RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SCHEME & SYLLABUS SECOND YEAR B.E. PROGRAMS

AEROSPACE ENGINEERING

BACHELOR OF ENGINEERING (B.E.) 2022 SCHEME

ACADEMIC YEAR 2023-24

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

AEROSPACE ENGINEERING

DEPARTMENT VISION

Emerge as a centre of excellence in Aerospace Engineering, Imparting Quality Technical Education, Interdisciplinary Research & Innovation with a focus on Societal empowerment through Sustainable & Inclusive Technologies.

DEPARTMENT MISSION

- Imparting Quality Technical Knowledge in Basic & Applied areas of Aerospace Engineering incorporating the principles of Outcome Based Education.
- Provide state-of-the art laboratories and infrastructure facilities, conducive to motivate Interdisciplinary Research and Innovation in Aerospace Engineering.
- Develop self-motivated engineers with a blend of Discipline, Integrity, Engineering Ethics and Social Responsibility.
- Strengthening collaboration with industries, research organizations and institutes for Internships, Joint Research and Consultancy.
- Focus towards Integrating Sustainable and Inclusive Technologies for Societal Symbiosis.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide opportunities for successful professional career with a sound fundamental knowledge in Mathematics, Physical Science & Aerospace Engineering.

PEO2: Motivate innovative research in specialized areas of Aerospace Engineering viz Aerospace structural design, Aerodynamics, Aerospace Propulsion and Guidance & Control systems.

PEO3: Promoting development of problem solving abilities by adopting analytical, numerical and experimental skills with awareness on societal impact.

PEO4: Imbibing sound communication skills, team working ability, professional ethics and zeal for lifelong learning.

PSODescriptionPSO1Utilization of the fundamental knowledge and skills of Aerospace Engineering to develop
pragmatic solutions for complex Aerospace Engineering problems.PSO2Apply Professional Engineering practices and strategies in the development of systems and
subsystems for Aerospace Applications.PSO3Exhibit Effective Communication skills and a Zeal to function with multi-disciplinary teamsPSO4Demonstrate Professional Ethics and Responsibilities in Engineering practices towards the
achievement of societal symbiosis.

PROGRAM SPECIFIC OUTCOMES (PSOs)

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	AEC	Ability Enhancement Courses

INDEX

		V Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	MAT231BT	Statistics, Laplace Transform and Numerical Methods	01
2.	XX232XT	Basket Courses - Group A	03-08
3.	AS233AI	Thermodynamics	09
4.	AS234AI	Mechanics of Fluids	12
5.	AS235AT	Structural Mechanics	14
6.	HS237XL	Ability Enhancement courses- Group C	16-26
7.	CS139AT	Bridge Course: C Programming	27

		VI Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	MAT241AT	Probability theory and Linear Programming	30
2.	XX242XT	Basket Courses - Group A	32-37
3.	AS343AI	Aerospace Propulsion	38
4.	AS244AI	Aerospace Structures	40
5.	AS345AT	Fundamentals of Avionics	42
6.	AS246XT	Professional Core Courses 3 - Group B (NPTEL)	44-48
7.	AS247DL	Design Thinking Lab	49
8.	HS248AT	Universal Human Values	50
9.	MAT149AT	Bridge Course: Mathematics	52

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Bachelor of Engineering in AEROSPACE ENGINEERING

2 X	MAT231BT	Statistics, Laplace Transform and	L	Т	Р			Category	Durati	Max Marks CIE		SEE Duration (H)	Max Marks SEE	
2 X	MAT231BT	· 1		1	r	Total			on (H)	Theory	Lab	(H)	Theory	Lab
		Numerical Methods	3	1	0	4	MA	Theory	1.5	100	****	3	100	****
	XX232XT	Basket Courses - Group A	3	0	0	3	CV/ ME/ BT	Theory	1.5	100	****	3	100	****
3 1	AS233AI	Thermodynamics	3	0	1	4	AS	Theory+Lab	1.5	100	50	3	100	50
4 <i>I</i>	AS234AI	Mechanics of Fluids	3	0	1	4	AS	Theory+Lab	1.5	100	50	3	100	50
5 A	AS235AT	Structural Mechanics	3	1	0	4	AS	Theory	1.5	100	****	3	100	****
6 F	HS237XL	Ability Enhancement Course	0	0	2	2	HSS	Lab	1	****	50	2	****	50
7 (CS139AT	Bridge Course: C Programming	2 (A)	0	0	AUDI T	CS	Theory (Audit Course)	1	50	****	****	****	****

RV Educational Institutions [®] RV College of Engineering [®]

ME232AT

BT232AT

2

ME

BT

AutonomousApproved by AICTE,Institution Affiliated
to VisvesvarayaNew DelhiTechnological
University, Belagavi

Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem) **Course Title S1**. BoS Course Credits Category No. Code CV CV232AT Environment & Sustainability 3 Theory

Material Science for Engineers

Bio Safety Standards and Ethics

Theory

Theory

3

3

	Group C: Ability Enhancement Course											
S1. No.	BoS	Course Code	Course Title	Category	Credits							
	HS	HS237AL	National Service Scheme	LAB	2							
	HS	HS237BL	National Cadet Corps	LAB	2							
	HS	HS237CL	Physical Education: Sports & Athletics	LAB	2							
7	HS	HS237DL	Music	LAB	2							
1	HS	HS237EL	Dance	LAB	2							
	HS	HS237FL	Theatre (Light Camera & Action)	LAB	2							
	HS	HS237GL	Art Work & Painting	LAB	2							
	HS	HS237HL	Photography & Film Making	LAB	2							

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Bachelor of Engineering in AEROSPACE ENGINEERING

					IV	SEM	ESTE	R						
S1. No.	Course Code	Course Title	Cree	Credit Alloc		ation	BoS	Category	CIE Durati	Max Marks CIE		SEE Durat ion	Max Marks SEE	
NO.			L	Т	Р	Total			on (H)	Theo ry	Lab	(H)	Theory	Lab
1	MAT241AT	Probability theory and Linear Programming	2	1	0	3	MA	Theory	1.5	100	****	3	100	****
2	XX242AT	Basket Courses - Group A	3	0	0	3	CV/ ME/ BT	Theory	1.5	100	****	3	100	****
3	AS343AI	Aerospace Propulsion	3	0	1	4	AS	Theory+Lab	1.5	100	50	3	100	50
4	AS244AI	Aerospace Structures	3	0	1	4	AS	Theory+Lab	1.5	100	50	3	100	50
5	AS345AT	Fundamentals of Avionics	3	0	0	3	AS	Theory	1.5	100	****	3	100	****
6	AS246XT	Professional Core Courses 3 - Group B	2	0	0	2	AS	NPTEL	1.5	100	****	3	100	****
7	AS247DL	Design Thinking Lab	0	0	2	2	AS	Lab	1	****	50	2	****	50
8	HS248AT	Universal Human Values	2	0	0	2	HSS	Theory	1.5	50	****	2	50	****
9	MAT149AT	Bridge Course: Mathematics	2 (A)	0	0	AUDIT	MA	Theory	1	50	****	****	****	****

23

* Summer Internship-II will be done after the VI sem for 04 Weeks

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem) **Course Title S1**. Credits BoS Course Category Code No. Environment & Sustainability Theory CV CV242AT 3 ME242AT Material Science for Engineers Theory 3 ME 2 Bio Safety Standards and Ethics BT BT242AT Theory 3

	Group B- Professional Elective- (NPTEL elective)									
S1 .	Sl. Course Course Title									
No.	Code									
	AS246AT	Introduction to Airplane Performance	02							
	AS246BT	Design of fixed wing aircrafts	02							
6	AS246CT	Principles of Metal Forming Technology	02							
0 AS246DT		Innovation, Business Models And Entrepreneurship	02							
	AS246ET	Project Management : Planning, Execution, Evaluation And Control	02							

Autonomous Institution Affiliated to Visvesvaraya Technological

Approved by AICTE, New Delhi

	niversity, Belagavi							
				Semester: III				
	STATIS	ГІ	CS, LAPLACE T	RANSFORM AN	D NUMERICAL	M	ETH	ODS
			Category: PI	ROFESSIONAL CO	ORE COURSE			
				(Theory)				
~				AS, BT, CH, IM, M		1		
Course		:	MAT231BT		CIE	:		Marks
	s: L:T:P	:	3:1:0		SEE	:		Marks
Total I	lours	:	40L+13T		SEE Duration	:	3.00	Hours
			T	nit-I				09 Hrs
Lanla	e Transform.	Fxi		less of Laplace trans	form (LT) transform	n o	f elem	
-				scaling, s - domain				•
				ime domain. LT of				
•			0	& half wave rectifi	*			· •
functio	on, t - shift prope	rty	. Implementation us	sing MATLAB.		-		-
			Un	nit — II				07 Hrs
				operties, evaluation				
	· · ·	em	s. Application to se	olve ordinary linear	differential equation	ons.	Impl	ementation using
MATL	AB.							
<u> </u>		1		it –III	1	1		09 Hrs
				bers, basic propertie				
	· ·			erivatives of analytic		s,	Macia	urin's, Laurent's
series.	Zeros and poles	, к		plementation using N hit –IV	AILAD.			08 Hrs
Nume	rical Methods f	or		lutions to partial dif	ferential equations _	Fir	ite dif	
				lace equation in two				
			ods). Implementation					
				nit –V				07 Hrs
Linear	· Programming	: N	Aathematical formu	lation of Linear Pro	gramming Problem	(LF	PP). So	olving LPP using
Graphi	cal, Simplex and	1 B	ig M methods. Impl	lementation using M	ATLAB.			
	Course Outee	mo	. After completin	a the equation the sta	idanta will be able :	to		
CO1:				g the course, the stu f statistics, complex			verse I	anlace transform
COI.	and numerical		•	i statistics, complex	anarysis, Laplace &	111		
CO2:				tistics, complex anal	vsis. Laplace transfo	orm	and m	umerical methods
001				lve the problems of				
CO3:				ems obtained from				atistics, complex
	•			erical methods to the				· 1
CO4:				statistics, complex			nsforr	n and numerical
	methods to sol	ve	partial differential e	equations arising in n	nany practical situati	ions	5.	
		_				_		
	nce Books							
	B.S. Grewal, Hi 33284-9-1.	ghe	er Engineering Mat	hematics, Khanna I	Publishers, 44 th Edit	ion	, 2015	5, ISBN: 978-81-
		ing	Mathematics, B.V.	Ramana, 11 th Editi	on. 2010. Tata McG	rau	-Hill.	ISBN: 978-0-07-

N.P. Bali & Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications, 7th Edition,

Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016. John Wiley & Sons,

063419-0.

2010, ISBN: 978-81-31808320.

ISBN: 978-0470458365.

3

4

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) # **COMPONENTS** MARKS **QUIZZES:** Quizzes will be conducted in online/offline mode. **TWO QUIZZES** will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM 1. 20 OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS. **TESTS:** Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, 2. Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each 40 test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 3. **40** 40 MARKS. **MAXIMUM MARKS FOR THE CIE (THEORY)** 100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: III					
	ENVIRONMENT AND SUSTAINABILITY							
			ory: Basket Course					
		()	Common to all Prog	grams)				
	-	I	(Theory)		1			
Course Code	:	CV232AT		CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45L		SEE Duration	:	3 Hours		
			Unit-I			10 Hrs		
						onment – need for public		
						ty: genetic, species and		
						ching of wildlife, man-		
				conservation of biodiv				
						ater, Soil, Air and Noise		
					Safe	ety Management system		
(OHASMS). Enviro	onm	ental protection, Env	vironmental protection	on acts.				
			Unit – II			08 Hrs		
			0, 0			w Energy Sources: Need		
						on cycle, emission and		
sequestration, Gre	en	Engineering: Susta	inable urbanization-	- Socioeconomical	and	l technological change.		
Applications of -	Hyd	rogen energy, Ocea	in energy resources,	Tidal energy conve	ersi	on. Concept, origin and		
power plants of geo	the	rmal energy.						
			Unit –III			08 Hrs		
SUSTAINABILIT	Y	AND MANAGEM	ENT: Introduction	to Environmental	Eco	onomics, Environmental		
Audit, Development	nt, (GDP, Sustainability	- concept, needs a	nd challenges-econo	mio	c, social and aspects of		
sustainability - from	n un	sustainability to sus	tainability-millenniu	m development goals	an	d protocols.		
Linear vs. cyclical	res	ource management	systems, need for sy	stems thinking and	des	ign of cyclical systems,		
circular economy,	ndu	strial ecology, green	n technology. Specifi	ically apply these con	nce	pts to: Water Resources,		
Energy Resources,	Foo	d Resources, Land &	k Forests, Waste mar	nagement.				
			Unit –IV			08 Hrs		
SUSTAINABLE I	DEV	ELOPMENT GO	ALS - targets, indic	cators and interventi	on	areas Climate change -		
Global, Regional a	nd	local environmental	issues and possible	e solutions. Concept	of	Carbon Credit, Carbon		
Footprint. Environm	nen	tal management in ir	dustry.	-				
SUSTAINABILIT	ΥF	PRACTICES: Zero	waste and R concept	t, Circular economy,	ISC	D 14000 Series, Material		
						Green buildings, Green		
		iency, Sustainable tra						
			Unit –V			08 Hrs		
CORPORATE SC	OCL	AL RESPONSIBIL		ng & Definition of C	CSR	, History & evolution of		
						apping concept. Concept		
•				▲ ·		vernance; environmental		
•		U		L .	0	avor of GRI, Dow Jones		
		EPI. Investor interes				······		
	,							
Course Outcomes	Af	ter completing the	course, the students	will be able to:				
			Invironment and its E					
				for sustainable strates	w f	or present scenario		
CO2 Explain the	/ va	rous types of ponut			5y 1			

CO3 Evaluate the different concepts of sustainability and its significance for welfare of all life forms.

