

Approved by AICTE, New Delhi

BACHELOR OF ENGINEERING (B.E.) 2022 SCHEME

SCHEME & SYLLABUS SECOND YEAR B.E. PROGRAMS

INFORMATION SCIENCE AND ENGINEERING

ACADEMIC YEAR 2023-24

Approved by AICTE, New Delhi

DEPARTMENT VISION

To be the hub for innovation in Information Science & Engineering through Teaching, Research, Development and Consultancy; thus make the department a well-known resource centre in advanced, sustainable and inclusive technology.

DEPARTMENT MISSION

ISE1: To enable students to become responsible professionals, strong in fundamentals of Information Science and engineering through experiential learning.

ISE2: To bring research and entrepreneurship into classrooms by continuous design of innovative solutions through research publications and dynamic development oriented curriculum.

ISE3: To facilitate continuous interaction with the outside world through student internship, faculty consultancy, workshops, faculty development programmes, industry collaboration and association with the professional societies.

ISE4: To create a new generation of entrepreneurial problem solvers for a sustainable future through green technology with an emphasis on ethical practices, inclusive societal concerns and environment.

ISE5: To promote teamwork through inter-disciplinary projects, co-curricular and social activities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide adaptive and agile skills in Information Science and Engineering needed for professional excellence / higher studies /Employment, in rapidly changing scenarios.

PEO2: To provide students a strong foundation in basic sciences and its applications to technology.

PEO3: To train students in core areas of Information science and Engineering, enabling them to analyse, design and create products and solutions for the real-world problems, in the context of changing technical, financial, managerial and legal issues.

PEO4: To inculcate leadership, professional ethics, effective communication, team spirit, multi-disciplinary approach in students and an ability to relate Information Engineering issues to social and environmental context.

PEO5: To motivate students to develop passion for lifelong learning, innovation, career growth and professional achievement.

Approved by AICTE, New Delhi

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Recognize and appreciate the principles of theoretical foundations, data organization, data communication, security and data analytical methods in the evolving technology
PSO2	Learn the applicability of various system software for the development of quality products in solving real-world problems with a focus on performance optimization
PSO3	Demonstrate the ability of teamwork, professional ethics, communication, and documentation skills in designing and implementation of software products using the SDLC principles

Approved by AICTE, New Delhi

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	PY	Physics
9.	CY	Chemistry
10.	MA	Mathematics
11.	AS	Aerospace Engineering
12.	AI & ML	Artificial Intelligence & Machine Learning
13.	BT	Biotechnology
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	CV	Civil Engineering
17.	EC	Electronics & Communication Engineering
18.	EE	Electrical & Electronics Engineering
19.	EI	Electronics & Instrumentation Engineering
20.	ET	Electronics & Telecommunication Engineering
21.	IM	Industrial Engineering & Management
22.	IS	Information Science & Engineering
23.	ME	Mechanical Engineering

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

INDEX

SECOND YEAR COURSES							
Sl. No.	Course Code	Name of the Course	Page No.				
		III SEMESTER					
1.	MAT231CT	Linear Algebra and Probability Theory	1				
2.	CV232AT	Environment & Sustainability	3				
	ME232AT	Material Science for Engineers					
	BT232AT	Bio Safety Standards and Ethics					
3.	IS233AI	Data Structures and Applications (Common to CS, IS, CD & CY)	9				
4.	IS234AT	Logic Design and Computer Organization	13				
5.	CS235AI	Operating Systems (Common to CS, IS, CD & CY)	15				
6.	IS237DL	Design Thinking Lab	18				
7.	CS139DT	Bridge Course: C Programming	21				
		IV SEMESTER					
8.	CS241AT	Discrete Mathematical Structures and Combinatorics (Common to CS, IS,	24				
0.	C3241A1	CD, AI & CY)					
	CV242AT	Environment & Sustainability	27				
9.	ME242AT	Material Science for Engineers					
	BT242AT	Bio Safety Standards and Ethics					
10.	CD343AI	Design and Analysis of Algorithms (Common to CS, IS, CD, AI & CY)	33				
11.	IS244AI	Internet of Things and Applications	37				
12.	CY245AT	Computer Networks (Common to CS, IS, CD, AI & CY)	40				
13.	XX246XT	Professional Core Course III – Group A	NPTEL				
14.	HS247XL	Ability Enhancement Course	42				
15.	HS248AT	Universal Human Values	58				
16.	MA149DT	Bridge Course: Mathematics	60				

Approved by AICTE, New Delhi

Bachelor of Engineering in

INFORMATION SCIENCE AND ENGINEERING

	2022 SCHEME - CREDITS AND COMPONENTS												
	III SEMESTER												
Sl.			Cr	edit A	Alloca	ation			Max Ma	rks CIE	SEE	Max Ma	rks SEE
No.	Course Code	Course Title	L	T	P	Total	BoS	Category	Theory	Lab	Duration (H)	Theory	Lab
1	MAT231CT	Linear Algebra and Probability Theory	3	1	0	4	MA	Theory	100	****	3	100	****
2	XX232AT	Basket Courses - Group A	3	0	0	3	BT/CV /ME	Theory	100	****	3	100	****
3	IS233AI	Data Structures and Applications (Common to CS, IS, CD & CY)	3	0	1	4	IS	Theory + Lab	100	50	3	100	50
4	IS234AT	Logic Design and Computer Organisation	3	1	0	4	IS	Theory	100	****	3	100	****
5	CS235AI	Operating Systems (Common to CS, IS, CD & CY)	3	0	1	4	CS	Theory + Lab	100	50	3	100	50
6	IS237DL	Design Thinking Lab	0	0	2	2	IS	Lab	****	50	2	****	50
7	CS139DT	Bridge Course: C Programming	2(A)	0	0	AUDIT	CS	Theory	50	****	****	****	****
		Total				21							

Approved by AICTE, New Delhi

Bachelor of Engineering in

INFORMATION SCIENCE AND ENGINEERING

	2022 SCHEME - CREDITS AND COMPONENTS												
	IV SEMESTER												
	Course		Credit Allocation				BoS		Max Ma	rks CIE	SEE	Max Ma	arks SEE
Sl. No.	Code	Course Title	L	Т	P	Theory	Lab	Category	Theory	Lab	Duration (H)		
1	CS241AT	Discrete Mathematical Structures and Combinatorics (Common to CS, IS, CD, AI & CY)	3	0	0	3	CS	Theory	100	****	3	100	
2	XX232AT	Basket Courses - Group A	3	0	0	3	BT/CV/ ME	Theory	100	****	3	100	****
3	CD343AI	Design and Analysis of Algorithms (Common to CS, IS, CD, AI & CY)	3	0	1	4	CS	Theory + Lab	100	50	3	100	50
4	IS244AI	Internet of Things and Applications	3	0	1	4	IS	Theory + Lab	100	50	3	100	50
5	CY245AT	Computer Networks (Common to CS, IS, CD, AI & CY)	3	0	0	3	CY	Theory	100	****	3	100	****
6	XX246XT	Professional Core Course - III (Group A)	2	0	0	2	XX	NPTEL	50	****	3	50	****
7	HS247XL	Ability Enhancement Course	0	0	2	2	HS	Lab	****	50	2	****	50
8	HS248AT	Universal Human Values	2	0	0	2	HS	Theory	50	****	2	50	****
9	MAT149DT	Bridge Course: Mathematics	2(A)	0	0	AUDIT	MA	Theory (Audit Course)	50	****	****	****	****
		Total				23							

	ENGINEERING MATHEMATICS - III							
Sl.No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Linear algebra, fourier transforms and statistics	MAT231AT	EC,EE, EI, ET					
2	Statistics, laplace transform and numerical methods	MAT231BT	AS, BT, CH, IM, ME					
3	Linear algebra and probability theory	MAT231CT	CD,CS,CY,IS					
4	Applied mathematics for civil engineering	MAT231DT	CV					
5	Mathematics for artificial intelligence & machine learning	MAT231ET	AI & ML					
(S	Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem)							
Sl.No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Environment & Sustainability	CV232AT						
2	Material Science for Engineers	ME232AT	Common to all					
3	Bio Safety Standards and Ethics	BT232AT						
Note: A	Note: Any one course should be chosen from the above							
	Bridge Course: Audit course for lateral entry diploma students							
Sl.No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Bridge Course C Programming	CS139DT	Common to all					

	ENGINEERING MATHE	MATICS - IV						
Sl.No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Probability Theory and Linear Programming	MAT241AT	AS,CH,CV,EE,EI,ET, ME					
2	Discrete Mathematical Structures and Combinatorics	CS241AT	AI&ML,CD,CY,CS,IS					
3	Biostatistics	BT241AT	BT					
4	Mathematics for Communication Engineering	EC241AT	EC					
5	Statistics for Data Analytics	IM241AT	IM					
(Stu	Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem)							
Sl.No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Environment & Sustainability	CV232AT						
2	Material Science for Engineers ME232AT							
3	Bio Safety Standards and Ethics	BT232AT	- Common to all					
	Note: Any one course should be chosen apart from the	ne course taken in the prev	ious semester					
	*** Bridge Course: Audit course for lateral entry diploma students							
Sl.No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Bridge Course Mathematics	MAT149DT	Common to all					

	ABILITY ENHANCEMENT COURSES								
Sl. No.	Course Code	Course Title							
1	HS247AL	National Service Scheme							
2	HS247BL	National Cadet Corps							
3	HS247CL	Physical Education : Sports & Athletics							
4	HS247DL	Music							
5	HS247EL	Dance							
6	HS247FL	Theater (Light Camera & Action)							
7	HS247GL	Art Work & Painting							
8	HS247HL	Photography & Film Making							

	GROUP A: PRO	DFESSIONAL ELECTIVES (NPTEL COU	RSES)
Sl. No.	Course Code	Course Title	Duration
1.	IS246AT	Computer Graphics (Common to IS & AI)	8 Weeks
2.	AI246BT	Modern Algebra (Common to CS, IS, CD, AI & CY)	8 Weeks
3.	CS246CT	Distributed Systems (Common to CS, IS, CD & CY)	8 Weeks
4.	IS246DT	Introduction to Haskell Programming (Common to CS, IS, CD & CY)	8 Weeks
5.	CS246ET	Google Cloud Computing Foundations (Common to CS & IS)	8 Weeks

Approved by AICTE, New Delhi

Semester: III

LINEAR ALGEBRA AND PROBABILITY THEORY

Category: Professional Core Course (Common to CD, CS, CY, IS)

(Theory)

Course Code	:	MAT231CT	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	45L+30T	SEE Duration	:	3 Hours

09 Hrs Unit-I

Linear Algebra – I:

Vector spaces, subspaces, linear dependence and independence, basis, dimension, four fundamental subspaces, rank-nullity theorem. Linear transformations - matrix representation, kernel and image of a linear transformation, dilation, reflection, projection, and rotation matrices. Implementation using MATLAB.

