

Institution Affiliated to Visvesvaraya Technological University, Belagavi New Delhi

Scheme & Syllabus of I to IV Semesters

2020 SCHEME

MASTER OF COMPUTER APPLICATIONS 2-Year Program (2021-2022)

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme & Syllabus of I to IV Semesters

2020 SCHEME

MASTER OF COMPUTER APPLICATIONS

DEPARTMENT VISION

Pioneering in ICT Enabled Quality Education and Research with a focus on Sustainable and Inclusive Applications

DEPARTMENT MISSION

- 1. To adapt novel methodologies for quality education through experiential learning
- 2. To empower students with continuous, holistic education, emphasizing on discipline, ethics and social commitment
- 3. To become a vibrant knowledge center for research and software development.
- 4. To continuously build capacity steering towards industry- institute collaborative research and entrepreneurial competencies
- 5. To utilize and develop free and open source software tools for sustainable and inclusive growth

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1** Practice software engineering principles and standards to develop software to meet customer requirements across verticals
- **PEO2** Contribute to build sustainable and inclusive applications using mathematical, simulation and meta heuristic models
- PEO3 Demonstrate entrepreneurial qualities through individual competence and team work
- **PEO4** Achieve successful professional career with integrity and societal commitments leading to lifelong learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1** Solve real world computing system problems of various industries by understanding and applying the principles of mathematics, computing techniques and business concepts
- **PSO2** Design, test, develop and maintain desktop, web, mobile and cross platform software applications using modern tools and technologies

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	ET	Electronics & Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	MCA	Master of Computer Applications
24.	MST	Structural Engineering
25.	MHT	Highway Technology
26.	MPD	Product Design & Manufacturing
27.	MCM	Computer Integrated & Manufacturing
28.	MMD	Machine Design
29.	MPE	Power Electronics
30.	MVE	VLSI Design & Embedded Systems
31.	MCS	Communication Systems
32.	MBS	Bio Medical Processing Signal & Instrumentation
33.	MCH	Chemical Engineering
34.	MCE	Computer Science & Engineering
35.	MCN	Computer Network Engineering
36.	MDC	Digital Communication
37.	MRM	Radio Frequency and Microwave Engineering
38.	MSE	Software Engineering
39.	MIT	Information Technology
40.	MBT	Biotechnology
41.	MBI	Bioinformatics

INDEX

	SEMESTER: I					
Sl. No.	Course Code	Course Title	Page No.			
1.	20MAT11	Mathematical Foundation for Computer Applications	01			
2.	20MCA12	Linux Shell Scripting	03			
3.	20MCA13	Computer Networks	05			
4.	20MCA14	Object Oriented Programming	08			
5.	20MCA15	Web Application Programming	10			
6.	20HSS16	Professional Practice	13			
7.	20MCAB17	Basics of Programming	15			

SEMESTER: II					
Sl. No.	Course Code	Course Title	Page No.		
1.	20MCA21	Software Engineering	17		
2.	20MCA22	Data structure & Algorithms	19		
3.	20MCA23	Database Management Systems	21		
4.	20MCA24X	Elective-I	24		
5.	20MCA25X	Elective-II	30		
6.	20MCA26X	Elective-III	36		
7.	20MCA27	Design-Thinking	45		
		ELECTIVES –I (Networks)			
1.	20MCA241	Advanced Computer Networks	24		
2.	20MCA242	Network Security	26		
3.	20MCA243	Internet of Things	28		
		ELECTIVES -II (Data Science)			
1.	20MCA251	Machine Learning	30		
2.	20MCA252	Big Data Analytics	32		
3.	20MCA253	Natural Language Processing	34		
	ELECTIV	ES –III (Software Solution Development– with practic	e)		
1.	20MCA261	PHP based Software Solutions	36		
2.	20MCA262	Java based Software Solutions	39		
3.	20MCA263	JavaScript based Software Solutions	42		

		SEMESTER: III	
Sl. No.	Course Code	Course Title	Page No.
1.	20MCA31	Project Management	47
2.	20MCA32	Modern Application Development	49
3.	20MCA33X	Elective-IV	52
4.	20MCA34X	Elective-V	58
5.	20MCA35X	Elective–VI (with practice)	64
6.	20MCA36	Minor Project	72
		ELECTIVES –IV (Networks)	
1.	20MCA331	Cloud Computing	52
2.	20MCA332	Cyber Security	54
3.	20MCA333	Web of Things	56
		ELECTIVES –V (Data Science)	
1.	20MCA341	Artificial Intelligence	58
2.	20MCA342	Augmented and Virtual Reality	60
3.	20MCA343	Deep Learning	62
	ELECTIV	ES -VI (Software Solution Development- with practice)	
1.	20MCA351	PHP Framework based Full Stack Software Solutions	64
2.	20MCA352	Java Framework based Full Stack Software Solutions	67
3.	20MCA353	JavaScript Framework based Full Stack Software Solutions	70

	SEMESTER: IV					
Sl. No.	Sl. No. Course Code Course Title Page No.					
1.	20MCA41	Major Project	73			
2.	20MCA42	Technical Seminar	75			

(Autonomous Institution Affiliated to VTU, Belagavi)

	FIRST SEMESTER CREDIT SCHEME						
GL NI			- a		Credit All	ocation	Total
Sl. No.	Course Code	Course Title	BoS	L	T	P	Credits
1.	20MAT11	Mathematical Foundation for Computer Applications	MAT	4	1	-	5
2.	20MCA12	Linux Shell Scripting	MCA	3	1	-	4
3.	20MCA13	Computer Networks	MCA	4	-	1	5
4.	20MCA14	Object Oriented Programming	MCA	4	-	1	5
5.	20MCA15	Web Application Programming	MCA	4	-	1	5
6.	20HSS16	Professional Practice	HSS	-	-	2	2
7.	20MCAB17	Basics of Programming * (Bridge Course)	MCA	3*	-	-	0
	Total number of Credits			19	2	5	26
	Total Number of Hours/Week			19	4	10	

^{*}The Basics of Programming (20MCAB17) is a mandatory audit course is offered to Non-Computer Science background students only.

(Autonomous Institution Affiliated to VTU, Belagavi)

	SECOND SEMESTER CREDIT SCHEME						
Sl.No	Course Code	Course Title	BoS	Credit Allocation			Total
				L	T	P	Credits
1.	20MCA21	Software Engineering	MCA	3	-	-	3
2.	20MCA22	Data Structures & Algorithms	MCA	3	1	-	4
3.	20MCA23	Database Management System	MCA	3	-	1	4
4.	20MCA24X	Elective-I	MCA	3	1	-	4
5.	20MCA25X	Elective-II	MCA	3	1	-	4
6.	20MCA26X	Elective-III	MCA	4	-	1	5
7.	20MCA27	Design-Thinking	MCA	-	-	2	2
			19	3	4	26	
	Tota	l Number of Hours/Week		19	6	8	

ELECTIVE – I (Networks)						
Sl. No.	Sl. No. Course Code Course Title Cr					
1.	20MCA241	Advanced Computer Networks	4			
2.	20MCA242	Network Security	4			
3.	20MCA243	Internet of Things	4			

ELECTIVE — II (Data Science)					
Sl. No.	Course Code	Course Title	Credits		
1.	20MCA251	Machine Learning	4		
2.	20MCA252	Big Data Analytics	4		
3.	20MCA253	Natural Language Processing	4		

ELECTIVE – III (Software Solution Development–with Practice)					
Sl. No.	Sl. No. Course Code Course Title				
1.	20MCA261	PHP based Software Solutions	5		
2.	20MCA262	Java based Software Solutions	5		
3.	20MCA263	JavaScript based Software Solutions	5		

(Autonomous Institution Affiliated to VTU, Belagavi)

	THIRD SEMESTER CREDIT SCHEME							
CL N	G G 1		BoS	C	redit Allo	cation	Total	
Sl. No.	Course Code	Course Title		L	T	P	Credits	
1.	20MCA31	Project Management	MCA	4	-	-	4	
2.	20MCA32	Modern Application Development	MCA	4	-	1	5	
3.	20MCA33X	Elective-IV	MCA	4	1	-	5	
4.	20MCA34X	Elective-V	MCA	4	1	-	5	
5.	20MCA35X	Elective–VI (with practice)	MCA	4	-	1	5	
6.	20MCA36	Minor Project	MCA	-	-	2	2	
	Total number of Credits			20	2	4	26	
	Total Number of Hours/Week			20	4	8		

	ELECTIVE – IV (Networks)					
Sl. No.	Sl. No. Course Code Course Title					
1.	20MCA331	Cloud Computing	5			
2.	20MCA332	Cyber Security	5			
3.	20MCA333	Web of Things	5			

ELECTIVE – V (Data Science)					
Sl. No.	Course Code	Course Title	Credits		
1.	20MCA341	Artificial Intelligence	5		
2.	20MCA342	Augmented and Virtual Reality	5		
3.	20MCA343	Deep Learning	5		

	ELECTIVE – VI						
		(Software Solution Development- with practice)					
Sl. No.	Course Code	Course Title	Credits				
1.	20MCA351	PHP Framework based Full Stack Software Solutions	5				
2.	20MCA352	Java Framework based Full Stack Software Solutions	5				
3.	20MCA353	JavaScript Framework based Full Stack Software Solutions	5				

(Autonomous Institution Affiliated to VTU, Belagavi)

	FOURTH SEMESTER CREDIT SCHEME							
CL NI-	Carrage Carla	C T241-	D - C		Credit Allocation			
Sl. No.	Course Code	Course Title	BoS	L	T	P	Total Credits	
1.	20MCA41	Major Project	MCA	-	-	20	20	
2.	20MCA42	Technical Seminar	MCA	-	-	2	2	
			-	-	22	22		

Credits for the TWO Year MCA Program- Scheme 2020								
Total								
Semester Core Elective Project / Industry Seminar Total Credits								
			Internship					
I	24	00	02	00	26			
II	11	13	02	00	26			
III	09	15	02	00	26			
IV	00	00	20	02	22			
Total	44	28	26	02	100			

I – SEMESTER							
MATHE	MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS (Theory)						
Course Code	:	20MAT11	CIE	:	100 Marks		
Credits: L:T:P	Credits: L:T:P : 4:1:0						
Total Hours	:	52L+26T	SEE Duration	:	3.00 Hours		

Unit-I	10 Hrs

Sets, Relations and Functions

Basics of set theory, Cartesian product of sets. Relations, Properties of relations, Zero-one matrices and directed graphs, Hasse diagram, Equivalence relations and partitions. Functions- types of functions, Special Functions, Function composition and Inverse function.

Unit-II 10 Hrs

Logic

Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers

- Predicates: Predicative logic, Free and Bound variables, Rules of inference, Consistency. Proofs of theorems-direct, indirect and proof by contradiction, Automatic theorem.

Unit-III 11 Hrs

Engineering Optimization

Introduction to Operations Research, Linear Programming Problem- Formation, Classical optimization techniques-Simplex method, Dual Simplex method. Transportation Model-North west corner rule, Vogel's approximation method, Optimum solution using modified distribution method. Assignment Model-Hungarian method.

Unit-IV 11 Hrs

Statistics and Probability

Measures of Central Tendency (Mean, Median, Mode, Other averages), Measures of Dispersion (range, mean deviation, standard deviation), Curve fitting by method of least squares, fitting of curves – polynomial, exponential, power function. Correlation and linear regression analysis.

Basic concepts of probability, conditional probability, Bayes' theorem.

Unit-V 10Hrs

Probability Distributions and Testing of hypothesis

Random variables- discrete and continuous, probability mass function, probability density function, Cumulative density function. Binomial distribution, Poisson distribution, Exponential distribution and Normal distribution.

Testing of hypothesis: Null and alternative hypothesis, Tests - type I and type II error, Test statistic and critical region, Critical value, decision rule, Hypothesis Testing of Mean, proportion, variance.

Course	Course Outcomes: After going through this course, the student will be able to					
CO1	Understand fundamental concepts of sets, relations, functions, logic, statistics and probability					
000	theory.					
CO ₂	Apply fundamental concepts of functions, reasoning, statistics and probability theory for					
	different domains in data science and machine learning					
CO3	Analyze mathematical concepts like relational algebra, statistics, and probability					
	theory to optimize the solutions of engineering problem.					
CO4	Implement overall mathematical knowledge gained to demonstrate and analyze the problems					
	arising in practical situations.					

Referen	nce Books							
1.	1. Discrete and Combinatorial Mathematics, An Applied Introduction, Ralph P Grimaldi, B.V.Ramana, 5 th Edition, 2007, Pearson Education, ISBN-10: 8177584243, ISBN-13: 9788177584240.							
2.	Discrete Mathematics & its Applications, Kenneth H Rosen, 7 th Edition, 2010, McGraw-Hill, ISBN-10: 0073383090, ISBN-13: 978-0-073383095.							
3.	Theory and Problems of Probability, Seymour Lipschutz and Marc lars Lipson, 2 nd Edition Schaum's Outline Series, ISBN: 0-07-118356-6.							
4.	Operations Research: Applications and Algorithms, Wayne L Winston, 4 th Edition, 2004, Thomson Learning, ISBN 0-534-38058-1.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

I – SEMESTER							
	LINUX SHELL SCRIPTING						
		(Theory)					
Course Code	:	20MCA12	CIE	:	100 Marks		
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks		
Total Hours	:	39L+26T	SEE Duration	:	3.00 Hours		

Unit-I 07 Hrs

The Unix/Unix Like Operating System architecture and commands: Unix Architecture, Features of UNIX, General purpose utility commands, Basic and advanced file attributes, File system Introduction to version control system: git and its usage for managing code repositories. Introduction to Shell Script: Shell, Shell Environment

Unit-II 08 Hrs

Programming through Shell Script: read, command line arguments, exit, variables, wildcards, escape characters logical operators and conditional operators, if conditional, case conditional, expr computations and string handling, while looping, for looping, set and shift, trap interrupting a program, debugging shell scripts with set command, validation and data entry scripts, function: introduction, scope of variable, return codes, **Scripting Standards** - Scripts and naming convention, Script File Permission, Shell Script Format, Sequence of Script execution

Unit-III 08 Hrs

Introduction to filters: pr: paginating files, head: Displaying the beginning of a file, tail: displaying the end of the file, cut: slitting a file vertically, paste: pasting files, sort: ordering a file, uniq, tr: translating characters.

Filters and regular expression: grep: Searching for a pattern, Basic Regular Expression, Extended Regular Expression and egrep, types of grep. **sed**:stream editor, Line addressing, Context addressing, Text editing, Substitution. **awk**: Simple awk filtering, splitting a line into fields, printf, redirecting and expression, comparison, begin and end, built-in variables and arrays

Unit-IV 08 Hrs

User Management: Adding a group, adding a user, user profiles, modifying and removing users **Process Management**: Process status, system processes, mechanism of process creation, Internal and External commands, process states and Zombies, killing processes with signals

Job scheduling: Scheduling jobs with at and crontab. **Log Management**: Running script in background for tracking various log messages, tail with egrep and echo, Central logging (rsyslog)

Unit-V 08 Hrs

Database Administration and Backup: Backing up each database to a separate file, Backing up a single database, Backup all databases to a single file, schedule a backup to automatically back up a web portal or website data.

Real Time Practice: Shell scripting to execute different commands on different remote servers, Automatic email alert generation about hardware resources, Automate installation of required git version using shell script, Shell script to backup file system

Introduction to Docker and Curl: Brief introduction about docker and its usage while automating infrastructure management.

Introduction to Curl: Automating user communication to and from servers using Curl

Course	Course Outcomes: After going through this course, the student will be able to						
CO1	Understand how to write shell scripts from basic to advanced level						
CO2	Analyze and Identify high-level steps such as verifying user input to automate repetitive tasks						
CO3	Apply shell scripting techniques and standards using filters for pattern matching on plain text						
	data and variety of system log files						
CO4	Develop effective and interactive scripts using functional blocks, operating system and networking utilities to manage complex and repetitive tasks in real time scenarios						

Referei	Reference Books						
1.	Unix Concepts and Applications, Sumitabha Das, 4 th Edition, 2012, McGraw Hill, ISBN:978-0-07-063546-3						
2.	Learning Linux Shell Scripting, Ganesh Naik, 2 nd Edition, May 2018, Packt Pub https://www.packtpub.com/in/networking-and-servers/learning-linux-shell-scripting-secondedition						
3.	Narendra Kumar Reddy, April 2020, Polu Packt Publishing https://www.packtpub.com/in/cloud-networking/complete-bash-shell-scripting-video						
4.	Mastering Linux shell scripting 2 nd Edition, Mokhtar Ebrahim, Andrew Mallett, April 18, 2018, Packt Publishing https://www.packtpub.com/in						
5.	A Complete Course on Linux bash shell scripting with real life examples, Imran Afzal, July 2019, Packt Publishing, https://www.packtpub.com/cloud-networking						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours..

