

RV College of Engineering[®]

Aerospace Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of III & IV Semester (2022 Scheme)

B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS 2024

	TIMES HIGHER EDUCATION WORLD UNIVERSITY RANKINGS-2023		CURRICULUM STRUCTURE						
99 NIRF RANKING IN ENGINEERING (2024)	ISUIT TIMES HIGHER EDUCATION WORLD UNIVERSITY RENKINGS-2023 (ASIA) 501-600	61 PROFE	61 CREDITS PROFESSIONAL CORES (PC)			23 CREDITS BASIC SCIENCE			
	EDUFUTURE EXCELLENCE AWARD BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) BY ZEE DIGITAL		EDITS	18 PROJECT WORK /		12 OTHER ELECTIVES			
1001+	801+	SCIENCE		INTERNSHIP & AEC		& AEC			
(ENGINEERING)		12 _{CREI} PROFESSIO ELECTIVES	12credits professional electives		DITS S & IENCE	160 CREDITS TOTAL			
ENGINEERING RANKING INDIA NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)	*ABILITY EN UNIVERSAL INDIAN KNO	*ABILITY ENHANCEMENT UNIVERSAL HUMAN VAL INDIAN KNOWLEDGE SYS		5 (AEC),),), YOGA.				
17 Centers of Excellence 212	Centers of Competence	MOUS INSDU INSTI	S: 90- JSTR TUTI	+WITH RIES / AC ONS IN	CADEM INDIA	IIC & ABROAD			
Publications On Web Of Science	Publications Scopus (2023 - 24)								
1093 Citations	70 Patents Filed 39	EXE RS.4 SPO RES	EXECUTED MORE THAN RS.40 CRORES WORTH SPONSORED RESEARCH PROJECTS 8						
Skill Based Laboratories Across Four Semesters	Patents Granted 61 Published Patents	CON	ISU CE 3	CY W RS	ORKS				

RV College of Engineering[®]

Aerospace Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of III & IV Semester (2022 Scheme)

B.E. Programs : AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS 2024

Go, change the world

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Kamataka, India

AEROSPACE ENGINEERING

DEPARTMENT VISION

Emerge as a centre of excellence in Aerospace Engineering, Imparting Quality Technical Education, Interdisciplinary Research & Innovation with a focus on Societal empowerment through Sustainable & Inclusive Technologies.

DEPARTMENT MISSION

- Imparting Quality Technical Knowledge in Basic & Applied areas of Aerospace Engineering incorporating the principles of Outcome Based Education.
- Provide state-of-the art laboratories and infrastructure facilities, conducive to motivate Interdisciplinary Research and Innovation in Aerospace Engineering.
- Develop self-motivated engineers with a blend of Discipline, Integrity, Engineering Ethics and Social Responsibility.
- Strengthening collaboration with industries, research organizations and institutes for Internships, Joint Research and Consultancy.
- Focus towards Integrating Sustainable and Inclusive Technologies for Societal Symbiosis.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide opportunities for successful professional career with a sound fundamental knowledge in Mathematics, Physical Science & Aerospace Engineering.

PEO2: Motivate innovative research in specialized areas of Aerospace Engineering viz Aerospace structural design, Aerodynamics, Aerospace Propulsion and Guidance & Control systems.

PEO3: Promoting development of problem solving abilities by adopting analytical, numerical and experimental skills with awareness on societal impact.

PEO4: Imbibing sound communication skills, team working ability, professional ethics and zeal for lifelong learning.

PSODescriptionPSO1Utilization of the fundamental knowledge and skills of Aerospace Engineering to develop
pragmatic solutions for complex Aerospace Engineering problems.PSO2Apply Professional Engineering practices and strategies in the development of systems and
subsystems for Aerospace Applications.PSO3Exhibit Effective Communication skills and a Zeal to function with multi-disciplinary teamsPSO4Demonstrate Professional Ethics and Responsibilities in Engineering practices towards the
achievement of societal symbiosis.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Go, change the world

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaturu - 560059, Kamataka, India

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	AEC	Ability Enhancement Courses

INDEX

III Semester								
Sl. No.	Course Code Course Title							
1.	MA231TB	Statistics, Laplace Transform and Numerical Methods	01					
2.	XX232TX	Basket Courses - Group A	03-08					
3.	AS233AI	Thermodynamics	09					
4.	AS234AI	Mechanics of Fluids	12					
5.	AS235AT	Structural Mechanics	14					
6.	HS237LX	Ability Enhancement courses- Group C	16-26					
7.	CS139AT	Bridge Course: C Programming	27					

IV Semester								
Sl. No.	Course Code	Course Title	Page No.					
1.	MA241TA	Probability theory and Linear Programming	30					
2.	XX242TX	Basket Courses - Group A	32-37					
3.	AS343AI	Aerospace Propulsion	38					
4.	AS244AI	Aerospace Structures	40					
5.	AS345AT	Fundamentals of Avionics	42					
6.	XX246TX	Professional Core Courses - Group B (NPTEL)						
7.	AS247DL	Design Thinking Lab	44					
8.	HS248AT	Universal Human Values	45					
9.	MAT149AT	Bridge Course: Mathematics	47					

Bachelor of Engineering in AEROSPACE ENGINEERING

	III SEMESTER													
S1. No.	Course Code	Course Title	Credit Alloca			ation BoS		Category	CIE Durati on (H)	Max Marks CIE		SEE Duration	Max Marks SEE	
			L	Т	Р	Total			on (H)	Theory	Lab	(H)	Theory	Lab
1	MA231TB	Statistics, Laplace Transform and Numerical Methods	3	1	0	4	MA	Theory	1.5	100	****	3	100	****
2	XX232TX	Basket Courses - Group A	3	0	0	3	XX	Theory	1.5	100	****	3	100	****
3	AS233AI	Thermodynamics	3	0	1	4	AS	Theory & Lab	1.5	100	50	3	100	50
4	AS234AI	Mechanics of Fluids	3	0	1	4	AS	Theory & Lab	1.5	100	50	3	100	50
5	AS235AT	Structural Mechanics	3	1	0	4	AS	Theory	1.5	100	****	3	100	****
6	HS237LX	Ability Enhancement Course : Group C	0	0	2	2	HS	LAB	1	****	50	2	****	50
7	CS139AT	Bridge Course: C Programming	2	0	0	AUDIT	CS	Audit Course	1	50	****	****	****	****
						21								

RV College of Engineering
Mysore Road, RV Vidyaniketan Post,
Bengaluru - 560059, Kamataka, India

Slo. No.	BoS	Course Code	Course Title	Common to	Credits
		MA231TA	Linear algebra, Fourier transforms and statistics	EC,EE, EI, ET	4
		MA231TB tra me	Statistics, Laplace transform and numerical methods	AS, BT, CH, IM, ME	4
1	MA	MA231TC	Linear algebra and probability theory	CD,CS,CY,IS	4
	MA231TD Applied ma civil engine		Applied mathematics for civil engineering	CV	4
		MA231TE	Mathematics for artificial intelligence & machine learning	AI & ML	4

Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem)											
S1. No.	BoS	Course Code	Course Title Category Credits								
	CV	CV232TA	Environment & Sustainability	Theory	3						
2	ME	ME232TB	Material Science for Engineers	Theory	3						
	BT	BT232TC	Bio Safety Standards and Ethics	Theory	3						

Group C: Ability Enhancement Courses During III Sem: AS, CH, CV, EC, EE, EI, ET, IM & ME. During IV Sem: AI, BT, CD, CS, CY & IS.									
S1.BoSCourseCourse TitleCategoryC									
No.		Code							
	HS	HS237LA	National Service Scheme	LAB	2				
	HS	HS237LB	National Cadet Corps	LAB	2				
	HS	HS237LC	Physical Education: Sports & Athletics	LAB	2				
7	HS	HS237LD	Music	LAB	2				
1	HS	HS237LE	Dance	LAB	2				
	HS	HS237LF	Theatre (Light Camera & Action)	LAB	2				
	HS	HS237LG	Art Work & Painting	LAB	2				
	HS	HS237LH	Photography & Film Making	LAB	2				

Bachelor of Engineering in AEROSPACE ENGINEERING

	IV SEMESTER													
S1. No.	Course Code	Course Title	Credit Allocation		cation	BoS	Category	CIE Durat	Max Marks CIE		SEE Durat ion	Max Marks SEE		
			L	Т	Р	Total			(H)	Theory	Lab	(H)	Theory	Lab
1	MA241TA	Probability theory and Linear Programming	2	1	0	3	MA	Theory	1.5	100	****	3	100	****
2	XX242TX	Basket Courses – Group A	3	0	0	3	XX	Theory	1.5	100	****	3	100	****
3	AS343AI	Aerospace Propulsion	3	0	1	4	AS	Theory & Lab	1.5	100	50	3	100	50
4	AS244AI	Aerospace Structures	3	0	1	4	AS	Theory & Lab	1.5	100	50	3	100	50
5	AS345AT	Fundamentals of Avionics	3	0	0	3	AS	Theory	1.5	100	****	3	100	****
6	XX246TX	Professional Core Courses - Group B	2	0	0	2	AS	NPTEL	****	****	****	3	100	****
7	AS247DL	Design Thinking Lab	0	0	2	2	AS	LAB	2	****	50	2	****	50
8	HS248AT	Universal Human Values	2	0	0	2	HS	Theory	1	50	****	2	50	****
9	MAT149AT	Bridge Course: Mathematics	2	0	0	AUDIT	MA	Audit Course	1	50	****	****	****	****
						1	1							

23

Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem)

	CV	CV242TA	Environment & Sustainability	3	0	0	3	Theory
2	ME	ME242TB	Material Science for Engineers	3	0	0	3	Theory
	BT	BT242TC	Bio Safety Standards and Ethics	3	0	0	3	Theory

Group B: NPTEL COURSES (Professional Elective Courses)											
S1. No.	BoS	Course Code	Course Title	Category	Credits						
	AS	AS246TA	Introduction to Airplane Performance	NPTEL	2						
	AS	AS246TB	Design of fixed wing aircrafts	NPTEL	2						
	AS	AS246TC	Principles of Metal Forming Technology	NPTEL	2						
	AS	AS246TD	Innovation, Business Models And Entrepreneurship	NPTEL	2						
	AS	AS246TE	Project Management : Planning, Execution, Evaluation And Control	NPTEL	2						
6	AS	AS246TF	Aerospace Structural Analysis	NPTEL	2						
	AS	AS246TG	Introduction to Machining and Machining Fluids	NPTEL	2						
	AS	AS246TH	Mechanical Measurement Systems	NPTEL	2						
	AS	AS246TJ	Nature and Properties of Materials	NPTEL	2						
	AS	AS246TK	Wheeled Mobile Robots	NPTEL	2						

