Rashtreeya Sikshana Samithi Trust R.V.COLLEGE OF ENGINEERING (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E) Scheme and Syllabus (2016 Scheme)

I & II Semester (Common to all Programs)

Abbreviations

Sl.	Abbreviation	Meaning
No.		
1	CIE	Continuous Internal Evaluation
2	CS	Computer Science and Engineering
3	CV	Civil Engineering
4	ECE	Electronics and Communication Engineering
5	EE	Electrical and Electronics Engineering
6	HSS	Humanities and Social Sciences
7	ME	Mechanical Engineering
8	SEE	Semester End Examination
9	SS (EL)	Self Study (Experiential Learning)

Vision

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

Mission

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Quality Policy

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CL No.	Cotogowy		Minimum No. of	2016 scheme		
51. INO.	Category	Percentage (%)	credits	Without Mini Project	With Mini Project	
1	Humanities	5-10	10	9+2	9+2	
2	Basic Science	15-20	30	30	30	
3	Engineering Science	15-20	30	30	30	
4	Professional Core Courses (PC)	30-40	60	78+3=81 (3 credits core in place of Minor project in 7 th semester)	81-3=78 (3 Credits for minor project in 7 th semester)	
5	Professional Elective Courses	10-15	20	20	20	
6	Other Electives	5-10	10	10	10	
7	Project Work	10-15	20	16+2 Major project +Tech. Seminar	16+2+3 Major project +Tech. Seminar +Mini Project	
				200	200	

Credits Distribution as per UGC/VTU

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) FIRST SEMESTER CREDIT SCHEME FOR PHYSICS CYCLE

			(COMMON 7	O ALL PROG	RAMS)			
SI.			D G	CREDIT ALLOCATION				
No	Course Code	Course Title	B02	Lecture	Tutorial	Practical	SS (EL)	1 otal Credits
1	16MA11	Applied Mathematics- I	Maths	3	1	0	1	5
2	16PH12	Engineering Physics (Theory and Practice)	Physics	4	0	1	0	5
3	16CV13	Elements of civil Engineering	CV	4	1	0	0	5
4	16ME14	Computer Aided Engineering Drawing (Theory and Practice)	ME	1	0	2	0	3
5	16EE15	Elements of Electrical Engineering	EE	4	0	0	1	5
6	16HSC16	Constitution of India and Legal Studies for Engineers	HSS	2	0	0	0	2
7	16HSK17*	Kannada*	HSS	1	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		19	04	6	8**	29

*Mandatory Audit course 1 Hr per week

****** Non contact hours

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) FIRST SEMESTER CREDIT SCHEME FOR CHEMISTRY CYCLE

			(COMMON TO	ALL PROGRA	AMS)			
CLN	Correct Code	Correct Title						
SI. NO	Course Code	Course 1itie	B08	Lecture	Tutorial	Practical	SS (EL)	I otal Credits
1	16MA11	Applied Mathematics-I	Maths	3	1	0	1	5
2	16CH12	Engineering Chemistry (Theory and Practice)	Chemistry	4	0	1	0	5
3	16CS13	Programming in C (Theory and Practice)	CS	4	0	1	0	5
4	16EC14	Basics of Electronic Engineering	ECE	4	0	0	1	5
5	16ME15	Basics of Mechanical Engineering (Theory and Practice)	ME	4	0	1	0	5
6	16HSE16*	Professional Practice-I (Communicative English)	HSS	2	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		21	2	6	8**	29

*Mandatory Audit course 2 Hrs per week

****** Non contact hours

1Hr. Theory= 1 credit

2Hrs. Practical=1credit

2Hrs. Tutorial=1 credit

4Hrs. SS(EL) = 1 Credit

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) SECOND SEMESTER CREDIT SCHEME FOR PHYSICS CYCLE

		(CO)	MMON TO AL	L PROGRAMS	5)			
SI No		Correct Title	D . C	CREDIT ALLOCATION				Total
51. INO	Course Code	Course Thie	D03	Lecture	Tutorial	Practical	SS (EL)	Credits
1	16MA21	Applied Mathematics-II	Maths	3	1	0	1	5
2	16PH22	Engineering Physics (Theory and Practice)	Physics	4	0	1	0	5
3	16CV23	Elements of civil Engineering	CV	4	1	0	0	5
4	16ME24	Computer Aided Engineering Drawing (Theory and Practice)	ME	1	0	2	0	3
5	16EE25	Elements of Electrical Engineering	EE	4	0	0	1	5
6	16HSC26	Constitution of India and Legal Studies for Engineers	HSS	2	0	0	0	2
7	16HSK27*	Kannada*	HSS	1	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		19	04	6	8**	29

*Mandatory Audit course 1 Hr per week

****** Non contact hours

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) SECOND SEMESTER CREDIT SCHEME FOR CHEMISTRY CYCLE

		SEMESTER	(COMMON TO	ALL PROGRA	MS)			
CLNG	Course Code	Course Title	Dag		CREDIT ALLO	DCATION	•	Total
31.1NO	Course Code	Course Thie	B02	Lecture	Tutorial	Practical	SS (EL)	Credits
1	16MA21	Applied Mathematics-II	Maths	3	1	0	1	5
2	16CH22	Engineering Chemistry (Theory and Practice)	Chemistry	4	0	1	0	5
3	16CS23	Programming in C (Theory and Practice)	CS	4	0	1	0	5
4	16EC24	Basics of Electronic Engineering	ECE	4	0	0	1	5
5	16ME25	Basics of Mechanical Engineering (Theory and Practice)	ME	4	0	1	0	5
6	16HSE26*	Professional Practice-I (Communicative English)	HSS	2	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		21	2	6	8**	29

*Mandatory Audit course 2 Hrs per week

****** Non contact hours

1Hr. Theory= 1 credit

2Hrs. Practical=1credit

2Hrs. Tutorial=1 credit

4Hrs. SS (EL) = 1 Credit

	Semester: I				
	Course Title: APP	PLIED MATHEMATICS - I			
Cou	rse Code: 16MA11	CIE Marks: 100			
Hrs/Week: L:T:P:S: 3:2:0:4 SEE Marks: 100		SEE Marks: 100			
Cree	dits: 05	SEE Duration: 3Hrs			
Cou	rse Learning Objectives: The stude	ents will be able to			
1	Understand the existence of polar coordinates as possible 2-D geometry, curves in polar				
1	coordinates and to approximate a function of single variable in terms of infinite series.				
2	Gain knowledge of multivariate functions, types of derivatives involved with these				
4	² functions, Jacobian as transformation factor and their applications.				
	Enhance the knowledge level to visualize integrals in higher dimensional and different				
3	curvilinear systems, possible representation and evaluation of geometrical and physical				
	quantities in terms of multiple integrals.				
1	Interpret concepts of vector functions, vector fields, differential calculus of vector				
4	functions in Cartesian coordinates, and apply them for various engineering problems.				
5	Appreciate the significance of vector	or integration and its applicability to Electromagnetic			
5	⁵ theory, Mechanics and other allied areas.				
6	Use mathematical IT tools, to analyz	ze and visualize various concepts.			

UNIT-I	
DIFFERENTIAL CALCULUS I	08 Hrs
Basics of polar coordinates, polar curves, angle between radius vector and tangent,	
p-r equation(pedal equation) of polar curves, Curvature, radius of curvature –	
Cartesian, parametric forms and problems. Taylor series, Maclaurin's series.	
Indeterminate forms- evaluation using L'Hospital's rule.	
UNIT-II	
DIFFERENTIAL CALCULUS II	08 Hrs
Partial Differentiation – Basics, total derivatives-composite and implicit functions,	
Jacobians- properties, Maxima and minima of two variables.	
UNIT-III	
INTEGRAL CALCULUS	09 Hrs
Orthogonal curvilinear coordinates –Introduction, arc, area and volume elements,	
cylindrical polar and spherical polar coordinate systems(only mention of	
orthogonality), Jacobians of these systems.	
Multiple integrals-Double integrals – introduction, direct evaluation, change of	
order of integration, change of variables. Triple integrals – introduction and direct	
evaluation, change of variables.	
Applications – Area, surface area, volume of solids and Center of gravity using	
double and triple integrals.	
UNIT-IV	
VECTOR DIFFRENTIATION	08 Hrs
Scalar and vector fields, vector differentiation, velocity and acceleration vectors,	
gradient, divergence, curl and Laplacian of scalar/vector fields, solenoidal and	
irrotational fields, physical interpretations, simple problems involving practical	
situations. Vector identities and problems.	
UNIT-V	
VECTOR INTEGRATION	07 Hrs
Line, surface and volume integrals. Green's theorem(with proof), Stoke's and	
Gauss Divergence theorems(without proof), solenoidal fields and irrotational	
fields.	

Exp	pected Course Outcomes: After completing the course, the students will be able to
1	Demonstrate the understanding of the basics of polar coordinates and p-r equations,
	partial differentiation, multiple integrals, vector fields and vector differentiation.
2	Solve problems on radius of curvature, total derivatives of functions, elements of
	different dimensions in curvilinear coordinates, double integrals by changing order of
	integration, velocity and acceleration vectors, line, surface and volume integrals.
3	Apply acquired knowledge to find infinite series form of functions, Jacobians, multiple
	integrals by changing variables, different operations using Del operator and to verify
	integral theorems.
4	Estimate extremal points of functions of two variables, area, volume using multiple
	integrals, solenoidal and irrotational fields.
Te	xt Books
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40 th Edition, 2007,
	ISBN: 81-7409-195-5.
2	D U D U I I I E $(1, 1)$ I $(1, 2)$ I $(1, 2)$ I $(1, 2)$ I $(1, 2)$ I $(2, 2)$ I

2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2008, ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X.

Reference Books

- **1.** Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2007, ISBN: 978-81-265-3135-6.
- **2.** James Stewart, Calculus- Early transcendental, Cengage learning, 7th Edition 2012, ISBN:10- 0538497904, ISBN:13- 9780538497909.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)				
Evaluation method	Course with Self-study			
Quiz -1	10			
Test -1	25			
Quiz -2	10			
Quiz -3	10			
Test -2	25			
Self-study (EL)	20			
Total	100			

Semester End Evaluation Theory (100)	
Part- –A	20
Objective type questions	
Part –B	
There should be five questions from five units. Each question should be for maximum	
of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	

Tota	1	

100

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Η	Μ	-	-	-	-	-	-	-	-	-	L
CO2	Η	Μ	-	-	-	-	-	-	-	-	-	L
CO3	Η	Η	L	L	-	-	-	-	-	-	-	L
CO4	Η	Η	L	L	-	-	-	-	-	-	-	L

High-3 : Medium-2 : Low-1

Semester: I/II					
Course T	Course Title: ENGINEERING PHYSICS				
	(Theory and pract	ice)			
Course Code:16PH12/16PH22		CIE Marks:100+50=150			
Hrs/Week: L:T:P:S: 4:0:2:0		SEE Marks:100+50=150			
Credits:05		SEE Duration(Theory) : 3 Hrs			
		SEE Duration(Laboratory) : 3 Hrs			

Cou	Course Learning Objectives: The students will be able to				
1	Understand the working principles of lasers & optical fibers and apply them in s	cience			
	and technology.				
2	2 Implement the principles of quantum mechanics to various atomic phenomena.				
3	3 Solve differential equations of harmonic oscillators to analyze experimental situations applicable to technical field.				
4	Analyze the electrical properties of the conductors and semiconductors.				
5	5 Explain the dielectric and thermal properties of solids.				
UNIT-I					
Lase	ers and Optical Fibers	08			
Basi dens laser bear	Basic principles of Laser: Absorption and emissions, Einstein's coefficients. Energy density in terms of Einstein coefficients, conditions and requisites of laser. Types of lasers: Helium -Neon Laser, Semiconductor diode Laser. Characteristics of laser beam. Industrial applications of lasers: laser cutting, welding and drilling.				