I – SEMESTER							
	COMPUTER NETWORKS						
	(Theory & Practice)						
Course Code	:	20MCA13	CIE	:	100+50 Marks		
Credits: L:T:P	:	4:0:1	SEE	:	100+50 Marks		
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours		

Unit-I 10 Hrs

Introduction- Introduction, Uses of Computer Networks, Network Hardware, Network Software: Protocol Hierarchies, Design Issues for the Layers, Reference Models: The OSI Reference Model, The TCP/IP Reference Model, A Comparison of the OSI and TCP/IP Reference Models, Example Networks: Internet, Architecture of the Internet, Who's Who in the International Standards World Physical Layer-Guided Transmission Media, Digital Modulation and Multiplexing

Unit-II 10 Hrs

The Data Link Layer - Data link Layer Design issues, Error Detection codes, Sliding Window Protocols (Stop and Wait, Go-Back-N (GBN) and Selective Repeat (SR), Medium Access Control - The Channel Allocation Problem, Multiple Access Protocols, Ethernet

Unit-III 12 Hrs

The Network Layer- Network Layer Design issues, Routing algorithms- The Optimality Principal, Shortest Path Algorithm, Flooding, Distance Vector Routing, Link State Routing, Hierarchical routing, Congestion Control Algorithms, Quality of Service, Internetworking

Unit-IV 10 Hrs

The Network Layer in the Internet- The Network Layer in the internet- IP version 4 Protocol, IP version 6 protocol: The Main IPv6 Header, Extension Headers, Internet Control Protocols: ICMP — The Internet Control Message Protocol, ARP—The Address Resolution Protocol, DHCP—The Dynamic Host Configuration Protocol

Unit-V 10 Hrs

The Transport Layer - Introduction and Transport-Layer Services, Multiplexing and Demultiplexing, Connectionless Transport: UDP, Connection-Oriented Transport: TCP

The Application Layer - Principles of Network Applications, Web and HTTP, Electronic Mail in the Internet, DNS, Socket Programming

	LABORATORY / PRACTICE COMPONENT
1.	Create a LAN with three or more nodes implementing star topology and demonstrate classful
	addressing
2.	Create a LAN using physical networks/virtual machine and install FTP server to demonstrate
	file transfer
3.	Demonstrate secured file transfer and computing over wired network and wireless network
	with SCP and SSH key based computing
4.	Demonstrate to calculate IP addresses using ipcalc
5.	Build DHCP server using dns-masq with and without MAC binding with IPV4 and IPV6
6.	Build DNS server for resolving the names and IP addresses
7.	Build a Firewall to Restrict Network Access using Firewall D or Build a firewall with SNAT or
	DNAT
8.	Demonstrate basic trouble shooting using ping, traceroute, ifconfig, nslookup, netstat, pathping
	and route
9.	Demonstrate multiple client server communication on different ports using netcat
10.	Demonstrate Proxy - Server setup for a web server and SSH port forwarding

Cour	Course Outcomes: After going through this course, the student will be able to				
CO1	Understand fundamental principles of computer networking and enumerate the layers, protocols				
	and routing algorithms				
CO2	Identify the design issues, services, interfaces and protocols for data flow in computer networks				
CO3	Implement the protocols and services designed for physical, data link, network, transport and				
	application layers				
CO4	Evaluate the principles and protocols in computer networking				

Refere	Reference Books			
1.	Computer Networks, Andrew S. Tanenbaum, David J Wetherall, 5th Edition, 2012, Pearson			
	Education, Pearson Publication, ISBN-1978-81-317-8757-1			
2.	Computer Networks-A Top Down Approach, James F. Kurose, Keith W. Ross, Pearson			
	Education, 7 th Edition, 2017, Pearson Publication, ISBN-13: 978-0-13-359414-0			
3.	Data Communications and Networking, Forouzan, B. A., 5 th Edition, 2013, McGraw-Hill,			
	ISBN: 978-0-07-337622-6			
4.	Networking Fundamentals, Gordan Davies, 2019, Packt Publishing, ISBN: 978-1-83-864350-8			

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

I - SEMESTER					
	OBJECT ORIENTED PROGRAMMING				
	(Theory & Practice)				
Course Code	:	20MCA14	CIE	:	100 + 50 Marks
Credits: L:T:P	:	4:0:1	SEE	:	100 + 50 Marks
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours

Unit-I 10 Hrs

Object oriented programming: Introductions, OOP, classes, class attributes, instances, instance attributes, Encapsulation, Basics of polymorphism: Operator and function overloading, Constructor and Destructor.

Unit–II 12 Hrs

Introduction to Python Programming Language

Introduction to python, program output, input, comments, operators, variables and assignment, numbers, if statement, while loop, for loop, and the range()

Data Types, Modules: Lists and tuples, working with strings, dictionaries, sets **Functions:** built-in Functions: Lambda, MAP, Filters and User defined Functions

Unit-III 11 Hrs

Modules: What are modules, modules and files, Importing modules, Introduction to Numpy module, Packages

Inheritance: Introduction, types of inheritance, sub classing and scope, overriding methods

Error and Exceptions: Introduction to exceptions in python, detecting and handling exceptions, exceptions as strings, raising exceptions, assertions, standard exceptions.

Unit-IV 8 Hrs

Reading and Writing Files: Introduction to File operation, opening a File, Techniques for Reading Files, Writing Files.

Magic Methods: Magic method syntax, Available Methods

Unit-V 11 Hrs

Decorators: Understanding Decorators, Decorator Syntax, Decorators Functions, Decorator classes. **Context Managers:** Context manager syntax, when you should write context managers.

Generators: Understanding Generators, Generator syntax, Generator Examples

OOP for Database Programming: Introduction, Architecture, Steps for Connecting Database, Basic Operations with Examples

LABORATORY/PRACTICE COMPONENT

Student should implement using Python Language. Apply Unit testing and integration testing (As per problem definition). Develop various test cases, execute them and analyze the test results

- 1. Implement 10 operations on string and Tuple
- 2. Implement 10 operations on sets and lists
- 3. Demonstrate dictionary concepts for a given scenario
- 4. Implement importing of user defined modules using Magic Methods
- 5. Implement any two types of Inheritance
- 6. Implement overloading concept
- 7. Implement overriding concept
- 8. Demonstrate any five-exception handling mechanism using files
- 9. Write a python program to Insert, Search, and Retrieve data into Employee DATABASE
- 10. Write a program to create Fibonacci series using generators and stack the same with a decorator to find the time taken by the generator.

Course	Course Outcomes: After going through this course, the student will be able to			
CO1	Understand the basic concepts of object oriented programming			
CO2	Identify and apply relevant object-oriented concepts in any real world scenario.			
CO3	Utilize object-oriented concepts to solve any real world problem			
CO4	Analyze solutions using OOPs concepts for real world applications			

Referen	Reference Books			
1.	Beginning Python: from novice to Professional, Hetland, Magnus Lie.,3 rd Edition, 2017			
	Apress, ISBN 978-1-4842-0029-2.			
2.	Professional Python, Sneeringer, Luke, 2016, John Wiley & Sons, ISBN -978-1-119-07085-6.			
3.	Practical Programming, Paul Gries, Jennifer Campbell, Jason Montojo, 3 rd Edition, 2018			
	An Introduction to Computer Science using Python 3.6, SHROFF Publishers and Distributors			
	Pvt Ltd, ISBN: 13:978935213681-0.			
4.	Core Python Programming, Wesley J Chun, 3 rd Edition, Pearson Education, 2012, ISBN 13:			
	978-0-13-267820-9.			

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory -100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

I - SEMESTER					
	WEB APPLICATION PROGRAMMING				
	(Theory & Practice)				
Course Code	:	20MCA15	CIE	:	100 + 50 Marks
Credits: L:T:P	:	4:0:1	SEE	:	100 + 50 Marks
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours

Unit-I 10 Hrs

Introduction to Web Technologies- Internet, WWW, Web Browsers, Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox. WAMP, LAMP, ZAMP, Client-Side Scripting versus Server-Side Scripting.

Mark-up Language: **HTML5 tags**- Formatting, Commenting, Code, Anchors, Backgrounds, Images, Hyper-links, Lists, Tables, Semantic Elements in HTML, Multimedia, Forms

Unit–II 12 Hrs

Front End Design: Cascading Style Sheet (CSS): Introduction to CSS – Basic syntax and structure, In-line Styles, Embedding Style Sheets, Linking External Style Sheets, Backgrounds, manipulating text, Margins and Padding, Positioning using CSS.

Bootstrap:

Getting Started with Bootstrap- Mobile-irst design ,Why Bootstrap, Including Bootstrap in your HTML file, The Bootstrap CDN, Overriding with custom CSS, Using the Bootstrap customizer, Deep customization of Bootstrap, Downloading the Bootstrap source code, Compiling LESS files, using SimpLESS to compile LESS files, using WinLess to compile LESS files, using the command line to compile LESS files, Putting it all together ,using the Bootstrap Grid-using the Bootstrap Grid classes, Customizing the grid for small devices, Adding offsets to columns, Pulling and pushing columns, Nesting columns, Using the Bootstrap variables and mixins, Bootstrap Grid variables, Bootstrap Grid mixins

Unit–III 08 Hrs

XML- Introduction, syntax, Document structure, Document Type Definitions, Namespaces, XML schema, displaying raw XML documents

JSON

Introduction-JSON: Is a Data Interchange Format, JSON Is Programming Language Independent, JSON Syntax -JSON Is Based on JavaScript Object Literals ,Name-Value Pairs, Proper JSON Syntax ,Syntax Validation, JSON as a Document, The JSON Media Type, JSON Data Types -Quick Look at Data Types, The JSON Data Types ,The JSON Object Data Type, The JSON String Data Type, The JSON Number Data Type ,The JSON Boolean Data Type, The JSON null Data Type ,The JSON Array Data Type, JSON Schema -Contracts with Validation Magic ,Introduction to JSON Schema.

Unit-IV 11 Hrs

Basics of JavaScript- Overview of JavaScript, Object orientation and JavaScript, Syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors, Pattern matching using regular expressions.

Unit-V 11 Hrs

Document Object Model- The JavaScript Execution Environment, The Document Object Model, Elements Access in Java Script, Events and Event Handling, The DOM 2 Event Model, DOM Tree Traversal and Modification

Data Visualization-Getting Started with D3.js, Using SVG to Create Images Using Code , Base tag , Basic elements , Positioning an element , Styling an element ,Important SVG elements

LABORATORY/PRACTICE COMPONENT

- 1. Design a static web portal using HTML5 semantic elements and Bootstrap of online book stores. The website should consist the pages like. Home page, Registration and user Login, User profile page, Books catalogue, Shopping cart, Payment system, order confirmation.
- 2. Create an inventory management system portal using HTML5 and apply cascading style sheet for better user interface experience.
- 3. Design JSON and XML document to store information about a student in MCA Department, college affiliated to VTU. Make up sample data for 20 students. Access the values through JavaScript and store in the table format.
- 4. Design a login page to demonstrate following
 - a) Display user name and time on successful login
 - b) change the background color of the page
 - c) validate the username and password using pattern matching in JavaScript
- 5. Design a page to accept student details for selection of electives
 - a) Read the values of 20 students
 - **b)** Display various charts using D3 JavaScript.

Note: Each program should be completed and executed within two consecutive lab cycles. However, for CIE test and SEE evaluation the examiner can specify minimum functionalities related to the programs keeping time factor as a constraint.

Cours	Course Outcomes: After going through this course, the student will be able to				
CO1	Describe the basic constructs of the web concepts				
CO2	Determining and comparing the relevant components that can be applied to a given problem				
CO3	Apply the concepts to design and implement the web solutions for the given scenario				
CO4	Analyze the web components in building an application				

D 0	
Refere	ence Books
1.	Programming the World Wide Web, Robert W. Sebesta, 10th Edition, 2018, Pearson
	Education, ISBN: 9780133775983.
2.	Web Technology Theory and Practice, M. Srinivasan, 1st Edition, 2019, Pearson Education,
	ISBN: 9788131774199.
3.	Internet and World Wide Web - How to Program, Harvey & Paul Deitel & Associates, Harvey
	Deitel and Abbey Deitel, 5 th Edition, 2019, Pearson Education, ISBN: 9780132151009
4.	Web Programming Building Internet Applications, Chris Bates, Wiley India, 3 rd Edition, 2020,
	ISBN: 9780470017753.
5.	Introduction to JavaScript Object Notation, Lindsay Basset, O'Reilley Media, Inc., August
	2015, 9781491929483.
6.	Learning Bootstra, Aravind Shenoy, Ulrich Sossou, 2020 O'Reilly Media, ISBN 978-1-
	78216-184-4.
7.	D3.js Quick Start Guide, Matthew Huntington, 2018 Packt Publishing, ISBN-13: 978-
	1789342383

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	I-SEMESTER				
	PROFESSIONAL PRACTICE				
		(Practice)			
Course Code	:	20HSS16	CIE	:	50 Marks
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks
Hours	:	26 hrs /Semester	SEE Duration	:	2.00 Hours

Unit-I 05 Hrs

Communication Skills: Basics, Method, Means, Process and Purpose, Basics of Business Communication, Written & Oral Communication, Listening.

Communication with Confidence & Clarity: Interaction with people, the need, the uses and the methods, Getting phonetically correct, using politically correct language, Debate & Extempore.

Assertive Communication- Concept of Assertive communication, Importance and applicability of Assertive communication, Assertive Words, being assertive.

Unit-II 06 Hrs

Aptitude Test Preparation: Importance of Aptitude tests, Key Components, Quantitative **Aptitude** – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places, profit and loss, time and work, time, speed and distance, calendar, clock, permutations and combinations, probability etc.

Mental ability: coding-decoding, blood relations, puzzle test, logical sequence of words

Unit-III 05 Hrs

Reasoning and Logical Reasoning: logic, statement- arguments, assumptions, courses of actions, conclusions, deriving conclusions from passages, logical puzzles, Analytical Reasoning, Critical Reasoning

Presentation Skills: Discussing the basic concepts of presentation skills, Articulation Skills, IQ & GK, How to make effective presentations, body language, Rapport Building

Unit-IV 05 Hrs

Interview Skills: Questions asked and how to handle them, Behavioral, technical and HR Interviews, etiquette

Motivation and Stress Management: Self-motivation, group motivation, leadership abilities, Stress clauses and stress busters to handle stress and de-stress; Understanding stress - Concept of sound body and mind, Dealing with anxiety, tension, and relaxation techniques. Individual Counselling & Guidance, Career Orientation. Balancing Personal & Professional Life

Unit –V 05 Hrs

Professional Practice: Professional Dress Code, Time Sense, Respecting People & their Space, Relevant Behavior at different Hierarchical Levels. Positive Attitude, Self-Analysis and Self-Management.

Professional Ethics: values to be practiced, standards and codes to be adopted as professional engineers in the society for various projects. Balancing Personal & Professional Life

Cours	Course Outcomes: After going through this course, the student will be able to			
CO1	Understand and solve problems covering Quantitative, verbal Ability and Logical Reasoning			
CO2	Apply and enhance communication, leadership and interpersonal working skills with professional ethics			
CO3	Inculcate problem solving, decision making, stress management skills for lifelong learning			
CO4	Develop their potential and become confident to acquire a high degree of self			

Refer	Reference Books					
1.	Technical Communication Principles and Practices, Meenakshi Raman and Sangeeta Sharma,					
	Oxford Publishers, 2004					
2.	Quantitative Aptitude, R S Agarwal, S Chand & Company, 1989					
3.	A Modern Approach to Verbal Reasoning, R S Agarwal, S Chand & Company,1994					
4.	Kerry Patterson, Joseph Grenny, Ron McMillan, Crucial Conversation: Tools for Talking					
	When Stakes are High, McGraw-Hill Publication, ISBN: 9780071772204					
5.	Aptimithra: Best Aptitude Book, Ethnus, 2014 Edition, Tata McGraw Hill, ISBN:					
	9781259058738					

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and reduced to 10 marks. All quizzes are conducted online. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for experiential learning is 10.

Total CIE = 30 (T)+10(Q)+10(EL) = 50 Marks

Semester End Evaluation (SEE); Theory (50 Marks) - **SEE** for 50 marks are executed by means of an examination. The duration of the SEE will be for 2 hours.