CO4 Recognize the role of Corporate social responsibility in conserving the Environment.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	erence Books
1	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 -
1.	978-9387432352
2.	'Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3rd edition,
4.	Pearson Education, 2006. ISBN-13 - 978-0132339346
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006
4	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David
4.	Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES willbe conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			-			
		ΝΛΑΤΕΒΙΑΙ	Semester: III S SCIENCE FOR ENGIN	NEEDS		
			egory: Professional Core	NEEKS		
		Cut	(Theory)			
Course Code	:	ME232AT		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
			Unit-I			06 Hrs
The Fundamenta	als o	of Materials				
			of atomic and molecular			
metallic bond, see	conc	lary bonds, mixed b	oonding, hybridization. Ener	rgy bands in meta	als, i	nsulators, and
			Defects and dislocations. Ty	pes of materials:	: pol	ymers, metals
and alloys, ceram	ics,	semiconductors, co	*			
			Unit – II			10 Hrs
Material behavio	our					
Thermal properti	es:	thermal conductivi	ty, thermoelectric effects,	heat capacity, t	hern	nal expansion
coefficient, therm	al s	hock, thermocouple	e. Electrical Properties: die	lectric behaviour	s an	d temperature
dependence of the	ne d	dielectric constant,	insulating materials, ferro	pelectricity, piezo	oele	ctricity, super
-	-		scence, optical fibers, Me	-		
-		-	formation, hardness, viscoe	elastic deformation	on, i	mpact energy,
fracture toughnes	s, fa					
		1	Unit –III			10 Hrs
cement, concrete,	diel cei	lectrics, optoelectro ramic, and glasses.	onics, structural materials, Polymers: thermosets and onic packaging materials, bi	thermoplastics,	com	posites: fibre-
			Unit –IV			07 Hrs
Heat Treatment						I
processing. Heat tempering. forma	treation	atment of ferrous of austenite, cons nt processes: carbu	ctronic devices: thermal of materials: annealing, spher truction of Time Temperat rizing, nitriding, cyaniding	roidizing, norma ure Transformati	lizin ion	ng, hardening, (TTT) curves.
			Unit-V			07 Hrs
sputtering, lithog graphene, nano I glasses, nano bio	rapl FRP oma	ny. Nano porous n s, nano fabrics, bi	g, sol-gel, vapour deposition naterials: zeolites, mesopor oresorbable and bio-erodat nt associated materials. Cl e microscopy.	rous materials, c ble materials, na	carbo no o	on nanotubes, ceramic, nano

RV Educational Institutions [®] RV College of Engineering [®]

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Course Outcomes: After completing the course, the students will be able to:				
CO1	Understand the classification of materials, their atomic structure, and properties.				
CO2	Investigate the properties and applications of different materials.				
CO3	Analyse the effect of different heat treatment processes.				
CO4	Recognize different types of nanomaterials, synthesis methods and characterisation techniques.				

Ref	erence Books
1.	Material Science and Engineering, William D Callister, 6 th Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-5
2.	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6
3.	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-066717-9
4.	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996, ISBN:978-0849322749

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	5 & 6 Unit 3 : Question 5 or 6			
7 & 8 Unit 4 : Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: III				
		BIO	SAFETY STANDARDS Category: Basket Course (Common to all Prog	- Group A			
			(Common to an Prog (Theory)	, , , , , , , , , , , , , , , , , , , 			
Course Code	:	BT232AT	(21001)	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	45L		SEE Duration	:	3 Hours	
			Unit-I				09 Hrs
Biohazards, Bio	afet	v levels and	cabinets: Introduction to H	Biohazards, Biolog	ical	Safety levels.	
-		•	Bio safety cabinets. Vario			•	•
			rs, filters, pumps, compress			C	•
			Unit – II				08 Hrs
Biosafety Guideli	nes:	Biosafety gu	idelines of Government of	India, GMOs &	LM	Os, Roles of I	nstitutional
			ew committee o Genetic 1				
-		* *	in food and agriculture. C	Overview of Nation	nal	Regulations an	nd relevant
International Agre	eme	nts including C	Cartagena Protocol.				
			Unit –III				10 Hrs
-			od Safety and Standards A	uthority of India),	Fu	nctions, Licens	e, types of
FSSAI Licences an		1				.1	C
			of food microbiology and		ibor	ne pathogens,	sources of
6			w materials, water, air, equi			C 1	
			ilage and Foodborne diseas				
			nan nutrition, Food Analysi is Critical Control Point (H		iera	i principies of	lood safety
management syste	1115, 1	Hazaru Anarys	Unit –IV	IACCI).			09 Hrs
Food procorvet	ong	Drogossing	and Packaging: Food	d Processing Or	ara	tions Dringin	
-		0.	ood production, and proce	U			
Overview of foo	d pi	reservation m	ethods and their underlyi	ing principles inc	ludi	ng novel and	emerging
methods/principles	5. Ov	verview of food	d packaging methods and pr	rinciples including	nov	el packaging m	aterials.
			Unit –V				09 Hrs
•			ards, Food Additives, Food	0			
			Foodborne Illness, Consum			and, Food Proc	luction and
Economics, History of Food Safety, The Role of Food Preservation in Food Safety.							
Ethics: Clinical eth	nics,	Health Policy,	, Research ethics, ethics on	Animals. Biosafety	y an	d Bioethics.	
			g the course, the students				
·		v	of Biohazards and bio safety				
CO3 Knowledge with respect to the Food standards, Hygiene, food processing and packing							
		ith respect to the	<u> </u>	e, food processing a		packing	

Reference Books

1	Deepa Goel, Shomini Parashar IPR, Biosafety and Bioethics 1st Edition, Pearson; 1st edition, 2013, ISBN:	
	978-8131774700.	

2 Cynthia A Roberts, The Food Safety, Oryx Press, first edition, 2001, ISBN: 1–57356–305–6.

3 Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.

4 Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

#	COMPONENTS	MARKS
	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

R	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: (Internal Choice)	16			
5&6	Unit 3: (Internal Choice)	16			
7&8	Unit 4: (Internal Choice)	16			
9 & 10	Unit 5: (Internal Choice)	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological

University, Belagavi

Approved by AICTE, New Delhi

Semester: III						
		THER	MODYNAMICS			
		Category: PROFE	SSIONAL CORE COURSE			
		(Theo	ory & Practice)			
Course Code	:	AS233AI	CIE	:	100+50 Marks	
Credits: L:T:P	:	3:0:1	SEE	:	100+50 Marks	
Total Hours	:	45L+28P	SEE Duration	:	3.00 +3.00 Hours	

Unit-I	11 Hrs		
First Law of thermodynamics: Steady flow energy equation and Steady flow engineering d	evices, PMMK1,		
Unsteady flow process- Charging and discharging process			
Properties of Pure Substances: Property diagrams for phase-change processes, Property tables, Ideal-ga			
equation of state, Compressibility factor, use of compressibility charts, Other equation of state- Vander Waal			
Equation of State.			
	08 Hrs		

Second law of Thermodynamics: Limitations of First Law of thermodynamics, Heat engine, Heat pump, Clausius and Kelvin Planck statement, Carnot's principle, Carnot cycle and its specialties, PMMK2 Introduction to Entropy: Increase of entropy principle, Isentropic process, T-ds relations,

 Unit –III
 08 Hrs

 Entropy: Entropy change of liquids and solids, Entropy change of ideal gases, Isentropic efficiencies of steady flow devices, Entropy balance.

Gas Mixtures: Mass fraction, Mole fraction, volume fraction, Ideal gas mixture and Real gas mixtures; Dalton's laws of partial pressures, Amagat's law of additive volumes,

 Unit –IV
 07 Hrs

 Gas Cycles: Efficiency of air-Standard cycles-Carnot cycle, Otto, Diesel, Dual and Brayton cycle, Mean effective pressure, Representation of cycles on P-V and T-s diagrams.

Performance of I.C. Engines: Air and Fuel measurement, Calculation of IP BP & amp; FP, and Heat Balance sheet calculations.

Unit –V

11 Hrs

Psychrometry: Properties of atmospheric air, Construction and use of psychrometric chart, Analysis of various processes, heating, cooling, dehumidifying and humidifying, Adiabatic mixing of moist air, Analysis of various Air conditioning processes.

LABORATORY EXPERIMENTS

- 1. Determination of flash point and fire point of the given fuels/lubricating oils using Abel Pensky and Pensky Martin's apparatus
- 2. Determination of Calorific Value of Solid & Liquid Fuels using Bomb calorimeter
- 3. Determination of Calorific Value of gaseous fuel using Junker gas calorimeter
- 4. Determination of viscosity of various lubricating oils using Redwood, Saybolts Viscometers
- 5. Determination of viscosity of various lubricating oils using Brookfield Viscometer
- 6. Study of characteristics and performance of a 4 stroke Diesel Piston engine under various conditions
- 7. Study of characteristics and performance of a 4 stroke Petrol Piston engine under various conditions
- 8. Determination of Friction power using Morse test
- 9. Determination of effectiveness of a parallel and counter flow heat exchangers
- 10. Determination of constituents of a gas mixture using Orsat apparatus
- 11. Study the performance of vapor compression air conditioning system
- 12. Study the performance of vapor compression refrigeration

RV Educational Institutions [®] RV College of Engineering [®]

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course	Course Outcomes: At the end of this course the student will be able to :						
CO1:	D1: Understand the concepts and definitions of thermodynamics						
CO2:	Differentiate thermodynamic work and heat and apply I law and II law of thermodynamics to different						
02.	processes						
CO3:	Comprehend and utilize the principles of Refrigeration and air conditioning						
CO4:	Design and Analyze the functioning of various Thermodynamic cycles						

Reference Books

INCIN	creater books
1	Thermodynamics: An Engineering Approach, Yunus A.Cengal and Michael A.Boles, 8th Edition, 2016,
1	Tata McGraw Hill publications, ISBN: 9780070495036.
2	Engineering Thermodynamics, J.B.Jones and G.A.Hawkins, 2 nd Edition, 1986, John Wiley and Sons,
2	ISBN: 978-0471812029.
3	Fundamentals of Classical Thermodynamics, G.J.Van Wylen and R.E.Sonntag, 3 rd Edition, 1986, Wiley
3	Eastern, ISBN-13: 978-0-471-61075-5.
4	Basic and Applied Thermodynamics P.K.Nag, 2 nd Edition., 2002, Tata McGraw Hill Pub, ISBN-13: 978-
4	0070151314.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTICE)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40	
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50	
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	150	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q. NO	Q. NO CONTENTS				
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

Autonomous Institution Affiliated to Visvesvaraya Technological

Approved by AICTE, New Delhi

University, Belagavi						
			Semester: III			
		ME	CHANICS OF FLU	IDS		
		Category: PR	ROFESSIONAL CO	RE COURSE		
			(Theory & Practice))		
Course Code						
Credits: L:T:P	:	3:0:1		SEE	:	100 +50 Marks
Total Hours	:	45L+28P		SEE Duration	:	3.00 +3.00 Hours
		Uı	nit-I			09 Hrs
and curved surfaces, o Meta centric height. Fluid Kinematics: In	centro troc	re of pressure, Buoy luction, Lagrangian	yancy, Stability of su & Eulerian Descrip	bmerged and float	ing bes (ust on submerged plane bodies, Metacenter and of Fluid Flows, Stream city potential function,
continuity equation in					eloc	ty potential function,
Unit – II 09 Hrs						
Potential Flows: Lap	lace	Equation, Uniform	flow, Source flow, S	ink flow, Combina	tion	of a uniform flow with
source and sink, Dou	ıblet	t flow, Non-lifting	flow over a circular	r cylinder, Vortex	flo	w, Lifting flow over a
circular cylinder, Kutt	a-Jc	oukowski theorem ar	nd generation of Lift,	D'Alembert's para	adox	Κ.
		Uni	it -III			11 Hrs
Momentum Conserva Incompressible Invis Bernoulli's equation f	tion s cid for re	and Energy conserv Flow: Euler's equa eal fluid flows.	vation equations, and ation of fluid motion	Introduction to Na (from first princip	vier ples	em, Mass conservation, -Stokes Equations.), Bernoulli's equation, lotches: rectangular and
V-notch, Pitot and Pit		-		• ·		e e
·			it -IV			08 Hrs
Incompressible Visco momentum thickness;						lacement thickness and ection factor.

Turbulent Flows: Mechanism of Transition from Laminar to Turbulent Flows, magnitude, Intensity and scale of Turbulence, Measurement of Turbulence using Hot Wire Anemometer, Velocity distribution in a Turbulent Flow, Head Loss in Pipe due to Friction (Darcy's Equation).

Unit -V08 HrsDimensional Analysis & Model Studies:Units and Dimensions, Dimensional Homogeneity, Dimensional
Analysis-Rayleigh's Method, Buckingham's π-Theorem, Dimensionless numbers. Model Analysis, Types of
Similarities and Similitude, Similarity Laws. Introduction to Compressible Flows:
Stagnation Properties, One-
Dimensional Isentropic Flow, Mach number, Mach Cone.

