold chamber), Centrifugal casting – True Centrifugal, Semi-centrifugal and centrifuging, Continuous Casting.Special Casting Processes: CO₂ Moulding, Shell Moulding, Investment Casting., Slush Casting. Casting Defects – Types, Causes and remedies.

PART – B SECTION – I (MACHINE SHOP)

Lathe operations:

1. Facing, 2. Plain Turning, 3. Step Turning, 4. Drilling, 5. Boring, 6. Internal Thread Cutting,

7. External Thread Cutting, 8. Knurling, 9. Eccentric Turning.

Milling, Shaping and Grinding Machine Operations:

- 1. Cutting of spur gear teeth using Horizontal Milling machine.
- 2. Making rectangular slot using Vertical Milling Machine.

1. Preparation of sand mould without pattern

2. Preparation of sand mould with pattern and Wax casting

3. Compression, shear and permeability test on the moulding sand specimen

4. Clay and Moisture content test on the moulding sand

5. Grain fineness number test (Sieve analysis)

Cou	rse Outcomes: After completing the course, the students will be able to
1	Define the terms associated with metal cutting tools, cutting fluids, in both Conventional
	and Un-conventional Machining Processes and explain the various Manufacturing Processes.
2	Analyse & Apply the Principles of Metal Cutting in Lathe, Milling, Broaching, measurements, Gear generation and Un-conventional Machining Processes to real time
3	Assess, Compare and Select appropriate Manufacturing Process.
4	Adapt the Principles of Turning, Milling, Shaping, Grinding and Develop the Mechanical
	Components.

07h

20h

8h

Reference Books

1.	P N Rao, "Manufacturing Technology – Metal cutting and Machine Tools Vol 2", 3 rd edition, McGraw Hill Education (India) Private Limited, 2013, ISBN-13: 978-9383286621 and ISBN-10: 9383286628.
2.	Amitabha Ghosh and Ashok Kumar Mallik, "Manufacturing Science", 2 nd edition, Affiliated East-West Press Private Limited, 2010, ISBN: 979-81-7671-063-3.
3.	Swadesh Kumar Singh, "A Text Book on Production Engineering", 2 nd edition, LNEC Publication, 2014, ISBN – 13: 979-1137483644.
4.	S.K. Hajara Choudhury, A.K. Hajara Choudhury and Nirjhar Roy, "Elements of Workshop Technology – Vol II Machine Tools", 13 th edition, Media Promotors & Publishers Pvt Ltd, 2010, ISBN-81.85099-15-4.
5.	Beckwith, Marangoni and Lienhard, "Mechanical Measurements", 6 th edition, Pearson Education India; 2013, ISBN-10: 9332518521 ISBN-13: 978-9332518520.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	THERM	AL ENGINEE	RING II				
Course Code	: 18ME44		CIE	:	100 +50 Marks		
Credits: L:T:P	: 3:1:1		SEE	:	100 +50 M	larks	
Total Hours	: 40L+16 +28P		SEE Duration	:	3h+2ł	ı	
Course Learning Objectives: The students should be able to							
1. Analysis of thermal efficiency of gas power and vapor power cycles							
2. Evaluate perf	formance of IC engi	nes					
3. Explain work	king principle of rec	iprocating air co	ompressor and	anal	yse its perfor	mance	
4. Understand v evaluate the t	vorking principle of performance	Refrigeration a	and Air-condition	onin	g systems ar	nd	
5. Explain basic	c modes and fundam	nental laws of h	eat transfer				
		Part A					
		UNIT-I					
Gas power Cycle	es: Efficiency of ai	r- standard cyc	cles – Carnot	cycl	e, Otto,	08h	
Diesel and Dual cy	ycles –Derivation of	f air standard ef	ficiency, MEP	(no	derivation)		
of the cycles, com	parison of cycles, N	umericals					
		UNIT-II					
Gas Turbines: o	open cycle constar	nt pressure gas t	turbines, theore	etical	and actual	14h	
cycles, Advantages	s and disadvantages	of closed cycl	le compared to	o op	en cycle,		
Multistage expans	ion with reheating,	multistage com	pression with in	nterc	cooling,		
Numericals.							
Jet and Rocket pr	ropulsion: Principle	es and working	of turbojet, tur	bofa	n,		
turboprop, Ramjet	and pulse jet, simpl	e turbojet cycle	e, Thrust power	, pro	pulsive		
power, thermal eff	iciency, propulsive	efficiency and o	overall efficien	cy, R	locket		
propulsion							
(No Numericals)							
D				4		1.41	
Performance test	ing of I.C. Engines	: Testing of two	o stroke and for	ur sti	OKE C.I	14n	
balance sheet met	hode to find ID Nur	noricals	ency, SPC, MI		iu neat		
Dalance Sheet, met		licitcais					
Vanor Power Cvo	eles. Carnot vapour	nower cycle – s	simple Rankine	CVC	le		
comparison of Ran	kine and Carnot va	pour cycle Ana	lysis and perfo	rma	nce of		
Rankine cycle. Ide	al and practical rege	enerative Ranki	ne cycle. Rehe	at an	d		
regenerative cycle.	Numericals						
	, ,						
_		UNIT-IV					
Refrigeration: A	ir Cycle Refrigera	tion, Reversed	Carnot Cycle	e, R	eversed	10h	
Brayton Cycle, Vapour Compression Refrigeration system - Refrigerating							
effect, power required, COP, Vapour Absorption Refrigeration, Properties of							
refrigerants, Numericals							
		1			1 1		
Pyschrometrics:	Atmospheric air	and Psychror	netric propert	ies,	dry bulb		
temperature and w	vet build temperatur	re, Dew point t	temperature, pa	artial	pressures,		
temperature Lice a	and relative numidi	iy, degree of sa	aturation, Adia	vatic	saturation		
	n i sychiometric cha	INIT_V	mericals)				
		U1 11-V					