I-SEMESTER								
	BASICS OF PROGRAMMING							
(Theory)								
Course Code	:	20MCAB17	CIE	:	100 Marks			
L:T:P	L:T:P : 3*:0:0 SEE : 100 Marks							
Total Hours	:	39L	SEE Duration	:	3.00 Hrs			

Unit–I 07 Hrs

C Programming: decision making, control structures and arrays

C Structure, Data Types, Input-Output Statements, Decision making with if statement, simple if statement, the if..else statement, nesting of if..else statements, the else.if ladder, the switch statement, the ?: operator, the goto statement, the break statement, programming examples.

The while statement, the do...while statement, the for statement, nested loops, jumps in loops, the continue statement, programming examples. One dimensional and two dimensional arrays, declaration and initialization of arrays, reading, writing and manipulation of above types of arrays

Unit-II 08 Hrs

Structures: Defining a structure, declaring structure variables, accessing structure members, structure initialization, copying and comparing structure variables, Operations on individual members, array of structures, structures within structures, structures and functions, Unions, size of structures.

Pointers: Pointers in C, Declaring and accessing pointers in C, Pointer arithmetic, Functions, Call by value, Call by reference, Pointer as function arguments, recursion, Passing arrays to functions, passing strings to functions, Functions returning pointers, Pointers to functions, Programming Examples

Unit-III 08 Hrs

Digital Logic: Binary Systems and Combinational Logic Digital Computers and Digital Systems, Binary Numbers, Number Base Conversion, Octal and Hexadecimal Numbers, subtraction using r's and r-1 complements, Binary Code, Binary Storage and Registers, Binary Logic, Integrated Circuits, Digital Logic Gates

Computer Organization: Computer Types, Functional Units, Basic Operational Concepts, Bus structure, Software, Performance, Multiprocessing and Multi computers, Machine Instruction: Memory Locations and Addresses, Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Interrupts.

Unit-IV 08 Hrs

Operating System: What Operating Systems Do, Computer-System Organization, Operating-System Structure, Operating-System Operations, Process Management, Memory Management, Storage Management, Protection and Security, Distributed Systems, Special-Purpose Systems, Computing Environments

CPU Scheduling: Basic Concepts of CPU scheduling, Scheduling Algorithms

Unit-V 08 Hrs

Process Synchronization: Background, The Critical-Section Problem, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization Examples, Deadlocks **Memory Management:** Background, Swapping, Contiguous Memory Allocation, Paging, Structure of the Page Table, Segmentation.

Note: In Unit-IV and Unit-V it is required to teach only the concepts of the topics specified

*The Basics of Programming (20MCAB17) is a mandatory audit course (**non-credit course**) is offered to Non-Computer Science background students only.

Course Outcomes: After going through this course, the student will be able to					
CO1	Demonstrate key programing concepts using C				
CO2	Understand the basic concepts of Digital Logic				
CO3	Understand basic operational concepts of Computer and its working				
CO4	Inderstand and Demonstrate Operating System concepts in general				

Refer	Reference Books					
1.	The Complete Reference, Herbert Schild, 4th Edition, McGraw Hill Education					
2.	Let us C, Yashwant Kanetkar, 17 th Edition, 2020,BPB Publications					
3.	Digital Logic and Computer Design", M.Morris Mano, 2012, Pearson.					
4.	Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 6 th Edition, Wiley India Pvt. Limited					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

II-SEMESTER						
SOFTWARE ENGINEERING						
	(Theory)					
Course Code	:	20MCA21	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	:	39L	SEE Duration	:	3.00 Hours	

Introduction & Software Process Activities

Professional Software Development, IEEE/ ACM code of software engineering ethics, Process activities, Requirements Specification, Characteristics and components of SRS, Structure of SRS (IEEE format), Case study- Develop Software Requirement Specification for any real world application (IEEE format)

Unit-II 08 Hrs

Process Models & Software Development Methods

Software Process models: waterfall, incremental development, Integration and configuration, Plandriven and Agile Development, Extreme Programming, Scrum; DevOps, DevOps Vs Agile Case study: Identify the suitable development method for any real world problem

Unit-III 08Hrs

System Design and Modeling

Architectural Design: Architectural design decisions, Architectural patterns;

Interaction Modeling: Use case models, Sequence diagrams; Structural modeling: Class diagrams;

Behavioral Modeling: State diagrams; Functional modeling: Data flow diagrams

Case Study-Develop Object oriented models for real world applications

Unit-IV 08 Hrs

Software Testing, Project Management

Software Testing: Levels of testing, Development testing, Test driven development, Release testing, User testing

Project Management: Project scheduling, Risk management, Plan-driven development, Agile planning, Estimation techniques; Case study- Apply testing and project management concepts using open source tools

Unit-V 07 Hrs

Software Quality Management

Software Quality, Software standards, Software measurement, Quality management and agile development, Configuration management, ISO 9001:2015 standards

Cours	Course Outcomes: After going through this course, the student will be able to				
CO1	Understand the basic concepts associated with software Engineering				
CO2	Describe various system design and models to apply them in real world applications				
CO3	Analyze and apply suitable validation and management techniques to provide effective				
	solutions				
CO4	Inspect emerging quality standards to build Software products				

Refer	Reference Books					
1.	Software Engineering, Ian Summerville, 10 th Edition, 2015, Pearson Education Ltd, ISBN: 9780133943030					
2.	An Integrated Approach to Software Engineering, Pankaj Jalote, 3rd Edition, 2013, Narosa					
	Publishing House, , ISBN: 81-7319-702-4					
3.	DevOps for Developers, Michael Huttermann, 2012, Apress, ISBN:978-1-4302-4569-8,					
4.	Object Oriented Modeling And Design With UML, Michael Blaha and James Rumbaugh, 2 nd					
	Edition, Pearson India, ISBN: 9788131711064,					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

II-SEMESTER						
DATA STRUCTURES AND ALGORITHMS (Theory)						
Course Code	:	20MCA22	CIE	:	100 Marks	
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks	
Total Hours	:	39L+26T	SEE Duration	:	3.00 Hours	

Unit–I 0	07 Hrs
----------	--------

The Role of Algorithms in Computing: Algorithms, Algorithms as a technology, Analyzing algorithms, Growth of Functions- Asymptotic notations, Recursive algorithms: Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Mathematical analysis of Recursive and Non-recursive algorithms

Unit-II 08 Hrs

Elementary Data Structures

Stacks and Queues: stacks, queues, linked list,

Stacks, Stacks Using dynamic arrays, Infix to post fix, Evaluation of expression using stack Queues, Circular Queues Using Dynamic arrays, Linked list: Singly linked list, Doubly Linked List

Unit-III 08 Hrs

Sorting and Searching Algorithms

Heap Sort, Quick Sort, Merge sort, Linear search, binary search algorithm and analysis of all algorithms

Unit-IV 08 Hrs

Elementary Graph Algorithms

Linked list Representation of Graphs, Topological Sort, Minimum Spanning tree, Growing minimum spanning tree, The algorithms of Prim, Dijkstra's algorithm and The Floyd-Warshall algorithm

Unit-V 08 Hrs

Trees

Binary search tree: what is binary search tree, Querying a binary search tree, Insertion and deletion from BST, State space tree: Back tracking, N-queens, Subset Sum problem, Branch Bound: Traveling Salesman problem, Assignment problem

Course	Course Outcomes: After going through this course, the student will be able to				
CO1	Understand data abstraction, data structures, order notation, various complexity measures				
CO2	Identify relevant data structures to develop solutions for a problem				
CO3	Apply relevant data structures and programming techniques to design efficient algorithms for				
	different applications				
CO4	Analyze and evaluate the algorithms based on the data structures used, order of notation and				
	performance metrics				

Refere	ence Books
1.	Introduction to Algorithms, Thomas H Corman, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, 3 rd Edition, 2009, The MIT press, Cambridge, Massachusetts, London, England, ISBN: 978-0-262-53305-8
2.	Fundamentals of Data Structures in C, Horowitz, Sahni, Anderson-Freed, 2 nd Edition, 2012, University Press, ISBN: 978-81-7371-605-8
3.	Introduction to Analysis and Design of Algorithms, Anany Levitin,3 rd Edition, 2016, ISBN-13: 978-03-2135-828-8
4.	Computing Without Computers: A Gentle Introduction to Computer Programming, Data Structures and Algorithms, Paul Curzon, Version 0.15

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

II-SEMESTER							
DATABASE MANAGEMENT SYSTEMS							
Course Code	(Theory & Practice)						
Course Code	:	20MCA23	CIE	:	100+50 Marks		
Credits: L:T:P	:	3:0:1	SEE	:	100+50 Marks		
Total Hours	:	39L+26P	SEE Duration	:	3.00 Hours		

Unit-I

Introduction to Databases, Database Languages and Architecture

Introduction to data, information, databases, database management system; Characteristics of database approach, Data models, Schema and instances, Three schema architecture and Data Independence, Database Languages and Interfaces, Database System Environment, Centralized and Client/ Server Architectures of DBMSs

Unit-II	08 Hrs
---------	--------

Conceptual Data Modeling and Relational Model

A Sample Database Application, Entity Types, Entity Sets, Attributes, Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types, Refining the ER Design for the Company Database, ER Diagrams, Naming Conventions, and Design Issues

Relational Model Concepts, Relational Model Constraints and Relational Database Schemas and Keys, Update Operations, Transactions, and Dealing with Constraint Violations, Relational Database Design Using ER-to-Relational Mapping

Unit–III 08 Hrs

Structured Query Language

Data Definition and Data Types, Specifying Constraints in SQL, Basic Retrieval Queries in SQL, INSERT, DELETE, and UPDATE Statements in SQL, More Complex SQL Retrieval Queries, Views (Virtual Tables) in SQL, Schema Change Statements in SQL, Discretionary Access Control Based on Granting and Revoking Privileges, Transaction Support in SQL (Commit, Rollback, Save point)

Unit-IV 08 Hrs

Normalization and Transaction Concepts

Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Cod Normal Form Introduction to Transaction Processing, Transaction and System Concepts, Desirable Properties of Transactions, Characterizing Schedules Based on Recoverability, Characterizing Schedules Based on Serializability, Two-Phase Locking Techniques for Concurrency Control

Unit-V 08 Hrs

Introduction to NoSQL

NoSQL, SQL versus NoSQL, Types of NoSQL Databases, CAP theorem

Getting Started with MongoDB – Documents, Collections, Databases, Getting and Starting MongoDB, MongoDB Shell, Data Types, Inserting and Saving Documents, Removing Documents, Updating Documents, Introduction to find, Query Criteria, Type Specific Queries and \$where Queries. Example Application: Real-Time Analytics using Python

LABORATORY / PRACTICE COMPONENT

- 1. Explore all SQL Language commands related to DDL, DML, DCL, TCL
- 2. Design, Create and Implement the databases for the Domains like
 - Health Care
 - Energy
 - Agriculture
 - Telecom
 - Tourism
 - Others
- 3. Create and implement CRUD operations using non-relational databases for the above mentioned domains.

Note

During regular practice sessions, students will be executing any 6 defined queries for any above four domains.

During Examination (CIE and SEE) Students are required to execute minimum 6 Queries asked by the examiners.

Exercise 1 is for practice session only. Exercise 2 and Exercise 3 will be considered for CIE and SEE.

Course	Course Outcomes: After going through this course, the student will be able to	
CO1	Understand the basic concepts of structured and unstructured data models	
CO2	Apply the structured and non-structured data model concepts to design and solve the given	
	problem	
CO3	Analyze relational and non-relational data model to check the performance of the data models	
	with respect to design and manipulations	
CO4	Implement a relational and non-relational data model for any given problem	

Refere	Reference Books	
1.	Fundamentals of Database Systems, RamezElmasri, Shamkant B. Navathe, 6 th Edition, 2011, Pearson Addison Wesley, ISBN 13: 978-0-136-08620-8	
2.	Database Management System, Raghu Ramakrishnan, Johannes Gehrke, 3 rd Edition, 2003, Mc Graw-Hill, ISBN-10: 0072465638	
3.	Professional NOSQL, Shashank Tiwari, 2011, Inc.WROXPress, John Wiley & Sons, ISBN: 978-0-470-94224-6,	
4.	MongoDB: The Definitive, Guide Kristina Chodorow and Michael Dirolf, 1 st Edition, 2010 O'Reilly Media, ISBN: 978-1-449-38156-1.	

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

II-SEMESTER					
	ADVANCED COMPUTER NETWORKS				
		(Theory)			
Course Code	:	20MCA241	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	39L+26T	SEE Duration	:	3.00 Hours

Unit-I 07 Hrs

Internet Protocol- Introduction, Error and Control Messages (ICMP): The Internet Control Message Protocol, Error Reporting vs Error Correction, Testing Destination Reachability and status, Echo Request and Reply Message Format. Classless and Subnet Address Extension (CIDR): Review of Relevant Facts, Proxy ARP, Subnet Addressing, Subnet Mask Representation, Broadcasting the Subnets, A Classless Addressing example

Unit-II 08 Hrs

Wireless LANS and PANS – Fundamentals of WLAN's, 802.11 Standards, HIPERLAN Standard, Blue tooth specifications, Transport Protocol group, ZigBee Specification Wireless WANS and MANS – The Cellular Concept and Cellular Architecture- Capacity enhancement .Channel Allocation Algorithms

Unit-III 08 Hrs

Mobile IP - Introduction, Mobility, Routing and Addressing, Mobile IP Characteristics, Overview of Mobile IP Operations, Mobile Addressing Details, Foreign Agent Discovery, Agent Registration, registration message format, communication with a foreign agent, datagram transmission and reception, two- crossing problem, communication with computers on the home network Private

Unit-IV 07 Hrs

Advanced Internetwork Router Implementation: The Global Internet-Routing Areas, Inter domain Routing(BGP), IP Version 6(IPv6), Multiprotocol Label Switching(MPLS)-Destination Based forwarding, Explicit Routing, Network Interconnection- NAT, VPN- Introduction

Unit-V 09 Hrs

SDN - Introduction, Centralized and Distributed Control and Data Planes- Introduction, Control plane, Data plane, Moving Information Between Planes, Distributed Control Planes, IP and MPLS, Convergence Time, Load Balancing, High Availability.

Cours	Course Outcomes: After going through this course, the student will be able to	
CO1	Understand the advanced networking concepts	
CO2	Apply various networking classifications in day to day computing	
CO3	Analyze the importance of routing and congestion control principles	
CO4	Access the different routing protocol methods in the networking support layers	

Refer	rence Books
1.	Ad Hoc Wireless Networks Architecture and Protocols, C. Siva Ram Murthy, B. S. Manoj, 2011, Pearson Publication, ISBN 978–81-317-5905-9
2.	Internet working with TCP/IP, Principles, Protocols, and Architectures, Douglas E Comer, Volume 1, 4th Edition, 2001, Pearson Education, ISBN 81-7808-444-9
3.	SDN: oftware Defined Networks, Thomas D. Nadeau & Ken Gray, 2013, O'reilly, ISBN9781-449-34230-2
4.	Software Defined Networks A Comprehensive Approach, Paul Göransson, Chuck Black, 2014, Elsevier, ISBN: 978-0-12-416675-2

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE):Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

II-SEMESTER						
	NETWORK SECURITY					
		(Theory)				
Course Code	:	20MCA242	CIE	:	100 Marks	
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks	
Total Hours	:	39L+26T	SEE Duration	:	3.00 Hours	

Unit-I 09 Hrs

Introduction- Computer Security Concepts, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security. Standards Number Theory, Divisibility, The Greatest Common Divisor- Euclid Algorithm, Modular Arithmetic, Remainder Arithmetic- General Principles, Euler's Theorem – Definition-theorem

Cryptography

Symmetric Encryption and message confidentiality-Symmetric Encryption Principles, Symmetric Block Encryption Algorithms, Random and Pseudo random Numbers, Stream Ciphers and RC4.

Unit-II 08 Hrs

Cryptography Contd..

Public-Key Cryptography and Message Authentication- Approaches to Message Authentication, Secure Hash Functions, Message Authentication Codes, Public Key Cryptography Principles, Public Key Cryptography Algorithms, Digital Signatures.

Unit– III 08 Hrs

Network Security Applications- Key Distribution and User Authentication-

Symmetric Key Distribution using Symmetric Encryption Kerberos (Version 4 & 5), X.509 Certificates, Public Key Infrastructure.

Transport-Level Security- Web Security Considerations; Secure Sockets Layer (SSL), Transport Layer Security (TLS), HTTPS Secure Shell (SSH)

Unit–IV 07 Hrs

Network Security Applications -Electronic Mail Security-Pretty Good Privacy (PGP), S/MIME, Domain Keys Identified Mail (DKIM).

