

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII& VIII Semesters

2018 SCHEME

BIOTECHNOLOGY

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII& VIII Semesters

2018 SCHEME

BIOTECHNOLOGY

DEPARTMENT VISION

A Premier Department in Biotechnology Education, Research and Innovation with a Focus on Sustainable Technologies for the Benefit of Society and Environment.

DEPARTMENT MISSION

- Create state-of-the-art infrastructure for research and training in Biotechnology
- Develop graduates who are ethically and socially concerned
- Promoting collaboration with academia, industries and research organizations at national and international level
- Contribute to socioeconomic development through sustainable and inclusive technologies

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1:Have a strong foundation in scientific and engineering principles, develop oral and written communication skills and team work that prepare them for a successful career in Biotechnology and allied industries.

PEO2:Function at a technically competent level in formulating and solving problems in Biotechnology and to develop an outlook for higher education and lifelong learning.

PEO3:Organize and utilize the knowledge to develop biological processes and products, exhibit professionalism, ethical attitude to become an entrepreneur.

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO	Description
PSO1	Gain knowledge in Basic sciences, Mathematics and Biology to understand the Engineering problems related to Biotechnology and Bioinformatics.
PSO2	Develop the skills in the area of Biotechnology, Chemical Engineering and Informatics to solve complex Biological problems.
PSO3	Acquire technical knowledge to design, analyse, optimize and scale up Bio processes to develop value added products.
PSO4	Develop intellectual, personal and professional abilities through experiential learning and interdisciplinary projects.

Lead Society: American Society of Agricultural and Biological Engineers

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	PE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PY	Physics		
21.	СҮ	Chemistry		
22.	MA	Mathematics		

ABBREVIATIONS

		VII Semester			
Sl. No.	Course Code	Course Title	Page No.		
1.	18HS71	Constitution of India and Professional Ethics	01		
2.	18BT72	Downstream process and Product Recovery (Theory and Practice)	03		
3.	18BT73	Genomics, Proteomics and Nanotechnology	06		
4.	18BT74	Internship / Course	08		
5.	18BT7F1	Nanobiotechnology	10		
6.	18BT7F2	Sustainable and Precision Agriculture	13		
7.	18BT7F3	Equipment Design & Drawing	15		
8.	18BT7F4	Artificial Intelligence	17		
9.	18BT7G1	Forensic sciences	19		
10.	18BT7G2	Metabolites and Bioprospecting	22		
11.	18BT7G3	Alternative Energy	24		
12.	18BT7G4	NGS Informatics	26		
	VIII Semester				
1.	18BTP81	Major Project	61		

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) BIOTECHNOLOGY SEVENTH SEMESTER CREDIT SCHEME

	SEVENTH SEMESTER CREDIT SCHEME						
SI.	Course	Course Title	BoS	Credit Allocation			Total
No.	Code		DUD	L	Т	Р	Credits
1	18HS71	Constitution of India and Professional Ethics	HSS	3	0	0	3
2	18BT72	Downstream Process and Product Recovery (Theory and Practice)	BT	3	0	1	4
3	18BT73	Genomics, Proteomics and Nanotechnology	BT	4	1	0	5
4	18BT74	Internship / Course	BT	0	0	2	2
5	18BT7FX	Elective F (PE)	BT	3	0	0	3
6	18BT7GX	Elective G (PE)	BT	3	0	0	3
7	18G7HXX	Elective H (OE)*	Res. BOS	3	0	0	3
Tota	Total Number of Credits					3	23
Tota	l number of I	Hours/Week	20	2	7.5		

Note: * Internship (6 weeks) is to be carried during the vacation after 6^{th} semester and evaluation shall be conducted during 7^{th} semester for 2 credits.

** Students should take other department Global Elective courses.

	EIGHT SEMESTER CREDIT SCHEME						
SI No	Course Code	Course Title	BoS	Credit	Credit Allocation		
51. 110.			DUS	L	Т	Р	Credits
1.	18BTP81	Major Project	BT	0	0	16	16
Total N	Total Number of Credits					16	16
Total n	Fotal number of Hours/Week32						

	VII Semester					
	P	PROFESSIONAL ELECTIVES (GROUP F)				
Sl. No.	Course Code	Course Title	Credits			
1	18BT7F1	Nanobiotechnology	3			
2	18BT7F2	Sustainable and Precision Agriculture	3			
3	18BT7F3	Equipment Design & Drawing	3			
4	18BT7F4	Artificial Intelligence	3			

	VII Semester					
	Р	ROFESSIONAL ELECTIVES (GROUP G)				
Sl. No.	Course Code	Course Title	Credits			
1	18BT7G1	Forensic Sciences	3			
2	18BT7G2	Metabolites and Bioprospecting	3			
3	18BT7G3	Alternative Energy	3			
4	18BT7G4	Next Generation Sequencing Informatics	3			

			VII Semester		
	OPEN ELECTIVES (GROUP H)				
Sl. No.	Course Code	Host	Course Title	Credits	
1	18XX7H1	AS	Unmanned Aerial Vehicles	3	
2	18XX7H2	BT	Bioinformatics	3	
3	18XX7H3	СН	Industrial safety and Risk management	3	
4	18XX7H4	CS	Web programming	3	
5	18XX7H5	CV	Solid waste management and statutory regulations	3	
6	18XX7H6	EC	Image processing and machine learning	3	
7	18XX7H7	EE	Renewable energy sources and storage	3	
8	18XX7H8	EI	Mems & applications	3	
9	18XX7H9	ET	Project management	3	
10	18XX7H10	IM	Cyber forensics and digital investigations	3	
11	18XX7H11	IS	Robotics and automation	3	
12	18XX7H12	ME	Space technology and applications	3	
13	18XX7H13	PY	Introduction to astrophysics	3	
14	18XX7H14	CY	Materials for advanced technology and spectroscopic characterization	3	
15	18XX7H15	MA	Applied psychology for engineers	3	
16	18XX7H16	HSS	Advance course in entrepreneurship	3	

	VIII Semester					
Sl. No.	Sl. No.Course CodeCourse TitlePage No.					
1.	18BTP81	Major Project				

			Semester: VII			
		CONST	TUTION OF INDIA AND PRO	OFESSIONAL ETHI	CS	
			(Theory) (Common to All Progra	ams)		
Course Code	:	18HS71			:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	36L		SEE Duration	:	3.00 Hours
	earr	ning Obiectiv	ves: The students will be able to			
1	A	pply the know	wledge of constitutional literacy to boole as Engineers.	become aware of the fun	dame	ental rights and
2	U	nderstanding	of ethical and legal aspects of adve anism related to product and service		ems a	and their
3	D		owledge of substantive Labor law a		legal	reasoning and
4	E		dual role, responsibilities and emph	nasize on professional/ e	ngine	eering ethics in
			Unit - I			10 Hrs
Duties in Parliamen Emergenc	n th nt & cy	e Constitution State Legis	Unit – II tate Policy- Significance of Direction on of India; Union Executive- Pri lature; Council of Ministers; Anti- Elections, Administrative tribuna	resident and State Exe defection law; Union a	cutiv	e- Governor; tate Judiciary;
Commissi	ion.		Unit –III			06 Hrs
Consumer liability a Redress n	r Pr nd 1 nech	otection Act, Penal Consect nanism; Redr	aw - Definition and Need of Consu 2019; Unfair Trade Practice, Defec juences, False and Misleading Adv esses Mechanisms under the Consum enal Code 1860 (Law Of Crimes)	ct in goods, Deficiency i ertisement, E-Commerce	n ser e, Al	ghts under the vices; Product
			Unit – IV			06 Hrs
Labour W (Prevention 1986, Ma	Velfa on, 1 tern	are and Soci Prohibition a		exual Harassment of Wo l Labour (Prohibition an	omen Id Re	at Workplace gulation) Act,
			Unit –V			07 Hrs
to response	sibil	lity. Honesty	ering ethics (NSPE Code of Ethics) Integrity and reliability, Risks, Saf utory Provision regarding prohibitio	ety and Liability in Eng	ineer	

Course	e Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability and to
	take affirmative action as a responsible citizen.
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to professional environment, strengthen the ability to contribute to the resolve of human rights &
	Ragging issues and problems through investigative and analytical skills.
CO3	Understanding process of ethical and moral analysis in decision making scenarios and inculcate
	ethical behavior as a trait for professional development.
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business
	Enterprises.

Reference Books 1 Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition 2 Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5th Edition, 2015, ISBN -13:978-9351452461 3 S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6th Edition, 2012, ISBN: 9789325955400 4 Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics, Wadsworth Cengage Learning, 5th Edition, 2009, ISBN-978-0495502791

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

	Semester: VII											
	Downstream Process and Product Recovery											
(Theory and Practice)												
Cou	Course Code : 18BT72 CIE : 100+50=150 Marks											
Cree	dits: L:T:P	••	4:0:1		SEE	:	100+50=150 Marks					
Tota	al Hours	:	52L		SEE Duration(Theory)	:	3.00 Hours					
					SEE Duration (Practicals)	:	3.00 Hours					
Cou	rse Learning	g ()	bjectives:	The	students will be able to							
1	Understand	the	e importan	ce o	f purification technology of bio	logic	al products at industrial					
L	scale.											
2	Comprehen	d v	arious prin	nary	purification techniques for biopr	oduc	ts.					
3	Learn Purif	icat	tion technic	ques	for isolation of products from co	omple	ex biological mixtures					
4	Impart mer	nbr	ane techno	olog	y application to lab scale and	proce	ess scale techniques for					
4	handling cr	ude	broth and	puri	fication techniques.							
5					s secondary and advanced sepa	ratior	techniques for lab and					
3	process scal	le p	ourification	of b	iological products							
	•											

Unit-I	08 Hrs
Introduction to Downstream processing: Overview of upstream and downst	tream processing,
Basic concepts of bio separation technology, Economic importance of downs	stream processing
in biotechnology, properties of biological materials. Characteristics of biological	ogical molecules,
Separation characteristics of recombinant proteins, enzymes, Vaccines	and monoclonal
antibodies.	
Unit – II	08 Hrs
Biomass removal and disruption: Cell disruption by Mechanical and non-	mechanical
methods, Chemical lysis, Enzymatic lysis, physical methods, Sonication, Hi	gh pressure
Homogenizer, Flocculation methods and its applications. Centrifugation and ul	tracentrifugation.
Simple Numerical on cell disruption and centrifugation	
Unit –III	12 Hrs
Filtration: Separation of products by filtration: dead end filtration, depth filtration	ration, concept of
filter medium resistance, Rotary Vacuum Filtration, scale up of filtration s	systems, different
modes of operation.	
Extraction: Principles of solid-liquid extraction, Liquid - Liquid extraction	-
counter current multistage extraction. Selection of solvent, Extraction equips	_
Bollman, Mixer-settler and York-Scheibel extractors. Precipitation (salt, pH,	-
high molecular weight polymer).Numerical problems on filtration and extraction	
Unit –IV	12 Hrs
Membrane Based Separation: Structure and characteristics of memb	
membranes, membrane equipment, Phenomenon of concentration polariz	
fouling and its consequences. Membrane based purification: Microfiltratio	
Nanofiltration and Diafiltration. Biotechnological applications of membrane b	1
Industrial bioproducts processing: Baker's yeast, cheese, alpha amylase, H	IFCS production,
Biopolymers, Hepatitis B. Numerical on membrane based bioseperation	
Unit –V	12 Hrs
Advanced Separation Techniques: Chromatography:- general theory; sep	
Size, Charge, Hydrophobicity and Affinity: Gel filtration, Ion exchange	
Affinity chromatography, and hydrophobic interaction chromatography (HIC).	U
products by Crystallization, Drying equipment- Tray Drier, Rotary Drier and Fi	reeze Drier.

Case studies: Large scale separation and purification of Recombinant human Insulin, Monoclonal Antibodies, Biodiesel and Biobutanol production

LAB EXPERIMENTS

- 1. Cell disruption techniques- physical method
- 2. Solid-liquid separation methods: sedimentation by flocculating agents.
- 3. Solid-liquid separation methods: Membrane filtration.
- 4. Solid-liquid separation methods: Centrifugation
- 5. Product enrichment operation: ammonium sulphate precipitation of proteins.
- 6. Product enrichment operation: aqueous two phase extraction (single stage).
- 7. Separation of amino acids/vitamins/pigments by adsorption Chromatography.
- 8. Efficiency of centrifugation on the citric acid broth separation.
- 9. Product drying technique-vacuum tray drier.
- 10. Crystallization Technique for bioactive compound.

Note: Each student has to perform 10 experiments in a semester. 10 Experiments are guided experiments

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Highlight the importance of downstream processing of biological products.							
	Interpret the techniques for various intracellular and extracellular products from complex biological mixtures.							
CO3:	Apply techniques to concentrate and purify biological products							
CO4 :	Initiate different processes for separation and purification of biological products							

Refer	rence Books
1	Filtration and Purification in the Biopharmaceutical Industry, Uwe Gottschalk, 3rd
-	Edition, 2019, CRC Press, ISBN:9781315164953.
2	Principles of Bioseparation Engineering, Ghosh R, 1st edition, 2006, World Scientific
2	Publishing. ISBN: 9812568921.
	Bio separations Science and Engineering, Roger G. Harrison, Paul Todd, Scott R.
3	Rudge, Demetri P. Petrides, 2 nd Edition 2015, Oxford University Press., ISBN:
	0195391810.
4	Downstream Process Technology: A New Horizon In Biotechnology, Krishnaprasad
4	N, Eastern Economy Edition, 2010, PHI Learning India ltd., ISBN: 9788120340404.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	-	-	-	-	-	2	1	-	-	1	
CO2	2	3	-	3	-	-	-	2	-	-	1	-	
CO3	3	2	1	2	-	-	-	1	-	-	-	-	
CO4	3	2	2	1	-	-	-	1	-	-	-	2	

	Semester: VII										
GENOMICS PROTEOMICS AND NANOTECHNOLOGY											
Cou	rse Code	:	18BT73	CIE	:	100 Marks					
Cree	dits: L:T:P	:	4:0:1	SEE	:	100 Marks					
Tota	al Hours	:	52L	SEE Duration(Theory)	:	3.00 Hours					
Course Learning Objectives:											
1 Understand the molecular aspects of the genome.											
2	2 Develop the concepts and principles underlying the human genome project and other genome program.										
3				different structures and functions ng purposes.	s of	the proteome. Identify					
4	Apply the r	net	hods of syn	hesis, fabricate and characterize the	mate	erials to nanoform.					
						I					
				Unit-I		12Hrs					
Intr	oduction to	Eu	karyotic ge	nes and Polymorphisms: Organiza	tion	of eukaryotic (microbial,					
plan	t and animal	gei	nomes) with	in nucleus, Central dogma and Inhe	ritanc	ce pattern. Mitochondrial					
and	chloroplast	gei	nome. Poly	morphism. C-Values of eukaryotic	gen	omes. Sequencing and					
gene	ome projects	s: E	Early sequer	cing efforts, Methods of preparing g	enon	nic DNA for sequencing,					
Sequ	uencing stra	teg	jies : shot-gi	in approach, clone contig approach, eoxy method, Fluorescence method,	DN	A sequencing methods:					

as molecular markers, FISH-DNA amplification markers. Types of mapping and the	ir usefulness
to plant and animal breeding.	
Unit -III	10Hrs
An introduction to proteomics: Basics of protein structure and function, Evolution	from protein
chemistry to proteomics; Abundance-based proteomics: Sample preparation and pre	fractionation
steps, Gel-based proteomics - two-dimensional gel electrophoresis (2-DE), two	dimensional
fluorescence difference in-gel electrophoresis (DIGE), Staining techniques, Image	analysis of
2DE gels. Central role of mass spectrometry: ionization sources, mass analyzers, di	fferent types
of mass spectrometers	

Genomics: Expressed sequenced tags (ESTs), Single Nucleotide Polymorphisms (SNPs). **Functional genomics:** Finding genes in the genome, assigning functions to the gene. **Genotyping** – DNA chips and diagnostics assays, RT-PCR, SAGE& DD-PCR. Importance of noncoding sequences – miRNA and RNAi. Molecular markers in genome analysis, Telomerase

Unit – II

Unit –IV10 HrsQuantitative proteomics - Stable isotope labelling by amino acids in cell culture (SILAC),
isotope-coded affinity tag (ICAT), isobaric tagging for relative and absolute quantitation
(iTRAQ); Interactomics - techniques to study protein-protein interactions, yeast two-hybrid,
immunoprecipitation, protein microarrays, Label-free nanotechnologies in proteomics, Surface
Plasmon Resonance (SPR); Modificomics: understanding post-translational modifications;
Structural proteomics; Bioinformatics in proteomics; Challenges and future prospects of
proteomics research.

Unit –V	10 Hrs
Introduction to nanomaterials: History, Types of nanomaterials: Fullerenes (Grep	hene, Bucky
ball, Nano tubes, Nanoshells, Quntum dots, Dendrimers, Nanocarriers. Nanosyl	nthesis. Ball
milling, CVD, Sol gel, Plasma arching. Top-Down and Bottom-up approaches,	methods of
nanofabrication: soft- and hard-lithography. Characterization of Nanomaterials:	

Major genome sequencing projects.

10 Hrs

Spectroscopic methods: UV-VIS, FTIR and Raman. **Microscopic method**: Scanning Electron Microscopy, Transmission Electron Microscopy, **Scanning probe methods**: Atomic Force Microscopy, Scanning & Tunneling Microscopy,

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand and remember the concepts of various genes and their expression.								
CO2:	Apply various large scale sequencing methods for sequencing various organisms								
	genome.								
CO3:	Acquire and evaluate the methods involved in analysis of genome and proteome.								
CO4:	Develop or create a diagnostic tool for plant, animal and human diseases using the								
	knowledge of nanotechnology.								