> 09 Hrs Unit – II

Linear Algebra - II:

Inner Products, orthogonal matrices, orthogonal and orthonormal bases, Gram-Schmidt process, QRfactorization. Eigen values and Eigen vectors (recapitulation), diagonalization of a matrix (symmetric matrices) and singular value decomposition. Implementation using MATLAB.

> Unit –III 09 Hrs

Random Variables:

Random variables-discrete and continuous, probability mass function, probability density function, cumulative distribution function, mean and variance. Two or more random variables - Joint probability mass function, joint probability density function, conditional distribution and independence, Covariance and Correlation. Implementation using MATLAB.

> Unit –IV **09 Hrs**

Probability Distributions and Sampling Theory:

Discrete and continuous distributions - Binomial, Poisson, Exponential and Normal. Sampling theory -Sampling, sampling distributions - Simple random sampling (with replacement and without replacement). Standard error, sampling distributions of means (σ known), sampling distributions of proportions, sampling distribution of differences and sums. Implementation using MATLAB.

> Unit -V 09 Hrs

Inferential Statistics:

Principles of Statistical Inference, Test of hypothesis - Null and alternative hypothesis, Procedure for statistical testing, Type I and Type II errors, level of significance, Tests involving the normal distribution, one -tailed and two – tailed tests, P – value, Special tests of significance for large and small samples (F, Chi – square, Z, t – test). Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to: -							
CO1:	Illustrate the fundamental concepts of linear algebra, random variables, distributions, sampling and							
	inferential statistics.							
CO2:	Compute the solution by applying the acquired knowledge of linear algebra, random variables,							
	distributions, sampling and inferential statistics to the problems of engineering applications.							
CO3:	Analyze the solution of the problems obtained from appropriate linear algebra and probability techniques							
	to the real-world problems arising in many practical situations.							
CO4:	Interpret the overall knowledge of linear algebra, random variables, probability distributions, sampling							
	theory and inferential statistics gained to engage in life – long learning.							

Re	ference Books
1	Linear Algebra and its Applications, David C. Lay, 3 rd Edition, 2002, Pearson Education India, ISBN-13: 978-
1.	81-7758-333-5.
2.	Linear algebra with Applications, Steven J Leon, 9th Edition, 2014, Pearson, ISBN: 13:978-0321962218.
2	Probability & Statistics for Engineers & Scientists, Ronald E. Walpole & Raymond H. Myers, 9th Edition,
3.	2016, Pearson Education, ISBN-13: 978-0134115856.
4	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6th Edition,
4.	John Wiley & Sons, 2014, ISBN:13 9781118539712, ISBN (BRV):9781118645062.
_	Higher Engineering Mathematics, B.V. Ramana, 11th Edition, 2010, Tata McGraw-Hill, ISBN: 13-978-07-
٥.	063419-0; ISBN: 10-0-07-063419-X.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS				
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Approved by AICTE, New Delhi

Semester: III

ENVIRONMENT & SUSTAINABILITY
Category: Professional Core Course
(Common to all Programs)
(Theory)

: CV232AT CIE : 100 Marks

COULDS COUL		0 , 20212		•	2001:20222
Credits: L:T:P	:	3:0:0	SEE	••	100 Marks
Total Hours	:	42L	SEE Duration	••	3 Hours

Unit-I 10 Hrs

Environment and biodiversity:

Course Code

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow–ecological succession. Types of biodiversity: genetic, species and ecosystem diversity–values of biodiversity, threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity.

Environmental pollution:

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollution. Solid, Hazardous and E-Waste management. Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

Unit – II 08 Hrs

Renewable sources of energy:

Energy management and conservation, New Energy Sources: Need of new sources. Different types of new energy sources. Energy Cycles, carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-Socioeconomical and technological change. Applications of - Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

Unit –III 08 Hrs

Sustainability and management:

Introduction to Environmental Economics, Environmental Audit, Development, GDP, Sustainability - concept, needs and challenges-economic, social and aspects of sustainability - from unsustainability to sustainability-millennium development goals and protocols.

Sustainable Development Goals - targets, indicators and intervention areas Climate change - Global, Regional and local environmental issues and possible solutions. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry.

Unit –IV 08 Hrs

Sustainability practices:

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment.

Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports.

Linear vs. cyclical resource management systems, need for systems thinking and design of cyclical systems, circular economy, industrial ecology, green technology. Specifically apply these concepts to: Water Resources, Energy Resources, Food Resources, Land & Forests, Waste management.

Unit –V 08 Hrs

Corporate Social Responsibility (CSR):

Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity, Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of CSR in India.

Sustainability Reporting:

Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Understand the basic elements of Environment and its Biodiversity.				
CO 2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.				
CO 3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.				
CO 4	Recognize the role of Corporate social responsibility in conserving the Environment.				

Re	Reference Books				
1.	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016.				
	ISBN-13 - 978-9387432352				
2.	'Introduction to Environmental Engineering and Science', Gilbert M.Masters, Wendell P Ela, 3 rd Edition,				
	Pearson Education, 2006. ISBN-13 - 978-0132339346				
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006				
4.	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David				
	Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)					
Q.NO.	Q.NO. CONTENTS					
	PART A					
1	Objective type of questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6 Unit 3 : Question 5 or 6						
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Go, change the world

Autonomous
Institution Affiliated
to Visvesvaraya
Technological
University, Belagavi

Approved by AICTE,

Semester: III						
MATERIALS SCIENCE FOR ENGINEERS						
		Categ	gory: Professional Core			
			(Theory)			
Course Code	:	ME232AT	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	:	40L	SEE Duration	ı :	3 Hours	
			Unit-I	•	06 Hrs	

The Fundamentals of Materials

The electronic structure of atoms, types of atomic and molecular bonds: ionic bond, covalent bond, metallic bond, secondary bonds, mixed bonding, hybridization. Energy bands in metals, insulators, and semiconductors. Basic crystallography. Defects and dislocations. Types of materials: polymers, metals and alloys, ceramics, semiconductors, composites.

Unit – II 10 Hrs

Material behaviour

Thermal properties: thermal conductivity, thermoelectric effects, heat capacity, thermal expansion coefficient, thermal shock, thermocouple. Electrical Properties: dielectric behaviours and temperature dependence of the dielectric constant, insulating materials, ferroelectricity, piezoelectricity, super conductor. Optical properties: luminescence, optical fibers, Mechanical Properties: Stress-strain diagram, elastic deformation, plastic deformation, hardness, viscoelastic deformation, impact energy, fracture toughness, fatigue.

Unit –III 10 Hrs

Materials and their Applications

Semiconductors, dielectrics, optoelectronics, structural materials, ferrous alloys, nonferrous alloys, cement, concrete, ceramic, and glasses. Polymers: thermosets and thermoplastics, composites: fibre-reinforced, aggregated composites, electronic packaging materials, biomaterials, processing of structural materials.

Unit –IV 07 Hrs

Heat Treatment

Post processing heat treatment of electronic devices: thermal oxidation, diffusion, rapid thermal processing. Heat treatment of ferrous materials: annealing, spheroidizing, normalizing, hardening, tempering. formation of austenite, construction of Time Temperature Transformation (TTT) curves. Special heat treatment processes: carburizing, nitriding, cyaniding, flame, and induction hardening. Defects in heat treatment.

Unit-V 07 Hrs

Nanomaterials

Synthesis of nanomaterials: ball milling, sol-gel, vapour deposition growth, pulse laser, magnetron sputtering, lithography. Nano porous materials: zeolites, mesoporous materials, carbon nanotubes, graphene, nano FRPs, nano fabrics, bioresorbable and bio-erodable materials, nano ceramic, nano glasses, nano biomaterials, nano implant associated materials. Characterisation of nano structures, spectroscopic techniques, automatic force microscopy.

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Course Outcomes: After completing the course, the students will be able to:			
CO1	Understand the classification of materials, their atomic structure, and properties.			
CO2	Investigate the properties and applications of different materials.			
CO3	Analyse the effect of different heat treatment processes.			
CO4	Recognize different types of nanomaterials, synthesis methods and characterisation techniques.			

Ref	Reference Books		
1.	Material Science and Engineering, William D Callister, 6 th Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-5		
2.	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6		
3.	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-066717-9		
4.	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996, ISBN:978-0849322749		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A	-			
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	2 Unit 1 : (Compulsory)				
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	5 & 6 Unit 3 : Question 5 or 6				
7 & 8 Unit 4 : Question 7 or 8					
9 & 10 Unit 5: Question 9 or 10					
TOTAL					

Approved by AICTE, New Delhi

Semester: III

BIO SAFETY STANDARDS AND ETHICS

Category: Professional Core Course (Common to all Programs)

(Theory)

(======================================					
Course Code	••	BT232AT	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3 Hours

Unit-I 09 Hrs

Biohazards, Bio safety levels and cabinets:

Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets

(Materials used for fabrication, sensors, filters, pumps, compressors)

08 Hrs Unit – II

Biosafety Guidelines:

Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review committee o Genetic manipulation), GEAC (Genetic Engg Approval

Committee) for GMO applications in food and agriculture. Overview of National Regulations and relevant International Agreements including Cartagena Protocol.