LABORATORY EXPERIMENTS

- 1. Determination of major losses in fluids flowing through pipes.
- 2. Determination of minor losses in fluids flowing through pipes
- 3. Determination of Co-efficient of discharge over a V-notch
- 4. Determination of force generated by the impact of water jet on the vanes
- 5. Determination of Co-efficient of discharge through Venturimeter
- 6. Determination of Co-efficient of discharge through Orifice meter
- 7. Determination of type of flow for different Reynolds Number using Reynolds apparatus
- 8. Study of performance characteristics of a single stage centrifugal pump
- 9. Study of performance characteristics of a multi-stage centrifugal pump
- 10. Study of performance characteristics of a Francis turbine
- 11. Study of performance characteristics of a Pelton wheel
- 12. Determination of metacentric height of floating bodies
- 13. Flow Visualization studies using water tunnel

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological

Course Outcomes: After completing the course, the students will be able to					
CO 1:	CO 1: Identify the properties of fluid which influence flow characteristics				
CO 2:	Distinguish fluid flows and evaluate the properties associated with the flow				
CO 3:	Apply Dimensional analysis and similarity laws for conducting model tests				
CO 4:					

Reference Books

University, Belagavi

1	Fluid Mechanics, Frank M White, 7 th Edition, 2012, McGraw Hill, ISBN 9780073529349					
2	Fluid Mechanics and Applications, Yunus A. Cengel & John M Cimbala, 12 th Edition, 2009, Tata McGraw- Hill Publishers,. ISBN: 9780070700345					
3	Fluid Mechanics, Streeter. V. L., and Wylie, E.B., 9th Edition, 2017, McGraw Hill, 1983 ISBN: 0071156003					
4	Mechanics of Fluids, B S Massey, 7th Edition, 1998, ELBS Edition. ISBN-10: 0748740430					
5	Fluid Mechanics, Hydraulics and Fluid Machines, Ramamritham. S, 9 th Edition, 2014, Dhanpat Rai& Sons, Delhi, 1988.ISBN: 978-93-84378-27-1					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRAC				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40		
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50		
MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO	Q. NO CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q. NO	Q. NO CONTENTS				
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

Approved by AICTE, New Delhi

Semester: III							
STRUCTURAL MECHANICS							
		Category: P	PROFESSIONAL CORE COURSE				
	(Theory)						
Course Code							
Credits: L:T:P : 3:0:0 SEE : 100 Marks							
Total Hours : 45L SEE Duration : 3.00 Hours							

Unit-I	11 Hrs				
Basic equations of linear elasticity: Stress and Strain, True stress and Engineering Stress	, Hooke's Law,				
Generalized Hooks law, Relationship between Elastic Constants, Thermal Stresses, Compound I	pars, Principle of				
Superposition.					
Principal Stresses and Strain: State of Stress, Stress and Strain at a point, Plane Stress a	and Plane Strain				
approximations.					
Unit – II	09 Hrs				
Bending Moment and Shear Force Diagram: Sign Convention, Procedure for drawing	BMD and SFD,				
Different types of Loading and their S.F & B.M Diagram, Point of Contra flexure, General expre	ession.				
Unit –III	09 Hrs				
Euler-Bernoulli beam theory: The Euler-Bernoulli assumptions, Implications of the	Euler-Bernoulli				
assumptions.					
Deflection of Beams: Equation of Elastic curve, Deflection of Beams.					
Unit –IV	07 Hrs				
Torsion: Torsion of circular shafts, polar moment of inertia and polar section modulus, Compar	ison of solid and				
hollow shaft, Torsion combined with axial force and bending moments, Power transmission.					
Unit –V	09 Hrs				
Failure Theories: Maximum Principal Stress Theory, Maximum Shear Stress, Strain Energy	Theory, Shear				
strain Energy theory, Maximum principal strain theory.					
Shells: Thin cylindrical shell of circular cross section, Thin spherical shell, Cylindrical shell with hemispherical					

ends, Bending stresses in thin-walled circular cylinders.

Course C	Course Outcomes:						
At the end	At the end of this course the student will be able to :						
CO 1:	CO 1: Understand the nature of different types of loads						
CO 2:	Describe the behaviour of structures under various loads						
CO 3:	Apply various principles to ascertain the character of materials under different loads						
CO 4:							

Refe	rence Books
1	Timoshenko and Young "Elements of Strength of Mateials', East-West Press, 1976. ISBN: 978-93-84378
2	Beer.F.P. and Johnston.R, 'Mechanics of Materials', McGraw Hill Publishers, 2006. ISBN: 978-0073398
3	Structural Mechanics, Bao Shihua, Gong Yaoqing, Wuhan University of Technology Press, 2005.
4	Aircraft structural Analysis, T.H.G Megson, Butterworth-Heinemann Publications, 2007. ISBN: 978-1-
4	85617-932-4
5	S.Ramamrutham, R Narayanan, "Strength of Materials', Dhanapath Rai Publishing Company, New Delhi,
5	2012. ISBN: 978-93-84378-26-4

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) # **COMPONENTS** MARKS **OUIZZES:** Quizzes will be conducted in online/offline mode. **TWO OUIZZES** will be 1. conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM 20 OF TWO OUIZZES WILL BE CONSIDERED AS FINAL OUIZ MARKS. TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, 2. Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test **40** will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE **REDUCED TO 40 MARKS. EXPERIENTIAL LEARNING:** Students will be evaluated for their creativity and practical 3. **40** implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100 RUBRIC FOR SEMESTER END EXAMINATION (THEORY) Q. NO **CONTENTS** MARKS PART A 1 Objective type questions covering entire syllabus 20 PART B (Maximum of THREE Sub-divisions only) 2 Unit 1: (Compulsory) 16 3 & 4 Unit 2: Question 3 or 4 16 Unit 3: Question 5 or 6 5&6 16 7 & 8 Unit 4: Question 7 or 8 16 9 & 10 Unit 5: Question 9 or 10 16 TOTAL 100

ted Approved by AICTE, New Delhi

		Semester:	III					
NATIONAL SERVICE SCHEME (NSS)								
		(Practica	l)	-				
Course Code	:	HS237AL	CIE	:	50 Marks			
Credits: L: T: P	:	0:0:2	SEE	:	50 Marks			
Total Hours	:	26P	SEE Duration	:	02 Hrs			

Prerequisites:

Technological University, Belagavi

- 1. Students should have service-oriented mindset and social concern.
- 2. Students should have dedication to work at any remote place, any time with available resources and proper time management for the other works.
- 3. Students should be ready to sacrifice some of the timely will and wishes to achieve service-oriented targets on time.

Content13 HrsStudents must take up any one activity on below mentioned topics and must prepare contents for awareness and
technical contents for implementation of the projects and has to present strategies for implementation of the
same.Compulsorily must attend one camp.

CIE will be evaluated based on their presentation, approach, and implementation strategies. (Any one of the belowmentioned activity)

- 1. Helping local schools to achieve good result and enhance their enrolment in Higher/technical/ vocational education.
- 2. Preparing an actionable business proposal for enhancing the village/ farmer income and approach for implementation.
- 3. Developing Sustainable Water management system for rural/ urban areas and implementation approaches.
- 4. Setting of the information imparting club for women leading to contribution in social and economic issues.
- 5. Spreading public awareness/ government schemes under rural outreach program. (Minimum 5 programs)
- 6. Contribution to any national level initiative of Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc...
- 7. Social connect and responsibilities
- 8. Plantation and adoption of plants. Know your plants
- 9. Organic farming, Indian Agriculture (Past, Present and Future) Connectivity for marketing
- 10. Waste management Public, Private and Govt organization, 5 R's
- 11. Water conservation techniques Role of different stakeholders Implementation
- 12. Govt. School Rejuvenation and assistance to achieve good infrastructure.
- 13. Organize National integration and social harmony events/ workshops / seminars. (Minimum 2 programs) and ONE NSS-CAMP.

Course Outcomes: After completing the course, the students will be able to: -

CO1 Understand the importance of his/her responsibilities towards society.

CO2 Analyze the environmental and societal problems/ issues and will be able to design solutions for thesame.

CO3 Evaluate the existing system and to propose practical solutions for the same for sustainabledevelopment.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****				
Case Study-based Teaching-Learning	10	T 1 .				
Sector wise study & consolidation	10	Implementation strategies of the project with report				
Video based seminar (4-5 minutes per student)	10					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: III					
	NATIONAL CADET CORPS (NCC)							
			(Practical)					
Course Code	:	HS237BL		CIE	:	50 Marks		
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks		
Total Hours	:	26P		SEE Duration	:	02 Hrs		
			Unit-I	·	•	07 Hrs		
Drill: Foot Drill-	- Dri	ll ki Aam Hida	vaten, Word ki Command, S	avdhan, Vishram, A	ram	Se, Murdna,		
KadvarSizing, Te	en Li	ine Banana, Khu	i Line, Nikat Line, Khade Khao	de Salute Karna				
			Unit – II			03 Hrs		
Weapon Training	(WT): Introduction d	Characteristics of 7.62 Self Lo	oading rifle, Identifica	atior	n of rifle parts		
			Unit –III			03 Hrs		
Adventure activit	ies: T	rekking and obs	acle course					
			Unit –IV			02 Hrs		
Social Service a	Social Service and Community Development (SSCD): Students will participate in various activities							
throughout the semester e.g., Blood donation Camp, Swachhata Abhiyan, Constitution Day, All National								
Festival								
	A 64							

Course	Course Outcomes: After completing the course, the students will be able to: -							
CO1	Understand that drill as the foundation for discipline and to command a group for common goal.							
CO2	Understand the importance of a weapon its detailed safety precautions necessary for prevention of							
	accidents and identifying the parts of weapon.							
CO3	Understand that trekking will connect human with nature and cross the obstacles to experience army way							
	of life.							
CO4	Understand the various social issues and their impact on social life, Develop the sense of self-less social							
	service for better social & community life.							

Reference Books

- NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R- 1991, ISBN: 978-93-87918-57-3, HSN Code: 49011010
 Appendix as in
- 2. nccindia.ac.in

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****				
EXPERIENTIAL LEARNING						
Presentation 2 (phase 2)	10	****				
Content development, strategies for						
implementationmethodologies.						
Case Study-based Teaching-Learning	10	Implementation strategies of the project				
Sector wise study & consolidation	10	with report				
Video based seminar (4-5 minutes per student)	10					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Semester: III								
	PHYSICAL EDUCATION								
		(SPORTS &	ATHLETICS)						
		(Pra	ctical)						
Course Code	:	HS237CL	CIE	:	50 Marks	5			
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks	5			
Total Hours	:	26P	SEE Duration	:	2.5 Hrs				
	Content 30 Hrs								

Topics for Viva:

- 1. On rules and regulations pertaining to the games / sports
- 2. On dimensions of the court, size / weight of the ball and standards pertaining to that sports / game
- 3. Popular players and legends at state level / National level/ International level
- 4. Recent events happened and winner / runners in that sport / game
- 5. General awareness about sport / game, sports happenings in the college campus

Course	Outcomes:	After co	ompleting t	he course,	the students	will be able to: -

CO1 Understand the basic principles and practices of Physical Education and Sports.

CO2 Instruct the Physical Activities and Sports practices for Healthy Living.

CO3 To develop professionalism among students to conduct, organize & Officiate Physical Education and Sports events at schools and community level.

Reference Books

- 1. Health, Exercise and Fitness, Muller, J. P. (2000), Delhi: Sports.
- 2. Play Field Manual, Anaika ,2005, Friends Publication New Delhi.
- 3. IAAF Manual.
- **4.** Track and Field Marking and Athletics Officiating Manual, M.J Vishwanath,2002, Silver Star Publication, Shimoga.
- 5. Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinetics'.

Note: Skills of Sports and Games (Game Specific books) may be referred

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the				
Video based seminar (4-5 minutes per student)	10	project with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

			Semester: III			
			MUSIC (Practical)			
Course Code	:	HS237DL		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	26P		SEE Duration	:	02 Hrs
			Content			13 Hrs

- 1. Introduction to different genres of music
- 2. Evolution of genres in India: Inspiration from the world
- 3. Ragas, time and their moods in Indian Classical Music
- 4. Identification of ragas and application into contemporary songs
- 5. Adding your touch to a composition
- 6. Maths and Music: A demonstration
- 7. Harmonies in music
- 8. Chords: Basics and application into any song
- 9. Music Production-I
- 10. Music Production-II

Students have to form groups of 2-4 and present a musical performance/ a musical task which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach, and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -

CO1	Understand basics of Music and improve their skills.	
CO2	Appreciate the impacts on health and well-being.	
CO3	Perform and present music in a presentable manner.	
CO4	Develop skills like team building and collaboration.	

Reference Books

1.	Music Cognition: The Basics by Henkjan Honing.					
2.	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory Answer Book by Glory					
	St Germain.					
3.	Elements Of Hindustani Classical Music by Shruti Jauhari.					
4.	Music in North India: Experiencing Music, Expressing Culture (Global Music Series) by George E.					
	Ruckert					

ASSESSMENT AND EVALUATION PATTERN				
WEIGHTAGE	50%	50%		
	CIE	SEE		
Presentation 1- Selection of topic- (phase 1): Justification for Importance, need of the hour withsurveyed data	10	****		
EXPERIENTIAL LEARNING: Presentation 2 (phase 2): Content				
development, strategies for implementationmethodologies.	10	****		
Case Study-based Teaching-Learning	10	Implementation		
Sector wise study & consolidation	10	strategies of the		
Video based seminar (4-5 minutes per student)	10	projectwith report		
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III DANCE (Practical) CIE Course Code : **HS237EL** : 50 Marks SEE Credits: L: T: P : 0:0:2 : 50 Marks **Total Hours** : 26P SEE Duration : 02 Hrs 13 Hrs Contents 1. Introduction to Dance Preparing the body for dancing by learning different ways to warm up. 2. 3. Basics of different dance forms i.e., classical, eastern, and western. 4. Assessing the interest of students and dividing them into different styles based on interaction. 5. Advancing more into the styles of interest. 6. Understanding of music i.e., beats, rhythm, and other components. 7. Expert sessions in the respective dance forms.

- 8. Activities such as cypher, showcase to gauge learning.
- 9. Components of performance through demonstration.
- 10. Introduction to choreographies and routines.
- 11. Learning to choreograph.
- 12. Choreograph and perform either solo or in groups.

Course Outcomes: After completing the course, the students will be able to: -

- **CO1** Understand the fundamentals of dancing.
- CO2 Adapt to impromptu dancing.

CO3 Ability to pick choreography and understand musicality.

CO4 To be able to do choreographies and perform in front of a live audience.

Reference Books

1. Dance Composition: A practical guide to creative success in dance making, Jacqueline M. Smith

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation strategies			
Sector wise study & consolidation	10	of the project with report			
Video based seminar (4-5 minutes per student)	10				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III Theater (Light Camera & Action) (Practical)					
Credits: L:T:P	:	0:0:2		SEE	: 50 Marks
Total Hours	:	26P		SEE Duration	: 02 Hrs
		÷	Contents	÷	13 Hrs

- 1. Break the ICE
- 2. Introduction to freedom Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over social anxiety, Shyness and Nervousness.
- 3. Ura
- 4. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing Voice projection is the strength of speaking or singing whereby the voice is used powerfully and clearly. It is a technique employed to command respect and attention, as when a teacher talks to a class, or simply to be heard clearly, as used by an actor in a theatre.
- 5. It's Leviosa, Not Leviosaaa!
- 6. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The art of dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from the dramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue delivery skills:
- 7. Elementary, My dear Watson.
- 8. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.
- 9. Show time
- 10. Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Mono acting: different types of characters

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Develop a range of Theatrical Skills and apply them to create a performance.				
CO2	O2 Work collaboratively to generate, develop, and communicate ideas.				
CO3	Develop as creative, effective, independent, and reflective students who are able to make informed				
	choices in process and performance.				
CO4	4 Develop an awareness and understanding of the roles and processes undertaken in contemporary				
	professional theatre practice.				