Reference Books

- 1 Genome analysis and Genomics- S.B Primrose and R M Tayman, 3rd Ed.,2002 Wiley-Blackwell ISBN: 978-1-4051-0120.
- Genomics and Proteomics: Principles, Technologies, and Applications, Devarajan Thangadurai and Jeyabalan Sangeetha, 1st Edn, 2021, Apple Academic Press, ISBN 9781774635377.
- 3 Introduction To Genomics, 2Nd Edn by Lesk, Oxford University Press, 2015, Paperback, 9780198745891
- 4 Nanotechnology Trends and Future Applications, Tahir, Muhammad Bilal, Rafique, Muhammad, Sagir, Muhammad, 2021, Springer, (Eds.), ISBN 978-981-15-9437-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	2	1	2	2	1	2	-	-	-	-		
CO2	1	3	3	2	1	2	2	2	1	-	2	2		
CO3	3	3	3	1	3	2	2	3	2	-	2	2		
CO4	1	3	3	1	3	3	2	3	2	-	2	2		

		SEMEST	ER : VII		
		INTER	NSHIP		
Course Code	:	18BT74	CIE Marks	:	50
Credit L:T:P	:	0:0:2	SEE Marks	:	50
Hours/week	:	4	SEE Duration	:	3 Hrs
		GUIDE	LINES		1

1. The duration of the internship shall be for a period of 6/8 weeks on full time basis after IV semester final exams and before the commencement of VII semester.

- 2. The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3. Internship must be related to the field of specialization of the respective UG programme in which the student has enrolled.
- 4. Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5. Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for UG circuit Programs and Light Blue for Non-Circuit Programs.
- 7. The broad format of the internship final report shall be as follows
- Cover Page
- Certificate from College
- Certificate from Industry / Organization
- Acknowledgement
- Synopsis
- Table of Contents
- Chapter 1 Profile of the Organization: Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
- Chapter 2 Activities of the Department
- Chapter 3 Tasks Performed: summaries the tasks performed during 8-week period
- Chapter 4 Reflections: Highlight specific technical and soft skills that you acquired during internship
- References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

CO1: Apply engineering and management principles

- CO2: Analyze real-time problems and suggest alternate solutions
- CO3: Communicate effectively and work in teams

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:									
Reviews	Activity	Weightage							
Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments,	45%							
Review-	Importance of resource management, environment and								
II	sustainability presentation skills and report writing	55%							

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

Professional Elective F

	Semester: VII								
	NANOBIOTECHNOLOGY								
Cour	se Code	:	18BT7F1		CIE	:	100 Marks		
Credi	its: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total	Hours	:	39 Hrs		SEE Duration(Theory)	:	3.00 Hours		
Cour	se Learning	g C	Objectives:			•	-		
1	To unders	star	nd the fundation	mer	ntals of nanomaterials, their s	structu	res and applications in		
	various fie	eld.							
2	To Descri	be	methods by	whi	ch nanoscale manufacturing a	nd pro	duction can be enabled		
	and charac	ctei	rization tech	niqu	es for them.				
3	To have a	wa	reness about	Mic	ro & Nano Electromechanical	system	ns and Microfluidics.		
4	To learn	abo	out Nano se	nsor	s and nano biosensors; nanos	scale p	roduct and their		
	applications in medical field.								
5	To study a	abo	ut the nanos	ensc	ors used in diagnostic and thera	peutic	and their applications in		
	medical fie	ld.							

Unit-I07 HrsIntroduction to nanomaterials History, Types of nanomaterials: Fullerenes (Grephene, Bucky
ball, Nano tubes, Diamond like carbon, DLC), Nanoshells, Quntum dots, Dendrimers,
Nanocarriers. Nanowires. Nanobiomaterials: DNA and Protein based Nano structures, array
nanostructures. Function and application of DNA and protein based nanostructures.

Unit – II	08 Hrs
Nanomaterials, Synthesis and Characterization: Approaches of Fabrication: Top-D	own and
Bottom-up methods of nanofabrication and Nanosynthesis: Ball milling, CVD, Sol gel	l, Plasma
arching. Biosynthesis of Nanoparticles. Nanolithography: hard (Optical, UV, EUV, X	-ray) and
soft lithography. Characterization of nanomaterials using spectroscopic (UV-VIS, F	TIR and
Raman) and microscopic methods Atomic Force Microscopy, Scanning & Tunneling	
Microscopy, Scanning Electron Microscopy, Transmission Electron Microscopy (AF	M, STM,
SEM and TEM).	

			Unit	–III				07 Hrs
Micro	&	Nano	Electromechanical	system s	and	Microfluidics:	MEMS	S/NEMS:
Nanotra	Nanotransducers: Nano- mechanical, electrical, electronic, Magnetic and Chemical Transducers.							
Nano s	ensor	s and N	Nano Actuators: types	of actuator	s. Mic	crofludics: Lamin	ar flow	, Hagen-
Peouise	Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels, mixing,							
microvalves & micropumps.								
Unit –IV								07 Hrs

Unit -1 V	07 1115					
Nanosensors and Nanobiosensors: Overview of nanosensors, prospects and market. Types of						
Nanosensors and their applications. Electromagnetic nanosensors: Magnetic nanosensors						
Mechanical nanosensors. Types of nanobiosensors: Cantilever, nanotube, nanov	vire and					
nanoparticle based sensor, Nanosensors, Mechanics of CNTs, Biosensors in modern medicine.						
Unit –V						

Medical Nano Technology: Diagnostics, therapeutics, drug delivery, Nano Surgery and Tissue Engineering. Diagnostics: Resonance Light Scattering (RLS) Technology, Nano chips, gene and protein chips. Therapeutic: Drug delivery: Bioavailability, Drug Delivery Applications, Bioavailability, Sustained and targeted release. Benefits of Nano drug delivery system. Use of

Microneedles and nanoparticles for targeted and highly controlled drug delivery. Nano robots in drug delivery and cleaning system. Design of nanoparticles for oral delivery of peptide drugs, Tissue Engineering.. Nanotoxicity assessment: In-vitro laboratory tests on the interaction of nanoparticles with cells. Body on a chip and lab on a chip.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember, understand and apply knowledge about nanomaterials and their uses.							
	Interpret and apply the techniques of manufacturing and characterization processes.							
CO2:	Understand the Micro & Nano Electromechanical systems and Microfluidics Interpret							
	and apply the techniques and processes.							
CO3:	Understand and apply knowledge of nanosensors and nanobiosensors applications like							
	electronics, mechanical, chemical, and biological systems							
CO4:	Apply knowledge of nanosensors and nanobiosensors to create and evaluate nano-							
	design, devices and systems applicable to various medical disciplines.							

Reference Books

1	Textbook of Nanosciences and Nanotechnology, B.S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday, 2013, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH, XII. ISBN- 978-3-642-28030-6.
2	Springer Handbook of Nanotechnology, Editors: Bhushan, Bharat (Ed.), 2017, Springer, ISBN 978-3-662-54357-3.
3	Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences (Innovations in Agricultural & Biological Engineering), <u>Deepak Kumar</u> <u>Verma, Megh R. Goya, Hafiz Anasr Rasul Suleria</u> , 2019, Apple Academic Press, CRC Press, Taylor & Francis Group, ISBN-10 1771887648.
4	Nanotechnology Trends and Future Applications, Tahir, Muhammad Bilal, Rafique, Muhammad, Sagir, Muhammad, 2021, Springer, (Eds.), ISBN 978-981-15-9437-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	3	2	2	1	2	1	1	2
CO2	2	3	3	2	3	2	-	2	2	1	2	1
CO3	3	3	2	2	3	3	2	2	2	1	2	2
CO4	3	3	2	3	3	3	2	-2	2	1	2	1

High-3 : Medium-2 : Low-1

	Semester: VII								
	SUSTAINABLE AND PRECISION AGRICULTURE								
	(Theory)								
Cou	rse Code	:	18BT7F2		CIE	:	100 Marks		
Crea	lits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning (Obj	ectives: The stude	will be able					
1			c concepts of Preci		including: a. soil a	ind c	rop spatial variability;		
2			e use spatial inform al, and e-marketing		ed soil and crop m	anag	ement. environmental,		
3 Develop a better understanding and retention of material through hands-on modules, group discussions, problem solving, and group projects									
4	4 Appreciate value of precision agriculture from on-farm and agribusiness visits								
5 Realize the potentials and limitations of applying the concept of Precision Agriculture to global level									

Unit-I	8 Hrs						
Concept of Sustainable and Precision Agriculture: Introduction to Precision, Prescriptive and Digital							
Agriculture: Scope, Definition, Historic Perspectives and Applications. Organic Farming: Concepts and							
principles of organic farming. Key indicators of sustainable agriculture, organic fa	rming and climate						
change Input management. Digital Agriculture – IoT and Future Digital Tools, Ponics	: Aero and Hydro;						
Perspective and application. Precision Farming; Economics and Adoption, The Human Side of Adopting							
Precision Technologies.							
Unit – II	8 Hrs						

Agriculture Precision and Analysis: Precision Soil Sampling and Yield Monitoring, Telematics: ISOBUS Concept and Technology, Geographic Information Systems, and Remote Sensing Coordinate Systems: Components of GIS: Capture, Storage, Editing, Analysis, Display and Output. Map Scales, Spatial and Temporal Analysis. Farm Management Information Systems & Data Management Platforms, Data Analysis: Experimental Design, Data Quality, Mining, Analysis, Compatibility, Interpretation and Correlation.

Unit – III	8 Hrs					
Sensing and Imaging: Global Positioning Systems (GPS) and DGPS: Overview	w, GNSS, Factors					
Influencing GPS, Manual Guidance Systems, Auto guidance Systems Module.	Sensors: Sensing					
Platforms—Satellite, UAV, Aerial, Proximal, Active vs. Passive Remote Sensing, Sp	ectral, Spatial, and					
Temporal Resolution, Precision Irrigation Systems. Precision Drainage Systems. Nu	trient Spatial					
Variability: Sampling in Space and Time, Grid and Zone Soil Sampling, Crop Spatial Variability Soil						
Sensors, Crop Sensors, Quality Sensors—Protein, Oil, etc. Pest Spatial Variability.						
Unit – IV	7 Hrs					

	- '	
Advanced Agricultural Technologies:	Difference between traditional and mo	odern agricultural
practices; Internet of Things (IoT), Online	Marketing of agro-based products, Phenom	ics – Principle and
mechanism, Agricultural Drones & Robotic	s, Artificial Intelligence (AI) based farming	

Unit – V 8 Hrs Sustainability and Agriculture: Sustainable agriculture and sustainable food systems: concept, perspective, scope and application, Soil health, crop Production, Pest & disease management, Weed management, Livestock care & planning, Farm Business Design, Marketing, Labour management, Global Change and Sustainable Agriculture, sustainable strategies and food security, Issues in sustainable agriculture

Course	Course Outcomes: After completing the course, the students will be able to											
CO1:	Recognize the scientific, social and economic implications in Sustainable and precision											
	agriculture											
CO2:	Analyse the perspective of sensing and imaging in technology for the better yield											
CO3:	Evaluate various tools, techniques and advances for better formulation and productivity											
CO4:	Formulate the proof of concept for sustenance and precision agriculture for global outreach											

Reference Books

1	Organic Farming for Sustainable Agriculture, Nandwani, Dilip, 2016, Springer publishers, ISBN 978-3-319-26803-3
2	Precision Agriculture Basics. D. Kent Shannon David E. ClayNewell R. Kitchen. 2018. John Wiley & Sons, Inc.ISBN:9780891183662
3	Precision Agriculture Technologies for Food Security and Sustainability. Sherine M. Abd El-Kader, Basma M. Mohammad El-Basioni.2021.IGI Global publisher. ISBN: 978179985000
4	Precision Agriculture: Technology and Economic Perspectives. Pedersen, Søren Marcus, Lind, Kim Martin. 2017. Springer International Publishing. ISBN 978-3-319-68713-1

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	3	2	1	1	1	-	1	3	2	
CO2	2	2	2	1	1	-	2	-	-	2	1	1	
CO3	1	3	2	2	-	2	3	2	-	1	1	3	
CO4	2	3	3	3	1	-	3	-	2	2	2	2	

	Semester: VII											
	EQUIPMENT DESIGN AND DRAWING (Elective - F)											
	(Theory and practice)											
	(Group F: Professional Elective)											
Cou	Course Code:18BT7F3CIE:100 Marks											
Cree	Credits: L:T:P:S		2:0:2:0		SEE	:	100 Marks					
Total Hours:50 LSEE Duration:4.00 Hour							4.00 Hours					
Cou	rse Learning Ob	jec	tives: The student	s will be able to								
1	Learn the basics	of	design using Code	book and Perry	Hand book							
2	Explore the abi	litie	es of sectional fro	nt view and top	view of the bioc	cher	nical equipment					
	accessories.											
3	Study mechanic	cal	design of equipm	ent's involved in	n biological react	ion	s as per IS2825					
	unfired pressure	d v	essels code book.									
4	Study the proce	ss o	lesign of equipme	nt involved in bi	ological reactions	s as	per Perry Hand					
	book.						-					

Unit-I	10 Hrs								
Batch reactor and Jacketed vessel: Detailed Process Design and mechanical design of the Batch									
reactor using standard code books. The detailed dimensional drawings shall include sectional									
front view, Full Top/Side view depending on equipment using CAD.									
Unit-II	10 Hrs								
Packed bed Distillation Column: Detailed Process Design and mechanical design of t	the packed								
bed distillation column using standard code books. The detailed dimensional drawings shall									
include sectional front view, Full Top/Side view depending on equipment using CAD.									
Unit-III	10 Hrs								
Shell and Tube Heat Exchanger: Detailed Process Design and mechanical design of the	e Shell and								
Tube Heat exchanger using standard code books. The detailed dimensional draw	ings shall								
include sectional front view, Full Top/Side view depending on equipment using CAD.									
Unit-IV	10 Hrs								
Moving Bed Bioreactor (MBBR): Detailed Process Design and mechanical design of t	he MBBR								
using standard code books. The detailed dimensional drawings shall include sectional f	ront view,								
Full Top/Side view depending on equipment using CAD.									
Unit-V 10 Hrs									
Adsorption column: Detailed Process Design and mechanical design of the Adsorption	on column								
using standard code books. The detailed dimensional drawings shall include sectional f	front view,								
Full Top/Side view depending on equipment using CAD.									

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Remember and understand the concepts of design and use of the IS 2825 code book and									
	J H Perry hand book									
CO2:	Integrate the standard design parameters to design of bio equipment.									
CO3:	Evaluate the various parameters of distillation column, heat exchangers									
CO4 :	Generate drawings of distillation column, heat exchanger and bioreactors using CAD.									

Refer	ence Books						
1	Chemical Engineers Handbook, Robert H Perry. & D.W. Green, 9th Edition, 2018,						
1	McGraw Hill; ISBN: 9780071834087						
2	IS 2825: Code for Unfired pressure vessels, 2005, Bureau of Indian Standards, New						
4	Delhi; UDC 66.023 : 621.642.						
	Design of Process Equipment Design, M.V. Joshi and V.V. Mahajan, 2009, 4th						
3	Edition,						
	McMillan India; ISBN: 978-0230638105.						
4	Chemical Engineering Design, J.M. Coulson & J.F. Richardson, 2005, Pregman						
4	Press; ISBN 07506 65386.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The 10 marks component is for Equipment drawing/Assignment/Presentation/Project. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

10tar CIE 15 50(Q) + 00(1) + 10(A) = 100 Warks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two main questions with internal choice; each main question carries 100 marks (60 Marks for design and 40 Marks for drawing in CAD). Each main question may have sub questions covering entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	-	-	-	2	2	1	1	-	-	2	
CO2	2	2	-	3	3	1	-	-	1	-	-	1	
CO3	3	2	1	-	-	2	2	-	1	-	-	2	
CO4	2	3	2	2	2	2	-	-	-	-	-	1	