IP Security- IP Security Overview, IP Security Policy, Encapsulating Security Payload, Combining Security Associations, Internet Key Exchange, Cryptographic Suites

Unit-V 07 Hrs

System Security

Intruders -Intruders, Intrusion Detection, Password Management.

Malicious Software-Types of Malicious Software, Propagation – Infected Content – Viruses, Virus counter measures, Propagation – Vulnerability Exploit – Worms, Propagation – Social Engineering – SPAM, Trojans, Payload – System Corruption, Payload – Attack Agent – Zombie, Bots, Payload – Information Theft – Key loggers, Phishing, Spyware, Payload – Stealthing – Backdoors, Root kits, Countermeasures, Distributed Denial of Service Attacks and counter measures.

Firewalls-The Need for Firewalls, Firewall characteristics, Types of Firewalls, Firewall Basing, Firewall Location and Configurations.

Course Outcomes: After going through this course, the student will be able to				
CO1	1 Understand the basic Network security concepts			
CO2	Analyze the network security threats			
CO3	Apply appropriate techniques to address security threats			
CO4	Evaluate network security mechanisms			

Reference Books

- 1. Network Security Essentials Applications and Standards, William Stallings, 5th Edition, 2014, Pearson, ISBN-13 9780133370522.
- 2. Cryptography and Network Security: Principles and Practice, William Stallings, 6th Edition, 2014, Pearson, ISBN-13 9780133354690.
- 3. Security in computing, Charles P Pfleeger, Shari Lawrence Pfleeger, Jonathan Margulies, 5th Edition, 2015, Prentice Hall, ISBN-13 9780134085043.

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

II-SEMESTER					
	INTERNET OF THINGS				
		(T	heory)		
Course Code	:	20MCA243	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	39L+26T	SEE Duration	:	3.00 Hours

Introduction to Internet of Things

Fundamentals of Electronics and devices for Internet of Things. Physical and Logical design of IoT Technologies that enable Internet of Things Applications and Use cases, IoT Deployment Levels. Network and Communication, Standards related to Internet of Things, Protocols in Internet of things

Unit-II 08 Hrs

Programming with Arduino: Understanding the eco system of Arduino, Pinout configuration, Digital input and output, Analog input and output, working with sensors and actuators. Arduino serial communication. Communication interfaces (SPI and I2C) wired and wireless communication with Arduino and logging sensor data from Arduino to a file.

Unit-III 08 Hrs

Programming with Raspberry Pi: Understanding the eco system of Raspberry Pi3, Pinout configuration, Digital input and output, working with sensors and actuators. Raspberry Pi serial communication. Communication interfaces (SPI and I2C) wired and wireless communication with raspberry Pi. Serial communication from raspberry Pi3 to Arduino

Unit-IV 08 Hrs

Programming with esp8266 (nodemcu) and esp32: Understanding the eco system of esp8266 and esp 32, pinout configuration, Digital, Analog input and output, working with sensors and actuators. communication from raspberry Pi to nodeMCU/esp32, Network configuration with esp8266 and esp32, wireless communication using nodeMCU and esp32

Unit-V 08 Hrs

IoT Application Development: Integrating sensors with IoT Dashboards and notification servicesNodeJS based web application development to monitor and control IoT devices. Integration of Adafruit
/ ThingsBoard and similar tools with sensors and actuators. Integrating Applications with notification services like email, twitter or sms

Introduction to Flow based IoT Dashboard: NodeRED, Creating simple dashboards
Introduction to MQTT based Dashboard implementation: Configure and setup Open HAB
Introduction to IoT data visualization tools and technologies: visualization libraries (p5 javaascript)

Cours	Course Outcomes: After going through this course, the student will be able to				
CO1	Understand the fundamentals of electronics and hardware devices needed for IoT including				
	deployment levels, Network protocols and standards				
CO2	Differentiate between various development boards, sensors, actuators, architecture of Arduino,				
	Raspberry Pi, nodemcu and esp32 with Arduino IDE and other frameworks				
CO3	Interact with Arduino, RaspberryPi, nodemcu and esp32 using python, JavaScript and c/c++ to				
	program the devices (sensors and actuators)				
CO4	Develop minimal IoT Applications (Dashboards) and integrate several essential alerting				
	services like tweet / email including visualization of IoT Data				

and dashboard

Refere	nce Books
1.	Exploring Arduino: Tools and Techniques for Engineering, Wizardry 1st Edition WILEY,
	ISBN-10: 1118549368, ISBN-13: 978-1118549360.
2.	Internet of Things with Raspberry Pi 3 Maneesh Rao, Pack Publihing
3.	Internet of Things with ESP8266, Marco Schwartz, 29th July 2016, PACKT
4.	Internet of Things: A Hands-on Approach by ArshdeepBahga, Vijay Madisetti, July 1st 2015 by
	Orient Blackswan Private Ltd ISBN: 8173719543
5.	Building the Web of Things , Dominique D. Guinard and Vlad M. Trifa, Manning Publication,
	ISBN 9781617292682
6.	The Official ESP32 Book , ISBN : 978-1-907920-63-9, Elector
1	

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE):Theory (100 Marks)

II-SEMESTER					
	MACHINE LEARNING				
	(Theory)				
Course Code	:	20MCA251	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	39L+26T	SEE Duration	:	3.00 Hours

Unit-I 07 Hrs

Introduction to Machine Learning, Preparing to Model: Introduction to Machine learning - Human learning, machine learning, types, problems not to be solved using machine learning, Application, Issues Machine learning activities, Basic type of data in Machine learning, Exploring structure of data, Data quality and Remediation, Data Pre-processing

Unit-II 08 Hrs

Modeling and Evaluation / Feature Engineering—. Selecting the Model, Training the Model, Model Representation and Interpretability, Evaluating performance of a model, Introduction to Feature Engineering, Feature Transformation, Feature Subset Selection

Unit-III 08 Hrs

Supervised learning

Bayesian Concept – Bayes theorem and concept learning - Brute force Bayesian algorithm, Naïve Base Classifier

Classification: Classification Model, Classification learning steps, Classification Algorithms-k-nearest Neighbor (KNN), Decision Tree, Random Forest Model, Support Vector Machines

Unit-IV 08 Hrs

Regression: Introduction, Examples of Regression, Regression Algorithms- Simple Linear Algorithms, Multiple Linear Regression, Assumption in Regression Analysis, Main Problems in Regression Analysis, Logistic Regression

Other types of learning Overview –Representation Learning, Active Learning, Ensemble Learning Algorithm, Regularization Learning algorithm

Unit-V 08 Hrs

Unsupervised learning : Introduction, Unsupervised/s supervised learning, applications of Unsupervised Learning, Clustering- Clustering as a machine learning task, different types of clustering techniques, Partitioning methods, K-medoids, Hierarchical clustering, Density based Methods – DBSCAN. Finding Pattering using Association Rule

Cours	Course Outcomes: After going through this course, the student will be able to				
CO1	Understand the need of data and pre-processing, machine learning techniques for various				
	Application				
CO2	Identify and apply the appropriate techniques to process the data and solve the applications using				
	machine learning techniques				
CO3	Implement machine learning techniques for various problems				
CO4	Appraise the different data processing and machine learning techniques for various application				

Refer	Reference Books			
1.	Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 4th			
	Impression, 2019, Pearson Publications, ISBN 978-93-530-6669-7			
2.	Machine Learning, Tom M Mitchel, McGraw Hill publications, ISBN-0070428077			
3.	Introduction to Machine Learning with Python: A Guide for Data Scientists. Andreas C.			
	Müller, Sarah Guido, 1st Edition, O'Reilly, ISBN-13: 978-1449369415			
4.	Introduction to Machine Learning, Ethem Alpaydın, 2 nd Edition, The MIT Press			

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

II - SEMESTER					
	BIG DATA ANALYTICS				
		(Theory)			
Course Code	:	20MCA252	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	39T+26T	SEE Duration	:	3.00 Hours

Unit–I 07 H	Irs
-------------	-----

Introduction to Data Analytics & Hadoop Eco System

Hadoop Fundamentals

Data, Data Analysis and storage, Comparison with other systems – Relational Database Management Systems

The Hadoop Distributed File system

The Design of HDFS, HDFS Concepts – Blocks, Name nodes and Data nodes, Block Caching, HDFS Federation, HDFS High Availability, The Command-Line Interface, Hadoop File system – Interfaces Data Flow – Anatomy of a File Read, Anatomy of a File Write

Unit-II 08 Hrs

Map Reduce – Distributed Processing Framework- A Weather Dataset – Data format, Analyzing the data with Unix Tools, Analyzing the Data with Hadoop – Java MapReduce, Scaling Out

Working of Map Reduce - Anatomy of a Map Reduce Job Run, Failures, Shuffle and Sort, Task Execution

Map Reduce Formats - Input Formats, Output Formats

Unit-III 08 Hrs

Pig Introduction – **Scripting** - Execution types, Running Pig programs, Grunt, Pig Latin Editors, Comparison with databases

Pig Latin – Structure, Statements, Expressions, Types, Schemas, Functions, Macros

Data Processing Operators – Parameter Substitution - Preprocessing, Loading and storing of data, Filtering Data, Grouping and Joining Data, Sorting Data, Combining and splitting Data

Pig in Practice—Parallelism, Anonymous Relations

Unit–IV 07 Hrs

Hive Introduction – The Hive shell, Hive services, the Meta store

Comparison with Traditional Databases – Schema on Read Versus Schema on Write, Updates, Transactions and Indexes

Hive QL – Data Types, operators and functions

Tables – Managed Tables and External Tables, Partitions and Buckets, Storage Formats, Importing Data, Altering Tables, Dropping Tables

Querying Data - Sorting and Aggregating, Joins, Sub queries, Views

Unit-V 09 Hrs

Spark: Analyzing the data on Cluster using MLib

Installing Spark, An Example, Spark Applications, Jobs, Stages, and Tasks, A Scala Standalone Application, A Java Example, A Python Example, Resilient Distributed Datasets, Creation, Transformations and Actions, Persistence, Serialization, Shared Variables, Broadcast Variables, Accumulators, Anatomy of a Spark Job Run, Job Submission, DAG Construction, Task Scheduling, Task Execution, Executors and Cluster Managers, Spark on YARN

Data Visualization with Tableau – Introduction to Tableau software, Tableau Desktop Workspace, Data Analytics in Tableau Public, Using visual controls in Tableau Public

Course	Course Outcomes: After going through this course, the student will be able to				
CO1	CO1 Understand the fundamentals of big data analytics frameworks				
CO2	Apply big data analytics frameworks and visualization techniques to solve problems				
CO3	Analyze the use of big data analytics and visualization for various problems				
CO4	Assess the solutions of big data analytics ecosystems				

Refere	Reference Books:					
1.	Hadoop – The Definitive Guide; Storage and Analysis at Internet scale, Tom White, 4th					
	Edition, 2015, O'Reilly, Shroff Publishers & Distributers Pvt. Ltd., ISBN – 978-93-5213-					
	067-2					
2.	Big Data – Black Book, DT Editorial Services, Edition – 2015, Dreamtech Press, ISBN - 978-					
	93-511-9-757-7					
3.	Hadoop for Dummies, Dirk deRoos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown,					
	Rafael Coss, 2014, John Wiley & Sons, Inc., ISBN: 978-1-118-60755-8 (pbk); ISBN 978-1-					
	118-65220-6 (ebk); ISBN 978-1-118-70503-2 (ebk)					
4.	Big Data Principles and best practices of scalable real-time data systems, Nathan Marz and					
	James Warren, April 2015, ISBN 9781617290343					

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

II – SEMESTER							
	NATURAL LANGUAGE PROCESSING						
	(Theory)						
Course Code	:	20MCA253	CIE	:	100 Marks		
Credits: L:T:P : 3:1:0 SEE Marks : 100 Marks							
Total Hours	:	39L+26T	SEE Duration	:	3.00 Hours		

Unit-I 08 Hrs

Overview and Language Modeling: Overview: Origins and challenges of NLP-Language, Knowledge and Grammar-Processing Indian Languages- NLP Applications -Information Retrieval. **Language Modeling:** Various Grammar- based Language Models - Statistical Language Model

Unit-II 08 Hrs

Word Level and Syntactic Analysis: Word Level Analysis: Regular Expressions-Finite-State Automata-Morphological Parsing-Spelling Error Detection and correction-Words and Word classes-Part-of Speech Tagging. Syntactic Analysis: Context-free Grammar-Constituency- Parsing-Probabilistic Parsing

Unit-III 08 Hrs

Semantic Analysis and Natural Language Generation: Introduction, Meaning Representation, Lexical Semantics, Ambiguity, Word Sense Generation

Natural Language Generation: Introduction, Architecture of NLG Systems, Generation Tasks and Representations, Application of NLG.

Unit-IV 08 Hrs

Lexical Resources: Introduction, WordNet, FrameNet, Stemmer, POS Tagger

Machine Translation and Lexical Resources: Introduction, Problems in machine translation, Characteristics of Indian languages, machine Translation approaches, Direct machine translation, Rule based machine translation, corpus based machine translation, semantics or knowledge based MT Systems

Unit-V 07 Hrs

Taggers and NLP Application: Using Tagger, Tagged Corpora, Automatic Tagging, N-gram Tagging, Transformation based Tagging

NLP Applications: Information extraction, Machine Translation, Natural Language Generation, Discourse processing

Course	Course Outcomes: After going through this course, the student will be able to					
CO1	CO1 Understand the concept of Natural Language Processing and its applications					
CO2	Identify and Recognize the various techniques to analyze the documents based on the word					
	syntax, semantics and other resources for various NLP Applications					
CO3	Apply different methods and models to build an NLP application					
CO4	Analyze and Evaluate the different methods to build models					

Referen	nce Books						
1.	Natural Language Processing and Information Retrieval, Tanveer Siddiqui, U.S. Tiwary,						
	2008, OUP India, ISBN: 9780195692327						
2.	Natural Language Processing with Python, Steven Bird, Ewan Klein, Edward Loper, June						
	2009, O'Reilly Media, ISBN: 9780596516499						
3.	Speech and Language Processing, Daniel Jurafsky and James H Martin, 2 nd Edition, 2009						
	Pearson Education,						
4.	The Handbook of computational linguistics and Natural Language processing, Alexander						
	Clark, Chris Fox, Shalom Lappin, 2010, Wiley Blackwell						

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

II-SEMESTER							
	PHP BASED SOFTWARE SOLUTIONS						
	(Theory & Practice)						
Course Code	:	20MCA261		CIE	:	100+50 Marks	
Credits: L:T:P	Credits: L:T:P : 4:0:1 SEE : 100+50 Marks						
Total Hours	:	52L+26P		SEE Duration	:	3.00 Hours	

Unit-I 10 Hrs

Introduction to PHP: What Does PHP Do? A brief history of PHP- The Evolution of PHP, The widespread use of PHP. Installing PHP, A walk through PHP- configuration page, Forms, Databases, Graphics.

Language Basics: Lexical Structure- Case Sensitivity, Statements and Semicolons, White Space and Line Breaks, Comments, Literals, Identifiers, Key Words. Data Types-Integers, floating-Point Numbers, Strings, Booleans, Arrays, Objects, Resources, Callbacks, NULL. Variables- Variable Variables, Variable References, Variable Scope, Garbage Collection. Expressions and operators-Number of operands, Operator precedence, operator Associativity, Implicit Casting, Arithmetic operators, String Concatenation operator, Auto-Increment and Auto-Decrement operators, Comparison operators, Bitwise operators, logical operators, Casting operatrs, Assignment Operators, Miscellaneous Operators. Flow-Control Statements- if, switch, while, for, foreach, try...catch, declare, exit and return, goto. Including Code, Embedding PHP in Wen pages.