Reference Books

1.	The Empty Space by Peter Brook.
2.	The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina
	Landau.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN				
WEIGHTAGE	50%	50%		
	CIE	SEE		
Presentation 1- Selection of topic- (phase 1)				
Justification for Importance, need of the hour withsurveyed data.	10	****		
EXPERIENTIAL LEARNING				
Presentation 2 (phase 2)	10	****		
Content development, strategies for implementationmethodologies.				
Case Study-based Teaching-Learning	10	Implementation strategies of the		
Sector wise study & consolidation	10	projectwith		
Video based seminar (4-5 minutes per student)	10	report		
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS		

University, Belagavi

Approved by AICTE, d New Delhi

Semester: III						
ART WORK & PAINTING						
	(Practical)					
Course Code	••	HS237GL		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours : 26P SEE Duration : 02 Hrs						
Contents 13 Hrs						

- 1. Use points, line and curves to create various shapes and forms
- 2. Use of shapes and forms to create various objects and structures
- 3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions of perspective
- 4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.
- 5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization create a composition.
- 6. Learn how to use which materials and for what types of art and textures.
- 7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie anddye.
- 8. Real world application of the above concepts in the form of book cover design and illustration, cartoon,poster, advertisements, magazine, computer graphics and animation
- 9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY

Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorilytake part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presentedart style.

Course Outcomes: After completing the course, the students will be able to: -				
CO1	Use lines, shapes, and colors to depict the various sentiments and moods of life and nature.			
CO2	Use one's creativity to develop forms and color schemes, as well as the ability to portray them effectivelyin			
	drawing and painting on paper.			
CO3	Develop the ability to properly use drawing and painting materials (surfaces, tools and equipment, and so			
	on).			
CO4	Improve their observation abilities by studying everyday items as well as numerous geometrical and non-			
	geometrical (i.e., organic) shapes found in life and nature and to hone their drawing and painting talents			
	in response to these insights.			

Reference Books

1	۱.	Catching the Big Fish: Meditation, Consciousness, and Creativity, David Lynch
2	2.	Art & Fear: Observations on the Perils (and Rewards) of Artmaking, David Bayles & Ted Orland

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

SESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation strategies of the project with report			
Sector wise study & consolidation	10	of the project with report			
Video based seminar (4-5 minutes per student)	10				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

resvaraya ological sity, Belagavi PHOTOGRAPHY & FILM MAKING (Practical) CIE

Course Code	:	HS237HL		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	26P		SEE Duration	:	02 Hrs
Contents						13 Hrs

- 1. Introduction to photography.
- 2. Understanding the terminologies of DSLR.
- 3. Elements of photography.
- 4. Introduction to script writing, storyboarding.
- 5. Understanding the visualization and designing a set.
- 6. Basics of film acting
- 7. Video editing using software
- 8. Introduction to cinematography.
- 9. Understanding about lighting and camera angles.
- 10. Shooting a short film.

Students must form groups of 2-4 and present a short film which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -

CO1	Understand basics of photography and videography and improve their skills.
CO2	Appreciate the skills acquired from photography.
CO3	Derform and present photos and films in a presentable manner

CO3 Perform and present photos and films in a presentable manner

CO4 Develop skills like team building and collaboration.

Reference Books

1. Read This If You Want to Take Great Photographs – Henry Carroll

2. The Digital Photography Book: Part 1 – Scott Kelby

WEIGHTAGE	50%	50%
	CIE	SEE
Presentation 1- Selection of topic- (phase 1): Justification for		
Importance, need of the hour withsurveyed data.	10	****
EXPERIENTIAL LEARNING		
Presentation 2 (phase 2): Content development, strategies for	10	****
implementationmethodologies.		
Case Study-based Teaching-Learning	10	Implementation strategie
Sector wise study & consolidation	10	of the project with repor
Video based seminar (4-5 minutes per student)	10	
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

	Visvesvaraya echnological							
Ur	niversity, Belaga	vi						
				Semester: III				
				E COURSE: C PRO				
				Mandatory Audit C				
Course	Codo			Common to all Prog			50	Manlea
Course	s: L:T:P	:	CS139AT		CIE SEE	:		Marks
Total H		:	2:0:0(Audit) 30L		SEE Duration	:		
Total	10015	:	JUL		SEE Duration	:		
				Unit-I				6 Hrs
Introdu	uction to Pro	ors		Cint-1				01115
				computer system, Pro	gramming Langua	ages.		
				ograms. Program De		•	Flo	wcharts and Pseudo
•	Types of Erro		I I I I I I I I I I I I I I I I I I I	0	8	,		
	21		U	nit – II				6 Hrs
Introdu	uction to C							
executii in C, V	ng C Program ariables, Con	ns u Istai	using comments, C nts, I/O statements i	Vriting the first progra Tokens, Character sein C. casting, scope of varia	et in C, Keyword			
			U	nit –III				6 Hrs
Introduce continu Arrays	ction to decis le statements,	sion go	to statements	al branching statemen				
Introduction Continu Arrays Introduction Arrays-	ction to decis the statements, to ction, Declar	sion go atic	on trol, conditionate to statements on of Arrays, Acce erting and Deletior	al branching statements and branching statements and of element in an arr	n array, Storing v	values i	n ar	rays, Operations on - Operations on two
Introducontinu Arrays Introduc Arrays- dimensi	ction to decis le statements, ction, Declar Traversing, ional arrays.	sion go atic	on trol, conditionate to statements on of Arrays, Acce erting and Deletior	al branching statements of an	n array, Storing v	values i	n ar	rays, Operations on
Introduction Continu Arrays Introduction Arrays- dimension Strings	ction to decises the statements, ction, Declar Traversing, ional arrays.	sion go catic Ins	to statements on of Arrays, Acce erting and Deletior Un	al branching statements of an of element in an an an nit –IV	n array, Storing v ray. Two dimensi	values i onal ar	n ar rays-	rays, Operations or - Operations on two <u>6 Hrs</u>
Introduction Arrays Introduction Arrays- dimension Strings Introduction	ction to decis le statements, ction, Declar Traversing, ional arrays.	sion go catic Ins	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findir	al branching statements of an of element in an arrant nit –IV	n array, Storing v ray. Two dimensi converting chara	values i onal ar	in ar rays-	rays, Operations or - Operations on two <u>6 Hrs</u> tring into uppercase
Introduction Continue Arrays- Introduction Arrays- dimension Strings Introduction and low	ction to decis le statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Cond	sion got ratio Ins	to statements on of Arrays, Acce erting and Deletior Un s on strings- findin nating two strings,	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to	n array, Storing v ray. Two dimensi converting chara	values i onal ar	in ar rays-	rays, Operations or - Operations on two <u>6 Hrs</u> tring into uppercase
Introduction continue Arrays Introduction Arrays- dimension Strings Introduction and low a string	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- c, String and c	sion got ratio Ins	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findir	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to	n array, Storing v ray. Two dimensi converting chara	values i onal ar	in ar rays-	rays, Operations on - Operations on two <u>6 Hrs</u> tring into uppercase
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- cs. String and con- ons	sion go catic Ins tion cate	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findir nating two strings, racter Built in funct	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to ions.	n array, Storing v ray. Two dimensi converting chara o another string, c	values i onal ar oters of compart	f a sting t	rays, Operations on - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- ctions, Using ction, Using	sion go catic Ins tion cate	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findir nating two strings, racter Built in funct	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to	n array, Storing v ray. Two dimensi converting chara o another string, c	values i onal ar oters of compart	f a sting t	rays, Operations on - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- cs. String and con- ons	sion go catic Ins tion cate	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findin nating two strings, cacter Built in funct nctions, Function	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to ions.	n array, Storing v ray. Two dimensi converting chara o another string, c	values i onal ar oters of compart	f a sting t	rays, Operations or - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing tion, Function call,
Introduction Continue Arrays Introduction dimension Strings Introduction and low a string Function Introduction Return	ction to decisive statements, ction, Declar Traversing, ional arrays. ction, Operative ction, Operative ction, Operative string and cons ction, Using statement.	sion go catic Ins tion cate	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findin nating two strings, cacter Built in funct nctions, Function	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to ions.	n array, Storing v ray. Two dimensi converting chara o another string, c	values i onal ar oters of compart	f a sting t	rays, Operations or - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Introduction Return Function	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- cons ction, Using statement.	sion go ratic Ins tion cate char fu	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findin nating two strings, racter Built in funct nctions, Function	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to ions. declaration/function	n array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func	values i onal ar onal ar onal ar	f a sing t	rays, Operations or - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Return Function Passing	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- cons ction, Using statement.	sion go ratic Ins tion cate char fu	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findin nating two strings, racter Built in funct nctions, Function U function, Built-in f	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to ions.	n array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func	values i onal ar onal ar onal ar	f a sing t	rays, Operations on - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Return Function Passing Structu	ction to decisive statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Conce ction, Operativercase, Conce string and cons ction, Using statement. ons g parameters to ures and Point	sion go ratic Ins tion cate char fu	a control, conditiona to statements on of Arrays, Acce erting and Deletion Un s on strings- findin nating two strings, cacter Built in funct nctions, Function Un function, Built-in f rs	al branching statements of an of element in an arrant nit –IV ng length of a string, appending a string to ions. declaration/function	n array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions.	cters of compari- ction de Recurs	f a solution f a s	rays, Operations or - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing tion, Function call <u>6 Hrs</u>
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Return Function Passing Structur Introduction	ction to decisive statements, ction, Declar Traversing, ional arrays. ction, Operative vercase, Conce string and cons ction, Using statement. ons g parameters to res and Poi ction: Struct	sion go ratic Ins tion cate char to a nte ure	a control, conditiona to statements on of Arrays, Acce erting and Deletion Un s on strings- findin nating two strings, acter Built in funct nctions, Function U function, Built-in f rs Declaration, Type	al branching statements of an of element in an arran and an arran and a string, appending a string to ions. declaration/function	n array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions.	cters of compari- ction de Recurs	f a solution f a s	rays, Operations or - Operations on two <u>6 Hrs</u> tring into uppercase wo string, reversing tion, Function call <u>6 Hrs</u>
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Introduction Passing Structuctur	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operative ction, Operative vercase, Con- ction, Using statement. ction, Using statement. ons g parameters to res and Poi ction: Struct	sion go ratic Ins tion cate char to a nter ure ion	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findin nating two strings, racter Built in funct nctions, Function U function, Built-in f rs Declaration, Type to pointers, declarin	al branching statements of an of element in an arran nit –IV ng length of a string, appending a string to ions. declaration/function Jnit-V Functions. Passing arrandef declaration, initing pointer variables.	n array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions. alization of struc	values i onal ar oters of compart otion de Recurs tures, a	f a solution f a s	rays, Operations on - Operations on two 6 Hrs tring into uppercase wo string, reversing tion, Function call 6 Hrs
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Return Function Passing Structur Introduction Structur Introduction Course	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operator vercase, Con- ction, Operator vercase, Con- ction, Using statement. ction, Using statement. parameters to res, Introduct Outcomes:	sion got Ins tion cate char to a nte ure ion Aft	a control, conditiona to statements on of Arrays, Acce erting and Deletior Un s on strings- findin nating two strings, acter Built in funct nctions, Function U function, Built-in f rs Declaration, Type to pointers, declarin er completing the	al branching statements of an of element in an arran of element in an arran nit –IV ng length of a string, appending a string to ions. declaration/function Jnit-V Functions. Passing arrandef declaration, initing pointer variables.	a array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions. alization of struc	values i onal ar oters of compart otion de Recurs tures, a	f a solution f a s	rays, Operations on - Operations on two 6 Hrs tring into uppercase wo string, reversing tion, Function call 6 Hrs
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Return Function Passing Structur Introduction Structur Course CO 1	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- cons ction, Operativercase, Con- cons ction, Using statement. ons g parameters to ction: Struct res, Introduct	sion go ratic Ins tion cate char to a to a ure ion Aft oble	a control, conditiona to statements on of Arrays, Acce erting and Deletior <u>Un</u> s on strings- findir nating two strings, acter Built in funct nctions, Function <u>U</u> function, Built-in f rs Declaration, Type to pointers, declarin <u>er completing the</u> ms and design solu	al branching statements of an of element in an arran nit –IV ang length of a string, appending a string to ions. declaration/function Jnit-V Functions. Passing arrandef declaration, initing pointer variables. course, the students tion using program defined	n array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions. alization of struc s will be able to:- esign tools.	values i onal ar octers of compari ction de Recurs etures, a	f a sing t efinit	rays, Operations on - Operations on two 6 Hrs tring into uppercase wo string, reversing tion, Function call 6 Hrs ssing members of a
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Introduction Function Passing Structur Introduction Structur Course CO 1 CO 2	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operative vercase, Con- ction, Operative vercase, Con- ction, Using statement. ction, Using statement. ction, Using statement. ction: Struct res, Introduct Outcomes: Analyse pro- Evaluate the investigatin	sion got ratic Ins tion cate char to a to a nte r ure ion <u>Aft</u> bble e ap g th	a control, conditiona to statements on of Arrays, Acce erting and Deletior <u>Un</u> s on strings- findin nating two strings, racter Built in funct nctions, Function <u>U</u> function, Built-in f rs Declaration, Type to pointers, declarin <u>er completing the</u> ms and design solu propriate method/d ie problem.	al branching statements essing elements of an n of element in an arring nit –IV ag length of a string, appending a string to ions. declaration/function Unit-V Functions. Passing arring def declaration, initi ag pointer variables. course, the students tion using program delata structure required	a array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions. alization of struc s will be able to:- esign tools. l in C programmin	values i onal ar oters of compart otion de Recurs tures, a	f a soling t efinit	rays, Operations or - Operations on two 6 Hrs tring into uppercase wo string, reversing tion, Function call 6 Hrs ssing members of a p solutions by
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Introduction Passing Structuctur	ction to decisive statements, ction, Declar Traversing, ional arrays. ction, Operative vercase, Cond ction, Operative vercase, Cond ction, Using statement. ons g parameters to res and Poi ction: Struct res, Introduct e Outcomes: Analyse pro Evaluate the investigatin Design a su	sion go ratic Ins tion cate char to a to a nte ure <u>ion</u> <u>Aft oble e ap g th</u> stai	a control, conditiona to statements on of Arrays, Acce erting and Deletion Un s on strings- findin nating two strings, acter Built in funct nctions, Function U function, Built-in f rs Declaration, Type to pointers, declarin er completing the ms and design solu propriate method/d ie problem. nable solution using	al branching statements of an of element in an arran nit –IV ang length of a string, appending a string to ions. declaration/function Jnit-V Functions. Passing arrandef declaration, initing pointer variables. course, the students tion using program defined	a array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions. alization of struc s will be able to:- esign tools. l in C programmin	values i onal ar oters of compart otion de Recurs tures, a	f a soling t efinit	rays, Operations on - Operations on two 6 Hrs tring into uppercase wo string, reversing tion, Function call 6 Hrs ssing members of a p solutions by
Introduction Arrays Introduction Arrays- dimension Strings Introduction and low a string Function Introduction Function Passing Structur Introduction Structur Course CO 1 CO 2	ction to decise e statements, ction, Declar - Traversing, ional arrays. ction, Operativercase, Con- cons ction, Operativercase, Con- cons ction, Using statement. ons g parameters to ction: Struct res, Introduct e Outcomes: Analyse pro Evaluate the investigatin Design a su engaging in	sion go ratic Ins tion cate char to a fu ure ion <u>Aft</u> bble e ap g th stai life	a control, conditiona to statements on of Arrays, Acce erting and Deletion <u>Un</u> s on strings- findin nating two strings, acter Built in funct nctions, Function <u>U</u> function, Built-in f rs Declaration, Type to pointers, declarin <u>er completing the</u> ms and design solu propriate method/d te problem. nable solution using elong learning for e	al branching statements essing elements of an n of element in an arr nit –IV ng length of a string, appending a string to ions. declaration/function Jnit-V Functions. Passing arr def declaration, initi ng pointer variables. course, the students tion using program d lata structure required g C programming with	n array, Storing v ray. Two dimensi converting chara o another string, c prototype, Func rays to functions. alization of struc swill be able to:- esign tools. I in C programmin th societal and env	values i onal ar octers of compari- ction de Recurs etures, a ng to de	in art rays f a si ing t efinit ion. acces	rays, Operations on - Operations on two 6 Hrs tring into uppercase wo string, reversing tion, Function call 6 Hrs essing members of a p solutions by concern by