Artificial Intelligence (Theory) Course Code I 18BT7F4 CIE Marks 100 Course Code : 18BT7F4 CIE Marks : 100 Total Hours : 300 SEE Marks : 100 Total Hours : 300 SEE Marks : 100 Total Hours : 300 SEE Marks : 100 Course Learning Objectives (CLO): Graduates shall be able to I. Unit of artificial Intelligence in bioinformatics 2. Learn the applications of artificial Intelligence in bioinformatics See marks in a solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. Unit - I 10 Hrs Introduction to Artificial Intelligence: Introduction to Artificial Intelligence: Introduction to Artificial Intelligence: Introduction to Search, Search algorithms, Heuristic search methods. Optimal search strategics. Up of graphs in Bioinformatics. Gramm	Semester - VII												
Course Code : 18BT7F4 CIE Marks : 100 Total Hours : 39L SEE Marks : 100 Total Hours : 39L SEE Duration : 3.00 hrs Course Learning Objectives (CLO): Graduates shall be able to . <th colspan="12">Artificial Intelligence</th>	Artificial Intelligence												
Credits L:T:P : 3:0:0 SEE Marks : 100 Total Hours : 39L SEE Duration : 3.00 hrs Course Learning Objectives (CLO): Graduates shall be able to : 3.00 hrs . 1 Understand the basic concepts of Artificial Intelligence : 3.00 hrs 2. Learn the applications of artificial intelligence in bioinformatics : : add the advancements of designing the intelligent systems that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. IO Hrs Introduction to Artificial Intelligence: Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. IO Hrs Classification methods: Linear Classifiers & Logistic Regression ,Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. IO Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deeglearning, Best practices in machine learning disa/variance theory; innovation process in machine learning ane													
Total Hours : 39L SEE Duration : 3.00 hrs Course Learning Objectives (CLO): Graduates shall be able to 1. Understand the basic concepts of Artificial Intelligence 1. 1. 0. 1. 0.<		:	18BT7F4			:							
Course Learning Objectives (CLO): Graduates shall be able to 1. Understand the basic concepts of Artificial Intelligence 2. Learn the applications of artificial intelligence in bioinformatics 3. Learn some basic search algorithms for problem solving; knowledge representation and reasoning; pattern recognition; fuzzy logic; and neural networks. 4. Understand the advancements of designing the intelligent systems that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. 10 Hrs Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence: Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression ,Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning for Networks with case studies. Learning from observation - Inductive learning – Method		:				:							
1. Understand the basic concepts of Artificial Intelligence 2. Learn the applications of artificial intelligence in bioinformatics 3. Learn some basic search algorithms for problem solving; knowledge representation and reasoning; pattern recognition; fuzzy logic; and neural networks. 4. Understand the advancements of designing the intelligent systems that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. Unit − I 10 Hrs Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence. Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit − I 10 Hrs Classification methods: Linear Classifiers & Logistic Regression , Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering, dimensionality reduction, recommender systems, deep learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning to machine studies and		•			SEE Duration	:	3.00 hrs						
2. Learn the applications of artificial intelligence in bioinformatics 3. Learn some basic search algorithms for problem solving; knowledge representation and reasoning; pattern recognition; fuzzy logic; and neural networks. 4. Understand the advancements of designing the intelligent systems that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence. Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit − I 10 Hrs Classification methods: Linear Classifiers & Logistic Regression , Linear Classifiers, Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Unit − II 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning to alsovariance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Netwo													
 3. Learn some basic search algorithms for problem solving; knowledge representation and reasoning; pattern recognition; fuzzy logic; and neural networks. 4. Understand the advancements of designing the intelligent systems that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. 10 Hrs Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence. Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression , Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning based applications. Unit – IV 10 Hrs Genetic programming – Method, Applications, Guidelines and applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning - Decision trees – Explanation based learning - Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs 			.	e									
pattern recognition; fuzzy logic; and neural networks. 4. Understand the advancements of designing the intelligent systems that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. 10 Hrs Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence: Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. 10 Hrs Classification methods: Linear Classifiers & Logistic Regression ,Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Unit – II 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning — Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bay													
 4. Understand the advancements of designing the intelligent systems that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty. 10 Hrs Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence: Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression , Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning. Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical proces					wledge representa	tion	and reasoning;						
problems, represent and process knowledge, plan and act, reason under uncertainty. Unit – I 10 Hrs Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence. Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. 10 Hrs Classification methods: Linear Classifiers & Logistic Regression, Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AJ, Support vector machines (SVMs), case studies and applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning - Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning. 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement learning – Building chatbots with rasa,	· · ·		• •										
Unit – I 10 Hrs Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence. Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Io Hrs Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression , Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Boolean Networks, Boyesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning - Decision trees - Explanation based learning - Statistical Learning methods - Reinforcement Learning 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, convolution and recurrent neural networks, with rasa, and deep learning. Applications of deep and reinforcement learning - Building chabots with rasa, <							general purpose						
Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems, Approaches and tools for Artificial Intelligence. Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression ,Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Unit – III Unit – III <td>problems, repress</td> <td></td> <th>iu process know</th> <td></td> <td>i under uncertainty</td> <td>•</td> <th>10 Hrs</th>	problems, repress		iu process know		i under uncertainty	•	10 Hrs						
tools for Artificial Intelligence. Introduction to search, Search algorithms, Heuristic search methods, Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression ,Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k- means, Hierarchical Clustering. Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Unit – IV 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,	Introduction to Arti	ficial	Intelligence		talliganca Problem	ne							
Optimal search strategies. Use of graphs in Bioinformatics. Grammers, Languages and Automata. Current Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression, Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Introduction to probability reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Introduction to trees applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning — Decision trees — Explanation beservation - Inductive learning methods - Reinforcement Learning Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning — Building chatbots with rasa,													
Techniques of Artificial Intelligence: Probabilistic approaches: Introduction to probability, Bayes' theorem, Bayesian networks and Markov networks. Unit – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression, Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. 10 Hrs Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chabots with rasa,													
Init – II 10 Hrs Classification methods: Linear Classifiers & Logistic Regression ,Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. 10 Hrs Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning — Decision trees — Explanation based learning – Statistical Learning methods - Reinforcement Learning. 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,													
Unit – II10 HrsClassification methods: Linear Classifiers & Logistic Regression ,Linear Classifiers, Overfitting & Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k- means, Hierarchical Clustering.10 HrsUnit – III10 HrsSupervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications.10 HrsGenetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning — Decision trees — Explanation based learning – Statistical Learning methods - Reinforcement Learning Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,					a contraction to proce		<i>cj</i> , <i>2cjcs</i>						
Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning — Decision trees — Explanation based learning – Statistical Learning methods - Reinforcement Learning. 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,							10 Hrs						
Regularization in Logistic Regression, Decision Trees, Preventing Overfitting in Decision Trees, Handling Missing Data, Clustering and retrieval of data, Nearest Neighbor Search, Clustering with k-means, Hierarchical Clustering. Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning — Decision trees — Explanation based learning – Statistical Learning methods - Reinforcement Learning. 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,	Classification meth	ods:	Linear Classif	fiers & Logistic Regression	on ,Linear Classif	iers	, Overfitting &						
means, Hierarchical Clustering. Unit – III 10 Hrs Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. 10 Hrs Unit – IV 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,													
Unit – III10 HrsSupervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications.10 HrsGenetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V10 HrsDeep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,				l retrieval of data, Nearest	Neighbor Search,	Clu	ustering with k-						
Supervised learning - parametric/non-parametric algorithms, support vector machines, kernels, neural networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Unit – IV 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,	means, Hierarchical	Clus	tering.										
networks, Unsupervised learning - clustering, dimensionality reduction, recommender systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. Unit – IV 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,													
learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and applications. 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,													
and AI, Support vector machines (SVMs), case studies and applications. Unit – IV 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees - Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,													
Unit – IV 10 Hrs Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive - Inductive learning – Decision trees - Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,						s in :	machine learning						
Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,	and AI, Support ve	ctor 1	nachines (SVN		ations.		10 11						
Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning – Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,					D								
- Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,													
Iearning – Statistical Learning methods - Reinforcement Learning Unit – V 10 Hrs Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,				•		-							
Unit – V10 HrsDeep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,	β												
Deep and Reinforcement Learning - Introduction to deep learning. Deep earning in lexical processing, syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,	learning – Statistical Learning methods - Keinforcement Learning												
syntactic processing, semantic processing. Convolution and recurrent neural networks. Reinforcement and deep learning. Applications of deep and reinforcement learning – Building chatbots with rasa,	Doon and Painforce												
and deep learning. Applications of deep and reinforcement learning - Building chatbots with rasa,													
					Summing C		coto mini iubu,						

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Learn about concepts of artificial intelligence and their applications in Bioinformatics									
CO2:	Understand the basic ideas and techniques underlying the design of intelligent computer									
	systems									
CO3:	Use the knowledge acquired for both problem solving and for reasoning									
CO4:	Focus on problems, the ethical, legal and social issues involved in the field of AI and use the									
	Techniques and algorithms to address those problems.									

Refer	rence Books
1	Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications by K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar, published by Springer Nature, 2020. ISBN: 9789811524455.
2	Artificial Intelligence: A Modern Approach by Stuart Jonathan Russell and Peter Norvig. Prentice Hall, 2016. ISBN 9781537600314
3	Machine Learning Approaches to Bioinformatics by Zheng Rong Yang. World Scientific Publishing Co. Pte. Ltd, 2010.ISBN 981-4287-30-X.
4	An Introduction to Deep Reinforcement Learning by Vincent François-Lavet, Peter Henderson, Riashat Islam published by Now Publishers, 2019. ISBN: 9781680835380.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	2	2	1	-	1	-	1	3	3
CO2	2	-	2	1	1	-	2	-	-	2	1	1
CO3	1	3	2	2	-	2	3	2	-	1	1	3
CO4	3	3	2	3	1	-	3	-	1	2	3	3

Professional Elective G

	:		Semester: VII ORENSIC SCIENCE (Theory)							
	:									
	:		(Theory)							
	:	100000001								
L.D	-	18B1/G1	Course Code:18BT7G1CIE:100 Marks							
Г:Р	••	3:0:0	SEE	:	100 Marks					
5	:	39L	SEE Duration	ı :	3.00 Hours					
rning	; 0	bjectives: The st	udents will be able							
lersta	nd	the broadest defi	nition of forensic science and a	plica	ation of criminal and					
ws.										
uire f	fore	ensic evidence in	a reliable, professional manner	with	appropriate regard to					
fic, st	atis	stical, ethical and	legal issues.							
velop	cri	itical analytical s	kills and apply them in case-stu	udy s	situations relevant to					
current forensic science.										
4 To realize the significance of the forensic experts and its labs and its functions										
5 To validate toxicology, imaging, processing the crime scene for better indulgent of forensic										
	s rning dersta ws. juire t fic, st fic, st velop t fore lize th	s : rning O derstand ws. juire fore fic, statis velop cri t forensio lize the s	s : 39L rning Objectives: The studerstand the broadest defination of the b	s : 39L SEE Duration rning Objectives: The students will be able students will be able derstand the broadest definition of forensic science and apply derstand the broadest definition of forensic science and apply derstand the broadest definition of forensic science and apply statistical, ethical and legal issues. velop critical analytical skills and apply them in case-stut forensic science. lize the significance of the forensic experts and its labs and	s : 39L SEE Duration : rning Objectives: The students will be able . . . derstand the broadest definition of forensic science and applications. . . . uire forensic evidence in a reliable, professional manner with fic, statistical, ethical and legal issues. . . velop critical analytical skills and apply them in case-study st forensic science. . . lize the significance of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forensic experts and its labs and its fully the state of the forence of t					

Unit-I	8 Hrs						
Introduction: Introduction to Forensics, Definition and scopes of forensity	ics, History and						
chronology of the events in forensics, and important milestones in the forensics	s, importance and						
significance of court in forensics; procedure and protocol: Inquest and me							
systems, powers of courts, documentary evidences and witness, (Doctors	guide to court),						
	application of the forensics: Forensic anthropology, Forensic entomology, Forensic psychiatry,						
Forensic odontology. Forensic pathology: Rigor mortis, livor mortis, algor mortis.							
Unit – II	8 Hrs						
Crime Lab and Forensic Analysis: Organization of crime lab at various levels	,						
and State), facilities offered by various laboratories. Services of the crime lab,							
the crime lab, optional services. Crime scene- Identification (Race, Sex, Age),							
record, methodic search for evidence. Analysis of the physical evidences- defin	· •						
and source of evidence, type, collection and preservation, expert unit men, hand	ling, package and						
	sealing of physical evidence, FRYE standard and DAUBERT criteria.						
Unit –III	8 Hrs						
Forensic Digital Imaging, Statistics and engineering: Digital imaging, acquired	U						
evidences, forensic imaging, maintaining chain of control with digital images							
and process, digital videos, scanners, presenting pictures in the court							
compression and forgeries and maintaining records, analysis and recovery,	advantages and						
disadvantages of digital imaging.							
Probability, populations and samples, weight of evidence and the Bayesian							
Transfer evidence, application of statistics of forensic science. Forensic engine	-						
analysis, dactyloscopy- Definition, various events and its significance,	fingerprints its						
classification and patterns (concept of LAW).							
Unit –IV	8 Hrs						
Cyber Forensic: Introduction, history of computer forensics, Basics of computers, Media,							
Computer Forensic Lab, Forensic Computers, Mobile Units, Data Storage, collecting evidence							
from a single system, common mistakes in evidence collection, storing and retrieving data,							
processing the electronic crime scene, analysis of electronic data, forensic an	alysis of internet						

data, forensic investigation of internet communications, E-Mail analysis, mobile forensics.

Department of Biotechnology

Corporate fraud,

Unit –V 7 Hrs

Toxicology and ethics in Forensic Science: Forensic toxicology, General Materials, Custodial Deaths, General Toxicology, Corrosive Poisons, Vegetable Alkaloid Poisons, Irritant Poisons, Non–Metallic& Metallic poisons, Inebriant Poisons Irrespirable Gases, Drug & Insecticides, Food Poisoning. Science and professional ethics: significance and limitations, code of conduct and code of ethics for forensics and their application, ethical requirement, ethical dilemmas and their resolutions.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Recognize the scientific, ethical and legal implications in the collection, storage and dispatch of					
	forensic evidence.					
CO2:	Comprehend the role of forensic scientist in the collection and interpretation of evidence					
	and the presentation of expert testimony, and its importance to assurance of judicial					
	equity					
CO3:	Evaluate the crime lab and their functionality along with the engineering and statistics					
CO4:	Analyse the forensics in cyber for retention of security and impact of toxicology in					
	forensics to submissive in ethics and moral values					

Refer	rence Books
1	Criminalistics: An Introduction to Forensic Science; R Saferstein; Prentice Hall; 9 st ed; 2007. ISBN: 0-13-221655-8
2	Forensic Science in Crime Investigation, B.S.Nabar; Asia Law House; 3rd edition; 2002;ISBN: 81861969944
3	Hacking Exposed [™] Computer Forensics, Aaron Philipp David Cowen Chris Davis, 2 nd edn. The McGraw-Hill Companies, 2010 ISBN: 978-0-07-162678-1
4	The essentials of Forensic Medicine and Toxicology; K.S.Narayana Reddy; 23 rd edition; 2004; ISBN: 8139427131
5	Forensic science : from the crime scene to the crime lab, Saferstein, Richard, 2 nd ed. 2009, ISBN 0-13-139187-9 (978-0-13-139187-1)

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	3	-	1	-	-	-	1	3	1
CO2	2	2	2	1	1	-	2	-	-	1	-	1
CO3	1	3	2	2	-	2	-	2	-	1	1	1
CO4	1	3	3	3	-	-	3	-	2	1	-	1

	Semester: VII							
METABOLITES AND BIOPROSPECTING (Theory)								
Cou	Course Code:18BT7G2CIE:100 Marks							
Crea	dits: L:T:P	••	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours	
Cour	rse Learning	Ob	jectives: The stud	ents will be able t	0			
1	Understand	the	e concepts of trad	itional and moder	n bioprospecting	and	d gain knowledge on	
	the biodiver	sity	y of metabolites					
2	Apply the c	onc	epts of bioprospe	cting for producti	on of novel produ	cts		
3	Demonstrate	e tl	ne understanding	of value added p	oroducts, is isolati	on	and characterization	
	techniques							
4	Use concept	ts o	of Bioprospecting	for investigation	of bioactive com	npo	unds, and increasing	
	the active compounds by precision engineering.							
5	Apply know	vle	dge for bioprosp	becting of novel	genes/biomolecu	ıles	and enzymes for	
	industrial ar	nd 1	nedicinal uses.					

Unit-I	8 Hrs						
Introduction of Bioprospecting: Basics of Bioprospecting, Potential value of	f Bioprospecting.						
status of bioprospecting in India. Approaches to Bioprospecting-: Random search and Algorithm							
based search (Using indigenous knowledge, Ecological based knowledge, Ev	based search (Using indigenous knowledge, Ecological based knowledge, Evolutionary based						
knowledge) Phylogenetic approach.							
Bioprospecting for known and unknown metabolites-Case studies.							
Databases and drug discovery-NAPRALERT, NCI and CDRI databases.							
Unit – II	8 Hrs						
Biosynthesis of secondary metabolites and metabolic engineering: second	ndary metabolite						
pathways, rate limiting steps. Over-expression systems: Bioprospecting for g	genes involved in						
the production of bioactive compounds, case studies. GIS based technology t	o predict species						
distribution for bioprospecting.							
Unit –III	8 Hrs						
Strategic plans for bioprospecting with reference to global scenario: Lab	oratory tools and						
techniques in bioprospecting., Bioassays. Chemical profiling: Chromatogra	aphic techniques,						
molecular characterization using molecular markers. Molecular markers in b							
known metabolites, microsatellites, AFLP, SNP's etc. In-vivo and in-vit	ro protocols for						
multiplication and production of economically important metabolites-hairy	roots, suspension						
cultures, micropropogation etc.							
Unit –IV	8 Hrs						
Valuation of biodiversity hotspots for bioprospecting: Bioprospecting, Creating	-						
Biodiversity. Western Ghats, Eastern Himalayas. Valuation techniques							
bioprospecting in India. Medicinal plant diversity: indigenous knowledge,	human resource.						
Traditional Knowledge and practice and its role in bioprospecting.							
Unit –V	7 Hrs						
Bioprospecting of natural bioactive compounds: Natural products from Marine world.							
Microbial natural products. Bioprospecting of plant-associated microbiomes, Bioprospecting of							
metagenomes. Role of industry, academic institution collaboration in accelerating research in							
bioprospecting. IPR issue and trade related issue in Bioprospecting.							

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the fundamental concepts of Potential value of Bio prospecting, platforms and databases
CO2:	Analyse the bio prospecting of genes for overexpression studies and for enhancement of metabolites
CO3:	Apply the acquired knowledge to strategize bio prospecting in global scenario and the techniques involved to characterization and understand the IPR and trade related issues
CO4:	Evaluate the hotspots for bioprospecting of natural products

Reference Books

1	Bioprospecting Success, potential and constraints. Russell Paterson, Nelson Lima., 2017, Springer International Publishing., ISBN – 978-3-319-47935-4								
2	Bioprospecting. Yogesh Urdukhe. 2020. Educational Publishers . ISBN- 9789390005123								
3	Bioprospecting in Life Sciences. Rajendra Kumar Behara, Ekamber Kariali.2019.Narosa publishers. ISBN-9788184876512								
4	Plant Metabolites: Methods, Applications and Prospects. Swapna Thacheril, Sukumaran, Shiburaj Sugathan, Sabu Abdulhameed.2020. Springer; ISBN-978- 9811551352								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	2	1	1	1	1	1	1
CO2	2	2	2	1	1	1	1	-	-	1	1	1
CO3	1	3	2	2	2	2	1	2	1	1	1	1
CO4	1	3	3	3	1	3	1	1	2	1	-	1

Course Code : 18BT7G3 CIE : 100 M Credits: L:T:P:S : 3:0:0:0 SEE : 100 M						
Credits: L:T:P:S : 3:0:0:0 SEE : 100 N						
	/larks					
Total Hours · 39 SFF Duration · 3.00	/Iarks					
	Hours					
Course Learning Objectives: The students will be able to						
1 To appreciate the various renewable and alternative energy sources						
2 To recognize biomass resources, types of biofuels and the bio-refinery concept	ot					
3 To understand the relationship between mass and energy balance	es, biomass					
characterization techniques, unit operations, and thermodynamics in bioma	ss conversion					
process						
4 To utilize the available role of renewable energy engineers to address gr	owing energy					
needs						
5 To understand the role of various treatment techniques in the production	of alternative					
energy						
Unit-I 7 Hrs						
Energy Scenario: Forms of energy, units for energy measurement, classification	on of energy					
resources, energy consumption pattern, energy scenario, energy and environment	nt, alternative					
energy resources - biofuels, economics of biofuels, Clean Development Mechanism	(CDM)					

Description of Biofuels: Energy use & efficiency, biofuel production, energy from biochemical pathways - organoheterotrophic, lithotrophic & phototrophic metabolism, biofuel feedstocks starch, sugar, lignocellulosic, agro & Industrial by-products. Unit – II 8 Hrs

Production of Bioethanol : Bioethanol production using sugar, feedstocks, selection of microorganisms, associated unit operations, determination of bioethanol yield, recovery of bioethanol, quality control aspects and properties of fuel standard bioethonol.