			Semester: III				
STA	ATIST	FICS, LAPLAC	E TRANSFORM AN	ND NUMERICAL	MET	ſH	IODS
		Category:	PROFESSIONAL (CORE COURSE			
			(Theory)				
			(AS, BT, CH, IM,	ME)			
Course Code	:	MA231TB		CIE	:		100 Marks
Credits: L:T:P	:	3:1:0		SEE	:		100 Marks
Total Hours	:	45L+30T		SEE Duration	:		3.00 Hours
_			Unit-I				09 Hrs
Statistics:							~
Central moments, r	nean,	variance, coeffic	ients of skewness an	d kurtosis in terms	of n	no	ments. Correlation
analysis, rank corr	elatioi	n, curve fitting,	linear and multivari	ate regression ana	lysis.	I	mplementation using
MATLAB.			II				00 11
			U nit – II				09 Hrs
Complex Analysis:		in function Cours	hy Diamann aquation	na hammania funati		م	notmustion of analyti
function Milno 7	Thoma	on mothod Tav	lor Maclourin Lour	ont sorios. Zoros a	ons. C	~ 0	as P asidua theorem
Implementation usi	101118	ATI AR	ior, Maciaurin, Laur	ent series. Zeros a	na p	OI	es, Residue mediem
implementation usi	ing ivir		Unit _III				00 Hrs
I anlaca Transforr	n •	· · · · · · · · · · · · · · · · · · ·					071115
Laplace Transform							
Existence and uniq	luenes	s of Laplace trai	nsform, transform of	elementary function	ons, i	re	gion of convergence
	17 0001		· C 1.CC	·1 1 · 1	´	1	1.00 1.1
Properties - intearit	y, scal	ing, s - domain sl	nift, differentiation in	the s - domain, div	ision	by	y t, differentiation and
integration in the i	time c	ling, s - domain sl lomain. Laplace	nift, differentiation in transform of time d	the s - domain, div lomain periodic fu	ision nctio1	by ns,	y t, differentiation and , Heaviside unit step
integration in the function, unit impul	time c se fun	ing, s - domain sl lomain. Laplace action, t - shift pro	hift, differentiation in transform of time of perty. Implementation	the s - domain, div lomain periodic fur on using MATLAB.	ision nction	by ns,	y t, differentiation and Heaviside unit step
integration in the function, unit impul	time c se fun	ang, s - domain sl domain. Laplace action, t - shift pro	hift, differentiation in transform of time d operty. Implementation Unit –IV	the s - domain, div lomain periodic fur on using MATLAB.	ision nction	by ns.	y t, differentiation and Heaviside unit step 09 Hrs
Inverse Laplace Tr	time constraints for the second secon	ing, s - domain sl domain. Laplace action, t - shift pro	hift, differentiation in transform of time d pperty. Implementation Unit –IV	the s - domain, div lomain periodic fur on using MATLAB.	ision nction	by ns,	y t, differentiation and Heaviside unit step 09 Hrs
Inverse Laplace The Definition, propertial	time di se fun ransfo es, eva	ang, s - domain sl domain. Laplace action, t - shift pro brm: aluation using dif	hift, differentiation in transform of time d perty. Implementation Unit –IV Efferent methods. Con	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A	ision nction	by ns.	y t, differentiation and Heaviside unit step 09 Hrs tion to solve ordinar
integration in the function, unit impul Inverse Laplace Tr Definition, properti- linear differential ec	ransfo quation	ang, s - domain sl domain. Laplace action, t - shift pro brm: aluation using dif ns. Implementation	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB.	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A	ision nction	by ns.	y t, differentiation and Heaviside unit step 09 Hrs tion to solve ordinar
Inverse Laplace The Definition, properti- linear differential economics	ransfo es, eva quation	ang, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations:	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A	ision nction Applie	by ns. ca	y t, differentiation an Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs
Inverse Laplace The Definition, unit impul	ransfo es, eva quation	ang, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Differential of	hift, differentiation in transform of time d pperty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite diff	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A	Applie	by ns ca	y t, differentiation and Heaviside unit step 09 Hrs tion to solve ordinar 09 Hrs erivatives solution of
Inverse Laplace The Inverse Laplace The Definition, properti- linear differential economic Numerical Method Numerical solutions	ransfo es, eva quation Is for 1 s to pa	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Differential wo-dimension	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different equations – Finite different	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximati	Applie on to	by ns. ca	y t, differentiation an Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods)
Inverse Laplace Tr Definition, properti linear differential ec Numerical Method Numerical solutions Laplace equation	ransfor ransfor s to pa in two	ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using different ns. Implementation Partial Different urtial differential of vo-dimension, he	hift, differentiation in transform of time d operty. Implementation Unit –IV Efferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximation in one din	Applie on to nensic	by ns, ca ca	y t, differentiation an Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods)
Inverse Laplace The Definition, unit impul Inverse Laplace The Definition, properti- linear differential economic Numerical Method Numerical solutions Laplace equation Implementation usin	ransfor ransfor es, eva quation ls for is to pa in two ng MA	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Different urtial differential e vo-dimension, he ATLAB.	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximati ations in one din	Applie on to nensio	by ns, ca o d	y t, differentiation and Heaviside unit step 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution o (explicit methods)
Inverse Laplace The function, unit impul Inverse Laplace The Definition, properti- linear differential ex Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes:	y, scal time of se fun ransfo es, eva quation ls for s to pa in tw ng MA After	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Different attial differential of vo-dimension, he ATLAB.	hift, differentiation in transform of time d perty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations course, the students	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. <i>A</i> ference approximati ations in one din will be able to	Applie on to nensio	by ns. ca do d	y t, differentiation and Heaviside unit step 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution o (explicit methods)
Inverse Laplace Tr function, unit impul Inverse Laplace Tr Definition, properti linear differential ec Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate th	y, scal time of se fun ransfo es, eva quation Is for is s to pa in two ng MA After e fund	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Different attial differential of vo-dimension, he ATLAB. Completing the lamental concepts	hift, differentiation in transform of time d operty. Implementation Unit –IV Efferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations course, the students of statistics, comple	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. <i>A</i> ference approximati ations in one din will be able to x analysis, Laplace	Applie on to ensio	by ns, ca o d on ve	y t, differentiation an , Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution o (explicit methods) rse Laplace transform
Inverse Laplace The function, unit impul Inverse Laplace The Definition, properti- linear differential economic Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate the and numerical	y, scal time of se fun ransfo es, eva quation ls for s to pa in tw ng MA After e fund cal me	ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using different ins. Implementation Partial Different artial differential of vo-dimension, he ATLAB. Completing the lamental concepts ethods.	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations course, the students of statistics, comple	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximation tions in one din will be able to x analysis, Laplace	Applie on to mensio	by ns ca o d on ve	y t, differentiation and Heaviside unit step 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution o (explicit methods) rse Laplace transform
Inverse Laplace The function, unit impul Inverse Laplace The Definition, properti- linear differential economic Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate the and numeric CO2: Apply the a	y, scal time c lse fun ransfo es, eva quation ls for t s to pa in two ng MA After e fund cal me cquire	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using differential rtial differential of vo-dimension, he ATLAB. completing the lamental concepts ethods. ed knowledge of s	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations course, the students of statistics, complex and	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximati ations in one din will be able to x analysis, Laplace	Applic on to mension & investore	ca ca o d on ve	y t, differentiation an Heaviside unit ster 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods) rse Laplace transform nd numerical method
Inverse Laplace The function, unit impul Inverse Laplace The Definition, properti- linear differential economic Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate the and numeric CO2: Apply the a for partial d	ransfo es, eva quation ls for is to pa in two ng MA After e fund cal me cquire	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Different attial differential of vo-dimension, he ATLAB. Completing the lamental concepts ethods. ed knowledge of s ntial equations to	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations s of statistics, complex and solve the problems o	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. <i>A</i> ference approximati ations in one din will be able to x analysis, Laplace alysis, Laplace trans f engineering applic	Applie on to ension & in sform	byns, ca o d on ve	y t, differentiation an , Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods) rse Laplace transform nd numerical method
Inverse Laplace Tr function, unit impul Inverse Laplace Tr Definition, properti linear differential ec Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate th and numerical CO2: Apply the a for partial d CO3: Analyse the	y, scal time of se fun ransfores, eva quation ls for is s to pa in two ng MA After e fund cal me cquire lifferen e solu	Ing, s - domain sl domain. Laplace action, t - shift pro- borm: aluation using dif ns. Implementation wordimension, he ATLAB. • completing the lamental concepts ethods. • d knowledge of s ntial equations to ation of the pro-	hift, differentiation in transform of time d operty. Implementation Unit –IV Efferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations of statistics, complex and solve the problems of blems obtained from	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximation ations in one dim will be able to x analysis, Laplace alysis, Laplace trans f engineering applic appropriate techn	Applic Applic on to nensic & in sform iques	ca ca o d on ve	y t, differentiation an , Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods) rse Laplace transform nd numerical method
Inverse Laplace Tr function, unit impul Inverse Laplace Tr Definition, properti linear differential ec Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate th and numeric CO2: Apply the a for partial d CO3: Analyse th analysis, La	y, scal time of lase fun ransfo es, eva quation ls for s to pa in tw ng MA After e fund cal me cquire lifferen e solu uplace	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Different attial differential of vo-dimension, he ATLAB. Completing the lamental concepts ethods. ed knowledge of s ntial equations to ution of the pro- transform and nu	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations course, the students of statistics, complex and solve the problems of oblems obtained from merical methods to th	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximation ations in one din <u>will be able to</u> x analysis, Laplace alysis, Laplace trans f engineering applic appropriate technone real - world prob	Applie on to aensio & in ation iques lems.	byns, ca o d on ve	y t, differentiation an Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods) rse Laplace transform nd numerical method
Inverse Laplace The function, unit impul Inverse Laplace The Definition, properti- linear differential equivalent Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate the and numeric CO2: Apply the a for partial d CO3: Analyse the analysis, La	y, scal time of lase fun ransfor es, eva quation ls for is s to pa in two ng MA After e fund cal me cquire lifferen e solu uplace ne ove	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Different attial differential e vo-dimension, he ATLAB. • completing the lamental concepts ethods. et knowledge of s ntial equations to attion of the pro- transform and nu erall knowledge	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equations course, the students is of statistics, complex solve the problems of oblems obtained from merical methods to the of statistics, complex and	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximati ations in one din will be able to x analysis, Laplace alysis, Laplace trans f engineering applic appropriate techn ne real - world prob ex analysis, Laplace	Applic on to ension & investor ation iques lems. xe tra	byns, ca ca o d on ve	y t, differentiation an , Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods) rse Laplace transform nd numerical method of statistics, comple
Inverse Laplace Tr function, unit impul Inverse Laplace Tr Definition, properti linear differential ec Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate th and numeric CO2: Apply the a for partial d CO3: Analyse the analysis, La CO4: Interpret th methods to	y, scal time of lse fund ransfor es, eva quation ls for in two ng MA After e fund cal me cquire lifferen e solu uplace solve	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif ns. Implementation Partial Different attial differential of vo-dimension, he ATLAB. Completing the lamental concepts ethods. ed knowledge of s ntial equations to attion of the pro- transform and nu erall knowledge partial differentia	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equa course, the students is of statistics, complex statistics, complex and solve the problems of oblems obtained from merical methods to the of statistics, complex a solve the problems of the statistics, complex a statistics, complex and of statistics, complex and of statistics, complex and a statistics	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximati ations in one din will be able to x analysis, Laplace alysis, Laplace trans f engineering applic appropriate techn ne real - world prob ex analysis, Laplace many practical situ	Applie on to nensio & in ation iques lems. ce tra ation	byns, ca o d o d o n ve i an s. ca	y t, differentiation an Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods) rse Laplace transform nd numerical methods of statistics, comple
Inverse Laplace Tr function, unit impul Inverse Laplace Tr Definition, properti linear differential ec Numerical Method Numerical solutions Laplace equation Implementation usin Course Outcomes: CO1: Illustrate th and numeric CO2: Apply the a for partial d CO3: Analyse th analysis, La CO4: Interpret th methods to	y, scal time of se fun ransfores, eva quation ls for is s to pa in two ng MA After e fund cal me cquire lifferent e solut place solve	Ing, s - domain sl domain. Laplace action, t - shift pro- brm: aluation using dif- ns. Implementation Partial Different attial differential of vo-dimension, he ATLAB. Completing the lamental concepts ethods. ed knowledge of s ntial equations to attion of the pro- transform and nu erall knowledge partial differentia	hift, differentiation in transform of time d operty. Implementation Unit –IV fferent methods. Con on using MATLAB. Unit –V tial Equations: equations – Finite different eat and wave equa course, the students is of statistics, complex and solve the problems of blems obtained from merical methods to th of statistics, complex arising in	the s - domain, div lomain periodic fur on using MATLAB. volution theorem. A ference approximation ations in one dim will be able to x analysis, Laplace trans f engineering applic appropriate technone real - world prob ex analysis, Laplace many practical situ	Applie Applie on to nensio & in sform iques lems. ce tra ation	ca ca o d o n ve ans. s c	y t, differentiation an , Heaviside unit ste 09 Hrs tion to solve ordinar 09 Hrs erivatives, solution of (explicit methods rse Laplace transform nd numerical method of statistics, comple

Kele	rence books
1	Advanced Engineering Mathematics, Dennis G. Zill, Warren S. Wright, 7th Edition, 2020, Jones and
1	Bartlett publishers, ISBN: 13-978-1284105902.
2	Numerical Methods for Scientific and Engineering Computation, M.K. Jain, S.R.K. Iyenger and R.K. Jain,
4	6 th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.
2	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley & Sons, ISBN: 978-
3	81-265-3135-6.
4	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 8174091955

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted (Two regular tests & One optional Improvement test). Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE (THEORY)	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

					CO	-PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	2
CO2	3	2	2	1	1	-	-	-	1	1	-	2
CO3	3	3	2	2	1	-	-	-	1	2	-	2
CO4	3	3	3	2	-	-	-	-	1	1	-	3

High-3: Medium-2: Low-1

			Semester: III			
		ENVIRO	NMENT AND SUST	FAINABILITY		
		Categ	gory: Basket Course	e- Group A		
		((Theory)	grains)		
Course Code	:	СV232ТА	(Theory)	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	3 Hours
			Unit-I			10 Hr
ENVIRONMENT	AN	D BIODIVERSITY	ľ			
Definition, scope an	nd i	importance of environment	onment – need for p	ublic awareness. Eco	o-sy	stem and Energy flow
ecological succession	on.	Types of biodiversi	ty: genetic, species a	and ecosystem divers	sity	– values of biodiversit
threats to biodivers	ity:	habitat loss, poach	ing of wildlife, ma	n-wildlife conflicts	– e	ndangered and endem
species of India $-cc$	onse A t	POLI UTION	ity.			
Causes Effects and	AL I Pi	reventive measures	of Water Soil Air	and Noise Pollution	۰ (Solid Hazardous and H
Waste management.		eventive measures	or water, boll, mi	and rouse ronation	ы. н	Jond, Mazardous and I
Occupational Healt	th a	and Safety Manager	nent system (OHAS	MS). Environmental	l pr	otection, Environment
protection acts.		, ,		,	I	,
			Unit – II			08 Hr
RENEWABLE SO	UF	RCES OF ENERGY	7			
Energy management	it a	nd conservation, No	ew Energy Sources:	Need of new source	es.	Different types of ne
energy sources.				а <u>Б</u> і і	a	
Energy Cycles, ca	rbo	n cycle, emission	and sequestration,	Green Engineering:	S	ustainable urbanization
Applications of L	a te Ivd	rogan aparay Occa		Tidal anaroy conv	rai	on Concept origin on
power plants of geor	ryu thei	rmal energy	in energy resources,	That energy conve	21 51	on. Concept, origin an
power prants or geo			Unit –III			08 Hr
SUSTAINABILIT	YA	ND MANAGEME	NT			
Introduction to Env	iroı	nmental Economics,	Environmental Aud	it, Development, GE	РP,	Sustainability - concep
needs and challeng	es-e	economic, social an	d aspects of sustaina	ability - from unsus	tain	ability to sustainability
millennium develop	me	nt goals and protoco	ls.		_	
Linear vs. cyclical	res	ource management	systems, need for sy	stems thinking and	des	ign of cyclical system
Circular economy, in	ndu Zoo	d Decourses L and R	h technology. Specifi	ically apply these con	nce	pts to: Water Resource
Energy Resources, I	-00	a Resources, Lana o	Unit IV	lagement.		08 11
Sustainable Develo	nn	ent Goals - targets	indicators and inter	vention areas Climat	e cł	ange - Global Region
and local environ	mer	tal issues and po	ssible solutions C	oncept of Carbon	Cre	edit Carbon Footprin
Environmental man	age	ment in industry.	solutions. C	oncept of curton	CI	can, caroon rootprin
SUSTAINABILIT	Y P	PRACTICES				
Zero waste and R co	onc	ept, Circular econom	ny, ISO 14000 Series	, Material Life cycle	ass	essment.
Environmental Imp	act	Assessment. Sustai	nable habitat: Green	buildings, Green m	nate	rials, Energy efficiency
Sustainable transpor	ts.					
			Unit –V			08 Hr
Corporate Social R	kes]	ponsibility (CSR) -	Meaning & Definition	on of CSR, History & CSR	ev	olution of CSR. Conce
of Charily, Corpo	rate	boldor Managamant	Polation between (CSR-and Corporate	mg	g concept. Concept (
aspect of $CSR \cdot Chro$	nc)	logical evolution of	CSR in India	CSR and Corporate	go	
Sustainability Repo	orti	ng: Flavor of GR	I. Dow Jones Sus	tainability Index. (CEF	PI. Investor interest i
Sustainability.		6	,	······································		

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Kamataka, India

Course	e Outcomes: After completing the course, the students will be able to:
CO1	Understand the basic elements of Environment and its Biodiversity.
CO2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.
CO3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.
CO4	Recognize the role of Corporate social responsibility in conserving the Environment.

Re	ference Books
1	'Environmental Science and En
1.	050 0005400050

1	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 -
1.	978-9387432352
r	'Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3rd edition,
2.	Pearson Education, 2006. ISBN-13 - 978-0132339346.
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.