RV Educational Institutions [®] RV College of Engineering

Technological University, Belagavi

Approved by AICTE, New Delhi

Refe	rence Books
1.	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall, ISBN (13): 9780131103627.
3.	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, Mcgraw Hill Education, ISBN-13: 9780070411838.
4	Algorithmic Problem Solving Roland Backhouse 2011 Wiley ISBN: 978-0-470-68453-5

PRACTICE PROGRAMS

Implement the following programs using cc/gcc compiler

- 1. Familiarization with programming environment: Concept of creating, naming and saving the program file in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment.
- 2. Implementation and execution of simple programs to understand working of
 - Formatted input and output functions- printf() and scanf().
 - Escape sequences in C.
 - Using formula in a C program for specific computation: For example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 Preprocessor directives (#include, #define).
 - Execution of erroneous C programs to understand debugging and correcting the errors like:
 - Syntax / compiler errors.
 - Run-time errors.
 - Linker errors.
 - Logical errors.
 - Semantical errors.
- 4. Implementation and execution of simple programs to understand working of operators like:
 - Unary.

3.

- Arithmetic.
- Logical.
- Relational.
- Conditional.
- Bitwise.
- 5. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.
- 6. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.
- 7. Develop a C program for Matrix multiplication.
- 8. Develop a C program to search an element using Binary search and linear search techniques.
- 9. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.
- 10. Develop a C program to compute average marks of 'n' students (Name, Roll_No, Test Marks) and search a particular record based on 'Roll No'.
- 11. Develop a C program using pointers to function to find given two strings are equal or not.
- 12. Develop a C program using recursion, to determine GCD, LCM of two numbers and to perform binary to decimal conversion.

RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 05 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 25 Marks, adding upto 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS.	20		
MAXIMUM MARKS FOR THE CIE THEORY				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV						
Р	PROBABILITY THEORY AND LINEAR PROGRAMMING					
		Category: PR	ROFESSIONAL CO	ORE COURSE		
		0.	(Theory)			
Course Code						
Credits: L:T:P	Credits: L:T:P : 2:1:0 SEE : 100 Marks					
Total Hours	:	30L+13T		SEE Duration	:	3.00 Hours

Unit-I	09 Hrs
Statistics: Central moments, mean, variance, coefficients of skewness and kurtosis in ter	
Correlation analysis, rank correlation, linear and multivariate regression analysis – problems	. Implementation
using MATLAB.	-
Unit – II	07 Hrs
Random Variables: Random variables-discrete and continuous, probability mass function, pr	obability density
function, cumulative density function, mean and variance. Two or more random variables -	Joint probability
mass function, joint probability density function, conditional distribution and independence,	Covariance and
Correlation. Implementation using MATLAB.	
Unit –III	09 Hrs
Probability Distributions: Discrete distributions - Binomial, Poisson. Continuous distribution	ns – Exponential,
Normal and Weibul. Implementation using MATLAB.	-
Unit –IV	08 Hrs
Sampling and Estimation: Population and sample, Simple random sampling (with replacer	nent and without
replacement). Sampling distributions of means (σ known), Sampling distributions of mean	(σ unknown): t -
distribution, Sampling distributions of variance: Chi - squared distribution.	Estimation -
Maximum Likelihood Estimation (MLE). Implementation using MATLAB.	
Unit –V	07 Hrs
Inferential Statistics: Principles of Statistical Inference, Test of hypothesis - Null and altern	ative hypothesis,
Procedure for statistical testing, Type I and Type II errors, level of significance, Tests invo	lving the normal
distribution, one - tailed and two - tailed tests, P - value, Special tests of significant	e for large and
small samples (F, Chi – square, Z, t – test).	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Describe and report data set using data analysis, presentation and interpretation techniques to understand				
	various phenomena in the fields of science and engineering.				
CO2	Apply various statistical processing techniques to handle a set of data to estimate probabilities.				
CO3	Apply an appropriate statistical tool and analyze a specific set of data to estimate and draw conclusions				
	about population parameters				
CO4	Draw inferences about population parameters and relations between variables based on analysis of				
	sample data				

Refe	erence Books
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44 th Edition, 2015, ISBN: 978-81-933284-9-1.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.
3	N.P. Bali & Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley & Sons, ISBN: 978-0470458365.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE (THEORY)	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of THREE Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