Production of Biodiesel: Chemical, thermodynamic & reaction kinetic aspects of biodiesel production: transesterification and supercritical esterification, saponification and hydrolysis, acid & base catalysis. Sources of oils. Methods of biodiesel production – general procedure and large scale production, quality control aspects, properties of fuel standard biodiesel

scale production, quality control aspects, properties of fuel standard biodieser	
Unit –III	8 Hrs
Production of Biohydrogen: Enzymes involved in hydrogen production, phot	tobiological
hydrogen production - biophotolysis and photofermentation, hydrogen prod	luction by
fermentation - biochemical pathway, batch fermentation, factors affecting hydrogen	production,
carbon sources, process and culture parameters. Waste to Energy (WtE): Types, energy	gy content,
combustibility assessment, collection- methods, transportation and recovery of	recyclables,
drying, and densification, incineration, gasification – syngas and producer gas, hyd	lrogenation
and Biological digestion - composting and fermentation to hydrogen, methane and alc	ohol.
Unit –IV	8 Hrs

Microbial Fuel Cells: Biochemical Basis; Fuel Cell Design: Anode & Cathode Compartment, Microbial Cultures, Redox Mediators, Exchange Membrane, Power Density; MFC Performance Methods: Substrate & Biomass Measurements, Basic Power Calculations, MFC Performance: Power Density, Single-Chamber vs Two-Chamber Designs, Wastewater Treatment Effectiveness. 8 Hrs

	• • •	
I I I I I I	— v	
	•	

Microbial Modelling of Biofuel Production: Microbial growth models - unstructured, single limiting nutrient models, inhibition models, models for multiple limiting substrates, yield parameters. Kinetic rate expressions, bioreactor operation and design for biofuel production - batch, CSTR, CSTR with cell recycle, Fed-Batch Systems, Plug Flow Systems. Modelling of glucose utilization and hydrogen production - Batch and CSTR fermentations and simulations.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the technological basis for harnessing alternative energy sources							
CO2:	Recognize the effects that current energy systems based on fossil fuels have, over the							
	environment and the society							
CO3:	Compare different alternative energy technologies and choose the most appropriate							
	based on local conditions							
CO4 :	Perform simple techno-economical assessments of alternative energy systems							

Re	eference Books
1	Biofuels Engineering Process Technology, Caye M. Drapcho, N.P. Nhuan and T. H. Walker, 2020, Mc Graw Hill Publishers, New York, ISBN: 9781259585722.
1	2020, Mc Graw Hill Publishers, New York, ISBN: 9781259585722.
2	Biofuels - Methods and Protocols (Methods in Molecular Biology Series), Jonathan R.M,
4	2012, Humana Press, New York, ISBN: 1617796476.
2	Biofuels (Advances in Biochemical Engineering/Biotechnology Series, Lisbeth Olsson, 2010, Springer-Verlag Publishers, Berlin, ISBN:9781412378554.
3	Springer-Verlag Publishers, Berlin, ISBN:9781412378554.
4	Waste management, L. Juhasz, G. Magesan & R. Naidu, 2019, Science Publishers, ISBN:
4	9780367446604.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	-	-	-	2	2	1	1	1	-	1	
CO2	2	3	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	2	2	1	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

	Semester: VII									
	NEXT GENERATION SEQUENCING INFORMATICS (Elective)									
Cou	rse Code	:	18BT7G4		CIE	:	100 Marks			
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tota	al Hours	rs : 39 SEE Duration		SEE Duration	:	3.00 Hours				
Cou	rse Learning	g Ob	jectives: The stu	dents will be able	e to					
1	Understand	the l	pasic concepts of	various platform	s of NGS analysis					
2	Detailed me	ethod	lology of NGS ar	nalysis pipeline ar	nd algorithms					
3	Practical as	pects	and implementa	tion of in various	other forms of se	que	encing and analysis.			
4										
5	Use of the r	next g	generation techni	ques to solve pro	blems of clinical g	geno	omics			

Unit-I	7 Hrs					
Introduction to next generation sequencing: Sanger sequencing principle	es - history and					
landmarks, of Sequencing Technology Platforms, A survey of next-generation	ation sequencing					
technologies, A review of DNA enrichment technologies, Base calling algorith	ms, Base quality,					
phred values, Reads quality checks, Interpretations from quality checks. Ad	apter and primer					
contamination. Processing reads using clipping of reads-Advantages and	disadvantages of					
processing of reads						
Unit – II	8 Hrs					
Tools and Techniques in NGS: Burrows-Wheeler Aligner (BWA) and B	owtie Alignment					
programs, burrows wheeler algorithm. Reference indexing and Alignment. Build	ding from source,					
The bowtie aligner, The -n alignment mode, The -v alignment mode, Reportin	g Modes, Paired-					
end Alignment, Color space Alignment, Color space reads, Building a co						
Decoding color space alignments, Paired-end color space alignment, Performan	ice Tuning, SAM					
and BAM format. Artifacts in alignment programs						
Unit –III	9 Hrs					
Metagenomic data analysis: MicroRNA Expression Profiling and Discovery, Dissecting						
Splicing Regulatory Network by Integrative Analysis of CLIP-Sequence D						
Metagenomic Data, NGS-based non-invasive prenatal diagnosis, Diagno	sis of inherited					
neuromuscular disorders by NGS Application of NGS in hearing loss diagnosis.						
Unit –IV	8 Hrs					
Exome sequencing: Exome sequencing as a discovery and a diagnostic tool, Cl	nallenges of NGS					
based molecular diagnostics, NGS-Based Clinical Diagnosis of Genetically						
Disorders, Molecular Diagnosis of Congenital Disorders of Glycosylation	n (CDG), NGS					
improves the Diagnosis of X-Linked Intellectual Disability (XLID), New York, New	GS Analysis of					
Heterogeneous Retinitis Pigmentosa.						
Unit –V	7 Hrs					
Role of HPC and big data analysis: Handling Big Data, The use of next-gener	ration sequencing					
for solving diagnostic dilemmas, Methods used in patient populations to unc						
between genome variation and common diseases, Predictive tests for common, c	complex diseases.					
Course Outcomes: After completing the course, the students will be able to						

000110	
CO1:	Understand the fundamental concepts of properties and representation of graphs,
	different measures of statistical distribution using central moments.
CO2:	Solve the problems involving characterization and operations on graphs, fitting of a
	curve for the given data and functions of random variables.
CO3:	Apply the acquired knowledge to solve the problems on different types of graphs,

	correlation, regression and measures of probability distributions.											
CO4 :	Evaluate the distributions.	solutions	of	application	problems	in	graph	theory	and	probability		

Refere	ence Books
1	Graph-Based Modelling in Science, Technology and Art, Stanisław Zawiślak and Jacek Rysiński ED., 2021, Springer International Publishing, Vol 107, ISBN: 978-3- 030-76787-7
2	Next Generation Sequencing and Data Analysis, Kappelmann-Fenzl, Melanie ED., 2021, Springer International Publishing, ISBN 978-3-030-62490-3
3	Introduction to Next Generation Sequencing Technologies, Lloyd Low and Martti T. Tammi ED., 2021,Bioinformatics, ISBN 978-981-3144-74-3
4	Probability: Statistics for Engineers; Scientists, Ronald E. Walpole Raymo, nd H. Myers, ED., 2016, Pearson Education, ISBN-13: 978-0134115856.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

	Semester: VII								
			UN	MANNED AERIAL VEHIC	CLES				
				(Group H: Global Elective))				
				(Theory)					
Cou	rse Code	:	18G7H01		CIE	:	100 Marks		
Cree	lits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks		
Hou	rs	:	39L		SEE Duration:	:	3Hrs		
Cou	rse Learning C	bje	ctives: The st	udents will be able to					
1	Get an overvie	ew o	of the history o	f UAV systems					
2	Understand the importance of perodynamics, propulsion, structures and avionics, in the design of								
3	3 Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion systems, integration with manned systems								
4	Comprehend	he i	mportance of g	guidance and navigation of a U	JAV				

Unit-I	07 Hrs
Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unman	ned aerial
systems, Overview of UAV Systems-System Composition, Classification of UAVs based on	size, range
and endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.	
Unit – II	08 Hrs
Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characteristics, H	Basic
aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flapping win Airframe configurations-HTOL, VTOL and Hybrids.	ıgs,
Unit -III	08 Hrs
Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV (general int	roduction),
Selection criteria for structure, Types of structural elements used in UAV their signific characteristics.	icance and
UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Pist	on, Rotary,
Gas turbine engines, electric or battery powered UAVs.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Unit -IV	08 Hrs
Payloads of UAVs : Non-dispensable Payloads- Electro-optic Payload Systems, Radar Imaging	g Payloads,
Electronic Warfare Payloads, Dispensable Payloads and other payloads.	
Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Veh	icles- Rail
Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO Launch	
UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute Recovery, VT	OL UAVs,
Mid-Air Retrieval, Shipboard Recovery.	-
Unit -V	08 Hrs
UAV Navigation and Guidance Systems	
Navigation, Dead Reckoning, Inertial, Radio Navigation, Satellite-Way point Navigation, UAV	
Types of guidance, UAV communication systems, Ground control station, Telemetry, UAS future	е.
Course Outcomes:	
At the end of this course the student will be able to :	
CO1 Appraise the evolution of UAVs and understand the current potential benefits of UAVs	
CO2 Apply the principles of Aerospace Engineering in design and development of UAVs	
CO2 Determine and evaluate the performance of UAV designed for various Missions and appli	antions

CO3 Determine and evaluate the performance of UAV designed for various Missions and applications
 CO4 Appreciate the guidance and navigation systems for enabling the versatility of UAV systems

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	2
CO3	1		3	3	-	-	-	-	-	-	-	2
CO4	3	3	3	3	-	2	1	2	-	-	-	2

	Semester: VII							
	BIOINFORMATICS							
				(Theory)				
			(0	Common to all Co	urses)			
Cou	irse Code	:	18G7H02		CIE	:	100 Marks	
Cre	dits: L:T:P		3:0:0:0		SEE	:	100 Marks	
Tot	al Hours	••	39 L		SEE Duration	:	3.00 Hours	
Cou	irse Learning	g ()	bjectives: The st	udents will be able	e to			
1	Acquire the	kn	owledge of biolog	gical database and	its role in insilico	res	search	
2	Understand	the	e essential algorit	thms behind the b	oiological data an	aly	sis such as Dynamic	
	programmir	ıg,	Dot plotting, Evo	olutionary and Clu	ustering algorithm	ns a	long with their	
	implementa	tioı	1.					
3	Use various	to	ols and technique	s for the prediction	n of linear & non-	lin	ear structures of both	
	macro and	mic	cro molecules an	d study the dynar	nics of macromo	lecu	ules and High	
	Throughput	Vi	rtual Studies.					
4	4 Perform annotation of unknown DNA and Protein sequences and explore the principles of							
	molecular modelling							
5	Apply the k	no	wledge towards a	analyzing the sequ	ences using prog	ran	ming languages and	
	Drug develo	pn	ient	· · ·				

Unit-I	08 Hrs				
Biomolecules and Introduction to Bioinformatics:					
Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Lipids	s, Nucleic				
Acids and Proteins. Genetic code, Codon degeneracy, Genes and Genomes. Introd	luction to				
Bioinformatics, Goals, Scope, Applications in biological science and medicine. I	Biological				
databases - Sequence, structure, Special Databases and applications - Genome, Microar	ray.				
Unit – II	08 Hrs				
Sequence analysis: Introduction, Types of sequence alignments, Pairwise sequence a	alignment,				
Multiple sequence alignment, Alignment algorithms Needleman & Wunch, Smith & V	Waterman				
and Progressive global alignment, Database Similarity Searching- Scoring ma	atrices –				
BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FAS'	TA. Next				
Generation Sequencing - Alignment and Assembly. Molecular Phylogenetics: Intr	roduction,				
Terminology, Forms of Tree Representation. Phylogenetic Tree Construction M	Iethods -				
Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation					
Unit –III	09 Hrs				
Predictive and structural bioinformatics: Gene prediction programs – ab initio and I	homology				
based approaches. ORFs for gene prediction. Detection of functional sites and codon b	bias in the				
DNA. Predicting RNA secondary structure, Protein structure basics, structure visualization,					
comparison and classification. Protein structure predictive methods using protein sequence,					
Protein identity based on composition. Structure prediction - Prediction of secondary str	ructure.				
Unit –IV	07 Hrs				
PERL: Introduction to Perl, writing and executing a Perl program, Operators, Varia	ables and				
Special variables. Object Oriented Programming in Perl-Class and object, Polymorph	ism,				
inheritance and encapsulation. Data Types – Scalar, Array and Associative array. Regular					
Expressions (REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.					
Unit –V	07 Hrs				
BioPERL: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence					

retrieval from Database and submission of sequence to online Database, Indexing and accessing

local databases, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Parsing BLAST and FASTA results.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Demonstrate the knowledge of retrieval of the biological data in the essential formats
	and its analysis.
CO2:	Analyse the gene, protein and RNA data to find the degree of similarities and
	identifying the patterns
CO3:	Apply the drug designing methods for screening and inventing the new targets and drugs
CO4:	Predict the structure of a compound and design the molecule.

Refer	rence Books
1.	Essential Bioinformatics, Jin Xiong, 2006, Cambridge University Press, ISBN: 978-05-
	216-00828.
2.	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII							
	INDUSTRIAL SAFETY AND RISK MANAGEMENT							
			(Gr	oup H: Global Elect	ive)			
				(Theory)				
Cou	rse Code	:	18G7H03	CIE	:	100 Marks		
Cree	dits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Tota	al Hours	:	39 L	SEE	Duration :	3.00 Hours		
Cou	rse Learning	; O	bjectives: The st	udents will be able to	·			
1	Select appro	pri	ate risk assessme	nt techniques.				
2	2 Analyze public and individual perception of risk.							
3	3 Relate safety, ergonomics and human factors.							
4	Carry out ris	sk a	ssessment in pro	cess industries				

Unit-I	08 Hrs
Introduction: Introduction to industrial safety engineering, major industrial a	accidents, safety
and health issues, key concepts and terminologies, Hazard theory, Hazard triangl	e, Hazard
actuation, Actuation transition, Causal factors, Hazard recognition.	
Unit – II	08 Hrs
Risk assessment and control: Individual and societal risks, Risk assessment,	Risk perception,
Acceptable risk, ALARP, Prevention through design.	
Hazard Identification Methods: Preliminary Hazard List (PHL): Overview worksheets, case study. Preliminary Hazard Analysis (PHA): Overview worksheets, risk index, example.	
Unit –III	08 Hrs
Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Proc Guide words, HAZOP matrix, Procedure, Example. Failure Modes and Effects (FMEA): Introduction, system breakdown concept, methodology, example.	Analysis
Unit –IV	08 Hrs
Application of Hazard Identification Techniques: Case of pressure tank, systructure, safety ontology, Accident paths, HAZOP application, risk adjusted method, probability distribution, Hiller's model	
Unit –V	07 Hrs
Safety in process industries and case studies: Personnel Protection Equipment	nt (PPE): Safety
glasses, face shields, welding helmets, absorptive lenses, hard hats, types of har	nd PPE, types of
foot PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear dis	saster, Chemical
plant explosion and fire.	
Course Outcomes: After completing the course, the students will be able to	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	O1: Recall risk assessment techniques used in process industry.							
CO2:	Interpret the various risk assessment tools.							
CO3:	Use hazard identification tools for safety management.							
CO4:	Analyze tools and safety procedures for protection in process industries.							

Reference Books

	Functional Safety in the Process Industry: A Handbook of practical Guidance in the
1	application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North
	corolina, Lulu publication, ISBN:1291187235

2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.
4	Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	-	-	1	-	1	-

CO-PO Mapping

				Semester: VI	[
			V	VEB PROGRAM					
	(Group B: Global Elective)								
	(Theory)								
Cou	rse Code	:	18G7H04		CIE	:	100 Marks		
	lits: L:T:P	:	3:0:0		SEE	: 100 Marks			
Tota	Total Hours : 39 L SEE Duration : 3.00 Hours								
Cou	rse Learning	Ob	jectives: The stude	ents will be able to			I		
1	Understand	the	standard structure	of HTML/XHTMI	and its differences	5.			
2	Adapt HTM	La	nd CSS syntax & s	emantics to build v	veb pages.				
3				of different web p	rogramming tools	sucl	n as JavaScript,	XML	
4			ign web pages.	aliant aida aamu	r-side executable		h annligations		
4				JavaScript, XML a		we	b applications	using	
	different tee		ques such as CDD,		па г цах.				
				Unit-I			07	/ Hrs	
Intro	oduction to V	Veb	, HTML and XH				07	1115	
					and Web Servers	s. I	JRLs. MIME. I	HTTP	
					asic syntax, Stand				
	•		•	Tables, Forms, Fra	•		,		
					d breaks, quotation	ns, p	preformatted text	t, lists,	
					ts The audio Elem				
Orga	nization Elem	nent	s; The time Eleme	nt, Syntactic Differ	ences between HT	ML	and XHTML.		
				Unit – II				8 Hrs	
CSS	(Cascading S	Styl	e Sheet)						
Intro	duction, Leve	els c	of style sheets, Sty	le specification for	rmats, Selector form	ns,	Property value f	forms,	
Font	properties, L	ist	properties, Color,	Alignment of text	, The box model,	Bac	kground images	s, The	
-		-	s, Conflict resoluti	on.					
	Basics of Jav		-						
		-			General syntactic of			itives,	
oper	ations, and ex	pres	ssions; Screen outp		put; Control statem	nent			
				Unit –III			09	Hrs	
	Script (conti		· ·	~	_				
			-	s; Functions; Cons	tructor; Pattern mat	tchi	ng using regular		
-	essions; Error		·						
			IL Documents:		hisse Martala Elsas	4	· · · · · · · · · · · · · · · · · · ·		
					bject Model; Elem				
			• •		ly elements, Button	n ei	ements, Text bo	ox and	
r ass		5, 1		nodel; The navigate Unit –IV	n object.		09	B Hrs	
Dun	amia Daauma	nta	with JavaScript:				Ud	, 1115	
•			-	Positioning alama	ents; Moving elem	nont	e. Flamont visi	bility	
		-		-	ements; Locating th			-	
			•	-	nd dropping element			acting	
	oduction to P			incino, Diagging al	a a opping cicilici	11.3.			
				PHP: General syn	tactic characteristic	cs• 1	Primitives Oper	ations	
-				•	nctions; Pattern M		-		
			ssion Tracking.						
	6,	,		Unit –V			07	/ Hrs	
XM	L:Introduction	n: S	vntax: Document		nt Type definitions	: N			
			•		IL documents with		-		
					i; The Form Docur				
			ent; The Receiver		,	1	,	. ,	
	*								

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the basic syntax and semantics of HTML/XHTML.							
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style							
	Sheet.							
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and utilize the							
	concepts of XML & Ajax to design dynamic web pages.							
CO4:	Develop web based applications using PHP, XML and Ajax.							

