

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII &VIII Semesters

2016 SCHEME

BIOTECHNOLOGY

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII &VIII Semesters

2016 SCHEME

DEPARTMENT OF BIOTECHNOLOGY

DEPARTMENT VISION

A Premier Department in Biotechnology Education, Research and Innovation with a Focus on Sustainable Technologies for the Benefit of Society and Environment.

DEPARTMENT MISSION

- Create state-of-the-art infrastructure for research and training in Biotechnology
- Develop graduates who are ethically and socially concerned
- Promoting collaboration with academia, industries and research organizations at national and international level
- Contribute to socioeconomic development through sustainable and inclusive technologies

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Have a strong foundation in scientific and engineering principles, develop oral and written communication skills and team work that prepare them for a successful career in Biotechnology and allied industries.

PEO2: Function at a technically competent level in formulating and solving problems in Biotechnology and to develop an outlook for higher education and lifelong learning.

PEO3: Organize and utilize the knowledge to develop biological processes and products, exhibit professionalism, ethical attitude to become an entrepreneur.

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO	Description						
PSO1	Gain knowledge in Basic sciences, Mathematics and Biology to understand the						
	Engineering problems related to Biotechnology and Bioinformatics.						
PSO2	Develop the skills in the area of Biotechnology, Chemical Engineering and Informatics to						
	solve complex Biological problems.						
PSO3	Acquire technical knowledge to design, analyse, optimize and scale up Bio processes to						
	develop value added products.						
PSO4	Develop intellectual, personal and professional abilities through experiential learning and						
	interdisciplinary projects.						

Lead Society: American Society of Agricultural and Biological Engineers

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	СҮ	Chemistry
22.	MA	Mathematics

INDEX

VII Semester					
Sl. No.	Course Code	Course Title	Page No.		
1.	16BT71	Plant Biotechnology	1		
2.	16BT72	Downstream Processing	4		
3.	16BT73	Animal Biotechnology	7		
4.	16XX7FX	Elective F (PE)	9		
5.	16XX7GX	Elective G (PE)	17		
6.	16GH7XX	Elective H (GE)	25		
	G	ROUP F: PROFESSIONAL CORE ELECTIVES			
1.	16BT7F1	Nano biotechnology	9		
2.	16BT7F2	Plant based vaccines	11		
3.	16BT7F3	Equipment Design & Drawing	13		
4.	16BT7F4	MAT LAB	15		
	G	ROUP G: PROFESSIONAL CORE ELECTIVES			
1.	16BT7G1	Vaccine Technology	17		
2.	16BT7G2	Nutraceuticals	19		
3.	16BT7G3	GMP, GLP, Biosafety and Bio business	21		
4.	16BT7G4	HPC and Big data analysis	23		

GROUP H: GLOBAL ELECTIVES							
Sl. No.	Course Code	Host	Course Title	Page No.			
		Dept					
1.	16G7H01	BT	Nanotechnology	25			
2.	16G7H02	CH	Industrial safety and risk management	27			
3.	16G7H03	CV	Intelligent transport systems	29			
4.	16G7H04	CS	Intelligent systems	31			
5.	16G7H05	EC	Image processing and machine learning	33			
6.	16G7H06	EE	Design of renewable energy systems	35			
7.	16G7H07	IE	Systems engineering	37			
8.	16G7H08	EI	Mems and applications	39			
9.	16G7H09	IS	Introduction to internet of things	41			
10.	16G7H10	ME	Industry 4.0- smart manufacturing for the future	43			
11.	16G7H11	TE	Space technology and applications	45			
12.	16G7H12	MA	Advanced linear algebra	47			
13.	16G7H13	AE	Thin film nanotechnology	49			
14.	16G7H14	HS	Engineering materials for advanced technology	51			
15.	16G7H15	HS	Applied psychology for engineers	53			
16.	16G7H16	HS	Foundational course on entrepreneurship	55			
17.	16G7H17	AS	Unmanned aerial vehicles	57			

	VIII Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	16BT81	Major Project	59				
2.	16BT82	Technical Seminar	62				
3.	16HS 83	Innovation and Social Skills	63				

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) BIOTECHNOLOGY

	SEVENTH SEMESTER CREDIT SCHEME								
SI No	Course Code	Course Title	DOS	(Credit A	Total Credita			
51. 110.			DUS	L	Т	Р	S	Total Credits	
1.	16BT71	Plant Biotechnology	BT	4	0	1	0	5	
2.	16BT72	Downstream Processing	BT	4	0	1	0	5	
3.	16BT73	Animal Biotechnology	BT	3	0	0	0	3	
4.	16XX7FX	Elective F (PE)	BT	4	0	0	0	4	
5.	16XX7GX	Elective G (PE)	BT	4	0	0	0	4	
6.	16G7HXX	Elective H (GE)Nanotechnology	BT	3	0	0	0	3	
	Τ	otal Number of Credits		22	00	02	00	24	
	Tot	al number of Hours/Week		22	00	04	00	26	

		EIGHTH SEMESTER CREDIT SCHEME								
SI No	C Credit Allocation									
51. INO	Course Code	Course The	BO2	L	Т	Р	S	Total Credits		
1.	16BT81	Major Project	BT	0	0	16	0	16		
2.	16BT82	Technical Seminar	BT	0	0	2	0	2		
3.	16HS83	Innovation and Social Skills	HSS	0	0	2	0	2		
	Total N		0	0	20	0	20			
	Total nun	nber of Hours/Week		0	0	40	0	40		

*Mandatory Audit course for lateral entry diploma students

****** Non-contact hours

	VII Semester					
	GROUP F: PROFESSIONAL ELECTIVES					
Sl. No.	Sl. No. Course Code Course Title					
1.	16BT7F1	Nanotechnology				
2.	16BT7F2	Plant based vaccines				
3.	16BT7F3	Equipment Design & Drawing				
4.	16BT7F4	MAT LAB				

	VII Semester				
	GROUP G: PROFESSIONAL ELECTIVES				
Sl. No.	Course Code	Course Title			
1.	16BT7G1	Vaccine Technology			
2.	16BT7G2	Nutraceuticals			
3.	16BT7G3	GMP, GLP, Biosafety and Bio business			
4.	16BT7G4	HPC and Big data analysis			

Sl. No.	Course Code	Host Dept	Course Title
1.	16G7H01	BT	Nanotechnology
2.	16G7H02	СН	Industrial safety and risk management
3.	16G7H03	CV	Intelligent transport systems
4.	16G7H04	CS	Intelligent systems
5.	16G7H05	EC	Image processing and machine learning
6.	16G7H06	EE	Design of renewable energy systems
7.	16G7H07	IE	Systems engineering
8.	16G7H08	EI	Mems and applications
9.	16G7H09	IS	Introduction to internet of things
10.	16G7H10	ME	Industry 4.0- smart manufacturing for the future
11.	16G7H11	TE	Space technology and applications
12.	16G7H12	MA	Advanced linear algebra
13.	16G7H13	AE	Thin film nanotechnology
14.	16G7H14	HS	Engineering materials for advanced technology
15.	16G7H15	HS	Applied psychology for engineers
16.	16G7H16	HS	Foundational course on entrepreneurship
17.	16G7H17	AS	Unmanned aerial vehicles

	Semester: VII						
PLANT BIOTECHNOLOGY							
Cours	e Code	•	(11 16BT71	leory af	CIF	•	100+50Marks
Credi	ts·L·T·P·S	•	4.0.1.0		SEE	•	100+50Marks
Total	Hours	•	44L+24P		SEE Duration	•	3.00 + 3.00 Hours
Cours	e Learning ()	• bie	ctives: The student	s will be	able to	•	
1	Understand	tiss	ue culture techniqu	ies and	its application for en	har	nced production of various
-	bioactive con	npo	ounds	ies und		1101	for production of various
2	Analyse and		omprehend the vari	ious mo	lecular and genetic t	ran	sformation mechanisms in
	generating tr	ans	genic plants		C		
3	Interpret the	mc	dern mechanisms a	und strat	egies for the production	on	of various resistant/tolerant
	plants for the	e cr	op improvement				
4	Apply the o	mi	es and edge cuttin	g transg	genic strategies for cr	rop	improvement adhering to
	environment	al a	nd ethical standards	s for soc	ietal betterment.		
5	Understand	tiss	ue culture techniqu	ies and	its application for en	har	need production of various
	bioactive con	npo	ounds	TI:4 T			00 11
Tradina		4 4			. 1 T. C		
Cultur	a types: collu		ssue culture; Plas	ture Mi	nd Toupotency, cult	ire	media, growin regulators.
Cultur	e types, canu	s, (ecic	-direct and Indire	ct Org	anogenesis Organ c	ulti	ure: root cultures Shoot
merist	em culture, en	nbr	vo culture and endo	sperm c	ulture. Molecular basi	is o	of Organogenesis protonlast
culture	e and somatic	h h	vbridization and c	vbridiza	tion. Haploid plants;	M	ficrospore culture, somatic
embry	ogenesis. Gen	e re	gulation during sor	natic en	bryogenesis. Artificia	ıl so	eeds. Soma clonal variation
for cr	op improvem	ent	, Cryopreservation	. Adva	ntages of tissue cult	ture	e as source of secondary
metab	olites, Growth	an	d production kineti	cs of cel	ll cultures, scale-up pr	roce	edures in bioreactors, types
of bio-	reactors for p	lan	t cell cultures. Biot	ic and al	piotic elicitation, biotra	ans	formation.
				t - II			09 Hrs
Tech	niques for pla	int	transformation. M	odes of	gene delivery in plant	s; p	physical, chemical and
Biolog	ters and term	11 	tors selectable m	rlant ex	pression vectors; co-i	nie	grative and binary vectors.
culture	e based <i>in n</i>	lan	ta and floral din	Transnl	astomic transformatic	n Sun	Transformation systems:
transp	oson tagging	. e	enhancer/promoter/g	gene tra	ap. transactivation.	ove	er expression and under
expres	sion, gene sile	enci	ng, virus induced g	gene sile	ncing, gene replaceme	ent.	gene targeting. Screening
and so	election of tr	ans	formants; Histoche	mical,	PCR and hybridizati	on	methods. Generation and
mainte	enance of trans	sgei	nic plants, Transgen	e silenci	ing. Clean gene techno	olog	gy. Molecular breeding.
			Uni	t –III			09 Hrs
Stress	tolerant/resi	stai	nt plants: Plant det	fence sy	stem Genetic basis of	pl	ant pathogen interaction, R
genes	and R gene	me	diated resistance, I	Biochem	istry and Molecular	bio	logy of defence reactions,
System	nic acquired re	S1S	tance, ABA in stres	s tolerar	ice, Role of Salicylic,	Jas	smonic acid and ethylene in
plant o	nt planta (Cas	Su	tudy: PT Cotton) V	ic stress	s resistance plants- Di	lsea	ise resistance plants; insect
resista	nt plants (Cas	e s ma	tode resistance H	erbicide	resistance plants A	hic	sistance plants and rungar
Droug	ht and Salt to	lera	ince plants (Case s	tudv- rie	ce) <i>Arabidonsis</i> as a	i m	odel for molecular genetic
studies	s in plant biolo	ogv.	an introduction to	svstems	approaches.	* 111	louer for morecular generic
	Unit –IV 09 Hrs						
Appli	Application of transgenic plants: Molecular farming/pharming Improvement of Products and Food						
Qualit	y; Nutritional	Im	provements- Golde	en rice.	Modified Plant lipids	s, c	arbohydrates and proteins.
Pharm	aceutical Prod	luct	s; genetic manipula	tions in	volved in the producti	ion	of commercially important
enzym	es, therapeutio	c pi	oteins, edible vacci	nes, bio	plastics, and other no	ove	l compounds. Biofuels, Bio
plastic	s. Genetic m	anij	pulation of fruit ri	pening;	Delay of fruit ripen	ning	g; polygalacturanase, ACC
syntha	se, ACC oxi	das	e (Case study –to	mato),	flower colour (Case	sti	idy- Anthurium, rose and
Gerber	Gerbera). Genetic manipulation of crop yield by enhancement of photosynthesis.						

Unit –V	09 Hrs					
The Omics in Plant world: Interrelationships of omic disciplines. Identifying genes of interest						
through genomic studies. Plant Cyc databases. RNAi for Crop Improvement. Adva	nced genetic					
tools for plant biotechnology; plant genome editing- (CRISPR)/CRISPR-associated pro	tein 9 (Cas9)					
system, Zinc finger nucleases (ZFNs), mega nucleases and transcription activator-like effector						
nucleases (TALENs). Recent advances of Epigenetics in Crop Biotechnology.	1					
Plant transgenics- Science and society: The public acceptance of GM crops; issues	and concerns,					
biosalety, societal and ethical aspects of genetically modified foods and crops.						
LAB EXPERIMENTS						
1. Callus induction from various explants						
2. Cell suspension culture and elicitation studies						
3. Extraction and estimation of total phenolics from callus cultures						
4. Extraction and estimation of lycopene from tomato.						
5. Protoplast isolation and culture. Anther and microspore culture technique for the haploids.	production of					
6. Isolation of genomic DNA from plant tissue.						
7. Competent cell preparation of Agrobacterium tumefaciens and transformate expression vector	tion of plant					
8. Genetic transformation in plants (in planta and tissue culture based).						
9. Screening and selection of transformants (GUS Assay and PCR using GUS speci	fic primers).					
10. PAL enzyme assay in Cell cultures						
11. Antioxidant assay in cultures						
12. Functional annotation using plant cyc databases						
13. Pathway using Gen map						
14. Mapping QTLs using Join map.						
Note: Each student has to perform all the 12 experiments in a semester.						

Referen	ice Books
1	Plant Biotechnology and Genetics: Principles, Techniques, and Applications.Jr. C. Neal Stewart, Wiley publishers. 2 nd Edition. 2016.ISBN: 9781118820124.
2	Plant Biotechnology and Agriculture. Arie Altman, Paul HasegawaAcademic Press 2012. 1 st Edition. ISBN: 9780123814661.
3	Plant Biotechnology: Mark R. Fowler, AdrianSlater, Nigel W. Scott. The genetic manipulation of plants : Oxford University Press. 2 nd Edition. ISBN: 9780199560875.
4	.PlantOmics: The Omics of Plant Science. Springer India.DebmalyaBarh,MuhammadSarwar Khan, Eric Davies 1 st Edition, 2015. ISBN: 9788132221715.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Conceptualize the fundamentals of plant biotechnology from tissue culture intricacies to									
	modern transgenics using omic strategies for crop improvement.									
CO2:	Apply and execute the mechanism of plant transformation to generate functionally designer									
	transgenic plants for better outreach.									
CO3:	Analyze and evaluate the wide array application considering the ethical issues of plant									
	biotechnology for crop improvement.									
CO4:	Design and formulate genetically modified plant for a desired trait complying to biosafety,									
	societal and ethical aspects.									