				Semester: III			
			ENVIRO	NMENT AND SUST	FAINABILITY		
	Category: Basket Course- Group A						
	(Common to all Programs)						
	(Theory)						
Course	irse Code : CV242AT CIE : 100 Marks						
	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total l	Hours	:	45L		SEE Duration	:	3 Hours
				Unit-I			10 Hrs
							onment – need for public
							ity: genetic, species and
							ching of wildlife, man-
				c species of India – c			
							ater, Soil, Air and Noise
						Saf	ety Management system
(OHAS	SMS). Enviro	nm	ental protection, En	vironmental protection	on acts.		
				Unit – II			08 Hrs
							w Energy Sources: Need
							on cycle, emission and
							l technological change.
				an energy resources,	Tidal energy conve	ersi	on. Concept, origin and
power	plants of geo	the	mal energy.				
				Unit –III			08 Hrs
							onomics, Environmental
							c, social and aspects of
				tainability-millenniu			
							sign of cyclical systems,
						nce	pts to: Water Resources,
Energy	Resources, l	Foo	d Resources, Land &	k Forests, Waste mar	agement.		
a=10=				Unit –IV			08 Hrs
				e			areas Climate change -
	-			-	e solutions. Concept	of	Carbon Credit, Carbon
			al management in in		~		
							D 14000 Series, Material
	-			-	Sustainable habitat	: (Green buildings, Green
materia	als, Energy ef	ttici	ency, Sustainable tr	A			
~~~~	<u></u>	~-		Unit –V			08 Hrs
					0		, History & evolution of
							apping concept. Concept
	•		U		*	0	vernance; environmental
					ainability Reporting:	Fla	avor of GRI, Dow Jones
Sustair	ability Index	., C	EPI. Investor interes	t in Sustainability.			
~	<u> </u>						
				course, the students			
CO1				Invironment and its E	•		
CO2	Explain the	vai	ious types of polluti	on and requirement f	or sustainable strateg	gy f	or present scenario.

**CO4** Recognize the role of Corporate social responsibility in conserving the Environment.





Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	Reference Books					
1.	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 - 978-9387432352					
2.	'Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3rd edition,					
2.	Pearson Education, 2006. ISBN-13 - 978-0132339346					
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006					
4.	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David					
4.	Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES willbe conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
	<b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b>	40
	<b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	<b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: I	V			
		MATERIA	LS SCIENCE FO		NEERS		
		Cat	egory: Professio	nal Core			
			(Theory)				-
Course Code	:	ME242AT			CIE	:	100 Marks
Credits: L:T:P	:	3:0:0			SEE	:	100 Marks
<b>Total Hours</b>	:	40L			<b>SEE Duration</b>		3 Hours
			Unit-I				06 Hrs
The Fundamenta							
		ure of atoms, type					
		lary bonds, mixed					
		c crystallography.		cations. Ty	pes of material	s: pol	ymers, metals
and alloys, cerami	cs,	semiconductors, co	Unit – II				10 Hrs
M-4							10 Hrs
Material behavio		thormal conduction	ity thomaslast	ia offacto	haat apparity	them	al avranciar
		thermal conductiv hock, thermocoup	•				-
		· · ·	-				•
dependence of th	NP (	nelectric constant		erigie terre	Nelectricity nie		etricity sumer
dependence of the			•		• •		• •
conductor. Optica	al j	properties: lumine	scence, optical	fibers, Me	echanical Prope	rties:	Stress-strain
conductor. Optica	al j efo	properties: lumine rmation, plastic de	scence, optical	fibers, Me	echanical Prope	rties:	Stress-strain
conductor. Optica diagram, elastic d	al j efo	properties: lumine rmation, plastic de	scence, optical	fibers, Me	echanical Prope	rties:	Stress-strain
conductor. Optica diagram, elastic d	al j efo 5, fa	properties: lumine rmation, plastic de tigue.	scence, optical formation, hardn	fibers, Me	echanical Prope	rties:	Stress-strain mpact energy,
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors,	al j lefo s, fa eir l diel	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectro	scence, optical formation, hardn Unit –III onics, structural	fibers, Me ess, viscoe materials,	echanical Prope lastic deformati	on, in nonf	Stress-strain mpact energy, 10 Hrs errous alloys,
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete,	al j lefo s, fa eir diel cei	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses	scence, optical formation, hardn Unit –III onics, structural Polymers: therm	fibers, Me ess, viscoe materials, nosets and	echanical Prope lastic deformati ferrous alloys, thermoplastics,	nonf	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre-
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg	al j lefo s, fa eir diel cei	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectro	scence, optical formation, hardn Unit –III onics, structural Polymers: therm	fibers, Me ess, viscoe materials, nosets and	echanical Prope lastic deformati ferrous alloys, thermoplastics,	nonf	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre-
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete,	al j lefo s, fa eir diel cei	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses	scence, optical formation, hardn Unit –III onics, structural Polymers: thern ronic packaging n	fibers, Me ess, viscoe materials, nosets and	echanical Prope lastic deformati ferrous alloys, thermoplastics,	nonf	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre- ig of structural
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials.	al j lefo s, fa eir diel cei	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses	scence, optical formation, hardn Unit –III onics, structural Polymers: therm	fibers, Me ess, viscoe materials, nosets and	echanical Prope lastic deformati ferrous alloys, thermoplastics,	nonf	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre-
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment	al j efo s, fa eir . diel cer ateo	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectro ramic, and glasses d composites, elect	scence, optical formation, hardn Unit –III onics, structural Polymers: thern ronic packaging n Unit –IV	fibers, Me ess, viscoe materials, nosets and naterials, bi	echanical Prope lastic deformati ferrous alloys, thermoplastics, iomaterials, proc	nonf com cessin	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre- ig of structural 07 Hrs
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing	al j efo <u>s, fa</u> eir diel cen ateo	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses d composites, elect	scence, optical formation, hardn Unit –III onics, structural Polymers: thern ronic packaging n Unit –IV ctronic devices:	fibers, Me ess, viscoe materials, nosets and naterials, bi	chanical Prope lastic deformati ferrous alloys, thermoplastics, iomaterials, pro-	nonf com xessin	Stress-strain mpact energy, 10 Hrs ferrous alloys, posites: fibre- ng of structural 07 Hrs rapid thermal
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing 1 processing. Heat	al j efo s, fa eir . diel cen atec heat trea	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses d composites, elect t treatment of ele atment of ferrous	scence, optical formation, hardn Unit –III onics, structural Polymers: therm ronic packaging n Unit –IV ctronic devices: materials: annea	fibers, Me ess, viscoe materials, nosets and naterials, bi thermal or lling, spher	chanical Prope lastic deformati ferrous alloys, thermoplastics, iomaterials, pro-	nonf com cossin ion, alizin	Stress-strain mpact energy, 10 Hrs ferrous alloys, posites: fibre- ig of structural 07 Hrs rapid thermal ig, hardening,
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format	al j efo s, fa eir . diel cer atec heat	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectro ramic, and glasses d composites, elect t treatment of ele atment of ferrous of austenite, cons	scence, optical formation, hardn Unit –III onics, structural Polymers: therm ronic packaging n Unit –IV ctronic devices: materials: annea struction of Time	fibers, Me ess, viscoe materials, nosets and naterials, bi thermal or lling, sphere Temperat	chanical Prope lastic deformation ferrous alloys, thermoplastics, iomaterials, pro- xidation, diffus roidizing, norman ure Transforma	nonf com cessin ion, alizin tion	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre- g of structural 07 Hrs rapid thermal ng, hardening, (TTT) curves.
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat	al j efo s, fa eir , diel cer ated neat treation men	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses d composites, elect t treatment of ele atment of ferrous of austenite, cons nt processes: carbu	scence, optical formation, hardn Unit –III onics, structural Polymers: therm ronic packaging n Unit –IV ctronic devices: materials: annea struction of Time	fibers, Me ess, viscoe materials, nosets and naterials, bi thermal or lling, sphere Temperat	chanical Prope lastic deformation ferrous alloys, thermoplastics, iomaterials, pro- xidation, diffus roidizing, norman ure Transforma	nonf com cessin ion, alizin tion	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre- g of structural 07 Hrs rapid thermal ng, hardening, (TTT) curves.
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format	al j efo s, fa eir , diel cer ated neat treation men	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses d composites, elect t treatment of ele atment of ferrous of austenite, cons nt processes: carbu	scence, optical formation, hardn Unit –III onics, structural Polymers: therm ronic packaging n Unit –IV ctronic devices: materials: annea struction of Time	fibers, Me ess, viscoe materials, nosets and naterials, bi thermal or lling, sphere Temperat	chanical Prope lastic deformation ferrous alloys, thermoplastics, iomaterials, pro- xidation, diffus roidizing, norman ure Transforma	nonf com cessin ion, alizin tion	Stress-strain mpact energy, 10 Hrs errous alloys, posites: fibre- g of structural 07 Hrs rapid thermal ng, hardening, (TTT) curves.
conductor. Optica diagram, elastic d fracture toughness Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat	al j efo s, fa eir , diel cer ated neat treation men	properties: lumine rmation, plastic de tigue. Applications ectrics, optoelectre ramic, and glasses d composites, elect t treatment of ele atment of ferrous of austenite, cons nt processes: carbu	scence, optical formation, hardn Unit –III onics, structural Polymers: therm ronic packaging n Unit –IV ctronic devices: materials: annea struction of Time urizing, nitriding,	fibers, Me ess, viscoe materials, nosets and naterials, bi thermal or lling, sphere Temperat	chanical Prope lastic deformation ferrous alloys, thermoplastics, iomaterials, pro- xidation, diffus roidizing, norman ure Transforma	nonf com cessin ion, alizin tion	Stress-strain mpact energy, 10 Hrs ferrous alloys, posites: fibre- ig of structural 07 Hrs rapid thermal ig, hardening, (TTT) curves. on hardening.



Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to:					
CO1	Understand the classification of materials, their atomic structure, and properties.				
CO2	Investigate the properties and applications of different materials.				
CO3	Analyse the effect of different heat treatment processes.				
<b>CO4</b>	Recognize different types of nanomaterials, synthesis methods and characterisation techniques.				

Ref	Reference Books				
1.	Material Science and Engineering, William D Callister, 6 th Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-5				
2.	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6				
3.	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-066717-9				
4.	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996, ISBN:978-0849322749				

<b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>		
#	COMPONENTS	MARKS
1.	<b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>	20
2.	<b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS</b> .	40
3.	<b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) <b>Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome).</b> ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	<b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	5 & 6 Unit 3 : Question 5 or 6				
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			



## RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

		Semester: III				
		SAFETY STANDARDS				
		Category: Basket Course	-			
		(Common to all Prog	rams)			
		(Theory)		<del>.</del>		
	T242AT		CIE	:	100 Marks	
	:0:0		SEE	:	100 Marks	
Total Hours:45	5L		SEE Duration	:	3 Hours	
		Unit-I				<b>09 Hrs</b>
Biohazards, Bio safety lo	evels and o	cabinets: Introduction to E	Biohazards, Biologi	ical	Safety levels,	Bio safety
		Bio safety cabinets. Vario		des	ign of Biosafe	ty cabinets
(Materials used for fabrica	tion, senso	rs, filters, pumps, compress	ors)			-
		Unit – II				08 Hrs
-	•••	delines of Government of				
		ew committee o Genetic r				
		in food and agriculture. C	Overview of Nation	nal	Regulations ar	nd relevant
International Agreements i	including C	<u> </u>				
		Unit –III				10 Hrs
•		od Safety and Standards A	uthority of India),	Fu	nctions, Licens	e, types of
FSSAI Licences and comp					_	_
		of food microbiology and		lbor	ne pathogens,	sources of
e		w materials, water, air, equi	L			
- •	·	ilage and Foodborne diseas			•	
	•	an nutrition, Food Analysi	Ū,	iera	principles of a	tood safety
management systems, Haz	ard Analys	is Critical Control Point (H	ACCP).			00 11
	•	Unit –IV			. <u> </u>	09 Hrs
-	0.	and Packaging: Food ood production, and proce	<b>e</b> 1			
etc)		ood production, and proce	ssing practices (Of	<b>v</b> 11 ,	0/11, 0/11, 0	
	rvation me	ethods and their underlyi	ng principles inc	ludi	ng novel and	emerging
		l packaging methods and p				
		Unit –V	8			09 Hrs
Food safety and Ethics:	Food Haza	rds, Food Additives, Food	Allergens Drugs, I	Hor	mones, and An	
-		Foodborne Illness, Consum	<b>v</b>			
		The Role of Food Preservati			,	
	•	Research ethics, ethics on	•		d Bioethics.	
,	<b>y</b> ,	,				
Course Outcomes: After	completing	g the course, the students	will be able to			
		f Biohazards and bio safety				
	nowledge o		/ levels			
· ·	- U	*				
CO2 Understanding the	e biosafety	guidelines and their import the Food standards, Hygiene	ance to the society	ind 1	oacking	

## **Reference Books**

1	Deepa Goel, Shomini Parashar IPR, Biosafety and Bioethics 1st Edition, Pearson; 1st edition, 2013, ISBN:	
	978-8131774700.	

2 Cynthia A Roberts, The Food Safety, Oryx Press, first edition, 2001, ISBN: 1–57356–305–6.

3 Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.

4 Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.



Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

**RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS** MARKS QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be 1. conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL 20 **BE THE FINAL QUIZ MARKS.** 2. **TESTS:** Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, 40 Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. **EXPERIENTIAL LEARNING:** Students will be evaluated for their creativity and practical 3. implementation of the problem. Case study-based teaching learning (10), Program specific 40 requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

RUB	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	2. NO. CONTENTS M						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: (Internal Choice)	16					
5&6	Unit 3: (Internal Choice)	16					
7 & 8	Unit 4: (Internal Choice)	16					
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					





Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV						
AEROSPACE PROPULSION						
	Category: PROFE	SSIONAL CORE COURSE				
	(Theo	ory & Practice)				
:	AS343AI	CIE	:	100 +50 Marks		
Credits: L:T:P         :         3:0:1         SEE         :         100 +50 Marks						
Fotal Hours:45L+28PSEE Duration:3.00 +3.00 Hours						