Principle of Optical fibers: propagation mechanism, condition for propagation, acceptance angle and numerical aperture. Modes of propagation, types of optical fibers. Attenuation: Absorption, scattering and radiation loss, attenuation coefficient. Application of optical fiber in point to point communication, advantages of optical fiber communication over electrical mode of communication.

measurements of pollutants in atmosphere.

UNIT-II

Quantum Mechanics	11			
Black body radiation spectrum, Laws of black body radiation spectrum, Planck's				
quantum theory, Review of Photoelectric effect and Compton effect. Wave - particle	1			
duality, de-Broglie hypothesis. Matter waves: properties of matter waves, wave	1			
packet, group velocity, phase velocity and their relations. Application of matter	1			
waves: Scanning Electron Microscope (SEM) - construction and working.	1			
Uncertainty principle: Illustrations – Non-confinement of electron inside the nucleus	1			
and broadening of spectral lines. Setting up of one dimensional time independent				
Schrodinger's wave equation- wave function, physical significance of wave function,	1			
Eigen function, Eigen values. Application of Schrodinger's wave equation: Free	1			
particle, Particle in a one dimensional potential well of infinite depth. Problems.				
UNIT-III				

Oscillations and Waves	09				
Simple Harmonic Motion, Characteristics of Simple harmonic motion. Un damped /	Hrs				
Free vibrations, differential equations of un damped / free vibrations and solutions.					
Examples of Simple harmonic oscillators a) Spring and Mass system, b) Torsional					
Pendulum. Damped vibrations: Differential equations of damped vibrations and					
solutions. Forced vibrations: Differential equations of forced vibrations and					
solutions, Resonance. Examples of forced vibrations- LCR circuits. Problems.					
UNIT-IV					
Electrical conductivity in metals and semiconductors	10				
Designs of Classical free all stress theory. On a term free all stress theory. Earning	Hrs				
Review of Classical free electron theory, Quantum free electron theory. Fermi energy and Fermi factor in metals, variation of Fermi factor with temperature. Density of					
and Fermi factor in metals, variation of Fermi factor with temperature. Density of					
states and carrier concentration in metals. Hall effect-Determination of number and					
sign of charge carriers. Band theory of solids, (qualitative approach).					
Intrinsic semiconductors: carrier concentration, concept of effective mass					
(qualitative), derivation of electron and hole concentration, intrinsic carrier					
concentration, Fermi level in intrinsic semiconductors, Expression for the energy gap					
of intrinsic semiconductors.					
Extrinsic semiconductors: Types of extrinsic semiconductors, doping methods					
(qualitative). Variation of carrier concentration in extrinsic semiconductors with					
temperature, variation of Fermi level in extrinsic semiconductors with temperature					
and impurity concentration. Hall effect in semiconductors.					
UNIT-V					
Dielectrics and Thermal conductivity	09				
Dielectrics: Electric dipole, Dipole moment, Field due to electric dipole at a point in a	Hrs				
plane. Polarization of dielectric materials: Types of polarizations, frequency					
dependence of polarization mechanisms, dielectric loss. Internal field in solids: for					
one dimensional infinite array of dipoles (Lorentz field), Clausius - Mossotti					
equation.					
Thermal conductivity: conduction of heat in solids steady state coefficient of					
thermal conductivity, thermal conductivity of a good conductor by Searle's method					
and thermal conductivity of a poor conductor by Lee's and Charlton's method.					
LAB EXPERIMENTS					
1. Verification of Stefan's law					
2. Determination of Planck's constant using LED's of different wavelengths					
3 Analysis of the frequency response of Series LCR circuits and determinat	ion of				
inductance of the given inductor	1011 01				
A Using four probe to determine the resistivity of given semi conductors					
 Using four prove to determine the resistivity of given semi-conductors. Determination of moment of inartia of an irregular hody by Torsional assillations. 					
5. Determination of moment of inertia of an irregular body by Torsional oscillations.					
 Determination of energy gap of given thermally sensitive resistors. Determination of Fourier and the sensitive resistors. 					
7. Determination of Fermi energy of conductors					
8. Identification of the nature of the given semiconductors and determination of their Ha					
coefficient and carrier concentration of given materials.					
9. Determination of Dielectric constant by charging and discharging of a capacitor.					
10. Using Searle's method to find the thermal conductivity of good conductors					
11. Thermal conductivity of a poor conductor by Lee's and Charlton's method					
12. Determination of divergence angle of a laser beam					
13. Determination of numerical aperture of an optical fiber					

Note:	Each student has to perform 13 experiments in a semester.
	10 Experiments are GUIDED experiments
	03 Experiments involving experiential learning.
Cours	e Outcomes: After completing the course, the students will be able to
CO1	Understand the fundamental concepts of Optical Physics, Quantum mechanics, wave
	theory and conductivities
CO2	Apply the concepts of Optical Physics, Quantum mechanics, wave theory and
	conductivities in Engineering domain.
CO3	Analyze the theoretical concepts and investigate in the laboratory.
CO4	Demonstrate team work and effective reporting
Text B	ooks
1	Dr. M N Avadhanulu, Dr. P. G. Kshirsagar, A Text book of Engineering Physics
	S. Chand & Company Private limited. Revised edition 2015.
2	R K Gaur and S L Gupta, Engineering Physics, Dhanpat Rai Publications, Revised
	edition 2011.
Refere	nce Books
3	Haliday & Resnic & Walker, Fundamentals of Physics, John Wiley & Sons 2010,
	ISBN: 9971-51-330-7.
4	Hitendra K Malik and A K Singh, Engineering Physics, Tata McGraw Hill Education
	Private Limited, 2009, ISBN:978-0-07-067153-9.

Continuous Internal Evaluation (CIE)					
(Theory – 10	00 Marks)	(Laboratory- 50 Marks))	Total	
Evaluation method	Course with assignment	_		(150)	
Quiz -1	10	Performance of the student in			
Test -1	30	the laboratory, every week	40		
Quiz -2	10				
Quiz -3	10	Test at the end of the semester	10		
Test -2	30		10		
Assignments	10	_			
Total	100	Total	50	150	

Semester End Evaluation (SEE)				
Theory (100 Marks)		Laboratory(50 Mar	·ks)	Total (150)
Part- –A	20	Experiment		
Objective type questions		Conduction with	40	
Part –B		proper results		
There should be five questions from five units.		Viva	10	
Each question should be for maximum of 16				
Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80			
The UNIT-2 and UNIT-3 should have an internal				
choice.				
Both the questions should be of the same				
complexity in terms of COs and Bloom's				
taxonomy level.				
Total	100	Total	50	150

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Μ	Η	Μ	L	-	-	-	-	-	-	-	М
CO2	L	Η	Η	L	-	-	-	-	-	-	-	Μ
CO3	L	Н	Η	Н	-	-	-	-	-	-	-	Μ
CO4	L	Η	М	L	-	М	-	-	М	Μ	-	Μ

High-3: Medium-2: Low-1

Semester: I / II				
Course Title: ELEMENTS OF CIVIL ENGINEERING				
Co	urse Code: 16CV13/23		CIE Marks:100	
Hrs	s/Week: L:T:P:S: 4:2:0:0		SEE Marks:100	
Cre	Credits::05 SEE Duration: 3 hrs			
Co	urse Learning Objectives: The	e students will be able to		
1	Objective of this course is to r of civil engineering, so that the engineering.	nake every engineering stu they can use their domain	udent understand the imp h knowledge and apply	portance to civil
2	Identify the components and m	naterials used for building	construction.	
3	Interpret the behavior of rigid	and deformable bodies to s	solve engineering problem	ms.
4	Apply principles of mechanics	for solving Civil Engineer	ring problems.	
		UNIT-I		
 Introduction: Scope of different fields of Civil Engineering; need for Civil Engineering for various engineering domains. Building materials – Properties and Engineering applications of Stones, Bricks, Cement, Concrete, Concept of Reinforced Cement Concrete (RCC). Building components. Concept of Sub Structure Components- Masonry Foundation; Isolated RCC footing; Raft Foundation, End bearing piles and friction piles. Concept of Super structure components- Components and types of walls, Doors, Windows, Roofs, Flooring and stairs. 			9Hrs	
		UNIT-II		
Int For Tra cha theo met Equ plan Pro	Introduction to Engineering MechanicsForce- Concepts, Characteristics, Force systems and types, Principle of Transmissibility of force, Principle of Superposition, Moment of a force, Couple, characteristics of couple, Resolution and composition of forces, Varignon's theorem, resultant of coplanar concurrent and non-concurrent force systems by method of resolution Numerical problems.Equilibrium of force systems: Free body diagram, conditions of equilibrium of Co planar concurrent and non-concurrent force systems. Lami's Theorem Numerical			9 Hrs
UNIT-III				
Bea Ind sub Loa	Beams: Types of Loads, Supports for beams; Statically determinate and Indeterminate Beams, Numerical Problems on Statically determinate beams subjected to concentrated load , Uniformly Distributed Load, Uniformly Varying Load, Moment and their combinations.9Hrs			9Hrs
Friction – Types of friction, Laws of static friction, limiting friction, Angle of friction, Impending motion on horizontal and inclined planes, wedge friction, ladder friction – Numerical problems.				
Co	traid: Concent of center of a	UNIT-IV	wmmetry Location of	
cen met	troid of Rectangle, Triangle, S hod of integration; Numerical	Semicircle, Quadrant and problems on Centroid of c	sector of a circle by omposite sections (not	

mo	re than three sub-sections).	8 Hrs
Sec	cond Moment of Area: Concept of Second moment of area, Radius of gyration,	
Pol	ar moment of inertia, Perpendicular axis theorem and Parallel axes theorem;	
Sec	cond moment of area of rectangular, circular and triangular sections by method	
Of 1	ntegration; Numerical problems on composite sections (not more than three sub-	
sec	UOIIS).	
Sin	unla Strasses and strains Hooke's law Stress Strain behavior of mild steel and	
con step	crete; Analysis of bars of uniform and varying cross sections, Tapering and oped bars; Analysis of Simple and Composite bars of equal and unequal lengths	9Hrs
; E	blems	
Exj	pected Course Outcomes: After completing the course, students will be able to	
1	Describe fundamental concepts of Civil Engineering structures, mechan materials.(L1)	ics and
2	Discuss components of building, behavior of rigid and deformable bodies. (L2)	
3	Apply the concepts of mechanics and materials used in Construction for eng problems. (L3)	ineering
4	Demonstrate the applications of fundamentals for solving engineering problems.(L4)
Tey	xt books:	
1	S. Ramamrutham, "Strength of Materials", Dhanpat Rai Publishing Company,	
	18thEdition, 2014, ISBN-10: 9384378267, ISBN-13: 9789384378264.	
2	Ferdinand P.Beer and E.Russel Johnston Jr, "Mechanics for Engineers - Statics",	,
	McGraw Hill book Inc., U.S.A, 4th Edition, 2009, ISBN- 007100135.	
3	Sushil Kumar, "Building Construction", Standard Publishers ,20th Edition, 2016	5, ISBN:
	9788180141683.	
Ref	ference books:	
1	A.Nelson, "Engineering Mechanics, Statics and Dynamics", Tata McGraw Hill	
	Publication, 1st Edition, 2010, ISBN -10-0-07-014614-4, ISBN-13: 978-0-07-01	4614-3.
2	S. S Bhavikatti, "Strength of Materials", Vikas Publishing house pvt. LtdNoida	, 3 rd
	Edition, 2013,ISBN-10: 8125927913, ISBN-13:9788125927914	