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	2	1	-	2	2	1	-	2	
CO2	2	3	3	3	3	2	3	2	3	1	-	3	
CO3	1	3	3	2	2	3	3	3	2	2	1	2	
CO4	2	2	3	1	1	3	3	3	2	3	2	3	

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

Semester: VII											
DOWNSTREAM PROCESSING											
Course Code : 16BT72 CIE : 100±50Mowlva											
Cou	rse Code	:	16B172		CIE	:	100+50Marks				
Cree	11ts: L:1:P:5	:	4:0:1:0		SEE Duration	:	100+50 Marks				
	II HOURS	i.	43L+24P	vill he ch	SEE DUration	:	5.00 + 5.00 Hours				
	Understand th	o je	prostance of purification	n techn	le lo	nrc	ducts at industrial sca	10			
2	Comprehends	var	rious primary purificati	on techn	joues for bio produ	lets	ducts at muustriai sea	.ic.			
3	Learn Purifica	tion	n techniques for isolati	on of pro	ducts from comple	$\frac{1013}{2}$	iological mixtures				
4	Impart membr	ane	e technology applicatio	n to lab	scale and process	scal	e techniques for hand	ling			
	crude broth an	d p	ourification techniques.		1		1	0			
5	Apply the kn	ow	ledge towards second	lary and	advanced separat	tion	techniques for lab	and			
	process scale	ouri	ification of biological p	oroducts			_				
							Γ				
			Uni	it-I			09 H	Irs			
Intr	oduction: Over	vie	w of a bioprocess in	cluding	upstream and do	wns	stream processing, Ba	asic			
conc	epts of bio s	epa	tration technology, E	conomic	importance of	do	wnstream processing	in			
biote	chnology, natur	e a	nd basis of bio separat	ion, prop	erties of biological	l ma	aterials. Characteristic	s of			
b1010	ngical molecules	5, N	lew Separation process	s in mode	bodies Numerical	Sej	paration characteristic				
mate	rials and purific	is, i atio	on efficiency	mai anti	boules. Numerical	OI	properties of biolog	,icai			
mate	indis and purific	ain	Unit	– II			09 F	Hrs			
Bior	nass removal a	and	disruption: Cell dis	ruption 1	ov Mechanical and	1 n	on- mechanical metho	ods.			
Chei	nical lysis. Er	IZVI	matic lysis, physical	method	s. Sonication. H	igh	pressure Homogeni	zer.			
Floc	culation method	ls a	and its applications. Ce	entrifuga	tion and ultracentr	ifu	gation. Simple Numer	rical			
on co	ell disruption an	d c	entrifugation	U							
			Unit	-III			09 H	Hrs			
Proc	luct Isolation: S	Sep	paration of particulate b	y filtrati	on: dead end filtra	tion	, depth filtration, cond	cept			
of fi	lter medium res	ista	nce, Rotary Vacuum H	Filtration	, scale up of filtrat	ion	systems, different mo	odes			
of op	peration.										
Extr	action: princip	les	of solid-liquid extracti	on and I	liquid - liquid extr	act	ions, material balance	tor			
sing	e, concurrent m	ulti	istage and counter curr	ent multi	stage extraction. S	1mp	ble problems, Selection	n of			
Droc	initation (solt	equ 2	organic solvent hig	Bollman	, Mixer-settler an	(1) (1)	Numerical problems	ors.			
filtra	tion and extract	рп, ion	, organic sorvent, nig	II III0Iec	ulai weigilt polyi	lier)	Inumerical problems	on			
mua		1011	Unit	_IV			09 F	Irs			
Diff	usion: Types of	` dif	ffusion, measurement a	and calci	lation of diffusivit	ties	theoretical estimation	n of			
diffu	sivities, mass tr	ans	fer co-efficients and th	eir corre	lations. Theory of	mas	s transfer.				
Men	nbrane Based	Ser	paration: Structure an	d charad	cteristics of memb	oran	es, types of membrai	nes,			
mem	brane equipme	ent,	Phenomenon of co	ncentrati	on polarization,	me	mbrane fouling and	its			
cons	equences. Men	ıbra	ane based purification	n: Miero	filtration, Ultrafil	trat	ion, Nano filtration	and			
Diaf	Diafiltration. Biotechnological applications of membrane based separations. Numerical on membrane										
based bioseperation.											
	Unit –V 09 Hrs										
Adv	anced Separat	ion	Techniques: Chroma	atograph	y:- general theory	; se	eparation based on S	ize,			
Char	ge, Hydrophot)1C1 1 1	ty and Affinity: Gel	i filtrati	on, Ion exchange	e c	nromatography, Affin	nıty			
	matography, and	u ny	y or opnobic interaction	cnromat	ograpny (HIC).	Pour	nd Unbound				
Criti	cal Moisture (Cor	ntent Wet and dry	moisture	g- definition of f	500 5 (lina, Onoouna, Lirve Drving				
eaui	pment- Trav Dri	er.	Rotary Drier and Freez	ze Drier.	, content, Dryllig	, `	arvo, Drying				
Case	study: Large	sca	le separation and pur	ification	of Recombinant	pro	ducts Insulin, Interfer	ron.			
	Streptokinase and Monoclonal Antibodies										

LAB EXPERIMENTS

- 1. Cell disruption techniques- physical method.
- 2. Solid-liquid separation methods: sedimentation by flocculating agents.
- 3. Solid-liquid separation methods: Membrane filtration.
- 4. Solid-liquid separation methods: Centrifugation.
- 5. Product enrichment operation: ammonium sulphate precipitation of proteins.
- 6. Product enrichment operation: aqueous two phase extraction (single stage).
- 7. Separation of amino acids/carbohydrates/pigments by Thin Layer Chromatography.
- 8. Estimation of citric acid from Fermentation Broth.
- 9. Product drying technique-vacuum tray drier.
- 10. Crystallization Technique for bioactive compound.

Note: Each student has to perform 10 experiments in a semester. 10 Experiments are guided experiments

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Highlight the importance of downstream processing of biological products.								
CO2:	Interpret the techniques for various intracellular and extracellular products from complex biological mixtures.								
CO3:	Apply techniques to concentrate and purify biological products								
CO4:	Develop different processes for separation and purification of biological products								

Refere	ence Books
1	Principles of Bio separation Engineering R.Ghosh,. World Scientific Publishing, 1 st Edition, 2006. ISBN: 9812568921.
2	Protein Purification: Principles, High Resolution Methods, and Applications. J.C Janson and L. Rayden., John Wiley and sons. 2012. ISBN: 1118002199.
3	Downstream Process Technology: A New Horizon In Biotechnology, PHI Learning India ltd, N. Krishnaprasad Eastern Economy Edition, 2010. ISBN: 9788120340404.
4	Principles Of Downstream Techniques In Biological And Chemical Processes, Mukesh Doble, Apple Academic Press And CRC Press, 2015, ISBN: 9781771881401

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	1	1	1	-	-	-	-	-	-	1
CO2	-	2	2	2	2	-	-	-	1	1	-	2
CO3	2	2	2	2	2	1	-	1	1	1	-	2
CO4	2	2	2	2	2	1	1	1	1	1	-	2

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

Semester: VII											
ANIMAL BIOTECHNOLOGY											
6	(Incory)										
Cou	rse Code	:	16B1°/3		CIE	:	100 Marks				
Cree	lits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks				
Tota	Total Hours:33LSEE Duration:3.00 Hours										
Cou	rse Learning O)bje	ectives: The student	s will be able to							
1	Understand p specialized ce	orin 11s.	ciples of animal of	cell culture techniq	ues, properties and	aŗ	oplications of				
2	Demonstrate scaling up of c	the cell	properties of speci s.	alized cells, monola	yer culture and bior	reac	tor design of				
3	Explore the ki	10%	ledge of health care	products vaccine, to	xoids and Hybridoma	a te	chnology.				
4	Evaluate on et	thic	al dimensions, labor	atory safety and valie	dation of tissue produ	icts	•				
5	Understand p specialized ce	orin 11s.	ciples of animal	cell culture techniq	ues, properties and	aŗ	oplications of				
			<u> </u>	Unit-I			07 Hrs				
Anii	nal Cell Cultu	re '	Fechnology: Princip	ples of animal and ce	ell culture, origin of	con	cept, types of				
cells	, Culturing of c	ells	s, primary and secon	dary cell lines, kinet	ics of cell growth, C		ines and their				
appl	ications. Source	es o	of cells, Techniques	s of cell culture, Eq	uipment's, substrate	101	cell growth,				
Spec	ia nandling ec	լաբ	animal call cultures	culture media, Pi	imary culture, som	anc	c cell lusion.				
spec	lanzeu techniqu	ies		nit II			06 Hrs				
Snec	vialized cells ar	h	Scaling up of anim	al cells, stem cells	enithelial cells Herr	on	oitic cells and				
crvo	preservation. A	mn	iocentesis. Oncofeta	antigens. 3D cultur	re cell immobilization	on.	application of				
mole	cular genetics.	sto	rage of DNA and ha	ndling of enzymes. C	vtotoxicity. Mono la	ver	culture. types				
of bi	o-reactors used	for	animal cell cultures			<i>J</i> • 1	••••••••••••••••••••••••••••••••••••••				
			U	nit –III			07 Hrs				
Hyb	ridoma Techn	olo	gy and Healthcare	: Production of Hyb	oridomas- Antibodies	5, Iı	nmunotoxins,				
Vaco	cines, Toxoids,	Int	erferons and Antiv	iral substances, and	organ culture, Tumo	our	immunology,				
Imm	une diagnosis a	and	therapy monoclon	al antibodies. DNA	finger printing in fo	oren	sic medicine.				
Gene	e Therapy- Pros	pec	ts and problems; Kr	ockout mice and mic	e model for human g	gene	etic disorder				
			U	nit –IV			06 Hrs				
Trai	nsgenic Anima	I I	fechnology and ap	plications: Strategie	es for gene transfer	in	animal cells;				
mec	hanisms of trai	nsfe	ection, vectors use	d in transfection. M	lethods of production	on	of transgenic				
animals, recent advances in gene targeting technology. Characterization and screening of transgenic											
anım	animals. Applications of genetically modified animals and molecular bio pharming. Stem cell										
resea	arch - Hematopo	biet	ic and embryonic ste	ems cells.			07 11				
A	nal Dusseller -	Б	U thial Iarran ard	$\frac{\Pi \Pi - V}{Solotive A = \pm \frac{1}{2} = \frac{1}{2}}$	incomination on 1	+ ~ ~	U/Hrs				
Anii forti	nal breeding,	E	unical issues and	Salety: Artificial	insemination and s	tor	age; in vitro				
tech	ization and em	iory	o transfer micro m	hampulation of embr	yos, advantages of (manipulation				
to tr	inques, Ethical	158l le 1	Human tissue call o	nd products. Laborat	and teeningues. Ethi	cal con	issues related				
oner	ating systems F	is, 1 Biol	nazards. Bioethics a	nd Products. Laborat	ory sarcey, misk dood	5511	ient, Standaru				

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Comprehend the principles of animal cell biotechnology and techniques								
CO2:	Analyze the environmental, societal, ethical, health and safety issues of anthropogenic								
	activities.								
CO3:	Appraise the elements of environmental designs and models and examine their significance in								
	sustainable development.								
CO4:	Animal improvement and vaccine technology and other industrial applications.								

Refere	ence Books
1	Textbook of animal biotechnology - B Singh, S K Gautam and M S Chauhan, The Energy and Resource Institute 1 st Edition, ISBN No: 9788180301032, 2015.
2	Textbook of Animal Biotechnology - P. R. Yadav, Discovery Publishing House, 1 st Edition, ISBN No: 9788183564953, 2016.
3	Animal cell biotechnology – R.E. Spier and J.B. Griffiths, Academic Press, 5 th Edition, 2012.
4	Culture of Animal cells A manual of basic techniques – R. Ian Freshney, John Wally and Sons Publishers, 7 th Edition, 2015.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	-	-	-	2	2	1	1	-	-	2	
CO2	2	2	-	-	-	1	-	-	1	-	-	1	
CO3	2	2	1	-	-	2	2	-	1	-	-	2	
CO4	2	2	1	-	-	2	-	-	-	-	-	1	

	Semester: VII										
	NANOBIOTECHNOLOGY										
			(Group]	F: Professional Electiv	/e)						
Cou	rse Code	:	16BT7F1	C	IE	:	100 Marks				
Cred	lits: L:T:P:S	:	4:0:0:0	SI	EE	:	100 Marks				
Tota	l Hours	:	44L	SI	EE Duration	:	3.00 Hours				
Cou	rse Learning (Dbj	ectives: The studen	ts will be able to							
1	Describe met	hod	s by which nanosca	le manufacturing can b	e enabled.						
2	To design a	con	cept for a nanoscal	e product and their ap	plications in mec	har	nical, electrical,				
	electronic, M	agn	etic, Chemical field	and in Medical field.							
3	To design a c	onc	ept for a nanoscale	product and their applic	cations in medical	l fie	eld.				
4	4 To learn about Nano sensors and Nano biosensors and products available in the market.										
5	5 To study about the Nano sensors used in diagnostic and therapeutics.										

Unit-I	08 Hrs
Introduction to nanomaterials: Types of nanomaterials, Top-Down and Bottom-up me	ethods of
nanofabrication and Nanosynthesis. Nanolithography: soft- and hard-lithography. Character	ization of
nanomaterials: Atomic Force Microscopy, Scanning &Tunnelling Microscopy, Scanning	Electron
Microscopy, Transmission Electron Microscopy.	r
Unit – II	08 Hrs
Micro & Nano Electromechanical systems and Microfluidics: MEMS/NEMS: Nanotra	nsducers:
Nano- mechanical, electrical, electronic, Magnetic and Chemical Transducers. Nano ser	nsors and
Nano Actuators. Microfludics: Laminar flow, Hagen-Peouiselle equation, basic fluid ideas	s, Special
considerations of flow in small channels, mixing, microvalves & micropumps. Approache	es toward
combining living cells, Microfluidics and 'the body' on a chip, Chemotaxis, cell mobility.	r
Unit –III	08 Hrs
Medical Nano biotechnology: Diagnostics: Resonance Light Scattering (RLS) Technolo	gy, Nano
chips, gene and protein chips. Therapeutic: Drug delivery: Bioavailability, Sustained and	l targeted
release. Benefits of Nano drug delivery system. Use of Microneedles and nanoparticles for	r targeted
and highly controlled drug delivery. Drug delivery applications, Nano robots in drug deliver	y system.
Tissue Engineering: Nanostructuring, nano implants, nanocoating.	
Unit –IV	10 Hrs
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors	and their
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,	Magnetic
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Bios	ensors in
modern medicine.	
Unit –V	10 Hrs
Nanobiosensors: Types of nanobiosensors: Cantilever, nanotube, nanowire and nanopartic	ele based
sensor., Nanofabricated devices to separate and interrogate DNA, Interrogation of imm	nune and
neuronal cell activities through micro- and nanotechnology based tools and devices. Be	enefits of
Nano-imaging agents, Nanosensors in Drug Discovery, Drug Delivery. Nanotoxicity studies	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Remember, understand and apply knowledge about nanomaterials and their uses
CO2:	Interpret and applythe techniques of manufacturing and characterization processes.
CO3:	Apply knowledge of Nano sensors, in applications like electronics, mechanical, chemical,
	and biological systems
CO4:	Create and evaluate nano design, devices and systems applicabletovarious disciplines.

Refere	ence Books
1	L. H, Gabor. J, Dutta. H. F., Tibbals., A. Rao., Introduction to Nanosciences, CRC press, 1 st Edition, 2008, ISBN- 1420048058.
2	B.S., Murty, P.Shankar, B.Raj, B.B. Rath and J. Murday, Textbook of Nanosciences and Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH, XII. 2013,ISBN- 978-3-642-28030-6.
3	Niemeyer and C.A. Mirkin, Nanobiotechnology: Concepts, Applications and perspectives, Wiley –VCH, 2 nd Edition, 2013.ISBN -978-3-527-30658-9.
4	V.K. Khanna, Nanosensors:, Physical, Chemical and Biological, CRC press,1 st Edition 2013, ISBN 9781439827123.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	-	-	2	2	1	1	-	-	2
CO2	2	2	3	-	-	1	-	-	1	-	-	1
CO3	2	2	2	-	-	2	2	-	1	-	-	2
CO4	2	2	2	-	-	2	-	-	-	-	-	1

	Semester: VII						
	PLANT BASED VACCINES						
			(Group I	F: Professional Elect	ive)		
Cou	Course Code:16BT7F2CIE:100 Marks						
Crec	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks
Total Hours		:	45L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bje	ectives: The students	s will be able to			
1	1 Know the principle and applications of Plant-based vaccines.						
2	2 Outline the various techniques involved in Plant-based vaccine production.						
3	3 Acquire knowledge on mechanism of action of various kinds of Plant-based vaccines.						
4	4 Present the scientific importance, advantages and disadvantages of Plant-based vaccine						
	technology.		-	-	-		

Unit-I	08 Hrs
Principles of plant-based vaccines, Production of Plant-Based Vaccines: Direct Gene Deliver	ry Method,
Indirect Gene Delivery Methods (Agrobacterium-Mediated Gene Transfer), Mechanism of a	ction,
Plant-based vaccines as a global vaccination approach current perspectives.	
Unit – II	09 Hrs
Viral vector-based expression strategy (Tobacco mosaic virus, Cowpea mosaic virus	, Gemini
viruses).Plastid-based expression strategy (Technology, engineering of plastid transgenes	for high
level protein expression). Seed-based expression strategy (Rice seed for delivery of vaccin	nes to gut
mucosal immune tissues, Production of Biologically Active Cecropin A Peptide in Rice	Seed Oil
Bodies).	
Unit –III	09 Hrs
Plant cell culture types: Plant Cell Suspension Culture, Culture of hairy roots, Factors a	affecting
biomass production, Bioreactor: design and types, choice of different bioreactor systems	for plant
cell culture. Scale-up, Bioprocess optimization and control. Commercial produc	tion of
recombinant proteins from plant cell culture. Monoclonal antibodies production against car	icer.
Unit –IV	10 Hrs
Plant-based vaccines against influenza: Transient plant expression systems, production of	virus-like
particles (VLPs), characterization, assessment of immune response. HIV: strategies	targeting
structural (Env, Gag) and early non-structural HIV-1 proteins (Rev, Tat, and Nef), exp	ression in
plants. Hepatitis-B: Production of HBV Antigens in Plant Systems, characterization of	the major
surface antigen in plant tissues, efficacy of plant-based hepatitis B vaccines. Vaccines aga	inst HPV
and Ebola viruses	
Unit –V	09 Hrs
Mucosal Immunology and oral vaccination: Mucosal immune system, oral va	ccination,
immunogenicity, immunoprotection. Plant-based vaccines against Toxoplasmosis: Expr	ession of
GRA4 and SAG1 in plants. Plant-based vaccines against pollen-allergy: Development of S	eed-based
pollen allergy vaccines. Plant-based vaccines against some neglected tropical diseases: d	eveloping
low-cost vaccination, vaccines against rabies, cysticercosis, dengue, and helminthiasis.	1 0
Course Outcomes: After completing the course, the students will be able to	
CO1: Explain the principle, applications and mechanism of action of Plant-based vaccines	3.
CO2: Apply the techniques for production and characterization of Plant-based vaccines.	