	:	AEROSPA Category: PROFE (Theo : AS343AI : 3:0:1	AEROSPACE PROPULSION Category: PROFESSIONAL CORE COURSE (Theory & Practice) : AS343AI CIE : 3:0:1 SEE	AEROSPACE PROPULSION Category: PROFESSIONAL CORE COURSE (Theory & Practice) : AS343AI CIE : : 3:0:1 SEE :		

Unit-I	10 Hrs			
Fundamentals of Aerospace propulsion: Introduction, Illustration of working of gas turbine engine, Working				
and characteristics of Turbojet, Turboprop, Turbofan, Ramjet & Scramjet Engines, Spooling of Jet Engines,				
Thrust Augmentation System: Afterburner and Water Injection.				
Unit – II	10 Hrs			
Jet Engine Performance: Jet Engine Thrust equation (simple derivation), Factors affecting the	rust, Airbreathing			
Engine Performance Parameters: Specific Thrust, Thrust Power, Specific Impulse, TSFC, Prop	ulsive Efficiency,			
Thermal Efficiency, Numericals on Jet Propulsion Cycle Analysis.				
Unit –III	08 Hrs			
Aircraft Propulsion Systems: Aircraft Inlets-Working of Subsonic & Supersonic Inlet	ts, Compressors:			
Operation of Centrifugal & Axial Flow Compressors, Combustion Chambers: Princip				
Classification of Combustion Chambers, Turbines: Types of turbines-Operating Principle				
through Convergent and Convergent-Divergent Nozzles (Without Derivations and Numericals).				
Unit –IV	07 Hrs			
Chemical Rocket Propulsion				
Solid Rocket propellants: Working, Properties, Types of Propellants, Propellant Burn Rate				
Attitude Controls with Solid Propellants, Pyrogen and Pyrotechnique Igniters, Ignition and The	rust Extinction of			
Solid Propellants.				
Liquid Rocket propellants: Working, Propellant Types, Properties, Propellant feed systems	s: Pump and Gas			
Pressure Feed systems, Injectors and Atomizers.	1			
Unit –V	10 Hrs			
Advanced Propulsion Systems: Electrothermal Thrusters: Arc-jet Thrusters, Ion Propulsion, I				
Hall Effect Thrusters, Electric Power Generation: Solar Cells, Solar Generators, Radi	oactive Thermal			
Generators, Nuclear Fission Power Generators.				
Rocket Performance: Rocket equation, Performance Parameters: Thrust, Total Impulse, S	· ·			
Specific propellant consumption, Effective Exhaust Velocity, Characteristic Velocity, Mass				
Mass Fraction, Impulse to weight ratio, Thrust to weight ratio, Energy and Efficiencies, Numerical examples.				

#### LABORATORY EXPERIMENTS

- 1. Performance analysis of a micro gas turbine/jet propulsion system
- 2. Determination of Performance characteristics of a fixed pitch aircraft propeller
- 3. Determination of Performance characteristics of a variable pitch aircraft propeller-Open Experiment
- 4. Measurement of burning velocity of a pre-mixed flame in a gas turbine combustion chamber
- 5. Determine the pressure and velocity variation of an exhaust gas flowing out of a convergent nozzle
- 6. Determination of pressure and velocity variation of a supersonic exhaust jet flowing out of a convergent-divergent nozzle
- 7. Study of pressure distribution across a turbine cascade
- 8. Study of flow through an axial cascade turbine blade row
- 9. Preparation of Solid Propellant Rocket Fuel- Open Experiment
- 10. Evaluation of Burning Characteristics of Solid Propellant Fuel- Open Experiment



Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	Reference Books					
1	Gas Turbines, V Ganesan, 3 rd Edition, 2017, McGraw Hill Education, ISBN-10: 0070681929					
2	Gas Turbine Propulsion, D P Mishra, 2 nd Edition, M V Learning, 2015, ISBN: 978-81-309-27527					
3	Elements of Propulsion: Gas Turbines and Rockets, Jack D Mattingly, 5th Edition, 2006, American					
3	Institute of Aeronautics and Astronautics (AIAA), ISBN: 1563477793.					
1	Rocket Propulsion Elements, Sutton G P, 8 th Edition, 2010, John Wiley, New York,					
-	ISBN:9781118174203					
5	Understanding Aerospace Chemical Propulsion, H S Mukunda, 1 st Edition, 2017, I K International					
5	Publishing House, ISBN: 978-93-85909-42-9					
6	Rocket and Spacecraft Propulsion: Principles, Practices and Developments, Martin J L Turner, 3 rd Edition,					
6	2009, Praxis Publishing Ltd, Chichester, UK, ISBN 978-3-540-69202-7					

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	<b>TESTS:</b> Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>TWO TESTS</b> will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b>	40
3.	<b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. <b>Phase I (20) &amp; Phase II (20) ADDING UPTO 40 MARKS</b> .	40
4.	<b>LAB:</b> Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. <b>THE FINAL MARKS WILL BE 50 MARKS</b>	50
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	150

	<b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>				
Q. NO	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of THREE Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	<b>RUBRIC FOR SEMESTER END EXAMINATION (LAB)</b>						
Q. NO	CONTENTS	MARKS					
1	Write Up	10					
2	Conduction of the Experiments	30					
3	Viva	10					
	TOTAL	50					





Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV							
Aerospace Structures							
			(Theory & Practice	e)			
Course Code	:	AS244AI		CIE	:	100 +50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100 +50 Marks	
<b>Total Hours</b>	:	45L+28P		SEE Duration	:	3.00 +3.00 Hours	

Unit-I10 HrsLoads on Aircraft: Structural nomenclature, Load Factors, Wing Design Loads, Empennage Loads, and<br/>Fuselage loads, Propulsion Loads, landing gear loads, Miscellaneous loads, Velocity diagram V-n diagram for<br/>the loads acting on the aircraft, salient features of the V-n diagram. Flight envelope for different flying<br/>conditions.

Unit – II	10 Hrs				
Shear Flow in Open & Closed Sections: Open Sections: Concept of shear flow, Shear Flow in Thin walled					
beams, the shear centre and Elastic axis.					
Closed Sections: Bredt - Batho theory, shear centre of closed sections					
Unit –III	10 Hrs				

 Buckling of Columns : Introduction, Critical Load, Euler's Critical Load for various end conditions,

 Slenderness ratio, Rankine's Crippling Load

 Unit –IV
 07 Hrs

 Unit –IV
 07 Hrs

 Design of Aircraft Structures: Design criteria, Safety Factor, Life Assessment procedures, Damage tolerance and Fail safe Design.
 Design of Aircraft Structures (Damage tolerance and Fail safe Design.

 Unit –V
 08 Hrs

 Bolted Riveted and Welded Connections: Failure of single bolt fitting, Lug strength analysis under Axial, Transverse and Oblique Loading, Riveted Connections, Welded Connections.

#### LABORATORY EXPERIMENTS

- 1. Tensile Characterization of Aerospace Alloys
- 2. Fatigue Behaviour of Aerospace Alloys
- 3. Crack Propagation behaviour of Aerospace Alloys
- 4. Energy absorbed under an impact velocity (Izod and Charpy Test)
- 5. Geometry cleanup for FE modelling
- 6. 2D Meshing of Aerospace Component
- 7. Solid and 3D meshing of Aerospace Component
- 8. Failure of a circular plate subjected to the impact of an infinite rigid sphere
- 9. Introduction on how to simulate a bird strike on the windshield
- 10. Study of the stress wave propagation and the strain rate effect on the Hopkinson bar.
- 11. Topology Optimization of Aerospace Components
- 12. Shape Optimization of Aerospace Component

### **Reference Books**

Nere	Tence Dooks
1	Megson, T.M.G 'Aircraft Structures for Engineering Students', Edward Arnold, 1995. ISBN: 978-0-75066-7395
2	Donaldson, B.K., "Analysis of Aircraft Structures – An Introduction", McGraw-Hill, 1993. ISBN:978-0521865838
3	Peery, D.J., and Azar, J.J., "Aircraft Structures", 2nd edition, McGraw, Hill, N.Y., 1993. ISBN-10:0486485803
4	C. T. Sun, "Mechanics of Aircraft Structures" Wiley-Interscience, March 1998, ISBN-13: 9780471178774

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE,

New Delhi



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

**RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTICE)** # **COMPONENTS** MARKS OUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be 1. conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM 20 OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS. TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, 2. Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each 40 test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 3. 40 MARKS. LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and 4. 50 Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE) 150

	<b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>					
Q. NO	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	<b>RUBRIC FOR SEMESTER END EXAMINATION (LAB)</b>					
Q. NO	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	30				
3	Viva	10				
	TOTAL	50				

## RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE, New Delhi



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

University, Bela	gavi						
			Semester: IV				
			AMENTALS OF AVIO				
		Category: F	PROFESSIONAL CORI	E COURSE			
Course Code		AS345AT	(Theory)	CIE	<b>.</b>	100	Marks
Credits: L:T:P	:	3:0:0		SEE	:		Marks
Hours	:	45 L		SEE Duration	:		lours
	•			<u>Del Durunon</u>	_ •	01	
			Unit-I				09 Hrs
<b>Electronic Circu</b>	its: (	Qualitative Analysis	of Amplifiers and Feedb	ack Amplifiers, C	Osci	llator	rs; Wave shaping
circuits; A/D - D/	A co		-stage Mixers & amp; Mo	dulators / Demod	ulat	ors	1
			J <u>nit – II</u>			<u> </u>	10 Hrs
			ssion lines equations and	•			•
			uit line, open circuit line,				
			tangular and circular type plane & H Plane Waveg				
		guide resonator, load		uldes, Magle Ice,	, Ch	icula	ion, Duplexer and
then 5 matrices,	iuie		Init –III				11 Hrs
Propagation of	EM		gnetic Spectrum; Basics	of E M Wave	. P	olari	
10			gation, Surface wave, Tr		· ·		· • 1
			agneto-ionic theory, Sec	· ·		•	· .
distance. Fading &			0 5/	, ,			1 5/ 1
			Oscillating dipole: Elec	ctromagnetic radi	atio	n. re	tarding potential
			n, gain, radiation, effectiv				
			r and its feed, Cassegrai				
Forming, Phased	Array	ys.	-				
			Init –IV				07 Hrs
			Definition of Signal & S				
			Gain, Attenuation & Deci				
			, Phase lock loop, Mode	ulator / Demodul	ato	r, Bl	ock Diagrams of
Microwave Trans	mitte						0.0.77
			Unit –V				09 Hrs
			llse Modulation, Sampl				
multiplexing-audi	0/V10	ieo; Digital modulatio	on: ASK, FSK, PSK; Mul	tiple access: I DM	IA,	FDN	IA, CDMA.
Reference Book							
Electronic I		es & Circuit Theory	: Robert L Boylestad & I	ouis Nashelsky	11+ł	n Edi	tion 1 July 2017
		978-0-13-262226-4 ( <b>f</b>	•	20013 Mushelsky,	1111	I Lui	1011, 1 July 2017
Principles o			no & David J Bates, ISE	3N: 978-0-07-06	5342	24-4	Tata McGraw
		i(for Unit – I)	10 00 2 0 10 0 2 0000, 102			- · ·	
Microelectr			el, 2 nd Edition, 2017, 1	McGraw Hill Ec	fuc	ation	ISBN-13 978
		: Unit – I, IV)	en, 2 Danion, 2017, 1				
Principles o			ion Systems: Louis E Fre	snel Jr, 4 th /5 th edit	ion	, Mc	Graw Hill. ISBN
		5-0. (for Unit – II, II		, , , , , , , , , , , , , , , , , , , ,	,	,	,
Electronic (		· · · · · · · · · · · · · · · · · · ·	George Kenndy & Bernard	d Davis, Tata McO	Grav	w Hi	ll, 37th reprint
		•	ISBN-10: 0-07-463682-0				L L
	<b>.</b>	10 1 1 0					

6 Principle of Digital Communication System:Robert G Gallager, 2008 Edition, Cambridge University Press. ISBN-10-0521879078, ISBN-13 978-0521879071. . (for Unit – V)





	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	<b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. <b>TWO QUIZZES</b> will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. <b>THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.</b>	20			
2.	<b>TESTS:</b> Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>TWO TESTS</b> will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS</b> .	40			
3.	<b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. <b>Phase I (20) &amp; Phase II (20) ADDING UPTO 40 MARKS</b> .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	<b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>					
Q. NO	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	<b>PART B</b> (Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV							
INTRODUCTION TO AIRPLANE PERFORMANCE							
	<b>Category: PROFESSIONAL ELECTIVE GROUP B -NPTEL</b>						
			(Theory)				
Course Code	:	AS246AT		CIE	:	50 Marks	
Credits: L:T:P	:	2:0:0		SEE	:	50 Marks	
Hours	:	30 L		SEE Duration	:	1.5 Hours	

Unit-I	10 Hrs					
Equilibrium: physical, thermodynamic and chemical, Equilibrium controlled and rate controlled processes in						
gaseous, liquid and solid fuels, Calculation of equilibrium states, Laminar premixed and c	liffusion flames:					
principal features and differences, Quenching, flammability and other limit phenomena						
Unit – II 10 Hrs						
Basics of composite solid propellant deflagration, Statistical representation of composite propel	Basics of composite solid propellant deflagration, Statistical representation of composite propellants in HeQu1D					
- geometry and thermochemistry, Overview of the HeQu1D software and demonstration, Effect	of aluminum					
Unit –III	10 Hrs					
Instability in solid rockets - 1, Principal ideas of combustion in liquid propellant rockets	, Combustion in					
boundary layers and hybrid rockets – essential ideas and emerging trends, Strategies for evolving instability free						
designs – global and local considerations						

Ref	erence Books
1	Beckstead, Merrill W., R. L. Derr, and C. F. Price. "A model of composite solid-propellant combustion based on multiple flames." AiAA Journal 8.12 (1970): 2200-2207.
1	based on multiple flames." AiAA Journal 8.12 (1970): 2200-2207.
	Varunkumar, S., M. Zaved, and H. S. Mukunda. "A novel approach to composite propellant combustion
2	modeling with a new Heterogeneous Quasi One-dimensional (HeQu1-D) framework." Combustion and
	Flame 173 (2016): 411-424.
2	Varunkumar, S., and H. S. Mukunda. "Aluminized composite propellant combustion modeling with
3	Heterogeneous Quasi-One dimensional (HeQu1-D) approach." Combustion and Flame 192 (2018): 59-70



Technological University, Belagavi

Autonomous Institution Affiliated to Visvesvaraya

Semester: IV								
	DESIGN OF FIXED WING AIRCRAFTS							
		Category: PROFESSI	ONAL ELECTIVE	GROUP B -NPTE	EL			
			(Theory)					
<b>Course Code</b>	:	AS246BT		CIE	:	50 Marks		
Credits: L:T:P	Credits: L:T:P : 2:0:0 SEE : 50 Marks							
Hours	:	30 L		<b>SEE Duration</b>	:	1.5 Hours		

Unit-I	10 Hrs			
Linear Algebra: Introduction to Vectors, Vector spaces and subspaces, Solving Linear systems	, Linear Algebra:			
Orthogonality, Determinants, Eigenvalues & Eigen vectors, SVD, Ordinary Differential I	Equations: ODE,			
homogeneous and non-homogeneous ODEs, second order linear ODE, higher order ODEs				
Unit – II	10 Hrs			
Solution of Higher Order ODEs, Fourier Analysis, Fourier Integrals, Laplace Transforms, Pa	artial Differential			
Equations: Classification, 1D & 2D equations, BC, 2nd order PDEs, Basis of numerical analysis, errors,				
stability, Interpolation and extrapolation, System of linear algebraic equations and eigenvalue problems: Direct				
methods, Iterative methods, convergence analysis, Eigenvalues and Eigenvectors, bounds on eigenvalues,				
Methods for symmetric matrices and arbitrary matrices	-			
Unit –III	10 Hrs			
Solution of ODEs: Difference equation, Numerical methods, convergence, stability, Single step and multistep				
methods, Predictor-corrector methods, stability analysis of multistep methods, IVP (shooting methods), BVP				
(methods and solutions)				

Reference Books				
1	Atkinson, K. E., An Introduction to Numerical Analysis, John Wiley & Sons, 1978.			
2	Ferzziger, J.H., and Peric, M., Computational Methods for Fluid Dynamics, Springer, 2002.			
3	Numerical recipes: the art of scientific computing - William H. Press, Saul A. Teukolsky, William T.			



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV						
	PRINCIPLES OF METAL FORMING TECHNOLOGY					
	<b>Category: PROFESSIONAL ELECTIVE GROUP B -NPTEL</b>					
	(Theory)					
Course Code	:	AS246CT	CIE	:	50 Marks	
Credits: L:T:P	:	2:0:0	SEE	:	50 Marks	