Unit–II 11 Hrs

PHP Functions: Calling a Function, Defining a Function, Variable Scope-Global Variables, Static Variables. Function Parameters- passing Parameters by Value, Passing Parameters by Reference, Default Parameters, Variable Parameters, Missing Parameters, Type Hinting. Return Values, Variable Functions, Anonymous Functions

Strings: Qouting String Constants- Variable Interpolation, Single-Quoted Strings, Double Quoted Strings, Here Documents. Printing Strings- echo, print(), printf(), printf(), print_r() and var_dump(). Accessing Individual Characters, Cleaning Strings-Removing Whitespace, Changing case. Encoding and Escaping-HTML, URLs, SQL, C-String Encoding. Comparing Strings- Exact Comparisons, Approximate Equality. Manipulating and Searching Strings- Substrings, Miscellaneous String Functions, Decomposing a String, String-Searching Functions. Regular Expressions- The Basics, Character Classes, Alternatives, Repeating Sequences, Sub patterns, Delimiters, Match Behavior, character Classes, Anchors, Quantifiers and Greed, Non capturing Groups, Back references, Trailing options, Inline options, Look ahead and Look behind, Cut, Conditional Expressions, Functions

Unit-III 11 Hrs

Arrays: Indexed Versus Associative Arrays, Identifying Elements of an Array, Storing Data in Arrays- Appending Values to an Array, Assigning a Range of values, Getting the Size of an Array, Padding an Array. Multidimensional Arrays, Extracting Multiple Values, Slicing an Array, Splitting an Array into Chunks, Ket and Values, Checking Whether an Element Exists, Removing and Inserting Elements in an Array. Converting between Arrays and variables- creating Variables from an Array, Creating an Array from variables. Traversing Arrays- The foreach Construct, the Iterator Functions, Using a for Loop, Calling a Function for Each Array Element, Reducing an Array, Searching for Values. Sorting- Sorting One Array at a Time, Natural-order Sorting, Sorting Multiple Arrays at once, Reversing Arrays, Randomizing Order. Acting on Entire Array- Calculating the Sum of an Array, Merging Two Arrays, Calculating the Difference between Two Arrays, Filtering Elements from an Array. Using Arrays to Implement Data Types- Sets, Stacks.

Implementing the Iterator Interface Date and Times

Unit-IV 10 Hrs

Web Techniques: HTTP Basics, Variables, Server Information, processing Forms- Methods, Parameters, Self-processing pages, Sticky Forms, Multivalued Parameters, Sticky Multivalued Parameters, File Uploads, Form Validation. Stting Response headers- Different Content Types, Redirections, Expiration, Authentication. Maintaining State- Cookies, Sessions, Combining Cookies and Sessions. SSL

Unit-V 10 Hrs

Objects: Objects, Terminology, creating an object, Accessing properties and Methods, Declaring a Class- Declaring Methods, Declaring Properties, Declaring Constants, Inheritance, Interfaces, traits, Abstract Methods, Constructors, Destructors, Anonymous Classes, Introspection- Examining Classes, Examining an Object, Serialization.

Databases: Using PHP to Access a Database, Relational Databases and SQL-PHP Data Objects

LABORATORY / PRACTICE COMPONENT

- 1. Write a PHP program to implement the basic constructs of the language like, Arrays, regular expression, iterations, etc
- 2. Demonstrate OOP concepts using PHP such as inheritance, polymorphism, encapsulation, etc
- 3. Demonstrate function types supported by PHP. Eg- Parameterized function, function with return type, etc
- 4. Design and implement forms with relevant database operations considering applications like exam registration from, event registration from, passport application form etc.
- 5. Demonstrate use of Session and Cookies for application login, number of times web is been visited, validating login, etc

Note: Each program should be completed and executed within two consecutive lab cycles. However, for CIE test and SEE evaluation the examiner can specify minimum functionalities related to the programs keeping time factor as a constraint.

Course	Course Outcomes: After going through this course, the student will be able to					
CO1	CO1 Compare and Contrast between various elements of web page design					
CO2	Enabling and configuring interactive capabilities					
CO3	O3 Demonstrate critical thinking skills to design and create customized web page					
CO4	Design and create personal and /or commercial websites					

Refere	Reference Books								
1.	Learning PHP, MySQL & JavaScript With jQuery, CSS & HTML, Robin Nixon, O'Reilly								
	Media, Inc., 4 th Edition, 2015, ISBN 13: 978-93-5213-015-3								
2.	Web Content Management: Systems, Features, and Best Practices, Deane Barker, 1st Edition,								
	2016, O'Reilly Media, Inc., ISBN 978-1-4919-0812-9								
3.	Beginning Drupal 8, Todd Tomlinson, 1st Edition, 2015, Apress Publishing Company,								
	ISBN-13 (pbk): 978-1-4302-6580-1								

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

II –SEMESTER							
JAVA BASED SOFTWARE SOLUTIONS (Theory & Practice)							
Course Code							
Credits: L:T:P	Credits: L:T:P : 4:0:1						
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours		

Unit–I 12 Hrs

Java Programming Fundamentals: Introduction to Java Programming, Applications of Java Programming, The Java Development Kit, The Java Keywords, Identifiers in Java, User input using Scanners, The Scope and Lifetime of Variables, operators, Type Casting, Operator Precedence, Expressions, Conditional and Control Statements, Arrays, String Handling,

Classes, Objects and Methods: Class Fundamentals, How Objects are Created, Reference Variables and Assignment, Methods, Returning from a Method, Returning Value, Using Parameters, Constructors, The new operator Revisited, Garbage Collection and Finalizers, this Keyword, Understanding Static.

Unit-II 10 Hrs

Inheritance, Interface, Packages: Inheritance: Fundamentals, Overloading, Overriding, super keyword, Using final. **Interface**: Fundamentals, Creating an Interface, Implementing an Interface, Using Interface References, Implementing Multiple Interfaces. **Package**: Fundamentals, Importing Packages, Creating user defined packages

Exception Handling: Exception Handling: Fundamentals, Hierarchy, Catching subclass Exceptions, try blocks can be nested, Throwing an Exception, Throwable, using finally, and using throws, Java's Built-in Exceptions.

Unit-III 08 Hrs

JDBC: Talking to Database, Immediate Solutions, Essential JDBC program, using prepared Statement Object, Interactive SQL tool. JDBC in Action Result sets, Batch updates, Mapping, Basic JDBC data types, Advanced JDBC data types, immediate solutions.

Unit-IV 11 Hrs

Servlets- Servlet Structure, Servlet packaging, HTML building utilities, Lifecycle, Single Thread model interface, **Handling Client Request**: Form Data, Handling Client Request: HTTP Request Headers. **Generating server Response**: HTTP Status codes, HTTP Response Headers, Handling Cookies, Session Tracking

UNIT-V 11 Hrs

JSP: Overview of JSP Technology, Need of JSP, Benefits of JSP, Advantages of JSP, Basic syntax, Invoking java code with JSP scripting elements, creating Template Text, Invoking java code from JSP, Limiting java code in JSP, using JSP expressions, comparing servlets and JSP, writing scriptlets. For example Using Scriptlets to make parts of JSP conditional, using declarations, declaration example, Including Files, JSP Directives - page.

LABORATORY / PRACTICE COMPONENT

- 1. Write a Java application for Education Domain which demonstrates the following scenario
 - a. scope of variable
 - b. this keyword
 - c. constructor overloading and method overloading
 - d. static keyword
- 2. Write a Java application to demonstrate the following concepts
 - a. Inheritance and interface
 - b. packages
- 3. Write a Java application to insert data into any DATABASE and retrieve info based on particular queries (For example update, delete, search etc...) with proper usage of user defined Exception Handling (also make use of throw, throws.) (Ex: if input exceeds the greater than the text field then user defined exception can be given)
- 4. Write a Java Servlet Program to implement a dynamic HTML for the following scenario
 - a. Display the auto web page refresh using HTTPRequest and HTTPResponse
 - b. Verify the user authentication using ServletConfig
- 5. Write a JSP program to demonstrate for a given scenario
 - a. Session API and cookies
 - b. Conditional and exceptional handling techniques

Note: Each program should be completed and executed within two consecutive lab cycles. However, for CIE test and SEE evaluation the examiner can specify minimum functionalities related to the programs keeping time factor as a constraint.

Course	Course Outcomes: After going through this course, the student will be able to					
CO1	CO1 Understand the basic concepts of Java Application Programming					
CO2	Identify and Apply various technologies for Java application programming					
CO3	CO3 Demonstrate various problem solving methods for developing application					
CO4	Analyze solutions using Java API concepts for real world applications					

Refere	nce Books						
1.	Java Fundamentals, A Comprehensive Introduction , Herbert Schildt, Dale Skrien, Tata McGraw Hill Edition, 2013, McGraw Hill Publication, ISBN-13:9781249006593						
2.	Core Servlets and JavaServer Pages. Volume 1: Core Technologies., Marty Hall, Larry Brown, 2 nd Edition" Pearson Hall, ISBN-13: 97886278043.						
3.	Advanced Java, Prof. M. T. Savaliya, Dreamtech Press, Wiley India, ISBN-13: 9789351199342.						
4.	Advanced Java Programming, PrasanalakshmiB, 1 st Edition, 2015, CBS Publishing, ISBN:9788123923833						

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

II-SEMESTER							
	JAVASCRIPT BASED SOFTWARE SOLUTIONS						
		(Theory & Practice)					
Course Code	:	20MCA263	CIE	:	100+50 Marks		
Credits: L:T:P : 4:0:1 SEE : 100+50 Marks							
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours		

Introduction

Foundations of Web Apps ,The World Wide Web HTML and XML ,XML documents Unicode and UTF-8 ,XML namespaces, Correct XML documents, The evolution of HTML,HTML forms, JavaScript Types and data literals in JavaScript, Variable scope, Strict Mode, Different kinds of objects, Array lists, Maps, JavaScript supports four types of basic data structures ,Defining and using classes, JavaScript as an object-oriented language , Further reading about JavaScript

Unit-II 12 Hrs

Building a Minimal JavaScript Front-End App

Folder Structure, Write the Model Code, Representing the collection of all Book instances, Loading all Book instances, Saving all Book instances, Creating a new Book instance, Updating an existing Book instance, Deleting an existing Book instance, Creating test data, Clearing all data, Initialize the Application, Implement the List Objects Use Case, Implement the Create Object Use Case, Run the App and Get the Code, Possible Variations and Extensions, Using Indexed DB as an Alternative to Local Storage.

Unit-III 10 Hrs

Integrity Constraints and Data Validation

String Length Constraints, Mandatory Value Constraints, Range Constraints, Interval Constraints, Pattern Constraints, Cardinality Constraints, Uniqueness Constraints, Standard Identifiers (Primary Keys), Referential Integrity Constraints, Frozen Value Constraints, Constraint Validation in MVC Applications

Unit-IV 10 Hrs

Constraint Validation in a JavaScript Front-End Web App

Using the HTML5 Form Validation API, New Issues Make a JavaScript Data Model ,Set up the folder structure and create four initial files, Style the user interface with CSS, Provide general utility functions and JavaScript fixes in library files, Create a start page, Write the Model Code, Encode the model class as a constructor function, Encode the property checks, Encode the property setters, Add a serialization function, Data management operations, The View and Controller Layers, The data management UI pages, Initialize the app, Initialize the data management use cases

Unit-V 10 Hrs

Implementing Unidirectional Functional Associations with Plain JavaScript

Implementing Single-Valued Reference Properties in JavaScript, Make a JavaScript Data Model New issues, Write the Model Code, Encode each class of the JavaScript data model as a constructor function, Encode the property setters, Encode the add and remove operations, Implement a deletion policy, Serialization and De-Serialization, The View and Controller Layers, Initialize the app, Show information about associated objects in the List Objects use case, Allow selecting associated objects in the create and update use cases.

LABORATORY / PRACTICE COMPONENT

- 1. Create an application for inventory management system using class methods in JavaScript.
- 2. Design and demonstrate an application for online booking cart for CRUD data management operations for the necessary products using Model View Controller layers.
- 3. Develop an application for vehicle Insurance using appropriate integrity constraints and validations.
- 4. Develop an application to register for a Music academy using different types of validation API.
- 5. Develop an application for Employees attendance system for various departments by using view and controller layers and implement Single-Valued Reference Properties in JavaScript.

Note: Each program should be completed and executed within two consecutive lab cycles. However, for CIE test and SEE evaluation the examiner can specify minimum functionalities related to the programs keeping time factor as a constraint.

Cours	Course Outcomes: After going through this course, the student will be able to			
CO1 Understand the motivation, significance for using design patterns to create web applications				
CO2	Identify and apply the appropriate model for developing applications			
CO3	Implement JavaScript methods for building web page contents			
CO4	Demonstrate MVC Model for enterprise application development			

Refere	Reference Books											
1.	Engineering Front-End Web Apps with Plain JavaScript, Gerd Wagner, 2020 web-											
	engineering.info											
2.	Eloquent JavaScript, Marijn Haverbeke, 3rd Edition, 2020, A Modern Introduction to											
	Programming Paperback ISBN:978-1593275846											

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

II-SEMESTER							
	DESIGN-THINKING						
		(Practice)					
Course Code	:	20MCA27	CIE	:	50 Marks		
Credits: L:T:P	Credits: L:T:P : 0:0:2						
Total Hours	:	52P(26 contact hrs+ 26 Non-contact hrs)	SEE Duration	:	3.00 Hours		

Stage-I

Empathy:

The Empathy phases of the process are focused on understanding the experiences, emotions and motivations of others. Designers use specific empathy methods to learn more about the needs of the users for whom they are designing.

Methods: Interviewing Probes and Observations

Stage-II

Define:

The Define phase of the process is focused on developing a point of view about the need of your user. During this stage of process, designers narrow from lots of information to a statement that is inspiring and specific

Methods: Empathy Mapping, Point of View.

Stage-III

Ideate:

The Ideate phase of the process is focused on generating as many solutions to a problem as possible. Once many solutions have been generated, students will select one to move forward to prototyping

Methods: Brainstorming and Selection

Stage-IV

Prototype:

The Prototype phase is where designers construct representation of their solutions. These representations are intended to elicit feedback and answer specific questions about a concept.

Methods: Improve, Rapid and Experiential Prototyping

Stage-V

Test:

The Test phase of the process is focused on getting specific feedback about how ideas can improve. It is important to remember during this phase that prototypes are imperfect but feedback is gift.

Methods: Testing

Cour	Course Outcomes: After completing the course, the students will be able to						
CO1	Learn to use different modes of thinking to understand the problem instead of finding						
	answers/solutions for questions/problems						
CO2	Acquire abductive reasoning to find new problems						
CO3	Sow the seed of creativity to look for innovative solutions for a problem						
CO4	Adopt human centric approaches while developing new solutions, products or services.						

Guide	Guidelines for Design Thinking Lab:					
1.	The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.					
2.	Each student in a team must contribute equally in the tasks mentioned below					
3.	Each group has to select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the by the department					
4.	The above five stages specified will be evaluated in three phases					
5.	For every Phase of evaluation, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.					
6.	The team should prepare a Digital Poster and a report should be submitted after incorporation					
	of any modifications suggested by the evaluation committee.					

Scheme of Continuous Internal Examination (CIE)

Evaluation of the work will be done by the committee appointed by the director, Dept of MCA. The student should submit report on the Case Study.

Evaluation will be carried out in THREE Phases.

Phase	Activity	Marks
I	Phase I	10
II	Phase II	15
III	Phase III	25

Scheme for Semester End Examination (SEE)

The evaluation will be done by Internal and External examiners. The following weightage would be given for the examination.

