

R.V.COLLEGE OF ENGINEERING (R)

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of III& IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in BIOTECHNOLOGY

DEPARTMENT OF BIOTECHNOLOGY

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF BIOTECHNOLOGY

	THIRD SEMESTER CREDIT SCHEME						
SI.				Credit Allocation			n
No.	Course Code	Course Title	BoS	L	Т	Р	Total Credits
1	18MBT31	Downstream Process Technology	BT	4	0	1	5
2	18MBT3EX	Elective -E	BT	4	0	0	4
3	18MBT32	Internship	BT	0	0	5	5
4	18MBT33	Dissertation Phase I	BT	0	0	5	5
-	Total number of Credits				0	11	19
	Total Number of Hours / Week						

	FOURTH SEMESTER CREDIT SCHEME						
	Course Code	Course Title	BoS	Credit Allocation			
Sl. No.				L	Т	Р	Total Credits
1	18MBT41	Dissertation Phase II	BT	0	0	20	20
2	18MBT42	Technical Seminar	BT	0	0	02	02
	Total number of Credits			0	0	22	22
	Total Number of Hours / Week						

	III Semester				
	GROUP E: CORE ELECTIVES				
Sl. No.	Sl. No. Course Code Course Title				
1.	1. 18MBT3E1 Nanobiotechnology				
2.					
3.	3. 18MBT3E3 Next Generation Sequencing Technology				

	Semester: III				
	Downstream Process Technology				
Cou	Course Code: 18MBT31 CIE Marks:100+50				
Cree	Credits: L:T:P: 4:0:1 SEE Marks:100+50				
Hou	Hours: : 50L+35P SEE Duration:3Hrs				
Cou	rse Learning Objectives:				
1	Learn about the different methods of cell separations and clarification of broth				
2	Understand the basics of purification technology and its applications in Bioprocess industries				
3	3 Know the new technologies adopted in industries				
4	Understand different techniques of viral reduction in biological processes and explore case studies of current biological products.				

Unit-I	09 Hrs	
Introduction: Introduction to downstream processing, Recovery of intracellu		
extracellular products, cell disruption techniques, separation by settling, terminal settling		
velocity, batch settling, Kynch Theory. Numericals		
Unit –II Filtration and Durification, Filtration, Dra filtration, doubt filtration, mashanian	11 Hrs	
Filtration and Purification: Filtration: Pre-filtration, depth filtration, mechanism filtration, modules of depth filtration. Flow rates and pressure variations in depth filtration and pressure variations in depth filtration.	-	
Membrane filtration, microfiltration, ultrafiltration, Diafiltration, cross-flow		
transmembrane pressure and Flux calculations with numerical.	initation,	
transmemorane pressure and ratix calculations with numerical.		
Virus removal methods: Viral removal and deactivation methods, Viral filtration, uv-		
radiation, membrane filtration for virus removal. Methods of operation and scale-up ad	ctivities	
for viralclearance.		
Unit –III	11 Hrs	
Chromatography: Introduction to chromatography, Types of chromatography:		
chromatography, mechanismMembrane chromatography, types of membranes		
bioprocess, compatibility of membranes, biofouling of membranes, concentration pol		
and methods of control. Membrane chromatography modules and mechanism and	-	
techniques for purification of bio molecules, Electrochromatography, Simulated mo	ving bed	
chromatography. Unit –IV	9 Hrs	
Drying: Drying curve, Batch and continuous dryers, Freeze drying, spray		
Crystallization: Principles of crystallization. Extraction: process details, selection of		
percentage extraction, distribution coefficient. Adsorption: Types of adsorption,		
adsorbents, isotherms.	uniterent	
Unit –V	10 Hrs	
Current Scenario in the bioprocess industries. Process design criteria for low volu		
value products and high volume low value products. Process economics: cost cutting s		
costing for purification of a by-product.	0 /	
	mhinant	
Case-Studies: Purification Case studies on monoloclonal antibodies (mAbs), recombinant		
proteins, bacterial vaccines, traditional and cell culture based viral vaccines. Downstream processing of albumin and clotting factors.		
Unit-VI (Practical component)	35 Hrs	
	55 1118	
	1	
1) Cell disruption of intracellular biomolecules (ex: yeast cells) and to assay	the total	

- protein or enzyme content
- 2) Calculation of terminal settling velocity of disrupted yeast cells under the influence of

flocculants & to design of thickener for batch sedimentation (under gravity) using Kynch's theory