Continuous Internal Evaluation (CIE)				
(THEORY – TOU MARKS)				
Evaluation method	Course with assignment			
Quiz -1	10			
Test -1	30			
Quiz -2	10			
Quiz -3	10			
Test -2	30			
Assignments	10			
Total	100			

Semester End Evaluation (Theory -100 Marks)				
Part- –A	20			
Objective type questions				
Part –B				
There should be five questions from five units. Each question should be for maximum				
of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice.	80			
Both the questions should be of the same complexity in terms of COs and Bloom's				
taxonomy level.				
Total	100			

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	L	-	-	-	М	М	L	L	-	-	М
CO2	М	М	-	-	-	L	-	-	L	-	-	L
CO3	М	М	L	-	-	М	М	-	L	-	-	М
CO4	М	М	L	-	-	М	-	-	-	-	-	L

High-3 : Medium-2 : Low-1

	Semester: I / II					
Course Title: COMPUTER AIDED ENGINEERING DRAWING						
(Theory and practice)						
Cours	se Code: 16ME14/24	CIE Marks: 50				
Hrs/	week: L:1:P:S: 2:0:2:0	SEE Marks: 50				
Creat	its:03	SEE DURATION: 3 NOURS				
	Eamiliarize with the con	e students will be able to	ng and			
1	principles of orthograph	ventions and standards used in Engineering Drawn	f three			
	dimensional objects	ine and isometric projections for visualization of	unce			
2	Apply the principles of o	rthographic projections to draw elevation, plan and	profile			
_	views of lines, planes and	l solids	prome			
3	Apply the principles of p	rojection of lines to find solutions to practical problem	ms			
Ŭ	involving distances and in	iclinations				
4	Apply the fundamentals of	of solid geometry and develop lateral surfaces of solid	de			
-	rippiy the fundamentals (is solid geometry and develop fateral surfaces of solid	40			
5	Develop competence in S	olidworks as an effective tool for Engineering Grank	vice			
5	Develop competence in S	ondworks as an encenve toor for Engineering Orapi	1105			
	D	art A (Manual Drawing)				
		art A (Manual Drawing)				
Conv	entions and Standards:	Standard sizes of drawing sheets, Lines,	13			
Dime	nsioning, Scales, conventions	s for materials	Hrs			
Ortho	graphic Projection, Principa	I planes - HP, VP, RPP and LPP, Orthographic				
views Droio	, Quadrants, First, Second, L	anta				
Proje	ction of Straight lines (Fir	allis st Angle Projection) True and Apparent lengths				
and in	ction of Straight lines (Fills	ems on projections of straight lines				
Proje	ction of Planes (Lamina)	e) (First Angle of Projection) - Projection of				
Trian	gular. Rectangular, pentago	nal hexagonal and Circular plane surfaces by				
chang	e of position method	ina, nonagonal and chostal plane surfaces of				
	Part B (Mar	ual and Computer Aided Drawing)				
Proje	ction of solids - Projection of	of right regular solids - cubes, tetrahedrons, prisms,	20			
pyran	ids, cylinders and cones (wi	th axis inclined to both HP and VP) by change of	Hrs			
positi	on method, Section of solid	s (cube, prism, pyramid, cone and cylinder) using				
cuttin	g plane inclined to HP only.					
Devel	opment of surfaces – Paral	lel line and Radial line methods - Development of				
lateral	surfaces of prisms, pyramid	s, cylinders, cones and truncated solids				
Isome	etric Projection: Tetrahedro	n, hexahedron, prisms, pyramids, cylinders, cones,				
sphere	es, nemispheres and combin	ation of co-axial solids, Conversion of Isometric				
Fype	ctol Course Outcomes: Aft	or completing the course, the students will be able	to			
<u>Expe</u>	Demonstrate competence	in the basics of Orthographic Projections of points	lines			
-	planes and Solids for thei	r presentation in the three Principal Views (L1, L2)	, 11103,			
2	Apply the principles of	orthographic projections to find solutions to re	al life			
	problems involving distar	nces and inclinations (L3)				
3	Analyze Orthographic pr	ojections of solids for drawing Isometric Projections	(L4)			
4	Develop lateral surface	s of solids, create isometric projections of sol	ids of			
	combination(L4)					
Text	Book					
1	K R Gopalakrishna; "Eng	ineering Graphics";Subhash Publishers, Bangalore	; 32 nd			
	Edition;2011					

Refer	rence Books
2	N D Bhatt & V M Panchal, 'Engineering Drawing', Charutha Publishing House,
	Gujarat, 48 th Edition, 2005, ISBN:9380358178
3	Luzadder Warren J, Duff John, "Fundamentals of Engineering Drawing with an
	Introduction to Interactive Computer Graphics of Design and Production", Prentice
	Hall of India Pvt. Ltd, New Delhi, Eastern Economy Edition, 2005;ISBN:8120308859

Continuous Internal Evaluation (CIE)						
Evaluation method	Course with assignment					
Manual drawing and print out of exercises evaluated for	30					
Test	20					
Total	50					

Semester End Evaluation				
Part- –A				
Students have to answer TWO full questions from Part A (Manual Drawing) of 10	20			
marks each				
Part –B				
TWO Questions from Part B of 15 marks each (Computer aided drawing)	30			
Total	50			

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Η	L	Μ	L	Μ	-	-	-	-	-	-	-
CO2	Η	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-
CO3	Η	M	М	Μ	Μ	-	-	-	-	-	-	-
CO4	Μ	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-

High-3 : Medium-2 : Low-1

Semester: I/II							
Course Title: ELEMENTS OF ELECTRICAL ENGINEERING							
Course	Code: 16EE15/25		CIE Marks:10	0			
Hrs/We	ek: L:T:P:S: 4:0:0:4		SEE Marks:10	0			
Credits	Credits:05 SEE Duration						
Course	Learning Objectives: 1	The students will be able to					
1							
2	Demonstrate the princ	iples of ac & dc machines	S.				
3	Develop the concepts of	f domestic wiring					
4	Develop an awareness	of various energy sources (convention	nal & non convent	ional)			
	available.			101141)			
5	Apply the basic electric	cal concepts in their chosen field.					
		UNIT-I					
Analysi	s of D.C. Circuits: Oh	m's law and Kirchhoff's laws, App	lications for the				
analysis	of series, parallel and se	eries- parallel circuits excited by inde	ependent voltage				
sources,	a conversion Illustrative	ent analysis, Network feduction in examples	emous including				
star-ucit		examples.					
Electromagnetism: Faraday's laws, Lenz's law, Fleming's rules, statically and dynamically induced EMEs, concernt of solf and mutual inductances, concernt of				07 Hrs			
coefficie	ent of coupling, energy s	tored in magnetic field, illustrative ex	amples.				
	1 0, 0,	e ,	1				
Single	Phase A.C Fundame	entals : Generation of sinusoida	al AC voltage,				
instantai	neous value, average v	value, R.M.S value, form factor and	l peak factor of				
sinusoidal voltage and current, concept of phase and phase difference of alternating							
quantitie	es represented by sinusoi	dal wave, phasor representation.					
		UNIT-II					
Single I	Phase Circuits: Definition	on of real power, reactive power, app	arent power and	08 Hrs			
power f	actor. Analysis of R,	L, C, R-L, R-C, R-L-C circuits al	ong with phasor				
alagram	. Analysis of series, p	arallel and series - parallel circuits	with illustrative				
Crampic	s. Concept of power fact	or improvement.					
Three I	Phase Circuits: Genera	tion of three phase balance A.C and	d advantages of.				
phase se	equence, relationship bet	ween line and phase quantities for b	alanced star and				
delta connections, measurement of three phase power using two watt meters, effect of							
PF on w	attmeter readings. Illustr	rative examples					
UNIT-III							
Transformers: Principle of operation and construction of single phase transformers							
(core and shell types). EMF equation, principle of working on no-load and load (UPF,							
lagging and leading PF loads), losses and efficiency, definition of voltage regulation,							
illustrati	ve examples.						
Induct	on Motors, Consert of	rotating magnetic field principle of	oporation trace				
construc	tional features and a	onlications slip and it's signification	operation types,				
example	s (only on slin calcula	tions). Torque - slip characteristics	s. necessity of a				
starter.	Y - Δ Starter.	sup characteristics	, <u></u> , or u				
- 7		UNIT-IV					