1.	Written presentation of synopsis: Write up	05 Marks
2.	Presentation / Demonstration of the project Idea / Solution	15 Marks
3.	Demonstration of the Prototype	20 Marks
4.	Viva- Voce	05 Marks
5.	Report	05 Marks

III – SEMESTER						
	PROJECT MANAGEMENT					
		(Theory)				
Course Code	Course Code : 20MCA31 CIE : 100 Marks					
Credits: L:T:P : 4:0:0 SEE : 100 Marks						
Total Hours	:	52L	SEE Duration	:	3.00 Hours	

Unit-I	10 Hrs
--------	--------

Strategic Project Management and Selection:

Introduction, What is a Project, why Project Management?, Need of Project Planning, Project Life Cycle, Project Selection and Criteria of Choice, Project Selection Models, Analysis under uncertainty – Management of Risk

Case studies in Project management in Practice: Project Selection Models, Analysis under uncertainty

Unit–II 11 Hrs

Project Organization and activity Planning:

Scope & objectives, Pure Project Organization, Matrix Organization, Mixed Organizational Systems, Choosing an Organizational Form, Human Factors and the Project Team; Project Coordination and project Plan, Systems integration, the action Plan, Work Breakdown structure(WBS) and linear responsibility chart, Interface coordination through integration Management

Case studies in Project management in Practice-Project planning, Risk Analysis vs. Budget/Schedule Requirements

Unit-III 10 Hrs

Project Budgeting, Scheduling and Resource Allocation:

Estimating Project Budgets, Improving the Process of Cost Estimation, Network techniques (PERT), Critical Path Method (CPM), Resource Allocation Problem, Resource Loading, Resource Leveling, Multi project Scheduling and Resource Allocation

Case studies in Project management in Practice- Benefit/Cost Analysis, Benefits of Resource allocation, constraints etc

Unit-IV 10 Hrs

Project monitoring, Control and Auditing:

The Planning-Monitoring-Controlling Cycle, Information Needs and Reporting, Earned Value Analysis;

Fundamental Purposes of Control, Types of Control Processes, Design of Control Systems; Purposes of Evaluation, Project Audit, Construction and use of the Audit Report, Project Audit Life Cycle, Measurement

Case studies in Project management in Practice:

Earned Value analysis, Schedule and Cost Control for Projects, Audit report etc

Unit-V 11 Hrs

Project Management in Software Environment:

Software Projects versus other types of Project, Activities covered by software project management, Plans, methods & Methodologies, Project Success and Failure, Managing People - Understanding Organizational Behavior, Motivation, Stress, Health & Safety, Ethical and Professional Concerns

Agile project management with scrum:

Introduction, Project scenarios and examples, Executive Summary of Agile (Scrum) and Kanban (Lean)

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the fundamental concepts of Project Management and selection process				
CO2	Illustrate project management practices to meet the needs of multiple sectors of the economy				
CO3	Analyze the concepts, tools and evaluation techniques of Project Management in the context of				
	various real world scenario				
CO4	Evaluate various project management techniques to meet the needs software projects				

Refer	Reference Books						
1.	Project Management, ISV: A Managerial approach , Jack R Meredith, Samuel J Mantel, Jr.						
	Scott M. Shafer, 9th Edition, 2016, John Wiley & Sons, Inc., ISBN-13:978-81-265-6876-5						
2.	A Guide to the Project Management Body of Knowledge (PMBOK Guide), 6th Edition, 2017,						
	Project Management Institute, Inc, ISBN: 978-1-62825-184-5						
3.	Business-Driven, IT-Wide Agile (Scrum) and Kanban (Lean) Implementation, Andrew T.						
	Pham and David K. Pham, CRC Press is an imprint of Taylor & Francis Group, an Informa						
	business,ISBN-978-1-4665-5749-9.						
4.	Software Project Management, Bob Hughes, Mike Cotterell, Rajib Mall, 6th Edition, 2017, Tata						
	McGraw-Hill Education, ,ISBN 13:9789387067189,ISBN 109387067181.						

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE):Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Note: Evaluation Criteria for Experiential Learning

Students are required to explore various Project management concepts implementations using open source tools like My Collab, Open Project, GitLab etc

III – SEMESTER						
	MODERN APPLICATION DEVELOPMENT					
		(Theory & Practice)				
Course Code	Course Code : 20MCA32 CIE : 100+50 Mark					
Credits: L:T:P	Credits: L:T:P : 4:0:1					
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours	

Unit-I 10 Hrs

Introduction to Android:

Android Overview, Android Studio & Project Basics: History, Operating System, Setup, Configuring Android Studio, Hardware Acceleration, Project Basics, Create an AVD, The IDE, Main Editor, Editing Layout Files, TODO Items, Project Tool Window

Android Application Overview & Activities and Layouts:

What Makes Up an Android Project, Application Entry Point, Activities, Intents, Activity, Layout File, View and ViewGroup Objects, Containers, Activity Class

Unit–II 10 Hrs

Mobile Design, Event Handling, Fragments, Execution:

Mobile Design: Mobile-Only Interactions, Interactions that are not possible on Mobile

Event Handling & Intents: Intro to Event Handling, Handling Long Clicks, What Intents are for, Implicit Intents

Fragments: Introduction to Fragments

Running in the Background: Basic Concepts, The UI Thread, Threads and Runnables

Unit-III 10 Hrs

Debugging, Data Storage & Location Services:

Debugging & Testing: Types of Errors, Debugger, Types of Testing, Unit Testing, Instrumented Testing

Data Storage: Storing simple data, Read and write a text file to internal storage and external storage, Creating and using an SQLite database

Location and Using Geofencing: How to get the device location, Creating and monitoring a Geofence

Unit-IV 11 Hrs

Introduction to PWA:

Intro to PWAs and Tooling: Intro. to Progressive Web Apps, Tools to Measure Progressive Web Apps

PWA Features: Service Workers, Caching and Offline Functionality with Service Workers, Background Sync for Offline Apps with Service Workers

Unit-V 11 Hrs

PWA Features & Leveling Up:

PWA Features: Adding your App to the Home Screen with Web App Manifest, Notifications, App Shell Architecture and Loading Performance, Exploring HTTP/2 and Server Push

Putting the Features to Use: Turning a Real App into a PWA, PWAs From the Start

Leveling Up Your PWA: Leveling Up Your PWA

LABORATORY / PRACTICE COMPONENT

- 1. Create an app to navigate from one activity to another using an intent object and passing data
- 2. Devise a Mobile App to showcase graphics on button states and add a widget at run time
- 3. Demonstrate adding and removing fragments at run time.
- 4. Develop an app to display a Progress Bar and show a message with Alert Dialog
- 5. Implement an application that will create a database with a table of user credentials and create a Login portal system
- 6. Develop an application to send SMS to a particular contact from the Phonebook
- 7. Create a login page to authenticate a user using PWA with Manifest file
- 8. Build a simple web page using PWA by adding a Service Worker
- 9. Devise a PWA to fetch the Github Details for a particular person using the Fetch API
- 10. Build an application to do a stock display using PWA using a raw JSON file

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	Understand Android applications work, Life cycle, Manifest, Intents, and using external			
	resources			
CO2	Demonstrate Activities, Layouts, Views, Widgets, Menus and Notifications.			
CO3	Identify communication abilities including SMS, the telephony APIs, network management			
	Data Storage			
CO4	Design and develop innovative applications with enhanced features			

Refer	rence Books			
1.	Learn Android Studio 4: Efficient Java-Based Android Apps Development, Ted Hagos, 2 nd			
	Edition, 2020, Apress Publishing, ISBN: 9781484259368			
2.	Android 9 Development Cookbook, Rick Boyer, 3rd Edition, 2018, Packt Publishing, ISBN –			
	13: 9781788622967			
3.	Essential Mobile Interaction Design: Perfecting Interface Design in Mobile Apps (Usability)			
	Cameron Banga and Josh Weinhold, 1st Edition, 2014, Addison-Wesley Professional, ISBN-			
	: 978-0321961570			
4.	Beginning Progressive Web App Development: Creating a Native App Experience on the Web,			
	Dennis Sheppard, 2017, Apress Publishing, ISBN: 9781484230909			
5.	Learning Progressive Web Apps, John M Wago, 2020, Addison-Wesley, ISBN: 978-			
	0136484226			

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	III - SEMESTER				
	CLOUD COMPUTING				
		(Theory)			
Course Code	:	20MCA331	CIE	:	100 Marks
Credits: L:T:P	:	4:1:0	SEE	:	100 Marks
Total Hours	:	52L+26T	SEE Duration	:	3.00 Hours

Introduction & Concepts:

Introduction to Cloud Computing: Introduction, Characteristics of Cloud Computing, *Cloud Models*, Cloud Service Examples, Cloud-based Services & Applications.

Migrate into a Cloud:

Introduction, Broad Approaches to Migrating into the Cloud, The Seven-Step Model of Migration into a Cloud

Unit-II 10 Hrs

Cloud Concepts & Technologies: Virtualization, Load Balancing, Scalability & Elasticity, Deployment, Replication, Monitoring, Software Defined Networking, Network Function Virtualization, Identity and Access Management, Service Level Agreements, Billing.

Parallel and Distributed Systems: Parallel Computing, Distributed Systems.

Unit–III 11 Hrs

Cloud Application Design: Introduction, Design Considerations for Cloud Applications, Reference Architectures for Cloud Applications, Cloud Application Design Methodologies, Data Storage Approaches.

Enriching the 'Integration as a Service' Paradigm for the Cloud Era:

Introduction, The Onset of Knowledge Era, The Evolution of SaaS, The Challenges of SaaS Paradigm, Approaching the SaaS Integration Enigma, New Integration Scenarios, The Integration Methodologies, SaaS Integration Products and Platforms, SaaS Integration Services, A Framework of Sensor—Cloud Integration, SaaS Integration Appliances.

Unit-IV 10 Hrs

Cloud Security: Introduction, CSA (Cloud Security Architecture) Authentication, Authorization, Identity & Access Management, Data Security, Key Management, Auditing.

Virtual Machine Security, Security of Virtualization, Security risk posted by a management OS.

Unit-V 10 Hrs

Introducing Docker: Docker components, **Containers**, Getting Started with Docker, Working with our first container, Container naming, Starting a stopped container, Attaching to a container, Creating daemonized containers, Seeing what's happening inside our container, Inspecting the container's processes, Stopping a daemonized container, Finding out more about our container, Deleting a container

Course Outcomes: After completing the course, the students will be able to			
CO1	Understand the fundamental concepts of cloud computing environment		
CO2	Identify the various key enabling technologies for cloud computing		
CO3	Apply multiple cloud application to the various programming models		
CO4	Compare the different cloud platforms to the cloud computing scenarios		

Refere	ence Books
1.	Cloud Computing A Hands-on Approach , Arshdeep Bahga, Vijay Madisetti, 2014 Edition,
	University Press, ISBN: 9788173719233
2.	Cloud computing theory and practice, DAN C. Marinescu, 2 nd Edition, November-2017,
	Morgan Kaufmann Publication, ISBN: 978-0-12-812810-7
3.	Cloud Computing Bible, Barrie. Sosinsky, 2011, Wiley Publishing, Inc., ISBN: 978-0-470-
	90356-8
4.	Cloud Computing Principles and paradigms, Rajkumar Buyya, James Broberg, Andrzej
	Goscinski, 2011, WILEY Publications, ISBN 978-0-470-88799-8
5.	The Docker Book , James Turnbull, 2014, Attribution-Non-Commercial-No Derivs 3.0 Un-
	ported License, Copyright, ISBN: 978-0-988202-0-3

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

	III – SEMESTER				
	CYBER SECURITY				
		(Theory)			
Course Code	:	20MCA332	CIE	:	100 Marks
Credits: L: T:P	:	4:1:0	SEE	:	100 Marks
Total Hours	:	52L+26T	SEE Duration	:	3.00 Hours

Unit-I 11 Hrs

Introduction: Defining Cyberspace and Cyber security, Standard of Good Practice for Information Security, NIST Cyber security Framework.

System Access: System Access Concepts, User Authentication, Password-Based Authentication, Possession-Based Authentication, Biometric Authentication, Risk Assessment for User Authentication, Access Control, Customer Access

Unit–II 10 Hrs

Phishing: Introduction, Phishing – Methods of Phishing, Phishing Techniques, Spear Phishing, Types of Phishing scams, Phishing Toolkits and Spy Phishing, Phishing Countermeasures.

Identity Theft-Personally Identifiable Information (PII), Types of Identity Theft, Techniques of ID theft, Countermeasures, how to efface your online identity.

Unit-III 11 Hrs

Tools and Methods used in Cybercrime: Introduction, Proxy Server and Anonymizers, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attacks on wireless and mobile networks, mobile devices

Unit-IV 10 Hrs

Threat Management: Technical Vulnerability Management, Security Event Logging, Security Event Management, Threat, Intelligence, Cyber Attack Protection, Security

Incident Management: Framework, Security Incident Management Process.

Unit-V 10 Hrs

Digital Forensics Science: Need for Computer Cyber forensics and Digital Evidence, Digital Forensics Life cycle, Forensics of social networking sites, handheld devices-mobile phones, smart phones, printers' scanners.

Intellectual property in the cyberspace: copyrights, patents, trade secret and name, domain names

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Define and illustrate cyber security principles			
CO2	Analyze the cyber security principles to system design			
CO3	Apply appropriate methods to address cyber security threats			
CO4	Evaluate cyber security through network defense controls			

Reference Books				
1.	Effective Cybersecurity: A Guide to Using Best Practices and Standards, William Stallings,			
	2018, Addison-Wesley Professional, ISBN-13: 978-0134772806			
2.	Cyber Security, Nina Godbole Sunit Belapure, 2012, Wiley India, ISBN: 9788126521791			
3. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal				
Э.	Nina Godbole and Sunit Belapure, Wiley Publication, ISBN 9788126521791			
1	Anti-Hacker Tool Kit (Indian Edition), Mike Shema, 4th Edition, Publication McGraw Hill,			
4.	ISBN: 9789339212155			

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of wo quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

		III – SEMESTER			
		WEB OF THINGS			
		(Theory)			
Course Code	:	20MCA333	CIE	:	100 Marks
Credits: L:T:P	:	4:1:0	SEE	:	100 Marks
Total Hours	:	52L+26T	SEE Duration	:	3.00 Hours

Unit-I 10 Hrs

Basics of IoT and WoT: From the Internet of Things to the Web of Things, Hello World Wide Web of Things, Node.js for the Web of Things, Getting started with embedded systems and Building networks of Things

Building the WoT: Introduction to all the phases of building WoT, Access: Web APIs for Things, Implementing web Things, Find: Describe and discover web Things, Share: Securing and sharing web Things, Compose: Physical mashups

Unit – II 11 Hrs

Access: Web APIS for things: Devices, Resources, and Web Things: Representational State Transfer, Why do we need a uniform interface?, Principle 1: addressable resources, Principle 2: manipulation of resources through representations, Principle 3: self-descriptive messages, Principle 4: Hypermedia as the Engine of Application State

Beyond Rest: The Real-Time Web Of Things, The WoT needs events!, Publish/subscribe

Webhooks - HTTP callbacks **Comet**- hacking HTTP for a real-time web, WebSockets - The future from HTTP/1.1 to HTTP/2

Unit –III 11 Hrs

Implementing Web of Things: Connecting devices to the web

Direct integration pattern—REST on devices- Creating a WoT server, - Resource design, Representation design, - Interface design, - Pub/sub interface via WebSockets

Gateway integration pattern—CoAP example- Running a CoAP server, - Proxying CoAP via a gateway

Cloud integration pattern—MQTT over Everything-Set up your EVRYTHNG account, Create your MQTT client application, Use actions to control the power plug, Create a simple web control application

Unit –IV 10 Hrs

FIND: Describe and Discover Web Things: The find-ability problem Discovering Things: - Network discovery, - Resource discovery on the web. Describing web Things: - Introducing the Web Thing Model, - Metadata, - Properties, - Actions, - Things, - Implementing the Web Thing Model on the Pi

The Semantic Web of Things: - Linked data and RDFa, - Agreed-upon semantics: Schema.org - JSON-LD

Unit –V 10 Hrs

SHARE: Securing and Sharing Web Things: Securing Things: - Encryption, - Web security with TLS: the S of HTTPS!, - Enabling HTTPS and WSS with TLS on your Pi.

Authentication and access control: - Access control with REST and API tokens, - OAuth: a web authorization framework

The Social Web of Things: - A Social Web of Things authentication proxy, - Implementing a Social WoT authentication proxy.

Compose: Physical mashups: Building a simple app automated UI generation: - A universal user interface for web Things Physical mashups, - Boxes and wires mashups for the Physical Web: Node-RED, Using wizards for physical mashups: IFTTT, - Pushing intruder alert tweets to a Google spreadsheet, - Sending requests to a Thing with the Maker Channel, - Pushing intruder alert tweets to a Google spreadsheet

Course Outcomes: After completing the course, the students will be able to			
CO1	Understand the fundamentals concepts of Web of Things and related standards		
CO2	Differentiate the challenges in IoT and WoT solutions		
CO3	Integrate network of devices and secure with api through access ,find and share stages of WoT		
CO4	Develop Physical mashup for implementing Web of Things		

Reference Books				
1.	Building the Web of Things, With Examples in Node.js and Raspberry Pi, Dominique D			
	Guinard, Vlad M Trifa, 2017, Manning, ISBN - : 9781617292682			
2.	https://www.w3.org/WoT/			
3.	Practical Node Red Programming, Taiji Hagino, 2021, Packt,ISBN-13: 978-1800201590			

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

III – SEMESTER					
ARTIFICIAL INTELLIGENCE					
(Theory)					
Course Code	:	20MCA341	CIE	:	100 Marks
Credits: L: T:P	:	4:1:0	SEE	:	100 Marks
Total Hours	:	52L+26T	SEE Duration	:	3.00 Hours

Unit-I	08 Hrs
--------	--------

Introduction- The Foundations of Artificial Intelligence, The History of Artificial Intelligence
Intelligent Agents- Introduction, How Agents Should Act, Structure of Intelligent Agents,
Environments

Unit-II 10 Hrs

Solving Problems by Searching- Problem-Solving Agents, Formulating Problems, Example Problems, Searching for Solutions, Search Strategies, Avoiding Repeated States, Constraint Satisfaction Search

Informed Search Methods- Best-First Search, Heuristic Functions, Memory Bounded Search, Iterative Improvement Algorithms

Unit-III 10 Hrs

Agents that Reason Logically- A Knowledge-Based Agent, The Wumpus World Environment, Representation, Reasoning, and Logic, Prepositional Logic, An Agent for the Wumpus World First-Order Logic- Syntax and Semantics, Extensions and Notational Variations, Using First-Order Logic Logical Agents for the Wumpus World, A Simple Reflex Agent, Representing Change in the World Deducing Hidden Properties of the World, Preferences Among Actions, Toward a Goal-Based Agent

Unit–IV 12 Hrs

Planning- A Simple Planning Agent, From Problem Solving to Planning, Planning in Situation Calculus, Basic Representations for Planning, A Partial-Order Planning Example, A Partial-Order Planning Algorithm, Planning with Partially Instantiated Operators, Knowledge Engineering for Planning

Practical Planning: Practical Planners, Hierarchical Decomposition

Unit-V 12 Hrs

Uncertainty: Acting under Uncertainty, Basic Probability Notation, The Axioms of Probability, Bayes' Rule and Its Use

Probabilistic Reasoning Systems: Representing Knowledge in an Uncertain Domain, The Semantics of Belief Networks, Inference in Belief Networks, Inference in Multiply Connected Belief Networks, Knowledge Engineering for Uncertain Reasoning, Other Approaches to Uncertain Reasoning.