A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David 4. Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

			Semester: III			
		MATER	IALS SCIENCE FOR ENGIN	EERS		
		Cat	egory: Basket Course- Group	Α		
			(Common to all Programs)			
			(Theory)			
Course Code	:	ME232TB		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
			Unit-I			06 Hrs
The Fundamenta	ls of	Materials				·
The electronic stru	ıctur	e of atoms, types	of atomic and molecular bond	s: ionic bond, cova	alent	bond, metallic
bond, secondary b	onds	, mixed bonding, I	hybridization. Energy bands in 1	metals, insulators, a	and s	emiconductors
Basic crystallogra	phy.	Defects and dislo	ocations. Types of materials: p	olymers, metals ar	nd al	loys, ceramics
semiconductors, co	ompo	osites.				
			Unit – II			10 Hrs
Material behavio	r: T	hermal properties	: thermal conductivity, thermoe	electric effects, hea	at ca	pacity, therma
expansion coeffici	ent, t	thermal shock, the	rmocouple. Electrical Properties	: dielectric behavio	ours a	ind temperature
dependence of the	die	lectric constant, in	nsulating materials, ferroelectric	city, piezoelectricit	y, su	per conductor
Optical propertie	s: lu	uminescence, opt	ical fibers, Mechanical Prop	erties: Stress-strai	n di	agram, elasti
deformation, plast	c de	formation, hardnes	ss, viscoelastic deformation, imp	act energy, fracture	e toug	ghness, fatigue.
^			Ilmit III			10 77
			Umi –m			10 Hrs
Materials and th	eir A	Applications: Sen	niconductors, dielectrics, optoel	lectronics, structura	al ma	10 Hrs aterials, ferrous
Materials and th alloys, nonferrous	eir A allo	Applications: Sen	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly	ectronics, structuration structuration structuration structure str	al ma and	10 Hrs aterials, ferrous thermoplastics
Materials and th alloys, nonferrous composites: fiber-1	eir A allo einfo	Applications: Sen bys, cement, conci- orced, aggregated	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin	ectronics, structura ymers: thermosets g materials, biomat	al ma and erials	10 Hrs aterials, ferrous thermoplastics s, processing o
Materials and th alloys, nonferrous composites: fiber- structural material	eir A allo einfo 3.	Applications: Sen bys, cement, concr orced, aggregated	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin	ectronics, structura ymers: thermosets g materials, biomat	al ma and erials	thermoplastics s, processing of
Materials and th alloys, nonferrous composites: fiber-r structural material	eir A allo reinfo s.	Applications: Sen bys, cement, concr orced, aggregated	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV	ectronics, structura ymers: thermosets g materials, biomat	al ma and cerials	10 Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs
Materials and th alloys, nonferrous composites: fiber-r structural materials Heat Treatment:	eir A allo reinfo s. Pos	Applications: Sen bys, cement, concr orced, aggregated at processing heat	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device	ectronics, structura ymers: thermosets g materials, biomat	al ma and erials	thermoplastics s, processing of 07 Hrs liffusion, rapid
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin	eir A allo reinfo s. Pos g. H	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidation	al ma and erials on, c nalizi	thermoplastics s, processing of 07 Hrs liffusion, rapic
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering, formati	eir A allo reinfo s. Pos g. H on o	Applications: Sen bys, cement, concr orced, aggregated of processing heat leat treatment of f austenite, constru	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin <u>Unit –IV</u> treatment of electronic device ferrous materials: annealing, s uction of Time Temperature Tra	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm	al ma and cerials on, c nalizi	10 Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs liffusion, rapic ing, hardening es, Special heat
Materials and th alloys, nonferrous composites: fiber-re- structural materials Heat Treatment: thermal processin tempering. formati treatment processe	eir A allo reinfo s. Pos g. H on o s: ca	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding	niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans c cvaniding, flame, and induction	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening, Defec	al ma and erials on, c nalizi curve	10 Hrs aterials, ferrous thermoplastics s, processing o 07 Hrs liffusion, rapic ing, hardening es. Special hea heat treatment
Materials and th alloys, nonferrous composites: fiber-is structural materials Heat Treatment: thermal processin tempering. formati treatment processe	eir A allo reinfo s. Pos g. H on o s: ca	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding	Unit –III niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s uction of Time Temperature Trans g, cyaniding, flame, and induction Unit-V	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defec	al ma and cerials on, c nalizi curve	10 Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs diffusion, rapid ing, hardening es. Special heat heat treatment. 07 Hrs
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processe Nanomaterials:	eir A allo reinfo s. Pos g. H on o s: ca	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding	Unit –III niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trais g, cyaniding, flame, and induction Unit-V trials: ball milling sol-gel value	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect	al ma and erials on, c nalizi curve ets in	10 Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs liffusion, rapid ing, hardening es. Special heat heat treatment. 07 Hrs
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processee Nanomaterials: \$ magnetron_sputter	eir A allo reinfo s. Pos g. H on o s: ca	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding mesis of nanomate lithography. Nano	Unit –III niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, variation	lectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect apour deposition g sonorous materials	al ma and cerials on, c nalizi curve ets in growt	10 Hrs aterials, ferrous thermoplastics s, processing o 07 Hrs diffusion, rapid ing, hardening es. Special hea heat treatment 07 Hrs heat treatment 07 Hrs
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processe Nanomaterials: S magnetron sputter graphene_nano EE	eir A allo reinfo s. Pos g. H on o s: ca Synthing,	Applications: Sen oys, cement, concr orced, aggregated at processing heat leat treatment of f austenite, constru- rburizing, nitriding mesis of nanomate lithography. Nano nano fabrics biore	Unit –III miconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, value o porous materials: zeolites, meters	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect pour deposition g soporous materials	al ma and cerials on, c nalizi curve cts in growt , car	10 Hrs aterials, ferrough thermoplastics s, processing o 07 Hrs liffusion, rapid ing, hardening es. Special heat heat treatment 07 Hrs h, pulse laser bon nanotubes o glasses, page
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processes Nanomaterials: S magnetron sputter graphene, nano FH	eir A allo reinfo s. Pos g. H on o s: ca Synth ing, CPs, n	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding nesis of nanomate lithography. Nano nano fabrics, biore	Unit –III miconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, value o porous materials: zeolites, me esorbable and bio-erodable mate	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norn nsformation (TTT) on hardening. Defect pour deposition g soporous materials rials, nano ceramic	al ma and cerials on, c nalizi curve ets in growt , car , nan	10 Hrs aterials, ferrou thermoplastics s, processing o 07 Hrs liffusion, rapid ing, hardening es. Special hea heat treatment 07 Hrs h, pulse laser bon nanotubes o glasses, nano
Materials and th alloys, nonferrous composites: fiber-is structural materials Heat Treatment: thermal processin tempering. formati treatment processes Nanomaterials: S magnetron sputter graphene, nano FF biomaterials, nano	eir A allo reinfo s. Pos g. H on o s: ca Synthing, RPs, 1 imp	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding nesis of nanomate lithography. Nano nano fabrics, biore plant associated ma	Unit –III miconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, va o porous materials: zeolites, me esorbable and bio-erodable mate aterials. Characterization of name	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect apour deposition g soporous materials rials, nano ceramic to structures, specti	al ma and cerials on, c nalizi curve cts in growt , car , nan rosco	10 Hrs aterials, ferrous thermoplastics s, processing o 07 Hrs diffusion, rapid ing, hardening es. Special hea heat treatment 07 Hrs h, pulse laser bon nanotubes o glasses, nano pic techniques
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processe Nanomaterials: S magnetron sputter graphene, nano FF biomaterials, nano automatic force mi	eir A allo reinfo s. Pos g. H on o s: ca Synth ing, RPs, 1 imp cross	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding mesis of nanomate lithography. Nano nano fabrics, biore plant associated ma copy.	Unit –III niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trais g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, va o porous materials: zeolites, me esorbable and bio-erodable mate aterials. Characterization of nan	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect pour deposition g soporous materials rials, nano ceramic to structures, spect	al ma and cerials on, c nalizi curve cts in growt , car , nan rosco	IO Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs diffusion, rapic ing, hardening es. Special heat heat treatment 07 Hrs h, pulse laser bon nanotubes o glasses, nano pic techniques
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processe Nanomaterials: S magnetron sputter graphene, nano FF biomaterials, nano automatic force mi	eir A allo reinfo 3. Pos g. H on o s: ca Synthing, IPs, 1 imp cross	Applications: Sen oys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding nesis of nanomate lithography. Nano nano fabrics, biore olant associated ma copy.	Unit –III niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, variate porous materials: zeolites, me esorbable and bio-erodable mate aterials. Characterization of name	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect pour deposition g soporous materials rials, nano ceramic to structures, spectr	al ma and cerials on, c nalizi curve ets in growt , car , nan rosco	IO Hrs aterials, ferrous thermoplastics s, processing or 07 Hrs liffusion, rapic ing, hardening es. Special hea heat treatment 07 Hrs h, pulse laser bon nanotubes o glasses, nano pic techniques
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processes Nanomaterials: S magnetron sputter graphene, nano FF biomaterials, nano automatic force mi Course Outcomes	eir A allo einfe s. Pos g. H on o s: ca Synthing, imp cross : ca	Applications: Sen bys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding hesis of nanomate lithography. Nano nano fabrics, biore blant associated ma copy.	Unit –III miconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, value o porous materials: zeolites, me esorbable and bio-erodable mate aterials. Characterization of name e course, the students will be a materials. their atomic atructure	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect pour deposition g soporous materials rials, nano ceramic to structures, spection	al ma and cerials on, c nalizi curve ets in growt , car , nan rosco	10 Hrs aterials, ferrous thermoplastics s, processing o 07 Hrs liffusion, rapio ing, hardening es. Special hea heat treatment 07 Hrs h, pulse laser bon nanotubes o glasses, nano pic techniques
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processe Nanomaterials: S magnetron sputter graphene, nano FF biomaterials, nano automatic force mi Course Outcomes CO1 Understan	eir A allo reinfo s. Pos g. H on o s: ca Synth ing, tros, imp cross : Af d the	Applications: Sen bys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding hesis of nanomate lithography. Nano nano fabrics, biore plant associated ma copy. ter completing the classification of n	Unit –III miconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, va o porous materials: zeolites, me esorbable and bio-erodable mate aterials. Characterization of name e course, the students will be a naterials, their atomic structure, diagtions of different meterials	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect apour deposition g soporous materials rials, nano ceramic to structures, spectructures, spectr	al ma and cerials on, c nalizi curve ts in growt , carl , nan rosco	10 Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs diffusion, rapic ing, hardening es. Special heat heat treatment 07 Hrs h, pulse laser bon nanotubes o glasses, nano pic techniques
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processe Nanomaterials: S magnetron sputter graphene, nano FF biomaterials, nano automatic force mi Course Outcomes CO1 Understan CO2 Investigate	eir A allo reinfo s. Pos g. H on o s: ca Synth ing, Ps, p imp cross : Af d the	Applications: Sen bys, cement, concr orced, aggregated of the processing heat feat treatment of f austenite, constru- rburizing, nitriding mesis of nanomate lithography. Nano nano fabrics, biore blant associated ma copy. ter completing the e classification of n properties and app	Unit –III niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trais g, cyaniding, flame, and induction Unit-V erials: ball milling, sol-gel, va o porous materials: zeolites, me esorbable and bio-erodable mate aterials. Characterization of nan e course, the students will be a naterials, their atomic structure, plications of different materials.	lectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati pheroidizing, norm nsformation (TTT) on hardening. Defect pour deposition g soporous materials rials, nano ceramic to structures, spect ble to: and properties.	al ma and eerials on, c nalizi curve ets in growt , car , nan rosco	IO Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs diffusion, rapid ing, hardening es. Special heat heat treatment. 07 Hrs h, pulse laser bon nanotubes. o glasses, nano pic techniques
Materials and th alloys, nonferrous composites: fiber structural materials Heat Treatment: thermal processin tempering. formati treatment processee Nanomaterials: S magnetron sputter graphene, nano FF biomaterials, nano automatic force mi Course Outcomes CO1 Understan CO2 Investigate CO3 Analyze th	eir A allo reinfo s. Pos g. H on o s: ca Synthing, imp cross :: Af d the e effi	Applications: Sen bys, cement, concr orced, aggregated at processing heat feat treatment of f austenite, constru- rburizing, nitriding hesis of nanomate lithography. Nano- nano fabrics, biore- blant associated ma- copy. ter completing the c classification of m properties and app fect of different he	Unit –III niconductors, dielectrics, optoel rete, ceramic, and glasses. Poly composites, electronic packagin Unit –IV treatment of electronic device ferrous materials: annealing, s action of Time Temperature Trans g, cyaniding, flame, and inductio Unit-V erials: ball milling, sol-gel, va o porous materials: zeolites, me esorbable and bio-erodable mate aterials. Characterization of nam e course, the students will be a naterials, their atomic structure, plications of different materials. at treatment processes.	ectronics, structura ymers: thermosets g materials, biomat es: thermal oxidati- pheroidizing, norm nsformation (TTT) on hardening. Defect apour deposition g soporous materials rials, nano ceramic to structures, spect ble to: and properties.	al ma and cerials on, c nalizi curve cts in growt , car , car , nan rosco	10 Hrs aterials, ferrous thermoplastics s, processing of 07 Hrs liffusion, rapid ing, hardening es. Special heat heat treatment. 07 Hrs h, pulse laser bon nanotubes. o glasses, nano pic techniques

Refe	erence Books
1	Material Science and Engineering, William D Callister, 6 th Edition, 1997, John Wiley and Sons, ISBN:
1.	9812-53-052-5
2	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-
2	Y85018-6
2	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company,
3	ISBN: 0-07-066717-9
4	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press
	1996, ISBN:978-0849322749

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RV Colle	ege of Engineering®	
Mysore Road	RV Vidyaniketan Post, 50059 Kamataka Joda	
Der galara - D	ooooy, Kamanaka, maa	

			Semester: III					
		BIC	SAFETY STANDARDS	AND ETHICS				
Category: Basket Course- Group A								
	(Common to all Programs)							
	(Theory)							
Course Code	:	BT232TC		CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45L		SEE Duration	:	3 Hours		
			Unit-I				09 Hrs	
Biohazards, Bio	safet	y levels and	cabinets: Introduction to I	Biohazards, Biolog	ical	Safety levels, I	Bio safety	
Cabinets, Study of	of var	rious types of	Bio safety cabinets. Vario	ous parameters for	des	ign of Biosafety	y cabinets	
(Materials used for	r fab	rication, sense	rs, filters, pumps, compress	sors)				
		D : 6 ·	Unit – II			0 D 1 61	08 Hrs	
Biosafety Guidel	ines:	Biosafety gu	idelines of Government of	India, GMOs &		Os, Roles of In	stitutional	
Biosafety Comm	ttee,	RCGM (Revi	iew committee o Genetic i	manipulation), GE	AC	(Genetic Engg	Approval	
Committee) for C	JMO	applications	in 100d and agriculture. C	overview of Nation	nai	Regulations and	a relevant	
International Agre	eme	its including C	Janagena Protocol.				10 Urg	
Food sofety stan	dord	e ESSAL (Eo	od Safety and Standards A	uthority of India)	Fu	nctions License	types of	
FSSALL icences a	uaru nd co	s. FSSAI (FO	ou salety and standards A	autionity of mula),	1 u	lictions, License	, types of	
Food Hygiene: (Tenei	al principles	of food microbiology and	overview of food	bor	ne pathogens s	ources of	
microorganisms in	the	food chain (ra	w materials, water, air, equi	ipment. etc.)	.001	ne punogens, s		
Quality of foods,	Micr	obial food spo	ilage and Foodborne diseas	ses, Overview of b	enet	ficial microorga	nisms and	
their role in food	proce	essing and hur	nan nutrition, Food Analysi	is and Testing, Ger	iera	l principles of fo	ood safety	
management syste	ems, l	Hazard Analys	sis Critical Control Point (H	ACCP).				
			Unit –IV				09 Hrs	
Food Preservation	ns, p	processing, an	d packaging					
Food Processing	Ope	erations, Princ	ciples, Good Manufacturin	ng Practices HAC	CCP	, Good produc	tion, and	
processing practic	es (C	GMP, GAP, GI	HP, GLP, BAP, etc)					
Overview of foc	d pi	reservation m	ethods and their underly	ing principles inc	ludi	ng novel and	emerging	
methods/principle	s.Ov	erview of food	packaging methods and pr	inciples including f	1076	el packaging ma	terials.	
Faal asfata and	E41.	F 1 H		A 11	T		09 Hrs	
Food safety and	Etni That	cs: Food Haza	Irds, Food Additives, Food	Allergens Drugs, I	Hor	mones, and Ant	1010tics in	
Feonomics Histo	1 nat	Food Safety '	roodborne niness, Consum	ion in Food Safety	Jem	and, Food Produ	action and	
Economics, finite Ethics: Clinical et	Economics, mistory of Food Safety, the Kole of Food Preservation in Food Safety. Ethics: Clinical athics, Health Policy, Possarch athics, othics, on Animala, Picaefaty and Picathics							
Lunes. Chinear et	ines,	Theaten T oney	, Research ethics, ethics on	7 minuts. Diosarcty	an	d Dioetifies.		
Course Outcomes	: Af	ter completing	g the course, the students	will be able to				
CO1 Have a co	mpr	ehensive know	ledge of Biohazards and bi	o safety levels				
CO2 Understa	nd th	e biosafety gu	idelines and their importanc	to the society				
CO3 Acquire l	now	ledge with res	pect to the Food standards,	Hygiene, food proc	ess	ing and packing		
CO4 Apprecia	te the	e food safety, I	Ethics, biosafety and bio eth	ics		×		