CO2.	Apply the teeningues for production and characterization of Frant-based vacences.
CO3:	Differentiate between production processes and various kinds of Plant-based vaccines.
CO4:	Assess the quality of synthesized Plant-derived vaccines, and effect of Plant-based vaccines
	in the target cell.

Refere	ence Books
1	Genetically Engineered Plants as a Source of Vaccines against Wide Spread Diseases-An Integrated View. Rosales-Mendoza S,Springer, 2014, ISBN: 9781493908493
2	Medical Biotechnology, GlickBR, DelovitchTL, and Patten CL, ASM Press, 2013, ISBN : 9781555817053
3	Plant-derived Vaccines: Technologies & Applications, Buonaguro FM (Edi)Future Medicine Ltd, 2012, ISBN-10: 1780841469
4	Biopharmaceuticals in Plants: Toward the Next Century of Medicine, <u>Hefferon</u> KL, CRC Press, 2009, ISBN-10:1780841469

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	-	1	-	-	2	2	-
CO2	2	3	2	3	3	-	2	-	-	2	2	-
CO3	2	3	2	3	3	-	2	2	-	2	2	-
CO4	2	3	2	3	3	1	2	2	-	2	2	-

	Semester: VII							
	EQUIPMENT DESIGN AND DRAWING (Elective - F)							
			(Th	eory and practice)				
			(Group I	F: Professional Elect	ive)			
Cou	Course Code:16BT7F3CIE:100 Marks							
Cred	lits: L:T:P:S	:	2:0:2:0		SEE	:	100 Marks	
Total Hours		:	42L		SEE Duration		4.00 Hours	
Cou	rse Learning ()bj	ectives: The student	s will be able to				
1	1 Learn the basics of design using Code book and Perry Hand book							
2	2 Explore the abilities of sectional front view and top view of the biochemical equipment							
	accessories.							
3	3 Study mechanical design of equipment's involved in biological reactions as per IS2825 unfired							
	pressured vessels code book.							
4	Study the pro	Study the process design of equipment involved in biological reactions as per Perry Hand book.						

Unit-I	42 Hrs
Detailed Process Design and mechanical design of the following equipment's using standard	code
books. The detailed dimensional drawings shall include sectional front view, Full Top/Side v	iew
depending on equipment and Major component drawing with dimensioning and Part Templat	te.
1. Shell and tube heat exchanger	
2. Packed bed Distillation Column	
3. Batch continuous bio reactors	
4. Jacketed vessel	

5. Adsorption column

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and understand the concepts of design and use of the IS 2825 code book and J H						
	Perry hand book						
CO2:	Integrate the standard design parameters to design of bio equipment.						
CO3:	Evaluate the various parameters of distillation column, heat exchangers						
CO4:	Generate drawings of distillation column, heat exchanger and bioreactors.						

Refere	ence Books
1	R.H. Perry & D.W. Green, Chemical Engineers Handbook, 7th Edition, McGraw
1	Hill 2008;ISBN: 9780071422949
2	IS 2825 Code: Unfired pressure vessels, BIS New Delhi.
2	M.V. Joshi and V.V. Mahajan, Design of Process Equipment Design, 4th Edition,
5	McMillan India 2009; ISBA: 978-0230638105
1	J.M. Coulson & J.F. Richardson, Chemical Engineering Vol. 6, Pregman Press,
4	1993; ISBN 07506 65386

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The 10 marks component is for Equipment drawing/Assignment/Presentation/Project. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two main questions with internal choice; each main question carries 100 marks (60 Marks for design and 40 Marks for drawing). Each main question may have sub questions covering entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	-	-	-	2	2	1	1	-	-	2			
CO2	2	2	-	3	3	1	-	-	1	-	-	1			
CO3	3	2	1	-	-	2	2	-	1	-	-	2			
CO4	2	3	2	2	2	2	-	-	-	-	-	1			

Semester: VII											
MATLAB (Crown E: Professional Floating)											
0	Course Code · 16BT7E4 CIF · 100 Moreles										
Cou	rse Code	:	16B1/F4		CIE	:	100 Marks				
Cree	IIIS: L:I:P:5	:	4:0:0:0		SEE SEE Duration	:	2 00 Hours				
Iotal Hours : 45L SEE Duration : 3.00 Hours											
<u> </u>	Explore conc	enti	ally MATLAR and	s will be able to	nains of Life science	<u> </u>	nd in general				
1	Explore conceptually MATLAB applications in the domains of Life sciences and in general study the role of computer science in life sciences										
2	Acquire know	led	ge of the Programm	ning and Advanced p	rogramming skills in	MA	ATLAB				
3	Study MATL	AB	Tool Boxes that a	re used for Graphics	s analysis, Next Gen	erat	ion Sequence				
	Analysis, Spe	ctra	ll Analysis, Sequenc	e and Structure analy	/sis.						
4	Understand th	ne i	mportance of MAT	LAB Tool Boxes to	o solve the problems	s re	lated to High				
	throughput I	Data	analysis, Biophy	sical Data, Microa	rray data analysis,	Μ	odelling and				
	Simulation.				T 1D 1 '	.1	· · ·				
5	Explore practice		ly the applications o	f various MATLAB	Tool Boxes along wi	th p	rogramming				
	capability of I	VIA	ILAD.								
			I	J nit-I			09 Hrs				
Int	roduction to J	ava	: Introduction to M	IATLAB, Basic con	nputer programming	- V	ariables and				
con	stants, operator	s a	nd simple calculation	ons - Formulas and f	functions, Functions	and	Commands,				
Arr	ays - Vectors an	nd r	matrices. Operators'	, expressions and Sta	tements.						
			U	nit — II			09 Hrs				
Mat	rix Graphics -	- B	asic 2D Graphs, Su	ıbplot, logarithmic a	nd polar plots. 3D p	olot	s – mesh and				
cont	our plots. Han	dle	graphics, Editing p	lots, applying effect	s to plots. Algorithm	ns a	nd structures,				
MA	TLAB scripts a	ind	functions (m-files)	. Applications of M	IATLAB; Simulation	1 -	Rolling dice,				
Bact	eria division,	No	ormal Random Nu	imbers. Numerical	methods – Integra	tioi	n, Numerical				
diffe Diff	rentiation, solv	ving	g first order diffe	de and Dortial Different	Bacterial growth),	Lin	ear Ordinary				
Dine	erential Equatio	ns,	Kunge-Kutta metilo	us and Fathal Difference	ential equations (near	001					
M	TLAB Toolbo	x	UI OI				07 1113				
		· A.	Testiles Testing				1				
Diei	view of Ma	tiat	$x = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} $	anome wide different	rmatics I doubox.	Ap]	Differentially				
Expr	ressed genes P	redi	iction of Protein-D	VA hinding sites M	apping of sequence	read	ls Sequential				
clust	ering of sequen	ces	. Bootstrapping of P	hylogenies, and meta	agenomic analysis.	Ieu	is, sequentia				
	81		U	nit –IV	·8		09 Hrs				
MA	FLAB and Mic	roa	array Data analysis	s –pre-processing Af	fymetrix® oligonucle	eoti	de microarray				
prob	e-level data, e	stin	nation of Gene exp	pression pro, file, d	etect DNA copy nu	mbe	er alterations,				
Visu	alizing Microa	irra	y data, Finding p	atterns in gene ex	pression profiles,	ide	ntification of				
differentially expressed genes. Performing pairwise and Multiple sequence alignment, Accessing local											
and remote databases, Working with Illumina®/Solexa Next-Generation Sequencing Data.											
S	tual Anal-	0.7	U I Maahina Taarii		tur data manimulata		<u>U9 Hrs</u>				
Spec	Spectral Analysis and Machine Learning: mass spectrometry data, manipulate, pre-process and										
class	ification mass	cn4	quiù Uniomaiograpi ectrometry data Di	ifferential Δnalveis	of Complex Protein	u UI	neu y signais, ad Metabolite				
Mixt	ures. Machine	Les	arning in Bioinform	atics - Identifying R	iomolecular Subgrou	ins.	Prediction of				
prote	ein secondary s	stru	cture, enrich microa	array gene expression	on data. Visualisation	1 of	f molecules –				
creat	tion and visualized	zati	on of molecular gra	ph, Finding the short	est path, Traversing	a gr	aph, Working				
with	with the Cluster gram Function. Navigation of 3D structure of macromolecules.										

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the MATLAB Tool Boxes that are used for Graphics analysis, Spectral								
	Analysis, Sequence and Structure analysis.								
CO2:	Explore the Mind crunching Algorithms in MATLAB, which are used to make predictions								
	in Biology, Chemical Engineering, and Medicine.								
CO3:	Apply the Programming and Analytical skills to solve the problems related to process								
	simulation and process engineering in Biological system, analysis of High throughput Data,								
	Biophysical Data, Microarray data as well as Modelling and Simulation.								
CO4:	Use MATLAB Tool Boxes along with programming capability of MATLAB to model and								
	simulate biological phenomenon.								

Text	Books
1	MATLAB for Engineering and the Life Sciences. Joseph V. Tranquillo. Morgan & Claypool Publishers, 2011. ISBN: 9781608457106
2	Stormy Attaway. Matlab: A Practical Introduction to Programming and Problem Solving. Butterworth-Heinemann, 2016. ISBN: 9780128045411

Refer	rence Books
1	Applied Numerical Methods with MATLAB for Engineers and Scientists. Steven Chapra. McGraw-Hill Education, 2017, 4 th Illustrated Edition ISBN: 9780073397962
2	eMATLAB Programming for Engineers. Stephen J. Chapman. Cengage Learning, 2015. 5 th Edition. ISBN: 9781305445369

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks) SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	3	2	3	2	3	3	-	-	1	2	-			
CO2	3	3	3	2	3	3	2	-	2	-	-	-			
CO3	3	2	2	2	2	1	1	-	-	-	1	-			
CO4	1	2	3	3	3	2	1	-	-	2	-	-			

Semester: VII											
VACCINE TECHNOLOGY											
~ ~ .		(Group C	3: Professional Elect	tive)	1						
Course Code	:	16BT7G1		CIE	:	100 Marks					
Credits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks					
Total Hours: 44LSEE Duration: 3.00 Hours											
Course Learning O	bje	ectives: The student	s will be able to								
1 Explain role of immune cells and their mechanism in preventing the body from foreign attack and infectious disease, cancer and other disease development											
2 Apply the kno	wle	edge of immune asso	ociated mechanisms i	n medical biotechnol	ogy	research.					
3 Design exper	ime	ent to see effect of d	rug molecule on imm	une response							
4 Carry out imr	nur	nological techniques	in industry.								
5 Able to apply	the	e concept of vaccine	technology in new v	accines development							
		1	U nit-I			09 Hrs					
Immunopathology: Tolerance and Autoimmunity, Hypersensitive reactions, Primary and Secondary Immunodeficiency, Active and passive immunization, General immunization practices, , AIDS, Immune response to Infectious disease, Basic principles of vaccine development. Vaccination of immune-compromised hosts, Vaccination of human immunodeficiency virus- infected persons.											
	.011		nit II			AQ Hrs					
Traditional and m	ode	vrn methods of vec	cine production Egg	and cell based vacc	ine	development					
Current and future s	scer	pario of Vaccines F	dible Vaccines Rev	erse vaccinology Im	mu	noinformatics					
approach to identif	v 7	and B cell epitor	pes. Bacterial and V	viral vaccine. Passiv	inia i	mmunization:					
antibody, transfusion	n of	f immune competen	t cells, cell based vac	cines. Immunomodu	lato	ors (cytokines)					
Innovative methods	of	delivery of immunog	gens through liposom	es, microspheres, IS	CO	MS.					
		Uı	nit —III			09 Hrs					
Vaccine Technolog	gy:	Criteria for effecti	ve vaccine, Vaccine	es, Live, killed, atte	nua	ted, sub unit					
vaccines; Role and	d p	properties of adjuv	vants, recombinant	DNA and protein	bas	sed vaccines,					
Multivalent subuni	t	vaccines, mini cel	ll vaccines, conjug	ate vaccines plant	-bas	sed vaccines,					
recombinant antiger	is a	s vaccines. Interfere	ons, designing and sc	reening for antiviral	s, n	nechanisms of					
action, antiviral lib	rar	ies, antiretroviral—	mechanism of actio	n and drug resistar	ice.	Comparative					
Genomics as a tool f	or	vaccine design	•			00 H					
X 7 • X • 1			$\frac{\text{nit} - IV}{(P_1)^{1/2} + \frac{1}{2}}$	· · · · 10 T		09 Hrs					
Vaccines: Licensed vaccines, Viral Vaccine (Poliovirus vaccine-inactivated & Live, Rabies vaccines Hepatitis A & B vaccines), Bacterial Vaccine (Anthrax vaccines, Cholera vaccines, Diphtheria toxoid), Parasitic vaccine (Malaria Vaccine). Vaccines against Hepatitis A, Malaria, Typhoid (in clinical trials). Conventional vaccines, antiidiotype vaccine, naked DNA vaccine. Recombinant Vaccines - Definition, recombinant vector vaccines, DNA vaccines. Vaccine potency testing.											
The vaccine industry Vaccine manufacturing Vaccine additives and manufacturing residuals											
Regulation and te Environmental conc principles and OIE products. large scale	stir stir cerr gui ma	ng of vaccines, V ns with the use of delines Method of n anufacturing—QA/(Vaccine safety and recombinant vaccin nanufacture- in proce QC issues	Legal issues. Re es- Disease security ess control, batch cor	gul ar	atory issues- id biosecurity l, test on final					

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Apprehend the concepts of immunization and vaccination									
CO2:	Analyze the various types of vaccines									
CO3:	Apply the knowledge of vaccine technology to cure various health ailments and intricacies.									
CO4:	Evaluate the biosafety, ethical and quality issues of various vaccine technologies.									

Refer	rence Books
1	BMA Medical Book Awards Highly Commended in Public Health. Stanley A. Plotkin & Walter Orenstein & Paul A. Offit, Vaccines, 6 th Edition 2013 Elsevier Publication. ISBN : 9781455700905
2	Clinical Immunology, 6 th Edition, Brostoff J, Seaddin JK, Male D, Roitt IM., Gower Medical Publishing, 2002. <i>ISBN: 3527304401</i> .
3	Essential Immunology by Blackwell Scientific Publications, Roitt, I. Oxford. 2001, ISBN 0-63205902-8
4	New Vaccine Technologies, Ronald W. Ellis, Landes Bioscience, 2001. ISBN: 1587060507

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	2	3	2	1	-	2	2	1	-	2			
CO2	2	3	3	3	3	2	3	2	3	1	-	3			
CO3	1	3	3	2	2	3	3	3	2	2	1	2			
CO4	2	2	3	1	1	3	3	3	2	3	2	3			

	Semester: VII											
	NUTRACEUTICALS											
(Group G: Professional Elective)												
Cou	rse Code	:	16BT7G2		CIE	:	100 Marks					
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100 Marks					
Total Hours		:	43L		SEE Duration	:	3.00 Hours					
Cou	rse Learning (Dbj	ectives: The studen	ts will be able to								
1	Obtain a solid	l fo	undation the nutrac	eutical constituents	and health benefits o	of fi	unctional foods					
2	Understand v	vari	ous food compone	ents and their broa	der array of intera	ctic	ons in lines of					
	nutraceuticals											
3	Emphasize or	ı po	tential applications	and health risk asse	ssment through nutri	iger	nomics					
4	Get an overvi	ew	of various modes a	nd mechanism for n	utigenomics and nut	rige	netics					

Unit-I	08 Hrs				
Food Pyramid, Nutritional assessment of Carbohydrates, proteins and lipids. Dietary	Fibre -				
Components, physiological Effects, potential health benefits, recommended Dietary Intake. Glycemic					
index. RDA, Protein Efficiency Ratio (PER). Basics of Energy Balance - Basal Metab	olic Rate				
(BMR) and Factors Affecting BMR. Food Styles.					
Unit – II	09 Hrs				
Nutrigenetics and Nutrigenomics: Organizational elements of nutraceuticals, classific	cation of				
nutraceuticals, dietary supplements, fortified foods, functional foods and phytonutracutica	ls Gene-				
Diet Interactions: Functional Foods and Personalized Nutrition, Microbiome, N	utritional				
Epigenomics, Nutritional Signaling and Aging Technologies in Nutrigenetics /Nutrigenom	ics: Data				
Mining and Network Analysis, Metabolomics, Epigenetics and Personalized Nutrition. Foc	od omics:				
Human Dietary Interventions Metabolomics, Nutrigenomics to Industry, Health Profession	nals, and				
the Public: Indian and global scenario.					
Unit –III	09 Hrs				
Carbohydrates, Protein, Fat - Excess and deficiency, Metabolic disorders- types Nutritional	l Factors,				
prevention and treatment. Role of nutraceuticals in the prevention and treatment with	h special				
reference to diabetes mellitus, hypertension, hypercholesterolemia. Concept of antioxidants,	minerals				
and enrichment - dietary supplements in prevention and treatment of cancer, obesity and str	ess. Role				
of nutraceuticals and functional foods in <u>pediatrics</u> , geriatrics, sports, pregnancy and lactation	1.				
Unit –IV	09 Hrs				
Role of medicinal and aromatic plants in nutraceutical industry, Plant secondary me	etabolites,				
classification and sub-classification - Alkaloids, phenols, Terpenoids. Applications with ref	erence to				
skin, hair, eye, bone, muscle, heart, brain, liver, kidney, general health and stimulants. Co	oncept of				
cosmoceuticals and aquaceuticals. Animal metabolites- chitin, chitosan, glucosamine, ch	ondroitin				
sulphate and other polysaccharides of animal origin, uses and applications in preventive medi	icine.				
Unit –V	08 Hrs				
Concept of prebiotics and probiotics - principle, mechanism and applications of probiotics, p	prebiotics				
Synbiotics for maintaining good health. Source of omega - 3 fatty acids, formulations, to	xicology,				
bioavailability, bioequivalence; use of animal models and pre-clinical and clinical trials	involved.				
Hopes and Concerns about Nutrigenomics and Public Health, Commercialization and Po	tential of				
Nutrigenetics and Nutrigenomics, ethics and morals in nutrigenomics and its future.					