 Reciprocating Air Compressors: Classification, Work input with and without clearance, volumetric efficiency, Adiabatic, isothermal and mechanical efficiency, work input in multi-stage compression with intercooling, Intermediate pressure for minimum work input, Numericals Combustion Thermodynamics: Stoichiometric air / fuel ratio for combustion of fuels - excess air, exhaust gas analysis, (conversion of mass analysis to volumetric analysis and vice versa). Calorific value, Combustion efficiency. Combustion Reactions, Enthalpy of formation, Entropy of formation, internal energy of combustion. Adiabatic flame temperature, Simple Numericals 	10h		
Tutorials are conducted for Unit I (02 h), Unit II(04h), Unit III (04h), Unit IV (03h) and Unit V (03h)			

PART – B					
Thermal Engineering Lab					
Section-I 12Hrs					
1. Determination of flash point and fire point of lubricating oil by using Abel Pensky or					
Cleveland apparatus. (Open cup)					
2. Determination of flash point and fire point of high speed diesel (HSD) by using Pensky					
Martins apparatus. (Closed cup)					
3. Determination of calorific value of solid or liquid fuel using Bomb Calorimeter.					
4. Determination of viscosity of various grades of lubricating oils using Redwood,					
Saybolt and Torsion Viscometers.					
5. Valve timing diagram of a 4 stroke I.C. Engine.					
6. Performance test on a Vapor Compression Refrigerator.					
Section II 16Hrs					
1. Performance tests on I.C.Engines					
Four stroke water cooled single cylinder diesel engine					
 Four stroke, four cylinder petrol engine (Including Morse test) 					
 Four stroke, four cylinder diesel engine (Including Morse test) 					
 Computerised single cylinder diesel engine (Including combustion characteristics) 					
2. Performance test on two stage reciprocating air compressor.					
3. Performance test on air blower					

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Explain basic thermodynamic cycles to evaluate work and efficiency / performance.						
2	Analyse modifications of basic thermodynamic cycles for optimising work and increasing efficiency / performance.						
3	Determine properties of fuels, and analyse performance parameters of IC engines and compressor						
4	Adapt knowledge of thermodynamic cycles to suggest solutions for real time thermodynamic problems						

References:

1	Basic and Applied Thermodynamics, P.K.Nag, 2010, Tata McGraw Hill Publication
	ISBN: 9780070151314
2	Engineering Thermodynamics, Yunus Cengel, Michael Boles, 7 th Edition,2011,Tata McGraw
	HII Company, ISBN: 9780071072540
3	Fundamentals of Engineering Thermodynamics, Moron M.J, Shapiro H.N, Boettner D. D. and Bailey M.B. 7 th Edition, ISBN: 978-1-1183-7965-3
-	
4	Fundamentals of Thermodynamics, R.E.Sonntag, C.Borgnakke and G.J.VanWylen, 2003,
	John Wiley, ISBN:0-471-15232-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