Re	Reference Books					
1	Deepa Goel, Shomini Parashar, IPR, Biosafety and Bioethics 1st Edition, 2013, ISBN: 978-8131774700.					
2	Cynthia A Roberts, The Food Safety, Oryx Press, first edition, 2001, ISBN: 1–57356–305–6.					
3	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.					
4	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)						
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

R	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A	- -					
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: (Internal Choice)	16					
5&6	Unit 3: (Internal Choice)	16					
7&8	Unit 4: (Internal Choice)	16					
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					

			Semester: III				
	THERMODYNAMICS						
		Category: PR	OFESSIONAL CO	ORE COURSE			
			(Theory & Practic	e)	1		
Course Code	:	AS233AI		CIE	:	100+50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100+50 Marks	
Total Hours	:	45L+28P		SEE Duration	:	3.00 +3.00 Hours	
[T	nit_I			11 Hrs	
First I aw of thermo	dvn	amics: Steady flow	un-1	nd Steady flow angi	noo	ring devices DMMK1	
Unsteady flow process	цуп - С	harging and discharg	ging process	iu Steady 110w eligi	nee	ling devices, i wiwiK1,	
Properties of Pure S	- C Sub	stances. Property (diagrams for phase	-change processes	Pro	nerty tables Ideal-gas	
equation of state Corr	nre	essibility factor use	of compressibility of	charts Other equation	n o	f state- Vander Waal's	
Equation of State, Con	ipit	inty factor, ase	of compressionity (charts, Other equate	11 0	i state vander waars	
^		Uni	it – II			08 Hrs	
Second law of Ther	mo	dynamics: Limitation	ons of First Law o	of thermodynamics,	Hea	at engine, Heat pump,	
Clausius and Kelvin P	lano	ek statement, Carnot	's principle, Carnot	cycle and its special	ties	, PMMK2	
Introduction to Entro	ру	: Increase of entropy	v principle, Isentrop	ic process, T-ds relat	ion	8,	
		Uni	it –III			08 Hrs	
Entropy: Entropy cha	nge	e of liquids and solid	ls, Entropy change	of ideal gases, Isentr	opi	c efficiencies of steady	
flow devices, Entropy	bal	ance.					
Gas Mixtures: Mass	fra	action, Mole fractio	n, volume fraction	, Ideal gas mixtur	e ai	nd Real gas mixtures;	
Dalton's laws of partia	ıl p	ressures, Amagat's	law of additive volu	mes,			
		Uni	it –IV			07 Hrs	
Gas Cycles: Efficien	су	of air-Standard cyc	cles-Carnot cycle, (Otto, Diesel, Dual	and	Brayton cycle, Mean	
effective pressure, Rep	ores	entation of cycles or	n P-V and T-s diagra	ams.			
Performance of I.C.	Eng	gines: Air and Fuel	measurement, Calc	ulation of IP BP &a	mp;	FP, and Heat Balance	
sheet calculations.							
		Un	it –V			11 Hrs	
Psychrometry: Proper	rtie	s of atmospheric air.	, Construction and u	se of psychrometric	cha	art, Analysis of various	
processes, heating, cooling, dehumidifying and humidifying, Adiabatic mixing of moist air, Analysis of various							
Air conditioning proce	Air conditioning processes.						

LABORATORY EXPERIMENTS

- 1. Determination of flash point and fire point of the given fuels/lubricating oils using Abel Pensky and Pensky Martin's apparatus
- 2. Determination of Calorific Value of Solid & Liquid Fuels using Bomb calorimeter
- 3. Determination of Calorific Value of gaseous fuel using Junker gas calorimeter
- 4. Determination of viscosity of various lubricating oils using Redwood, Saybolts Viscometers
- 5. Determination of viscosity of various lubricating oils using Brookfield Viscometer
- 6. Study of characteristics and performance of a 4 stroke Diesel Piston engine under various conditions
- 7. Study of characteristics and performance of a 4 stroke Petrol Piston engine under various conditions
- 8. Determination of Friction power using Morse test
- 9. Determination of effectiveness of a parallel and counter flow heat exchangers
- 10. Determination of constituents of a gas mixture using Orsat apparatus
- 11. Study the performance of vapor compression air conditioning system
- 12. Study the performance of vapor compression refrigeration

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Kamataka, India

Course	Course Outcomes: At the end of this course the student will be able to :				
CO1:	Understand the concepts and definitions of thermodynamics				
CO2.	Differentiate thermodynamic work and heat and apply I law and II law of thermodynamics to different				
02.	processes				
CO3:	Comprehend and utilize the principles of Refrigeration and air conditioning				
CO4:	Design and Analyze the functioning of various Thermodynamic cycles				

Refe	erence Books
1	Thermodynamics: An Engineering Approach, Yunus A.Cengal and Michael A.Boles, 8 th Edition, 2016, Tata McGraw Hill publications, ISBN: 9780070495036
2	Engineering Thermodynamics, J.B.Jones and G.A.Hawkins, 2 nd Edition, 1986, John Wiley and Sons,
4	ISBN: 978-0471812029.
2	Fundamentals of Classical Thermodynamics, G.J.Van Wylen and R.E.Sonntag, 3 rd Edition, 1986, Wiley
3	Eastern, ISBN-13: 978-0-471-61075-5.
4	Basic and Applied Thermodynamics P.K.Nag, 2 nd Edition., 2002, Tata McGraw Hill Pub, ISBN-13: 978-
4	0070151314.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACT					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40			
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50			
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	150			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of THREE Sub-divisions only)				
2	2 Unit 1: (Compulsory)				
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6 Unit 3: Question 5 or 6					
7 & 8 Unit 4: Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
TOTAL					

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q. NO	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

Semester: III						
MECHANICS OF FLUIDS						
Category: PROFESSIONAL CORE COURSE						
(Theory & Practice)						
Course Coue	•	A5254A1 3.0.1		<u>CIE</u> SFF	•	100 +50 Marks
Total Hours	:	45L+28P		SEE Duration	:	3.00 +3.00 Hours
		1021202		222 2 41 401011	. •	
		U	nit-I			09 Hrs
Fluid Statics: Pascal's	s la	w, Pressure variatio	on with depth, mana	meters, hydrostatic	thru	ist on submerged plane
and curved surfaces, co	entr	e of pressure, Buoy	ancy, Stability of s	ubmerged and floating	ng	bodies, Metacenter and
Meta centric height.						
Fluid Kinematics: Int	trod	luction, Lagrangian	& Eulerian Descri	ption of Fluids, Typ	es (of Fluid Flows, Stream
line, streak line and	pat.	n line, circulation	and vorticity, stre	am function and ve	eloc	city potential function,
continuity equation in I	inte	grai form and 5D C	artesian coordinates	•		00 Hrs
Potential Flows. Lank	ace	Fauation Uniform	flow Source flow	Sink flow Combinat	ion	of a uniform flow with
source and sink Doul	hlet	flow Non-lifting	flow over a circula	or cylinder Vortex	flor	w Lifting flow over a
circular cylinder, Kutta	i-Jo	ukowski theorem ar	nd generation of Lif	t, D'Alembert's para	dox	
		Uni	it -III	· · ·		11 Hrs
Fluid Dynamics: Basi	ic g	overning equations	of fluid flows, Rey	nold's Transport the	eore	em, Mass conservation,
Momentum Conservati	ion	and Energy conserv	ation equations, and	l Introduction to Nav	vier	-Stokes Equations.
Incompressible Inviso	cid	Flow: Euler's equa	ation of fluid motio	n (from first princip	les), Bernoulli's equation,
Bernoulli's equation fo	or re	al fluid flows.		1		
Application of Bernou	ullı'	's equation: Flow n	neasurement: Orific	e plate, Venturimeter	r, N	otches: rectangular and
	n st	and tube.	it _IV			08 Hrs
Incompressible Visco	115	flow: Boundary lay	er concept Bounda	ry layer thickness d	lisn	lacement thickness and
momentum thickness:	flov	v separation, couette	e flow, poiseuille flo	w. kinetic Energy co	orre	ction factor.
Turbulent Flows: Me	cha	nism of Transition	from Laminar to T	urbulent Flows, mag	nitu	ide. Intensity and scale
of Turbulence, Measurement of Turbulence using Hot Wire Anemometer, Velocity distribution in a Turbulent						
Flow, Head Loss in Pipe due to Friction (Darcy's Equation).						
		Un	it -V			08 Hrs
Dimensional Analysis & Model Studies: Units and Dimensions, Dimensional Homogeneity, Dimensional						
Analysis-Rayleigh's M	leth	od, Buckingham's	π -Theorem, Dimen	sionless numbers. N	Лос	lel Analysis, Types of
Similarities and Similit	tude	e, Similarity Laws. I	Introduction to Co	mpressible Flows: S	stag	nation Properties, One-
Dimensional Isentropic	Dimensional isentropic Flow, Mach humber, Mach Cone.					

LABORATORY EXPERIMENTS

- 1. Determination of major losses in fluids flowing through pipes.
- 2. Determination of minor losses in fluids flowing through pipes
- 3. Determination of Co-efficient of discharge over a V-notch
- 4. Determination of force generated by the impact of water jet on the vanes
- 5. Determination of Co-efficient of discharge through Venturimeter
- 6. Determination of Co-efficient of discharge through Orifice meter
- 7. Determination of type of flow for different Reynolds Number using Reynolds apparatus
- 8. Study of performance characteristics of a single stage centrifugal pump
- 9. Study of performance characteristics of a multi-stage centrifugal pump
- 10. Study of performance characteristics of a Francis turbine
- 11. Study of performance characteristics of a Pelton wheel
- 12. Determination of metacentric height of floating bodies
- 13. Flow Visualization studies using water tunnel

Course Outcomes: After completing the course, the students will be able to

CO 1: Identify the properties of fluid which influence flow characteristics

CO 2: Distinguish fluid flows and evaluate the properties associated with the flow

CO 3: Apply Dimensional analysis and similarity laws for conducting model tests

CO 4: Evaluate and comment on the flow using flow measuring devices

1	Fluid Mechanics, Frank M White, 7th Edition, 2012, McGraw Hill, ISBN 9780073529349
2	Fluid Mechanics and Applications, Yunus A. Cengel & John M Cimbala, 12th Edition, 2009, Tata
	McGraw- Hill Publishers,. ISBN: 9780070700345
3	Fluid Mechanics, Streeter. V. L., and Wylie, E.B., 9th Edition, 2017, McGraw Hill, 1983 ISBN:
	0071156003
4	Mechanics of Fluids, B S Massey, 7th Edition, 1998, ELBS Edition. ISBN-10: 0748740430
-	Fluid Mechanics, Hydraulics and Fluid Machines, Ramamritham. S, 9th Edition, 2014, Dhanpat Rai&
3	Sons, Delhi, 1988.ISBN: 978-93-84378-27-1

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRAC					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40			
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50			
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO	Q. NO CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	5 & 6 Unit 3: Question 5 or 6					
7&8	7 & 8 Unit 4: Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL						

RUBRIC FOR SEMESTER END EXAMINATION (LAB)						
Q. NO	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	30				
3	Viva	10				
	TOTAL	50				

Semester: III						
STRUCTURAL MECHANICS						
		Category: Pl	ROFESSIONAL C	ORE COURSE		
			(Theory)			
Course Code	:	AS235AT		CIE	:	100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks				100 Marks		
Total Hours		45L		SEE Duration	••	3.00 Hours

Unit-I11 HrsBasic equations of linear elasticity: Stress and Strain, True stress and Engineering Stress, Hooke's Law,
Generalized Hooks law, Relationship between Elastic Constants, Thermal Stresses, Compound bars, Principle of
Superposition.

Principal Stresses and Strain: State of Stress, Stress and Strain at a point, Plane Stress and Plane Strain approximations.

Unit – II	09 Hrs			
Bending Moment and Shear Force Diagram: Sign Convention, Procedure for drawing	BMD and SFD,			
Different types of Loading and their S.F & B.M Diagram, Point of Contra flexure, General expr	ession.			
Unit –III	09 Hrs			
Euler-Bernoulli beam theory: The Euler-Bernoulli assumptions, Implications of the	Euler-Bernoulli			
assumptions.				
Deflection of Beams: Equation of Elastic curve, Deflection of Beams.				
Unit –IV	07 Hrs			
Torsion: Torsion of circular shafts, polar moment of inertia and polar section modulus, Compar	rison of solid and			
hollow shaft, Torsion combined with axial force and bending moments, Power transmission.				
Unit –V	09 Hrs			
Failure Theories: Maximum Principal Stress Theory, Maximum Shear Stress, Strain Energy	y Theory, Shear			
strain Energy theory, Maximum principal strain theory.	-			
Shells: Thin cylindrical shell of circular cross section, Thin spherical shell, Cylindrical shell with hemispherical				
ends, Bending stresses in thin-walled circular cylinders.	_			

Course Outcomes:				
At the end	d of this course the student will be able to :			
CO 1:	Understand the nature of different types of loads			
CO 2:	Describe the behaviour of structures under various loads			
CO 3:	CO 3: Apply various principles to ascertain the character of materials under different loads			
CO 4:	CO 4: Evaluate the stability of various structures under different loading environments			

Refe	rence Books
1	Timoshenko and Young "Elements of Strength of Mateials', East-West Press, 1976. ISBN: 978-93-84378
2	Beer.F.P. and Johnston.R, 'Mechanics of Materials', McGraw Hill Publishers, 2006. ISBN: 978-0073398
3	Structural Mechanics, Bao Shihua, Gong Yaoqing, Wuhan University of Technology Press, 2005.
4	Aircraft structural Analysis, T.H.G Megson, Butterworth-Heinemann Publications, 2007. ISBN: 978-1-
4	85617-932-4
5	S.Ramamrutham, R Narayanan, "Strength of Materials', Dhanapath Rai Publishing Company, New Delhi,
3	2012. ISBN: 978-93-84378-26-4