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Remember and explain various fundamentals of nutraceuticals, nutrigenomics and
	nutrigenetics.
CO2:	Apply the knowledge of modern tools of nutraceuticals to analyse human health and
	diagnostics.
CO3:	Comprehend better usage of food as nutraceuticals for societal, ethical and environmental
	sustainability.
CO4 :	Evaluate and analyse latest research area on nutraceutical and functional food components.

Text B	Books
1	Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition, Lynnette R. Ferguson, 2013 CRC Press ISBN 9781439876800
2	Functional foods, Nutraceuticals and Natural Products- concepts and application, Dhiraj A Vattem and VatsalaMaitin, Destech Publication 2016, ISBN - 101-59506-1-879.
3	Nutrigenetics: Applying the Science of Personal Nutrition 1 st Edition, Martin Kohlmeier, Academia Press 2012 ISBN: 9780123859013

Refere	nce Books
1	Handbook of Nutraceuticals and functional foods, 2 nd Edition, E C Willdman, CRC Press
1	2006, ISBN: 978-0-8493-6409-9
2	Nutraceutical and Functional Food Processing Technology. Joyce I. Boye, Wiley-Blackwell
2	2014, ISBN: 978-1-118-50494-9
3	Functional foods and Nutraceuticals, Aluko R E, Springer 2012, ISBN: 978-1-4614-3479-5

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	1	-	2	2	1	-	2
CO2	2	3	3	3	3	2	3	2	3	1	-	3
CO3	1	3	3	2	2	3	3	3	2	2	1	2
CO4	2	2	3	1	1	3	3	3	2	3	2	3

	Semester: VII						
	GMP, GLP, BIOSAFETY AND BIOBUSINESS						
	(Group G. Froiessional Elective)						
Cou	rse Code	:	16BT7G3		CIE	:	100 Marks
Crec	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks
Tota	l Hours	:	41L		SEE Duration	:	3.00 Hours
Cou	rse Learning O	bje	ectives: The student	s will be able to			
1	Promotes entr biosafety princ	epı cipl	reneurship in the files and their signific	eld of engineering a ance in engineering e	and acquire the awa	ren	ess about the
2	Demonstrate t	he	risks involved in var	rious manufacturing a	activities, products ar	nd s	ervices
3	Conceptualize	s sa	afety measures in lal	poratory for handling	and releasing of eng	inee	ered products.
4	Evaluates the	bio	business dimension	s of professional eng	ineering and scientifi	c p	ractice and to
	develop an ef	fec	tive conceptual fran	nework for addressi	ng bio business rela	ted	opportunities
	and challenges	5.					
			Т	Init I			07 Ums
CLP	Good Labo	rati	ory Practica). Prir	ocinles: Commoditie	s: Annaratus Gen	eral	Precautions-
Stora	ge. Test Syster	ns.	Standard protocols	and Quality assuration	nce. Laboratory sign	age	e- safety level
and c	containment. Tr	eati	ment and disposal. S	tock & lab ware- tox	in and waste.		
			U	nit — II			08 Hrs
GM	P (Good Manu	fac	ture Practice): Bas	ic components of GM	IP Facilities, Design,	Ma	aterials, Flow,
Envi	ronment Contr	ol,	Prevention of Cro	oss Contamination.	Quality, concept of	f C	BMP, Quality
Assu	rance & Quality	/ cc	ontrol. Legal require	ments pertaining to C	GMP.		
	a			nit –III	<u></u>		08 Hrs
Bios	afety: Guidelin	es	tor biosatety in tead	ching laboratories. A	SM guidelines, Biol	ogı	cal Materials,
Dial	inment levels	an ain	d zones. Biosalety	program managem	ent, Biosecurity, La	irge	e scale work,
renoi	ting and Investi	iσat	tion	ii, waste managemen	it, Emergency respon	150	plan, meldent
1000		. <u>5</u>	U	nit –IV			09 Hrs
Busi	ness models; 1	nea	aning and functions	s of a business mo	del, basic types of	mo	dels: vertical,
prod	uct, platform ar	nd l	nybrid models. Trar	sition in business m	odels, models for bi	otec	ch business in
India	, Intellectual pr	op	erty – plant patents:	characteristics, com	position, subject ma	tter	on microbial
proce	esses and pro	du	ets, patents involv	ving micro-organisr	ns, protection of	Pla	int Varieties,
Geog	graphical Indica	tio	ns, protection of T	raditional Knowledg	e. Governance of bi	ote	chnology and
mult	level regulatory	/ fr	amework for GMOs	n:4 V			
Rio	husiness. Busi	nec	U s nlan – model vo	nlan general consid	derations proposal	יחסי	tent proposal
nren	aration risk an	nes alv	s plan – model vs sis case study Fu	nding financial alter	rnatives for start-ups	s ar	d established
firms	s. venture capit	al.	exit strategy, valua	tion, funding for bic	otech in India, case	stuc	lv. Licensing:
mear	meaning, scope, types, terms and trends, accessing technology, technology transfer, collaborations,						
partnerships, alliances, mergers and acquisitions, licensing of biotechnological inventions, case study.							
L							
Cou	rse Outcomes:	Af	ter completing the	course, the students	will be able to		
CO1	: Describe in	οι	utline good laborate	ory practice and go	od manufacture pra	ctic	es respect to
	slander oper	atii	ng day to day in eng	ineering practices.	-		
CO2	: Instilling an	ap	preciation of the imp	pact of technology or	n society and develop	a ł	nigher level of
	an understar	ndir	ng of safety of engin	eering technologies.			

CO3: Describe in outline of framework engineering concepts and bio business models.

CO4: Select suitable product and/ process for commercialization and Develop business plans.

Text B	sooks
1	GMP for Equipment, Utilities and Facilities; Dr Jürgen Hofmann; ECA, Academy Publishers; Berlin Germany, 1 st Edition; 2017
2	Canadian Biosafety Handbook, 24 th Edition; Public Health Agency of Canada; 2016. ISBN : <u>978 -1-100-25773-0</u>

Refere	ence Books
1	Handbook on Good Laboratory Practice, Dr. R. Ridley, World Health Organization,2 nd Edition. 2010 WHO Library Catalogues for non-clinical research and development ISBN 978 9241547550
2	Good Clinical, Laboratory and Manufacturing Practices: Techniques for the QA Professionals Phillip A. Carson, N. Den, 1 st Edition Royal Society of Chemistry 2007. ISBN 9780854048342
3	Marilyn Buchanan Industrial Safety and Risk Management Laird Wilson, Doug McCutcheon, 1 st Edition University of Albarta Press 2003. ISBN 0888643942.
4	Bio business: A Strategic Perspective Global Bio Business, Gurinder Shahi, Books, 2005. ISBN: 978080126456.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	2	2	1	1	-	-	2
CO2		2	-	2	-	1	-	-	1	-	-	1
CO3	2	2	1	-	-	2	2	-	1	-		2
CO4	3	2	1	-	2		-	-	-	-	-	1

	Semester: VII						
	HPC AND BIG DATA ANALYSIS (Group G: Professional Elective)						
Cou	rse Code	:	16BT7G4	(CIE		100 Marks
Cred	lits: L:T:P:S	:	4:0:0:0	S	SEE		100 Marks
Tota	l Hours	:	45L	S	SEE Duration		3.00 Hours
Cou	rse Learning C)bje	ectives: The students	s will be able to			
1	1 Impart the basic concepts of High performance computing(HPC) in applied bioinformatics.						
2	2 Understand and explain the role of HPC in large data driven operations.						
3	3 Compare the difference in normal computing and HPC processing speed.						
4	Develop basi	c sc	cripts to run the com	mands in HPC			

	Unit-I	09 Hrs				
Introd	uction to HPC. Introduction to Linux operating system Basic commands used in HP	C cluster				
Maior	action to first C. Introduction to Elinux operating system, Basic commands used in first					
Major	Major components and its functions in HPC Cluster- head node, login node, interactive node, compute					
node,	I/O node, Hardware architecture of HPC-processor design, cache architectures, de	sign and				
evaluat	tion techniques, operating systems and compilers, communications libraries, prog	gramming				
strategi	ies for vector and parallel computers, optimization strategies, grid computing.					
	Unit – II	09 Hrs				
Introd	uction to shell scripting: Basics of shell scripting, invocation, variables, if-then-els	e. Loops,				
Workf	ows and nested workflows, How to submit and monitor workflow execution. H	IPC Data				
Storage	e, Serial and parallel batch jobs and scripting to run processes in parallel.					
	Unit –III	09 Hrs				
Big Da	ta analytics: Introduction of Cloud computing, Hadoop architecture. MIKE2.0, Mult	iple layer				
archite	cture, Distributed Parallel architecture, NGS data analysis using Hadoop.	1 2				
	Unit –IV	09 Hrs				
Install	ation of Software Packages: Install R packages, Perl modules, Python modules an	d general				
softwar	re packages. Molecular dynamics and use of VMD Software's and tools used to acc	cess HPC				
cluster	with examples. Applications of High performance Computing in the field of Bioinform	natics				
	Unit –V	09 Hrs				
High t	hroughput data analysis with HPC: Conversion of SRA files, FASTQC analysis us	sing HPC				
– Com	mand and tools required, interpretation of results. Adapter trimming, Alignment	, Variant				
calling	Performing BLAST search, interpretation of results. Comparison of the results from	n various				
tools u	sing HPC.					
	0					
Course	e Outcomes: After completing the course, the students will be able to					
CO1:	Understand the basic knowledge of High Performance Computing					
COL		11.4				

001	Chaefstand the suble knowledge of fingh ferformance computing
CO2:	Describe architectural hardware for high performance computing systems and installation of
	software packages
CO3:	Analyse and apply the appropriate tools and techniques to perform high throughput data
	analysis
004	

CO4: Develop parallel software tools using High Performance Computing

Reference Books						
1	Bioinformatics for High Throughput Sequencing. Naiara Rodríguez-Ezpeleta, Michael					
	Hackenberg, Ana M. Aransay. Springer, 2012. ISBN-13: 9781461407812.					
2	Review of Next-generation DNA sequencing informatics. Stuart M. Brown. Cold Spring					
	Harbor Laboratory Press, Cold Spring Harbor: New York, 2013. ISBN-13: 978-1936113873.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2	1	-	1	1	2	-
CO2	2	3	3	2	3	2	2	1	2	1	2	-
CO3	2	3	3	3	2	3	3	2	3	2	3	-
CO4	1	1	3	2	2	3	2	2	3	2	2	-

Semester: IV							
	NANOTECHNOLOGY						
(Group H: Global Elective)							
Course Code : 16G7H01 CIE : 100 Mark				100 Marks			
Credits: L:T:P		:	3:0:0	SEE		:	100 Marks
Total Hours		:	36L	SEE D	uration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	1 To have the basic knowledge of nanomaterials and the process.						
2	2 Describe methods of nanoscale manufacturing and characterization can be enabled.						
3	3 To learn about Nano sensors and their applications in mechanical, electrical, electronic,						
	Magnetic, Chemical field.						
4	4 To understand the concept for a nanoscale product based on sensing, transducing, and actuating						
	mechanism.						
5	5 To have awareness about the nanoscale products used in multidisciplinary fields.						

	06 Hrs				
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon				
based: Fullerenes (Bucky Ball, Nanotubes), metal based: Nano Shells, Quantum Dots, Dendrimers,					
Diamond like carbon (DLC) Nano carriers, bionanomaterails: protein & DNA based nanostructures,					
Hybrids: hybrid biological/inorganic, Nano safety Issues: Toxicology health effects ca	aused by				
nanoparticles.					
Unit – II	08 Hrs				
Characterization of Nanostructures: Spectroscopy: UV-Visible spectroscopy, Fourier T	ransform				
infrared spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron mic	croscopy:				
Scanning electron microscopy (SEM), Transmission electron microscopy (TEM).Scannin	ng probe				
microscopy: Atomic Force microscopy (AFM), Scanning tunnel microscopy (STM).					
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up	and Top				
down approaches using processes like Ball milling, Sol-gel Process, Chemical Vapour d	eposition				
(CVD), plsma arching and various lithography techniques (Hard & Soft lithography).	•				
Unit –III	09 Hrs				
Nano sensors: Overview of Nano sensors, prospects and market. Types of Nano sensors and their					
applications. Electromagnetic Nano sensors: Electronic nose and electronic tongue, Magnetic Nano					
sensors. Mechanical Nano sensors: Cantilever Nano sensors, Mechanics of CNTs, Biosensors:					
Biosensors in modern medicine.					
Unit –IV	06 Hrs				
Unit –IV	06 Hrs				
Unit –IV Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,	06 Hrs Chemical				
Unit –IV Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-F	06 Hrs Chemical Peouiselle				
Unit –IV . Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-F equation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro	06 Hrs Chemical Peouiselle valves &				
Unit –IV Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-F equation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps.	06 Hrs Chemical Peouiselle valves &				
Unit –IV Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-F equation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps.	06 Hrs Chemical Peouiselle valves &				
Unit –IV Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-F equation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps. Unit –V	06 Hrs Chemical Peouiselle valves & 07 Hrs				
Unit –IV . Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, or and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-Fe equation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps. Unit –V Molecular electronics, molecular switches, mechanical	06 Hrs Chemical Peouiselle valves & 07 Hrs al cutting				
Unit –IV . Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-Fequation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps. Unit –V Molecular electronics, molecular switches, mechanicat tools, machine components, DLC coated grinding wheels. solar cells, Batteries, fuel cells	06 Hrs Chemical Peouiselle valves & 07 Hrs al cutting Ils, Nano				
Unit –IV . Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-F equation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps. Unit –V Applications of Nanotechnology: Molecular electronics, molecular switches, mechanicat tools, machine components, DLC coated grinding wheels. solar cells, Batteries, fuel cellifilters. Medical nanotechnology: in Diagnostics, Therapeutics, Drug delivery and Nano surger	06 Hrs Chemical Peouiselle valves & 07 Hrs al cutting Ils, Nano ry.				
Unit –IV Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-Fequation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps. Unit –V Applications of Nanotechnology: Molecular electronics, molecular switches, mechanicat tools, machine components, DLC coated grinding wheels. solar cells, Batteries, fuel cells filters. Medical nanotechnology: in Diagnostics, Therapeutics, Drug delivery and Nano surge	06 Hrs Chemical Peouiselle valves & 07 Hrs al cutting Ils, Nano ry.				
Unit –IV Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, or and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow, Hagen-Fe equation, basic fluid ideas, Special considerations of flow in small channels, mixing, micro micro pumps. Unit –V Applications of Nanotechnology: Molecular electronics, molecular switches, mechanicat tools, machine components, DLC coated grinding wheels. solar cells, Batteries, fuel cell filters. Medical nanotechnology: in Diagnostics, Therapeutics, Drug delivery and Nano surge Course Outcomes: After completing the course, the students will be able to	06 Hrs Chemical Peouiselle valves & 07 Hrs al cutting Ils, Nano ry.				

CO2:	Interpret and apply the techniques of manufacturing and characterization processes
CO3:	Apply the knowledge of Nano sensors, related to Nano sensors in electronics, mechanical, chemical, and biological systems.