l

D.C	Machines: Working principle of DC machine as a generator and as a motor.	07 Hrs			
Const	ructional features, EMF equation, No load characteristics of generator. Back				
EMF	and torque equation of DC motors. Types of DC motors, characteristics and				
applications, Illustrative examples. Necessity of a starter.					
Sync	nronous Generators: Principle of operation, types and constructional features				
ofag	generator, E.M.F equation, synchronization of alternators with bus bar.				
	UNIT-V				
Elect	ric Wiring : Two-way and three way control of lamp. Necessity and types of	06 Hrs			
earthi	ng, elementary idea of Fuses and MCB. Indian standards of wire gauges and				
specif	fication wiring diagram of a residential buildings, working of incandescent,				
fluore	escent, sodium vapor lamps. CFL and LED lighting, Decorative Series lighting.				
Non-	Conventional Energy: Definition of Renewable and non renewable energy				
system	ns and explanation with block diagram approach of different types of				
conve	entional energy systems (Hydel, Thermal, Nuclear). Explanation with block				
diagra	am approach of different types of non conventional energy systems (wind,				
solar)	. Comparison of conventional and non conventional energy sources.	12 Hrs			
~ • • •					
Self S	Study				
Case	study, Design and Emerging Technologies to be discussed pertaining to the				
cours					
Expe	cted Course Outcomes: After completing the course, the students will be able	t0 C			
I	Understand the fundamentals of AC, DC, electromagnetism, AC circuits, trans-	stormers,			
	induction motors, DC machines, synchronous machines, electric wiring	and non			
2	Analyze AC DC aircuits working and construction of AC and DC r	nachinac			
4	transformers induction motors DC machines and synchronous machines	nachines,			
3	Evaluate the performance of AC and DC machines transformers. Induction mo	tors DC			
5	machines synchronous machines and various non conventional energy so	rces for			
	different applications	1005 101			
4	Design and plan the layout of electrical wiring scheme for a residential building				
	Design and plan the hayout of electrical writing scheme for a residential buriantig				
Refei	rence Books				
1	E.Hughes, 'Electrical Technology', International Students, Pearson, 2005, 9th	Edition,			
	ISBN: 0131143972				
2	G.D.Rai, 'Non conventional energy sources', Khanna Publishers, 2006, 4th	¹ edition,			
ISBN:0471223719					
Text	Books				
1	V.N Mittle and Aravind Mittal, 'Basic Electrical Engineering', 2006, Tata Mc C	Braw Hill			
	Publishing Company Ltd., 2 nd Edition, ISBN-10: 0070593574.				
2	Rajendra Prasad,' Fundamentals Of Electrical Engineering',2009, PHI Learnin	g, ., 2nd			
	Edition, ISBN 10: 8120339282 ISBN 13: 9788120339286				
	Continuous Internal Evaluation (CIF)				

Continuous Internal Evaluation (CIE)						
(Theory -	(Theory – 100 Marks)					
Evaluation methodCourse with Self-study						
Quiz -1	10					
Test -1	25					
Quiz -2	10					
Quiz -3	10					

Test -2	25
Self-study (EL)	20
Total	100

Semester End Evaluation				
Theory (100 Marks)				
Part- –A	20			
Objective type questions	20			
Part –B				
There should be five questions from five units. Each question should be for maximum of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice.	80			
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100			

					CO-PC) Map	ping					
CO/	PO	PO	РО	РО	РО	РО	РО	РО	РО	PO	PO	РО
PO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	М	L	L	-	-	L	-	-	-	L	-	-
CO2	М	Η	L	L	-	L	-	-	L	L	-	-
CO3	Η	Н	М	М	-	М	М	L	L	L	-	М
CO4	Η	М	Η	Η	-	М	М	-	L	L	-	L

High-3 : Medium-2 : Low-1

		I /II Semester	
	CONSTITUTION OF IN	DIA & LEGAL STUDIES FO	R ENGINEERS
Cou	irse Code:16HSC16/26		CIE Marks: 50
Hrs	/Week: L:T:P:S: 2: 0: 0: 0		SEE Marks: 50
Cre	dits:02		SEE Duration: 2Hrs
Cou	rse Learning Objectives: The	students will be able to	
1	Apply the knowledge of the co	onstitutional literacy to become a	aware of the fundamental
	rights and duties in their role as	s Engineers	
2	Understanding of ethical and l redressal mechanism related to	egal aspects of advertising, consproduct and service standards.	sumer problems and their
3	Demonstrate an advanced and	integrated understanding of the	nature and extent of the
	corporate entity principle and groups	I to understand how this princi	iple applies to corporate
4	Critically evaluate the extent an	nd application of the Corporate L	.aw.
		UNIT-I	
Sali	ent features of Indian Consti	tution: Preamble to the Constitu	ution of India. 06 Hrs
Sco with	pe & Extent of Fundamental R n Case studies	ights under Part III. Right to In	formation Act
		UNIT-II	I
Dir Dut Judi	ective Principles of State Polic ies, Executive of the Union and iciary & State Judiciary.	y - Its meaning and Significance I State, Parliament & State Legi	. Fundamental 04 Hrs slature. Union
		UNIT-III	
Eth Stat wor Con	ical and Legal Dimensions utory Provision regarding prohi k place, Anti –Ragging Pro nmissions.	of Law -Corporate Social H bition and prevention of Sexual ovisions, Human Rights & H	Responsibility, 04 Hrs Harassment at Iuman Rights
		UNIT-IV	
Cor Inco Doc Con	npanies Act 2013 : Incorport propration, Memorandum and A etrine of Indoor Management npany, Public Company and Or	ration and Management - O rticles of Association, Doctrine o , Directors; Types of Compa ne Person Company' (OPC).	Certificate of 05 Hrs of Ultra Vires, anies- Private
		UNIT- V	
Cor Res Law Rig	Asumer Protection Act, 1986 - trictive Trade Practice, Defec yyering, Electricity, Housing, F hts- Consumer Forum	Rights of Consumers. Unfair T t in goods, Deficiency in serv Postal services etc. Enforcement	Trade Practice, 05 Hrs vice: Medical, of Consumer
Act	ivities Recommended-Videos,	Mock activities, visit to consum	er forum/court
Exp	ected Course Outcomes: Afte	r completing the course, the stu	idents will be able to
CO	1 Understand process of ethic inculcate ethical behavior as	cal and moral analysis in decisions a trait for professional developm	on making scenarios and nent.
CO	2 Apply the knowledge to so business enterprises.	lve practical problems with rega	ard to personal issues &

CO3	Identify the conflict management in legal perspective and judicial systems pertaining
	to professional environment, strengthen the ability to contribute to the resolution of
	human rights & Ragging issues and problems through investigative and analytical
	skills.
CO4	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility and
	capability and to take affirmative action as a responsible citizen.
Text	Books
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 53 rd Edition, 2016
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, 4 th Edition, Eastern
	Book Company, 2005, ISBN 8170128544, 9788170128540
3	Avtar Singh, Company Law, 16th Edition Eastern Book Company, 2015 Lucknow.

Continuous Internal Evaluation (CIE)			
Evaluation method	Course with assignment		
Quiz -1	05		
Test -1	15		
Quiz -2	05		
Quiz -3	05		
Test -2	15		
Assignment	05		
Total	50		

Semester End Evaluation (SEE)	
Theory (50 Marks)	
Part- –A	10
Objective type questions	
Part –B	
There should be five questions from five units. Each question should be for maximum of 8 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	40
The UNIT-2 and UNIT-3 should have an internal choice. Both the questions should	
be of the same complexity in terms of COs and Bloom's taxonomy level.	
Total	50

					CO-	PO Ma	apping					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PO												
CO1						Н		Η		L		Μ
CO2						Н	L	Η	Η	L		М
CO3						Η	L	Μ	Μ	L		Н
CO4								Η	Η	Н		Н

High-3: Medium-2: Low-1

arks: 50
arks:
iration:
annada Kali)
eaking Kannada
bhava)
eak I bh

1. namaskaara

Introducing the self, enquiring about mother tongue, native place, profession etc., interrogative particles

- **2. niivu cennaagiddiiraa?** Enquiring about the welfare, personal pronouns, possessive forms
- 3. nimage eenu beeku?
- 4. nimage kannada gottaa?
- **5.** nanage meeshTra kelasa ishTa 'yes'/'no'/'not' type of interrogative and assertive sentences, modal verbs and negations.

6. oLLeya *college* Qualitative and quantitative adjectives

7. aakaaSada baNNa niili

Locative case markers, post positions and colours

- 8. ivattu eshTane taariikhu? Cardinal numbers, numeral adjectives, ordinal numbers, human numerals, weekdays and kinship words
- **9.** *College* bassu eshTu ganTege ide? Dative case markers,

10. naanu bengaLuuralli iddiini

Present tense, habitual future tense form of verb root IRU,

11. RV collegealli ooduttiini

Introducing few frequently used verb forms like nooDu, maaDu, hoogu, koDu, keeLu, kuDi, hoDi, bari etc.,. Simple present tense and habitual future tense form of human and non-human verbs.

12. Record bariibeeku

Definitive, permissive and prohibitive form of verbs

13. bengaLuurige yaavaaga bandri?

Past tense form of verbs(human and non-human)

14. dina nityada sambhaashaNe

Few simple conversations related to day-to-day activities

15. Few ritual words/sentences which are frequently used in spoken Kannada

Note: Introducing few ritualistic words/sentences/phrases in each lesson.

MODILITY

To understand and converse in Kannada at places/situations like canteen, mess, hotel, hostel, while travelling in auto/bus/train/bus station/railway station/post office/bank; conversing with general public, over phone etc.,.

	I /II Semester
	KANNADA LIPI
(To those students who know o	only speaking and does not know reading & writing)
Course Code:12HSK17/27	CIE Marks: 50
Hrs/Week: L:T:P:S: 1: 0: 0: 0	SEE Marks:
Credits : Audit	SEE Duration:

Introduction of Kannada alphabets (primary letters);

Combination of secondary symbols of vowels with consonants ('kaaguNita');

Secondary symbols of consonants and its combination with other consonants (both homogenous and heterogeneous).

MODILITY

To read Kannada script.

	I /II Semester	
ಕನ್ನ	<u> ಡಅನುಭವ (ಕನ್ನಡಕಲಿತವರಿಗೆ)</u>	
Course Code:12HSK17/27		CIE Marks: 50
Hrs/Week: L:T:P:S: 1: 0: 0: 0		SEE Marks:
Credits : Audit		SEE Duration:

ಪರಿವಿಡಿ

- ೧, ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ (ಇತಿಹಾಸ)
- ಡಾ. ಎಂ.ಚಿದಾನಂದ ಮೂರ್ತಿ
- .೨. ವಿಜ್ಞಾನ ಬರವಣಿಗೆಗಳ ಭಾಷಾಂತರ(ವಿಜ್ಞಾನ ಸಾಹಿತ್ಯ)
- ಜೆ. ಆರ್. ಲಕ್ಷ್ಮಣರಾವ್
- ೩ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗ (ಉಪ್ಪ)
- ಡಾ. ಡಿ.ವಿ. ಗುಂಡಪ್ಪ ೪. ರಾದಾಕ್ರಮಕ್ (ವಕಿಚಿತ)
- V. ರಾಧಾಕೃಷ್ಣನ್ (ಪ್ರಕ್ಷಿಚಿತ್ರ) – ಎ. ಎನ್. ಮೂರ್ತಿರಾವ್
- ೫. ಕುಜೇಲನ ಭಾಗ್ಯ (ಸಣ್ಣಕಥೆ)
- ಮಾಸ್ತಿ ವೆಂಕಟೇಶಅಯ್ಯಂಗಾರ್
 ೬. ಎದೆತುಂಬಿ ಹಾಡಿದೆನು (ಕಾವ್ರ)
- e. ಎದನುಂದ ಹಂಡದನು (ಕಂಬ್ಯ – ಡಾ. ಜಿ. ಎಸ್ ತಿವರುದ್ರವ
- ೭. ? ? ? (ಮುಕ್ತ ಪ್ರಬಂಧ)
- "നೌಕಮ"
- ಮೂರ್ಖರಂಜ್ಯದಲ್ಲಿ (ಜನಪದಕಥೆ)
- ೯. ವಚನ ಸಾಹಿತ್ಯ ಮತ್ತುದಾಸ ಸಾಹಿತ್ಯ
 ಸರ್ವಜ್ಞ, ಬಸವಣ್ಣ ಮತ್ತು ಮರಂದರದಾಸರು
- ೧೦. ಸರ್. ಎಂ. ವಿಶ್ವೇಶ್ವರಯ್ಯ (ವ್ಯಕ್ತಿಚಿತ್ರ) – ಎಸ್. ರಾಮಮೂರ್ತಿ
- ೧೧. ರಕ್ಷನ್ ಪರ್ವಂಚ (ಪದ್ಧ)
- ಜೆ. ಪಿ.ರಾಜರಕ್ಕಂ
- ೧.೨. ತಲ್ಲ ಪರ್ವ (ಮಹಾಧಾರತದಒಂದು ಪ್ರಸಂಗ)
- ಎ. ಆರ್. ಕೃಷ್ಣಕಾಸ್ತ್ರಿ ೧೩. ಆಡಳಿತ ಕನ್ನಡ
 - ಎಚ್. ಜೆ. ಶ್ರೀನಿವಾಸ ಪ್ರಸಾದ್