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	# COMPONENTS				
1.	 QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO OUIZZES WILL BE CONSIDERED AS FINAL OUIZ MARKS. 				
2.	 TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE 				
3.	EXP impl	ERIENTIAL LEARNING: Students will be evaluated for their creativity and practical ementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40		
		MAXIMUM MARKS FOR THE CIE THEORY	100		
		RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO CONTENTS N			MARKS		
		PART A			
1	1	Objective type questions covering entire syllabus	20		
PART B					
		(Maximum of THREE Sub-divisions only)			
2	2	Unit 1: (Compulsory)	16		
3 8	& 4	Unit 2: Question 3 or 4	16		
58	& 6	Unit 3: Question 5 or 6	16		
78	& 8	Unit 4: Question 7 or 8	16		
9 & 10 Unit 5: Question 9 or 10		16			
TOTAL					

			Semester: III			
		NATIO	NAL SERVICE SCHEME (N	ISS)		
(Practical)						
Course Code	:	HS237LA		CIE	:	50 Marks
Credits: L: T: P	P : 0:0:2 SEE : 50 Mark		50 Marks			
Total Hours	:	13P		SEE Duration	:	02 Hrs
 Students shou Students shou Students shou time managen Students sh targets on time 	ld h ld h nent oul e.	ave service-ori- ave dedication for the other v d be ready to	ented mindset and social concern to work at any remote place, any vorks. sacrifice some of the timely v	n. ay time with available re will and wishes to ach	eso iev	urces and proper re service-oriented
			Content			13 Hrs
and technical co the same. Compu CIE will be eval below mentioned	ntei ilso uat l ac	nts for implements rily must attended based on the tivity)	entation of the projects and has l one camp. eir presentation, approach, and	to present strategies for implementation strateg	or i ies	mplementation of . (Any one of the
1. Helping local education.	sch	ools to achieve	good result and enhance their of	enrolment in Higher/tec	chn	ical/ vocational
2. Preparing an implementatio	acti n.	onable busines	s proposal for enhancing the	village/ farmer income	ar	nd approach for
3. Developing Su	ista	inable Water m	anagement system for rural/ urb	oan areas and implement	tati	on approaches.
4. Setting of the	info	ormation impart	ing club for women leading to c	contribution in social and	d e	conomic issues.
5. Spreading pub	lic	awareness/ gov	ernment schemes under rural ou	treach program. (Minin	nur	n 5 programs)
6. Contribution t Swachh Bhara	o ar 1t, A	y national leve Atmanirbhar Bh	l initiative of Government of Inc arath, Make in India, Mudra scl	lia. For eg. Digital India heme, Skill developmen	, S it p	kill India, rograms etc
7. Social connec	t an	d responsibiliti	es			
8. Plantation and	ad	option of plants	. Know your plants			
9. Organic farmi	ng,	Indian Agricul	ure (Past, Present and Future) C	Connectivity for marketing	ng	
10. Waste manage	eme	nt – Public, Pri	vate and Govt organization, 5 R	.'s	U	
11. Water conserv	atio	on techniques –	Role of different stakeholders -	Implementation		
 Govt. School Organize Nati and ONE NSS 	Reji ona	uvenation and a al integration a AMP.	ssistance to achieve good infras nd social harmony events/ wor	tructure. rkshops / seminars. (M	ini	mum 2 programs)
Course Outcome	s: A	fter completin	g the course, the students will	l be able to: -		

CO1 Understand the importance of his/her responsibilities towards society.

CO2 Analyze the environmental and societal problems/ issues and will be able to design solutions for the same.CO3 Evaluate the existing system and to propose practical solutions for the same for sustainable development.

ASSESSMENT AND EVALUATION PATTERN							
WEIGHTAGE	50%	50%					
	CIE	SEE					
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****					
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****					
Case Study-based Teaching-Learning	10	Implementation					
Sector wise study & consolidation	10	strategies of the project					
Video based seminar (4-5 minutes per student)10with report							
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS					

Semester: III						
		NAT	FIONAL CADET CORPS (NC	C)		
			(Practical)			
Course Code	:	HS237LB		CIE	:	50 Marks
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	15P		SEE Duration		02 Hrs
			Unit-I			07 Hrs
Drill: Foot Drill-	· Dri	ll ki Aam Hida	yaten, Word ki Command, Sa	vdhan, Vishram, Ar	am	Se, Murdna,
KadvarSizing, Te	en Li	ne Banana, Khu	li Line, Nikat Line, Khade Khade	e Salute Karna		-
			Unit – II			03 Hrs
Weapon Training	(WT): Introduction &	c Characteristics of 7.62 Self Loa	ding rifle, Identificat	ion	of rifle parts
			Unit –III			03 Hrs
Adventure activities: Trekking and obstacle course						
Unit –IV 02 Hrs						
Social Service and Community Development (SSCD): Students will participate in various activities						
throughout the semester e.g., Blood donation Camp, Swachhata Abhiyan, Constitution Day, All National						
Festival						

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Understand that drill as the foundation for discipline and to command a group for common goal.
CO2	Understand the importance of a weapon its detailed safety precautions necessary for prevention of
	accidents and identifying the parts of weapon.
CO3	Understand that trekking will connect human with nature and cross the obstacles to experience army way
	of life.
CO4	Understand the various social issues and their impact on social life, Develop the sense of self-less social
	service for better social & community life.

1.	NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R- 1991, ISBN: 978-93-87918-57-3, HSN Code: 49011010
2.	nccindia.ac.in

ASSESSMENT AND EVALUATION PATTERN							
WEIGHTAGE	50%	50%					
	CIE	SEE					
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****					
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****					
Case Study-based Teaching-Learning	10	Implementation strategies of the project					
Sector wise study & consolidation	10	with report					
Video based seminar (4-5 minutes per student)	10						
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS					

Semester: III							
PHYSICAL EDUCATION							
		(SPC	(Practical)	(5)			
		-	(I factical)				
Course Code	:	HS237LC		CIE	:	50 Marks	
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks	
Total Hours	:	30P		SEE Duration	:	2.5 Hrs	
Content						30 Hrs	

Topics for Viva:

- 1. On rules and regulations pertaining to the games / sports
- 2. On dimensions of the court, size / weight of the ball and standards pertaining to that sports / game
- 3. Popular players and legends at state level / National level/ International level
- 4. Recent events happened and winner / runners in that sport / game
- 5. General awareness about sport / game, sports happenings in the college campus

Course Outcomes: After completing the course, the students will be able to: -

CO1 Understand the basic principles and practices of Physical Education and Sports.

CO2 Instruct the Physical Activities and Sports practices for Healthy Living.

CO3 To develop professionalism among students to conduct, organize & Officiate Physical Education andSports events at schools and community level.

Reference Books

- 1. Health, Exercise and Fitness, Muller, J. P. (2000), Delhi: Sports.
- 2. Play Field Manual, Anaika ,2005, Friends Publication New Delhi.
- **3.** IAAF Manual.
- **4.** Track and Field Marking and Athletics Officiating Manual, M.J Vishwanath,2002, Silver Star Publication, Shimoga.
- 5. Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinestics.

Note: Skills of Sports and Games (Game Specific books) may be referred

ASSESSMENT AND EVALUATION PATTERN							
WEIGHTAGE	50%	50%					
	CIE	SEE					
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****					
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****					
Case Study-based Teaching-Learning	10	Implementation					
Sector wise study & consolidation	10	strategies of the					
Video based seminar (4-5 minutes per student)	10	project with report					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS					

Semester: III							
MUSIC							
			(Practical)				
Course Code	:	HS237LD		CIE	:	50 N	Iarks
Credits: L: T: P	:	0:0:2		SEE	:	50 N	Iarks
Total Hours	:	13P		SEE Duration	:	02 H	lrs
			Content				13 Hrs
1. Introduction to	diffe	erent genres of m	usic				
2. Evolution of ge	nres	in India: Inspira	tion from the world				
3. Ragas, time and	1 the	ir moods in India	n Classical Music				
4. Identification o	f rag	gas and application	on into contemporary song	S			
5. Adding your to	uch	to a composition					
6. Maths and Mus	ic: A	A demonstration					
7. Harmonies in n	nusic	2					
8. Chords: Basics	and	application into	any song				
9. Music Production-I							
10. Music Prod	lucti	on-II					
Students have to form groups of 2-4 and present a musical performance/ a musical task which shall be given by the experts. The experts shall judge the groups and award marks for the same.							

CIE will be evaluated based on their presentation, approach, and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -

CO1	Understand basics of Music and improve their skills.

- **CO2** Appreciate the impacts on health and well-being.
- **CO3** Perform and present music in a presentable manner.
- **CO4** Develop skills like team building and collaboration.

1.	Music Cognition: The Basics by Henkjan Honing.
2.	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory Answer Book by Glory
	St Germain.
3.	Elements Of Hindustani Classical Music by Shruti Jauhari.
4.	Music in North India: Experiencing Music, Expressing Culture (Global Music Series) by George E.
	Ruckert.

ASSESSMENT AND EVALUATION PATTERN							
WEIGHTAGE	50%	50%					
	CIE	SEE					
Presentation 1- Selection of topic- (phase 1): Justification for Importance, need of the hour withsurveyed data	10	****					
EXPERIENTIAL LEARNING: Presentation 2 (phase 2): Content							
development, strategies for implementationmethodologies.	10	****					
Case Study-based Teaching-Learning	10	Implementation					
Sector wise study & consolidation	10	strategies of the					
Video based seminar (4-5 minutes per student)	10	projectwith report					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS					

			Semester: III			
			DANCE			
			(Practical)			
Course Code	:	HS237LE		CIE	:	50 Marks
Credits: L: T:	P :	0:0:2		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs
		Conter	nts			13 Hrs
1. Introdu	ction to 1	Dance				
2. Preparing the body for dancing by learning different ways to warm up.						
3. Basics	of differe	ent dance forms i.e	., classical, eastern, and weste	ern.		
4. Assessi	4. Assessing the interest of students and dividing them into different styles based on interaction.					

- Assessing the interest of students and dividing them into
 Advancing more into the styles of interest.
- 6. Understanding of music i.e., beats, rhythm, and other components.
- 7. Expert sessions in the respective dance forms.
- 8. Activities such as cypher, showcase to gauge learning.
- 9. Components of performance through demonstration.
- 10. Introduction to choreographies and routines.
- 11. Learning to choreograph.
- 12. Choreograph and perform either solo or in groups.

Course Outcomes: After completing the course, the students will be able to: -

- **CO1** Understand the fundamentals of dancing.
- **CO2** Adapt to impromptu dancing.
- CO3 Ability to pick choreography and understand musicality.
- **CO4** To be able to do choreographies and perform in front of a live audience.

Reference Books

1. Dance Composition: A practical guide to creative success in dance making, Jacqueline M. Smith

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation strategies			
Sector wise study & consolidation	10	of the project with report			
Video based seminar (4-5 minutes per student)	10				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

Semester: III						
	THEATER (LIGHT CAMERA & ACTION)					
			(PRACTICA)	L)		
Course Code	:	HS237LF		CIE	:	50 Marks
Credits: L:T:P	:	0:0:1		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs
Contents 13 Hrs						

- 1. Break the ICE
- 2. Introduction to freedom Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over socialanxiety, Shyness and Nervousness.
- 3. Ura
- 4. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing Voice projection is the strength of speaking or singing whereby the voice is used powerfully and clearly. It is a technique employed to command respect and attention, as when a teacher talks to a class, or simply to be heard clearly, as used by an actor in a theatre.
- 5. It's Leviosa, Not Leviosaaa!
- 6. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The art of dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from thedramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue deliveryskills:
- 7. Elementary, My dear Watson.
- 8. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.
- 9. Show time
- 10. Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Mono acting: different types of characters

Course (Course Outcomes: After completing the course, the students will be able to: -					
CO1	Develop a range of Theatrical Skills and apply them to create a performance.					
CO2	2 Work collaboratively to generate, develop, and communicate ideas.					
CO3	CO3 Develop as creative, effective, independent, and reflective students who are able to make informed					
	choices in process and performance.					
CO4	Develop an awareness and understanding of the roles and processes undertaken in contemporary					
	professional theatre practice.					

1.	The Empty Space by Peter Brook.
2.	The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina
	Landau.

RV College of Engineering®
Mysore Road, RV Vidyaniketan Post, Bengaluru - 550059, Kamataka, India

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****			
EXPERIENTIAL LEARNING					
Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation strategies of the			
Sector wise study & consolidation	10	projectwith			
Video based seminar (4-5 minutes per student)	10	report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

Semester: III						
ART WORK & PAINTING						
	(Practical)					
Course Code	:	HS237LG		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs
Contents 13 Hrs						

1. Use points, line and curves to create various shapes and forms

2. Use of shapes and forms to create various objects and structures

3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions of perspective

4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.

5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization create a composition.

6. Learn how to use which materials and for what types of art and textures.

7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie and dye.

8. Real world application of the above concepts in the form of book cover design and illustration, cartoon, poster, advertisements, magazine, computer graphics and animation

9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY

Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorily take part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presented art style.

Cours	e Outcomes: After completing the course, the students will be able to: -
CO1	Use lines, shapes, and colors to depict the various sentiments and moods of life and nature.
CO2	Use one's creativity to develop forms and color schemes, as well as the ability to portray them effectively in drawing and painting on paper.
CO3	Develop the ability to properly use drawing and painting materials (surfaces, tools and equipment, and so on).
CO4	Improve their observation abilities by studying everyday items as well as numerous geometrical and non- geometrical (i.e., organic) shapes found in life and nature and to hone their drawing and painting talents in response to these insights.

1.	Catching the Big Fish: Meditation, Consciousness, and Creativity, David Lynch
2.	Art & Fear: Observations on the Perils (and Rewards) of Artmaking, David Bayles & Ted Orland

SESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation strategies			
Sector wise study & consolidation	10	of the project with report			
Video based seminar (4-5 minutes per student)	10				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

	Semester: III					
PHOTOGRAPHY & FILM MAKING						
		1	(Practical)			
Course Code	:	HS237LH		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs
			Contents			13 Hrs
1. Introduction to p	oho	tography.				
2. Understanding t	he t	erminologies of	DSLR.			
3. Elements of pho	otog	raphy.				
4. Introduction to s	scrij	pt writing, story	boarding.			
5. Understanding t	he	visualization and	l designing a set.			
6. Basics of film ac	ctin	g				
7. Video editing us	sing	software				
8. Introduction to c	cine	matography.				
9. Understanding a	ıboı	ut lighting and c	amera angles.			
10. Shooting a short film.						
Students must form groups of 2-4 and present a short film which shall be given by the experts. The experts shall						
judge the groups and award marks for the same.						
CIE will be evaluated based on their presentation, approach and implementation strategies. Students need tosubmit						
their certificates of an	ny e	event they partic	pated or bagged prizes in. This sha	ll also be consider	ed fo	or CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -

CO1 Understand basics of photography and videography and improve their skills.

CO2 Appreciate the skills acquired from photography.

CO3 Perform and present photos and films in a presentable manner.

CO4 Develop skills like team building and collaboration.