CO4: Create and evaluate Nano Design, Devices and Systems in various disciplines

Refere	ence Books
1	Textbook of Nanoscience and Nanotechnology, B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH, XII. 1 st Edition, 2013, ISBN- 978-3-642-28030-6.
2	Nano sensors: Physical, Chemical and Biological, V. K. Khanna, CRC press, 1 st Edition, 2013, ISBN 9781439827123 (Unit III).
3	Nanostructured materials, Nanostructured materials, C. C. Kock, William Andrew Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.
4	Nanotechnology, M.Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse overseas Press (India) Private Ltd.,1 st Edition, 2005,ISBN 81-88689-20-3.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VII							
	INDUSTRIAL SAFETY AND RISK MANAGEMENT							
(Group H: Global Elective)								
Cou	rse Code	:	16G7H02		CIE	:	100 Marks	
Credits: L:T:P : 3:0:0					SEE	:	100 Marks	
Tota	Total Hours:36LSEE Duration:3.00							
Course Learning Objectives: The students will be able to								
1	1 Understand the basics of risk assessment methodologies							
2	Select appro	pria	te risk assessment to	echniques				
3	Analyze puł	olic	and individual perce	ption of risk				
4	Relate safety	y, er	gonomics and huma	an factors				
5	Carry out ris	sk as	ssessment in process	sindustries				
-								
~				Unit-I			08 Hrs	
Gen	eral Risk Iden	tific	ation Methods – I:					
Haza	rd identificatio	on r	nethodologies, risk	assessment methods	s-PHA, HAZOP, N	ICA,	consequence	
analy	/sis, hazards ii	1 W	orkplaces-nature an	d type of work plac	types of hazard	is, h	azards due to	
1mpr	oper nousekeep	oing	, hazards due to fire	in multi floor indust	ries and buildings.		07 11	
Dial	Accordent	/[t]	U.				07 Hrs	
KISK	Assessment N	ieu	ious – II: ad rata mathad aar	ainty aquivalant and	fficient method an	ntit	ativo analyzia	
nroh	bility distribution	unu	eu faie memou, cen	printign method Sir	mulation method	Shoo	tilve analysis,	
Hille	r''s model. Her	11101 17 N	I, coefficient of va Iodel	anation method, Sh		Silac	sie approach,	
111110	Unit –III 07 Hrs							
Risk Management – III:								
Eme	rgency relief S	Svst	ems. Diers program	n. bench scale expe	riments, design of	em	ergency relief	
svste	systems, risk management plan mandatory technology ontion analysis risk management alternatives							
risk	management to	ools.	, risk management	plans, risk index me	thod, Dowfire and	expl	osion method,	
Mon	d index Metho	d.		. ,	,		,	
	Unit –IV 07 Hrs							
Risk	Risk Assurance and Assessment – IV:							
Prop	Property insurance, transport insurance, liability insurance, risk Assessment, low Probability high							
consequence events. Fault tree analysis, Event tree analysis.								
	Unit –V 07Hrs							
Risk	Risk Analysis in Chemical Industries- V: Handling and storage of chemicals, process plants,							
personnel protection equipment's. International environmental management system.								
Course Outcomes: After completing the course, the students will be able to								
CO1	: Recall risk	c ass	sessment techniques	used in process indu	stry			
CO2	: Interpret t	he v	arious risk assessme	ent tools				
CO3	CO3: Use hazard identification tools for safety management							

CO4: Analyze tools and safety procedures for protection in process industries

Refere	nce Books
1	Kirkcaldy K.J.D Chauhan, Functional Safety in the Process Industry : A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA 84 North corolina. Lulu
I	publication,2012,ISBN:1291187235
2	Goble and William M. Safety Instrumented Systems Verification Practical probabilistic
	calculations, Pensulvania ISA publication,2005, ISBN:155617909X
3	Laird Wilson and Doug Mc Cutcheon. Industrial safety and risk Management, The
3	University of Alberta press, Canada, 1st Edition, 2003, ISBN: 0888643942.
4	Sincero A P and Sincero G A Environmental Engineering – A Design Approach, Prentice
4	Hall of India, New Delhi, 1996, ISBN: 0024105643
5	Pandya C G, Risks in Chemical units, Oxford and IBH publications, New Delhi, 1992, ISBN:
	8120406907

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.
	Semester: VII						
	INTELLIGENT TRANSPORT SYSTEMS (Group H: Global Elective)						
Course Code		:	16G7H03		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Tot	tal Hours	:	36L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bje	ctives: The students	will be able to			
1	Understand b	asic	traffic flow and con	trol for ITS			
2	2 Understand user services for application in transportation system						
3	3 Understand ITS architecture and its planning at various levels						
4	Evaluate user	serv	vices at various level	ls			

Unit – I8 HrsIntroduction: –Historical Background, Definition, Future prospectus, ITS training and educational
needs.add educational
control- Traffic flow elements, Traffic flow models, Shock
waves in Traffic streams, Traffic signalization and control principles, Ramp metering, Traffic
simulationUnit – II6 HrsITS User services-User services bundles, Travel and Traffic management, Public Transportation

Operations, Electronic Payment, Commercial Vehicles Operations, Emergency Management, Advanced Vehicle Control and safety systems, Information Management, Maintenance and construction Management

Unit –III7 HrsITS Applications and their benefits-Freeway and incident management systems-objectives,
functions, traffic Surveillance and incident detection, Ramp control, incident management, Advanced
arterial traffic control systems- historical development, Adaptive traffic control algorithms, Advanced
Public Transportation Systems-Automatic vehicle location systems, Transit Operations software and
information systems, Electronic fare payment systems, Multimodal Traveller Information systems

Unit –IV				
ITS Architecture-Regional and Project ITS Architecture, Need of ITS architecture, co	oncept of			
Operations, National ITS Architecture, Architecture development tool.				
ITS Planning-Transportation planning and ITS, Planning and the National ITS Arc	hitecture,			
Planning for ITS, Integrating ITS into Transportation Planning, relevant case studies.				
Unit –V	8 Hrs			

ITS Standards-Standard development process, National ITS architecture and standards, ITS standards application areas, National Transportation Communications for ITS Protocol, Standards testing.

ITS Evaluation – Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines, Challenges and Opportunities.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1:	Identify various applications of ITS			
CO2:	Apply ITS applications at different levels.			
CO3:	Examine ITS architecture for planning process.			
CO4 :	Define the significance of ITS for various levels			

Refere	nce Books
1	Choudury M A and Sadek A, Fundamentals of Intelligent Transportation Systems Planning
1	Artech House publishers (31 March 2003); ISBN-10: 1580531601
2	Bob Williams, Intelligent transportation systems standards, Artech House, London, 2008.
2	ISBN-13: 978-1-59693-291-3.
	Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola
3	Intelligent Transport Systems Technologies and Applications Wiley Publishing ©2015,
	ISBN:1118894782 9781118894781
4	ITS Hand Book 2000 Recommendations for World Road Association (PIARC) by Kan Paul
4	Chen, John Miles.
	Dominique Luzeaux ,Jean-René Ruault, Michel Chavret Intelligent Transport Systems 7th
5	MAR 2013 Copyright © 2010 by John Wiley & Sons, Inc
	DOI: 10.1002/9781118557495.ch6

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
			INTEI	LIGENT SYSTEM	IS		
			(Grou	p H: Global Electiv	e)		
Cou	rse Code	:	16G7H04		CIE	:	100 Marks
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36L		SEE Duration	:	3.00 Hours
Cou	rse Learning C	bje	ctives: The student	s will be able to			
1	Understand fu	Inda	mental AI concepts	and current issues.			
2	Understand ar	nd a	pply a range of AI t	echniques including	search, logic-based re	ease	oning, neural
	networks and	rea	soning with uncertai	in information.			
3	Recognize con	mpı	itational problems s	uited to an intelligent	system solution.	•	
4	Identify and I	st t	he basic issues of ki	nowledge representation	ion, blind and heurist	ic s	earch.
			1	Tu:4 I			07 II.wa
Intr	aduction. The	Fou	ndations of Artifici	JIIII-I al Intelligence, Histo	my of Artificial Intell	iga	U/ HIS
of th	e Art Intellige	rou nt	Agent. Introduction	How Agents Should	d Act Structure of I	ngei	ligent Agents
Prol	lem-solving [.]	Soly	zing Problems by	Searching Search S	trategies Avoiding	Re	preated States
Avo	ding Repeated	Stat	tes	Searching Search S	indegres, monding	1.0	peuted States
11.0	8p		U	nit – II			07 Hrs
Info	rmed Search	Me	thods: Best-First	Search, Heuristic F	unctions, Memory	Bou	inded Search,
Itera	tive Improveme	ent 4	Algorithms	,	, j		,
Gan	ne Playing: Intr	rod	uction: Games as S	earch Problems, Perf	fect Decisions in Tw	o-P	erson, Games
Impe	erfect Decisions	, A	pha-Beta Pruning, (Games That Include a	an Element of Chance	e	
			U	nit –III			07 Hrs
Kno	wledge Inferen	ce					
Kno	wledge represe	ntat	ion -Production ba	sed system, Frame	based system. Infer	ence	e - Backward
chair	ning, Forward o	chai	ning, Rule value ap	proach, Fuzzy reaso	ning - Certainty fac	tors	, Bayes Rule,
Unce	ertainty Principl	es,	Bayesian Theory-B	ayesian Network-Dei	npster - Shafer theor	у.	07.11
T				<u>nit –IV</u>	A		07 Hrs
Leal	ning from Ob	ser	vations: A General	Model of Learning	Agents, inductive Le	earn	Vhy Learning
Wor	sion Trees, Usi	ing	Information Theory	y, Learning General	Logical Description	s, 1	why Learning
Rein	forcement I e	nai orn	ing. Passive Learn	ving in a Known F	nvironment Passive	ι.	earning in an
Unk	Unknown Environment Active Learning in an Unknown Environment						
Unit –V 07 Hrs							
Expe	ert Systems, Co	mr	onents, Production	rules, Statistical rea	soning, certainty fac	ctor	s, measure of
belie	belief and disbelief, Meta level knowledge, Introspection. Expert systems - Architecture of expert						
syste	ems, Roles of e	expe	ert systems - Know	ledge Acquisition -	Meta knowledge, H	euri	istics. Typical
expe	rt systems - <u>MY</u>	ŹĹ	N, DART, XOON, I	Expert systems shells			

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.				
CO2:	Analyse and explain basic intelligent system algorithms to solve problems.				
CO3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.				
CO4:	Assess their applicability by comparing different Intelligent System techniques				

Refere	ence Books
1	AI – A Modern Approach , Stuart Russel, Peter Norvig , 2 nd Edition, Pearson Education, 2010, ISBN-13: 978-0137903955.
2	Artificial Intelligence (SIE) ,Kevin Night, Elaine Rich, Nair B., ,McGraw Hill, 1 st Edition, 2008, ISBN: 9780070087705
3	Introduction to AI and ES, Dan W. Patterson, Pearson Education, 1st Edition ,2007. ISBN: 0132097680
4	Introduction to Expert Systems ,Peter Jackson, 3 rd Edition, Pearson Education, 2007, ISBN- 978-0201876864

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

High-3: Medium-2: Low-1

				Semester: VII			
		Π	MAGE PROCESS	ING AND MACHIN	NE LEARNING		
			(Grou	p H: Global Electiv	e)		
Cou	rse Code	:	16G7H05		CIE	:	100 Marks
Crec	lits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks
Tota	l Hours	:	40L		SEE Duration	:	03 Hours
Cou	rse Learning O	bje	ectives: The student	s will be able to			
1	Understand th	e n	najor concepts and te	echniques in image p	rocessing and Mac	hine	Learning
2	To explore, m	ani	pulate and analyse i	mage processing tech	nniques		
3	To become fai	mıl	ar with regression r	nethods, classificatio	on methods, cluster	ing m	ethods.
4	Demonstrate 1	ma	ge processing and N	lachine Learning kno	owledge by designi	ng an	id
	implementing	aig	gorithms to solve pra	ictical problems			
				Init-I			08 Hrs
Intro	oduction to ima	age	processing:				00 1115
Imag	es, Pixels, Ima	ige	resolution, PPI and	d DPI, Bitmap imag	ges, Lossless and	lossy	compression,
Imag	e file formats,	Ċ	olor spaces, Bezier	r curve, Ellipsoid,	Gamma correction	, Ad	vanced image
conc	epts		1	, i ,		-	e
			U	nit — II			08 Hrs
Basi	cs of Python &	Sc	ikit image:				
Basic	es of python, v	/ari	ables & data types	, data structures, co	ontrol flow & con-	ditior	nal statements,
uploa	ading & view	ing	an image, Image	e resolution, gamm	a correction, det	ermin	ing structural
simil	arities.			•			0.0 11
A 1	1.7			nit –III			08 Hrs
Adva	ding Two Image p	roc	Changing Contrast	CV and Drightnagg Addie	ng Tayt ta Imagaa	Smoo	thing Imagos
Med	ung Iwo mag ian Filter Gau	es,	Changing Contrast a an Filter Bilateral	Filter Changing the	e Shape of Images	smoo s Ef	fecting Images,
Thre	sholding Calcu	lati	no Gradients Perfe	orming Histogram Ed	ualization	5 ,L1	neeting innage
Inc	shording, curea	iuti	III UII	nit –IV	uunzunon		08 Hrs
Mac	hine Learning	Те	chniques in Image	Processing			00 1115
Baye	esian Classificat	tior	, Maximum Likelil	nood Methods, Neur	al Networks; Non-	parar	netric models;
Man	ifold estimation	, Sı	upport Vector Mach	ines, Logistic Regres	ssion	1	,
		/	U	nit –V			08 Hrs
Intro	oduction to obj	ect	Tracking, modell	ing & Recognition			
Exha	ustive vs. Stoc	has	stic Search, Shapes,	Contours, and App	earance Models. N	/lean-	shift tracking;
Cont	Contour-based models, Adaboost approaches: Face Detection / Recognition, Tracking.						
Cou	rse Outcomes:	Af	ter completing the	course, the students	s will be able to		
C01	CO1: Gain knowledge about basic concepts of Image Processing						
CO2	: Identify mad	chi	ne learning techniqu	es suitable for a give	n problem		
CO3	: Write progra	am	s tor specific applica	ations in image proce	essing		
CO4	: Apply differ	ren	t techniques for vari	ous applications usin	g machine learning	g tech	niques.
Refe	rence Books						

Ittit	LICHCE DOORS
1	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection,
1	and Pattern Recognition Using Python, by Himanshu Singh, A press publisher.
2	Pattern Recognition and Machine Learning, by Christopher Bishop, Springer, 2008
2	Computer Vision: A modern Approach by David Forsyth and Jean Ponce, Prentice Hall India
3	2004.
4	Machine Vision: Theory Algorithms Practicalities, by E.R. Davies Elsevier 2005.
5	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education,
3	Edition, 2001.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

			SEMESTER: VII			
	DESIGN OF RENEWABLE ENERGY SYSTEMS					
Course Code	:	16G7H06		CIE Marks	:	100
Credits: L:T:P:S	:	3:0:0		SEE Marks		100
Total Hours	•	401		SEE Duration		3.00 Hours
Course Learning Ob	· iect	ives		SEE Duration	•	5.00 110013
1 To provide opport	unit	y for students	to work on multidisciplinary	projects		
 To familiarize the students with the basic concents of nonconventional energy sources and allied 						
technological syste	, si sme	for energy co	nversion	iventional energy s	sourc	es and anneu
3 To impart skill to	forr	nulate solve	and analyze basic Non – conv	entional energy pro	hlem	s and prepare
them for graduate	stuc	lies	and analyze basic from conv	entional energy pro		is and prepare
4 To enable the stud	ent	to design prir	narily solar and wind power sy	vstems		
5 To expose the stud	lent	s to various a	polications of solar wind and	tidal systems		
5 TO EXPOSE the stud	ient	s to various a	$\frac{1}{10000000000000000000000000000000000$	ildai systems.		07 Hrs
An introduction to a	ar	TV SOUPCOS!	0111-1			07 1115
Industry overview, in	icer ş	tives for ren	ewable, utility perspective, R	elevant problems of	liscu	ssion, current
positions of renewable	e en	ergy condition	ns			
			UNIT – II			09 Hrs
photovoltaic power, P Technology trends, P circuit, open-circuit methodologies), peak-	V p Phot volt pov	rojects, Build tovoltaic Pow age and sho ver operation, U	ing-integrated PV system, PV ver Systems: PV cell, Mod rt-circuit current, I-V and F system components. NIT – III	cell technologies, sull and Array, Eq P-V curves, Array	solar uival desi	energy maps, ent electrical gn (different 09 Hrs
Wind Sneed and Fne	ray	7•				
Speed and power relat distribution (parameter , turbine rating , power design trade-offs , systemeters	Speed and power relations, power extracted from the wind, Air density, Global wind patterns, wind speed distribution (parameters calculations), wind speed prediction, Wind Power Systems : system components, turbine rating, power vs. speed and TSR, maximum energy capture, maximum power operation, system-design trade-offs, system control requirements, environmental aspects.					
		UI	NIT – IV			07 Hrs
Geothermal and ocean energy: Geothermal power, geo pressured sources, Geothermal well drilling, advantages and disadvantages, Comparison of flashed steam and total flow concept Energy from ocean: OTEC power generation, OPEN and CLOSED cycle OTEC. Estimate of Energy and power in simple single basin tidal and double basin tidal system UNIT – V 08 Hrs						
Standalone system:						
PV stand-alone, Electr	ric	vehicle, wind	standalone, hybrid systems (a	case study), system	sizir	ng, wind farm
sizing.						
Grid-Connected Systems: Introduction, interface requirements, synchronizing with the grid, operating limit. Energy storage and load scheduling. Grid stability issues, distributed power concretion						
Course outcomes:						
Course outcomes: CO1: Demonstrate an understanding of the scientific principles of methodology of Non-conventional energy.						
CO2: Acquire workin CO3: Ability to analyz CO4: Students will be developed prope	 energy. CO2: Acquire working knowledge of different Renewable energy science-related topics. CO3: Ability to analyse the system related concepts effectively in the wind energy designing. CO4: Students will be able to decide the appropriate procedures to ensure that the working model has developed properly. 					