Refere	ence Books
1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013, ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

	Semester: VII						
SOLID WASTE MANAGEMENT AND STATUTORY RULES							
		(Grou	ıp H: Global Elec	tive)			
			(Theory)				
Code	:	18G7H05		CIE	:	100 Marks	
L:T:P	:	3:0:0		SEE	:	100 Marks	
ours	:	39 L		SEE Duration	:	3.00 Hours	
earning Ol	oje	ctives: The students v	will be able to				
part the kno	w	edge of present met	hods of solid was	te management syste	em	and to analyze the	
wbacks.							
erstand varie	ou	s waste management s	statutory rules for t	he present system.			
lyze differei	nt	elements of solid was	ste management an	d design and develop	p re	ecycling options for	
biodegradable waste by composting.							
4 Identify hazardous waste, e-waste, plastic waste and bio medical waste and their management							
tems.							
	Code L:T:P ours Learning Ol part the know wbacks. erstand variant lyze different degradable ntify hazard	Code:L:T:P:ours:cearning Objepart the knowlwbacks.erstand variouslyze different ofdegradable wasntify hazardou	Code : 18G7H05 L:T:P : 3:0:0 ours : 39 L cearning Objectives: The students vertices The students vertices part the knowledge of present met wbacks. students vertices terstand various waste management students vertices students vertices lyze different elements of solid waste degradable waste by composting. students ntify hazardous waste, e-waste, plas students	(Group H: Global Elec (Theory) Code : 18G7H05 L:T:P : 3:0:0 ours : 39 L Learning Objectives: The students will be able to part the knowledge of present methods of solid was wbacks. erstand various waste management statutory rules for t lyze different elements of solid waste management an degradable waste by composting. ntify hazardous waste, e-waste, plastic waste and bio r	(Group H: Global Elective) (Theory) Code : 18G7H05 CIE L:T:P : 3:0:0 SEE ours : 39 L SEE Duration cearning Objectives: The students will be able to part the knowledge of present methods of solid waste management syste waste erstand various waste management statutory rules for the present system. lyze different elements of solid waste management and design and develop degradable waste by composting. ntify hazardous waste, e-waste, plastic waste and bio medical waste and the	(Group H: Global Elective) (Theory) Code : 18G7H05 CIE : L:T:P : 3:0:0 SEE : ours : 39 L SEE Duration : carning Objectives: The students will be able to part the knowledge of present methods of solid waste management system wbacks. . erstand various waste management statutory rules for the present system. . lyze different elements of solid waste management and design and develop redegradable waste by composting. . ntify hazardous waste, e-waste, plastic waste and bio medical waste and their reduction .	

Unit-I08 HrsIntroduction: Present solid waste disposal methods. Merits and demerits of open dumping, incineration,
pyrolysis, composting, sanitary landfill. Scope and importance of solid waste management. Definition and
functional elements of solid waste management.

Sources: Sources of Solid waste, types of solid waste, composition of municipal solid waste, generation rate, Problems.

Collection and transportation of municipal solid waste: Collection of solid waste- services and systems, Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to collection system.

Unit – II	08 Hrs
Composting Aerobic and anaerobic composting - process description, process mice	crobiology,
Vermicomposting, Site visit to compost plant, Numerical problems.	
Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction	n occurring
in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site visit to land	ndfill site.
Unit –III	08 Hrs
Hazardous waste management: Definitions, Identification of hazardous waste, Classi	fication of
hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Haza	ardous and
other wastes (Management and Transboundary Movement) Rules, 2016 with amendments. S	ite visit to
hazardous landfill site	
Unit –IV	08 Hrs
Bio medical waste management: Classification of bio medical waste, collection, transportation	on, disposal
of bio medical waste, Biomedical waste management (Management & Handling Rules)	
amendments. Site visit to hospital to observe biomedical waste collection and transportation s	system and
visit to biomedical waste incineration plant.	
Unit –V	07 Hrs
E-waste management: Definition, Components, Materials used in manufacturing electro	onic goads,
Recycling and recovery integrated approach. e-waste (Management) Rules 2016 and amendment	s. Site visit
to e- waste treatment plant.	
Plastic waste management: Manufacturing of plastic with norms. Plastic waste management	ent. Plastic
manufacture, sale & usage rules 2009 with amendments.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	and the current solid waste management system and statutory rules.							
CO2:	Analyse drawbacks in the present system and provide recycling and disposal options for each type of waste in compliance to rules.							
CO3:	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management							
	system.							
CO4:	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal waste management as per the rules laid by Ministry of Environment, Forest and Climate change.							

Refere	ence Books :
1	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993,
1	McGraw hill publication. ISBN 978-0070632370
•	Electronic waste management, R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC
2	Publication, ISBN 9780854041121
3	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change
3	Notification, New Delhi, 8th April 2016
4	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016, Ministry
-	of Environment, Forest and Climate Change Notification, New Delhi, 04th April, 2016.
5	Biomedical waste management (Management & Handling Rules) 2016,. Ministry of
5	Environment & Forest Notification, New Delhi, amendment on 28th March, 2016.
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change
U	Notification, New Delhi, 23 rd March, 2016.
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of
/	Environment, Forest and Climate Change Notification, New Delhi, 27th March, 2018

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	2	1	-	1	-	2
CO2	2	2	2	2	-	1	2	1	-	-	-	-
CO3	1	-	2	2	-	1	2	1	-	1	-	-
CO4	2	-	-	3	-	1	2	1	-	-	-	1

				Semester: VII			
		IMA	AGE PRO	CESSING AND MACHIN	NE LEARNING		
			(Group H: Global Electiv	re)		
				(Theory)			
	e Code	: 1	18G7H06		CIE	:	100 Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total I	Hours	: 4	40 L		SEE Duration	:	3.00 Hours
	0			students will be able to			
				s and techniques in image		achi	ne Learning
	1	1		nalyze image processing tec	4		
				ession methods, classificati			
				ng and Machine Learning	ng knowledge b	y d	lesigning and
iı	mplementing	; algo	rithms to s	olve practical problems			
				Unit-I			08 Hrs
	uction to im	<u> </u>	. 0				
		U 1	0	Applications of image pro	0 1		0
			lamental st	eps in image processing, In			
				xels, Image resolution, PPI			
and lo	ssy compres	ssion,	Image fi	e formats, Color spaces,	Bezier curve, El	llips	oid, Gamma
and lo	ssy compres	ssion,	Image fi	e formats, Color spaces, ad shrinking in image proce	Bezier curve, El	llips	oid, Gamma e concepts.
and lo correct	ssy compression, Example	ssion, es of	Image fi zooming a	e formats, Color spaces, nd shrinking in image proce Unit – II	Bezier curve, El essing Advanced in	llips	oid, Gamma
and lo correct Basics	ssy compres ion, Example of Python, Sc	ssion, es of cikit i i	Image fi zooming a mage & Ad	e formats, Color spaces, nd shrinking in image proce Unit – II vanced Image Processing us	Bezier curve, El essing Advanced in ing Open CV:	llips mag	oid, Gamma e concepts. 08 Hrs
and lo correct Basics Basics	ssy compres ion, Example of Python, Sc of python, v	ssion, es of cikit in variab	Image fi zooming a mage & Ad les & data	e formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit	llips mag	oid, Gamma e concepts. 08 Hrs al statements,
and lo correct Basics Basics upload	ssy compression, Example of Python, So of python, v ing & view	ssion, es of cikit in variab	Image fi zooming a mage & Ad les & data	e formats, Color spaces, nd shrinking in image proce Unit – II vanced Image Processing us	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit	llips mag	oid, Gamma e concepts. 08 Hrs al statements,
and lo correct Basics Basics	ssy compression, Example of Python, So of python, v ing & view	ssion, es of cikit in variab	Image fi zooming a mage & Ad les & data	e formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit	llips mag	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural
and lo correct Basics Basics upload similar	ssy compres ion, Example of Python, Sc of python, v ing & view ities.	ssion, es of cikit in variab ing a	Image fi zooming a mage & Ad les & data n image,	e formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont (mage resolution, gamma Unit –III	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit	llips mag	oid, Gamma e concepts. 08 Hrs al statements,
and lo correct Basics Basics upload similar Advano	ssy compres ion, Example of Python, So of python, v ing & view ities. ced Image pr	ssion, es of cikit in variab ing a	Image fi zooming a mage & Ad les & data n image, ing using O	le formats, Color spaces, nd shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma Unit –III pen CV	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr	llips mag iona nini	oid, Gamma e concepts. 08 Hrs al statements, ng structural 08 Hrs
and lo correct Basics Basics upload similar Advand Blendin	ssy compres ion, Example of Python, Sc of python, v ing & view ities. ced Image pr ng Two Ima	ssion, es of cikit in variab ing a rocessinges,	Image fi zooming a mage & Ad les & data n image, ing using O Changing	le formats, Color spaces, ad shrinking in image proces Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma Unit –III pen CV Contrast and Brightness A	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr	llips mag iona nini	oid, Gamma e concepts. 08 Hrs al statements, ng structural 08 Hrs s Smoothing
and lo correct Basics Basics upload similar Advand Blendin Images	ssy compres ion, Example of Python, Sc of python, v ing & view ities. ced Image pr ng Two Ima s, Median Fil	ssion, es of cikit in /ariab ing a rocessinges, lter, C	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A Iter, Bilateral Filter, Chang	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im ing the Shape of I	iona nini	oid, Gamma e concepts. 08 Hrs al statements, ng structural 08 Hrs s Smoothing
and lo correct Basics Basics upload similar Advand Blendin Images	ssy compres ion, Example of Python, Sc of python, v ing & view ities. ced Image pr ng Two Ima s, Median Fil	ssion, es of cikit in /ariab ing a rocessinges, lter, C	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi	le formats, Color spaces, ad shrinking in image proces Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma Unit –III pen CV Contrast and Brightness A	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im ing the Shape of I	iona nini	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting
and lo correct Basics Basics upload similar Advand Blendin Images Image	ssy compres ion, Example of Python, Sc of python, v ing & view ities. ced Image pr ng Two Ima s, Median Fil	ssion, es of cikit in variab ing a rocessi ages, lter, C g, Cal	Image fi zooming a mage & Ad les & data n image, ing using O Changing Gaussian Fi lculating G	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma Unit –III pen CV Contrast and Brightness A Iter, Bilateral Filter, Chang radients, Performing Histog Unit –IV	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im ing the Shape of I	iona nini	oid, Gamma e concepts. 08 Hrs al statements, ng structural 08 Hrs s Smoothing
and lo correct Basics Basics upload similar Advand Blendin Images Image	ssy compres ion, Example of Python, Sc of python, v ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us	ssion, es of cikit in /ariab ing a rocessinges, lter, C g, Cal sing N	Image fi zooming a mage & Ad les & data n image, ing using O Changing Gaussian Fi lculating G	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma Unit –III pen CV Contrast and Brightness A Iter, Bilateral Filter, Chang radients, Performing Histog Unit –IV	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im ing the Shape of I gram Equalization	llips mag iona nini mage mag	oid, Gamma e concepts. 08 Hrs al statements, ng structural 08 Hrs as Smoothing ges, Effecting 08 Hrs
and lo correct Basics Basics upload similar Advand Blendin Images Image I Feature	ssy compres ion, Example of Python, Sc of python, v ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us e mapping us	ssion, es of cikit in variab ing a rocessinges, lter, C g, Cal sing N sing S	Image fi zooming a mage & Ad les & data n image, ing using O Changing Gaussian Fi lculating G Machine Le	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A lter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im gram Equalization ng the RANSAC a	Ilips mag iona nini mage mag algo	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs es Smoothing ges, Effecting 08 Hrs rithm, Image
and lo correct Basics Basics upload similar Advand Blendin Image Image Feature classifi	ssy compres ion, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using	ssion, es of cikit in variab ing a variab ing a rocessi ages, lter, Cal sing S sing S g Ar	Image fi zooming a mage & Ad les & data n image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algori tificial Ne	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A Iter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im gram Equalization ng the RANSAC a	Ilips mag iona nini mage mag algo	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image
and lo correct Basics Basics upload similar Advand Blendin Image Image Feature classifi	ssy compres ion, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using	ssion, es of cikit in variab ing a variab ing a rocessi ages, lter, Cal sing S sing S g Ar	Image fi zooming a mage & Ad les & data n image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algori tificial Ne	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma Unit –III pen CV Contrast and Brightness A Iter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im gram Equalization ng the RANSAC a	Ilips mag iona nini mage mag algo	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image
and lo correct Basics Basics upload similar Advand Blendin Images Image I Feature classifi classifi	ssy compres ion, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using	ssion, es of cikit in variab ing a ing a rocessinges, lter, C g, Cal sing N sing S g Arr mach	Image fi zooming a mage & Ad les & data n image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algori tificial Ne	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A lter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ag Approaches.	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im gram Equalization ng the RANSAC a	Ilips mag iona nini mage mag algo	oid, Gamma e concepts. 08 Hrs 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image
and lo correct Basics Basics upload similar Advand Blendin Image Image Classifi classifi Real ti	ssy compres ion, Example of Python, Sc of python, v ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using cation using me use CAS	ssion, es of cikit in /ariab ing a /occessing g, Cal sing N sing S g Arr mach SES	Image fi zooming a mage & Ad les & data n image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algori tificial Ne nine learnin	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A lter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ag Approaches.	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im gram Equalization ng the RANSAC a lassification using	Ilips mag iona nini nage mag g C	oid, Gamma e concepts. 08 Hrs 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image 08 Hrs
and lo correct Basics Basics upload similar Advand Blendin Image Image Image Classifi classifi Classifi Exhaus	ssy compression, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using cation using cation using me use CAS stive vs. Sto	ssion, es of cikit in variab ing a vocessing g cal sing S g Ar mach SES ochast	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algori tificial Ne nine learnin	le formats, Color spaces, ad shrinking in image proces Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A lter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ag Approaches. Unit –V	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr Adding Text to Im gram Equalization ng the RANSAC a lassification using Appearance Mod	llips mag iona mini nage mag g C lels.	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image 08 Hrs Mean-shift
and lo correct Basics Basics upload similar Advand Blendin Image Image Image Classifi classifi classifi Real ti Exhaus trackin	ssy compres ion, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using cation using cation using me use CAS stive vs. Sto g; Contour-l	ssion, es of cikit in variab ing a vocessing g cal sing S g Ar mach SES ochast	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algori tificial Ne nine learnin	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A lter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ag Approaches. Unit –V Shapes, Contours, and	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr Adding Text to Im gram Equalization ng the RANSAC a lassification using Appearance Mod	llips mag iona mini nage mag g C lels.	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image 08 Hrs Mean-shift
and lo correct Basics Basics upload similar Advand Blendin Image Image Image Classifi classifi Classifi Exhaus	ssy compres ion, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using cation using cation using me use CAS stive vs. Sto g; Contour-l	ssion, es of cikit in variab ing a vocessing g cal sing S g Ar mach SES ochast	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algori tificial Ne nine learnin	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A lter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ag Approaches. Unit –V Shapes, Contours, and	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr Adding Text to Im gram Equalization ng the RANSAC a lassification using Appearance Mod	llips mag iona mini nage mag g C lels.	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image 08 Hrs Mean-shift
and lo correct Basics Basics upload similar Advand Blendin Images Image I Feature classifi classifi Real ti Exhaus trackin movem	ssy compression, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using cation using cation using me use CAS stive vs. Sto g; Contour-la	ssion, es of cikit in variab ing a vocessinges, lter, C g, Cal sing N sing S g Ar mach SES ochast based	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi lculating G Machine Le SIFT algorit tificial Ne nine learnin tic Search I models,	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A lter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ag Approaches. Unit –V Shapes, Contours, and	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr Adding Text to Im- gram Equalization ng the RANSAC a lassification using Appearance Mod Detection / Recog	llips mag iona mini nage mag g C lels.	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image 08 Hrs Mean-shift
and lo correct Basics Basics upload similar Advand Blendin Images Image I Feature classifi classifi Real ti Exhaus trackin movem	ssy compression, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Imag , Median Fil Thresholding Processing us cation using cation using cation using me use CAS stive vs. Sto g; Contour- nents.	ssion, es of cikit in variab ing a rocessing ages, lter, C g, Cal sing N sing S g Art mach SES based chast	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi lculating O Machine Le SIFT algorit tificial Ne nine learnin tic Search models, er complet	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont image resolution, gamma Unit –III pen CV Contrast and Brightness A Iter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ag Approaches. Unit –V Shapes, Contours, and inding palm lines, Face I	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im- gram Equalization ng the RANSAC a lassification using Appearance Mod Detection / Recog	llips mag iona mini nage mag g C lels.	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image 08 Hrs Mean-shift
and lo correct Basics Basics upload: similar Advand Blendin Images Image Feature classifi classifi Real ti Exhaus trackin movem	ssy compression, Example of Python, Sc of python, V ing & view ities. ced Image pr ng Two Ima s, Median Fil Thresholding Processing us cation using cation using cation using me use CAS stive vs. Sto g; Contour-lents. e Outcomess Gain know	ssion, es of cikit in /ariab ing a rocessinges, lter, C g, Cal sing N sing S g Art mach SES ochast based : Afte ledge	Image fi zooming a mage & Ad les & data in image, ing using O Changing Gaussian Fi lculating O Machine Le SIFT algori tificial Ne nine learnin tic Search models, er complet about basi	le formats, Color spaces, ad shrinking in image proce Unit – II vanced Image Processing us types, data structures, cont Image resolution, gamma Unit –III pen CV Contrast and Brightness A Iter, Bilateral Filter, Chang radients, Performing Histog Unit –IV arning thm, Image registration usi ural Networks, Image cl ng Approaches. Unit –V Shapes, Contours, and inding palm lines, Face I ing the course, the studen	Bezier curve, El essing Advanced in ing Open CV: trol flow & condit correction, deterr adding Text to Im gram Equalization ng the RANSAC a lassification using Appearance Mod Detection / Recog	llips mag iona mini nage mag g C lels.	oid, Gamma <u>e concepts.</u> 08 Hrs al statements, ng structural 08 Hrs s Smoothing ges, Effecting 08 Hrs rithm, Image NNs, Image 08 Hrs Mean-shift

CO3:Write programs for specific applications in image processingCO4:Apply different techniques for various applications using machine learning techniques.