Reference Books

1. Read This If You Want to Take Great Photographs – Henry Carroll

2. The Digital Photography Book: Part 1 – Scott Kelby

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1): Justification for					
Importance, need of the hour withsurveyed data.	10	****			
EXPERIENTIAL LEARNING					
Presentation 2 (phase 2): Content development, strategies for	10	****			
implementationmethodologies.					
Case Study-based Teaching-Learning	10	Implementation strategies			
Sector wise study & consolidation	10	of the project with report			
Video based seminar (4-5 minutes per student)	10				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

RV College of	Engineering®
Mysore Road, RV Vidyar	iiketan Post,
Bengaluru - 560059, Kar	nataka, India

			Semester: III			
		BRIDGE	E COURSE: C PROG	RAMMING		
		(1	Mandatory Audit Co	urse)		
		(Common to all Progr	ams)		
Course Code	:	CS139AT		CIE	:	50 Marks
Credits: L:T:P	:	2:0:0(Audit)		SEE	:	
Total Hours	:	30L		SEE Duration	:	
		τ	U nit-I			6 Hrs
Introduction to Pr	ogra	amming				
Definition of a com	pute	er. Components of co	omputer system, Progr	amming Language	s.	
Design and implem	enta	ation of efficient pro	ograms. Program Desi	gn Tools: Algorith	nms	, Flowcharts and Pseudo
codes. Types of Erro	ors.					
		U	nit – II			6 Hrs
Introduction to C						
Introduction, structu	ıre	of a C program, W	riting the first program	m, Files used in a	C	program. Compiling and
executing C Program	ms	using comments, C	Tokens, Character set	in C, Keywords, I	den	tifiers, Basic Data Type
in C, Variables, Cor	ista	nts, I/O statements in	n C.			
Operators in C, Typ	e co	onversion and type c	asting, scope of variab	les.		
		Uı	nit —III			6 Hrs
Decision Control a	nd	Looping Statement	ts			
Introduction to deci	sior	n control, conditiona	al branching statements	s, iterative stateme	nts,	Nested loops, Break and
continue statements	, go	to statements				
Arrays						
Introduction, Decla	rati	on of Arrays, Acces	ssing elements of an a	array, Storing valu	ies i	in arrays, Operations or
Arrays- Traversing,	Ins	serting and Deletion	of element in an array	y. Two dimensiona	al ar	rays- Operations on two
dimensional arrays.						
		Un	nit —IV			6 Hrs
Strings						
Introduction, Opera	tior	s on strings- finding	g length of a string, c	onverting characte	rs o	f a string into uppercase
and lowercase, Con	cate	enating two strings,	appending a string to a	another string, con	npar	ing two string, reversing
a string. String and	cha	racter Built in functi	ons.			
Functions						
Introduction, Using	g fu	inctions, Function	declaration/function p	rototype, Function	n d	efinition, Function call
Return statement.						
		U	nit-V			6 Hrs
Functions						
Passing parameters	to a	function, Built-in fu	unctions. Passing array	ys to functions. Re	curs	ion.
Structures and Poi	nte	rs				
Introduction: Struct	ure	Declaration, Typed	def declaration, initial	ization of structur	es,	accessing members of a
structures, Introduct	ion	to pointers, declarin	ng pointer variables.			
Course Outcomes:	Af	ter completing the	course, the students v	vill be able to:-		
CO1 Analyse pro	oble	ems and design solut	ion using program des	ign tools.		
CO 2 Evaluate th	e ar	propriate method/da	ata structure required in	n C programming t	to de	evelop solutions by
investigatir	g tł	ne problem.				
CO 3 Design a su	stai	nable solution using	g C programming with	societal and enviro	onm	ental concern by
engaging in	lif	elong learning for er	nerging technology			
			1		_	

Refe	rence Books
1.	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.
2	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall,
Ζ.	ISBN (13): 9780131103627.
2	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, Mcgraw Hill Education, ISBN-13:
э.	9780070411838.
4.	Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5

PRACTICE PROGRAMS

Implement the following programs using cc/gcc compiler

- 1. Familiarization with programming environment: Concept of creating, naming and saving the program file in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment.
- 2. Implementation and execution of simple programs to understand working of
 - Formatted input and output functions- printf() and scanf().
 - Escape sequences in C.
 - Using formula in a C program for specific computation: For example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define).
- 3. Execution of erroneous C programs to understand debugging and correcting the errors like:
 - Syntax / compiler errors.
 - Run-time errors.
 - Linker errors.
 - Logical errors.
 - Semantical errors.
- 4. Implementation and execution of simple programs to understand working of operators like:
 - Unary.
 - Arithmetic.
 - Logical.
 - Relational.
 - Conditional.
 - Bitwise.
- 5. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.
- 6. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.
- 7. Develop a C program for Matrix multiplication.
- 8. Develop a C program to search an element using Binary search and linear search techniques.
- 9. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.
- 10. Develop a C program to compute average marks of 'n' students (Name, Roll_No, Test Marks) and search a particular record based on 'Roll No'.
- 11. Develop a C program using pointers to function to find given two strings are equal or not.
- 12. Develop a C program using recursion, to determine GCD, LCM of two numbers and to perform binary to decimal conversion.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 05 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 25 Marks, adding upto 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS.	20		
	MAXIMUM MARKS FOR THE CIE THEORY	50		

			Semester: IV			
	PF	ROBABILITY THI	EORY AND LINE	AR PROGRAMMI	NG	
		Category: PH	ROFESSIONAL C	ORE COURSE		
			(Theory)			
		(AS, 0	CH, CV, EE, EI, E'	T, ME)		
ourse Code	:	MA241TA		CIE	:	100 Marks
redits: L:T:P	:	2:1:0		SEE	•	100 Marks

Course Code	••	MA241TA	CIE	••	100 Marks
Credits: L:T:P	:	2:1:0	SEE	:	100 Marks
Total Hours	••	30L+26T	SEE Duration	••	3.00 Hours

Unit-I	06 Hrs
Random Variables: Random variables-discrete and continuous, probability mass function, pr	obability density
function, cumulative distributon function, mean and variance. Two or more random variables -	Joint probability
mass function, joint probability density function, conditional distribution and independence,	Covariance and
Correlation. Simulation using MATLAB.	
Unit – II	06 Hrs

Probability Distributions: Discrete distributions - Binomial, Poisson and Geometric. Continuous distributions - Exponential, Uniform, Normal and Weibull. Simulation using MATLAB.

06 Hrs Unit –III Sampling and Estimation: Population and sample, Simple random sampling (with replacement and without replacement). Sampling distributions of means (σ known), Sampling distributions of mean (σ unknown): t distribution, Sampling distributions of variance: Chi - squared distribution. Estimation - Maximum Likelihood Estimation.

Unit –IV 06 Hrs Inferential Statistics: Principles of Statistical Inference, Test of hypothesis - Null and alternative hypothesis, Procedure for statistical testing, Type I and Type II errors, level of significance, Tests involving the normal distribution, one - tailed and two - tailed tests, P - value, Special tests of significance for large and small samples (F, Chi – square, Z, t – test).

Unit –V 06 Hrs Linear Programming: Mathematical formulation of Linear Programming Problem. Solving Linear Programming Problem using Graphical, Simplex and Big M methods. Implementation using MATLAB.

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Illustrate the fundamental concepts of random variables, distributions, sampling, inferential statistics and					
	optimization.					
CO2	Compute the solution by applying the acquired knowledge of random variables, distributions, sampling,					
	inferential statistics and optimization to the problems of engineering applications.					
CO3	Evaluate the solution of the problems using appropriate probability and optimization techniques to the					
	real-world problems arising in many practical situations.					
CO4	Interpret the overall knowledge of random variables, probability distributions, sampling theory,					
	inferential statistics and optimization gained to engage in life – long learning.					

1	Probability & Statistics for Engineers & Scientists, Ronald E. Walpole & Raymond H. Myers, 9th edition 2016 Pearson Education ISBN 13: 978-0134115856
2	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6th Edition, John Wiley & Sons, 2014, ISBN:13 9781118539712, ISBN (BRV):9781118645062.
3	Sheldon Ross, Introduction to Probability and Statistics for Engineers and Scietists, Sheldon Ross, 5th Edition, 2014, Academic Press, ISBN: 13-978-0123948113.
4	Fundamentals of Applied Probability and Random Processes, Oliver C Ibe, 2nd Edition, 2014, Academic Press Inc, ISBN: 13-978-0128008522.
5	Higher Engineering Mathematics, B.S. Grewal, 44th Edition, 2015, Khanna Publishers, ISBN: 817409-195-5.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE (THEORY)	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO CONTENTS				
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of THREE Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5&6	Unit 3: Question 5 or 6	16		
7&8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	2
CO2	3	2	2	1	1	-	-	-	1	1	-	2
CO3	3	3	2	2	1	-	-	-	1	2	-	2
CO4	3	3	3	2	-	-	-	-	1	1	-	3

High-3: Medium-2: Low-1

Semester: IV								
		ENVIRO	NMENT AND SUST	TAINABILITY				
Category: Basket Course- Group A								
(Common to all Programs)								
(Theory)								
Course Code	:	CV242TA		CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	42L		SEE Duration	:	3 Hours		
			Unit-I				10 Hrs	
ENVIRONMENT	AN	D BIODIVERSITY	ľ					
Definition, scope ar	nd i	mportance of environmentation	onment – need for p	ublic awareness. Ec	o-sy	ystem and Ener	rgy flow–	
ecological succession	on.	Types of biodiversi	ty: genetic, species a	and ecosystem diver	sity	– values of bic	odiversity,	
threats to biodivers	ity:	habitat loss, poach	ning of wildlife, ma	n-wildlife conflicts	– e	ndangered and	endemic	
species of India – co	nse	ervation of biodivers	ity.					
ENVIRONMENT	۱L	POLLUTION						
Causes, Effects and	Pr	reventive measures	of Water, Soil, Air	and Noise Pollution	s. S	Solid, Hazardou	us and E-	
Waste management.								
Occupational Healt	h a	and Safety Manager	nent system (OHAS	MS). Environmenta	l pr	otection, Envir	ronmental	
protection acts.								
			Unit – II				08 Hrs	
RENEWABLE SO	UR	CES OF ENERGY	7					
Energy managemen	t a	nd conservation, No	ew Energy Sources:	Need of new source	ces.	Different type	es of new	
energy sources.								
Energy Cycles, car	rbo	n cycle, emission	and sequestration,	Green Engineering	: S	ustainable urba	anization-	
Socioeconomical an	d te	echnological change			_	_		
Applications of - H	Iyd	rogen energy, Ocea	in energy resources,	Tidal energy conve	ersi	on. Concept, o	origin and	
power plants of geot	power plants of geothermal energy.							
Unit –III 08 Hrs								
SUSTAINABILITY	YA	ND MANAGEME				a		
Introduction to Env	iroi	imental Economics,	Environmental Aud	it, Development, GL	<i>У</i> Р,	Sustainability	- concept,	
needs and challenge	es-e	economic, social an	d aspects of sustaina	ability - from unsus	tain	ability to susta	ainability-	
millennium develop	me	nt goals and protoco	IS.		1	1. 1		
Linear vs. cyclical	rese	ource management	systems, need for sy	stems thinking and	aes	sign of cyclical	systems,	
Energy Decouring, II	iau	d Decourses L and G	Forests Wests men	carry apply these co	nce	pis to: water R	lesources,	
Energy Resources, r	-00	a Resources, Land &	z Forests, waste man	lagement.			00 11	
Carata in a bla Darrah					1	C1-1-1	U8 Hrs	
Sustainable Develo	рп	ient Goals - largels,	indicators and interview	vention areas Climat		lange - Global,	Regional	
Environmental man	ner	nal issues and po	ssible solutions. C	oncept of Carbon	Cre	edit, Cardon	Footprint.	
Environmental mana	age	ment in industry.						
SUSTAINABILIT	I P	RACHCES	1000 Samias	Motorial Life evola	000	accoment		
Zero waste and K concept, Circular economy, ISO 14000 Series, Material Life cycle assessment.								
Environmental impact Assessment. Sustainable natitat. Green bundings, Green materials, Energy efficiency,								
Comparate Casial D	0.00	ongihiliter (CCD)	UIIII – V Maanina & Dafinitia	n of CCD Ilistan 0		olution of COD	Concert	
of Charity Carro	les	punsionity (USK) -	morato Citizanalia	CSP on CSV	c ev	olution of CSR	. Concept	
on Charity, Corpo	rale	e pinianuiropy, Co	Polation between	CSR and Compared	hub	g concept. Co	ncept of	
sustainability & Sta	ikel	louder Management	CSD in India	LSK and Corporate	go	vernance; envii	onmental	
Sustainability Dar	лю.	ng: Elever of CP	USIN III IIIQIA.	toinobility Inday	ODT	DI Investor	torost in	
Sustainability Repo	лш	ing. Flavor of GR	i, Dow Jones Sus	taniaonity index, (CEF	1. Investor Ir	nerest m	
Sustamaonnty.								

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Course	Course Outcomes: After completing the course, the students will be able to:					
CO1	Understand the basic elements of Environment and its Biodiversity.					
CO2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.					
CO3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.					
CO4	Recognize the role of Corporate social responsibility in conserving the Environment.					

Ref	erence Books
1	'Environmental Science an

1	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 -
1.	978-9387432352
	'Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3rd edition,

2	Environment Import Assessment Cuidelines Natification of Communet of India 2006
4.	Pearson Education, 2006. ISBN-13 - 978-0132339346.
2	Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3rd edition,

3. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.