Refer	ence Books
1.	Wind and Solar Power Systems Design, Analysis and operation, Mukund R Patel,
	2 nd Edition, 2006, Taylor and Francis publishers, ISBN 978-0-8493-1570-1.
2.	Non-Conventional sources of energy, G.D.Rai, 4th Edition, 2009, Khanna Publishers, ISBN
	8174090738, 9788174090737,
3.	Solar Energy, Sukhatme, 4 th Edition, 2017, McGraw Hill Education, ISBN-13: 978-
	9352607112
4.	Renewable energy sources, John Twidell, Tony Weir, 3rd Edition, 2015, Routledge Publisher,
	ISBN-13: 978-0415584388.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	VII Semester							
	SYSTEMS ENGINEERING							
	(Group H: Global Elective)							
Cour	Course Code:16G7H07CIE Marks:100							
Credits: L:T:P:S		:	3:0:0		SEE Marks	:	100	
Total Hours :		:	33L		SEE Duration	:	03 Hours	
Cour	rse Learning C) bjec	tives:					
1	1 Develop an appreciation and understanding of the role of systems engineering processes and							
	systems management in producing products and services.							
2	2 Document systematic measurement approaches for generally cross disciplinary development effort.							
3	Discuss capab	oility	assessment m	nodels to evaluate and impro	ve organizational s	ystem	s engineering	
	capabilities.							

Unit-I 07 I	Hrs				
System Engineering and the World of Modem System: What is System Engineering?, Origins	s of				
System Engineering, Examples of Systems Requiring Systems Engineering, System Engineering					
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.					
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex system	ms,				
System building blocks, The system environment, Interfaces and Interactions.					
The System Development Process: Systems Engineering through the system Life Cycle, Evolution	ıary				
Characteristics of the development process, The system engineering method, Testing throughout syst	tem				
development, problems.					
Unit – II 07 I	Hrs				
Systems Engineering Management: Managing systems development and risks, Work breakdo	own				
structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization	ı of				
Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineer	ring				
standards, Problem.					
Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analy	vsis,				
Feasibility definition, Needs validation, System operational requirements, and problems.					
Concept Exploration: Developing the system requirements, Operational requirements analy	vsis,				
Performance requirements formulation, Implementation concept exploration, Performance requirement	ents				
validation, problems.					
	Hrs				
Concept Definition: Selecting the system concept, Performance requirements analysis, Function	Hrs mal				
Concept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning,	Hrs onal tem				
Concept Definition: Selecting the system concept, Performance requirements analysis, Functionanalysis and formulation, Concept selection, Concept validation, System Development planning, System Functional Specifications, problems	Hrs onal tem				
Concept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis a	Hrs onal tem and				
Concept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems.	Hrs onal tem and				
Ontr – III 071 Concept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV 06 I	Hrs onal tem and Hrs				
Unit – IIIOnit – IIIConcept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problemsAdvanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems.Unit – IV06 IEngineering Design: Implementing the System Building blocks, requirements analysis, Function	Hrs onal tem and Hrs onal				
Ontr – III Ontr – III Ontr – III Concept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV 06 I Engineering Design: Implementing the System Building blocks, requirements analysis, Function analysis and design, Component design, Design validation, Configuration Management, problems.	Hrs onal tem and Hrs onal				
Ontr-III Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Of I Engineering Design: Implementing the System Building blocks, requirements analysis, Function analysis and design, Component design, Design validation, Configuration Management, problems. Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and evaluating the total system and evaluation	Hrs onal tem and Hrs onal and				
Ontr-IIIOntr-IIIOntr-IIIConcept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problemsAdvanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems.Unit – IV06 IEngineering Design: Implementing the System Building blocks, requirements analysis, Function analysis and design, Component design, Design validation, Configuration Management, problems.Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning a preparation, System integration, Developmental system testing, Operational test and evaluation, problem	Hrs onal tem and Hrs onal and ns.				
Ontr-IIIOntr-IIIOntr-IIIConcept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problemsAdvanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems.Unit – IV06 IEngineering Design: Implementing the System Building blocks, requirements analysis, Function analysis and design, Component design, Design validation, Configuration Management, problems.Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning a preparation, System integration, Developmental system testing, Operational test and evaluation, problemUnit – V06 I	Hrs onal tem and Hrs onal and ns. Hrs				
Ont – IIIOnt – IIIConcept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, Syst Functional Specifications, problemsAdvanced Development: Reducing program risks, Requirements analysis, Functional Analysis a Design, Prototype development, Development testing, Risk reduction, problems.Unit – IV06 IEngineering Design: Implementing the System Building blocks, requirements analysis, Function analysis and design, Component design, Design validation, Configuration Management, problems.Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning a preparation, System integration, Developmental system testing, Operational test and evaluation, problemUnit – V06 IProduction: Systems Engineering in the factory, Engineering for production, Transition fr	Hrs onal tem and Hrs onal and ns. Hrs rom				
Ontr-IIIIOntr-IIIIOntr-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Hrs onal tem and Hrs onal and ns. Hrs com				
Onte-IIIOnte-IIIOnte-IIIOnte-IIIOnte-IIIOnte-IIIOnte-IIIOnte-IIIOnte-IIIConcept Definition: Selecting the system concept, Performance requirements analysis, Functionanalysis and formulation, Concept selection, Concept validation, System Development planning, SystemFunctional Specifications, problemsAdvanced Development: Reducing program risks, Requirements analysis, Functional Analysis aDesign, Prototype development, Development testing, Risk reduction, problems.Unit - IV06 IEngineering Design: Implementing the System Building blocks, requirements analysis, Functionanalysis and design, Component design, Design validation, Configuration Management, problems.Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning a preparation, System integration, Developmental system testing, Operational test and evaluation, problemUnit - V06 IUnit - V06 IOnter IIUnit - V06 IUnit - V06 IOperation: Systems Engineering in the factory, Engineering for production, Transition fr development to production, Production operations, Acquiring a production knowledge base, problems.Operations and support: Install	Hrs onal tem and Hrs onal and ns. Hrs com				
Onte-III Concept Definition: Selecting the system concept, Performance requirements analysis, Function analysis and formulation, Concept selection, Concept validation, System Development planning, System Seign, Prototype development: Reducing program risks, Requirements analysis, Functional Analysis an Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV 06 I Engineering Design: Implementing the System Building blocks, requirements analysis, Function analysis and design, Component design, Design validation, Configuration Management, problems. Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning a preparation, System integration, Developmental system testing, Operational test and evaluation, problem Unit – V 06 I Unit – V 06 I Unit – V 06 I Oreganeris for pro	Hrs onal tem and Hrs onal and ns. Hrs rom In- ent,				

Refer	ence Books
1	Systems Engineering - Principles and Practice, Alexander Kossoakoff, William N Sweet,
-	2012, John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2	Systems Engineering and Analysis, Blanchard, B., and Fabrycky W, 5th Edition, 2010, Saddle
2	River, NJ, USA: Prentice Hall.
3	Handbook of Human Systems Integration, Booher, H. (Edition) 2003. Hoboken, NJ, USA:
	Wiley.
4	Systems Engineering: A 21st Century Methodology, Hitchins, D., 2007. Chichester, England:
	Wiley.

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the Life Cycle of Systems.					
CO2	Explain the role of Stake holders and their needs in organizational systems.					
CO3	Develop and Document the knowledge base for effective systems engineering processes.					
CO4	Apply available tools, methods and technologies to support complex high technology systems.					
CO5	Create the frameworks for quality processes to ensure high reliability of systems.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII							
MEMS AND APPLICATIONS							
(Group H: Global Elective)							
Cou	Course Code : 16G7H08 CIE : 100 Marks						
Credits: L:T:P : 3:0:0 SEE				SEE	:	100 Marks	
Tota	Total Hours:35LSEE Duration:3.00 Hour						3.00 Hours
Course Learning Objectives: The students will be able to							
1	1 Understand the rudiments of Micro fabrication techniques.						
2	2 Identify and associate the various sensors and actuators to applications.						
3	Analyse differ	rent	materials used for l	MEMS.			
2 3	 Understand the rudiments of Micro fabrication techniques. Identify and associate the various sensors and actuators to applications. Analyse different materials used for MEMS. 						

4 Design applications of MEMS to disciplines.

TT 1/ T	0.6 11				
	06 Hrs				
Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and micro system					
products, Evolution of micro fabrication, Microsystems and microelectronics, Multidisciplinary					
nature of Microsystems, Design and manufacture, Applications of Microsystems in automotive,					
healthcare, aerospace and other industries.					
Working Principle of Microsystems: Biomedical and biosensors. Micro sensors:	Acoustic,				
Chemical, Optical, Pressure, Thermal.					
Unit – II	08 Hrs				
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and el	ectrostatic				
forces. MEMS with micro actuators: Micro grippers, micro motors, micro valves and micro	ro pumps,				
micro accelerometers, microfluidics.					
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, S	caling in				
Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanics.	C C				
Unit – III	08 Hrs				
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materia	ls, Silicon				
as substrate material, Silicon Compounds, Si-Piezo resistors, GaAs, Quartz, Piezoelectric	Crystals,				
Polymers and packaging materials. Three level of Microsystem packaging, Die level r	ackaging,				
Device level packaging. System level packaging. Interfaces in microsystem packaging.	Essential				
packaging technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packa	ging.				
<u>Unit – IV</u>	06 Hrs				
Microsystem Fabrication Process: Introduction to microsystems, Photolithogra	phy. Ion				
Implantation, Diffusion, Oxidation, CVD.PVD-Sputtering, Deposition of Epitaxy, Etchi	ng. LIGA				
process: General description. Materials for substrates and photoresists. Electroplating ar	d SLIGA				
process.					
Unit – V	07 Hrs				
Tactile and Flow sensors – Piezoelectric sensors and actuators – piezoelectric effects – pie	zoelectric				
materials – Applications to Inertia. Acoustic. Tactile and Flow sensors.					
Overview. Application. Fabrication Process in Applications:					
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Electrostatic Comb drive	Portable				
blood analyser Piezo electric Inkiet Print head Micro mirror array for Video projection					
Course Outcomes: After completing the course, the students will be able to					
CO1: Understand the operation of micro devices, micro systems and their applications					
CO2: Apply the principle of material science to sensor design					
CO2. Apply the principle of material science to sensor design.					

- **CO3:** Analyse the materials used for sensor designs.
- **CO4:** Conceptualize and design micro devices, micro systems.

Refere	ence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.
3	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006, Wiley-INDIA, ISBN-978-81-265-3170-7.
4	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015, Wiley Publications, ISBN-:978-81-265-2715-1.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
	INTRODUCTION TO INTERNET OF THINGS							
	(Group H: Global Elective)							
Cou	Course Code:16G7H09CIE:100 Marks							
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours:39LS			SEE Duration	:	3.00 Hours			
Cou	rse Learning (Obj	ectives: The student	s will be able to				
1	Learn the fun	dan	nentals of IoT					
2	2 Understands the hardware, networks & protocols used in IoT development							
3	3 Illustrate smart applications using IoT devices and building applications							
4	Know more a	ıdva	nced concepts like c	loud connectivity in Ic	T			
5	Learn the fur	dan	nentals of IoT					

	1			
Unit-I	06 Hrs			
Fundamentals Of IOT: Introduction, Physical design of IoT, Logical design of IoT, IoT	Enabling			
technologies, IoT Levels and Deployment Templates, , IoTvs M2M				
Unit – II	06 Hrs			
IOT Design Methodology: Need for IoT systems management, IoT Design Methodology				
Internet of Things Strategic Research and Innovation Agenda: Internet of Things Vi	sion, IoT			
Strategic Research and Innovation Directions, IoT Smart-X Applications, Internet of TI	nings and			
Related Future Internet Technologies.	-			
Unit –III	11 Hrs			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing Python,				
Python data types & data structures, control flow, functions, modules, packages, file inp	ut/output,			
data/time operations and classes.	_			
Unit –IV	09 Hrs			
IOT Physical Devices & Endpoints : What is an IoT device, Raspberry Pi device, About the board,				
Linux on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python.				
Unit –V	07 Hrs			
IOT Physical Servers & Cloud Offerings: Provides an introduction to the use of cloud	platforms			
and frameworks such as Xively and AWS for developing IoT applications.				
Course Outcomes: After completing the course, the students will be able to				
CO1: Understand the fundamentals of LeT				

	· · · · · · · · · · · · · · · · · · ·
CO1:	Understand the fundamentals of IoT.
CO2:	Analyse the IoT devices, programming, networking requirements and protocols for building
	IoT products.
CO3:	Apply the concepts to design and develop IoT applications
CO4:	Creating applications of IoT using physical devices and interfacing with cloud.

Refere	ence Books
1	Internet of Things (A Hands-on-Approach), Vijay Madisetti and ArshdeepBahga, 1 st Edition,
1	VPT, 2014, ISBN-13: 978-0996025515.
	Internet of Things – From Research and Innovation to Market Deployment, OvidiuVermesan,
2	Peter Friess, River Publishers Series in Communication, River Publishers, 2014, ISBN:
	ISBN: 978-87-93102-94-1 (Hard copy), 978-87-93102-95-8 (Ebook) (Units II 2 nd part)
2	Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, Francis
3	daCosta, 1 st Edition, A press Publications, 2013, ISBN-13: 978-1430257400.
4	Meta products - Building the Internet of Things, Wimer Hazenberg, Menno Huisman, BIS
	Publishers, 2012, ISBN: 9789863692515.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII								
INDUSTRY 4.0- SMART MANUFACTURING FOR THE FUTURE									
6	(Group H: Global Elective)								
Cou	rse Code	:	16G7H10		CIE	:	100 Marks		
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	Iotal Hours : 39L SEE Duration : 3.00 Hours								
Cou	Course Learning Objectives: The students will be able to								
1	1 Understand the importance and role of Smart Manufacturing Systems, IoT and IIoT								
2	2 Explain importance of automation technologies, sensors, Robotics and Machine vision.								
3	Understand a	ppl	ication of artificial in	ntelligence and the n	eed for data transfor	mat	ion, handling,		
1	Storing and se	im	rily.	d knowladza modalli	ng along with analys				
4	L com notwor	lin	a sustainable technol	a knowledge modelli	ng along with analys	15			
3	Learn networ	KIII	g, sustamable techno	blogy and factory net	WOIKS.				
			1	Init-I			06 Hrs		
Sma	rt Manufactu	ring	and Industry 4.0				UU III S		
Nee	d for Smart M	anı	facturing. Advantag	ges. Emerging techno	ologies in Smart man	nufa	cturing, CAD		
Arcl	nitecture surro	und	ing 3D Models (E	B-rep and CSG), M	IEMS, Industry 4.0	–In	teroperability,		
Info	rmation transp	pare	ency, Technical as	ssistance, Decentral	lized decision-making	ng,	Internet of		
Thir	igs(IoT), Indust	try l	Internet of Things (II	oT), Future of Manu	facturing industries				
			U	nit – II			09 Hrs		
Mai	ufacturing Au	itoi	nation						
Tecl	nology intensi	ve	manufacturing and c	cyber-physical system	ms, Automation usir	ng F	Robotics, Data		
stora	ige, retrieval,	ma	nipulation and prese	entation; Mechanism	is for sensing stat	e a	nd modifying		
proc	esses, Materia	1l 1	handling systems	, controlling mater	al movement and	m	achine flow,		
Mec	hatronics, Ira	nsd	ucers and sensors,	Proximity sensors,	Biosensors, Acce	lera	tion Machine		
Mac	hine Vision in	ind	n, Fositioning, Ident		in and measuremen	11— <i>F</i>	Application of		
Iviac		ma	Uitites	nit —III			09 Hrs		
Dat	a handling usi	ng l	Embedded Systems				07 111 5		
Data	transformatic)n-	Mathematical funct	ions. Regression.	Need for different	fu	nctions. Data		
mer	ging-Discrete	8	and Random varia	bles, Transformatic	on languages, Inte	rfac	ing systems-		
Mic	roprocessors, I	Dire	ect memory access,	, Data transfer sch	emes and systems,	С	ommunication		
syste	ems-Modulatio	n, 1	Fime domain and fre	quency domain, Indu	strial Network Data	Cor	nmunications,		
Data	Security Art	ific	ial Intelligence – I	ntelligent systems,	Fuzzy logics, Neu	ral	networks -		
Sup	ervised, Unsupe	ervi	sed and Reinforced l	earning					
			U	nit –IV			06 Hrs		
Sim	Simulation, Modeling and Analysis								
Sim	ulation - system	ı en	tities, input variables	s, performance measu	res, and Functional	relat	tionships,		
type	types of simulation. Predictive modeling and simulation tools, Knowledge Modeling –types and								
tech	technology options, Functional analysis of control systems – Linear and Non-linear, Functional								
deco	decomposition, Functional sequencing, Information / dataflow, Interface								
Dore	Unit –V 09 Hrs								
Perc	ention Manin	i sul ilət	ion Mobility and A	utonomy Factory	- Smart manufactur Networks Informati	ung- on ∃	Modeling and		
Test	ing Performen	Perception, Manipulation, Mobility and Autonomy, Factory Networks, Information Modeling and							
1030	mg, i choiman	Testing, Performance Measurement and Optimization. Engineering System integration. Production							
Netv	Network integration, Production network data quality, Sustainable Processes and Resources,								