Hours	:	30 L	SEE Duration	:	1.5 Hours	

10 Hrs				
Introduction and classication of metalworking processes, Behavior of materials, Concept of stress and strain,				
tic stress strain				
10 Hrs				
Yielding and ductility during instability, Eect of strain rate and temperature on ow properties, mechanics of				
metalworking, Analysis methods, Hot and cold working, Introduction, classication and analysis of forging				
10 Hrs				
Defects in rolled and forged components, Analysis of extrusion process, Classication and analysis of wire and				

Reference Books				
1	Fundamentals of Working of Metals" by Sach G			
2	Technology of Metal Forming Processes" by Kumar and Surender			





Semester: IV					
	INNOVATION, BUSINESS MODELS AND ENTREPRENEURSHIP				
	Category: PROFESSIONAL ELECTIVE GROUP B -NPTEL				
	(Theory)				
<b>Course Code</b>	:	AS246DT	CIE	:	50 Marks
Credits: L:T:P	:	2:0:0	SEE	:	50 Marks
Hours	:	30 L	SEE Dura	ation :	1.5 Hours

Unit-I	10 Hrs			
Analyzing the Current Business Scenario, Innovation and Creativity- An Introduction, Innovation in Current				
Environment, Types of Innovation, School of Innovation., Challenges of Innovation, Steps				
Management, Idea Management System, Divergent V/s Convergent Thinking, Design	Thinking and			
Entrepreneurship	-			
Unit – II	10 Hrs			
Experimentation in Innovation Management, Idea Championship, Participation for Innovation,	Co-creation for			
Innovation, Proto typing to Incubation. What is a Business Model, Who is an Entr	epreneur,Social			
Entrepreneurship, Blue Ocean Strategy-I, Blue Ocean Strategy-II, Marketing of Innovation, Technology				
Innovation Process, Technological Innovation Management, Planning, Technological Innovation				
Management Strategies, Technology Forecasting.				
Unit –III	10 Hrs			
Sustainability Innovation and Entrepreneurship, Innovation Sustainable Conditions, Innovatio	on: Context and			
Pattern,SME'S strategic involvement in sustainable development,Exploration of business mod	lels for material			
efficiency services, Management of Innovation, creation of IPR ,Management of Innovati	on, creation of			
IPR, Types of IPR, Patents and Copyrights, Patents in India, Business Models and value proposition, Business				
Model Failure: Reasons and Remedies, Incubators : Business Vs Technology, Managir	ng Investor for			
Innovation, Future markets and Innovation needs for India.				

Ref	erence Books
1	8 Steps To Innovation : Going From Jugaad To Excellence- Book by Rishikesha T. Krishnan and Vinay
2	Dabholkar Innovation and Entrepreneurship Book by Peter Drucker
3	HBS series on Innovation and Entrepreneurship



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### Semester: IV **PROJECT MANAGEMENT : PLANNING, EXECUTION, EVALUATION AND CONTROL Category: PROFESSIONAL ELECTIVE GROUP B -NPTEL** (Theory) **Course Code** AS246ET CIE 50 Marks : : Credits: L:T:P SEE 50 Marks : 2:0:0 : 30 L **SEE Duration** Hours : : 1.5 Hours

Unit-I	10 Hrs			
Introduction to Project Management, Basic Concepts, and Project Life Cycl	e Management			
Organization Strategy, Project Analysis and Project selection, Project Management Organizat	ion structure and			
organization culture, Project Definition, Activities, Work Breakdown structure, Project time and	l cost estimation,			
Time Management, Developing Project Plan; Network Analysis using PERT/ CPM technique				
Unit – II	10 Hrs			
Resource Management and Cost Management: Resource levelling, Scheduling and allocating project resources				
and costs, Reducing Project duration - Crashing project activities to speed up a project Project Risk Management				
- Identification, quantification, and mitigation of risks, Project Outsourcing, Negotiation, and Managing inter-				
organizational Relations, Project Procurement and Contract Management				
Unit –III	10 Hrs			
Project Evaluation, Project progress and Performance Management, Project Closure, and Project Oversight,				
Familiarization with Project Management software (e.g., MS Project®), Recapitulation				

Refe	erence Books
1	Nanua Singh, "Systems approach to computer integrated design and manufacturing", Wiley India Pvt.
	Ltd., 4435-36/7, Ansari Road, Daryaganj, New Delhi-110002.
2	Karl T. Ulrich, Steven. D. Eppinger, "Product design and development", McGraw hill publications.



Approved by AICTE, New Delhi



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: IV			
		DE	SIGN THINKING LA	AB		
		Categor	ry: Professional Core	Course		
			(Practice)			
Course Code	:	AS247DL		CIE	:	50 Marks
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks
Hours	:	30P		SEE Duration	:	3 Hours
			Unit - I			10 Hrs
Understanding I	)esig	gn thinking: Design	Thinking Methodolog	y: The 5 Stages	of	the Design Thinking
Process-Empathis	e, Do	efine (the problem), Id	leate, Prototype, and T	Fest. Shared mode	el in	n team-based design
Theory and practi	ce ii	n Design thinking – Ez	xplore presentation sig	ners across globe	– N	Iultivarible product o
Prototyping, Real	-Tin	ne design interaction of	capture and analysis -	- Enabling efficier	nt c	ollaboration in digita
space - Empathy f	or d	esign – Collaboration i	n distributed Design			
			Unit - II			15 Hrs
DT For strategic	inn	ovations Growth: Sto	ory telling representati	ion – Strategic For	resi	ght - Change - Sens
Making - Mainte	enan	ce Relevance – Valu	ue redefinition - Ext	reme Competition	1 –	experience design
Standardization -	Hun	nanization - Creative C	Culture – Rapid prototy	ping, Strategy and	1 O	rganization – Busines
Model design.						
			Unit - III			14 Hrs
<b>Design Thinking</b>	Wo	rkshop: The Design (	Challenge: Define the	Design Challenge,	, Pr	ototyping & Iteration
Feasibility Study,	Test	ing- Documentation an	nd the Pitching: 10 hou	rs design thinking	woi	kshop from the expec
and then presentat	ion ł	by the students on the lo	earning from the works	shop,		
<b>Course Outcome</b>	s: Af	ter completing the co	urse, the students wil	l be able to		
		g various design proces	•			
CO2: Explore r	ever	se engineering to under	rstand products			
CO3: Develop	echi	nical drawing/prototype	e for design ideas			
CO4: Create de	sign	ideas through different	t techniques			
			•			
<b>References Books</b>						
1 Kilion Lang	enfe	ld, Design Thinking for	r Beginners, Personal C	Growth Hackers, IS	BN	1:13-9783967160628

1	Kilion Langenfeld, Design Thinking for Beginners, Personal Growth Hackers, ISBN: 13-9783967160628
2	Andrew Pressman, Design Thinking: A Guide to Creative Problem Solving for Everyone, Routeldge
	Taylor & Francis Grovel, 1 st Edition, 2018, ISBN: 13-978-1-315-56193-6
3	Walter Brenner, Falk Uebernickel, Design Thinking for Innovation Research and Practice, Springer, 1 st
	Edition, 2016, ISBN: 13-9783319260983
4	Emrah Yayici, Design Thinking Methodology Book, ArtBiz Tech Publishers, 1 st Edition, 2016, ISBN:10-
	6058603757, 13-9786058603752

	<b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (LAB)</b>				
#	COMPONENTS	MARKS			
1.	Conduction of laboratory exercises, lab report, observation, and analysis	20			
2.	Experiential Learning	20			
3.	Lab test	10			
MAXIMUM MARKS FOR THE CIE THEORY					
	RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO	Q.NO. CONTENTS MARKS				
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: IV			
	UNIVERSAL HUMAN VALUES					
			(Theory)			
Course Code	:	HS248AT		CIE	:	50 Marks
Credits: L:T:P	:	2:0:0		SEE	:	50 Marks
Total Hours	:	28:0:0		SEE Duration	:	2 Hours
			Unit-I			10 Hrs
Course Introdu	ction -	Need, Basic Gui	delines, Content and Process	s for Value Educ	atio	
			on from Universal Human			
			Continuous Happiness and Pr			
			Facility, Understanding Happine			
Practice sessions	s to di	scuss natural acce	ptance in human being as th	e innate acceptar	ice	for living with
responsibility.				-		-
			Being - Harmony in Myself!:			
existence of the	sentie	ent 'I' and the ma	aterial 'Body', Understanding	the needs of Sel	f ('	I') and 'Body'
Understanding th	ie Body	y as an instrument of	of Understanding the characteri	stics and activities	of '	I' and harmony
			the Body: Sanyam and Health;			
		cuss the role other	s have played in making materi	ial goods available	e to	me. Identifying
from one's own l	ife.					
			Unit – II			10 Hrs
			nily and Society- Harmony			
			ationship; meaning of Justice ar			
	s; Trus	t and Respect as th	e foundational values of relation	onship, Understand	ling	the meaning of
Trust.						
			ty (society being an extension			
			nprehensive Human Goals, Vis		al ha	rmonious order
			rder- from family to world family			
Practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples,						
			tion etc. Gratitude as a universa	al value in relation	iship	s. Discuss with
scenarios. Elicit e	exampl	es from students' l				
			Unit –III		••	08 Hrs
Understanding Harmony in the Nature and Existence - Whole existence as Coexistence: Understanding the						
harmony in the Nature, Interconnectedness and mutual fulfilment among the four orders of nature recyclability						
and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all						
pervasive space, Holistic perception of harmony at all levels of existence.						
Practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.						
depletion of reso	urces a	nd role of technolo	gy etc.			
Course Outcome	es: Aft	er completion of t	he course the students will be	able to		
			s, and their surroundings (family		thev	would become
			ndling problems with sustainable			
			nd human nature in mind so that		tter o	critical ability.

- **CO3** Become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- CO4 Apply what they have learnt to their own self in different day-to-day settings in real life.



# RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	rence Books
1	Human Values and Professional Ethics, R. R. Gaur, R Sangal, G P Bagaria, 1st Edition, 2010, Excel
1	Books, New Delhi, ISBN: 9788174467812.
2	Human Values, A.N. Tripathi, 3rd Edition, 2019, New Age Intl. Publishers, New Delhi, ISBN:
2	9788122425895.
2	India Wins Freedom, Maulana Abdul Kalam Azad, 1st Edition, 1988, Orient Blackswan, ISBN:
3	97881250051481.
4	The Story of My Experiments with Truth, Mohandas Karamchand Gandhi, 1st Edition, 2011, Create
4	Space Publishing platform, ISBN: 9781463694876.
5	Small is Beautiful, E. F Schumacher, 1st Edition, 2011, (PBD)VINTAGE, ISBN: 9780099225614.

	<b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>			
#	COMPONENTS	MARKS		
1.	<b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 05 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>	10		
2.	<b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>TWO</b> tests will be conducted. Each test will be evaluated for 25 Marks, adding upto 50 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.</b>	20		
3.	<b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10). Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome).THE SUM OF ALL WILL BE THE FINAL MARKS OF 20.	20		
MAXIMUM MARKS FOR THE CIE THEORY				

<b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>				
Q. NO. CONTENTS				
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14		
3 & 4	Unit 2 : Question 3 or 4	13		
5&6	Unit 3 : Question 5 or 6	13		
	TOTAL	50		



RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: IV			
		Br	idge Course: MATHEMA	TICS		
	(Mandatory Audit Course)					
		(AS, BT	, CH, CV, EC, EE, EI, ET	, IM, M	IE)	
Course Code	:	MAT149AT		CIE	:	50 Marks
Credits: L: T:P	:	2:0:0		SEE	:	NO SEE (AUDIT COURSE)
<b>Total Hours</b>	:	30L				
			Unit-I			10 Hrs
Multivariable Cal						
	ation	: Introduction, s	simple problems. Total der	rivative,	co	mposite functions. Jacobians -
simple problems.						
			-	-	nt, o	divergence – solenoidal vector
tunction, curl – irro	tatior	hal vector function	on and Laplacian, simple pro	blems.		
		<b>XX</b> 1 1	Unit – II			10 Hrs
						onstant coefficients, solution of
<b>e</b> 1		•	•	•		quations – Inverse differential
operator method of	findi	ng particular inte	gral based on input function	1 (force	fun	
N			Unit –III	4 -		10 Hrs
						– Intermediate value property,
						ns – Taylor series and 4 th order ille's rules. (All methods without
proof).	bas. N	umerical integra	anon - Simpson s 1/3 , 3/8	and w	eac	lie's rules. (All methods without
proor).						
<b>Course Outcomes</b>	Afte	r completing th	e course, the students will	be able	to	
CO1: Illustrate th	ne fur	damental conce	pts of partial differentiation	, vector	r di	fferentiation, higher order linear
differential	equa	tions and numeri	cal methods.			-
CO2: Derive the	soluti	ion by applying	the acquired knowledge of	differer	ntial	calculus, differential equations,
velocity, a	nd acc	eleration vectors	s to the problems of engineer	ring app	olica	ations.
					ues	of differential calculus, vector
			ions, and numerical methods			
CO4: Compile th	e ove	rall knowledge o	of differential calculus, vector	or differ	rent	iation, differential equations and
numerical	netho	ods gained to eng	age in life – long learning.			
<b>Reference Books</b>	Reference Books					
Higher Engineering Mathematics B.S. Grewal 44 th Edition 2015 Khanna Publishers ISBN: 978-81-						
<b>I</b> 933284-9-1.						
Higher Engir	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-					
² 063419-0.						
A Textbook	of E	ngineering Matl	nematics, N.P. Bali & M	Ianish (	Goy	al, 7 th Edition, 2010, Lakshmi
³ Publications,	ISBN	: 978-81-318083	320.			
4 Advanced En	ginee	ring Mathematic	s, E. Kreyszig, 10 th Edition	(Reprin	t), 2	2016. John Wiley & Sons, ISBN:
<b>4</b> 978-0470458						-



Approved by AICTE,

New Delhi



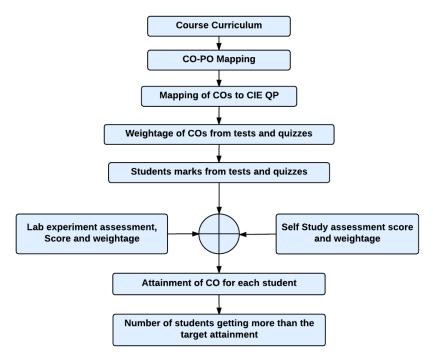
Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

**RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)** # **COMPONENTS** MARKS 1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES 20 WILL BE THE FINAL QUIZ MARKS. 2. **TESTS:** Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be 30 evaluated for 30 Marks, adding upto 60 Marks. FINAL TEST MARKS WILL BE AVERAGE OF TWO TESTS. MAXIMUM MARKS FOR THE CIE THEORY 50

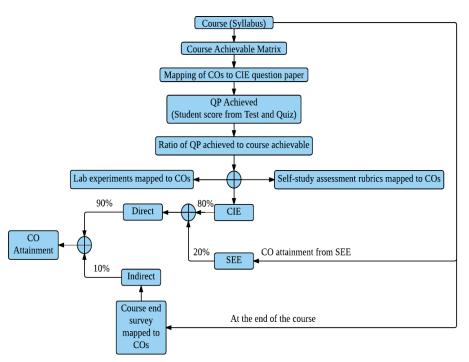
# RV Educational Institutions RV College of Engineering Autonomous Institution Affiliated Approved by AICTE, New Delhi

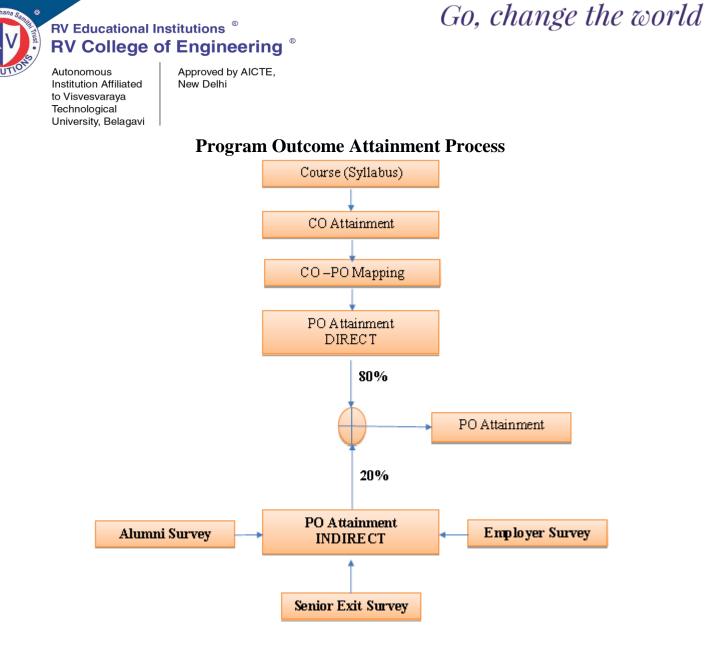
to Visvesvaraya Technological University, Belagavi

> **Curriculum Design Process Syllabus** Dean Academics and Statutory Bodies Combined BOS Formulation Curriculum Framework Program Coordinator Vision and Mission, PEO, PO, PSO **Program Coordinator** Course End Surveys and **Course Coordinator** Faculty, CO Attainment Management, Scheme Formulation Industry/Employers, Parents, Alumni, Academic Advisory Faculty Meeting Professional Committee Societies Revision eebbac BoS Academic Advisory Revision Committee Scheme Revision Academic Council Formulation BoS Revision Revision Scheme Implementation Academic Council Syllabus Implementation **Academic Planning and Implementation Dean Academics Calender of Events** • Align Course Contents (Lesson Plan) • Identify Expected Attainment Level (Threshold) Publish course Materials (PPT's, Notes, Model Question Paper) Publish Schedule (Time Table, Test, Self Study, Lab) **Cumulative Outcome** Assessment Implement Program Curriculum (Course Delivery) **Course End** Survey Formative Student Assessment (Tests, Quizzes, Lab and Through Pedagogical Initiatives) Assessment Outcome **Data and Students** Assess Results and Feedback to Students Feedback on TLP Academic Advisory Yes Remedial Performace Committee < Expected Improve Program No Curriculum/Assessment Methods/Redefine CO's




Autonomous Institution Affiliated to Visvesvaraya Technological


University, Belagavi


Approved by AICTE, New Delhi

## **Process For Course Outcome Attainment**



## **Final CO Attainment Process**





## RV Educational Institutions [®] RV College of Engineering [®]

RV.

Autonomous

Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

**INNER BACK COVER PAGE** 

## PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.