- 3) Determination of clean water flux (CWF) and to calculate the flux and area of membrane required for the clarification of known cell broth (ex: yeast cells) in given time
- 4) Extraction of an antibiotic (ex: ceftriaxone and sulbatum) using different aqueousorganic solvent systems and determination of distribution coefficient and percentage extraction.
- 5) To carry out bulk precipitation of protein/enzyme from given suspension (ex; yeast cells) using ammonium sulfate and find the % cut of ammonium sulfate where the protein is highest precipitated
- 6) Determination of the partition coefficient and yield of total protein present in intracellular or extracellular compounds (such as yeast cells/pigments) using Polyethylene Glycol and salt system in single and/or multiple stages.
- 7) Extraction of amylase from fungal sources and its estimation
- 8) Determination of the constants of Freundlich equation by adsorbing BSA on silica.
- 9) Determination of the rate of drying for the given sample in a vacuum tray drier or by osmotic dehydration (ex: vegetables such as potatoes)
- 10) Purification of biomolecules (ex: pigments) using gel chromatography or ion exchange chromatography

Expec	Expected Course Outcomes: After going through this course the student will be able to			
CO1:	Summarize the current process involved in industrial purification of biological products			
CO2:	Acquire the knowledge on different filtration and purification techniques.			
CO3:	Understand the different types of chromatography and viral reduction, removal and its			
	importance			
CO4:	Overview on case studies pertaining to bioproducts currently in market			

Refe	rence Books:
1	Uwe Gottschalk, Process Scale Purification Of Antibodies, John Wiley & Sons,2 nd edition,2017,ISBN: 978-1-119-12691-1
2	Harrison R.G. Todd P. Rudge S.R. and D.P. Petrides, Bioseparations Science and Engineering, Oxford University Press,2 nd edition, 2015, ISBN: 9780195391817
3	Mokesh Doble, Principles of Downstream Processing in Biological and Chemical Processes. CRC Press, Taylor & Francis group, 1 st edition, 2015, ISBN 9781771881401
4	Nooralabettu Krishna Prasad, <u>Downstream Process Technology: A New Horizon in</u> <u>Biotechnology</u> , PHI Learning Publications, 1 st edition, 2010, New Delhi. ISBN: 978-81- 203-4040-4

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: III				
Nanobiotechnology				
		(Group E: Core]	Elective)	
Course Code:18MBT3E1 CIE Marks:100				
Cree	Credits: L:T:P: 4:0:0 SEE Marks:100			
Hou	Hours: : 50L SEE Duration: 3Hrs			
Cou	rse Learning Objectives:			
1	Understand the fundamen	tals of nanomaterials	h.	
2	2 Describe methods for their synthesis, characterization and their applications			
3	3 To have awareness about the nanosensors used in diagnostic and therapeutic use.			
4	To design a concept for a nanoscale product and their applications in medical field.			

Unit-I	09 Hrs		
Fundamentals of Nanoscience and Engineering: History, Types of nanoma	aterials:		
Fullerenes, Nanoshells, Quntum dots, Dendrimers, Nanocarriers, Nanofibers, Approac	ches of		
Fabrication: Top-Down and Bottom-up methods of nanofabrication and Nanosy	nthesis,		
Biosynthesis of Nanoparticles, Microbial Nanoparticle production Biomineral	ization,		
Magnetosomes. Nanolithography: hard and soft lithography. Characterization of nanomaterials			
using spectroscopic (UV-VIS, FTIR and Raman) and microscopic methods (SEM, TEM	I, STM		
and AFM).			
Unit –II	11 Hrs		
Nanobiomaterials: DNA and Protein based Nano structures. Biomaterial nanoci	rcuitry;		
Protein based nanocircuitry; Neurons for network formation. DNA nanostructur	res for		
	105 101		
mechanics and computing and DNA based computation; DNA based nanomechanical d			
	levices.		
mechanics and computing and DNA based computation; DNA based nanomechanical d	levices. : Lotus		
mechanics and computing and DNA based computation; DNA based nanomechanical d Function and application of DNA based nanostructures. Bionanomaterials in Nature	levices. : Lotus ation of		