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain role and importance of Smart Manufacturing Systems, IoT and IIoT
CO2:	Explain importance of automation technologies, sensors, robotics and machine vision
CO3:	Illustrate the application of artificial intelligence and need for data transformation, handling
CO4:	Explain analytical and simulation for performance study of smart technologies and networks

Refere	nce Books
1	Zongwei Luo, Smart Manufacturing Innovation and Transformation: Interconnection And Intelligence, 1 st Edition, IGI Global Publications, 2014,ISBN-13: 978-1466658363 ISBN-10: 1466658363
2	Yan Lu. KC Morris, Simon Frechette, Smart Manufacturing Standards, NIST, 1 st Edition, 2016, Project report.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
		SPACE TE	CHNOLOGY AND APPI	LICATIONS			
Course Code	:	16G7H11	Group H: Global Elective	e) CIE	:	100 Marks	
Credits: L:T:P :S	:	3:0:0:0		SEE	:	100 Marks	
Hrs /Week	:	35L		SEE Duration	:	3.00 Hours	
Course Learning O	bj	ectives: The stu	dents will be able to			·	
1 Define the eart concepts.	he	environment and	l its behavior, launching	vehicles for satelli	tes	and its associated	
2 Analyse satellite	s i	n terms of techno	ology, structure and commu	inications.			
3 Use satellites for	: sp	ace applications	, remote sensing and metro	ology.			
4 Apply the space	tec	chnology, techno	ology mission and advanced	l space systems to n	atic	on's growth.	
						07 Ums	
Farth's environm	en	t. Atmosphere	UNII-I e ionosphere Magneto	osphere Van A	ller	U/ IIIS Radiation belts	
Interplanetary mediu	m.	Solar wind. Sol	ar- Earth Weather Relations	sphere, van <i>r</i> t	nen	r Radiation beits,	
Launch Vehicles: H	loc	ketry, Propellan	ts, Propulsion, Combustion	n, Solid, Liquid and	d C	ryogenic engines,	
Control and Guidance	e s	ystem, Ion prop	ulsion and Nuclear Propulsi	ion.			
						07 Ung	
Satellite Technolo	σν	Structural N	Jechanical Thermal Po	wer control Teler	net	ry Telecomm and	
Ouality and Reliabili	gy itv.	Pavloads. Space	e simulation.		net	ry, relection and	
Satellite structure:	Sat	tellite Communi	cations, Transponders, Sate	llite antennas.			
			UNIT-III			07 Hrs	
Satellite Communi	cat	ions: LEO, M	EO and GEO orbits, Altitu	ude and orbit contr	ols	, Multiple Access	
Techniques.	_						
Space applications	: T	Celephony, V-SA	AT, DBS system, Satellite	e Radio and TV, T	ele	Education, Tele-	
medicine, Satellite n	avı	gation, GPS.	UNIT IV			07 Ung	
Remote Sensing: V	liei	al bands Agrici	UNIT-IV ultural Cron vegetation Fo	prestry water Resou	irce	U/ IIIS	
manning geology I	Isu	an development	resource Management and	image processing to	ech	niques	
Metrology . Weather forecast (Long term and Short term) weather modelling Cyclone predictions							
Disaster and flood warning, rainfall predictions using satellites.							
UNIT-V 07Hrs							
Satellite payloads:	Te	chnology mission	ons, deep space planetary	missions, Lunar m	niss	ions, zero gravity	
experiments, space b	experiments, space biology and International space Missions.						
Advanced space sys	ste	ms: Remote sens	sing cameras, planetary pay	loads, space shuttle	2, SJ	pace station, Inter-	
space communicatio	n s	ystems.					
				••••		1	

Course O	utcomes: After completing the course, the students will be able to
CO1	Explain different types of satellites, orbit and associated subsystems.
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.
CO3	Analyse the applications of satellite in the area of communication, remote sensing, metrology
	etc.,
CO4	Study technology trends, satellite missions and advanced space systems.

Refe	erence Books
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009, ISBN- 10:0415465702.
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN: 9788120324015.
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0-471-37007-9, ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009, ISBN: 108176496308.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				Semester: VII			
			ADVANC	ED LINEAR ALGE	EBRA		
0			(Grou	p H: Global Electiv	e)		100 14
Cou	rse Code	:	16G/H12			:	100 Marks
Crec		:	3:0:0		SEE Doors 4' or	:	100 Marks
	I Hours	: 	39L	a will be able to	SEE Duration	:	3.00 Hours
	Adequate exp	osu osu	re to learn the funder	s will be able to	nodel a system of lin	oor	equations and
	to obtain the a	osu	tion of system of lin	and a concepts to h	nouci a system of mi	Car	equations and
2	A nalvaa and a	oiu	und the structure of	teal equations.	tuonaformationa Sym		atuia matuiaaa
2	Analyse and e		agained in application	vector spaces, intear	naa and Engineering	11110	ettic matrices,
2	quadratic form	15 1	t of Eigenvolues to	study differential ag	nee and Engineering.	1	ustoma Apply
3	Apply the con		the genelity to even	ing some of the logat		ar sy	ystems. Appry
4			inogonanty to exam	ine some of the least	-squares problems.		
4	Apply Linear	Pro	gramming to Netwo	ork problems and Gar	ne theory.		
			1	Init I			07 Hrs
Syst	em of linear ea	1191	tions	J IIIt-I			0/ 115
Matr	ices and system	n o	f linear equations.	Geometry of linear e	equations. Linear mo	del	s in Business.
Scier	nce and Engin	eer	ing-Input-Output m	odel in Economics.	, Balancing chemica	al e	equations and
Elect	rical networks.						1
			U	nit – II			09 Hrs
Vect	or spaces and	line	ear transformations	5			
Revi	sion of Vector	Spa	ices, Subspaces, Lir	ear independence, B	asis, Dimension and	Ch	ange of basis.
Appl	ications to Di	tter	ence equations, Ma	arkov chains. Inters	ection, Sum, Produc	ct c	of spaces and
inter	or product of	l l' tim	ensions and 3-dime	introduction to I	Linear transformatio	ons,	Geometrical
muer		41111	U	nit –III			09 Hrs
Orth	ogonality, Eig	en v	values and Eigen v	ectors			07 1115
Orth	ogonality, Inne	r pr	oduct spaces, Appli	ications to Weighted	least-squares and Fo	ouri	er series, Fast
Four	ier transform. l	Eige	en values and Eiger	n vectors, Applicatio	ons to Differential eq	uat	ions, Discrete
dyna	mical systems.						
			U	nit –IV			07 Hrs
Sym	metric matrice	s a	nd quadratic form	S The second			
Intro	duction to syn	nme 1	value Decommonitie	dratic forms, lest forms, lest form	or Positive definiten	iess	, Constrained
Optin	nization, Singu	lar	value Decompositio	nit V	nage processing.		07 Hrs
Line	ar nrogrammi	nσ	and game theory				071115
AG	eometrical intro	ng odu	ction to Linear pro-	gramming. Simplex	method and its geon	netr	ical meaning.
Netw	ork models-Ma	ax f	low-min cut theorem	n, Payoff matrix and	Matrix games.		6,
Cou	rse Outcomes:	Aft	ter completing the	course, the students	will be able to		
CO1	: Identify and	int	erpret the fundamer	tal concepts of linear	r equations, vector sp	ace	s, linear
	transformations, Orthogonality, Eigen values, symmetric matrices, quadratic forms, linear						
CO	programmin	ig a	nu game theory.	Lincon alachus to sal	valingon acustions 1	;ff-	ronoo and
	. Apply the K	110V eau	vieuge and skills of	Linear algebra to sol	ve intear equations, d		roblems and
	related prob	lerr	is.		is, inicai programini	ъsр	
CO3	: Analyse the	in	out-output models	Markov chains, discr	ete dynamical system	18.	singular value
	decompositi	ion,	network models an	d related problems.		,	
CO4	: Using the o	vera	all mathematical kno	owledge of Linear Al	gebra to solve proble	ms	arising in

practical situations.

Refere	ence Books
1	David C Lay; Linear Algebra and Its Applications; Pearson Education; 3 rd Edition; 2003;
I	ISBN: 978-81-775-8333-5.
	Gareth Williams; Linear Algebra with Applications; 6 th edition; 2008; Narosa publications;
2	ISBN: 978-81-7319-981-3.
2	Gilbert Strang; Linear Algebra and Its Applications; 4 th Edition; Cengage Learning India
3	Edition; 2006; ISBN: 81-315-0172-8.
	Howard Anton and Chris Rorres; Elementary Linear Algebra Applications Version; Wiley
4	Global Education; 11 th Edition; 2013; ISBN: 9781118879160.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	Semester: VII									
	THIN FILM NANOTECHNOLOGY									
			(Grou	р п: Giobai E	lective)					
Cou	rse Code	:	16G7H13		CIE	:	100 Marks			
Crea	lits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Total Hours			36L		SEE Duration	:	3.00 Hours			
Cou	rse Learning C)bj	ectives: The students	s will be able to	0					
1	Understand th	e ii	nportance of vacuum	n in thin film f	abrication					
2	Acquire the k	nov	vledge of thin film p	reparation by v	various techniques					
3	3 Analyse the properties of thin films using different characterization methods									
4	4 Optimize the process parameter and property dependence									
5	Apply the kno	owl	edge for developing	thin film devic	es.					

Unit-I	08 Hrs
Vacuum Technology: Basics of Vacuum - Principles of different vacuum pumps: Rotar	y, Roots,
Diffusion, Turbo molecular and Cryogenic pumps; Measurement of vacuum - Concept of Ca	pacitance
Manometer, Pirani and Penning gauges - Vacuum Systems & Applications.	-
Unit – II	08 Hrs
Methods of thin film preparation	
Physical Vapour Deposition (PVD) Techniques:	
Evaporation: Thermal evaporation, Electron beam evaporation, Laser ablation, and Ca	thode arc
deposition. Sputtering: DC sputtering, RF Sputtering, Magnetron sputtering, Reactive Sputter	ering, and
Ion beam sputtering.	-
Chemical Vapor Deposition (CVD) Techniques: Conventional CVD, Plasma Enhan	ice CVD
(PECVD) and Atomic layer deposition (ALD).	
Other Methods: Spin coating and Spray Pyrolysis.	-
Unit –III	07 Hrs
Surface Modification and Growth of Thin Films:	
Surface preparation & Engineering for Thin film growth: Cleaning, Modification, M.	asking &
Patterning, Base Coats and Top Coats.	
Thin Film growth: Sequence of thin film growth, Defects and impurities, Effect of D	eposition
Parameters on film growth.	
Unit –IV	08 Hrs
Properties and Characterization of Thin Films	
Film thickness (Quartz crystal thickness monitor and Stylus Profiler);	
Film Adhesion (Tape, Cross-hatch test, and Humidity methods);	
Surface morphology and topography (SEM and AFM);	
Film composition (X-ray Photoelectron Spectroscopy);	
Film structure (X-ray diffraction and Raman studies);	
Electrical characterization (Four Probe and Semiconductor Analyser); and	
Optical characterization (Spectrophotometer).	-
Unit –V	08 Hrs
Thin Film Applications:	
• Electrodes: Deposition of a Metal film, Ex: Aluminium.	
• Transparent conducting oxides (TCO) – Preparation and Optimization of	a
semiconducting film, Ex: ZnO.	
• Optimization of a dielectric film, Ex: Al_2O_3 or Si_3N_4 .	
Thin Film Devices:	
• Thin Film Transistors (TFT)	
Thin Film Sensors	
Thin Film Consolors	
• Thin film Solar Cells,	

•	Thin	film	Solar	Absorbers
---	------	------	-------	-----------

- Diamond-like carbon (DLC) coating
- EMI Shielding coatings
- Hard coatings
- Coatings on Plastics/Polymers.

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the importance of vacuum technology for thin film growth				
CO2	Prepare various kinds of thin films using different deposition techniques				
CO3	Characterize the deposited films for various properties				
CO4	Fabricate thin film based devices.				

Refe	erence Books
1.	Vacuum Technology by A. Roth, Elsevier, 3rd Edition, 1976, ISBN: 9780444880109,
	9780444598745,
2.	Thin Film Phenomenon by K.L. Chopra, McGraw-Hill, 1 st Edition, 1969, ISBN: 0070107998,
	978-0070107991
3.	Materials Science of Thin Films by Milton Ohring, Elsevier, 2 nd Edition, 2001, ISBN:
	9780125249751
4.	Thin-Film Deposition: Principles and Practice by Donald Smith, McGraw-Hill, 1st Edition,
	1995, ISBN: 0070585024, 9780070585027

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
	ENGI	NE	ERING MATERI	ALS FOR AI	VANCED TECHNO	OLOG	Y	
			(Grouj	p H: Global E	lective)			
Cou	rse Code:	:	16G7H14		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours			39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning Obje	ectiv	ves: The students w	vill be able to				
1	Apply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in							
1	the area of Engineering.							
Impart sound knowledge in the different fields of material chemistry so as to apply it to					to apply it to the			
2	problems in engineering field.							
3	Develop analytica	al c	apabilities of stude	nts so that the	y can characterize, tra	insform	and use materials	
3	in engineering and	d ap	oply knowledge gai	ined in solving	related engineering p	oroblem	18.	