> 10 Hrs Unit –III

Food safety standards:

FSSAI (Food Safety and Standards Authority of India), Functions, License, types of FSSAI Licences and compliance rules.

Food Hygiene:

General principles of food microbiology and overview of foodborne pathogens, sources of microorganisms in the food chain (raw materials, water, air, equipment, etc.)

Quality of foods, Microbial food spoilage and Foodborne diseases, Overview of beneficial microorganisms and their role in food processing and human nutrition, Food Analysis and Testing, General principles of food safety management systems, Hazard Analysis Critical Control Point (HACCP).

> 09 Hrs Unit -IV

Food preservations, Processing, and Packaging:

Food Processing Operations, Principles, Good Manufacturing Practices HACCP, Good production, and processing practices (GMP, GAP, GHP, GLP, BAP, etc). Overview of food preservation methods and their underlying principles including novel and emerging methods/principles. Overview of food packaging methods and principles including novel packaging materials.

> Unit -V 09 Hrs

Food safety and Ethics:

Food Hazards, Food Additives, Food Allergens Drugs, Hormones, and Antibiotics in Animals. Factors That Contribute to Foodborne Illness, Consumer Lifestyles and Demand, Food Production and Economics, History of Food Safety, The Role of Food Preservation in Food Safety.

Ethics: Clinical ethics, Health Policy, Research ethics, ethics on Animals. Biosafety and Bioethics.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Have a comprehensive knowledge of Biohazards and bio safety levels				
CO 2	Understanding the biosafety guidelines and their importance to the society				
CO 3	Acquire Knowledge with respect to the Food standards, Hygiene, food processing and packing				
CO 4	Appreciate the food safety, Ethics, biosafety and bio ethics				

Reference Books					
1	Deepa Goel, Shomini Parashar IPR, Biosafety and Bioethics 1 st Edition, 2013, ISBN: 978-8131774700.				
2	Cynthia A Roberts, The Food Safety, Oryx Press, first Edition, 2001, ISBN: 1–57356–305–6.				
3	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.				
4	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2 nd Edition, 2017, ISBN: 978-0415790314.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	# COMPONENTS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)				
Q.NO.	Q.NO. CONTENTS				
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: (Internal Choice)	16			
5 & 6	Unit 3: (Internal Choice)	16			
7 & 8	7 & 8 Unit 4: (Internal Choice)				
9 & 10	9 & 10 Unit 5: (Internal Choice)				
	TOTAL	100			

Approved by AICTE, New Delhi

Semester: III

DATA STRUCTURES AND APPLICATIONS

Category: Professional Core Course (Common to CS, IS, CD &CY)

(Theory and Lab)

(Theory and East)						
Course Code	:	IS233AI		CIE	:	100 + 50Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 + 50Marks
Total Hours	:	45L+30P		SEE Duration	:	3+3 Hours

Unit-I 09 Hrs

Introduction:

Introduction to Data structures, Types of Data Structures, Linear & non-linear Data Structures

Stack definitions & concepts, Representing stacks in C, Operations on stacks, Applications of Stacks:Infix to Postfix, Infix to Prefix, Postfix expression evaluation

Recursion:

Introduction to Recursion, Factorial function, Binary search, Towers of Hanoi problem, Role of thestack during execution.

> Unit – II 09 Hrs

Oueues:

Representation of queue, operations, circular queues. Application of Queue: Message queue using circular queue. **Dynamic Memory allocation:**

malloc(), calloc(),free(), realloc()

Linked Lists:

Definition and terminology, Singly Linked List (SLL), Various operations on SLL: insertion, deletion and display, getnode, freenode, and header node.

> 09 Hrs Unit –III

Circular Singly Linked List (CSLL):

Definition, Various operations, Application: Queue implementation. Doubly Linked List (DLL), Circular Doubly Linked List (CDLL). Applications: Polynomial multiplication, Addition of long positive integers.

Recursive Definition, Terminology, Binary Trees (BT), Binary Search Trees (BST), Expression Trees (ET).

Unit -IV

Various Operations on BT, BST, ET: Insertion, Deletion, Display and Traversals. Applications: Tree Sort, Infix, Postfix and Prefix.

Heap: Definition, Construction, Applications of Heap: Heap Sort, Priority Queue.

Unit –V 09 Hrs

Threaded Binary Tree: Types and application. Balanced tree: AVL trees, B+ tree, Splay and Tries.

Graph: Preliminaries; Matrix and Adjacency List representation of Graphs.

Hashing: Open Hashing, Closed Hashing, Collision and Collision Resolution Strategies.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Apply the knowledge of computing to define the various data structures and its operations				
CO 2	Analyse a problem and identify the suitable data structure to develop solution				
CO 3	Investigate &Design solution to a given problem using modern tools and appropriate data structure				
CO 4	Implement solutions for real-time applications				
CO 5	Demonstrate Good Coding Practices engaging in lifelong learning				

Approved by AICTE, New Delhi

Ref	Reference Books				
1.	Data Structures using C and C++, Yedidyah Langsam Moshe J. Augenstein and Aaron M. Tenenbaum,				
	2 nd Edition, 2009, PHI/Pearson.				
2.	Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, 4 th Revised Edition, 2013,				
	AddisonWesley, ISBN-13: 9780132847377				
3.	Data Structures Using C, Reema Thareja, 1st Edition, 2011, Oxford Higher Education				
4.	Fundamentals of Data Structures, Ellis Horowitz, Sartaj Sahni, Illustrated Edition, Computer Science				
	Press.				

LABORATORY COMPONENT

PART A

Note: The following programs can be executed on C/C++/Python/Java or any equivalent tool/language **Practice Programs:**

Implementation and execution of following programs to understand basic concept and working of various datastructures.

- 1. To solve tower of Hanoi problem.
- 2. To Implement a Stack using an Array
- 3. To Implement a Queue using an Array
- 4. To implement Stack using multiple Queues
- 5. To implement Queue using multiple Stacks
- 6. To Search for an Element in a Linked List
- 7. To reverse a Linked List
- 8. To Detect the Cycle in a Linked List
- 9. To Print Height and Depth of given Binary Tree
- 10. To Implement Binary Search Tree and tree traversals

Lab Programs: (At-least two application from each of the following data structure)

1. Application of Stack

- a) Implementation of Infix to Postfix conversion
- b) Implementation of Infix to Postfix conversion
- c) Implementation of evaluation of postfix expression
- d) Implementation of evaluation of prefix evaluation

2. Application of Queue

- a) Implement Circular Buffer or Ring Buffer
- b) Implement Priority Queue to Add and Delete Elements
- c) Implementation of multiple stacks and queues
- d) Implementation of maze problem

3. Application of List

- a) Implementation of sparse matrix multiplication.
- b) Implementation of polynomials operations (addition, subtraction) using Linked List.

RV Educational Institutions ® RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

- c) Implementation of Linked Lists menu driven program (stack and queue)
- d) Implementation of Double ended queue using Linked Lists.

4. Application of Heap, Tries and Hash Table

- a) Implementation of Double hashing technique
- b) Implementation of priority queue using Binary Heap
- c) Implementation of Heap sort
- d) Implementation of dictionary using Tries

5. Application of Trees

- a) Implementation of conversion of Prefix to Postfix / Infix to Postfix /Postfix to Prefix using Expression Tree.
- b) Implementation of various operations on Binary Tree like creating a tree, displaying a tree, copying tree, mirroring a tree, counting the number of nodes in the tree, counting only leaf nodes in the tree.
- c) Implementation of various operations on Binary Search Tree like Inserting a node, Deleting anode, Displaying a tree, Tree Sort
- d) Implementation of B+ tree

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTICI					
#	COMPONENTS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40			
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50			
MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)					

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	Q.NO. CONTENTS				
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10 Unit 5: Question 9 or 10					
	TOTAL	100			

RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	20		
3	Viva	20		
	TOTAL	50		

Approved by AICTE, New Delhi

Semester: III

LOGIC DESIGN & COMPUTER ORGANIZATION

Category: Professional Core Course

(Theory)

Course Code	:	IS234AT	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	45L+15T	SEE D	Ouration :	3 Hours

Unit-I 8 Hrs

Synchronous Sequential Logic:

Introduction, Sequential Circuits, Storage Elements: Latches, Flip-flops, Analysis of clocked Sequential Circuits, State Reduction and Design Procedure.

Unit – II 9 Hrs

Registers and Counters:

Registers, Shift Registers, Ripple Counters, Synchronous Counters, Other Counters

Memory:

Introduction, Random Access Memory, Memory Decoding, Read Only Memory, Semiconductor main memory-Organization

Unit –III 9 Hrs

A Top-Level View of Computer Function and Interconnection:

Organization and Architecture, Structure and function, Computer Components, Computer Function, Interconnection Structures, Bus Interconnection

Cache Memory:

Computer Memory System Overview, Cache Memory Principles, Elements of Cache Design Pentium 4 Cache Organization.

Unit –IV 9 Hrs

Input/Output:

External Devices, I/O Modules, Programmed I/O, Interrupt-Driven I/O, Direct Memory Access, I/O Channels and Processors, External Interconnection Standards.

Computer Arithmetic:

The Arithmetic and Logic Unit (ALU), Integer Representation, Integer Arithmetic, Floating-Point Representation

Unit –V 10 Hrs

Instruction Sets Characteristics and Functions:

Machine Instruction Characteristics, Types of Operands, Types of Operations, Intel x86 Data Types, Addressing modes and instruction Formats

Processor Structure and Function:

Processor Organization, Register Organization, The Instruction Cycle, Instruction Pipelining.

Parallel Processing:

Multiple Processor Organizations, Symmetric Multiprocessors, Cache Coherence and the MESI Protocol.

Course	Course Outcomes: After completing the course, the students will be able to: -			
CO 1	Describe the necessity and types of components for designing a computer system.			
CO 2	Identify and apply the design requirements to realize digital circuits and to improve processor			
	performance			
CO 3	Analyse the importance of various data representations and instruction formats in a computer system.			
CO 4	Demonstrate the design of the functional units of a digital computer.			