MODILITY

ಕನ್ನಡದ ಸಾಹಿತ್ಯದಲ್ಲಿನ ವಿವಿಧ ಪ್ರಕಾರಗಳನ್ನು ಪರಿಚಯಿಸಿಕೊಳ್ಳುವುದು; ಕನ್ನಡಓದು. ಬರಹದಪ್ಪಾನವನ್ನು ವಿಸ್ತರಿಸಿಕೊಳ್ಳುವುದು; ವಿವಿಧ ತಂತ್ರಪ್ಪಾನಗಳ ಕುರಿತುಜನಸಾಮಾನ್ನರಿಗೆಅರ್ಥವಾಗುವಂತೆಕನ್ನಡದಲ್ಲಿ ಲೇಖನಗಳನ್ನು ಬರೆಯುವುದು; ಕನ್ನಡದ ಕೆಲವು ಸಾಹಿತಿಗಳನ್ನು ಪರಿಚಯಿಸಿಕೊಳ್ಳುವುದು; ಉತ್ತಮ ಮೌಲ್ಲಗಳನ್ನು ಬದುಕಿನಲ್ಲಿ ಅಳವಡಿಸಿಕೊಂಡು ಥವಿಷ್ಯವನ್ನು ರೂಪಿಸಿಕೊಳ್ಳುವುದು.

	Semester: II
APP	LIED MATHEMATICS - II
Course Code: 16MA21	CIE Marks: 100
Hrs/Week: L:T:P:S: 3:1:0:4	SEE Marks: 100
Credits: 05	SEE Duration: 3Hrs

C	ourse Learning Objectives: The students will be able to
1	Develop the knowledge of Differential and Integral calculus to functions of complex variable and
	thereby to be able to understand field problems in engineering.
2	Recognize and model differential equations, apply analytical techniques to compute solutions for engineering problems.
3	Learn to investigate the finding of approximate solutions using numerical methods in the absence
	of analytical solutions of various systems of equations.
4	Use mathematical IT tools, to analyze and visualize various concepts.

COMPLEX ANALYSIS - I – COMPLEX DIFFERENTIATION	08 E
Functions of complex variables, limit, continuity and differentiability, analytic function,	
Cauhy-Riemann(C-R) equations in Cartesian and polar forms, consequences, construction	
of analytic function - Milne-Thomson method (Cartesian and polar forms). Definition of	
conformal transformations, discussion of $w = z^2$, e^z and $z + a^2/z$, $z \neq 0$ and bilinear	
transformations.	

UNIT-II					
COMPLEX ANALYSIS - II – COMPLEX INTEGRATION	08 Hrs				
Line integral, Cauchy's theorem (with proof), corollaries, Taylor's and Laurent's series,					
singularities, poles, calculation of residues, Residue theorem – problems.					

UNIT-III	
LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER	09 Hrs
Standard form of higher order linear differential equation with constant coefficients,	
concept of different types of solutions. Solution of homogeneous equations -	
complementary functions. Non homogeneous equations- Concept of Inverse differential	
operator ,methods of finding particular integral based on input function(force function),	
method of variation of parameters. Equations with functional coefficients - Cauchy and	
Legendre equations, solutions. Applications-Simple harmonic motion, LRC circuits.	

UNIT-IV	
NUMERICAL METHODS - I	07 Hrs
Algebraic and Transcendental equations – roots of equations, intermediate value property,	
Regula-Falsi, Newton-Raphson and modified Newton-Raphson methods.	
Methods of solving first order ordinary differential equation(ODE) – Taylor series method,	
modified Euler method, 4 th order Runge-Kutta metod, Milne predictor –corrector method.	

UNIT-V

NUMERICAL METHODS - II	08 Hrs
Finite differences, concept of forward and backward differences, introduction to	
interpolation(extrapolation). Newton-Gregory(N-G) forward and backward interpolation	
formulae, Lagrange interpolation formula, application oriented problems. Numerical	
differentiation based on N-G forward and backward interpolation, simple applications -	
velocity, acceleration.	
Numerical integration- Newton-Cotes approach – Simpson'a $1/3^{rd}$, $3/8^{th}$ rules and	
Weddle's rule. Gauss Quadrature approach – 2-point and 3-point formulae.	

Expected Course Outcomes: After completing the course, the students will be able to

- 1 Demonstrate the understanding of properties of complex functions and define conformal transformation, classification and types of solutions of higher order linear differential equations, necessity of numerical methods and few basic definitions.
- 2 Solve homogeneous linear differential equations, use CR equations and related properties of complex functions, Cauchy's theorem and corollaries, interpolate data using finite differences and use intermediate value property.
- 3 Apply acquired knowledge to construct analytic function, use Cauchy integral formula and find Laurent's series, find derivatives and integrals of numerical data and solve differential equations numerically.
- 4 Estimate singularities and residues, solve problems using conformal transformations and applications of differential equations using both analytical and numerical methods.

Text Books

- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40th Edition, 2007, ISBN: 81-7409-195-5.
- 2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, th Edition, 2008, ISBN: 13-978-07-063419-0, ISBN: 10-0-07-063419-X.

Reference Books

- Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2007, ISBN: 978-81-265-3135-6.
- 2. M. K. Jain & S.R.K. Iyengar, Numerical Methods for Scientific and Engineering Computation, New Age International, 4th Edition, ISBN: 81 -224 -1461-3.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)					
Evaluation method	Course with Self-study				
Quiz -1	10				
Test -1	25				
Quiz -2	10				
Quiz -3	10				
Test -2	25				
Self-study (EL)	20				
Total	100				

Semester End Evaluation	
Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.	
Total	100

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Η	Μ	-	-	-	-	-	-	-	-	-	L
CO2	Η	Μ	-	-	-	-	-	-	-	-	-	L
CO3	Η	Η	Μ	L	Μ	-	-	-	-	-	-	L
CO4	Η	Η	Μ	L	Μ	-	-	-	-	-	-	L

High-3 : Medium-2 : Low-1

	Semester: I/II				
Course Title: ENGINEERING CHEMISTRY					
		(Theory and practice)			
Course	e Code: 16CH12/22	CIE Marks: 100+50			
Hrs/W	Hrs/Week: L:T:P:S: 4:0:2:0 SEE Marks:100+50				
Credit	s:05	SEE Duration(Theory) : 3hrs		
		SEE Duration(Lab) : 3	Bhrs		
Course	e Learning Objectives:	The students will be able to			
1	Appreciate the basic	concepts of chemistry behind the development of fu	ituristic		
-	materials and their app	lications in Engineering and technology	aturistic		
2	Explain the Chemistr	y and processes involved in development of altern	ate and		
-	sustainable energy sour	rces	ate and		
3	Learn to apply the kr	nowledge of behaviour of materials that play a vital	role in		
U	selection of materials a	nd design of products in Engineering	TOTE III		
4	Understand the import	ance of natural resources and aim at solutions for sus	tenance		
-	of life		lenance		
_			• 1		
5	Notivate to gain the ki	nowledge of analytical techniques involved in the analytical	ysis and		
	characterization of mat	erials.			
		UNII-I			
Natura	al Sources and their Ch	emistry	09		
Water	Technology: Introduct	ion, specification of potable water, Water analysis -	IJma		
Dissolv	ved oxygen, Biological	Oxygen Demand (BOD), Chemical Oxygen Demand	HIS		
(COD)	and numerical problem	ns. Determination of different parameters-Hardness,			
alkalin	ity and fluoride. Numeri	cal problems on hardness and alkalinity. Purification			
of Wat	er- Desalination of wate	r by Reverse Osmosis. Membrane technology: Use of			
polysu	lfone and polyurethane r	nembranes for desalination process.			
Chemical Fuels: Introduction, Definition, classification and importance of					
hydroc	arbons as fuel, Calorif	fic Value - Gross calorific value (GCV) and Net			
calorifi	ic value (NCV), Units. I	Determination of calorific value of a solid/liquid fuel			
using H	Bomb calorimeter and nu	umerical problems. Alternate liquid Fuels - Biodiesel,			
Power	Alcohol. Knocking -	Meaning, reasons for Knocking and its prevention			
method	ls-Unleaded Petrol. Octa	ne number, Cetane number.			
		UNIT-II			
Floctr	ochamical anarov system	ms	00		
Introdu	action Electrode Potent	ial Origin of Single Electrode Potential Galvanic	07		
Cell - 9	Signs & Conventions N	ernst Equation and numerical problems Applications	Hrs		
of Neri	nst equation- Potentiome	tric Titrations P^{H} determination			
Types	of Electrodes - Metal	-Metal-jon Metal-gas metal insoluble salt Redox			
electro	de Ion selective electroc	le			
Constr	uction and Working of (Calomel electrode and Glass electrode. Determination			
of pH using Glass electrode and numerical Problems					
Applications of electrochemistry in biological systems: Nerve conduction					
Battery Technology – Characteristics and Classification – primary, secondary and					
Reserve batteries. Construction and Working of Lithium batteries- LiCoO ₂					
Fuel cells – Classification based on electrolyte. Construction and working of					
Methanol-Oxygen fuel cell					
UNIT-III					
Corros	sion Science and contro		09		
Corros	sion Science: Introduct	tion, types, Dry corrosion & Wet corrosion with			