Course Outcomes: After going through this course the students will be able to			
CO1	Understand and explore the basic concepts and challenges of Artificial Intelligence.		
CO2	Apply Artificial Intelligence and various logic-based techniques in real world problems.		
CO3	Analyze Artificial System algorithms to solve problems		
CO4	Assess their applicability by comparing different Intelligent System techniques		

Refere	Reference Books		
1.	Artificial Intelligence A Modern Approach , Stuart J. Russell and Peter Norvig , 3 rd Edition, 2015, Pearson ,ISBN-13: 978-9332543515		
2.	Artificial Intelligence- Making a System Intelligent, Dr.Nilakshi Jain, 1st Edition, 2019 Wiley, ISBN-13:978-8126579945		
3.	Introduction to Artificial Intelligence, Philip C Jackson, 3 rd Edition, 2019, Pearson, ISBN-13: 978-0486832869		
4.	Artificial Intelligence For Dummies, 2018, Wiley, ISBN-10: 8126576103, ISBN-13: 978-8126576104		

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

III – SEMESTER					
AUGMENTED AND VIRTUAL REALITY					
(Theory)					
Course Code	:	20MCA342	CIE	:	100 Marks
Credits: L:T:P	:	4:1:0	SEE	:	100 Marks
Total	:	52L+26T	SEE Duration	:	3.00 Hours

Unit-I 10 Hrs

Introduction to Virtual Reality: Defining Virtual Reality, Four Key Elements of Virtual Reality Experience, A History of VR

VR The Medium: Communicating Through a Medium, Common Issues of Human Communication Media. Narrative, Immobile Versus Interactive

Programming with Unity: Unity Basics, Manipulating the Scene, Code blocks and Methods, Debugging Conditional and looping statements.

Unit-II 10 Hrs

Programming with Unity: Working with objects, Working with Scripts, Player movement, Camera Movement, Menu and UI, Advanced 3D movement

Mouse-Aimed camera: First Person Controller, Third Person Controller

Further Learning for Unity: The Asset Store

Unit-III 12 Hrs

Modeling Tools for VR: An introduction to Blender. Modeling of an object, object Animation, Animating a full sequence.

Rendering the Virtual World: Visual Representation in VR, Aural Representation in VR, Haptic Representation in VR, Visual Rendering Systems, Aural Rendering Systems, Haptic Rendering Systems, Importing from Blender to Unity.

Unit-IV 10 Hrs

Introduction to Augmented Reality: Definition and scope, Mixed Reality, Applications of AR & MR Tracking: Tracking, Calibration, and Registration, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors, Optical Tracking, Sensor Fusion

Computer Vision for Augmented Reality: Marker-based tracking, Marker-less tracking

Unit-V 10 Hrs

Introduction to WebXR: Entering VR through WebXR, Life cycle of WebXR application, Creating an XR session through WebXR.

Creating an AR website with WebXR: Object creation, spatial tracking, start AR session, animate, create an event handling function for the end of the session.

Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the concepts of Virtual Reality/Augmented Reality and its Applications			
CO2	Use immersive effects to experiences AR/VR through exploration of its environment			
CO3	Demonstrate a virtual/augmented environment to captivate its experiences			
CO4	Analyze the technology for unimodal/multimodal user interaction in AR and VR			

Refer	rence Books
1.	Understanding Virtual Reality, William R. Sherman, Alan B. Craig, 2003, Morgan Kaufmann
	Publishers, ISBN: 1-55860-353-0
2.	Game Programming with Unity and C#, Casey Hardman, 2020, ISBN-13 (pbk): 978-1-4842-
	5655-8 https://doi.org/10.1007/978-1-4842-5656-5
3.	Blender 3D: Designing Objects, Romain Caudron, Pierre-Armand Nicq, Enrico Valenza,
	2016, Packt Publishing Ltd, ISBN 978-1-78712-719-7
4.	Augmented Reality Principles and Practice, Dieter Schmalstieg Tobias Höllerer, 2016
	Pearson Education, Inc., ISBN-13: 978-0-321-88357-5
5.	AR and VR Using the WebXR API, Rakesh Baruah, 2021, ISBN-13 (pbk): 978-1-4842-6317-
	4 ISBN-13 (electronic): 978-1-4842-6318-1 https://doi.org/10.1007/978-1-4842-6318-1

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

		III – SEMESTER			
		DEEP LEARNING			
		(Theory)			
Course Code	:	20MCA343	CIE	:	100 Marks
Credits: L:T:P	:	4:1:0	SEE	:	100 Marks
Total Hours	:	52L+26T	SEE Duration	:	3.00 Hours

Unit-I	09 Hrs
T ' 37 1'	

Learning Machines:

The Learning Machines, The Math Behind Machine Learning: Linear Algebra-scalars, vectors, matrices, tensors, hyper planes, relevant mathematical operations and solving system of equations, statistics, Regression, Stochastic Gradient Descent, Logistic Regression and Evaluation models

Unit–II 10 Hrs

Foundations of Neural Networks and Deep Learning:

Neural Networks- Biological neuron, Perceptron, Multilayer feed forward networks, Training neural networks, Activation functions, Loss functions, and hyper parameters.

Unit-III 11 Hrs

Deep Learning Networks:

Deep learning, Common architectural principles of deep learning, Building blocks of deep networks-RBMs,

Auto encoders - Under complete Auto encoders, Regularized Auto encoders, Representational Power, Layer Size and Depth, Stochastic Encoders and Decoders, Denoising Auto encoders, Contractive Auto encoders, Applications of Auto encoders.

Unit–IV 11 Hrs

Architectures of Deep Network:

Unsupervised pre-trained networks, Convolution neural networks-CNN architecture, layers, pooling layers, fully connected layers, applications of CNN, Recurrent neural networks

Unit-V 11 Hrs

Building Deep Networks:

Modeling CSV data with Multilayer Perceptron networks, Modeling Handwritten images using CNNs, using auto encoders for anomaly detection, applications of deep learning in natural language processing

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	Describe basic concepts of neural network, its applications and various learning models			
CO2	Acquire the knowledge on models like Recurrent, Recursive Nets and Auto-encoder models			
CO3	Apply and Analyze different Network Architectures, learning tasks, Convolutional networks			
CO4	Evaluate and compare the solutions by various Neural Network approaches for a given			
	problem			

Refer	rence Books			
1.	Deep Learning A practitioners approach, Josh Patterson and Adam Gibson, 2017, O'Reilly			
	Publications, ISBN - 978-1-491-91425-0.			
2.	Deep Learning (Adaptive Computation and Machine Learning Series), Ian Good Fellow,			
	Yoshua Bengioand Aaron Courville, 2017, MIT Press, ISBN-13: 978-0262035613.			
3.	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence			
	Algorithms, Nikhil Buduma, by O'Reilly Publications, 2016 Edition, ISBN-13: 978-			
	1491925614.			
4.	Neural Networks –A Comprehensive Foundation, Simon Haykin, 2 nd Edition, 2005, PHI.			

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

III - SEMESTER					
PHP FRAMEWORK BASED FULL STACK SOFTWARE SOLUTIONS					
		(Theory & Practice)			
Course Code	:	20MCA351	CIE	:	100+50 Marks
Credits: L:T:P	:	4:0:1	SEE	:	100+50 Marks
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours

Unit-I 09 Hrs

An Introduction to Laravel- The need for frameworks: The limitations of homemade tools, Laravel to the rescue.

A new approach to developing PHP applications: A more robust HTTP foundation, Embracing PHP.

Laravel's main features and sources of inspiration: Expressiveness and simplicity, Prettifying PHP, Responsibilities, naming and conventions.

Structure of a Laravel application: The service container and request lifecycle, Exploring Laravel, Changes in Version 5 from Version 4

Unit-II 11 Hrs

Routing and Controllers- Route Definitions: Route verbs, Route Handling, Route Parameters, Route Names.

Route Groups: Middleware, Path Prefixes, Subdomain Routing, Namespace Prefixes, Name Prefixes.

Views: Using View Composers to share Variables with Every View.

Controllers: Getting User Inputs, Injecting Dependencies into Controllers, Resource Controllers.

Route Model Binding: Implicit Route Model Binding, Custom Route Model Binding.

Unit-III 11 Hrs

Form Method Spoofing: An Introduction to HTTP Verbs, HTTP Verbs in Laravel, HTTP Method Spoofing in HTML Forms, CSRF Protection

Redirects: redirect() to(), redirect() route(),redirect() back(), Other Redirect Methods, redirect(), with(), Aborting the Request

Custom Responses: response()make(), response() json() and jsonp(),response(),download() and file() Testing, TL;DR

Unit-IV 11 Hrs

Writing APIs: The Basics of REST-Like JSON APIs, Controller Organization and JSON Returns, Reading and Sending Headers in Laravel.

Storage and Retrieval: Basic File Uploads and Manipulation, Sessions, Cookies.

Unit-V 10 Hrs

Mail and Notifications: Mail, Mail Templates, Methods Available in build(), Attachments and Inline Images, Queues, Local Development, Notifications, scheduler

Testing: Testing Basics, Naming Tests, The Testing Environment, Application Testing- Test Case, Visiting" Routes, Custom Application Testing Assertion, JSON and Non-visit() Application Testing Assertions, Clicking and Forms, Jobs and Events, Authentication and Sessions

LABORATORY / PRACTICE COMPONENT

Considering a Database with minimum 10 attributes the 1-5 components defined below are to be completed in the lab Cycles.

- 1. Demonstrate prepping database
- 2. Routing stubbing the routes, displaying a view
- 3. Building layout defining layout, defining the child view
- 4. Adding task validation, creating a task,, displaying existing task
- 5. Deleting task adding the delete button, deleting the task

Note: Each program should be completed and executed within two consecutive lab cycles. However for CIE and SEE evaluation the examiner can specify minimum functionalities related to the program's keeping time factor as a constraint

Course Outcomes: After going through this course the students will be able to				
CO1	CO1 Understanding the basics of frameworks, routers and controllers, spooling, api's			
CO2	Using forms and gathering/validating inputs.			
CO3	Storing and using data by creating data tables and raw SQL statements.			
CO4	Analyze and solve common Web application tasks by writing PHP programs			

Refere	ence Books
1.	Laravel 5 Essentials, Martin Bean, Copyright [©] 2015 Packt Publishing, ISBN 978-1-78528-
	301-7
2.	Laravel Up & Running a framework for building modern PHP APPS, Matt Stauffer, 2 nd
	Edition, Copyright © 2017 Matt Stauffer, O'Reilly Media, Inc., CA 95472
3.	https://laravel.com/docs/5.1/quickstart

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory -100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

III – SEMESTER					
JAVA	JAVA FRAMEWORK BASED FULL STACK SOFTWARE SOLUTIONS				
	(Theory & Practice)				
Course Code	:	20MCA352	CIE	:	100+50 Marks
Credits: L:T:P	:	4:0:1	SEE	:	100+50 Marks
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours

Unit-I 10 Hrs

Collections framework: Collections Overview, The collection Classes. The Arrays Class.

Generics: Generics Fundamentals Bounded Types, Generic Methods, Generic Constructors, And Some Generic Restrictions. **Rest API:** Surfing the web, A Simple API, Resources and Representations, Hypermedia, Domain Specific Designs, The collection pattern, HTTP for APIs, CoAP: REST for embedded Systems.

Unit-II 10 Hrs

Hibernate: Understanding Object/Relational Persistence, What is persistence? Relational database, understanding SQL, Using SQL in Java, persistence in object-oriented applications; Persistence layers and alternatives, layered architecture, SQL/JDBC hand coding a persistence layer, using serialization, object-oriented database systems, other options; object/relational mapping-what is ORM? Generic ORM problems, Why ORM?; Introduction and integrating hibernate; mapping persistent classes- the caveat emptor application, implementing the domain model; Working with persistence object;

Unit-III 11 Hrs

Spring core: Introduction the spring framework-why spring? Light weight frameworks, Spring values, Spring in context, technologies, techniques, relationship to other frameworks, Bean: the bean factory and application context, different forms of dependency injection, Deciding Between Setter Injection and Constructor Injection, the container, **Spring JPA** - Repository, Entity, Naming convention, Sorting, Paging

Unit-IV 11 Hrs

Spring MVC: Model 1 architecture, Model2- MVC architecture, Model 2 with Front Controller, Controller without a view, with a view and using ModelMap, Controller for a simple form, simple form with validation

Unit-V 10 Hrs

Spring Rest: Rest Controller, Request Body, Response body, Error Handling, Validation

Spring Security: Basic, In Memory & DB

LABORATORY / PRACTICE COMPONENT

- 1. Write a java program which demonstrates Generics with key and value
- 2. Write a java program which demonstrates Linked List, Array List
- 3. Write a Java application using Hibernate to insert data into Student DATABASE and retrieve info based on particular queries (For example update, delete, search etc...)
- 4. Demonstrate the Rest API application for storing and retrieving the information from the RestAPI using CoAP
- 5. Demonstrate Spring core on Dependency Injection
- 6. Demonstrate Spring REST in get,put, post operations
- 7. Demonstrate Spring MVC on inventory management
- 8. Demonstrate Spring JPA in CRUD operations

Note: program 7 and 8 should be completed and executed within two consecutive lab cycles. However, for CIE test and SEE evaluation the examiner can specify minimum functionalities related to the programs keeping time factor as a constraint.

Cours	Course Outcomes: After going through this course the students will be able to			
CO1	CO1 Understand the collections and generics in spring			
CO2	Identifying and deciding the components for given problem			
CO3	Apply the Spring concepts for building applications			
CO4	Analyze and evaluate built full stack application			

Refere	nce Books
1.	Java: the complete reference, Schildt, Herbert, and Danny Coward, 7 th Edition, 2018, McGraw-Hill Education, ISBN: 978-1-26-044024-9
2.	Hibernate in action, Bauer, Christian, and Gavin King. Vol. 1, Manning, 2018. ISBN: 9781932394153
3.	Restful Web APIs: Services for a Changing World, Richardson, Leonard, et al., 4 th Edition, 2013, O'Reilly Media, Inc., ISBN: 9781617294945
4.	Spring in action, Walls, Craig, and Ryan Breidenbach, 6 th Edition, 2020, Dreamtech Press, ISBN – 9781617297571
5.	Spring micro services in action, Carnell, John, and Illary Huaylupo Sánchez, 2021, Manning, ISBN: 9781617296956
6.	Mastering Spring 5, Ranga Rao Karanam, 2 nd Edition, 2019, Packt Publishing, 1789618169, 9781789618167

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory -100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Laboratory/Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

III - SEMESTER					
JAVASCR	JAVASCRIPT FRAMEWORK BASED FULL STACK SOFTWARE SOLUTIONS				
		(Theory & Practice)			
Course Code	:	20MCA353	CIE	:	100+50 Marks
Credits: L:T:P	:	4:0:1	SEE	:	100+50 Marks
Total Hours	:	52L+26P	SEE Duration	:	3.00 Hours

Unit-I 08 Hrs

Introduction to the MERN stack:

Introduction, The MVC architectural Pattern, MERN Components React, Node.js, Express, MongoDB, Advantages of MERN, Isomorphic.