Ref	ference Books
1.	Computer Organization and Architecture Designing for Performance, William Stallings, 10 th
	Edition, 2018, Pearson, ISBN 978-0134101613
2.	Digital Design with an Introduction to the Verilog HDL, M. Morris Mano, Michael D. Ciletti,
	5 th Edition, 2013, Pearson, ISBN-13: 978-0-13-277420-8
3.	C.Hamacher, Z.Vranesic, S.Zaky and N.Manjikian, Computer Organization and Embedded Systems, 6th
	Edition, McGraw-Hill, ISBN: 978-00073380650
4.	Computer Organization and Design, David A.Patterson and John L Hennessy, 5 th Edition,
	Morgan Kaufmann, 2016, ISBN: 978-0124077263

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type of questions covering entire syllabus	20
2	(Maximum of TWO Sub-divisions only)	16
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Approved by AICTE, New Delhi

Semester: III

OPERATING SYSTEMS

Category: Professional Core Course (Common to CS, IS, CD & CY)

(Theory and Lab)

Course Code	:	CS235AI	CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 + 50 Marks
Total Hours	:	45L+30P	SEE Duration	:	3+3 Hours

10 Hrs Unit-I

Introduction- Perspectives Business domain: Virtualization and Cloud Computing Application: Traditional computing, Mobile computing, Distributed systems

Introduction

Operating System introduction, Operating System structure, Operating system Operations.

System Structures

Operating system services, System Calls, Types of System calls

Process Management

Process concept, Process scheduling, Operations on processes

08 Hrs Unit – II

Multithreaded programming:

Overview, Multicore programming, Multithreading models, Thread libraries – pthreads.

CPU scheduling and Process Synchronization:

Basic concepts, scheduling criteria, scheduling algorithms-FCFS, SJF, RR, priority, Real-time CPU scheduling.

Unit –III 09 Hrs

Process Synchronization:

Background, The Critical section problem, Peterson's Solution.

Process Synchronization:

Synchronization hardware, Mutex locks, Semaphores, Classic problems of synchronization.

Implementation of classic synchronization problem using semaphores.

Unit -IV 08 Hrs

Main Memory Management:

Background, Swapping, Contiguous memory allocation, Segmentation, Paging, Structure of page table.

Virtual memory:

Background, Demand Paging, Copy-on-write, Page replacement, Allocation of frames, Thrashing.

Unit -V 10 Hrs

File Systems:

File Naming, File Structure, File Types, File Access, File Attributes, File Operations, An example program using File-System calls, File-System Layout, Implementing Files.

The Virtual File System: The role of the Virtual File System (VFS), VFS data structure, Filesystem Types, Filesystem handling, Pathname lookup, Implementation of VFS System calls, File Locking.

Course	Course Outcomes: After completing the course, the students will be able to: -			
CO 1	Demonstrate the fundamental concepts of operating system like process management, file management,			
	memory management and issues of synchronization.			
CO 2	Analyze and interpret operating system concepts to acquire a detailed understanding of the			
	course.			
CO 3	Apply the operating systems concepts to address related new problems in computer science			

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	oniversity, Delagari
	Domain.
CO 4	Design or develop solutions using modern tools to solve applicable problems in operating systems domain.
CO 5	Extend the theoretical knowledge acquired through the course to demonstrate skills like investigation,
	effective communication, working in team/Individual, following ethical practices by implementing
	operating system concepts/applications and engage in lifelong learning.

Refere	ence Books
1.	Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,
	9 th Edition, Incorporated, 2018, John Wiley & Sons, ISBN 978-1-265-5427-0
2.	Modern operating systems, Tanenbaum, Andrew, 4 th Edition, Pearson Education, Inc 2009. ISBN
	013359162X, 978-0133591620
3.	UNIX System Programming Using C++, Terrence Chan, 2011, Prentice Hall India,
	ISBN: 9788120314689 978-8120314689
4.	Operating systems - A concept based Approach, D.M Dhamdhere, 3 rd Edition, 2017, Tata
	McGraw-Hill, ISBN: 1259005585, 978-1259005589
5.	"xv6: a simple, Unix-like teaching operating system",
	ttps://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf
6.	Understanding the LINUX Kernal, Daniel P Bovet and Marco Cesati, 3 rd Edition, 17 November 2005,
	O'Reilly Publication, 9780596554910, 0596554915. (For Virtual File System of fifth unit)

Laboratory Component

PART A

- 1. Implementation of basic UNIX commands using file APIs- Write a program to implement commands ls(-l option), cp, rm and mv using UNIX file APIs.
- 2. Apply the concepts of Process control system calls to build applications to demonstrate use of fork, execve, wait, getpid, exit system calls
- 3. Apply the pthread library to build Applications to demonstrate use of pthread library functions to create and manage threads.
- 4. Apply the concepts of Process/Thread synchronization to build Applications to demonstrate process/thread synchronization using semaphores and mutex. Implement Dining philosophers problem, reader-writer and producer-consumer.
- 5. Apply the concepts of Process/Thread synchronization for file access to build applications to demonstrate process/thread synchronization using file locks.
- 6. Apply the concepts of Static and Shared libraries to write a program to create and use static and shared libraries. Demonstrate the advantage of shared libraries over static libraries in terms of memory usage.

PART B Open Ended Project

The students are expected to implement a mini project using operating system concepts and APIs/system calls. They are required to form a team with constraint of maximum 3 persons in a team, select a problem/application of their choice to implement and to take confirmation from faculty incharge before starting the project. The objectives of project implementation are:

- Explore and understand underlying architecture, kernel structure and associated components for implementation of the project.
- Design and implement the solution using appropriate tools and platform.
- Documentation and submission of report

Sample projects can be kernel implementation from scratch, compiler implementation, assembler implementation, iOS system level programs, Android OS system level programs, Embedded OS system level programs, Raspberry Pi OS implementation, File System implementation and similar such projects.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTICE)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	CONTENTS	MARKS	
1	Write Up	10	
2	Conduction of the Experiments	20	
3	Viva	20	
	TOTAL	50	

Approved by AICTE, New Delhi

	Semester: III						
	Design Thinking Lab						
	Catego	ry: Professional Core Course					
(Practice)							
Course Code	Course Code : IS237DL CIE : 50 Marks						
Credits: L:T:P	Credits: L:T:P : 0:0:2 SEE : 50 Marks						
Hours	: 56P	SEE Duration	:	2 Hours			

Guidelines for Design Thinking Lab:

- 1. The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Eachgrouphastoselectathemethatwillprovidesolutionstothechallengesofsocietal concern. Normally three to four themes would be identified by the by the department.
- 4. Each group should follow the stages of Empathy, Design, Ideate, prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The Design Thinking lab tasks would involve:

- 1. Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stakeholders.
- 2 For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 3. Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- 4. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 5. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.
- 6. Demonstrate the functioning of the prototype along with presentations of the same.
- 7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 8. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.

The students are required to submit the Poster and the report in the prescribed format provided by the department.

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Interpreting and implementing the empathy, ideate and design should be implemented by applying
	the concepts learnt.
	The course will facilitate effective participation by the student in teamwork and development of
CO 2:	communication and presentation skills essential for being part of any of the domains in his / her future career.
CO 3:	Appling project life cycle effectively to develop an efficient prototype.
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized areaor carry out
CO 4:	research work in an industrial environment.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACT	ΓICE)
#	COMPONENTS	MARKS
1.	LAB CONDUCTION: Experiments will be conducted in offline mode. Each experiment will be evaluated for 10 Marks. The SUM of all experiments will be reduced to 20 Marks.	20
2.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20
3.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). ONE test will be conducted. FINAL TEST MARKS WILL BE 10 MARKS.	10
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	50

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	•
1	Write Up	10
	PART B (Maximum of TWO Experiments only)	
2	Experiments conduction	20
3	Viva	20
	TOTAL	50

Approved by AICTE, New Delhi

			Semester: III			
	BRIDGE COURSE: C PROGRAMMING					
	(Mandatory Audit Course)					
		(C	Common to all Programs)			
Course Code	Course Code : CS139DT CIE : 50 Marks					
Credits: L:T:P	Credits: L:T:P : 2:0:0 (Audit)					
Total Hours	:	30L	SEE Duration	:	-	

Unit-I 6 Hrs

Introduction to Programming: Definition of a computer. Components of computer system, Programming Languages.

Design and implementation of efficient programs. Program Design Tools: Algorithms, Flowcharts and Pseudo codes. Types of Errors.

Unit – II 6 Hrs

Introduction to C: Introduction, structure of a C program, Writing the first program, Files used in a C program. Compiling and executing C Programs using comments, C Tokens, Character set in C, Keywords, Identifiers, Basic Data Types in C, Variables, Constants, I/O statements in C, Operators in C, Type conversion and type casting, scope of variables.

Unit –III 6 Hrs

Decision Control and Looping Statements:

Introduction to decision control, conditional branching statements, iterative statements, Nested loops, Break and continue statements, goto statements.

Arrays: Introduction, Declaration of Arrays, Accessing elements of an array, Storing values in arrays, Operations on Arrays-Traversing, Inserting and Deletion of element in an array. Two dimensional arrays-Operations on two dimensional arrays.

Unit –IV 6 Hrs

Strings: Introduction, Operations on strings- finding length of a string, converting characters of a string into uppercase and lowercase, Concatenating two strings, appending a string to another string, comparing two string, reversing a string. String and character Built in functions.

Functions: Introduction, Using functions, Function declaration/function prototype, Function definition, Function call, Return statement.

Unit –V 6 Hrs

Functions: Passing parameters to a function, Built-in functions. Passing arrays to functions. Recursion.

Structures and Pointers:

Introduction: Structure Declaration, Typedef declaration, initialization of structures, accessing members of a structures, Introduction to pointers, declaring pointer variables.