			DYNA	MIC OF MACI	HINES				
Cour	rse Code	:	18ME45		CIE	:	100 Marks		
Cred	redits: L:T:P : 3:1:0 SEE : 100 Marks								
Tota	otal Hours : 42L+14T+0P SEE Duration : 3hours								
Cour	Course Learning Objectives: The students should be able to								
1	Describe the need for performing static and dynamic analysis on a system								
2	Calculate ratio of belt tensions in flat and V belt								
3	Explain the v	work	ing of flywheel	, cam and the in	portance of balan	cir	ig in machines		
	with rotating members								
4	Analyse forces with friction and without friction. Speed of Governor. Sensitiveness,								
4	stability, isochronism, hunting, controlling force curves for governor								
5	Study Gyroscopic couple, effect of gyroscopic couple on plane disc, aeroplane and ship								
			-	1					

PART A	
UNIT-I	
Static Force Analysis:	07h
forces and torque, free body diagram, static force analysis of four bar mechanism and slider crank mechanism without friction	
Dynamic Force Analysis: Dynamic force analysis of four bar mechanism and slider crank mechanism, dynamically equivalent system	
UNIT-II	
Flywheels: Types of flywheel, Energy stored, Determination of size of flywheel for engine, Machines performing intermittent operation in a punching press	11h
Belt & Rope Drives Types of belt drives – flat and V belt – Open belt and Cross belt. Velocity ratio, slip and creep and its effects on velocity ratio. Ratio of belt tensions. Initial tension, centrifugal tension. Power transmitted by belt drive. Condition for maximum power transmission, Rope drive: Ratio of tensions, Initial tension and centrifugal tension. Power transmitted. Condition for maximum power transmission	
UNIT-III	
 Balancing of Rotating Masses: Static and Dynamic balancing, Balancing of single rotating mass, Balancing in same plane and in different plane, Balancing of several rotating masses rotating at different planes Balancing of Reciprocating Masses: Inertia effect of crank and connecting rod of single cylinder engine, partial balancing of multi-cylinder engine (Primary and Secondary forces and couples), Balancing of V engine, Direct and Reverse crank method 	11h
UNIT-IV	
Governors: Types of governors, Centrifugal and Inertia types. Porter Governor and Hartnell Governor. Force analysis with friction and without friction. Speed of Governor. Sensitiveness, stability, Isochronism, Hunting, Controlling force curves for governor	06h

07h

Gyroscope: Vectorial representation of angular motion. Basic definitions. Gyroscopic couple. Effect of gyroscopic couple on plane disc, Aeroplane, Ship. Effect of gyroscopic couple on stability of a two wheeler and a four wheeler

Coι	irse Outcomes: After completing the course, the students will be able to
1	Define the terms associated with metal cutting tools, cutting fluids, in both Conventional and Un-conventional Machining Processes and explain the various Manufacturing Processes.
2	Analyze Belt/rope drives, flywheels, rotating and reciprocating mechanism
3	Evaluate kinematics and kinetics for various mechanisms
4	Design and synthesize industrial mechanisms

Reference Books

1	Thomas Bevan, 'Theory of Machines', 3rd Edition, CBS Publishers, 1984, ISBN: 9788131729666
2	Rattan S.S. 'Theory of Machines', 3rd Edition, Tata McGraw Hill Publications, 2008, ISBN: 9780070144774
6.	Sadhu Singh, 'Theory of Machines', 2nd Edition, Pearson Education Publications, 2007, ISBN: 9788177581270