R	lefere	ence Books
	1	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, 3 rd Edition, ISBN 978-81-317-2695-2.
	2	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python, Himanshu Singh, 1 st Edition, Apress, ISBN:978-1-4842-4149-3
	3	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer, 2008, ISBN: 978-0387-31073-2
	4	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition, Prentice Hall India 2004, ISBN: 978-0136085928

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for assignment is 20. The total marks of CIE are 100.

Total CIE is 30(Q)+50(T)+20(EL)=100Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	3	2	-	-	-	-	-	-	1		
CO2	-	3	-	1	2	-	-	1	2	-	-	1		
CO3	3	-	2	1	3	-	-	1	1	1	-	1		
CO4	3	3	3	3	2	-	-	1	1	1	-	1		

	Semester: VII										
	RENEWABLE ENERGY SOURCES AND STORAGE SYSTEM										
	(Group H: Global Elective)										
				(Theory)							
Co	ourse Code	:	18G7H07	C	CIE		100 Marks				
Cr	edits: L:T:P	:	3:0:0	S	EE	:	100 Marks				
То	tal Hours	:	39 L	S	EE Duration		3.00 Hours				
Co	ourse Learning	Obje	ctives: The studen	ts will be able to							
1	Understand Co	ncep	ots of nonconvention	onal energy sources and a	allied technology	y re	quired for energy				
	conversion.										
2	Analyse the Ba	sics	of battery working	and sizing of battery for a	given applicatio	on.					
3	3 Design aspects of solar and wind power systems.										
4	4 Energy storage techniques										

UNIT-I	08 Hrs
Basics of Renewable Energy: Energy balance of the earth, Solar radiation, wind energy	ergy, geothermal
energy.	
Geothermal Energy – principles, technical description, heat supply by hydro-geotherm	nal systems, heat
supply by deep wells, geothermal generation, economic and environmental analysis.	
Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification, Theory	
Gasifier and Their Classifications, Updraft, Downdraft and Cross-draft Gasifiers,	Applications of
Biomass Gasifier.	1.5.1
Tidal Energy: Introduction, Tidal Energy Resource, Tidal Power Basin, Advantages an	d Disadvantages
of Tidal Power. Unit – II	08 Hrs
Photo Voltaic Systems: PV Cell, Module and array; Equivalent electrical circuit, Open	
and short circuit current, I-V and P-V curves, Array design, Peak power Tracking, System	·
Grid Connected Solar PV Power System: Introduction to grid connected PV system,	•
Grid-connected solar PV system, Components of Grid –connected solar PV systems, Gr	
system Design for small power Applications, Grid- connected PV system design for power	
	08 Hrs
Wind Power: Introduction, site selection, Advantages and Disadvantages, Wind power	r installations in
the world. Wind Sneed and Energy Sneed and Dawar Dalations, Dawar Extracted from the wi	nd Doton Swont
Wind Speed and Energy: Speed and Power Relations, Power Extracted from the wi Area, Air Density, Global Wind Patterns, Wind Speed Distribution, Weibull Probability	
Mode and Mean Speeds, Root Mean Cube Speed, Mode, Mean, and RMC Speeds, Ene	
Digital Data Processing, Effect of Hub Height, Importance of Reliable Data, Wind S	
Wind Energy Resource Maps.	peed Treatenon,
Wind Power Systems: System Components, Tower, Turbine, Blades, Speed Control,	Turbine Rating
Power vs Speed and TSR.	Turonic Rung,
Unit –IV	08 Hrs
Wind Power Systems: Maximum Energy Capture, Maximum Power Operation Consta	
Peak-Power-Tracking scheme, System-Design Trade-offs, Turbine Towers and Space	
Blades, Rotor Upwind or Downwind, Horizontal vs. Vertical Axis.	
System Control Requirements: Speed Control, Rate Control.	
Environmental Aspects : Audible Noise, Electromagnetic Interference (EMI), Effects on	Birds.
Unit –V	07 Hrs
Energy storage Batteries: Different types of batteries, Equivalent Electrical Circuit, E	Battery charging.
Battery management, Flywheels : Energy Relations, Components, Benefits over battery	
Other Storage devices: Superconducting magnetic energy storage, Compressed air,	Pumped storage

hydropower, Hydrogen Energy storage

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Understand the concepts of power generation from various renewable sources.							
CO2:	Design the Size of the battery required for solar PV applications.							
CO3:	Design main components of solar and wind power systems.							
CO4:	Execute projects in renewable power generation.							

Reference Books

1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt, Wolfgang
1	Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), PHI,
2	Learning private limited New Delhi ISBN: 978-81-203-4711-3
2	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition.
5	CRC Group ,Taylor and Francis group, New Delhi ,ISBN 978-0-8493-1570-1
4	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN 978-0-
4	12-812902-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	3	2	-	-	-	-	-	1	-	1		
CO2	3	3	2	1	1	2	-	-	-	1	-	1		
CO3	3	2	2	2	2	2	2	1	-	1	-	1		
CO4	3	3	3	3	2	3	1	1	1	3	1	3		

	Semester: VII										
	MEMS AND APPLICATIONS										
	(Group H: Global Elective)										
				(Theory)							
C	ourse Code	:	18G7H08		CIE	•••	100 Marks				
C	redits: L:T:P	:	3:0:0		SEE	:	100 Marks				
To	otal Hours	:	39 L		SEE Duration	:	3.00 Hours				
C	ourse Learning	; O]	bjectives: The	e students will be able to							
1	Understand the	e ru	diments of M	icro fabrication techniques.							
2	2 Identify and associate the various sensors and actuators to applications.										
3	3 Analyze different materials used for MEMS.										
4	Design applica	atio	ns of MEMS	to disciplines.							

Unit-I	06 Hrs
Overview of MEMS & Microsystems: MEMS and Microsystems, Typical ME	MS and micro
system products, Evolution of micro fabrication, Microsystems and mi	croelectronics,
Multidisciplinary nature of Microsystems, Design and manufacture, Ap	plications of
Microsystems in automotive, healthcare, aerospace and other industries.	
Working Principle of Microsystems: Biomedical and biosensors. Micro sens	ors: Acoustic,
Chemical, Optical, Pressure, Thermal.	
Unit – II	09 Hrs
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric	crystals and
electrostatic forces. MEMS with micro actuators: Microgrippers, micromotors, m	icrovalves and
micropumps, microaccelerometers, microfluidics.	
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynami	cs, Scaling in
Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanic	<u>s.</u>
Unit –III	09 Hrs
Materials for MEMS and Microsystems: Substrates and wafers, Active subst	rate materials,
Silicon as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz	, Piezoelectric
Crystals, Polymers and packaging materials. Three level of Microsystem packag	
packaging, Device level packaging, System level packaging. Interfaces in	microsystem
packaging. Essential packaging technologies: die preparation, Surface bonding,	Wire bonding,
Sealing, 3D packaging.	-
Unit –IV	08 Hrs
Microsystem Fabrication Process: Introduction to microsystems, Photolith	
Implantation, Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition by Epi	•
LIGA process: General description, Materials for substrates and photoresists, Elec	troplating and
SLIGA process.	1
Unit –V	07 Hrs
Micro Sensors, Actuators, Systems and Smart Materials: An Overview	
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Fibre-	
Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, I	1
analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projectio	Portable blood
	Portable blood
Systems, Smart materials and systems.	Portable blood
	Portable blood

CO1: Understand the operation of micro devices, micro systems and their applications.CO2: Apply the principle of material science to sensor design.

CO3:	Analyze the materials used for sensor designs.
CO4:	Conceptualize and design micro devices, micro systems.

Refe	rence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
1	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015,
2	Wiley Publications, ISBN-:978-81-265-2715-1.
2	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-
3	249736-7.
4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan,
4	2006, Wiley-INDIA, ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-		-	1	-	1	
CO3	3	3	2	2	1	-	-		-	1	-	1	
CO4	3	3	3	3	1	-	-		1	1	1	1	

	Semester: VII											
	PROJECT MANAGEMENT											
	(Group H: Global Elective)											
Cou	Course Code : 18G7H09 CIE : 100 Marks											
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	al Hours	:	39L		SEE Duration	:	3.0 Hours					
Cou	rse Learning	д О	bjectives: The stu	udents will be abl	e to							
1	To understa	nd	the principles and	components of p	project managemen	nt.						
2	2 To appreciate the integrated approach to managing projects.											
3												

Unit-I	07 Hrs					
Introduction: What is project, what is project management, relationships	among portfolio					
management, program management, project management, and organizational project						
management, relationship between project management, operations management and						
organizational strategy, business value, role of the project manager, project mar	agement body of					
knowledge.						
Unit – II	09 Hrs					
Organizational influences & Project life cycle: Organizational influences	nces on project					
management, project state holders & governance, project team, project life cycle						
Project Integration Management: Develop project charter, develop project n	nanagement plan,					
direct & manage project work, monitor & control project work, perform i						
control, close project or phase.	0					
Unit –III	09 Hrs					
Project Scope Management: Project scope management, collect requirement	nts define scope,					
create WBS, validate scope, control scope.	-					
Project Time Management: Plan schedule management, define activities, see	quence activities,					
estimate activity resources, estimate activity durations, develop schedule, contro	l schedule.					
Unit –IV	07 Hrs					
Project Cost management: Project Cost management, estimate cost, determin	e budget, control					
costs.						
Project Quality management: Plan quality management, perform quality as	ssurance, control					
quality.						
Unit –V	07 Hrs					
Project Risk Management: Plan risk management, identify risks, perform qual	itative risk					
analysis, perform quantitative risk analysis, plan risk resources, control risk.						
Project Procurement Management: Project Procurement Management, condu	ict procurements,					
control procurements, close procurement.	-					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the concepts, tools and techniques for managing large projects.						
CO2:	Explain various knowledge areas and process groups in the project management						
	framework.						
CO3:	Analyze and evaluate risks in large and complex project environments.						
CO4 :	Develop project plans for various types of organizations.						

Refer	rence Books
1	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project
-	Management Institute, 5 th Edition, 2013, ISBN: 978-1-935589-67-9
2	Project Planning Analysis Selection Financing Implementation & Review, Prasanna
2	Chandra, 7 th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
2	Project Management A System approach to Planning Scheduling & Controlling, Harold
3	Kerzner, 10 th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams,
4	Terry Schmidt, 1 st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

Low-1 Medium-2 High-3

	Semester: VII						
	CYBER FORENSICS AND DIGITAL INVESTIGATIONS						
			(Gr	oup H: Global Elective)			
			r	(Theory)			
Cou	rse Code	:	18G7H10		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Tota	Total Hours: 39 LSEE Duration: 3.00 Hours						3.00 Hours
Cou	rse Learning ()bje	ectives: The students	s will be able to			
1	To provide a	n u	nderstanding Comp	outer forensics fundament	tals and comprehe	end	the impact of
	cybercrime ar	nd fo	orensics.				
2	2 Describe the motive and remedial measures for cybercrime, detection and handling.						
3							
4	Analyse areas	s aff	ected by cybercrime	and identify Legal Perspe	ctives in cyber sec	urit	у.
	~		2 2		5		~

Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social Engineering Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing. Unit – II OB Hrs Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices rends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Pose vg Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks o Adoile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Iandling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. Unit –III 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Orderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Approachi	Unit-I	09 Hrs
Mantra for the Netizens. Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social Engineering Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing. Unit – II 08 Hrs Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices 7 (11) Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices 9 (11) Cybercrime: Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks or 100 Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks or 100 Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks or 100 Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, aptops. 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors 9 (11) Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses wetworks 9 (11) 107 Hrs Cools And Methods Used In Cybercrime: Introduction, Buffer Overflow, Attacks on Wireless Networks 9 (11) 10 (11) Cools And Methods Used In Computer Forensics: Introduction, Historical Background of Cyber forensics, Digitat 9 (11) 10	Introduction to Cybercrime: Cybercrime: Definition and Origins of the Word, Cybe	ercrime and
Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social Engineering Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing. Unit – II OB Hrs Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices rends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Pose vg Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks o Aobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Handling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. Unit –III 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoorr Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Inderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Corensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics <	Information Security, Who are Cybercriminals, Classifications of Cybercrimes, Cybercrime E	Era: Survival
Unit – II 08 Hrs Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices Orgen transform Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Pose ty Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks of Aobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Handling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. Unit –III 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors teganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Orderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensic Approaching a Computer Forensics Line Security/Privacy Threats Approaching a Computer Forensics and Steganography, Relevance of the OSI 7 Laye Addel to Computer Forensics, Greensics and Steganography, Relevance of the OSI 7 Laye Ad	Mantra for the Netizens.	
Unit – II 08 Hrs Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices: Tends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Pose by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks or Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Landling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors the ganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Unit –IV 08 Hrs Unit –IV 08 Hrs Inderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Approaching a Computer Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Anderstanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Model to Computer Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics Forensics Auditing, Anti-forensics.	Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social I	Engineering,
Unit – II 08 Hrs Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices: Prends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Pose by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks or Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Landling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, aptops. 07 Hrs Cools Unit –III 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors between grangraphy, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). 08 Hrs Unit –IV 08 Hrs Unit –IV 08 Hrs Unit –IV 08 Hrs Corensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics 08 Hrs Inderstanding Computer Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics and Secting up a Computer Forensics Laboratory Approaching a Computer Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics, Special Tools and Pose and Social Networking Sites: The Security/Privacy Threats		ctor, Cloud
Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Pose Y Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks o Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Handling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. Unit –III 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Creaganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Juderstanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Addel to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer	Computing.	
Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Pose by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks or Andling Mobile devices, Organizational Security Implications for organizations, Organizational Measures for Landling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, aptops. Unit –III 07 Hrs Cools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Reganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Inderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensic Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Inderstanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Addel to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Computer Forensics		
y Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks o Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Handling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. Unit –III 07 Hrs Fools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors teganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Junderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digitz Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Approaching a Computer Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Juderstanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Pachniques, Forensics Auditing, Anti-forensics.		
Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Andling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. Unit –III 07 Hrs Fools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). 08 Hrs Unit –IV 08 Hrs Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Juderstanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Addel to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Security Privacy Threats Computer Forensics Addition, Anti-forensics.		Ų
Mandling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, .aptops. Unit –III 07 Hrs Gools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). 08 Hrs Unit –IV 08 Hrs Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Analysis of E-Mail, Digital Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Proceeding Security, Anti-forensics.		
Unit –III 07 Hrs Fools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Creating and Doos Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics and Steganography, Relevance of the OSI 7 Layer Approaching the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Computer Forensics, Forensics Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics, Auditing, Anti-forensics.		
Unit –III 07 Hrs Fools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Password Cracking, Keyloggers and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). 08 Hrs Unit –IV 08 Hrs Juderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Juderstanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Approaching Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Sechniques, Forensics Auditing, Anti-forensics.		g Era,
Tools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digita Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Packador Science, Forensics Auditing, Anti-forensics.	Laptops.	
Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV 08 Hrs Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Cechniques, Forensics Auditing, Anti-forensics.		
Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). Unit –IV Unit –IV Jnderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Juderstanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Sechniques, Forensics Auditing, Anti-forensics.		
Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft). 08 Hrs Unit –IV 08 Hrs Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Sechniques, Forensics Auditing, Anti-forensics.		
Unit –IV08 HrsUnderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Cechniques, Forensics Auditing, Anti-forensics.		s Networks.
Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics: Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Sechniques, Forensics Auditing, Anti-forensics.		
Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Cechniques, Forensics Auditing, Anti-forensics.		
Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Cechniques, Forensics Auditing, Anti-forensics.		•
Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Cechniques, Forensics Auditing, Anti-forensics.		
Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Laye Aodel to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Sechniques, Forensics Auditing, Anti-forensics.		
Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Cechniques, Forensics Auditing, Anti-forensics.		•
Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Cechniques, Forensics Auditing, Anti-forensics.		•
Cechniques, Forensics Auditing, Anti-forensics.		•
· · ·		al Tools and
I nit V		07.11
	Unit –V	
Cybercrime And Cyber Security: The Legal Perspectives-Introduction, Why Do We Need Cyber laws		•
The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India		
Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.	Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Pu	nishment.
	Course Outcomes: After completing the course, the students will be able to	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Interpret the basic concepts of cyber security, cyber law and their roles.							
CO2:	Articulate evidence collection and legal challenges.							
CO3:	Discuss tool support for detection of various attacks.							
CO4:	Demonstrate through use of proper tools knowledge on the cyber security, Cybercrime and							

forensics

Refere	ence Books :
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives, Sunit Belapure and Nina Godbole, , Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.
2	Introduction to information security and cyber laws, Dr. Surya Prakash Tripathi, Ritendra Goyal, Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.
3	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J. Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 -1-118 84965 -1
4	Cyber Forensics, Technical Publications, I. A. Dhotre, 1 st Edition, 2016, ISBN-13: 978- 9333211475