Course	Course Outcomes: After completing the course, the students will be able to:-		
CO 1	Analyse problems and design solution using program design tools.		
CO 2	Evaluate the appropriate method/data structure required in C programming to develop solutions by		
	investigating the problem.		
CO 3	Design a sustainable solution using C programming with societal and environmental concern by		
	engaging in lifelong learning for emerging technology		
CO 4	Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by		
	exhibiting team work through oral presentation and written reports.		

Approved by AICTE, New Delhi

Refe	rence Books
1.	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall, ISBN (13): 9780131103627.
3.	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, Mcgraw Hill Education, ISBN-13: 9780070411838.
4.	Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5

PRACTICE PROGRAMS

Implement the following programs using cc/gcc compiler

- 1. Familiarization with programming environment: Concept of creating, naming and saving the program file in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment.
- 2. Implementation and execution of simple programs to understand working of
 - Formatted input and output functions- printf() and scanf().
 - Escape sequences in C.
 - Using formula in a C program for specific computation: For example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define).
- 3. Execution of erroneous C programs to understand debugging and correcting the errors like:
 - Syntax / compiler errors.
 - Run-time errors.
 - Linker errors.
 - Logical errors.
 - Semantical errors.
- 4. Implementation and execution of simple programs to understand working of operators like:
 - Unary
 - Arithmetic.
 - Logical.
 - Relational.
 - Conditional.
 - Bitwise.
- 5. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.
- 6. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.
- 7. Develop a C program for Matrix multiplication.
- 8. Develop a C program to search an element using Binary search and linear search techniques.
- 9. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.
- 10. Develop a C program to compute average marks of 'n' students (Name, Roll_No, Test Marks) and search a particular record based on 'Roll No'.
- 11. Develop a C program using pointers to function to find given two strings are equal or not.
- 12. Develop a C program using recursion, to determine GCD, LCM of two numbers and to perform binary to decimal conversion.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 05 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 25 Marks, adding upto 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS.	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

Approved by AICTE, New Delhi

Semester: IV

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS

Category: Professional Core Course (Common to CS, IS, CD, AI & CY) (Theory)

Course Code	:	CS241AT	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3 Hours

Unit-I 09 Hrs

Fundamental Principles of Counting and Combinatorics:

The Rule of Sum and Product, Permutations, Combinations, Principle of Inclusion and Exclusion, Derangements, The Binomial Theorem, Combinations with repetition.

Recursive Definitions, Recurrence Relations:

Recursive definition, First order linear recurrence relation- Formulation problems and examples, Second order linear recurrence relations with constant coefficients- Homogeneous and Non homogeneous, Generating functions.

Unit – II 09 Hrs

Fundamentals of Logic:

Basic Connectives and Truth Tables, Tautologies, Logical Equivalence: The laws of logic, Logical Implications, Rules of inference. Open Statement, Quantifiers, Definition and the use of Quantifiers, Definitions, and the proofs of theorems.

Unit –III 09 Hrs

Relations:

Properties of relations, Composition of Relations, Partial Orders, Hasse Diagrams, Equivalence Relations, and Partitions.

Functions:

Functions-plain, One-to-one, onto functions, Stirling numbers of the second kind, Function composition and Inverse function, Growth of function.

Unit –IV 09 Hrs

Groups theory:

Definition, Examples and Elementary properties, Abelian groups, Homomorphism isomorphism, cyclicgroups, cosets and Lagrange's theorem.

Coding Theory:

Elementary coding theory, the hamming metric, the parity-Check and Generator Matrices.

Unit –V 09 Hrs

Introduction to Graph Theory:

Graphs and their basic properties - degree, path, cycle, complement, subgraphs, isomorphism, Computer representations of graphs. Eulerian and Hamiltonian graphs, Graphcoloring, Planar graphs.

Trees:

Definitions, Properties, and Examples, Routed Trees, Trees and Sorting, Spanning trees.

Approved by AICTE, New Delhi

Course	Outcomes: After completing the course, the students will be able to: -
CO 1	Apply the concepts of discrete mathematical structures for effective computation and relating
	problems in the computer science domain.
CO 2	Analyze the concepts of discrete mathematics to various fields of computer science.
CO 3	Design solutions for complex problems using different concepts of discrete mathematical structure
	as a logical predictable system.
CO 4	Explore/Develop new innovative ideas to solve some open problems in theoretical computer
	science.
CO 5	Effectively communicate, work in groups in order to accomplish a task and engage in continuing
	professional development.

Ref	ference Books
1	Ralph P. Grimaldi and B V Ramana, Discrete and Combinatorial Mathematics- An Applied Introduction, Pearson Education, Asia, 5 th Edition – 2017, ISBN 978-0321385024
2	J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata – McGraw Hill, 1st Edition 2017, ISBN 13:978-0074631133
3	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata – McGraw Hill, 6 th Edition, 7 Edition 2017, ISBN-(13): 978-0070681880

EXPERIENTIAL LEARNING:

Based on the concepts learnt in this course like relations, functions- problems on graph theory such as graphcoloring, scheduling problems could be given for Experiential learning.

Also using the concepts of logical reasoning and group theory some of the NLP problems could also begiven for Experiential learning.

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
_	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of FOUR Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Approved by AICTE,

			Semester: IV		
		ENVIRONME	ENT & SUSTAINABILITY		
		Category: P	Professional Core Course		
		(Comm	non to all Programs)		
			(Theory)		
Course Code	:	CV242AT	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3.0 Hours

Unit-I 10 Hrs

Environment and biodiversity:

Definition, scope and importance of environment – need for public awareness. Eco-system and energy flow–ecological succession. Types of biodiversity: genetic, species and ecosystem diversity–values of biodiversity, threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity.

Environmental pollution:

Causes, effects and preventive measures of water, soil, air and noise pollution. Solid, hazardous and e-waste management.

Occupational health and safety management system (OHASMS). Environmental protection, environmental protection acts.

Unit – II 09 Hrs

Renewable sources of energy:

Energy management and conservation, new energy sources: need of new sources. Different types of new energy sources. Energy cycles, carbon cycle, emission and sequestration, green engineering: sustainable urbanization-socioeconomical and technological change. Applications of hydrogen energy, ocean energy resources, tidal energy conversion. Concept, origin and power plants of geothermal energy.

Unit –III 09 Hrs

SUSTAINABILITY AND MANAGEMENT

Introduction to Environmental Economics, Environmental Audit, Development, GDP, Sustainability - concept, needs and challenges-economic, social and aspects of sustainability - from unsustainability to sustainability-millennium development goals and protocols.

Sustainable Development Goals - targets, indicators and intervention areas Climate change - Global, Regional and local environmental issues and possible solutions. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry.

Unit –IV 09 Hrs

SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment.

Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports.

Linear vs. cyclical resource management systems, need for systems thinking and design of cyclical systems, circular economy, industrial ecology, green technology. Specifically apply these concepts to: Water Resources, Energy Resources, Food Resources, Land & Forests, Waste management.

Unit –V 08 Hrs

Corporate Social Responsibility (CSR):

Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity, Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of CSR in India.

Sustainability Reporting: Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

Course O	Course Outcomes: After completing the course, the students will be able to: -	
CO 1	Understand the basic elements of Environment and its Biodiversity.	
CO 2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.	
CO 3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.	
CO 4	Recognize the role of Corporate social responsibility in conserving the Environment.	

Refere	ence Books
1	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016.
1	ISBN-13 - 978-9387432352
2	'Introduction to Environmental Engineering and Science', Gilbert M. Masters, Wendell P Ela, 3rd Edition,
2	Pearson Education, 2006. ISBN-13 - 978-0132339346
3	Environment Impact Assessment Guidelines, Notification of Government of India, 2006
4	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David
4	Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type of questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Go, change the world

Institution Affiliated to Visvesvarava Technological University, Belagavi New Delhi

			Semester: IV		
	MATERIALS SCIENCE FOR ENGINEERS				
		Catego	ry: Professional Core		
			(Theory)		
Course Code	:	ME242AT	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40L	SEE Duration	:	3 Hours
Unit-I				06 Hrs	

The Fundamentals of Materials

The electronic structure of atoms, types of atomic and molecular bonds: ionic bond, covalent bond, metallic bond, secondary bonds, mixed bonding, hybridization. Energy bands in metals, insulators, and semiconductors. Basic crystallography. Defects and dislocations. Types of materials: polymers, metals and alloys, ceramics, semiconductors, composites.

> Unit - II 10 Hrs

Material behaviour

Thermal properties: thermal conductivity, thermoelectric effects, heat capacity, thermal expansion coefficient, thermal shock, thermocouple. Electrical Properties: dielectric behaviours and temperature dependence of the dielectric constant, insulating materials, ferroelectricity, piezoelectricity, super conductor. Optical properties: luminescence, optical fibers, Mechanical Properties: Stress-strain diagram, elastic deformation, plastic deformation, hardness, viscoelastic deformation, impact energy, fracture toughness, fatigue.

> Unit -III 10 Hrs

Materials and their Applications

Semiconductors, dielectrics, optoelectronics, structural materials, ferrous alloys, nonferrous alloys, cement, concrete, ceramic, and glasses. Polymers: thermosets and thermoplastics, composites: fibrereinforced, aggregated composites, electronic packaging materials, biomaterials, processing of structural materials.

> Unit -IV 07 Hrs

Heat Treatment

Post processing heat treatment of electronic devices: thermal oxidation, diffusion, rapid thermal processing. Heat treatment of ferrous materials: annealing, spheroidizing, normalizing, hardening, tempering. formation of austenite, construction of Time Temperature Transformation (TTT) curves. Special heat treatment processes: carburizing, nitriding, cyaniding, flame, and induction hardening. Defects in heat treatment.

> Unit-V 07 Hrs

Nanomaterials

Synthesis of nanomaterials: ball milling, sol-gel, vapour deposition growth, pulse laser, magnetron sputtering, lithography. Nano porous materials: zeolites, mesoporous materials, carbon nanotubes, graphene, nano FRPs, nano fabrics, bioresorbable and bio-erodable materials, nano ceramic, nano glasses, nano biomaterials, nano implant associated materials. Characterisation of nano structures, spectroscopic techniques, automatic force microscopy.