4. A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	1 Objective type questions covering entire syllabus					
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semester: IV				
		MATERI	ALS SCIENCE FOR ENGINE	ERS			
Category: Basket Course- Group A							
		(Common to all Programs)				
(Theory)							
Course Code	e :	ME242TB		CIE	:	100 Marks	
Credits: L:T	':P :	3:0:0	S	SEE	:	100 Marks	
Total Hours	:	40L	S	SEE Duration	:	3 Hours	
			Unit-I			06 Hrs	
The Fundan	nentals of	f Materials: The ele	ctronic structure of atoms, types of	of atomic and mo	lecul	ar bonds: ionic	
bond, covale	nt bond,	metallic bond, secon	ndary bonds, mixed bonding, hyt	oridization. Ener	gy ba	ands in metals,	
insulators, ar	d semico	onductors. Basic crys	stallography. Defects and disloca	tions. Types of 1	nater	ials: polymers,	
metals and al	loys, cera	amics, semiconducto	rs, composites				
			Unit – II			10 Hrs	
Material be	havior: 7	Thermal properties.	thermal conductivity, thermoeled	ctric effects, her	at car	pacity, thermal	
expansion co	efficient.	thermal shock, there	nocouple. Electrical Properties: d	ielectric behavio	urs a	nd temperature	
dependence	of the die	electric constant, in	sulating materials, ferroelectricity	v. piezoelectricit	v. su	per conductor.	
Optical pror	perties: 1	luminescence, optic	al fibers. Mechanical Propert	ies: Stress-strai	n di	agram. elastic	
deformation,	plastic de	eformation, hardness	, viscoelastic deformation, impact	energy, fracture	toug	hness, fatigue.	
,	1	,	Unit –III			10 Hrs	
Materials a	nd their	Applications: Semi	conductors, dielectrics, optoelect	tronics. structura	il ma	terials, ferrous	
allovs. nonfe	rrous all	ovs. cement. concre	te, ceramic, and glasses. Polym	ers: thermosets	and	thermoplastics.	
composites: 1	iber-rein	forced, aggregated c	omposites, electronic packaging n	naterials, biomat	erials	s, processing of	
structural ma	terials.		r,	····		, F	
			Unit –IV			07 Hrs	
Heat Treatr	nent: Po	st processing heat	reatment of electronic devices:	thermal oxidation	on, d	liffusion, rapid	
thermal proc	essing. H	Heat treatment of f	errous materials: annealing, sph	eroidizing, norn	nalizi	ng, hardening,	
tempering. fo	rmation of	of austenite, construc	tion of Time Temperature Transf	formation (TTT)	curve	es. Special heat	
treatment pro	cesses: ca	arburizing, nitriding,	cyaniding, flame, and induction h	nardening. Defec	ts in	heat treatment.	
			Unit-V			07 Hrs	
Nanomateria	als: Synt	hesis of nanomater	ials: ball milling, sol-gel, vapo	our deposition g	rowt	h, pulse laser,	
magnetron sp	outtering,	lithography. Nano	porous materials: zeolites, mesor	porous materials	, carl	bon nanotubes,	
graphene, na	no FRPs,	nano fabrics, biores	orbable and bio-erodable materia	ls, nano ceramic	, nan	o glasses, nano	
biomaterials,	nano im	plant associated mat	erials. Characterization of nano s	structures, spectr	osco	pic techniques,	
automatic for	ce micros	scopy.		_	-		
Course Out	comes: A	fter completing the	course, the students will be able	e to:			
CO1 Unde	erstand th	e classification of ma	aterials, their atomic structure, and	d properties.			
CO2 Inves	stigate the	e properties and appl	ications of different materials.				
CO3 Analyze the effect of different heat treatment processes.							
CO4 Reco	gnize dif	ferent types of nanor	naterials, synthesis methods and c	characterisation t	echni	iques.	
1	-	•				-	
Reference Bo	oks						
Material	Science	and Engineering V	Villiam D Callister. 6 th Edition	1997, John Wil	ev ar	nd Sons. ISBN	
1. 9812-53	-052-5				- , 41		
Introduc	tion to P	hysical Metallurov	Sudney H Avner 1004 Mc Gra	w Hill Book Co	mnar	ISBN: 0.07	

2	introduction to Thysical Metallargy, Sydney II Twhen, 1994, Me. Oldw Thir Book Company, 19D1. 0 07
۷.	Y85018-6
3	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company,
э.	

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

				Semester: IV			
	BIO SAFETY STANDARDS AND ETHICS						
Category: Basket Course- Group A							
				(Common to all Prog	rams)		
			ſ	(Theory)		r	Γ
Course	e Code	:	BT242TC		CIE	:	100 Marks
Credits	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total H	Iours	:	45L		SEE Duration	:	3 Hours
				Unit-I			09 Hrs
Biohaz	ards, Bio s	afet	y levels and	cabinets: Introduction to I	Biohazards, Biologi	ical	Safety levels, Bio safety
Cabinet	ts, Study of	var	ious types of	Bio safety cabinets. Vario	ous parameters for	des	ign of Biosafety cabinets
(Materi	als used for	fab	rication, senso	rs, filters, pumps, compress	sors)		
				Unit – II			08 Hrs
Biosafe	ety Guidelin	nes:	Biosafety gu	idelines of Government of	India, GMOs & I	LM	Os, Roles of Institutional
Biosafe	ety Committ	ee,	RCGM (Revi	ew committee o Genetic	manipulation), GE	AC	(Genetic Engg Approval
Commi	ttee) for G	MO	applications	in food and agriculture. C	Overview of Nation	nal	Regulations and relevant
Internat	tional Agree	mer	its including C	Cartagena Protocol.			10 11
F 1	<u> </u>		EGG A L (E			-	10 Hrs
Food safety standards: FSSAI (Food Safety and Standards Authority of India), Functions, License, types of							
FSSAI Licences and compliance rules.							
Food f	Food Hygiene: General principles of food microbiology and overview of foodborne pathogens, sources of						
Quality	Ouslity of foods. Migraphial food spoilage and Foodborns disasses. Overview of beneficial migraphical and						
their ro	le in food n	roce	ssing and hun	nan nutrition Food Analysi	is and Testing Gen	era	l principles of food safety
management systems, Hazard Analysis Critical Control Point (HACCP).							
	j	,	j.	Unit –IV	/		09 Hrs
Food P	reservation	s, p	rocessing, and	d packaging			
Food I	Processing	Ópe	rations, Princ	ciples, Good Manufacturin	ng Practices HAC	ССР	, Good production, and
process	ing practice	s (G	MP, GAP, GI	IP, GLP, BAP, etc)	-		-
Overvie	ew of food	l pr	eservation m	ethods and their underly	ng principles inc	ludi	ng novel and emerging
method	methods/principles, Overview of food packaging methods and principles including novel packaging materials.						
Unit –V 09 Hrs							
Food s	afety and E	thic	es: Food Haza	rds, Food Additives, Food	Allergens Drugs, I	Hor	mones, and Antibiotics in
Animal	s. Factors T	hat	Contribute to	Foodborne Illness, Consum	er Lifestyles and D) em	and, Food Production and
Econon	nics, History	/ of	Food Safety, 1	The Role of Food Preservat	ion in Food Safety.		1.51 11
Ethics:	Clinical eth	ics,	Health Policy,	, Research ethics, ethics on	Animals. Biosafety	v an	d Bioethics.
Care	0	A P4		- the economic the stands t			
Course	Outcomes:	AI	er completing	g the course, the students	will be able to		
COI	Have a cor	npre	enensive know	ledge of Biohazards and bi	o safety levels		

CO2	Understand the biosafety guidelines and their importance to the society	
-----	---	--

- CO3 Acquire knowledge with respect to the Food standards, Hygiene, food processing and packing
- CO4 Appreciate the food safety, Ethics, biosafety and bio ethics

110	ici chee Dooks
1	Deepa Goel, Shomini Parashar, IPR, Biosafety and Bioethics 1st Edition, 2013, ISBN: 978-8131774700.
2	Cynthia A Roberts, The Food Safety, Oryx Press, first edition, 2001, ISBN: 1–57356–305–6.
3	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.
4	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RU	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	. NO. CONTENTS MARKS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B							
	(Maximum of TWO Sub-divisions only)							
2	Unit 1: (Compulsory)	16						
3 & 4	Unit 2: (Internal Choice)	16						
5&6	Unit 3: (Internal Choice)	16						
7&8	Unit 4: (Internal Choice)	16						
9 & 10	Unit 5: (Internal Choice)	16						
	TOTAL	100						

			Semester: IV				
		AER	ROSPACE PROPUL	SION			
		Category: Pl	ROFESSIONAL CO	RE COURSE			
			(Theory & Practice))			
Course Code	:	AS343AI		CIE	:	100	+50 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100	+50 Marks
Total Hours	:	45L+28P		SEE Duration	:	3.00	+3.00 Hours
Γ		T	T •4 T				10 11
Free James and a large A an			J nit-I	f 1 f .			IU Hrs
Fundamentals of Ae	rosp	pace propulsion: In	Turb of an Domist &	on of working of g	gas ti	Irbine	engine, Working
and characteristics of	Tu:	rbojet, Turboprop,	Turboian, Ramjet &	Scramjet Engine	s, 5]	boolin	g of Jet Engines,
Thrust Augmentation	Sys	tenn: Anterburner an					10 Hag
Ist Engine Doufound		Ul Let Engine Thrug	nii – II • • • • • • • • • • • • • • • • • •	instian) Eastana a	ffe et		IV HFS
Jet Engine Performanaa I	nce	: Jet Engine Thrus	requation (simple der	ivation), Factors a	neci	Ing in	rust, Airbreatning
Thermal Efficiency N	arai	arials on let Propu	liust, Thrust Power, S	pecific impulse, i	SFC	, Prop	uisive Efficiency,
Thermal Entrelency, N	uille						00 II.ma
Aircraft Propulsion	Su	UI etome: Aircraft I	nit – m nlata Working of Si	beonio & Supor	oni	Inla	to Compressore:
Ancrait Propulsion	Зу fugo	Stems: Allcraft I	Compressions Com	bustion Chamber	SOIIIQ		ls, Compressors.
Classification of Con	nbu	stion Chambers 7	Complessors, Com Furbines: Types of t	turbines Operating	5. I Dri	nciple	Nozzles: Flow
through Convergent a	nd C	Convergent-Diverge	ant Nozzles (Without)	Derivations and N	; III ume	ricale)	, NOZZIES. PIOW
unough Convergent and Convergent-Divergent Nozzies (without Derivations and Numericais).							
Chemical Rocket Pro	nul	lsion					07 1115
Solid Rocket propellants: Working, Properties, Types of Propellants, Propellant Burn Rate, Thrust profiles,							
Attitude Controls with	ı So	lid Propellants. Pv	rogen and Pyrotechnic	uue Igniters, Igniti	on a	nd Th	rust Extinction of
Solid Propellants.				1			
Liquid Rocket prop	ellaı	nts: Working, Pror	oellant Types, Proper	ties. Propellant fe	ed s	vstem	s: Pump and Gas
Pressure Feed systems	s, In	jectors and Atomiz	ers.	· · · · · · · · · · · · · · · · · · ·			I I I I I I I I I I I I I I I I I I I
J	<u> </u>	U	nit –V				10 Hrs
Advanced Propulsion	n Sy	stems: Electrother	mal Thrusters: Arc-je	t Thrusters, Ion Pr	opul	sion, l	Plasma Thrusters:
Hall Effect Thrusters, Electric Power Generation: Solar Cells, Solar Generators, Radioactive Thermal							
Generators, Nuclear F	issio	on Power Generator	rs.				
Rocket Performance	e: R	Rocket equation, Po	erformance Paramete	rs: Thrust, Total	Imp	ulse, S	Specific Impulse,
Specific propellant co	onsu	imption, Effective	Exhaust Velocity, Ch	naracteristic Veloc	ity,	Mass	Ratio, Propellant
Mass Fraction, Impulse to weight ratio, Thrust to weight ratio, Energy and Efficiencies, Numerical examples.							
		LABO	RATORY EXPERI	MENTS			
1. Performance a	anal	ysis of a micro gas	turbine/jet propulsion	system			
2. Determination	n of	Performance chara	cteristics of a fixed pi	tch aircraft propell	er		
3. Determination	n of	Performance chara	cteristics of a variable	pitch aircraft prop	belle	-Oper	n Experiment
4. Measurement	of b	ourning velocity of	a pre-mixed flame in	a gas turbine comb	ousti	on cha	mber
5. Determine the	e pre	essure and velocity	variation of an exhaus	st gas flowing out o	ofa	conver	gent nozzle
6. Determination	n of	f pressure and ve	locity variation of a	a supersonic exh	aust	jet fl	lowing out of a
convergent-divergent	convergent-divergent nozzle						

- 7. Study of pressure distribution across a turbine cascade
- 8. Study of flow through an axial cascade turbine blade row
- 9. Preparation of Solid Propellant Rocket Fuel- Open Experiment
- 10. Evaluation of Burning Characteristics of Solid Propellant Fuel- Open Experiment

Reference Books Gas Turbines, V Ganesan, 3rd Edition, 2017, McGraw Hill Education, ISBN-10: 0070681929 1 Gas Turbine Propulsion, D P Mishra, 2nd Edition, M V Learning, 2015, ISBN: 978-81-309-27527 2 Elements of Propulsion: Gas Turbines and Rockets, Jack D Mattingly, 5th Edition, 2006, American 3 Institute of Aeronautics and Astronautics (AIAA), ISBN: 1563477793. Rocket Propulsion Elements, Sutton G P, 8th Edition, 2010, John Wiley, New York. 4 ISBN:9781118174203 Understanding Aerospace Chemical Propulsion, H S Mukunda, 1st Edition, 2017, I K International 5 Publishing House, ISBN: 978-93-85909-42-9 Rocket and Spacecraft Propulsion: Principles, Practices and Developments, Martin J L Turner, 3rd Edition, 6 2009, Praxis Publishing Ltd, Chichester, UK, ISBN 978-3-540-69202-7

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTI					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40			
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50			
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	150			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO	CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q. NO	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	30		
3	Viva	10		
	TOTAL	50		

Semester: IV						
	AEROSPACE STRUCTURES					
		Category: PR	OFESSIONAL CO	ORE COURSE		
		(Theory & Practic	e)		
Course Code	:	AS244AI		CIE	••	100 +50 Marks
Credits: L:T:P : 3:0:1 SEE : 100 +50 Marks			100 +50 Marks			
Total Hours	:	45L+28P		SEE Duration	••	3.00 +3.00 Hours

Unit-I10 HrsLoads on Aircraft: Structural nomenclature, Load Factors, Wing Design Loads, Empennage Loads, and
Fuselage loads, Propulsion Loads, landing gear loads, Miscellaneous loads, Velocity diagram V-n diagram for
the loads acting on the aircraft, salient features of the V-n diagram. Flight envelope for different flying
conditions.

Unit – II	10 Hrs				
Shear Flow in Open & Closed Sections: Open Sections: Concept of shear flow, Shear Flow	in Thin walled				
beams, the shear centre and Elastic axis.					
Closed Sections: Bredt - Batho theory, shear centre of closed sections					
Unit –III	10 Hrs				
Buckling of Columns : Introduction, Critical Load, Euler's Critical Load for various	end conditions,				
Slenderness ratio, Rankine's Crippling Load					
Unit –IV	07 Hrs				
Design of Aircraft Structures: Design criteria, Safety Factor, Life Assessment procedures, Damage tolerance					
and Fail safe Design.					
Unit –V	08 Hrs				
Bolted Riveted and Welded Connections: Eailure of single bolt fitting. Lug strength analysis under Axial					

Bolted Riveted and Welded Connections: Failure of single bolt fitting, Lug strength analysis under Axial, Transverse and Oblique Loading, Riveted Connections, Welded Connections.

LABORATORY EXPERIMENTS

- 1. Tensile Characterization of Aerospace Alloys
- 2. Fatigue Behaviour of Aerospace Alloys
- 3. Crack Propagation behaviour of Aerospace Alloys
- 4. Energy absorbed under an impact velocity (Izod and Charpy Test)
- 5. Geometry cleanup for FE modelling
- 6. 2D Meshing of Aerospace Component
- 7. Solid and 3D meshing of Aerospace Component
- 8. Failure of a circular plate subjected to the impact of an infinite rigid sphere
- 9. Introduction on how to simulate a bird strike on the windshield
- 10. Study of the stress wave propagation and the strain rate effect on the Hopkinson bar.
- 11. Topology Optimization of Aerospace Components
- 12. Shape Optimization of Aerospace Component

1	Megson, T.M.G 'Aircraft Structures for Engineering Students', Edward Arnold, 1995. ISBN: 978-0-75066-7395
2	Donaldson, B.K., "Analysis of Aircraft Structures – An Introduction", McGraw-Hill, 1993. ISBN:978-0521865838
3	Peery, D.J., and Azar, J.J., "Aircraft Structures", 2nd edition, McGraw, Hill, N.Y., 1993. ISBN-10:0486485803
4	C. T. Sun, "Mechanics of Aircraft Structures" Wiley-Interscience, March 1998, ISBN-13: 9780471178774

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTICE)						
#	COMPONENTS	MARKS					
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20					
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40					
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40					
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50					
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	150					

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO CONTENTS						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RUBRIC FOR SEMESTER END EXAMINATION (LAB)						
Q. NO	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	30				
3	Viva	10				
	TOTAL	50				

Semester: IV							
FUNDAMENTALS OF AVIONICS							
		Category: PF	ROFESSIONAL COR	E COURSE			
			(Theory)				
Course Code	:	AS345AT		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Hours	Hours : 45 L SEE Duration : 3 Hours					3 Hours	
Unit-I 09 Hrs							

 Electronic Circuits: Qualitative Analysis of Amplifiers and Feedback Amplifiers, Oscillators; Wave shaping circuits; A/D - D/A converters; Single/multi-stage Mixers & amp; Modulators / Demodulators

 Unit – II

 10 Hrs

 Transmission Lines: Introduction, transmission lines equations and significance, termination of line by infinite

Iransmission Lines: introduction, transmission lines equations and significance, termination of line by infinite line, by characteristic impedance, short circuit line, open circuit line, VSWR, problems Microstrip lines. **Qualitative Analysis of Waveguides:** Rectangular and circular type, TE and TM waves in wave guides, their transmission properties and attenuation., E-plane & H Plane Waveguides, Magic Tee, Circulator, Duplexer and their S matrices, Wave guide resonator, loaded and unloaded.