Welcome to React- Obstacles and Roadblocks, Reacts Future

Unit–II 12 Hrs

Understanding React and Web Server:

Server setup, NVM Node Js, Project, NPM, Express, Build time JSX compilation- Separate Script File, Transform, Automate, React Library, React Components-React classes, Composing components, passing data- using properties ,property validation, using children's Dynamic composition.

Unit-III 10 Hrs

Understanding React State:

React State – Setting state, Event handling, communicating from child to parent, Stateless components, Designing Components-state vs props, component hierarchy communication, Stateless components

Unit–IV 12 Hrs

Building RESTful APIs and Mongo DB:

REST, HTTP method as Actions, JSON, Express, Routing Hander function, Request Object, Response objects, Middleware, The list API, The create API, Using the LIST API, Using the Create API, Error Handling

Mongo DB: Basics, Schema initialization , MongoDB Node.JS Driver, callbacks, promises, Reading from MongoDB, Writing to MongoDB

Unit-V 10 Hrs

Working with React Router and forms:

Routing Techniques, Simple Routing, Route parameters, Route Query String, Programmatic Routing, Nested Routes, Browser history, Forms, Filter form, Get API, Edit page, UI Components, update API, Delete API.

LABORATORY / PRACTICE COMPONENT

- 1. Design a resume of a job aspirant using React components like Classes and Functions. Style the resume by applying CSS
- 2. Build Student Registration Portal using entities like component, State and Props
- 3. Demonstrate Node .Js Application to perform CRUD operation for online Book Cart
- 4. Design an employee Management system using RESTFULL APIs in React
- 5. Deploy connectivity between React and Node Application for Inventory Management system

Note: Each program should be completed and executed within two consecutive lab cycles. However for CIE and SEE evaluation the examiner can specify minimum functionalities related to the program's keeping time factor as a constraint.

Course Outcomes: After completing the course, the students will be able to				
CO1 Understand the concepts of Model, view and controller				
CO2	Jse Model, view and controller for developing applications using MERN			
CO3	Design web application using MERN Framework			
CO4	Demonstrate MVC Framework for real application			

Refer	rence Books
1.	Pro MERN Stack, Vasan Subramanian, 2019, ISBN-13(pbk):978-1-4842-2653-7
2.	MERN Quick Start Guide, Eddy Wilson Iriarte Koroloiva, 2018, PACKT Publication, ISBN
	978-1-78728-108-0
3.	Full stack React, Anthony Accomazzo, Ari Lerner, Nate Murray, Clay Allsopp, David
	Gutman, and Tyler McGinnis, 2017

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory -100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 30.

Total CIE = 50 (T) + 20(Q) + 30(EL) = 100 Marks

Laboratory/ Practice - 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks.

Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

		SEMESTER III			
		MINOR PROJECT			
		(Practice)			
Course Code	:	20MCA36	CIE	:	100 Marks
Credits: L:T:P	:	0:0:2	SEE	:	100 Marks
Total Hours	:	52P	SEE Duration	:	3.00 Hours (P)

GUIDELINES

1. Each project group will consist of maximum of two students

The Student shall undertake minor project depending on the electives / Research based / Industry Oriented

Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey

- 2. Allocation of the guides preferably in accordance with the expertise of the faculty
- 3. The number of projects that a faculty can guide would be limited to six
- 4. The minor project would be performed in-house
- 5. The implementation of the project must be preferably carried out using the resources available in the department/college
- 6. Students are required to publish project findings in reputed journals/ conferences

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Conceptualize, design and implement solutions for specific problems			
CO2	Communicate the solutions through presentations and technical reports			
CO3	Apply project and resource management skills, professional ethics and societal concerns			
CO4	Synthesize self-learning, team work and ethics			

Scheme of Continuous Internal Examination (CIE)

Evaluation of the project work will be done by the committee appointed by the director, Dept of MCA. Evaluation will be carried out in THREE Phases.

Phase	Activity	Weightage
I	Synopsis submission, Preliminary seminar for the approval of selected topic	20%
	and Objectives formulation	
II	Mid-term seminar to review the progress of the work and documentation	
	• Design and Simulation/Algorithm development /	20%
	Experimental Setup	
	• Conducting experiments / Implementation / Testing	20%
III	Oral presentation	10%
	Demonstration	10%
	Project report& Paper publication	20%

Scheme for Semester End Examination (SEE)

The evaluation will be done by Internal and External examiners. The following weightage would be given for the examination. Evaluation will be done in batches of 10 students.

1.	Project work	40%
2.	Presentation	30%
3.	Viva-voce	30%

	IV – SEMESTER						
	MAJOR PROJECT						
		(Pr	ractice)				
Course Code	:	20MCA41	CIE	:	100 Marks		
Credits L:T:P	:	0:0:20	SEE	:	100 Marks		
Hrs/Week	:	40	SEE Duration	:	3.00 Hours		

GUIDELINES

- 1. Major project will have to be done by only one student in his / her area of interest
- 2. Each student has to select a contemporary topic in the area of application or research that will use the technical knowledge and skill set
- 3. The project can be carried out on-campus or in an industry or an organization with prior approval from the Director, Department of MCA
- 4. Students carrying out the Project In house are required to be present in the college every day and report to the Internal Guide
- 5. The candidate must maintain and submit weekly project work dairy duly signed by the internal and external guide to verify the regularity of the student
- 6. Internal Evaluation of the project work will be done by the evaluation committee appointed by the Director, Department of MCA.
- 7. The standard duration of the project is for 5-month duration, however if the evaluation committee of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the committee.
- 8. Students are mandatorily required to publish in reputed journals/ conferences.

Course	Course Outcomes: After going through this course the students will be able to		
CO1	Conceptualize, design and implement solutions for specific problem defined		
CO2	Communicate the solutions through presentations and dissertation report		
CO3	Apply project and resource management skills, professional ethics and societal concerns		
CO4	Exhibit self-learning, lifelong learning skills towards sustainable solutions		

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide and members appointed by Director, MCA

Phase	Activity	Weightage
I	Synopsis submission, Preliminary seminar for the approval of selected topic,	20%
	review and refinement of objectives, Literature survey	
II	Mid-term seminars to review the progress of the work and documentation –	40%
	SRS and algorithm development, Design and simulation/ experimental set up	
III	Experimental result & analysis, testing, Conclusions and Future Scope of	40%
	Work, Dissertation Report	

<u>Note -</u>

- (a) 50% CIE is the pre requisite to appear for SEE
- (b) Two hard bound dissertation reports are to be submitted. The report has to be in light yellow color
- (c) Certificate sheet having the signatures of Guide, Director and Principal must be included
- (d) Plagiarism report must be <20% and to be included in the report

Scheme for Semester End Examination (SEE):

The evaluation will be done by ONE Senior faculty / Internal Guide from the department and ONE External member from Academia / Industry / Research Organization. Evaluation will be done in batches not exceeding SIX students per batch.

SEE procedure is as follows

	Internal Examiner	External		Total
		Examiner		
SEE Dissertation	100 marks	100 marks		200 marks
			(A)	(200/2) = 100 marks
Viva Voce	Jointly Evaluated			
	by Internal and		(B)	100 marks
	External Examiner			
		Total I	Marks	[(A)+(B)]/2 = 100

Final Marks / Grades = (CIE+SEE)/2

		SEMESTER: IV			
		TECHNICAL SEMINAR			
		(Practice)			
Course Code	:	20MCA42	CIE	:	50 Marks
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks
Hrs/Week	:	4	SEE Duration	:	3.00 Hours

GUIDELINES

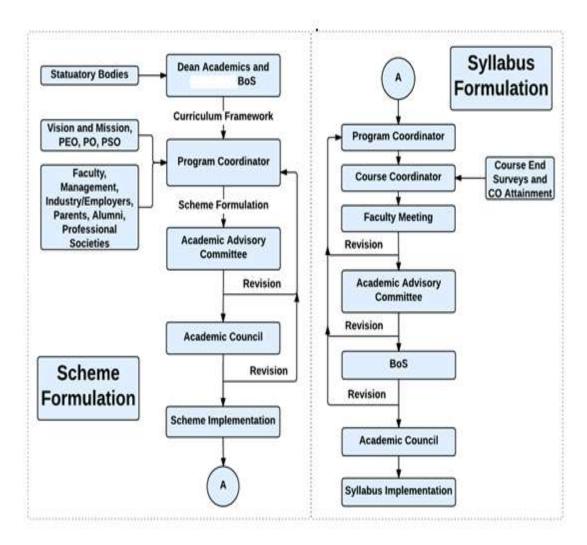
- 1. The seminar presentation shall be done by individual students.
- 2. The topic for seminar should be in one of the thrust areas relevant to industry or on-going research with in-depth technical review and analysis
- 3. The topic can also be an extension of the Major project
- 4. The student must be able to highlight or relate the technological developments with societal relevance and sustainability
- 5. The students must mandatorily address professional computing practices relevant to the topic of study
- 6. The student shall make an attempt to perform financial / cost analysis or apply project management tools as related to his/her topic of study
- 7. Each student must submit both hard and soft copy of the presentation and report

Course	Course Outcomes: After going through this course the students will be able to		
CO1	Identify topics in recent trends in computing technology.		
CO2	Perform literature / market / product survey and analyse information in the field of study		
CO3	Enhance communication skills and report writing skills		
CO4	Exhibit creative thinking abilities		

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of guide and senior faculty members. The evaluation criteria shall be as per the rubrics given below:

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Phase 1	Selection of topic – Technical Relevance, review of literature, Presentation	50%
	skills, Sustainability and Societal Concerns	
Phase 2	Technological developments, key competitors, Presentation skills, Report	50%
	writing	


Scheme for Semester End Evaluation (SEE):

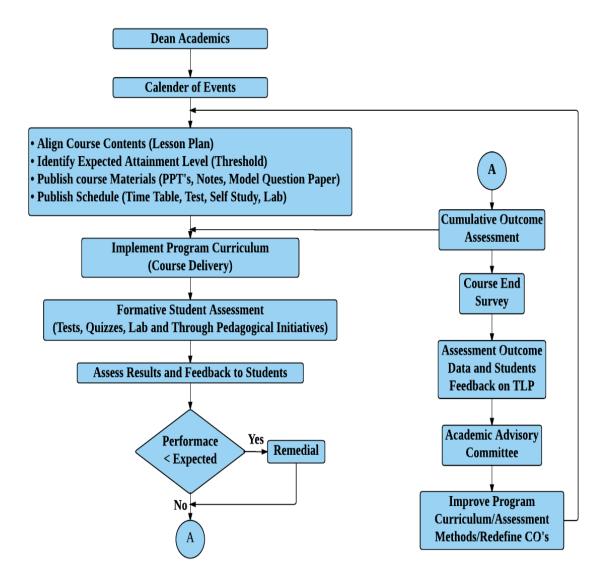
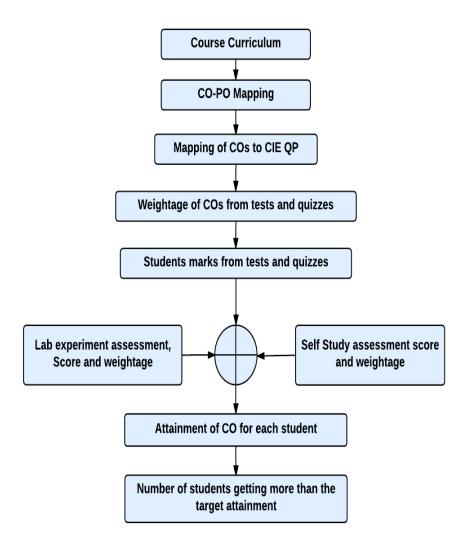
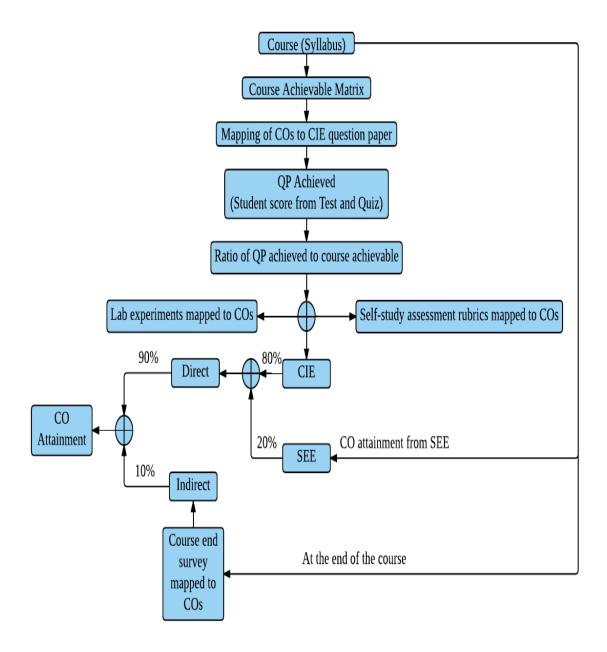
The evaluation will be done by ONE Senior faculty / Internal Guide from the department and ONE External member from Academia / Industry / Research Organization. Evaluation will be done in batches 6 students per batch.

Rubrics for SEE evaluation

• Topic	10%
Literature Review	20%
Technical relevance, Sustainability and Societal Concerns	30%
 Presentation Skills 	20%
 Viva- Voce 	20%

Curriculum Design Process

Figure 1: Curriculum Design Process

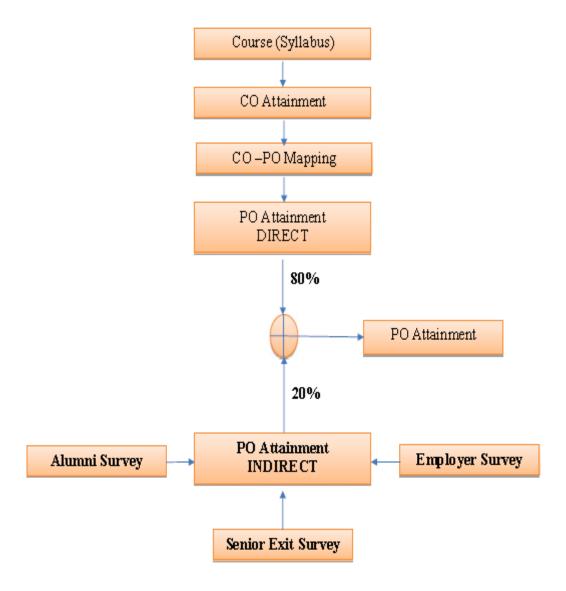

Figure 2: Academic Planning and Implementation

Figure 3: Process for Course Outcome Attainment

Figure 4: Final CO Attainment Process

Figure 5: Program Outcome Attainment Process

PROGRAMME OUTCOMES (PO)

MCA Graduates will be able to:

- **PO1** Computational Knowledge: Acquire in-depth computational knowledge and mathematics with an ability to abstract and conceptualize models from defined problems and requirements
- **PO2 Problem Analysis:** Identify, formulate, conduct literature survey and solve complex computing problems through analysis as well as provide optimal solutions
- PO3 Design / Development of Solutions: Design and evaluate solutions for complex problems, components or processes that meet specified needs after considering public health and safety, cultural, societal, and environmental factors
- **PO4** Conduct investigations of complex Computing problems: Conduct literature survey to analyze and extract information relevant to unfamiliar problems and synthesize information to provide valid conclusions and interpret data by applying appropriate research methods, tools and design experiments
- **PO5** Use of Modern Tool: Create, select, adapt and apply appropriate techniques, resources, and modern IT tools to complex computing system activities, with an understanding of the limitations
- **PO6** Professional Ethics: Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practices
- **PO7 Life-long Learning:** Engage in lifelong learning independently for continual development to improve knowledge and competence as a computing professional
- **PO8** Project management and finance: Demonstrate knowledge and understanding of management principles and apply these to multidisciplinary software development as a team member and manage projects efficiently as a leader considering economical and financial factors
- **PO9** Communication Efficacy: Understand and communicate effectively with the computing community and with society at large, regarding complex computing systems activities confidently and effectively by writing effective reports and design documentations by adhering to appropriate standards, make effective presentations and give / receive clear instructions
- **PO10** Societal and Environmental Concern: Understand responsibilities and consequences based on societal, environmental, health, safety, legal and cultural issues within local and global contexts relevant to professional computing practices
- **PO11** Individual and Team Work: Function effectively as an individual, as a member or leader in diverse teams in multidisciplinary environments
- **PO12** Innovation and Entrepreneurship: Identify a timely opportunity for entrepreneurship and use innovation to pursue and create value addition for the betterment of the individual and society at large