Go, change the world

Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Course Outcomes: After completing the course, the students will be able to:			
CO1	Understand the classification of materials, their atomic structure, and properties.			
CO2	Investigate the properties and applications of different materials.			
CO3	Analyse the effect of different heat treatment processes.			
CO4	Recognize different types of nanomaterials, synthesis methods and characterisation techniques.			

Ref	erence Books
1.	Material Science and Engineering, William D Callister, 6 th Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-5
2.	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6
3.	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-066717-9
4.	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996, ISBN:978-0849322749

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Approved by AICTE,

Semester: IV

BIO SAFETY STANDARDS AND ETHICS

Category: Professional Core Course (Common to all Programs)

(Theory)

			` "			
Course Code	:	BT242AT	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	:	45L	SEE D	uration :	3 Hours	

Unit-I 09 Hrs

Biohazards, Bio safety levels and cabinets:

Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets

(Materials used for fabrication, sensors, filters, pumps, compressors)

Unit – II 08 Hrs

Biosafety Guidelines:

Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review committee o Genetic manipulation), GEAC (Genetic Engg Approval

Committee) for GMO applications in food and agriculture. Overview of National Regulations and relevant International Agreements including Cartagena Protocol.

Unit –III 10 Hrs

Food safety standards:

FSSAI (Food Safety and Standards Authority of India), Functions, License, types of FSSAI Licences and compliance rules.

Food Hygiene:

General principles of food microbiology and overview of foodborne pathogens, sources of microorganisms in the food chain (raw materials, water, air, equipment, etc.)

Quality of foods, Microbial food spoilage and Foodborne diseases, Overview of beneficial microorganisms and their role in food processing and human nutrition, Food Analysis and Testing, General principles of food safety management systems, Hazard Analysis Critical Control Point (HACCP).

Unit –IV 09 Hrs

Food preservations, Processing, and Packaging:

Food Processing Operations, Principles, Good Manufacturing Practices HACCP, Good production, and processing practices (GMP, GAP, GHP, GLP, BAP, etc). Overview of food preservation methods and their underlying principles including novel and emerging methods/principles. Overview of food packaging methods and principles including novel packaging materials.

Unit –V 09 Hrs

Food safety and Ethics:

Food Hazards, Food Additives, Food Allergens Drugs, Hormones, and Antibiotics in Animals. Factors That Contribute to Foodborne Illness, Consumer Lifestyles and Demand, Food Production and Economics, History of Food Safety, The Role of Food Preservation in Food Safety.

Ethics: Clinical ethics, Health Policy, Research ethics, ethics on Animals. Biosafety and Bioethics.

Course	Course Outcomes: After completing the course, the students will be able to: -			
CO 1	Have a comprehensive knowledge of Biohazards and bio safety levels			
CO 2	Understanding the biosafety guidelines and their importance to the society			
CO 3	Acquire Knowledge with respect to the Food standards, Hygiene, food processing and packing			
CO 4	Appreciate the food safety, Ethics, biosafety and bio ethics			

Refe	Reference Books			
1	Deepa Goel, Shomini Parashar IPR, Biosafety and Bioethics 1st Edition, 2013, ISBN: 978-8131774700.			
2	Cynthia A Roberts, The Food Safety, Oryx Press, first Edition, 2001, ISBN: 1–57356–305–6.			
3	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.			
4	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.			

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)			
Q.NO.	CONTENTS	MARKS	
	PART A		
1	Objective type of questions covering entire syllabus	20	
	PART B (Maximum of TWO Sub-divisions only)		
2	Unit 1: (Compulsory)	16	
3 & 4	Unit 2: (Internal Choice)	16	
5 & 6	Unit 3: (Internal Choice)	16	
7 & 8	Unit 4: (Internal Choice)	16	
9 & 10	Unit 5: (Internal Choice)	16	
	TOTAL	100	

Approved by AICTE, New Delhi

Semester: IV

DESIGN AND ANALYSIS OF ALGORITHMS

Category: Professional Core Course (Common to CS, IS, CD, AI & CY)

(Theory and Practice)

Course Code	:	CD343AI	CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 + 50Marks
Total Hours	:	45L+30P	SEE D	Ouration :	3 + 3 Hours

Unit-I 08 Hrs

Introduction- Perspectives:

Business domain:

Banking, Finance services, IT, Manufacturing, e-Commerce, Online services and marketing, Logistics and Supply Chain Management, Telecommunication.

Applications:

Communication & Networking, Search engines, Machine learning, Database management, Software tools development, Data organization, GPS navigation systems.

Introduction:

Notion of Algorithm, Fundamentals of Algorithmic Problem Solving, Fundamentals of the Analysis of Algorithmic Efficiency: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-recursive and Recursive Algorithms.

Brute Force:

Selection Sort and Bubble Sort.

Unit – II 10 Hrs

Divide and Conquer:

Merge sort, Quicksort, Multiplication of Long Integers, Strassen's Matrix Multiplication.

Decrease and Conquer:

Insertion Sort, Depth First Search, Breadth First Search, Topological Sorting, Application of DFS and BFS.

Unit –III 10 Hrs

Transform and Conquer:

Presorting, Heapsort, Problem reduction.

Space and Time Trade-offs:

Sorting by Counting, Naive String Matching, Input Enhancement in StringMatching: Horspool's and Boyer-Moore algorithm.

Unit –IV 10 Hrs

Dynamic Programming:

Computing a Binomial Coefficient, Warshall's and Floyd's Algorithms, 0/1 Knapsack Problem and Memory Functions.

Greedy Technique:

Prim's Algorithm, Dijkstra's Algorithm, Huffman Trees and codes, Fractional Knapsack Problem.

Unit –V 07 Hrs

Backtracking:

N-Queen's Problem, Sum of Subset Problem.

Branch-and-Bound:

Travelling Salesperson Problem, Assignment Problem.

Decision Trees:

Decision Trees for Sorting.

NP and NP-Complete Problems:

Basic Concepts, Non- Deterministic Algorithms, P, NP, NP Complete and NP-Hard classes.

Approved by AICTE, New Delhi

Course	Outcomes: After completing the course, the students will be able to: -
CO 1	Apply knowledge of computing and mathematics to algorithm analysis and design
CO 2	Analyze a problem and identify the computing requirements appropriate for a solution
CO 3	Apply algorithmic principles and computer science theory to the modeling for evaluation of
	computer-based solutions in a way that demonstrates comprehension of the trade-offs involved in
	design choices.
CO 4	Investigate and use optimal design techniques, development principles, skills and tools in
	the construction of software solutions of varying complexity.
CO 5	Demonstrate critical, innovative thinking, and display competence in solving engineering problems.
CO 6	Exhibit effective communication and engage in continuing professional development through
	experiential learning.

Re	Reference Books				
1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin, University, 3 rd Edition, 2012,				
	Pearson, ISBN 13: 978-0-13-231681-1.				
2.	Introduction to Algorithms, Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., 3 rd Edition, 2010, PHI,				
	ISBN:9780262033848.				
3.	Computer Algorithms, Horowitz E., Sahani S., Rajasekharan S., 2 nd Edition, 2006, Galgotia Publications,				
	ISBN:9780716783169.				

LABORATORY COMPONENT

Note: The following programs should be implemented in C++ Language

Practice Programs:

- Implementation and execution of simple programs to understand running time analysis of non-recursive algorithms
 - Finding maximum element in a given array.
 - Linear search,
 - Bubble sort,
 - Determine whether all the elements in a given array are distinct.
 - Given 2 NXN matrices, perform matrix multiplication using bruteforce approach.
- Implementation and execution of simple programs to understand running time analysis of recursive algorithms
 - Find the Factorial of a given number.
 - Print Fibonacci series
 - Given a positive decimal integer n, find the number of binary digits in n's binary representation.
 - To solve tower of Hanoi problem.
 - Recursive linear search.

Lab Programs: (At-least one application from each of the following group)

- 1. Apply divide and conquer strategy to solve sorting problem
 - Merge sort
 - Quicksort
- 2. Apply decrease and conquer strategy to solve graph problem
 - Breadth first search
 - Topological sorting using depth first search

- 3. Apply transform and conquer strategy
 - Heapsort
 - Checking element uniqueness after presorting
- 4. Apply input enhancement strategy to solve string-matching problem
 - Horspool's algorithm
 - Boyer Moore's algorithm
- 5. Apply dynamic programming strategy to solve optimization problem
 - Warshall Floyd's Algorithms,
 - Knapsack problem solution using memory function.
- 6. Apply greedy strategy to solve graph problem
 - Dijkstra's algorithm
 - Prim's algorithm
- 7. Apply backtracking strategy to solve combinatorial problem
 - N- Queen's problem
 - Subset sum problem
- 8. Apply branch and bound strategy to solve combinatorial problem
 - Travelling salesperson problem
 - Assignment problem

#	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTIC COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)	150

RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)						
Q.NO.	CONTENTS	MARKS				
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO. CONTENTS MARKS					
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

New Delhi

Semester: IV						
	INTERNET OF THINGS AND APPLICATIONS					
		Categ	ory: Professional Core Course			
	(Theory and Lab)					
Course Code	Course Code : IS244AI CIE : 100 Marks					
Credits: L:T:P : 3:0:1						
Total Hours	:	36L+12P	SEE Duration	:	3 Hours	

Unit-I 07 Hrs

Introduction to Internet of Things:

Characteristics of IoT, Design principles of IoT, IoT Architecture and Protocols, Enabling Technologies for IoT, IoT levels. IoT vs M2M.

Sensors:

Classification of Sensors, Working Principle of Sensors, Criteria to choose a Sensor, Generation of Sensors.

IoT Design Methodology:

Design methodology, Challenges in IoT Design, IoT System Management, IoT Servers.

Unit – II	07 Hrs
Cint II	0/1113

Basics of Arduino:

Introduction to Arduino, Arduino IDE, Basic Commands for Arduino, Play with LED and Arduino, Play with LCD with Arduino.