examples, Electrochemical theory of corrosion with respect to Fe. Galvanic Series,	Hrs					
Types of corrosion-Differential Metal Corrosion, Differential aeration corrosion,						
Pitting corrosion and Water line corrosion. Stress corrosion- Caustic embrittlement.						
Factors affecting the rate of corrosion- nature of metals, corrosion product, pH of the						
medium, Temperature, Polarization, Relative anodic & cathodic areas.						
Corrosion Control:						
Coating techniques: Chemical conversion coating, organic coating and Metallic						
coating. Chemical conversion coating-Phosphating, Anodising. Organic coating-						
Paints, Enamels, and Lacquers. Metallic coating-Introduction-anodic and cathodic						
coating, Technological importance.						
Electroplating - Introduction, Principle, Factors influencing nature of deposition,						
Chrome Plating.						
Electroless plating- Introduction, Principle, Distinction between electro plating and						
electroless plating.						
Application: Electroless plating of Cu-Fabrication of PCB.						
UNIT-IV						
Nanomaterials Chemistry	09					
Introduction to Nanomaterials/Science/Technology Defining nano dimensional	07					
materials – Atom cluster nano materials micro materials and bulk Properties of	Hrs					
Nanomaterials in comparison to bulk: Surface area Ontical Magnetic Electrical						
Mechanical etc						
Synthesis of Nanomaterials: SCS for metal oxide. Sol-Gel- for TiO ₂ nanonarticles						
Carbon Nano materials:						
Carbon nanotubes : Introduction different forms doning preparation						
functionalization properties and applications						
Graphene: Introduction Prenaration properties and applications						
Nano materials for Energy conversion devices: Semiconductor nanostructure like						
TiO_2 CdS for photovoltaics and photo electrochemical cells. Optical properties						
Band gan Modulation with nano size with above examples						
Nanomaterials for LED: Introduction Construction and working of						
inorganic/organic LED with nanomaterials						
UNIT-V						
Polymeric materials	09					
Introduction to polymer, Methods of Polymerisation, glass transition temperature,	Hrs					
factors affecting Tg.						
Thermo plastic polymers: Polycarbonate, ABS preparation, and specific						
applications in industries.						
Thermosetting polymers: Epoxy resin, phenol formaldehyde synthesis, properties						
and applications						
Biodegradable polymers: Introduction and their requirements.						
Properties and synthesis of Poly lactic acid and poly caprolactum.						
Applications of biodegradable polymers in medical industry.						
Smart Polymeric materials						
Conducting polymers: Introduction, requirements for conducting polymers,						
mechanism of conduction, synthesis of poly aniline and polypyrrole, use of						
conducting polymers in energy harvesting, sensing and defence applications.						
Photo conducting polymers: Synthesis of poly vinyl carbazole applications of						
photo-conducting polymers in printing.						
Synthetic Fibres: Synthesis of carbon fibre from PAN, applications of carbon fibre						
in polymer composites.						

	PRACTICALS	
Volun	netric Analysis and Preparations	
1.	Determination of hardness of water sample.	
2.	Determination of calcium oxide in the given sample of cement solution	
	(Rapid EDTA method)	
3.	Estimation of percentage of copper in brass.	
4.	Estimation of iron in the given sample of haematite ore.	
5.	Determination of Chemical Oxygen Demand (COD) of the given industrial	
6	Waste water sample.	
0.	Winklow's method	
7	Winkler's method.	
/.	Preparation of MoO by solution combustion method.	
ð.	Preparation of MgO by solution combustion method.	
Instru	mental methods of Analysis	
1.	Determination of pKa of a weak acid using pH meter.	
2.	Potentiometric titration – Estimation of FAS using standard $K_2Cr_2O_7$	
_	solution.	
3.	Colorimetric estimation of copper.	
4.	Conductometric estimation of HCl using standard NaOH solution.	
5.	Determination of viscosity coefficient of a given liquid using Ostwald's	
	viscometer (density of the liquid to be given).	
6.	Flame photometric estimation of sodium in the given solution.	
7.	Determination of relative and kinematic viscosities of a given lubricating	
	oil at different temperatures using Redwood Viscometer.	
8.	Determination of T _g of polymer using DSC.	

Expect	ed Course Outcomes: After completing the course, the students will be able to		
1	Explain the principles of Chemistry in Engineering. (L1)		
2	Apply the knowledge of Chemistry in solving societal problems related to public		
	health, safety and environmental issues. (L2, L3)		
3	Identify, analyze and interpret engineering problems associated with chemistry to		
	achieve solutions. (L3,L4)		
4	Develop solutions for problems associated with water, fuel, corrosion, battery,		
	nonmaterial and polymer technologies. (L4)		
Text B	ooks		
1	R V Gadag and A Nityananda Shetty, "Engineering Chemistry", I K Internation		
	publishing house, Second Edition. ISBN- 9380578598, 9789380578590		
2	Jain & Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 15th		
	Edition -2007. ISBN: 13:9788-19041-0861.		
3.	Satyanarayana S and H C Shashidhara, Engineering Chemistry" Himalaya		
	Publishing house" Edition-2011, ISBN-9789350514986		
Reference Book			
1	Shubha Ramesh et.al., "Engineering Chemistry", Wiley India, 1 st Edition, 2011,		
	ISBN: 978-81-265-1988-0.		

Continuous Internal Evaluation (CIE)								
(Theory – 1	00 Marks)	(Laboratory- 50 Mar	Total					
Evaluation method	Course with assignment		(150)					
Quiz -1	10	Performance of the	40					
Test -1	30	student in the laboratory,						
Quiz -2	10	every week						
Quiz -3	10	Test at the end of the	10					
Test -2	30	semester						
Assignments	10							
Total	100	Total	50	150				

Semester End Evaluation (SEE)						
Theory (100 Marks)	Laboratory Marks)	(50	Total (150)			
Part- –A Objective type questions	Experiment Conduction	40				
Part –B There should be five questions from five units. Each		with proper results				
question should be for maximum of 16 Marks.		Viva	10			
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80					
The UNIT-2 and UNIT-3 should have an internal choice.						
Both the questions should be of the same complexity						
in terms of COs and Bloom's taxonomy level.		Total				
Total	100		50	150		

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Н											
CO2	Н					Μ	Μ			L		
CO3		Η		Μ								Μ
CO4			Н			L	L					Μ

High-3: Medium-2: Low-1

	Semester: I/II				
	Course T	itle: PROGRAMMING IN C			
	(Theory and practice)			
Course	Code:16CS13/23	CIE Mark	s: 100 + 50		
Hrs/We	ek: L:T:P:S: 4:0:1:0	SEE Mark	s: 100 + 50		
Credits	05	SEE Dura	tion(Theory):3Hrs		
		SEE Dura	tion(Laboratory):3	BHrs	
Course	Learning Objectives: The	students will be able to			
1	Develop arithmetic reason	ing and analytical skills to ap	ply knowledge of	basic	
	concepts of programming i	n C to complex engineering pro	blems		
2	Learn basic principles of p	oblem solving through program	ming.		
3	Write C programs using ap	propriate programming construe	ts adopted in		
	programming.				
4	Solve complex problems u	sing C programming.			
		UNIT-I			
Introdu	ction to Reasoning, Algorit	hms and Flowcharts	04 I	Hrs	
Skill de	evelopment – Examples	related to Arithmetical Reason	oning and		
Analytic	al Reasoning. Fundamentals	of algorithms and flowcharts.			
Introdu	ction to C programming		03 H	Hrs	
Program	ming paradigms. Basic stru	cture of C program. Process of	compiling		
and run	ning a C program, Features	of C language, Character set,	C tokens,		
Keywords and Identifiers, Constants, Variables, Data types.					
Handling Input and Output operations					
Reading a character, Writing a character, Formatted input/output functions,					
Unformatted input/output functions.					
UNIT-II					
Operato	ors and Expressions		03 H	Hrs	
Arithme	tic operators, Relational o	perators, Logical Operators, A	ssignment		
operator	s, Increment and decrement	operators, Conditional operator	s, Bit-wise		
operator	s, Special operators, A	rithmetic expressions, evaluation	uation of		
expressi	ons, Precedence of arith	metic operators, Type conv	ersion in		
expressi	ons, Operator precedence an	d associativity.			
Program	nming Constructs		06 H	Irs	
Decision	Making and Branching				
Decisior	making with 'if' stateme	nt, Simple 'if' statement, the	'ifelse'		
statemer	it, nesting of 'ifelse' state	ements, The 'else if' ladder, Th	e 'switch'		
statemer	it, The '?:' operator, The 'go	<i>to</i> ' statement.			
Decision	making and looping The	e while statement, the do state	ment, The		
'for' stat	ement, Jumps in loops.				
		UNIT-III			
Arrays			05 1	Irs	
One din	iensional arrays, Declaration	of one dimensional arrays. In	itialization		
of one	dimensional arrays, Two	o dimensional arrays, Initial	zing two		
dimensi	onal arrays.			T	
Charact		ars			
Declarin	g and Initializing String V	ariables, Reading Strings from	Terminal,		
writing	strings to screen, Arith	netic Operations on charactering handling functions	rs, String		
operatio	is using with and without Si	ting nanoning functions.	I		
T T. P	e*	UNII-IV	0.5 1	Ture	
User-de	ined functions			1IS	
ineed to	r User Defined Functions,	A Multi-Function program, E.	bair tures		
user def	ned functions, Definition of	iunctions, Return values and t	neir types,		

Function calls, Function declaration, Category of functions, Nesting of				
functions, Functions with arrays, Storage classes.				
Structures and Unions	05 Hrs			
Introduction, Structure definition, Declaring structure variables, Accessing				
structure members, Structure initialization, Copying and comparing structure				
variables, Arrays of structure, Arrays within structures, Structure within				
structures, Structures and functions, Unions, Pre-processor directives.				
UNIT-V				
Pointers and Dynamic Memory Allocation	05 Hrs			
Introduction, Accessing the address of a variable, Declaring and initializing of				
pointer variables, Accessing a variable using pointers, Chain of pointers,				
Pointer expressions, Pointer increments and scale factor, Pointers and arrays,				
Pointers and character strings, Dynamic memory allocation methods.				
File Managements in C	05 Hrs			
Basic concepts of files, Defining and opening a file, closing of a file,				
Input/Output operations on files.				
Introduction to Data Structures: Linear and Non-Linear data structures,				
Definition and applications of Stacks, Quayas				

Expect	ed Course Outcomes: After completing the course, the students will be able to
1	Understand and explore the fundamental computer concepts and basic programming
	principles like data types, input/output functions, operators, programming constructs
	and user defined functions.
2	Analyze and Develop algorithmic solutions to problems.
3	Implement and Demonstrate capabilities of writing 'C' programs in optimized,
	robust and reusable code.
4	Apply appropriate concepts of data structures like arrays, structures, stacks and
	Queues to implement programs for various applications.
Text B	ooks
1	P. Dey, M. Ghosh, "Programming in C", Oxford University press, First Edition,
	2007, ISBN (13): 9780195687910.
2	Kernighan B.W and Dennis M. Ritchie, "The C Programming Language", Second
	Edition, Prentice Hall, 2005, ISBN (13): 9780131101630.
Refere	nce Books
3	Yashavant P. Kanetkar. "Let Us C", BPB Publications, 14 th edition, 2016, ISBN-13:
	9788183331630.
4	H. Schildt, Turbo C: The Complete Reference, Mcgraw Hill Education, 4th Edition,
	2000, ISBN-13: 9780070411838.
5	Yashavant P. Kanetkar, "Understanding Pointers in C", BPB publications, 4 th edition,
	2003, ISBN-13: 978-8176563581.