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

10tar CIE IS 50 (1) + 50 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	3	1	-	-
CO2	1	2	-	2	2	-	-	2	2	3	1	2
CO3	2	3	-	2	2	2	-	2	3	2	-	-
CO4	3	2	3	2	3	1	-	2	3	2	1	1

				Semester: VII				
	ROBOTICS AND AUTOMATION							
(Theory)								
С	ourse Code	:	18G7H11		CIE	:	100 Marks	
С	redits: L:T:P	:	3:0:0		SEE	: 100 Marks		
	otal Hours	:	39 L		SEE Duration	:	3.00 Hours	
Course Learning Objectives: The students will be able to								
1				tics and automation.				
2	Impart the know	wle	edge of robotic	programming and robotic of	operation control			
3				onfiguration and kinematic				
4				facturing techniques and pro				
5	Development	of a	utomation syst	em for manufacturing and p	processing indust	tries	5	
				Unit-I			06 Hrs	
				cs, Anatomy of robot, Ro	-		•	
Se	nsors and drive	syst	em, Control m	odes, Specification of robot	ts, Robot prograr	nm		
				Unit – II			09 Hrs	
				orientation of objects, Ob				
				yaw angles coordinate tran	nsformations, Jo	int	variables and	
-			-	us transformation.				
D-	D-H parameters and conventions, D-H matrix, Direct kinematic and inverse analysis of planar							
and 3 DoF robots.							ysis of planar	
an	-		conventions,		tic and inverse a	nal		
	d 3 DoF robots.			Unit –III			10 Hrs	
Tr	d 3 DoF robots. ajectory plann	ing	- Introduction	Unit –III , Path versus trajectory, Jo	pint-space versus		10 Hrs artesian-space	
Tr de:	d 3 DoF robots. ajectory plann scriptions, Basic	ing cs of	- Introduction f trajectory pla	Unit –III , Path versus trajectory, Jo nning, Joint-space trajector	pint-space versus		10 Hrs artesian-space	
Tr des	d 3 DoF robots. ajectory plann scriptions, Basic ler polynomial t	ing raje	- Introduction f trajectory pla ectory planning	Unit –III , Path versus trajectory, Jo nning, Joint-space trajector	pint-space versus by planning, Third	s Ca d-oi	10 Hrs artesian-space rder andFifth-	
Tr des ord Au	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in P	ing es of raje rod	- Introduction f trajectory pla ectory planning uction Systen	Unit –III , Path versus trajectory, Jo nning, Joint-space trajector , ns - Manufacturing support	pint-space versus by planning, Third t systems, Autor	s Ca d-or mati	10 Hrs artesian-space rder andFifth- ion principles	
Tr des ord Au and	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L	ing es of raje rod	- Introduction f trajectory pla ectory planning uction Systen	Unit –III , Path versus trajectory, Jo nning, Joint-space trajector	pint-space versus by planning, Third t systems, Autor	s Ca d-or mati	10 Hrs artesian-space rder andFifth- ion principles	
Tr des ord Au and	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in P	ing es of raje rod	- Introduction f trajectory pla ectory planning uction Systen	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory as - Manufacturing support thation, Production Concept	pint-space versus by planning, Third t systems, Autor	s Ca d-or mati	10 Hrs artesian-space rder andFifth- ion principles tical models,	
Tr dea orc Au and Nu	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L imericals.	ing raje rod Leve	- Introduction f trajectory pla ectory planning uction Systen els of Autom	Unit –III , Path versus trajectory, Jonning, Joint-space trajector , is - Manufacturing support ation, Production Concept Unit –IV	pint-space versus by planning, Thiro t systems, Autor pts and Mathe	s Ca d-oi mati mat	10 Hrs artesian-space rder and Fifth- ion principles tical models, 08 Hrs	
Tr des ord Au and Nu Ma	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in P i d strategies, L imericals. achine Vision -	ing raje rod eve	- Introduction f trajectory pla ectory planning uction Systen els of Autom	Unit –III A, Path versus trajectory, Jo nning, Joint-space trajectory as - Manufacturing support hation, Production Concep Unit –IV on by features, Basic feature	pint-space versus by planning, Third t systems, Autor pts and Mather res used for obje	d-or mati mat	10 Hrs artesian-space rder andFifth- ion principles tical models, 08 Hrs identification,	
Tr des orc Au and Nu Ma	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L imericals. achine Vision - oments, Templat	ing raje rod Leve	- Introduction f trajectory pla ectory planning uction Systen els of Autom oject recognition natching, Discr	Unit –III a, Path versus trajectory, Jo nning, Joint-space trajector as - Manufacturing support ation, Production Conce Unit –IV on by features, Basic featur rete Fourier descriptors, Con	oint-space versus by planning, Third t systems, Autor pts and Mather res used for obje mputed Tomogra	Ca d-or mati mat	10 Hrsartesian-spacerder andFifth-ion principlestical models,08 Hrsidentification,y (CT), Depth	
Tr des ord Au and Nu Ma Ma	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L imericals. achine Vision - oments, Templat casurement with	ing raje rod Leve	- Introduction f trajectory pla ectory planning uction System els of Autom oject recognition natching, Discr sion systems, S	Unit –III A, Path versus trajectory, Jo nning, Joint-space trajectory as - Manufacturing support ation, Production Conce Unit –IV on by features, Basic feature rete Fourier descriptors, Con Scene analysis versus mapp	oint-space versus y planning, Thiro t systems, Autor pts and Mather res used for obje mputed Tomogra ping, Range dete	Ca d-on mati mat	10 Hrsartesian-spacerder andFifth-ion principlestical models,08 Hrsidentification,y (CT), Depthon and Depth	
Tr des orc Au and Nu Ma Ma ana	d 3 DoF robots. rajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L imericals. achine Vision - oments, Templat easurement with alysis, Stereo im	ing raje rod ceve Ot te m vis nagi	- Introduction f trajectory pla ectory planning uction System els of Autom oject recognition tatching, Discr sion systems, S ng, Scene anal	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory as - Manufacturing support bation, Production Conception Unit –IV on by features, Basic feature tete Fourier descriptors, Con Scene analysis versus mappy ysis with shading and sizes	oint-space versus y planning, Third t systems, Autor pts and Mather res used for obje mputed Tomogra ping, Range dete	s Ca d-or mati mat	10 Hrsartesian-spacerder andFifth-ion principlestical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image data	
Tr des orc Au and Nu Ma me ana con	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L mericals. achine Vision - oments, Templat easurement with alysis, Stereo im mpression, Intra	ing raje rod eve Ot te m vis nagi	- Introduction f trajectory pla ectory planning uction System els of Autom oject recognition natching, Discr sion systems, S ng, Scene anal ne spatial dom	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory and a Manufacturing support ation, Production Conception Unit –IV on by features, Basic feature rete Fourier descriptors, Considered analysis versus mappy ysis with shading and sizes ation techniques, Interframe	oint-space versus y planning, Third t systems, Autor pts and Mather res used for obje mputed Tomogra ping, Range dete	s Ca d-or mati mat	10 Hrsartesian-spacerder andFifth-ion principlestical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image data	
Tr des orc Au and Nu Ma Ma ana con	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L mericals. achine Vision - oments, Templat easurement with alysis, Stereo im mpression, Intra	ing raje rod eve Ot te m vis nagi	- Introduction f trajectory pla ectory planning uction System els of Autom oject recognition natching, Discr sion systems, S ng, Scene anal ne spatial dom	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory as - Manufacturing support ation, Production Conception Unit –IV on by features, Basic feature tete Fourier descriptors, Considered analysis versus mappy ysis with shading and sizes ation techniques, Interframe ons of vision systems	oint-space versus y planning, Third t systems, Autor pts and Mather res used for obje mputed Tomogra ping, Range dete	s Ca d-or mati mat	10 Hrsartesian-spacerder andFifth-ion principlestical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image dataon techniques,	
Tr des orc Au and Ma me ans con Co	d 3 DoF robots. rajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L mericals. achine Vision - oments, Templat casurement with alysis, Stereo im mpression, Intra plour images, He	ing raje rod Leve Ot te m vis nagi frar euris	- Introduction f trajectory plan ectory planning uction System els of Autom oject recognition tatching, Discr sion systems, S ng, Scene anal ne spatial dom stics, Applicati	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory as - Manufacturing support ation, Production Conception Unit –IV on by features, Basic feature tete Fourier descriptors, Consistent and sizes and sizes analysis versus mappy ysis with shading and sizes atin techniques, Interframe ons of vision systems Unit –V	oint-space versus by planning, Third t systems, Autor pts and Mathe res used for obje mputed Tomogra ping, Range dete s, Specialized ligh coding, Compres	s Ca d-or mati mat ect	10 Hrsartesian-spacerder andFifth-ion principlestical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image dataon techniques,06 Hrs	
Tr des orc Au and Nu Ma ana con Co	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L mericals. achine Vision - oments, Template easurement with alysis, Stereo im- mpression, Intra- olour images, He exible Manufac	ing raje rod eve Ob te m vis nagi frar euris	- Introduction f trajectory pla ectory planning uction System els of Autom oject recognition natching, Discr sion systems, S ng, Scene anal me spatial dom stics, Applicati	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory as - Manufacturing support ation, Production Conception Unit –IV on by features, Basic feature tete Fourier descriptors, Considered and sizes ation techniques, Interframe ons of vision systems Unit –V - Introduction to FMS - construction	oint-space versus by planning, Third t systems, Autor pts and Mathe res used for obje mputed Tomogra ping, Range dete s, Specialized ligh coding, Compres	s Ca d-or mati mat ect	10 Hrsartesian-spacerder andFifth-ion principlestical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image dataon techniques,06 Hrs	
Tr des orc Au and Ma me ans con Co Fla	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L mericals. achine Vision - oments, Templat easurement with alysis, Stereo im mpression, Intra olour images, He exible Manufac occessing systems	ing raje rod ceve Ot te m vis nagi frar euris ctur s, F	- Introduction f trajectory plan ectory planning uction System els of Autom oject recognition natching, Discr sion systems, S ng, Scene anal ne spatial dom stics, Applicati	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory as - Manufacturing support ation, Production Conception Unit –IV on by features, Basic feature rete Fourier descriptors, Con- Scene analysis versus mappy ysis with shading and sizes ation techniques, Interframe ons of vision systems Unit –V - Introduction to FMS - con- g. Case studies.	oint-space versus y planning, Third t systems, Autor pts and Mathe res used for obje mputed Tomogra ping, Range dete s, Specialized ligh coding, Compres	s Ca d-or mati mat ect sphy ection tin	10 Hrsartesian-spacerder andFifth-ion principlesical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image dataon techniques,06 Hrsn in the data	
Tr des orc Au and Nu Ma me ana Co Co Fla pro Ma	d 3 DoF robots. rajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L mericals. achine Vision - oments, Templat easurement with alysis, Stereo im mpression, Intra olour images, He exible Manufac ocessing systems aterial Handling	ing raje rod Leve Ob te m vis nagi frar euris ctur s, Fl g sy	- Introduction f trajectory plan ectory planning uction System els of Autom oject recognition tatching, Discr sion systems, S ng, Scene anal me spatial dom stics, Applicati ring Systems MS scheduling ystems - Conv	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory ation, Joint-space trajectory Unit –IV On by features, Basic feature tete Fourier descriptors, Consistent and sizes ation techniques, Interframe ons of vision systems Unit –V - Introduction to FMS - of 5, Case studies. eyors - AGVs – industria	oint-space versus y planning, Third t systems, Autor pts and Mathe res used for obje mputed Tomogra ping, Range dete s, Specialized ligh coding, Compres	s Ca d-or mati mat ect sphy ection tin	10 Hrsartesian-spacerder andFifth-ion principlesical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image dataon techniques,06 Hrsn in the data	
Tr des orc Au and Nu Ma ana con Co Fle pro Ma Au	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t atomation in Pr d strategies, L mericals. achine Vision - oments, Templat easurement with alysis, Stereo im mpression, Intra olour images, He exible Manufac ocessing systems aterial Handling itomated Storage	ing raje rod eve Ob te m vis nagi frar euris ctur s, FJ g, sy e an	- Introduction f trajectory pla ectory planning uction System els of Autom oject recognition natching, Discr sion systems, S ng, Scene anal ne spatial dom stics, Applicati ring Systems MS scheduling vstems - Convid retrieval sys	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory as - Manufacturing support ation, Production Conception Unit –IV on by features, Basic feature tete Fourier descriptors, Consistent Scene analysis versus mappy ysis with shading and sizes atin techniques, Interframe ons of vision systems Unit –V - Introduction to FMS - construction ysis studies. eyors - AGVs – industriatem.	oint-space versus by planning, Third t systems, Autor pts and Mather res used for object mputed Tomogra ping, Range detect s, Specialized light coding, Compress concepts, integra al robots in mat	caracteria	10 Hrs artesian-space rder andFifth- ion principles tical models, 08 Hrs identification, y (CT), Depth on and Depth g, Image data on techniques, 06 Hrs n in the data an techniques,	
Tr des orc Au and Ma ans con Co Fla pro Ma Au Di	d 3 DoF robots. ajectory plann scriptions, Basic der polynomial t itomation in Pr d strategies, L mericals. achine Vision - oments, Templat easurement with alysis, Stereo im- mpression, Intra- blour images, He exible Manufac ocessing systems aterial Handling itomated Storage	ing raje rod Leve Ot te m vis frar euris ctur s, F g sy g sy	- Introduction f trajectory plan ectory planning uction System els of Autom oject recognition natching, Discr sion systems, S ng, Scene anal me spatial dom stics, Applicati ring Systems MS scheduling stems - Conv d retrieval systems	Unit –III A, Path versus trajectory, Jonning, Joint-space trajectory ation, Joint-space trajectory Unit –IV On by features, Basic feature tete Fourier descriptors, Consistent and sizes ation techniques, Interframe ons of vision systems Unit –V - Introduction to FMS - of 5, Case studies. eyors - AGVs – industria	oint-space versus y planning, Third t systems, Autor pts and Mather res used for obje mputed Tomogra ping, Range dete s, Specialized ligh coding, Compres concepts, integra al robots in mat System and thei	c Ca d-or mati mat ect aphy ection tion eria r ap	10 Hrsartesian-spacerder andFifth-ion principlesical models,08 Hrsidentification,y (CT), Depthon and Depthg, Image dataon techniques,06 Hrsn in the dataan techniques,n in the dataan techniques,	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the characteristics and working principle of robots.							
CO2:	Apply the related mathematical model to formulate the kinematics and trajectory							

	planning of industrial robot.
CO3:	Analyse the machine vision for effective Flexible Manufacturing Systems.
CO4:	Develop model and integrate drives for industrial robots and automation systems.

Refe	rence Books
1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3 rd Edition, New York, ISBN:006045931X
2	John J. Craig, "Introduction to Robotics", Pearson Education International, 3 rd Edition, ISBN:109876543, 1-13-123629-6
3	Mikell P Groover, "Automation, Production Systems, and Computer-integrated Manufacturing", Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2
4	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and Simulation", CRC Press, 1987, ISBN 9780824777180

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	2	-	2
CO2	3	3	1	3	1	1	-	-	-	2	-	2
CO3	2	-	2	-	1	1	-	-	2	-	-	2
CO4	3	3	2	3	1	1	-	2	3	-	3	2

	Semester: VII							
	SPACE TECHNOLOGY AND APPLICATIONS (GROUP H: GLOBAL ELECTIVE)							
Cour	se Code	:	18G7H12	(Theory)	CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0	SEE		:	100 Marks	
Tota	l Hours	: 39 L			SEE Duration	:	3.00 Hours	
Cour	se Learning Ol	ojec	tives: The stud	ents will be able to				
	Define the eart concepts.	h e	nvironment and	l its behaviour, launching	vehicles for satel	lites	and its associated	
2	² Analyse satellites in terms of technology, structure and communications.							
3	3 Use satellites for space applications, remote sensing and metrology.							
4	Apply the space	e tec	hnology, techno	ology mission and advanced	d space systems to	natic	on's growth.	

UNIT-I	08 Hrs
Earth's environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiation	on belts,
Interplanetary medium, Solar wind, Solar- Earth Weather Relations.	
Launch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic	engines,
Control and Guidance system, Ion propulsion and Nuclear Propulsion.	
UNIT-II	07 Hrs
Satellite Technology: Structural, Mechanical, Thermal, Power control, Telemetry, Telecomm and	nd
Quality and Reliability, Payloads, Classification of satellites.	
Satellite structure: Satellite Communications, Transponders, Satellite antennas.	
UNIT-III	08 Hrs
Satellite Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, Multiple	Access
Techniques.	
Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Education	on, Tele-
medicine, Satellite navigation, GPS.	
UNIT-IV	08 Hrs
Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land u	se, Land
mapping, geology, Urban development resource Management, and image processing techniques.	
Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclone predic	tions,
Disaster and flood warning, rainfall predictions using satellites.	
UNIT-V	08Hrs
Space Missions: Technology missions, deep space planetary missions, Lunar missions, zero gravit	ity

Space IVISSIONS: Technology missions, deep space planetary missions, Lunar missions, zero gravity experiments, space biology and International space Missions. **Advanced space systems:** Remote sensing cameras, planetary payloads, space shuttle, space station, Interspace communication systems.

Course Outcomes: After completing the course, the students will be able to						
CO1	Explain different types of satellites, orbit and associated subsystems.					
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.					
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrology etc.					
CO4	Study technology trends, satellite missions and advanced space systems.					

Refe	rence Books
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009, ISBN- 10 :0415465702.
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN: 9788120324015.
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0- 471- 37007 -9, ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009, ISBN: 108176496308.