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	FLUID MECHANICS								
Cour	se Code	:	18ME46		CIE	:	100 Marks		
Cred	its: L:T:P	:	2:1:1		SEE	:	100 Marks		
Tota	l Hours	:	42L+14T+14P		SEE Duration	:	3hours		
Cou	rse Learni	ng O	bjectives: The	students will be a	ble to				
1	Understar	nding	g fundamental fl	uid mechanics.					
2	Measuren	nent	of pressure and	determination of h	ydrostatic forces ar	nd flov	w through p	ipes.	
2	Apply lav	vs of	conservation of	momentum, mass	and energy to fluid	l flow	systems and	d	
3	explain th	ne me	easurement of flu	uid flow parameter	rs.				
4	Investigat	te the	e characteristics	of flow though pip	bes.				
5	Interpret of	comp	pressibility of ga	ses in terms of Ma	ach number.				
6	Apply dir	nens	ional analysis ar	nd similarity laws	for conducting mod	el test	s.		
				UNIT-I					
Basic Concepts and Fluid Properties: Definition of a fluid; Classification of fluid flows; No slip condition; System and control volume; Continuum. Density, Specific gravity, Vapour pressure, Viscosity, Surface Tension; Coefficient of compression, Effects of Cavitation and Capillarity, Numericals08Fluid Statics: Hydrostatic forces on submerged horizontal, vertical, inclined and curved surfaces, determination of centre of pressure and total pressure, Numericals08						08 h			
				UNIT-II					
and of Buoy height subm	Buoyancy and Stability: Stability of floating bodies, Meta centre and Meta centric height; experimental and analytical determination of meta centric height; stability of submerged bodies, Numericals						10 h		
				UNIT-III					
Fluid visua Velo Fluid Bern equa and S trans	 Fluid Kinematics: Lagrangian and Eulerian descriptions; Fundamentals of flow visualization; Stream line, Stream tube, Path line and Streak line; Stream function, Velocity potential, Circulation, Vorticity and Rotationality, Numericals Fluid Dynamics: General continuity equation in Cartesian coordinates; Euler's equation; Bernoulli's equation, Limitations of Bernoulli's equation, Applications of Bernoulli's equation; Venturimeter, Orifice Meter, Pitot tube and Pitot Static tube. Static, Dynamic and Stagnation pressures, Notches - V notch, Rectangular notch, introduction to Reynolds 						10 h		
	UNIT-IV								
Intro thick Simp	Introduction to Boundary Layer Theory: Flow over a flat plate: Boundary layer thickness, Displacement, Momentum and Energy thickness, Flow separation concept, Simple Numericals 08 h Dimensional Analysis and Modelings Simility In Constraints Constraints						08 h		
simil diffe Num	similarities; Buckingham pi theorem and its application to fluid mechanics problems; different forces acting in moving fluid, Dimensionless numbers; Model studies, Numericals								
				UNIT-V					
Flow pipes	y through l s; Hagen-Po	Pipes oiseu	s: Darcy-Weisba lle equation; Fri	ach equation; Chez	zy's formula; Lamir or losses. Numerical	nar flo s	w through	06 h	

Turbulent Flow through Pipes: Characteristics of turbulent flow; Turbulent velocity profile; Turbulent shear stress; Moody's chart, (no numerical)

PART – B- LABORATORY

FLUID MECHANICS LABORATORY

14 Hrs

1. Calibration of Venturimrter

2. Calibration of Orifice meter

3. Calibration of V-Notch

4. Determination of co-efficient of friction due to flow of fluids in pipes

5. Determination of co-efficient of minor losses due to flow of fluids through pipes.

6. Impact of jet on vanes

Course Outcomes: After completing the course, the students will be able to

- 1 Describe various properties of fluids for analysing fluid flow applications.
- 2 Analyze the effect of fluid properties on static and dynamics of fluid flow.
- 3 Analyze hydrostatic and dynamic solutions for fluid flow applications.
- 4 Derive appropriate formulae for specific industrial fluid problems.

Reference Books

1.	Yunus A. Cengel and John M. Cimbala, "Fluid Mechanics", Tata Mc-Graw Hill 2006;
	ISBN:9780071284219

- 2. Modi and Seth, "Fluid Mechanics and Hydraulic Machines", Standard Book House 2007; ISBN -81-7867-023-2
- **3.** K. Subramanya, "Theory and Application of Fluid Mechanics", TMH Outline Series, 1993; ISBN-13: 978-0-07-460369-7, ISBN: 0-07-460369-8
- **4.** F. M. White, "Fluid Mechanics"McGraw Hill Education India Private Limited; ISBN-13:978-9385965494