UNIT-I	08 Hrs					
Coating and packaging materials						
Surface Coating materials:						
Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyviny	yl chloride & its					
copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.						
Properties required in a pigment and extenders.						
Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments,	chrome green,					
ultramarine blue, iron blue, cadmium red.						
Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ce	ramic pigments,					
metal flake pigments, extenders.						
Developments in new polymers such as dendrimers, biopolymers & biodegradable polyme	rs.					
Packaging materials:						
Food products: Cellulosic and Polymeric packaging materials and their properties - in	ncluding barrier					
properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, con	mposites.					
Pharmaceutical products: Injectable and tablet packaging materials.	•					
UNIT-II	07 Hrs					
Adhesives						
Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-dry	ying adhesives,					
pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi-	i part adhesives.					
Adhesive Action. Development of Adhesive strength- Physical factors influencing A	dhesive Action-					
surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile structure	ength. Chemical					
Factors Influencing Adhesive action - presence of polar groups, degree of polymerization	n, complexity of					
the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mech	nanical adhesive					
action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory.						
Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phe	nolics, Silicone,					
Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.						
UNIT-III 08 Hrs						
Optical fibre materials						
Fiber Optics, Advantages of optical fiber communication over analog communication, Class	ssification based					
on refractive index of the core- step index and graded index optical fibres, Classificatio	n based on core					
radius-single mode and multimode optical fibres. Fibre fabricationMethods to manufact	ure optical glass					

radius-single mode and multimode optical fibres, Fibre fabrication.-Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types, Classification, Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

	UNIT-IV	08 Hrs
Spect	roscopic Characterization of materials:	
Electro	omagnetic radiation, interaction of materials with electromagnetic radiation.	
UV- v	visible spectrophotometry :Introduction-Electronic transitions- factors influencing p	position and
intensi	ity of absorption bands-absorption spectra of dienes, polyene and α , β -unsaturat	ed carbonyl
compo	bunds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using	Woodward-
Fieser	rules- for cyclic and α , β -unsaturated carbonyl compounds.	
IR Sp	pectroscopy: Introduction, principle, molecular vibrations, vibrational frequency,	number of
fundar	nental vibrations, factors influencing fundamental vibrations, instrumentati	on of IR
spectro	ophotometer, sampling techniques and application of IR spectroscopy in charact	erization of
function	onal groups.	
	UNIT-V	08 Hrs
NMR	spectroscopy:	
$H^1 NN$	IR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solv	vents used in
NMR,	internal standards-Chemical equivalence -Integrals and Integrations- chemical	shift-Factors
affecti	ng chemical shifts- shielding and deshielding effects - chemical and magnetic equivalent	nt –magnetic
anisot	ropy-spin-spin splitting rules- Application of NMR on various compounds such as alka	nes, alkenes,
alkyne	es, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, ester	s, amides &
mono	substituted aromatic compounds. Problems on prediction of structure of compounds.	
Cours	e Outcomes: After completing the course, the students will be able to	
CO1	Identify sustainable engineering materials and understand their properties.	
CO2	Apply the basic concepts of chemistry to develop futuristic materials for high-tech ap	plications in
	different areas of engineering.	
CO^2	Analysis and evaluate the specific application of materials	

- **CO3** Analyse and evaluate the specific application of materials.
- **CO4** Design the route for synthesis of material and its characterization.
- Reference Books
- 1. Materials Science, G.K.Narula, K.S.Narula & V.K.Gupta. 38th Editon, 2015, Tata McGraw-Hill Publishing Company Limited ISBN: 978-0-07-451796-3.
- 2. Solar Lighting, Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-44-712133-6 (Print) 978-1-44-712134-3 (Online),
- **3.** Spectroscopy of organic compounds, P.S.Kalsi, 6th Edition, 2013, New Age International (P) Ltd, publisher, ISBN: 978-1-22-415438-6.
- **4.** Food Packaging Materials, Mahadeviah M & Gowramma RV, 6th Edition, 1996, Tata McGraw Hill Publishing Company Ltd, ISBN :746-2-23-82 9780-0.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				Semester: VII		
APPLIED PSYCHOLOGY FOR ENGINEERS (Group H: Global Elective)						
Cou	rse Code	••	16HG7H15	CIE	:	100
Crea	lits: L:T:P	:	3:0:0	SEE	:	100
Tota	l Hours	:	35L	SEE Duration	:	3 Hours
Cou	rse Learning O	bje	ectives: The student	s will be able to		
1	To appreciate and environme	hu ent.	man behavior and h	numan mind in the context of learner's	imm	ediate society
2	To understand and Profession	l th nal	e importance of life development as the	elong learning and personal flexibility t nature of work evolves.	o su	stain personal
3	To provide st engineering pr	ude rofe	ents with knowledgessions.	e and skills for building firm foundation	n fo	or the suitable
4	To prepare stu Governmenta	idei 1 oi	nts to function as eff	ective Engineering Psychologists in an I ation.	ndus	trial,
5	To enable stuc in a variety of	len set	ts to use psychologic tings that meet perso	cal knowledge, skills, and values in occu onal goals and societal needs.	patio	onal pursuits
			U	nit — I		7 Hrs
Socie Hum Obse	ety: Today's Pe anistic, Psycho ervation, Questio	ych ersp olog onn	ectives (Branches of gical Research and aire and Clinical Mo	and goals of Psychology: Role of a Psychology). Psychology). Psychodynamic, Behavi d Methods to study Human Behavio ethod.	orist or:	clogist in the ic, Cognitive, Experimental,
Intel Intel Meas	ligence. Theori ligence tests, Surgence tests, Surgence for the structure of Mu	es Typ Itip	of Intelligence – S es of tests. Measu le Intelligence – Flu	pearman, Thurston, Guilford Vernon. urement of Intelligence and Aptitude, tid and Crystallized Intelligence.	Chai Co	acteristics of accept of IQ,
			Ur	nit — III		7 Hrs
Personality: Concept and definition of personality, Approaches of personality- psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type approaches. Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Scales and Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Assessment. Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress.Sources of stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control.Unit – IV7 Hrs						
stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control. Unit – IV 7 Hrs Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. Distance learning, Psychological consequences of recent developments in Information Technology. Type A and Type B Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling. Unit – V 7 Hrs Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning (Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.						

Experimental Psychology (Practicals)- Self Study 2 Hrs /Week

1.Bhatia's Battery of Performance and intelligence test

2. Multidimensional Assessment of Personality

3. David's Battery of Differential Abilities (Aptitude test)

4.Bilateral Transfer of Training Mirror drawing apparatus with Electronic Digital Reset Error Counter (Performance)

5. Student Stress Scale.

Course Outcomes: After completing the course, the students will be able to

CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to behaviors and mental processes.

- CO2 Define learning and compare and contrast the factors that cognitive, behavioural, and Humanistic theorists believe influence the learning process.
- CO3 Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting in their enhancement and apply effective strategies for self-management and self-improvement.
- CO4 Apply the theories into their own and others' lives in order to better understand their personalities and experiences.
- CO5 Understand the application of psychology in engineering and technology and develop a route to accomplish goals in their work environment.

Reference Books:

1. . Understanding Psychology Feldman R. S, 4th Edition, (1996) McGraw Hill India

2. Psychology Robert A. Baron, 3rd Edition (1995) Prentice Hall India.

3. Organizational Behaviour , Stephen P Robbins $\,$ Pearson Education Publications, 13^{th} Edition, ISBN-81-317-1132-3

4. Organisational Behaviour: Human Behaviour at Work , John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5

5. Psychology-themes and variations , Wayne Weiten, 4th Edition, Brooks / Cole Publishing Co.

Scheme of Continuous Internal Evaluation (CIE):

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Scheme of Semester End Examination (SEE):

				VII Semester			
	FOUNDATIONAL COURSE ON ENTREPRENEURSHIP						
	(Group H: Global Elective)						
Co	urse Code	:	16G7H16		CIE Marks	:	100
Cr	edits: L:T:P:S	:	3:0:0:0		SEE Marks	:	100
To	tal Hours	:	36L		SEE Duration	:	03 Hours
Co	urse Learning ()b	jectives:				
1	To make partic worth solving t	ipa hei	ants self-discov eby becoming	ver their innate flow, entrepren entrepreneurs	eurial style, and ide	enti	fy problems
2	To handhold pa canvas	arti	cipants on lear	n methodology to craft value p	proposition and get	rea	dy with lean
3	To create solut	ior	n demo by con Niable Produc	ducting customer interviews an ct (MVP)	nd finding problem	-so	lution fit for
4	To make partic	ipa	ints understand	cost structure, pricing, revenue	e types and importa	nce	of adopting
5	To help particip	par	its build a stron	ng brand and identify various sa	ales channels for the	eir j	products and
6	To take partic understanding	ipa of l	nts through ba	asics of business regulations perty Rights	and other legal ter	rms	along-with
				Unit-I			07 Hrs
Se	f-Discovery and	0 ا	pportunity Di	scovery			
Fir	ding the Flow;	Eff	fectuation; Iden	ntifying the Effectuation princi	ples used in activit	ies	Identifying
Pro	blem Worth S	olv	ing; Design	Thinking; Brainstorming; Pre	esenting the Identi	fie	d problems;
Ide	ntifying the Entr	ep	reneurial Style.				0
C	<u> </u>			<u>Unit – 11</u>			07 Hrs
Cu	stomer, Solutio	n a	nd Lean Meth	lodology	John Daing and C		a and Daular
Ad	opters; Crafting	rke Va	lue Proposition	n Canvas (VPC); Presenting V	PC; Basics of Busin	nes	s Model and
Le	an Approach; Sk	etc	hing the Lean (Canvas; Risks and Assumptions	s; Presenting Lean C	Can	vas.
-				Unit – III			07 Hrs
Pr	oblem-Solution	Fit	and Building	MVP	D 1 DI		
BI	le Ocean Strate	gу	- Plotting the	Strategy Canvas; Four Actio	Demo and Condu	nin	ate-Reduce-
Ka Int	ise-Create Grid	0 2	Blue Ocean	ilding MVD: Product Market F	it: Proporting MVP	ICU	ng Solution
IIIt	erviews, riobien	1-0	olution Fit, Du	Unit IV			06 Hrs
Fir	ancial Planning	T &	Team Ruildi	-1v			00 111 5
	st Structure -	5 o Est	imating Costs	. Revenues and Pricing. Re	evenue Streams R	eve	enue Types
Ide	ntifving Second	lar	v Revenue St	treams Estimating Revenue	and Price: Profits	bil	ity Checks:
Bo	Bootstranning and Initial Financing: Practising Pitch: Shared Leadershin: Hiring and Fitment Team						
Ro	Role and Responsibilities.						
	•			Unit – V			09 Hrs
Ma	rketing, Sales,	Re	gulations and	Intellectual Property			
Po	sitioning and B	rar	nding; Channe	ls; Sales Planning; Project M	Management; Basic	s	of Business
Re	gulations; How	to	Get Help to G	Bet Started; Patents, Trademar	k, Licensing, Contr	ract	ts; Common
Le	gal mistakes, T	yp	es of Permits,	Tax Registration Documents	s, Compliance; Inf	rin	gement and
Re	Remedies, Ownership and Transfer.						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	showcase the ability to discern distinct entrepreneurial traits						
CO2	Know the parameters to assess opportunities and constraints for new business ideas						
CO3	Understand the systematic process to select and screen a business idea						
CO4	design strategies for successful implementation of ideas						
CO5	Create Business Model and develop Minimum Viable Product						

Ref	Reference Books						
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.						
2	Entrepreneurship. Roy, R., 2012. Oxford University Press						
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International						
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial						
4	Modern Classics						
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar						
	Publishing Ltd.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII							
UNMANNED AERIAL VEHICLES							
	(Group H: Global Elective)						
Course Code	:	16G7H17		CIE	:	100 Marks	
Credits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks	
Hours	:	36L		SEE Duration:	:	3Hrs	

Course Learning Objectives: The students will be able to	
--	--

1 Get an overview of the history of UAV systems

- 2 Understand the importance of aerodynamics, propulsion, structures and avionics in the design of UAV
- **3** Demonstrate ability to address the various mission payloads on-board & off-board, propulsion systems, integration with manned systems
- 4 Assess the performance and airworthiness of the designed UAV

Unit-I 06	Hrs					
Introduction to Flight Vehicles:						
History of Flight Vehicles and UAVs, Classifications, Woking principles of flight vehicle.						
Introduction to Unmanned Aircraft Systems						
Types of UAVs, configurations and their advantages disadvantages, System Compos	sition,					
Applications of UAVs, Characteristics of Aircraft						
Unit – II 07	Hrs					
Design of UAV Systems: Governing aspects:						
a. Aerodynamics, b. Propulsion, C. structure, d. Controls						
Aerodynamics:						
Introduction basic Aerodynamics, lift, drag, Aerofoils, wing area optimization.						
Propulsion:						
Introduction to propulsion system in UAV, Propulsion system for fixed wing UAV and V	/TOL					
(Vertical take-off and landing) UAV, Advanced propulsion systems, fuel cells, generators	based					
systems.						
Unit -III 07	/Hrs					
Structures of UAV:	1.0					
Mechanic loading, basics of types of load calculation and structural engineering, Material use	ed for					
UAV (general introduction), FRP and methods of usage in UAV, Testing of FRP specimens for UAV,						
selection criteria for structure, Types of structural elements used in UAV their significance and						
characteristics, Methods of manufacturing UAV structure.	. TT					
Unit-IV 0/	Hrs					
Controls, Avionics, Hardware, Communication, Payloads:						
basics of control system and Systems for control system in UAV, PID control, simulation introducts to Hardware in loop system (HILS). Avienies: Avtenilet (AD) combitecture of AD, conserve cotty						
not nardware in loop system (nills), Avionics: Autophot (AP) – arcintecture of AP, sensors, actu	ators,					
power suppry, integration, instantion, configuration, and testing.						
Hardware, Communication						
Electronics Hardware in UAV, Communication methods, communication antenna and	their					
significance.						
Pavloads:						
Payload types and their applications						
Unit -V 09	, Hrs					
Design of UAV Systems:						
Fixed wing UAV and Rotary wing UAV (VTOL)						
Task specific, activity based exercise						

Course	Course Outcomes: At the end of this course the student will be able to :					
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs					
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs					
CO3	Determine and evaluate the performance of UAV designed for various Missions and					
CO4	Assess the performance and airworthiness of the designed UAV					

Reference Books

nererer	
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4□
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				2
CO3	1		3	3								2
CO4	3	3	3	3		2	1	2				2

High-3: Medium-2: Low-1

Semester: VIII						
MAJOR PROJECT						
			(Common to an I	rograms)		
Course Code	:	16BT81		CIE	:	100 Marks
Credits: L:T:P:S	:	0:0:16:0		SEE	:	100 Marks
Hours / Week	:	32		SEE Duration	:	3.00 Hours

Cour	rse Learning Objectives: The students will be able to
1	Acquire the ability to make links across different areas of knowledge and to generate, develop and
	evaluate ideas and information so as to apply these skills to the project task.
2	Acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific
	audience in both written and oral forms.
3	Acquire collaborative skills through working in a team to achieve common goals.
4	Self-learn, reflect on their learning and take appropriate action to improve it.
5	Prepare schedules and budgets and keep track of the progress and expenditure

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis *(approved by the department Project Review Committee)* has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program;
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution;
- > The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- > The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's* (*Centre of Excellence*) *identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

- > Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- > The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.

- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➢ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Co	urse Outcomes of Major Project:
1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain
	problems.
2	Design, develop, present and document innovative/multidisciplinary modules for a complete
	engineering system.
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long
	learning to follow technological developments.
4	Function effectively as an individual, or leader in diverse teams, with the understanding of
	professional ethics and responsibilities.

CIE Assessment:

The following are the weightings given for the various stages of the project.

		-
1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%
SE	E Assessment:	
Th	e following are the weightages given during Viva Examination.	
1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%

5. Viva Voce

Calendar of Events for the Project Work:

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project
	being carried out in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by Department project Committee and guide for internal assessment. Finalization of CIE.

20%

$R V College of Engineering \ensuremath{\mathbb{R}} - Bengaluru-59$

Scheme of Evaluation for C	TE	Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks	
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%	
Project Evaluation II	25%	Project Demo / Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

Evaluation Scheme for CIE and SEE

Semester: VIII					
TECHNICAL SEMINAR					
			(Common to all Programs)		
Course Code	:	16BT82	CIE	:	100 Marks
Credits: L:T:P:S	:	0:0:2:0	SEE	:	100 Marks
Hours / Week	:	04	SEE Duratio	n :	3.00 Hours

Cours	Course Learning Objectives: The students will be able to				
1	Recognize recent developments in specific program and in multidisciplinary fields.				
2	Summarize the recent technologies and inculcate the skills for literature survey.				
3	Demonstrate good presentation skills.				
4	Plan and improve the Technical Report writing skills.				
5	Support Group discussion and Team work.				

General Guidelines for the Seminar

- 1. The seminar has to be presented by individual student.
- 2. The topic of the seminar should be from current thrust area along with consultation with the guide.
- 3. The topic can be based on standard papers (like IEEE/ACM/CSI etc.) in the thrust area for the selected topic.
- 4. Presenting/publishing this paper in conference/ Journal will be given weightage in CIE.
- 5. The student needs to submit both hard & soft copy of the seminar report.
- 6. As Outcome of Technical Seminar, each student has to prepare a technical paper out of seminar topic.

Course	e Outcomes of Technical Seminar:
1	Communicate effectively on complex engineering problems and demonstrate contextual
	knowledge to assess societal and environmental contexts.
2	Identify, formulate, review research literature, analyse and Design solutions for complex
	engineering problems using appropriate techniques with effective documentation.
3	Analyse, interpret and synthesize the information to provide valid conclusions with innovative
	ideas and ethical principles.
4	Apply the knowledge of engineering specialization to suggest solutions to complex engineering
	problems and recognize the need for technological changes.

Evaluation of CIE Marks:

1.	Relevance of the topic	10%
2.	Literature Survey	10%
3.	Presentation	40%
4.	Report	20%
5.	Paper Publication	20%

Semester: VIII							
INNOVATION & SOCIAL SKILLS (Common to all Programs)							
Course Code	:	16HS83		CIE	:	NA	
Credits: L:T:P:S	:	0:0:1:0		SEE	:	NA	
Hours / Week	:	02		SEE Duration	:	NA	

Course Learning Objectives: The students will be able to				
1	To provide a platform for the students to exhibit their organizational capabilities, team building,			
	ethical values and extra mural abilities.			
2	To encourage to carryout innovative ideas and projects.			
3	Take part in societal and community building activities.			
4	Make self-learning, ethics and lifelong learning a motto.			

Guidelines

- 1. The HSS will be evaluated individually based on the broad parameters which include the progress made by student during 3rd& 4th year in innovative projects, Seminar, Paper Presentation, Field activity & other Co-curricular activities.
- 2. Students shall submit a report and documents as a proof his/her achievements.

Course Outcomes of Innovation & Social Skills:				
1	Apply the knowledge and skills for solving societal issues			
2	Plan to work in team in various areas with inclusive effort and sustainability			
3	Organize various events and use managerial and budgeting abilities			
4	Demonstrate leadership qualities and ethics			

Curriculum Design Process

Academic Planning and Implementation

Process for Course Outcome Attainment

Final CO Attainment Process

R V College of Engineering® – *Bengaluru-59*

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.