Unit –III10 HrsMicro & Nano Electromechanical systems and Microfluidics: BioMEMS/BioNEMS: Types
of transducers: mechanical, electrical, electronic, magnetic and chemical transducers. Nano
sensors: Types: Electronic nose and electronic tongue, magnetic nanosensors. mechanical
nanosensors: Cantilever Nanosensors, Microfludics: Laminar flow, Hagen-Poiseuille equation,
basic fluid ideas, Special considerations of flow in small channels, micro mixing, microvalves
& micropumps, Body on a chip and lab on a chip.10 Hrs

Unit –IV10 HrsNanosensors: Nanofabricated devices to separate and interrogate DNA, Interrogation of
immune and neuronal cell activities through micro- and nanotechnology based tools and
devices. Types of Nanosensors and their applications. Electromagnetic nanosensors: Electronic
nose and electronic tongue, Magnetic nanosensors. Mechanical nanosensors: Cantilever
Nanosensors, NanoBiosensors: NanoBiosensors in modern medicine.

Unit –V10 HrsMedical Nano biotechnology in Diagnostics, therapeutics, drug delivery, Nano Surgery and
Tissue Engineering . Drug Delivery Applications, Bioavailability, Sustained and targeted
release. Benefits of Nano drug delivery system. Use of Microneedles and nanoparticles for
targeted and highly controlled drug delivery. Nano robots in drug delivery and cleaning system.
Design of nanoparticles for oral delivery of peptide drugs. Nanotoxicity assessment: In-vitro
laboratory tests on the interaction of nanoparticles with cells.

Expected Course Outcomes: After going through this course the student will be able toCO1:Understand and apply the knowledge of nanomaterials and nanobiomaterials to enable

		health sector advancements.	
	CO2:	Interpret and apply the techniques of manufacturing and characterization processes.	
Γ	CO3:	Apply the knowledge for various applications in Biomedical field.	
Γ	CO4:	04: Design devices and systems for various biological applications	

Refe	Reference Books:			
1	Gabor L. H., Dutta J., Tibbals H. F., Rao A., Introduction to Nanosciences, 2008, CRC			
	press, ISBN- 1420048058			
2	Murthy B.S., Shankar P., Raj,B., Rath, B.B. and Murday, J. Textbook of Nanosciences			
	and Nanotechnology, 2013, Springer, Co-publication with University Press (India) Pvt.			
	Ltd. VCH, XII. ISBN- 978-3-642-28030-6.			
3	Vinod kumar Khanna, Nanosensors: 2013, Physical, Chemical and Biological, CRC			
	press, ISBN 9781439827123			
4	Sandra J. Rosenthal, David W. Wright, NanoBiotechnology Protocols, Springer, 2 nd			
	edition, Humana Press, 2013. ISBN- 13 978-158829276			

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

		Semester: III				
	Biobusiness, Project Management and Economics					
	(Group E: Core Elective)					
Cou	Course Code: 18MBTE2 CIE Marks:100					
Crec	Credits: L:T:P: 4:0:0 SEE Marks:100					
	rs: : 50L	SEE Du	iration:3Hrs			
	rse Learning Objectives:					
1	1 Understand and appreciate the principles, components and integrated approach of project management.					
2	Apply the knowledge for addressing the economical aspects for product development and commercialization					
3						
4	1	cost effective and justiciable business mod	del for bio enterprise			
		Unit-I	09 Hrs			
Intr	oduction: Project. Projec	t management, portfolio management,				
orga	e e	ment, operations management and organ				
Gen	eration and Screening	of Project Ideas and project life c	cycle: Generation and			
preli	minary screening of ideas	, project state holders & governance, pro	oject team, project life			
cycl			5 1 5			
		Unit –II	11 Hrs			
Man Netwo estin	agement: identify risks, ris work Techniques for Pu	agement: quality assurance, control of k analysis, plan risk resources, control ris roject Management : Development of he critical path, scheduling when resour	k. project network, time			
mou		Unit –III	10 Hrs			
Mark tools infla	Unit –III10 HrsIntroduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, Uses of Microeconomics. Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labor Market, Money and banks, Interest rate.					
		Unit –IV	10 Hrs			
Biomanufacturing : Overview of biomanufacturing requirements, Design in biomanufacture, technical considerations for biomanufacturing, life cycle, GMP, GLP & NABL, Quality System Regulations (QSR), Good Manufacturing Practice (GMP), Good Laboratory Practices (GLP), Good Clinical Practice (GCP), and FDA. Elements of quality system, Unique approaches to quality management: Risk based approach, ISO, TQM and six sigma, quality systems for research Unit –V 10 Hrs						
Bioe	enterprises Business play					
alter strat India	Bioenterprises : Business plans, Business models, funding of biotech business: Financing alternatives, Angel funding, Venture Capital funding, funding for biotech in India, Exit strategy, licensing strategies and valuation. Business laws applied to Biotech industries in India. funding agencies in India and biotech policy initiatives. Bio entrepreneurship in India. History of pioneer biotech companies: Alembic, Shanta Biotech & Biocon,					