CIE is executed by the way of Tests (T), Quizzes (Q) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Mapp	oing					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	1	-
CO2	2	2	1	1	-	-	-	-	-	-	1	-
CO3	2	2	1	_	-	-	-	-	-	-	1	-
CO4	2	2	1	-	-	-	-	-	-	-	1	-

	Semester: VII							
	INTRODUCTION TO ASTROPHYSICS							
			(Gi	oup H: Global Elective)				
				(Theory)				
Co	ourse Code	:	18G7H13	CIE	:	100 Marks		
Cı	edits: L: T:P	:	3:0:0	SEE		100 Marks		
To	tal Hours	:	39 L	SEE Duration	:	3.00 Hours		
Co	ourse Learning C)bje	ctives: The stude	ts will be able to				
1	Familiarize with	the	various celestial	bodies and the laws governing their behavior				
2	Understand the f	fund	amental concepts	of relativity and establish the relation between	n lig	ght and matter		
3	Study the metho	ds t	sed to identify an	d investigate the nature of different stellar bod	lies			
4	Determine the cl	hara	cteristic features of	of any star by understanding its spectral proper	rties	5		
5	5 Contemplate the complex system of the milky way galaxy and its components							
				Unit-I		07 Hrs		

Fundamental concepts in Astronomy:	
Origin of the Universe, Major constituents of the universe, Cosmic Microwave Radia	tion (CMR)
background, Geocentric Universe, Retrograde Motion of planets, Brief introduction to the	Copernican
Revolution, Positions of the Celestial Sphere: Altitude-Azimuth Coordinate System, Equ	uatorial
Coordinate System, Solar System, Planets - laws of motion of planets, inner planets, outer p	olanets,
Unit – II	08 Hrs
Theory of Special Relativity:	
Galilean Transformations, Failure of Galilean Transformations, Lorentz Transformations,	, Derivation,
Time & Space in Special Relativity, Momentum & Energy in Relativity, Doppler Effect for	or light (Red
& Blue Shift), The equivalence principle, the principle of minimal gravitational coupling,	
Schwarzschild spacetime, Past-Present-Future (Light Cone diagram).	
Unit –III	08 Hrs
Stellar Astrophysics:	
Blackbody radiation, Connection between Color and Temperature, Stellar Parallax, Mag	nitude Scale,
Life cycle of stars (Birth, Life & Death), Hertzsprung-Russel Diagram, Classification of	Binary Stars,
Mass Determination using Visual Binaries, Eclipsing Spectroscopic Binaries, Formation	n of Spectral
Lines, Schrodinger's time-dependent and independent equations, Boltzmann-Saha Equat	ion,
Chandrashekar's Limit, black holes (qualitatively).	
Unit –IV	08 Hrs
Light and Matter:	
Dispersion of light (Prism & Grating), Spectral Lines, de-Broglie's Wavelength and Frequ	iency,
Heisenberg's Uncertainty Principle, Broadening of Spectral lines	
Spectral Characterization of Stars:	
Description of the Radiation Field, Stellar Opacity, Transfer Equation, Profile of Spectral L	ines, Optical
Telescopes, Radio Telescopes (Case Studies)	
Unit –V	08 Hrs
Galaxy Astronomy:	
The Milky way Galaxy, Counting the Stars, Historical Models, Differential & Integrated	
Extrasolar planets, Methods of detection of extrasolar planets, Distance to the Galactic Cen	
Coordinate System, Classification of Galaxies, Introduction to Elliptical galaxies, Irregu	lar galaxies,
Dwarf galaxies.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Contemplate the nature of our universe by identifying and studying the behavior of celestial						
	bodies.						
CO2:	Explain the usefulness of the theory of relativity, light and matter in establishing the fundamental behavior of stellar bodies.						

CO3:	Utilize various techniques to discover the components of our universe and conclude their celestial properties.				
CO4:	Interpret the spectral properties of any astronomical body to illustrate its properties.				
CO5:	Inspect the milky way galaxy to identify the proponents and their characteristic features.				

Refere	ence Books
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2 nd Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press, ISBN-9780521016278.
3	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-0935702057.
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-0387949437.
5	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st Edition, 1983, Wiley, ISBN: 9780471873167.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 20.

Total CIE is 30(Q) +50(T) +20(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	2	-	-	1	-	1	-	-	2	
CO2	3	2	2	2	-	-	1	-	1	-	-	2	
CO3	2	3	1	2	2	1	1	-	2	1	-	2	
CO4	3	3	1	2	2	1	2	-	3	3	-	2	

				Semester: VII								
	MATE	CRI	ALS FOR A	DVANCED TECHNOLOGY AND SPE	CTROS	COPIC						
				CHARACTERIZATION								
	(Group H: Global Elective)											
				(Theory)								
Co	ourse Code	:	18G7H14	CIE	:	100 Marks						
Cı	edits: L:T:P	dits: L:T:P : 3:0:0		SEE	:	100 Marks						
Το	Total Hours		40L	SEE Dura	tion :	3.00 Hours						
Co	ourse Learning	Ob	jectives: The	students will be able to								
1	Apply the basic	c co	ncepts of Ch	emistry to develop futuristic materials for	high-tech	applications in the						
	area of Enginee	erin	g.									
2	Impart sound k	nov	vledge in the	different fields of material chemistry so a	s to apply	it to the problems						
	in engineering	fiel	d.									
3				of students so that they can characterize,								
	in engineering	and	apply knowl	edge gained in solving related engineering	problem	5.						
				Unit-I		08 Hrs						

Coating and packaging materials

Surface Coating materials:

Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.

Properties required in a pigment and extenders.

Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, molybdate orange, chrome green, ultramarine blue, iron blue, cadmium red.

Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders.

Developments in new polymers such as dendrimers, biopolymers & biodegradable polymers.

Packaging materials:

Food products: Cellulosic and Polymeric packaging materials and their properties - including barrier properties, strength properties, optical properties, Glass, aluminum, tin, paper, plastics, composites. Pharmaceutical products: Injectables and tablet packaging materials.

Unit – II	08 Hrs

Adhesives

Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One-part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Actionsurface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.

Unit –III 08 Hrs

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication. -Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD). Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD). Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties,

chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes. Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

Unit –IV

Unit –V

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR

spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent – magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Identify sustainable engineering materials and understand their properties.									
CO2:	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications									
	in different areas of engineering.									
CO3:	Analyze and evaluate the specific application of materials.									
CO4:	Design the route for synthesis of material and its characterization.									

Refer	ence Books
1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38 th Edtion, Tata McGraw-Hill Publishing Company Limited-2015, ISBN: 9780074517963
2	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
3	Spectroscopy of organic compounds by P.S.Kalsi, New Age International (P) ltd, Publisher, 2005, ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill Publishing Company Limited, 1996, ISBN :0074622382 9780074622384.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

08 Hrs

08 Hrs

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	2	2	-	-	1	-	-
CO3	-	3	-	2	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	1	1	-	-	-	-	1

				Semester: VII								
	APPLIED PSYCHOLOGY FOR ENGINEERS											
(Group H: Global Elective) (Theory)												
Cours	Course Code:18G7H15CIE:100 Marks											
Credi	ts: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total	Hours	:	39 L		SEE Duration	:	3.00 Hours					
Cours	se Learnin	g ()bjectives: Th	e students will be able to								
1	1 To appreciate human behavior and human mind in the context of learner's immediate society and environment.											
2			1	tance of lifelong learnin development as the natur	U 1		oility to sustain					
3			students with	knowledge and skills f ssions.	for building firm	fou	ndation for the					
4				nction as effective Engine ng organization.	eering Psychologi	sts i	n an Industrial,					
5				e psychological knowledg tings that meet personal g			1					
				Unit-I			07 Hrs					
Introd	luction to	Psy	v chology : De	finition and goals of Psyc	hology: Role of a	Psv						
				(Branches of psycholo)	0.	•	U					
Cogni	tive, Hum	ani	stic, Psychol	ogical Research and M ionnaire and Clinical Me	lethods to study							

Unit – II09 HrsIntelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of
Intelligence. Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of
Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ,
Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.Unit – III09 Hrs

Unit –III	09 Hrs
Personality: Concept and definition of personality, Approaches of	personality-
psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic,	Behaviorist,
Trait and type approaches. Assessment of Personality: Self- report measures of	Personality,
Questionnaires, Rating Scales and Projective techniques, its Characteristics, ad	dvantages &
limitations, examples. Behavioral Assessment. Psychological Stress: a. Stress-	- Definition,
Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Traum	a. Causes of
Stress – Job related causes of stress. Sources of Frustration, Stress and Job Perform	nance, Stress
Vulnerability-Stress threshold, perceived control	

Unit –IV07 HrsApplication of Psychology in Working Environment: The present scenario of information
technology, the role of psychologist in the organization, Selection and Training of Psychology
Professionals to work in the field of Information Technology. Distance learning, Psychological
consequences of recent developments in Information Technology. Type A and Type B
Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed,
Participative Counseling.

Unit -V07 HrsLearning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning
(Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive –

Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the application of psychology in engineering and technology and develop a								
	route to accomplish goals in their work environment.								
CO2:	Define learning and compare and contrast the factors that cognitive, behavioral, and								
	Humanistic theorists believe influence the learning process.								
CO3:	Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting in their enhancement and apply effective strategies for self-management and self-improvement.								
CO4:	Apply the theories into their own and others' lives in order to better understand their personalities and experiences.								

Refer	Reference Books									
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India									
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.									
3	Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN – $81-317 - 1132 - 3$									
4	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Advanced course in Entrepreneurship (Group H: Global Elective) (Theory)								
Course Code : 18G7H16 CIE : 100 M									
Credits: L:T:P		:	3:0:0		SEE		100 Marks		
Total Hours			39 L		SEE Duration	:	3.00 Hours		
Co	ourse Learning (Ob	jectives: The stu	dents will be able to					
1	Acquire additional knowledge and skills for developing early customer traction into a repeatable business.								
2	Learn the tools and methods for achieving sustainable growth, such as by refining their product or service and business models, building brand strategy, making a sales and financial plan								
3	Develop brand strategy and create digital presence, Develop channel strategy for customer outreach.								
4	Leverage social media to reach new customers cost effectively, Develop strategies to increase revenues and expand markets								

Unit-I	07 Hrs					
Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product Life						
Cycle? Assess your Start-up's attractiveness						
Competition & testing: Conduct a Competition Analysis Identify your Competitive Advan	tage					
Unit – II	06 Hrs					
Market Validation: Market validation, Customer Usability Interviews, Analyzing Customer f	eedback					
Delivering Value: Enlist marketing channels, Identify partners for your venture, Create	a Sales					
plan						
Unit –III	07 Hrs					
Customer acquisition & growth channels: Types of Marketing Channels: Targeting Blogs,						
Unconventional PR, Search Engine Marketing, Search Engine Optimization, Social ads, o	lisplay ads					
and existing platforms, Email Marketing, Viral Marketing, Affiliate programs, Magazines, N	ewspaper,					
Radio and TV ads, Offline Ads, Trade Shows						
Unit –IV	10 Hrs					
Business model: Reiterate and Refine your Business Model Canvas, Choose the right business model for you						
start-up	-					
Financial Planning: Forecasting sales and revenue projections, Cash-flow statement						
Unit –V	09 Hrs					
Pitching: Create your funding plan, Build your pitch deck and compose your pitch.						

Experiential Learning: Student teams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Develop strategies to increase revenues and expand markets, Explore licensing and							
	franchising for business expansion.							
CO2:	2: Leverage technologies and platforms for growth stage companies, Develop key metrics							
	to track progress.							
CO3:	Basics of registering a company, Understanding business regulations and compliances.							
CO4:	Advanced concepts of business finance, Financial planning.							

Reference Books

Department of Biotechnology

1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.
2	Entrepreneurship. Roy, R., 2012. Oxford University Press
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial Modern Classics

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(M1, M2 and M3) +50(T) +20(M4) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

MAJOR PROJECT								
Course	e Code	:	18BTP81		CIE		100 Marks	
Credits: L:T:P		:	0:0:16:0		SEE	:	100 Marks	
Total H	Hours	:	32		SEE Duration	:	3.00 Hours	
Course	Course Learning Objectives: The students will be able to							
1.	Acquire the ability to make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.							
2.	Acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific audience in both written and oral forms.							
3.	Acquire collaborative skills through working in a team to achieve common goals.							
4.	Self-learn, reflect on their learning and take appropriate action to improve it.							
5.	Prepare schedu	les an	d budgets and keep track of the pro	ogress	s and expenditure.			

Major Project Guidelines:

The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8^a semester.

1. The detailed Synopsis (approved by the department **Project Review Committee**) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution.
- The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- <u>The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.</u>
- In case the project work is carried out outside Bengaluru. such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the field of respective program areas or in line with *CoE's(Centre* of Excellence) identified by the college or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in NPTEL from the discipline of Humanities and Social Sciences, Management, Multidisciplinary and Design Engineering. The course chosen could be either of 4w/8w/12w duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. The same will be considered as one of the components during project evaluation of phase 2 and phase 5.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.

- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project • batch and the same has to be discussed with the Internal Guide regularly.
- In case of **Industry project**, during the course of project work, the internal guides will have • continuous interaction with external guides and will visit the industry at least twice during the project period.
- For CIE assessment the project groups must give a final seminar with the draft copy of the • project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- For CIE 50% weightage should be given to the project guide and 50% weightage to the project • evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Co	Course Outcomes of Major Project:							
1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain							
	problems.							
2	Design, develop, present and document innovative/multidisciplinary modules for a complete							
	engineering system.							
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long							
	learning to follow technological developments.							
4	Function effectively as an individual, or leader in diverse teams, with the understanding of							
	professional ethics and responsibilities.							

CIE Assessment:

The following are the weightings given for the various stages of the project.

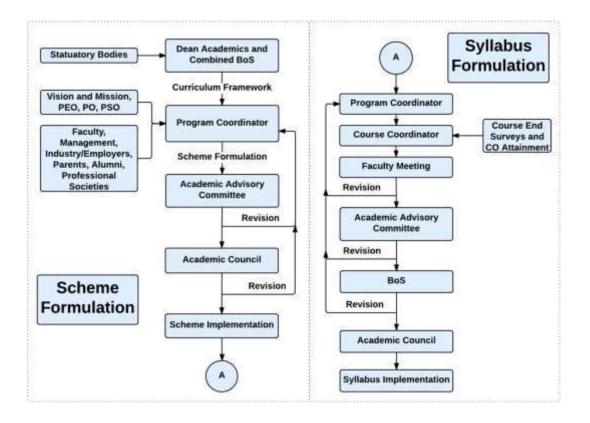
- 1. Selection of the topic and formulation of objectives 10%
- 2. Design and Development of Project methodology 25%
- 3. Execution of Project 25%
- 4. Presentation, Demonstration and Results Discussion 30% 10%
- 5. Report Writing & Publication

SEE Assessment:

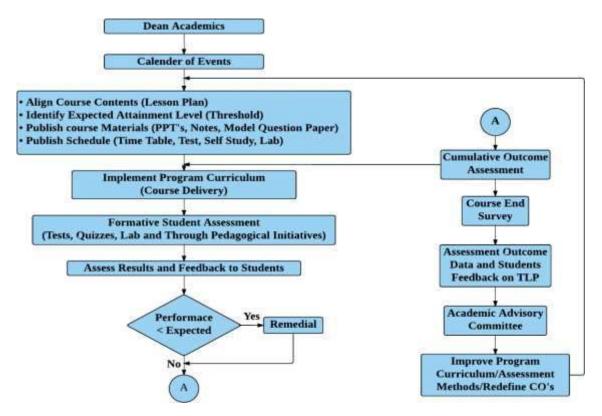
The following are the weightages given during Viva Examination.

1. Written presentation of synopsis 10% 2. Presentation/Demonstration of the project 30% 3. Methodology and Experimental Results & Discussion 30% 4. Report 10% 5. Viva Voce 20%

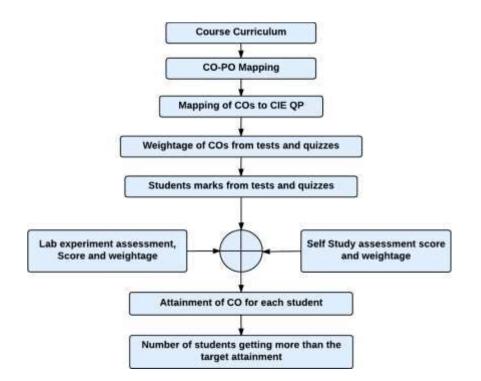
Calendar of Events for the Project Work:

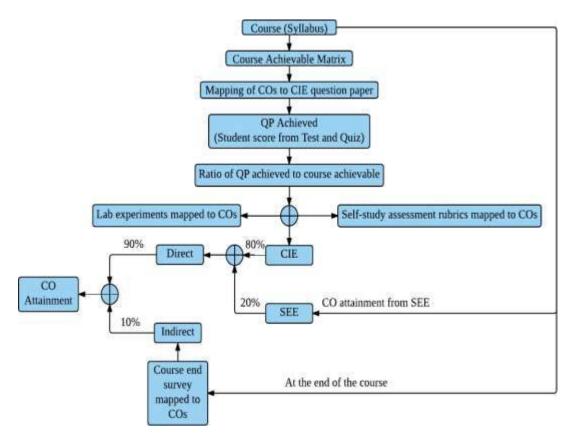

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being carried
	out in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project

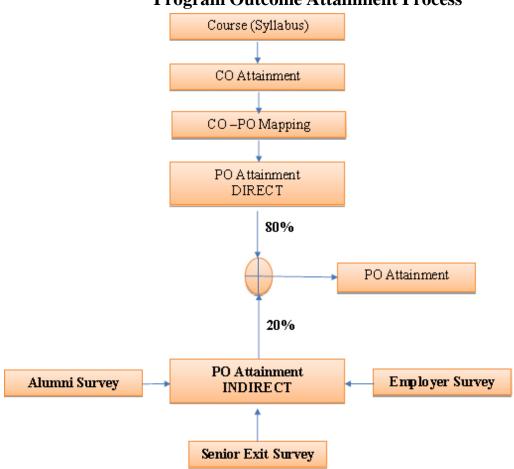
Department of Biotechnology


X Week Submission of draft copy of the project report				
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by Department project Committee and guide for internal assessment. Finalization of CIE.			

Evaluation Scheme for CIE and SEE


Scheme of Evaluation for CIE	Scheme of Evaluation for SEE				
Particulars	%Marks	Particulars	%Marks		
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%		
Project Evaluation II	25%	Project Demo / Presentation	30%		
Project Evaluation III	25%	Methodology and Results Discussion	30%		
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%		
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%		
Total	100	Total	100		


Academic Planning And Implementation



Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

INNER BACK COVER PAGE

PROGRAM OUTCOMES (POs)

1**Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.