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	Design Thinking Lab – Automotive Mechatronic Systems							
Course	e Code	:	18ME47X		CIE	:	50 Marks	
Credit	s: L:T:P	:	0:0:2		SEE	:	50 Marks	
Total I	Fotal Hours :							
Cours	e Learning	Ob	jectives: The students should be	able to				
1.	Identify to	ols,	fasteners, automotive component	ts and li	nkages			
2.	Understan	d th	e basics of automotive mechatron	ic syste	ms			
3.	Perform a	naly	sis on major aggregates accounting	g for the	ir design and function	onali	ty	
4.	Read and actuators of	nter n th	pret wiring diagram to physically i e car	dentify	electrical fuses, rela	y sw.	vitches and	
5.	Demonstra	te t	ne use of diagnosis tool to access n	nechatro	onic systems on a high	gh ei	nd car	
			Course Col	ntents				
1	Conhody	trilo	Part A(All students sn	ould be	exposed)			
1.	Car body s	hogo	s, body dimensioning and mainten	ance too	DIS			
2.	Types of t	uros	and their nomanalature	5				
<u> </u>	Flectronic	eng	ine controls and On Board Diagno	stic (OB	D) systems			
	Braking sy	chg ister	n = master cylinder brake calibers	$\frac{\text{Suc}(OL)}{(\text{floating})}$	and fixed types)	and	ABS	
<u> </u>	Intake ext		t system and glow plugs	(noath	ig and fixed types) a		100	
7	Suspensio	n sv	stems – Mc-Phersun strut and Air-	matic su	spension			
8.	Differentia	ıl m	echanism		spension			
9.	Cylinder a	nd r	viston					
10	Solenoid c	onti	colled relay switches $-4/5$ pin relation	ay switc	hes			
			Part B (Student select any one	the foll	owing for Develop	men	nt)	
			Сус	ele - I				
11.	Starter mo	tor						
12.	Fly wheel	and	belt driven auxiliaries					
13.	High press	sure	fuel pump					
14.	Fuel inject	ion	systems					
15.	Camtronic	s - (Operation of timing belt and valves					
16	Alternator							
			Cyc	cle-II				
17.	Air condit	ioni	ng system					
18.	Coolant ci	rcul	ation circuit					
19.	Brake boo	ster						
20.	Super char	ger	and turbo charger					
21.	21. Bharat IV emission norms and exhaust gas analyser							
22	Part C							
22.	22. Clutch mechanism							
23	23. Torque converter							
<u></u>		ns 0 nch	omesh mechanisms gear ratio AN		Ϋ́T			
24	Automatic	Tra	nsmission – Sun planetary and rin	$\frac{11}{0} \frac{1}{0} 1$	±			
	1 satomatic	110	and	5 5000 5				
	a. Ra	vigr	eaux gear system, Gear ratio calcu	ılations				
25.	25. Automotive diagnosis system							

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Demonstrate the use of automotive service tools and operation of inspection lift in a car bay					
2	Account for the design of automotive components					
3	Read and interpret wiring diagram to fix simple electrical faults					
4	Demonstrate the use of diagnosis tool to communicate with mechatronic systems					

References:

1	'Automotive Technology: Principles, Diagnosis, and Service', 5th Edition by James D.
	Halderman
2	'Bosch Automotive electronic hand book' 1 st edition 2002
3	'Automotive Technology: A Systems Approach' by Jack Erjavec
4	'Understanding Automotive Electronics' by William B Ribbens 5th edition

Semester: IV							
Design Thinking Lab – New Product Design							
Course Code		:	18ME46		CIE	:	50 Marks
Credits: L:T:P		:	0:0:2		SEE		50 Marks
Total Hours		:			SEE Duration		
Cou	Course Learning Objectives:						
1	Identify the products and possible materials						
2	Understand the basics of product design and modelling						
3	Analyse the product function and its properties						
4	Demonstrate the working model						

			Co	our	se (Con	tents	

- Part A(All students should be exposed)
- 1. Bench marking
- 2. Selection of materials
- 3. Computer aided engineering design (CAD, Solidworks, and 3D Experience-CATIA)
- 4. Assembly and simulation
- 5. Finite element analysis
- 6. Rapid prototyping

Part B (Each student to work on one of the following products)

- 1. Multi-function universal quick adjustable wrench spanner set
- 2. A pocket friendly, adjustable wrench
- 3. Adjustable pocket hole jig kit
- 4. Foldable dining furniture
- 5. Solar powered water purifier
- 6. Multipurpose indexing device lathe, milling, drilling attachment mechanical project
- 7. Joystick operated motorised wheelchair
- 8. Manual rice planter equipment
- 9. Wireless multipurpose agriculture robot

10. Floor cleaner robot

Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the concepts of new product development						
CO2:	Design and develop new product concept						
CO3:	Analyse the new concept developed						
CO4:	Create working model of new product						

Reference Books

1	Harper C.A., Handbook of materials for product design, MGH, 2001, ISBN: 0071354069, 9780071354066
2	Karl T Ulrich, Steven D Eppinger, "Product Design & Development." Tata McGrawhill Education, Fifth edition, 2015, ISBN: 0078029066, 9780078029066
3	Jamnia, Ali, Introduction to product design and development for engineers, CRC Press/Taylor & Francis Group, 2018, ISBN: 9781138554214, 1138554219, 9781315148939
4	L. Jyothish Kumar, Pulak M. Pandey, David Ian Wimpenny, 3D Printing and Additive Manufacturing Technologies, Springer Nature Singapore Pte Ltd, ISBN 978-981-13-0304-3 ISBN 978-981-13-0305-0 (eBook)
5	Arlindo Silva; Ricardo Simões, Handbook of Research on Trends in Product Design and Development: Technological and Organizational Perspectives, Business science reference, 2011, ISBN: 978-1-61520-617-9

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

INNER BACK COVER PAGE

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.