Expec	Expected Course Outcomes: After going through this course the student will be able to						
CO1:	Explain and comprehend the concept of project management, economics and bio						
	business.						
CO2:	Appraise and illustrate various project management processes in the project management						
	framework.						
CO3:	Analyze, plan and develop quality control & assurance along with economics for						
	development of biobusiness for sustenance.						
CO4:	Develop project plans and apply project management techniques to monitor, review and						
	evaluate progress on different types of project.						

Reference Books: 1 Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9 2 Harold Kerzner, "Project Management A System approach to Planning Scheduling & Controlling", John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6. 3 Stephen Robbins, Mary Coulter & NeharikaVohra, Management, Pearson Education Publications, 10th Edition, ISBN: 978-81-317-2720-1. 4 Dwivedi D.N, Macroeconomics: Theory and Policy,McGraw Hill Education; 3rd Edition, 2010, ISBN-13: 978-0070091450.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	Semester: III						
	Next Generation Sequencing Technology						
		(Group E: Core]	Elective)				
Cou	rse Code: 18MBTE3		CIE Marks:100				
Cre	Credits: L:T:P: 4:0:0 SEE Marks:100						
Hou	Hours: : 50L SEE Duration: 3Hrs						
Cou	Course Learning Objectives:						
1	1 Understand the standard data structure (what information is included in each file)						
2	Implement different analysis tools (such as alignment, variant call,)						
3	3 Interpret the analysis results						
4	Design an experiment for solving the problem of your own research interest						

Unit-I	09 Hrs			
Introduction to Sequencing technology: Sequencing platforms, Chemistry of difference				
sequencing platforms, Advantages and disadvantages of the platforms, Need of Hybrid				
platforms. Base calling algorithms, Base quality, phred values, Reads quality check				
Interpretations from quality checks. Adapter and primer contamination. Processing reads using				
clipping of reads-Advantages and disadvantages of processing of reads				
Unit –II	11 Hrs			

Overview of NGS Application :Burrows-Wheeler Aligner (BWA) and Bowtie Alignment programs, burrows wheeler algorithm. Reference indexing and Alignment. Building from source, The bowtie aligner, The -n alignment mode, The -v alignment mode, Reporting Modes, Paired-end Alignment, Colorspace Alignment, Colorspace reads, Building a colorspace index, Decoding colorspace alignments, Paired-end colorspace alignment, Performance Tuning, SAM and BAM format. Artifacts in alignment programs

Whole Genome Sequencing, Human Exome sequencing, Transcriptome sequencing, chip Sequencing, smallRNA sequencing, Methylome sequencing, RAD Sequencing and RRL sequencing.

Unit –III

11 Hrs

Big Data Analytics : Introduction of Cloud computing, Hadoop architecture. MIKE2.0, Multiple layer architecture, Distributed Parallel architecture, NGS data analysis using Hadoop, **HPC overview and programming :**

Introduction to Linux operating system, Basic commands used in HPC cluster, Major components and its functions in HPC Cluster- head node, login node, interactive node, compute node, I/O node, HPC Data Storage, Serial and parallel batch jobs and scripting to run processes in parallel.

Unit –IV09 HrsTools and Techniques for high throughput data analysis :NGS data –Retrieval, Format Conversion, Quality Check, Trimming low quality reads,
Alignment and Assembly, Visualization, Variant Calling, Annotation. Gene–Level Statistical
Analyses, Identifying Functional Modules

Unit –V

10 Hrs

Clinical Applications :

States of the genetic research for complex disease, NGS and genetics of complex disease, personal genome sequencing, Disease gene identification, Differential expression analysis, Next generation sequencing in cancer research, Clinical sequencing, Diagnostic NGS.

Expec	Expected Course Outcomes: After going through this course the student will be able to					
CO1:	CO1: Understand the basic knowledge of Next Generation Sequencing					
CO2:	O2: Analyze and apply the appropriate tools and techniques to perform high throughput data					
	analysis					
CO3:	Design pipeline for various applications of NGS analysis					
CO4:	Develop high throughput data analysis tools for various biological applications.					