Laboratory Component:

Part - A

- 1. Write a C program to find and output all the roots of a given quadratic equation, for non-zero coefficients. (Using *if*...*else* statement).
- 2. Write a C program to simulate a simple calculator that performs arithmetic operations like addition, subtraction, multiplication, and division only on integers. Error message should be reported, if any attempt is made to divide by zero. (Using *switch* statement).

- 3. Write a C program
 - i) To check whether a given integer number is a Palindrome number or not.
 - ii) To check whether a given integer number is an Armstrong number or not.
 - Output the given number with suitable message (using looping constructs).
- 4. Write a C program
 - i) To generate and print first N Fibonacci numbers
 - ii) To find GCD and LCM of two integer numbers.
- 5. Write a C program to generate Pascal's triangle and Floyd's Triangle.
- 6. Write a C program to input N integer numbers into a single dimension array. Sort them in ascending order using bubble sort technique. Print both the given array and the sorted array with suitable headings.
- 7. Write a C program to read two matrices A (M x N) and B (P x Q) and compute the product of A and B after checking compatibility for multiplication. Output the input matrices and the resultant matrix with suitable headings and format. (Using two dimension arrays where array size M, N, P, $Q \le 3$).
- 8. Write a C program to read a matrix A(M x N) and to find the following
 - i) Sum of the elements of the row
 - ii) Sum of the elements of the column
 - iii) Sum of all the elements of the matrix
 - iv) Sum of both diagonal elements of a matrix
 - v) Transpose of a matrix.
 - Output the computed results with suitable headings.
- 9. Write C user defined functions
 - i) To input N real numbers into a single dimension array.
 - ii) Compute their mean.
 - iii) Compute their variance
 - iv) Compute their standard deviation
- 10. Write a C program
 - i) To check whether a given input string is a palindrome or not.
 - ii) To find the number of vowels, consonants, digits and white space in a string.
- 11. Write C user defined functions
 - i) To input N integer numbers into a single dimension array.
 - ii) To conduct a Binary search.

Using these functions, write a C program to accept the N integer numbers & given key integer number and conduct a Binary search. Report success or failure in the form of a suitable message.

- 12. Write C user defined functions
 - i) To input N integer numbers into a single dimension array.
 - ii) To sort the integer numbers in descending order using selection sort technique.
 - iii) To print the single dimension array elements.

Using these functions, write a C program to input N integer numbers into a single dimension array, sort them in ascending order, and print both the given array & the sorted array with suitable headings.

- 13. Create a structure called student with the following members student name, roll-no, marks in three tests. Write a C program to create N records and
 - i) Search on roll-no and display all the records
 - ii) Average marks in each test
 - iii) Highest in each test.
- 14. Write a C program to copy a string using pointers, to compare two strings using pointers and to concatenate two strings using pointers.
- 15. Write a C program to count no of lines, blank lines and comments in a given program using files.

Part – B

Students have to execute application programs related to the following topics such as:

- (a) Arrays
- (b) Structures
- (c) Pointers
- (d) Files
- (e) Stacks
- (f) Queues
- (g) Recursion
- (h) Strings

Continuous Intern (Theory – 10	Continuous Internal Eval (Laboratory- 50 Mark	Total (150)		
Evaluation method	Course with assignment			
Quiz -1	10	Performance of the student	40	
Test -1	30	in the laboratory, every		
Quiz -2	10	week		
Quiz -3	10	Testat the end of the	10	
Test -2	30	semester		
Assignment	10			7
Total	100	Total	50	150

* The lab component consists of two parts(Part A and Part B). Students will be given one program each from the above Part A list and Part B list. In Part B, students may get any one application program from the topics such as Arrays, Structures, Pointers, Files, Stacks and Queues, Recursion and Strings. Students have to execute both the programs. The total marks for solving two programs are 40 marks. 70% of the total marks (40) will be for Part-A programs and 30% of the total marks (40) will be for Part-B programs. Viva voce will be for 10 marks .The total marks will be 50. Marks obtained will be reduced to 10 marks. The Continuous Internal Evaluation (CIE) will be for 40 marks. So the total marks will be 50.

Semester End Evaluation	on (SE	E)		
Theory (100)	Laboratory(50)	**	Total (150)	
Part- –A	20	Experiment		
Objective type questions		Conduction with	40	
Part –B		proper results		_
There should be five questions from five units. Each		Viva	10	
question should be for maximum of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have				
choice.				
	80			
The UNIT-2 and UNIT-3 should have an internal				
choice.				
Both the questions should be of the same complexity in				
terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

** The lab component consists of two parts(Part A and Part B). Students will be given one program each from the Part A list and Part B list. In Part B, students may get any one application program from the topics such as Arrays, Structures, Pointers, Files, Stacks and Queues, Recursion and Strings. Students have to execute both the programs. The total marks for solving two programs are 40 marks. 70% of the total marks (40) will be for Part-A programs and 30% of the total marks (40) will be for Part-B programs. Viva voce will be for 10 marks. The total marks will be 50.

CO-PO Mapping												
CO/PO	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Η	М	М	М	L	-	-	-	-	М	-	L
CO2	Η	М	М	М	М	-	-	-	М	L	-	L
CO3	Н	М	М	М	М	L	L	-	М	М	L	М
CO4	Н	Н	Н	М	М	L	L	-	М	М	L	M

High-3: Medium-2: Low-1

Semester: I/II						
Course Title: BASICS OF ELECTRONICS ENGINEERING						
Cours	e Code: 16EC14/24		CIE Marks: 1	00		
Hrs/W	/eek: L:T:P:S : 4:0:0:4		SEE Marks: 1	.00		
Credit	ts: 05		SEE Duration	: 03 Hrs		
Cours	e Learning Objectives: Tl	ne students will be able to				
1	1 Explain the operation of simple devices like Diode, Bipolar Transistor, MOSFET,					
	Zener diode based on ph transistors and MOSFETS	vsical principles and Analyze sim	ple circuits usi	ng diodes,		
2	Design simple rectifier,	Zener regulator circuits, biasing of	circuits for obt	aining the		
	desired operating point to	meet the required specifications.	• • • •			
3	Analyze how a transistor	could be used as an amplifier and a	is an oscillator.			
4	Evaluate the advantages of	f providing negative feedback in an	mplifiers and D	esign		
	simple circuits like amplif	iters, comparators and summers usi	ing operational			
5	Analyze the block diagram	m of a general communication sys	tem and explai	n different		
	types of modulation techn	iques.	1			
6	Compile the different buil	ding blocks in digital electronics a	nd Implement s	simple		
	logic functions after simp	lifying logic expressions.				
		UNIT-I				
Introd Digita	luction to Electronics: Inv l Logic:	entions and Technology growth.		09 Hrs		
Boolea	an Algebra, Simplification	of logic expressions, Basic and Ur	niversal Logic			
gates,	Half/Full adder, Multiplexe	r/De-multiplexer and Encoder/Dec	oder.			
Semic	onductor Diodes:		· . f 1 1 1			
P-N JU	inction diode, v-1 characte	ristics, Diode parameters, Concept	t of load line,			
Tempe		INIT-II	examples.			
Diode regulat	Applications: Block dia tions, Bridge rectifier analy	gram of a DC Power supply, sis with and without Capacitor Filt	Line & load ter. Numerical	09 Hrs		
examp	les.					
Operat diode	ion and V-I Characteristic	of Zener diode. Voltage Regulator	using a Zener			
Worki	ng Principles and Applicati	ons of Photo diodes and LEDs.				
Bipola	r Junction Transistor:					
Bipola	r Junction Transistor, inpu	it and output characteristics, DC	load line and			
Operat	ing Point. Design of Fix	ed base current and Voltage di	vider biasing			
circuit	circuits. Bias Stability and Stabilization factor, S(I _{CO}).					
UNIT-III						
Trans	istor Applications: Small	signal equivalent circuit, Transisto	or as a switch	09 Hrs		
and as	an amplifier in CE config	guration. Gain in dBs, Frequency	response and			
Bandw	Bandwidth.					
MOSI	Numerical Examples.					
MOSF	ET Enhancement type.	operation and characteristics.	small signal			
equiva	lent, MOSFET as an am	plifier and as a switch, CMOS	Inverter and			
CMOS	S NAND.					
Feedb	ack and Oscillators:					

Advant	tages of Negative Feedback, Barkhausen criterion for oscillations, RC				
phase s	hift and Crystal oscillator circuits. Numerical Examples.				
	UNIT-IV				
Operat Charac Applica Summe amplifi Data A Block Resisti Princip convert	UNIT-IV tional Amplifiers: teristics of an Ideal Op Amp, Typical parameters of a practical op amp. ations: Inverting and Non Inverting amplifiers, Voltage follower, er, Integrator, Differentiator, Difference amplifier, Instrumentation er Comparator and Schmitt trigger. Numerical Examples. Acquisition Systems: Diagram of a Data Acquisition System, Sensors, Operating principles of ve, Piezo-electric, Capacitive and Thermo-electric Sensors. eles of Data converters (Analog to Digital and Digital to Analog ters). UNIT-V	09 Hrs			
Communication Systems: Electromagnetic spectrum, General block diagram of a communication system, Need for modulation, Significance of bandwidth, AM and FM systems. Numerical examples. Basics of Digital Communication, Keying techniques, Pulse Modulation techniques, Block diagram of a Digital Signal Processing and applications.					
Expect	ted Course Outcomes: After completing the course, the students will be	able to			
1.	Understand the operation and the characteristics of the semiconducte Operational Amplifiers, Communication Systems and Digital logic f applications.	or devices, for various			
2.	Apply and analyze circuits for applications like rectifiers, Zener regu power supply, amplifiers, oscillators, summers, comparators and electronic	ilators, DC c systems.			
3.	Conduct investigation through experiential learning and literature survey to bring out safety, societal and environmental considerations.				
4.	Evaluate the performance of the electronic circuits to meet given specifica modern IT tools and present the outcomes.	ations using			
m =					
Text B		· (T)1))			
1	Prentice Hall India Publication; 10 th Edition; 2009; ISBN: 978-81-317-270	10-3			
2	Louis E. Frenzel, "Principles of Electronic Communication Systems", McGraw Hill Education Publication: 6 th Edition: 2012: ISBN-13: 978-0-07-066755-6				
Refere	Reference Books				
1	D.V.S Murthy, "Transducers & Instrumentation", Prentice Hall Public	ication, 2 nd			

Edition, 2008, ISBN:978-81-203-3569-1
 Morris Mano; "Digital Logic and Computer Design"; Prentice Hall Publication; 54th Edition; 2007; ISBN: 978-81-317-1450-8