Unit –III

11 Hrs

Propagation of EM Waves: Electromagnetic Spectrum; Basics of E M Wave, Polarization, Types of Polarization, Modes of Radio wave Propagation, Surface wave, Troposphere duct Propagation, Tropo-scatter Propagation, Ionosphere Propagation, Magneto-ionic theory, Secant law, MUF, Critical frequency, Skip distance. Fading & Remedial measures.

Antenna Basics & Microwave Antenna: Oscillating dipole: Electromagnetic radiation, retarding potential, Antenna parameters: directivity, beam width, gain, radiation, effective aperture, Friss transmission formula Antenna array: Horn, Parabolic Reflector and its feed, Cassegrain antenna, Slot array, lens antenna. Beam Forming, Phased Arrays.

 Unit –IV
 07 Hrs

 Elements of Communication Systems: Definition of Signal & System, Types of Signals, Classification of Signals, Classification of Systems; Signals Gain, Attenuation & Decibels; Filters & their classification,; Noise & SNR comparison;, Frequency Synthesizer, Phase lock loop, Modulator / Demodulator, Block Diagrams of Microwave Transmitter / Receiver.

 Unit –V
 09 Hrs

 Basics of Digital Communication: Pulse Modulation, Sampling, quantizing, coding, PCM, DPCM, multiplexing-audio/video; Digital modulation: ASK, FSK, PSK; Multiple access: TDMA, FDMA, CDMA.

Ref	erence Books
1	Electronic Devices & Circuit Theory : Robert L Boylestad & Louis Nashelsky, 11th Edition, 1 July 2017,
1	Pearson, ISBN: 978-0-13-262226-4 (for Unit – I)
2	Principles of Electronics : A P Malvino & David J Bates, ISBN: 978-0-07-063424-4 Tata McGraw -
2	Hill, New Delhi(for Unit – I)
2	Microelectronics, Millman & Grabel, 2 nd Edition, 2017, McGraw Hill Education, ISBN-13: 978-
3	0074637364 (for Unit – I, IV)
4	Principles of Electronics Communication Systems: Louis E Fresnel Jr, 4 th /5 th edition, Mc Graw Hill, ISBN
Ŧ	978-0-07-337385-0. (for Unit – II, III & V)
5	Electronic Communication Systems: George Kenndy & Bernard Davis, Tata McGraw Hill, 37th reprint
3	2009, ISBN-13: 978-0-07-463682-4, .ISBN-10: 0-07-463682-0. (for Unit – II, III)
6	Principle of Digital Communication System:Robert G Gallager, 2008 Edition, Cambridge University
U	Press. ISBN-10-0521879078, ISBN-13 978-0521879071 (for Unit – V)

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of THREE Sub-divisions only)						
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7 & 8 Unit 4: Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

				Semester: IV			
			DES	IGN THINKING LA	B		
			Category	: Professional Core	Course		
				(Practice)			
Cours	e Code	:	AS247DL		CIE	:	50 Marks
Credi	ts: L:T:P	:	0:0:2		SEE	:	50 Marks
Hours	5	:	30P		SEE Duration	:	3 Hours
				Unit - I			10 Hrs
Under	standing Do	esig	n thinking: Design T	Thinking Methodology	y: The 5 Stages	of	the Design Thinking
Proces	ss-Empathise,	De	fine (the problem), Ide	ate, Prototype, and T	est. Shared mode	el ir	n team-based design –
Theor	y and practic	e in	Design thinking – Exp	plore presentation sign	ners across globe	– N	Iultivarible product or
Protot	yping, Real-7	Гiт	e design interaction ca	pture and analysis -	Enabling efficien	nt c	ollaboration in digital
space	– Empathy fo	r de	esign – Collaboration in	distributed Design			
				Unit - II			15 Hrs
DT F	or strategic :	inn	ovations Growth: Stor	ry telling representation	on – Strategic For	resi	ght - Change – Sense
Makir	g - Mainter	nanc	ce Relevance – Value	e redefinition - Extr	eme Competition	_	experience design -
Standa	ardization – H	łum	anization - Creative Cu	ulture – Rapid prototy	ping, Strategy and	l Oı	rganization – Business
Model	design.						
Unit - III 14 Hrs							
Desig	n Thinking V	Wo	rkshop: The Design Cl	hallenge: Define the l	Design Challenge,	Pr	ototyping & Iteration-
Feasit	ility Study, T	'esti	ng- Documentation and	l the Pitching: 10 hour	s design thinking	wor	kshop from the expect
and th	en presentatio	on b	y the students on the lea	arning from the works	hop,		
Cours	e Outcomes:	Af	ter completing the cou	rse, the students will	be able to		
CO1:	Understand	ling	various design process	procedure			
CO2:	Explore re-	vers	e engineering to unders	tand products			
CO3:	Develop te	chn	ical drawing/prototype	for design ideas			
CO4:	Create desi	ign	ideas through different	techniques			
		<u> </u>		•			
Refer	ences Books:						
1	Kilion Langer	nfel	d, Design Thinking for	Beginners, Personal G	rowth Hackers, IS	BN	: 13-9783967160628
2	Andrew Pres	sma	n, Design Thinking: A	A Guide to Creative	Problem Solving	for	Everyone, Routeldge
	Taylor & Fra	ncis	Grovel, 1 st Edition, 201	18, ISBN: 13-978-1-31	5-56193-6		. –
3	Walter Bronn	or	Falk Habarnickal Dasi	ign Thinking for Inno	votion Passarch	nd	Practice Springer 1 st

3 Walter Brenner, Falk Uebernickel, Design Thinking for Innovation Research and Practice, Springer, 1st Edition, 2016, ISBN: 13-9783319260983

4 Emrah Yayici, Design Thinking Methodology Book, ArtBiz Tech Publishers, 1st Edition, 2016, ISBN:10-6058603757, 13-9786058603752

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (LAB)						
#	COMPONENTS	MARKS				
1.	Conduction of laboratory exercises, lab report, observation, and analysis	20				
2.	Experiential Learning	20				
3.	Lab test	10				
MAXIMUM MARKS FOR THE CIE THEORY						
	RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	20				
3	Viva	20				
	TOTAL	50				

Semester: IV							
	UNIVERSAL HUMAN VALUES						
(Theory)							
Course	e Code	:	HS248AT		CIE	:	50 Marks
Credit	s: L:T:P	:	2:0:0		SEE	:	50 Marks
Total H	Iours	:	28L		SEE Duration	:	02 Hours
				Unit-I			10 Hrs
Cours	se Introducti	on	- Need, Basic Guide	lines, Content and Process	for Value Educatio	n:	
Purpo	se and motiv	/atı	on for the course, i	recapitulation from Univers	al Human Values-	l, Se	If-Exploration
'Natu	ral Acceptanc	e´a	and Experiential Val	idation Continuous Happines	ss and Prosperity- H	luma	in Aspirations,
Right Drooti		g, г	kerationship and Phy	sical Facility, Understanding	happiness and Pro	speri	lty correctly.
Flacu		0 0	inscuss natural accep	stance in numan being as t	the minate acceptan		or inving with
respon	isibility.		• 4 • •				
Unde	rstanding Ha	rm	iony in the Human	Being - Harmony in Myself		T T 1	. 11
Under	rstanding hum	an	being as a co- existe	ence of the sentient 'I' and the	he material 'Body',	Und	erstanding the
needs	of Sell (1) a	and	Body Understand	derstanding the hormony of l	u of Understanding	the	characteristics
Dracti	ice sessions	to	discuss the role of	here have played in making	ing material good	iyam s av	allu Healui,
Identif	ving from or	10 10'0	a own life	ners have played in maki	ing material good	sav	anable to me.
Identii	ying nom of		s own me.	Unit II			10 Hrs
Unde	rstanding Ha	rm	ony in the Family a	of Society- Harmony in Hur	nan Relationshin.		10 1115
Under	standing volu		in human human ra	ationship: magning of Just	ica and program fo	r ito	fulfilment to
oncur	stanung van		and Trustend Deene	attonship, meaning of Jush	as of relationship	u ns Und	and and the
ensure	e mutuar nap	рш	ess; mustanu Kespe	eet as the foundational valu	es of relationship,	Und	erstanding the
mean	ing of Trust.	1		/ · · · · · · · · ·		1	D
Under	rstanding the	ha	rmony in the societ	y (society being an extension	on of family): Reso	olutic	on, Prosperity,
fearle	ssness (trust)	an	d co-existence as co	omprehensive Human Goals	s, Visualizing a uni	versa	al harmonious
Dracti	in society- U		aflect on relationsh	ins in family hostel and i	onu ranny. institute as extende	d fo	mily real life
evam	oles teacher-s	etuć	lent relationship go	al of education etc. Gratitud	e as a universal val	u i	n relationships
Discu	ss with scena	rios	Elicit examples fro	m students' lives.		ue n	ii relationships.
			<u> </u>	Unit –III			08 Hrs
Unde	rstanding Ha	rm	ony in the Nature a	nd Existence - Whole exist	ence as Coexistence	:	
Under	rstanding the	har	mony in the Nature,	Interconnectedness, and mu	itual fulfilment amo	ng t	he four orders
of nat	ture recyclabi	lity	and self-regulation	in nature, Understanding E	Existence as Co-exis	stenc	e of mutually
intera	cting units in	all	pervasive space, Hol	istic perception of harmony	at all levels of existe	ence.	
Practic	e sessions to	di di	iscuss human being	g as cause of imbalance in	nature (film "Ho	me"	can be used),
polluti	on, depletior	ı of	resources and role	of technology etc.			
Course	Outcomog	A F 4	an completion of the	agures the students will he	a abla ta		
COII Se	By the end	1 0	f the course studer	its are expected to become	more aware of the	mse	lves and their
	surrounding	₁ 0 ; (f	amily, society, natur	e): they would become mo	re responsible in li	fe. ?	and in handling
	problems with sustainable solutions,						
CO2	While keeping	ng l	numan relationships	and human nature in mind. T	They would have bet	ter c	ritical ability.
CO3	They woul	d a	lso become sensitive	e to their commitment towar	ds what they have	unde	erstood (human
	values, huma	an r	elationship and hum	an society).	5		``
CO4	It is hoped	tha	t they would be able	to apply what they have lear	rnt to their own self	in di	ifferent day-to-
	day settings	in r	eal life, at least a be	ginning would be made in thi	is direction.		-

Refer	Reference Books					
1	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.					
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004					
3	The Story of Stuff (Book).					
4	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi					
5	Small is Beautiful - E. F Schumacher.					
6	Slow is Beautiful - Cecile Andrews.					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 5 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20			
	MAXIMUM MARKS FOR THE CIE THEORY	50			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
PART A					
1	Objective type questions covering entire syllabus	10			
	PART B				
(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2 : Question 3 or 4	13			
5&6	Unit 3 : Question 5 or 6	13			
	TOTAL	50			

Semester: IV							
BRIDGE COURSE: MATHEMATICS							
(Mandatory Audit Course)							
<u> </u>	r	(AS, BT	<mark>, CH, CV, EC, EE, EI, E</mark> T	, IM, M	IE)		
Course Code	:	МАТ149АТ		CIE	:	50 Marks	
Credits: L: T:P	:	2:0:0		SEE	:	NO SEE (AUDIT COURSE)	
Total Hours	:	30L					
Unit-I 10 Hrs						10 Hrs	
Multivariable Calc	culus	•					
Partial Differentia	tion	Introduction, s	simple problems. Total der	ivative,	co	mposite functions. Ja	acobians –
simple problems.							
Vector Differentia	tion	Introduction,	velocity and acceleration,	gradier	nt, o	livergence – solenoi	dal vector
function, curl – irrot	tatior	nal vector functio	on and Laplacian, simple pro	blems.			
Unit – II 10 Hrs							
Differential Equations: Higher order linear differential equations with constant coefficients solution of							
homogeneous equa	ations	- Complement	tary functions. Non-homo	geneous	s e	quations – Inverse	differential
operator method of finding particular integral based on input function (force function).							
Unit –III 10 Hrs							
Numerical Methods: Solution of algebraic and transcendental equations - Intermediate value property,							
Newton-Raphson method. Solution of first order ordinary differential equations – Taylor series and 4 th order							
Runge-Kutta metho	ds. N	lumerical integra	tion – Simpson's $1/3^{rd}$, $3/8^{t}$	^h and W	edd	lle's rules. (All metho	ds without
proof).							

Course Outcomes: After completing the course, the students will be able to				
CO1:	Illustrate the fundamental concepts of partial differentiation, vector differentiation, higher order linear			
	differential equations and numerical methods.			
CO2:	Derive the solution by applying the acquired knowledge of differential calculus, differential equations,			
	velocity, and acceleration vectors to the problems of engineering applications.			
CO3:	Evaluate the solution of the problems using appropriate techniques of differential calculus, vector			
	differentiation, differential equations, and numerical methods.			
CO4:	Compile the overall knowledge of differential calculus, vector differentiation, differential equations and			
	numerical methods gained to engage in life – long learning.			
Reference Books				
	4			

1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9-1.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.
3	A Textbook of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010, Lakshmi Publications, ISBN: 978-81-31808320.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley & Sons, ISBN: 978-0470458365.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 30 Marks, adding upto 60 Marks. FINAL TEST MARKS WILL BE AVERAGE OF TWO TESTS.	30		
	MAXIMUM MARKS FOR THE CIE THEORY	50		

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Curriculum Design Process

Process For Course Outcome Attainment

Program Outcome Attainment Process

KNOWLEDGE & ATTITUDE PROFILE

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM OUTCOMES (POs)

- * **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- * PO2: Problem Analysis: Identify, formulate, review research literature and analyze engineering problems reaching substantiated complex conclusions with consideration for sustainable development. (WK1 to WK4)
- * **PO3:** Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex * engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- * **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- PO6: The Engineer and The World: Analyze and evaluate societal and environmental * aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- * PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- * **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- * **PO9:** Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- * **PO10:** Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and * ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Professionalism, Commitment, Integrity, Team Work, Innovation

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India | +91-80-68188110 | www.rvce.edu.in

Go, change the world [®]