Reference Books:

	chee Boonst							
1	Next-generation DNA sequencing informatics by Stuart M. Brown 2015. Cold Spring							
	Harbor Laboratory Press, Cold Spring Harbor: New York. ISBN-13: 978-1936113873.							
2	Bioinformatics for High Throughput Sequencing by Naiara Rodríguez-Ezpeleta,							
	Michael Hackenberg, Ana M. Aransay. Springer New York, 2011. ISBN-13:							
	9781461407812							
3	High-Throughput Next Generation Sequencing Methods and Applications							
	Series: Young Min Kwon, Steven C. Ricke. Humana Press,2011.ISBN: 978-1-61779-							
	088-1 (Print) 978-1-61779-089-8							
4	Clinical Applications for Next-Generation Sequencing by Urszula Demkow and Rafal							
	Ploski: Academic Press, 2015, ISBN: 978-0-12-801739-5							

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

INTERNSHIP									
Course Code:18MBT33CIE Marks:100									
Credits	:	L:T:P	0:0:5	SEE Marks	:	100			
Hours/week	:	10Hrs		SEE Duration	:	3 Hrs			
		GUIDELIN	NES FOR INT	ERNSHIP					
		bjectives (CLO):							
The students sh						1			
(1) Understand provide ser	-	process of applying en	gineering know	ledge to produce prod	uct a	nd			
-		ortance of managemen	it and resource i	utilization					
-	-	importance of team w			ıstair	able			
solutions.		•							
(4) Imbibe valu	ies, p	rofessional ethics for I	lifelong learning	g.					
1) The duration	on of	the internship shall b	e for a period	of 8 weeks on full tin	ne ba	sis between II			
semester fi	nal e	kams and beginning of	f III semester.						
,		st submit letters from	•			name and the			
		nternship on the comp	•	•					
		be related to the field	d of specializati	ion or the M.Tech pro	ogran	n in which the			
student has									
		going internship train	-	ed to report their pr	ogres	s and submit			
	-	s reports to their respe	-		6.1				
		make a presentation		-		-			
		only upon approval of	-		-				
		hard copy of the inter			-	-			
-		required by the industry /c		ion can be submitted	as p	er the format			
1		1 be printed on bond	0	back to back print	with	soft binding _			
· -		spacing and times ne		-	vv run	sont omanig			
		at of the internship fina							
	ver Pa	-							
	Certificate from College								
	Certificate from Industry / Organization								
		ledgement							
	opsis	•							
-	Table of Contents								

- Chapter 1 Profile of the Organization Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
- Chapter 2 Activities of the Department -
- Chapter 3 Tasks Performed summaries the tasks performed during 8 week period
- Chapter 4 Reflections Highlight specific technical and soft skills that you acquired during internship
- References & Annexure

Course Outcomes:

After going through the internship the student will be able

to: CO1: Apply engineering and management principles

CO2: Analyze real-time problems and suggest alternate solutions

CO3: Communicate effectively and work in teams

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

1. Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of the Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries	35%

(2) Ability to comprehend the functioning of the organization/ departments 20%

(3) Importance of resource management, environment and sustainability 25% 20%

(4) Presentation Skills and Report

Dissertation Phase 1							
Course Code	:	18MBT34		CIE Marks	:	100	
Credits	:	L:T:P	0:0:5	SEE Marks	:	100	
Hours	:	10		SEE Duration	:	3 Hours	

Course Learning Objectives:

The students shall be able to

- 1. Understand the method of applying engineering knowledge to solve specific problems.
- 2. Apply engineering and management principles while executing the project
- 3. Demonstrate good verbal presentation and technical report writing skills.
- 4. Identify and solve complex engineering problems using professionally prescribed standards.

GUIDELINES

- 1. Major project will have to be carried out by only one student in his/her area of interest.
- 2. Each student has to select a contemporary topic that will use the technical knowledge of their program of specialization.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The project can be carried out on-campus or in an industry or an organization with prior approval from the Head of the Department.
- 5. The standard duration of the project is for 16 weeks, however if the guide and the evaluation committee of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the guide and the committee.
- 6. It is mandatory for the student to present his/her work in one of the international conferences or publish the research finding in a reputed unpaid journal with impact factor.