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)						
Evaluation methodCourse with Self-study						
Quiz -1	10					
Test -1	25					
Quiz -2	10					
Quiz -3	10					
Test -2	25					
Self-study (EL)	20					
Total	100					

Semester End Evaluation (Theory-100 Marks)				
Part- –A	20			
Objective type questions				
Part –B				
There should be five questions from five units. Each question should be for maximum of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice.	80			
Both the questions should be of the same complexity in terms of COs and				
Bloom's taxonomy level.				
Total	100			

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Н	М	М	-	L	-	-	-	-	_	_	-
CO2	М	Н	Н	М	L	-	-	-	-	_	_	-
CO3	L	Н	L	Н	Μ	-	Н	-	Μ	-	-	Н
CO4	L	Μ	L	Μ	Н	-	-	-	-	Н	-	-
	3 6 34		-									

High-3: Medium-2: Low-1

Semester: I / II								
Course Title: BASICS OF MECHANICAL ENGINEERING								
(Theory and Practice)								
Course Hrg/ we	Code: 16ME15/25		CIE Marks: 100+50					
Hrs/ we Credits	·05		SEE Marks: 100+50 SEE Duration(Theory): 3 Hrs					
Creatis	.05		SEE Duration(Theory): 5 IIIs SEE Duration(Laboratory): 3	Hrs				
Course	Learning Objectives: Th	e students will be a	ble to					
1	Understand conventional	l methods of generat	ion of energy and functions of di	fferent				
	subsystems of energy ge	eneration cycles						
2	Compute the properties	of steam in differen	t phases and estimate the perfor	mance				
	parameters of IC Engine	S						
3	Familiarize with the wor	king of steam turbin	nes, hydraulic turbines, gas turbin	nes, IC				
	Engines, Refrigeration c	cycles, Machine too	ls, belt and gear drives, soldering	ng and				
	welding							
4	Develop models involv	ing machining, Buil	d sheet metal models and demo	nstrate				
	soldering and welding sk	tills						
		UNIT I						
Propert	ties of Steam and Steam	turbines : Steam ge	neration, properties of steam in	9				
differen	t phases, computation of p	roperties of steam u	sing steam tables - Numericals,	Hrs				
Classifie	cation of steam turbines (Impulse and Reaction	on turbines), working of steam					
turbines	, comparison of steam turb	vines.						
Hydraulic Turbines and Gas turbines: Working of Pelton, Francis and Kaplan								
turbines and their comparison, working of gas turbine cycles, Simple Brayton cycle								
for gas	turbines, Open and Closed	i gas turbine cycles,	Functions of gas turbine cycle					
compon	ents such as turbine, comb		npressor and condenser					
Intorno	Combustion Engineer	Classification Wo	rking of two stroke and four	0				
atroko	notrol and diasol anging	Classification, wo	Discal evals computation of	9 Ura				
nerform	ance parameters such as	Brake Power Ind	icated Power Mean Effective	1115				
Pressure	Brake thermal efficience	brake rower, man	al efficiency and specific fuel					
consum	ption - Numericals	y, maleated merm	an officiency and specific fact					
Refrige	ration: Refrigeration effe	ect, working of va	pour compression and vapour					
absorpti	on refrigeration systems,	CoP, Ton of refrig	eration, comparison of vapour					
compres	ssion system with vapour a	bsorption system, R	efrigerants and their properties					
		UNIT -III						
Machin	e Tools - Classification o	of lathe, Specification	ons of lathe, Lathe operations -	9				
thread c	utting, knurling and drillin	g		Hrs				
Drilling - Classification of drilling machines, working of radial drilling machine,								
drilling operations Concept of CNC machines, Advantages of CNC machines over								
Conven	tional Machines							
		UNIT -IV						
Milling	- Classification of Milling	g machines, working	of horizontal milling machine,	9				
milling	operations, Grinding -	Classification of g	rinding machines, working of	Hrs				
surface,								

Joining Processes: Classification of welding processes, working of arc welding and gas welding processes. Soldering, types of solders and fluxes cylindrical and centre less grinding machines

UNIT -V

Power Transmission - Types of Belt drives, Flat belt drive, open and cross belt	8
drive, Derivation for length of belt in open and cross belt drives, Derivation for ratio	Hrs
of tension in belts, velocity ratio, creep, slip and idler pulley - Numericals	
Gear Drives - Classification of Gears, simple and compound gear train - Numericals	

	Mechanical Engineering Practice Lab								
Lathe	operations: Preparation of models using MS rods - Plain Turning, Step turning, taper								
turning	g, Knurling - Three Models 13 Hrs								
Sheet 1	metal work: Preparation of sheet metal models - Cone, cylinder, prism, pyramid and								
their fr	ustums with soldering 12 Hrs								
Arc W	Velding: Preparation of Lap and Butt joints02 Hrs								
Demor	nstration: IC Engines and Hydraulic Turbines, Fitting 02 Hrs								
Expect	ted Course Outcomes: After completing the course, the students will be able to								
1	Explain conventional methods of generation of energy and functions of different								
	subsystems of energy generation cycles and working principles of machine tools,								
	energy generation and refrigeration systems (L2)								
2	Analyze properties of steam in different phases, Examine performance parameters of								
	IC Engines, compute parameters such as length and tension of belt drives (L3, L4)								
3	Build sheet metal models and demonstrate soldering and welding skills (L3)								
4	Develop models involving machining. (L5)								
Text B	look								
1	Gopalakrishna K R, "A Text Book of Elements of Mechanical Engineering", 30th								
	Edition, Subhash Publishers, ISBN - 13, 1234567153375,								
Refere	ence Books								
1	Trymbaka Murthy S, "A Text Book of Elements of Mechanical Engineering", I K								
	International Publishing House Pvt. Ltd., III New Edition, 2008, ISBN: 9380578571								
2	Choudhury S K H, Coudhury A K H and Nirjhar Roy, "Elements of Workshop								
	Technology", Vol. 1, Media Promoters and Publishers, XIII Edition, 2013								
3	Groover M P, Zimmer E W, "CAD / CAM", Pearson Education Ltd., V Edition,								
	ISBN: 5788177584165, 2008								

Continuous Internal Evaluation (CIE)										
(Theory –	- 100 Marks)	(Laboratory- 50 Marks)		Total						
Evaluation method	Course with assignment	-								
Quiz -1	10	Performance of the student in the	40							
Test -1	30	laboratory, every week								
Quiz -2	10									
Quiz -3	10	Test at the end of the semester	10							
Test -2	30									
Assignments	10									
Total	100	Total	50	150						

Semester End Evaluation (SEE)								
Theory (100)		Laboratory	Laboratory(50)					
Part- –A	20	Experiment						
Objective type questions		Conduction	40					
Part –B		with proper						
There should be five questions from five units. Each		results						
question should be for maximum of 16 Marks.		Viva	10					
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80							
The UNIT-2 and UNIT-3 should have an internal								
choice.								
Both the questions should be of the same complexity								
in terms of COs and Bloom's taxonomy level.								
Total	100	Total	50	150				

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Η	Μ	Μ	-	-	L	-	-	-	-	-	-
CO2	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	-
CO3	Η	Η	Μ	L	-	-	-	-	-	-	-	-
CO4	Н	Н	М	М	-	-	-	-	-	-	-	-

High-3: Medium-2: Low-1

Semester: I/II							
Course Title: PROFESSIONAL PRACTICE-I							
(COMMUNICATIVE ENGLISH)							
Course Code:16HSE16/26	CIE Marks: 50 marks						
Hrs/Week: L:T:P:S : 2 hrs	SEE Marks: 50 marks						
Credits: Audit	SEE Duration						

Course Learning Objectives: To enable the students in concepts and application of English language skills 1 Techniques of effective reading, effective reading techniques (Skimming, Scanning and Detailed) 2 Interpreting factual information, interpreting gist/summary 3 Listening techniques to comprehend spoken English in various accents English speaking in contextual scenarios 4 5 Explaining a process, Exchanging information, Comparing and contrasting and Making an inquiry. POWER technique to compose and edit messages for given context with proper 6 vocabulary and punctuation 7 Identify fossilized errors in spoken and written English and help them to identify areas of improvement

UNIT-I

Formal and informal introduction method of introducing oneself; formal, neutral and informal writing styles; applying techniques to express about oneself through spoken and written forms. Applying reading skills to interpret visual data; applying listening skills to recall specific information; Sentence corrections.

UNIT-II					
Techniques to improve listening and reading skills; applying the techniques learnt	4 Hrs				
in contextual exercises. Skimming and scanning techniques in reading					
comprehension; Usage of tenses; parallel construction; homophones and usage of					
right words in the given contexts.					
UNIT-III					
Fossilization errors in spoken English; POWER- technique of writing; Pronoun					
errors and misplaced modifiers. Commonly used terms in business; structure of					
emails and its key elements; subject verb agreement; Practice exercises to apply the					
techniques learnt.					
UNIT-IV					
Applying speaking skills to present a product; structure of formal letter; usage of	4 Hrs				
modal verbs. Expressions during collaborative discussions; commonly used					
business vocabulary: expressions related to degree of possibility.					

UNIT-V

2 Hrs

Practice exercises for listening and phonetics.

Expecte	Expected Course Outcomes: After completing the course, the students will be able to						
CO1	Describe techniques of effective reading						
CO2	Interpreting factual information and gist/summary						
CO3	Apply reading techniques in practice exercises						
CO4	Apply listening techniques to comprehend spoken English in various accents						
CO5	Apply English speaking skills in contextual scenarios						
CO6	Demonstrate power technique to compose and edit messages for given context with						
	proper vocabulary and punctuation						
Text Books							
1	Mark Ibbotson, Professional English in Use - Technical English for						
	Professionals, 1st ed. Cambridge: UK, Cambridge University Press, 2009.						
2	Leo Jones and Richard Alexander, New International Business English						
	Workbook, 2nd ed.(revised), Cambridge: UK, Cambridge University Press, 1996						
3	Simon Sweeny, English For Business Communication, 2nd ed., Cambridge: UK,						
	Cambridge University Press, 2003						
4	Murphy, Intermediate English Grammar - With Answers, 2nd ed., Asia,						
	Cambridge University Press, 2007						

Scheme of Continuous Internal Evaluation (CIE) CIE consists of three tests each for 25 marks (10 marks or grammar & Vocabulary, 5 arks or Reading, 5 marks for speaking and 5 marks for listening) out of which best of two will be considered. The tests component will have 25 marks in CIE.

Scheme of Semester End Evaluation (SEE)

The question paper consists of 5 parts that is Reading, Speaking, Writing and Grammar each for 10 marks. For grammar part the questions will be multiple choice questions, for reading part a comprehension along with the questions related to that would be given. For listening audios will be played and questions related to that will be given. For speaking each student will be provided with a topic.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										Н		
CO2										Н		
CO3										Н		
CO4										Н		
CO5										Н		
CO6										Н		

High-3 : Medium-2 : Low-1