Basics of Raspberry Pi:

Introduction to Raspberry pi, Installation of NOOBS on SD Card, Installation of Raspbian on SD Card, Terminal Commands, Installation of Libraries on Raspberry Pi, Getting the static IP address of Raspberry Pi, Run a Program on Raspberry Pi, Installing the Remote Desktop Server.

> 07 Hrs Unit –III

Programming with Raspberry Pi:

Controlling LED with Raspberry Pi, Installation of I2C driver on Raspberry Pi, SPI (serial peripheral interface) with Raspberry Pi, Programming a Raspberry Pi, Play with LED and Raspberry Pi, Reading the digital input, Reading an edge triggered input.

> Unit -IV 07 Hrs

Interfacing with Raspberry Pi and Arduino:

Raspberry Pi and Arduino: Install Arduino IDE on Raspberry Pi, Play with Digital Sensor, Play with Analog Sensor, Play with Actuators: Servo Motor.

> Unit -V 08 Hrs

Connecting to the Cloud:

Smart IoT Systems, DHT11 Data Logger with ThingSpeak Server, Ultrasonic Sensor Data Logger with ThingSpeak Server, Air Quality Monitoring System and Data Logger with ThingSpeak Server, Landslide Detection and Disaster Management System, Smart Motion Detector and Upload Image to gmail.com

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Understand the fundamentals of direct integration of the physical world with computer-based systems					
CO 2	Design & Implement solutions for Internet of Things with Raspberry Pi and Arduino through basic					
	knowledge of programming and interfacing of input/output devices.					
CO 3	Apply and analyse the analog & digital data with advanced interfacing techniques					
CO 4	Create visualizations for IoT data captured through real time systems to help decision making systems					

Approved by AICTE, New Delhi

Ref	ference Books
1.	Internet Of Things With Raspberry Pi And Arduino, Rajesh Singh, Anita Gehlot, Lovi Raj Gupta, Bhupendra
	Singh, and Mahendra Swain, CRC Press, Taylor & Francis Group, 2020, ISBN: 13: 978-0-367-24821-5
2.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015,
	ISBN: 978-81-7371-954-7.
3.	IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, David Hanes,
	Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, Cisco Press, 2017, ISBN: 13: 978-1-
	58714-456-1
4.	Internet of Things-Architecture & Design Principles, Raj kamal, 2 nd Edition, Mc Graw Hill India, 2022,
	ISBN: 9390727383.

LABORATORY COMPONENT:

Note: The following programs can be executed in C/Python language.

Prerequisites:

Installation of following open source softwares is compulsory:

- 1. Arduino IDE Latest version.
- 2. Putty software for remote connectivity.
- 3. VNC Viewer and Server softwares for remote connectivity.
- 4. Things Speak open source cloud sign up for account creation.

Experiments List:

- 1. Set up a timer and delay for each of the three LED lights using Arduino
- 2. Using a pulse oximetry and heart rate monitor module with Arduino UNO, measure your heart rate and oxygen saturation level.
- 3. Use an Arduino Nano to interface between an LCD display and computer's USB port to show different kinds of information on your LCD screen, including system stats like network utilization, CPU load and disk space.
- 4. Develop an USB-powered gas detector with an LED display using Arduino.
- 5. Object detection using PIR sensor and LED interfacing with Raspberry Pi.
- 6. Measuring Temperature & Humidity of weather using the DHT11 Sensor with the Raspberry Pi.
- 7. Water sensing and sending information to email using water sensor interfacing with Raspberry Pi.
- 8. Smart lighting application using LDR sensor and buzzer interfacing with Raspberry pi and connecting to cloud for analysis.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY & PRACTICE)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50		
MAXIMUM MARKS FOR THE CIE (THEORY & PRACTICE)				

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)				
Q.NO.	Q.NO. CONTENTS				
	PART A	-			
1	Objective type of questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO. CONTENTS MARKS					
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

Approved by AICTE, New Delhi

	Semester: IV						
	COMPUTER NETWORKS						
		Cate	gory: Professional Core Course				
			mmon to CS, IS, CD, AI & CY)				
	(Theory)						
Course Code							
Credits: L:T:P	Credits: L:T:P : 3:0:0						
Total Hours	:	45L	SEE Duration	:	3 Hours		

Unit-I	10 Hrs

Introduction-Perspectives

Business Domains: Networks.

Applications: Resource Sharing, Client Server programming, e-commerce and digital communications.

Introduction: Networks, Network types. Network Models: TCP / IP protocol suite, Addressing, The OSI Model. Transmission Modes: Parallel Transmission and Serial Transmission. Link Layer: Data Link Control(DLC): DLC Services, Data Link Layer Protocols, High Level Data Link Control (HDLC), Point-to-Point Protocol (PPP): Framing, Transition phases. Media Access Control (MAC): Random Access: CSMA/CD, CSMA/CA.

Unit – II 09 Hrs

Network layer design issues: Store and Forward packet Switching, Services Provided to the Transport Layer Implementation of Connectionless Service, Implementation of Connection Oriented Service, Comparison of Virtual Circuit and Datagram Subnets; Routing algorithms: Shortest Path Routing, Flooding, Distance Vector Routing, Link state Routing, Hierarchical Routing Broadcast Routing, and Multicast Routing.

Unit –III 08 Hrs

Congestion Control Algorithms: General Principles of Congestion Control, Congestion Prevention Policies, Congestion Control in Virtual-Circuit Subnets, Congestion Control in Datagram Subnets, Load Shedding, Jitter Control; Quality Of Service: Requirements, Techniques for Achieving Good Quality of Service Integrated Services Differentiated Services.

Unit –IV 09 Hrs

Internetworking: How networks differ, How networks can be connected Connectionless Internetworking, Tunnelling, Internetwork Routing, Fragmentation.

The Network Layer in the Internet: The IP Protocol, IP Addresses, Internet Control Protocols, OSPF- Interior Gateway Routing Protocol, BGP- Exterior Gateway Routing Protocol, IPv6.

Unit –V 09 Hrs

The Internet Transport Protocols: Introduction to UDP, Introduction to TCP. The TCP Service Model. **The TCP Protocol:** TCP protocol, TCP Segment Header, TCP Connection Establishment, TCP Connection Release. TCP Transmission Policy, TCP Congestion Control, TCP Timer Management.

Application Layer: World Wide web and HTTP, Telnet.

Cours	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Apply the algorithms/techniques of routing and congestion control to solve problems related to				
	Computer Networks.				
CO2	Analyse the services provided by various layers of TCP/IP model to build effective solutions.				
CO3	O3 Design sustainable networking solutions with societal and environmental concerns by engaging in				
	lifelong learning for emerging technology.				
CO4	Exhibit network configuration, protocol usage and performance evaluation in networks.				
CO5	Demonstrate the solutions using various algorithms/protocols available to address networking issues				
	using modern tools by exhibiting team work and effective communication.				

Approved by AICTE, New Delhi

Refe	Reference Books				
1.	Data Communications and Networking, Behrouz A Forouzan, 5 th Edition, 2013, Tata McGraw-Hill, ISBN –9781259064753.				
2.	Computer Networks, Andrew S Tanenbaum, 5 th Edition, 2014, Pearson Education; ISBN–978-81-7758-165-2.				
3.	Computer Networking, A Top-Down Approach, James Kurose and Keith Ross, 6 th Edition, 2013, ISBN-13: 978-0-13-285620-1.				
4.	Data and Computer Communications, William Stallings, 8 th Edition, 2009, Pearson Education, ISBN-13: 978-0131392052.				

EXPERIENTIAL LEARNING:

To work on Problems similar to following aspects of Networks: Modern Networking tools usage to solve problems in Networking (Path Characterization & Bandwidth Estimation, Analysing Real-time information about the global routing system, Measure latency and packet loss reason in wired and wireless network). Online data Privacy, Host/Network Intrusion detection, Detection of potential DDoS attacks, Network analysis to monitor Ethernet and WLAN traffic in real time, IP Spoofing, TCP Off path attacks, Privacy Preserving network log data, wireless security).

#	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

New Delhi

Semester: IV						
	NATIONAL SERVICE SCHEME(NSS)					
	(Practical)					
Course Code	:	HS247AL		CIE	••	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	26P		SEE Duration	:	02 Hrs

Prerequisites:

- 1. Students should have service-oriented mindset and social concern.
- 2. Students should have dedication to work at any remote place, any time with available resources and proper time management for the other works.
- 3. Students should be ready to sacrifice some of the timely will and wishes to achieve service-oriented targets on time.

Content

Students must take up any one activity on below mentioned topics and must prepare contents for awareness and technical contents for implementation of the projects and has to present strategies for implementation of the same. Compulsorily must attend one camp.

CIE will be evaluated based on their presentation, approach, and implementation strategies. (Any one of the below mentioned activity)

- Helping local schools to achieve good result and enhance their enrolment in Higher/technical/vocational education.
- 2. Preparing an actionable business proposal for enhancing the village/ farmer income and approach for implementation.
- 3. Developing Sustainable Water management system for rural/ urban areas and implementation approaches.
- 4. Setting of the information imparting club for women leading to contribution in social and economic issues.
- 5. Spreading public awareness/ government schemes under rural outreach program. (Minimum 5 programs)
- Contribution to any national level initiative of Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc...
- 7. Social connect and responsibilities
- 8. Plantation and adoption of plants. Know your plants
- Organic farming, Indian Agriculture (Past, Present and Future) Connectivity for marketing
- 10. Waste management Public, Private and Govt organization, 5 R's
- 11. Water conservation techniques Role of different stakeholders Implementation
- 12. Govt. School Rejuvenation and assistance to achieve good infrastructure.
- 13. Organize National integration and social harmony events/ workshops / seminars. (Minimum 2 programs) and ONE NSS-CAMP.

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Understand the importance of his/her responsibilities towards society.					
CO2	Analyze the environmental and societal problems/ issues and will be able to design solutions for thesame.					
CO3	Evaluate the existing system and to propose practical solutions for the same for sustainabledevelopment.					
CO3	Evaluate the existing system and to propose practical solutions for the same for sustamabled veropment.					