Course Outcomes:

After going through this course the students will be able to

- **CO1:** Conceptualize, design and implement solutions for specific problems.
- **CO2:** Communicate the solutions through presentations and technical reports.
- **CO3:** Apply project and resource managements skills, professional ethics, societal concerns
- **CO4:** Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

Phase	Activity			
4 th week	Topic approval along with Synopsis	20%		
8 th week	Literature survey with Problem Statement	20%		
12 th week	Motivation and Objectives	20%		
15 th week	Preliminary report for the approval of selected topic along with	40%		
	methodology.			

CIE Evaluation shall be done with marks distribution as follows:

 Selection 	10%	
• Literature	25%	
• Defining tl	he brief methodology along with the	
algorithm	25%	
•	Presentation	20%
•	Report writing	20%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Formulation of Project Objectives & Methodology	20%
3.	Presentation	25%
4.	Report	20%
5.	Viva Voce	30%

Dissertation Phase II							
Course Code:18MBT41CIE Marks:100							
Credits	:	L:T:P	0:0:20	SEE Marks	:	100	
Hours/Week	:	40		SEE Duration	:	3 Hours	

Course Learning Objectives:

The students shall be able to

- 1. Understand the method of applying engineering knowledge to solve specific problems.
- 2. Apply engineering and management principles while executing the project
- 3. Demonstrate good verbal presentation and technical report writing skills.
- 4. Identify and solve complex engineering problems using professionally prescribed standards.

GUIDELINES

- 1. Major project will have to be done by only one student in his/her area of interest.
- 2. Each student has to select a contemporary topic that will use the technical knowledge of their program of specialization.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The project can be carried out on-campus or in an industry or an organization with prior approval from the Head of the Department.
- 5. The standard duration of the project is for 16 weeks, however if the guide and the evaluation committee of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the guide and the committee.
- 6. It is mandatory for the student to present his/her work in one of the international conferences or publish the research finding in a reputed unpaid journal with impact factor.

Course Outcomes:

After going through this course the students will be able to

- **CO1:** Conceptualize, design and implement solutions for specific problems.
- **CO2:** Communicate the solutions through presentations and technical reports.
- **CO3:** Apply project and resource managements skills, professional ethics, societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

Phase II	Activity	Weightage
5 th week	Review and refinement of Objectives and methodology.	20%
10 th week	Mid-term progress review shall check the compliance with the objectives and methodology presented in Phase I, review the work	
	performed.	
15 th week	Oral presentation, demonstration and submission of project report. Outcome and publication	40%

CIE Evaluation shall be done with marks distribution as follows:

• Review of formulation of objectives and methodology	
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing / analysis	25%
Demonstration & Presentation	20%
• Report writing	20%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

. Brief write-up about the project		
Formulation of Project Objectives & Methodology	20%	
Experiments / Analysis Performed; Results & Discussion	25%	
Report	20%	
Viva Voce	30%	
	Formulation of Project Objectives & Methodology Experiments / Analysis Performed; Results & Discussion Report	

TECHNICAL SEMINAR								
Course Code	:	18MBT42		CIE Marks :	50			
Credits	:	L:T:P	0:0:2	SEE Marks	50			
Hours/Week	:	4		SEE Duration	30 min			
Course Learni The students sh	0	Objectives (CLO):						
			lonmonte in their	chosen field of interest				
	(1) Understand the technological developments in their chosen field of interest(2) Explain the scope of work and challenges in the domain area							
	(2) Explain the scope of work and chanenges in the domain area (3) Analyze these engineering developments in the context of sustainability and							
	societal concerns.							
		is/her presentation skills	and technical re	port writing skills				
		GUIDELIN						
1) The pres	1) The presentation will have to be done by individual students.							
				st areas with in-depth rev	iew and			
•		a current topic that is re						
, 1		could be an extension or		1 0				
<i>c</i>	 The student must be able to highlight or relate these technological developments with sustainability and societal relevance. 							
5) Each stu	•							
CO1: Identify t CO2: Perform s study. CO3: En	oug opi sur lha	s: gh this course the studen ics that are relevant to th vey and review relevant nce presentation skills a ernative solutions which	ne present contex information to the nd report writing	t of the world he field of				

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

Rubrics for Evaluation:

- Topic Technical Relevance, Sustainability and Societal Concerns 15%
- Review of literature 25%
- Presentation Skills 35%
- 4) Report 25%