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

			Semester: IV			
		NAT	TIONAL CADET CORPS (I	NCC)		
			(Practical)			
Course Code	:	HS247BL		CIE	:	50 Marks
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	26P		SEE Duration	:	02 Hrs
			Unit-I			10 Hrs
		•	aten, Word ki Command, Savdl ıli Line, Nikat Line, Khade Khad		Se,	Murdna,
			Unit – II			06 Hrs
Weapon Training	g(WT): Introduction	& Characteristics of 7.62 Self Lo	ading rifle, Identific	atio	n of rifle parts
			Unit –III			06 Hrs
Adventure activit	ies: 7	Trekking and ob	stacle course			
			Unit –IV			04 Hrs
Social Service an	d Co	mmunity Devel	opment (SSCD): Students will p	participate in various	act	ivities
throughoutthe ser	meste	er e.g., Blood do	nation Camp, Swachhata Abhiya	n, Constitution Day	, All	National
Festival						

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Understand that drill as the foundation for discipline and to command a group for common goal.					
CO2	Understand the importance of a weapon its detailed safety precautions necessary for prevention of					
	accidents and identifying the parts of weapon.					
CO3	Understand that trekking will connect human with nature and cross the obstacles to experience army way of life.					
CO4	Understand the various social issues and their impact on social life, Develop the sense of self-less social service for better social & community life.					

Reference Books				
1.	NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R- 1991,			
	ISBN: 978-93-87918-57-3, HSN Code: 49011010			
2.	nccindia.ac.in			

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1)					
Justification for Importance, need of the hour with	10	****			
surveyed data.					
EXPERIENTIAL LEARNING					
Presentation 2 (phase 2)	10	****			
Content development, strategies for implementation					
methodologies.					
Case Study-based Teaching-Learning	10	Implementation strategies			
Sector wise study & consolidation	10	of the project with report			
Video based seminar (4-5 minutes per student)	10				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

Approved by AICTE, New Delhi

Semester: IV							
	PHYSICAL EDUCATION						
l		(SPC	ORTS & ATHLETICS)				
	(Practical)						
Course Code	:	HS247CL	CIE	:	50 Marks		
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks		
Total Hours	:	26P	SEE Duration	on :	2.5 Hrs		
			Content		26 Hrs		

Topics for Viva:

- 1. On rules and regulations pertaining to the games / sports
- 2. On dimensions of the court, size / weight of the ball and standards pertaining to that sports / game
- 3. Popular players and legends at state level / National level / International level
- 4. Recent events happened and winner / runners in that sport / game
- 5. General awareness about sport / game, sports happenings in the college campus

Cours	Course Outcomes: After completing the course, the students will be able to: -							
CO1	CO1 Understand the basic principles and practices of Physical Education and Sports.							
CO ₂	CO2 Instruct the Physical Activities and Sports practices for Healthy Living.							
CO ₃	To develop professionalism among students to conduct, organize & Officiate Physical Education and							
	Sports events at schools and community level.							

Reference Books							
1.	1. Health, Exercise and Fitness, Muller, J. P. (2000), Delhi: Sports.						
2.	Play Field Manual, Anaika ,2005, Friends Publication New Delhi.						
3.	IAAF Manual.						
4.	Track and Field Marking and Athletics Officiating Manual, M.J Vishwanath, 2002, Silver Star						
	Publication, Shimoga.						
5.	5. Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinestics.						
Note: S	Note: Skills of Sports and Games (Game Specific books) may be referred						

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project			
Video based seminar (4-5 minutes per student)	10	with report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

Approved by AICTE, New Delhi

			Semester: IV				
	MUSIC						
			(Practical)				
Course Code	:	HS247DL	CIE	:	50 Marks		
Credits: L: T: P	:	0:0:2	SEE	:	50 Marks		
Total Hours	:	26P	SEE	Duration :	02 Hrs		
Content 26 Hrs							

- 1. Introduction to different genres of music
- 2. Evolution of genres in India: Inspiration from the world
- 3. Ragas, time and their moods in Indian Classical Music
- 4. Identification of ragas and application into contemporary songs
- 5. Adding your touch to a composition
- 6. Maths and Music: A demonstration
- 7. Harmonies in music
- 8. Chords: Basics and application into any song
- 9. Music Production-I
- 10. Music Production-II

Students have to form groups of 2-4 and present a musical performance/ a musical task which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach, and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course	Course Outcomes: After completing the course, the students will be able to: -						
CO1	CO1 Understand basics of Music and improve their skills.						
CO2	Appreciate the impacts on health and well-being.						
CO3	Perform and present music in a presentable manner.						
CO4	Develop skills like team building and collaboration.						

Referei	Reference Books							
1.	Music Cognition: The Basics by Henkjan Honing.							
2.	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory Answer Book by GlorySt							
	Germain.							
3.	Elements Of Hindustani Classical Music by Shruti Jauhari.							
4.	Music in North India: Experiencing Music, Expressing Culture (Global Music Series) by George E.							
	Ruckert.							

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project with report			
Video based seminar (4-5 minutes per student)	10 with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

			Semester: IV			
	DANCE					
			(Practical)			
Course Code	:	HS247EL		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	26P		SEE Duration	:	02 Hrs
			Contents	·		26 Hrs

- 1. Introduction to Dance
- 2. Preparing the body for dancing by learning different ways to warm up.
- 3. Basics of different dance forms i.e., classical, eastern, and western.
- 4. Assessing the interest of students and dividing them into different styles based on interaction.
- 5. Advancing more into the styles of interest.
- 6. Understanding of music i.e., beats, rhythm, and other components.
- 7. Expert sessions in the respective dance forms.
- 8. Activities such as cypher, showcase to gauge learning.
- 9. Components of performance through demonstration.
- 10. Introduction to choreographies and routines.
- 11. Learning to choreograph.
- 12. Choreograph and perform either solo or in groups.

Course (Course Outcomes: After completing the course, the students will be able to: -						
CO1	CO1 Understand the fundamentals of dancing.						
CO2	O2 Adapt to impromptu dancing.						
CO3	CO3 Ability to pick choreography and understand musicality.						
CO4	To be able to do choreographies and perform in front of a live audience.						

Ī	Referen	nce Books	٦
ſ	1.	Dance Composition: A practical guide to creative success in dance making, Jacqueline M. Smith	1

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1)					
Justification for Importance, need of the hour with	10	****			
surveyed data.					
EXPERIENTIAL LEARNING					
Presentation 2 (phase 2)	10	****			
Content development, strategies for implementation					
methodologies.					
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project with report			
Video based seminar (4-5 minutes per student)					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

Approved by AICTE, New Delhi

Semester: IV							
	Theater (Light Camera & Action) (Practical)						
Course Code	ourse Code : HS247FL CIE : 50 Marks						
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks	
Total Hours	:	26P		SEE Duration	:	02 Hrs	
Contents 26 Hrs							

1. Break the ICE

Introduction to freedom Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over social anxiety, Shyness and Nervousness.

- Ura
- 3. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing Voice projection is the strength of speaking or singing whereby the voice is used powerfully and clearly. It is a technique employed to command respect and attention, as when a teacher talks to a class, or simply to be heard clearly, as used by an actor in a theatre.
- 4. It's Leviosa, Not Leviosaaa!
- 5. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The art of dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from thedramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue deliveryskills:
- 6. Elementary, My dear Watson.
- 7. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.
- 8. Show time
- 9. Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Mono acting: different types of characters

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Develop a range of Theatrical Skills and apply them to create a performance.					
CO2	Work collaboratively to generate, develop, and communicate ideas.					
CO3	Develop as creative, effective, independent, and reflective students who are able to make informed					
	choices in process and performance.					
CO4	Develop an awareness and understanding of the roles and processes undertaken in contemporary					
	professional theatre practice.					

Reference Books				
1.	The Empty Space by Peter Brook.			
2.	The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina Landau.			

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1)						
Justification for Importance, need of the hour with	10	****				
surveyed data.						
EXPERIENTIAL LEARNING						
Presentation 2 (phase 2)	10	****				
Content development, strategies for implementation						
methodologies.						
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Approved by AICTE, New Delhi

Semester: IV									
	ART WORK & PAINTING								
	(Practical)								
Course Code	:	HS247GL		CIE	:	50 Marks			
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks			
Total Hours	:	26P		SEE Duration	:	02 Hrs			
Contents 26 Hrs									

- 1. Use points, line and curves to create various shapes and forms
- 2. Use of shapes and forms to create various objects and structures
- 3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions Of perspective
- 4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.
- 5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization to create a composition.
- 6. Learn how to use which materials and for what types of art and textures.
- 7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie and dve.
- 8. Real world application of the above concepts in the form of book cover design and illustration, cartoon, poster, advertisements, magazine, computer graphics and animation
- 9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY

Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorilytake part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presentedart style.

Course (Course Outcomes: After completing the course, the students will be able to: -						
CO1	Use lines, shapes, and colors to depict the various sentiments and moods of life and nature.						
CO2	Use one's creativity to develop forms and color schemes, as well as the ability to portray them effectively						
	in drawing and painting on paper.						
CO3	Develop the ability to properly use drawing and painting materials (surfaces, tools and equipment, and so						
	on).						
CO4	Improve their observation abilities by studying everyday items as well as numerous geometrical and non-						
	geometrical (i.e., organic) shapes found in life and nature and to hone their drawing and painting talents						
	in response to these insights.						

Reference Books						
1.	Catching the Big Fish: Meditation, Consciousness, and Creativity, David Lynch					
2.	Art & Fear: Observations on the Perils (and Rewards) of Artmaking, David Bayles & Ted Orland					

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation strategies				
Sector wise study & consolidation	10	of the projectwith report				
Video based seminar (4-5 minutes per student)	10					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Approved by AICTE, New Delhi

Semester: IV								
	PHOTOGRAPHY & FILM MAKING							
			(Practical)					
Course Code	:	HS247HL		CIE	:	50 Marks		
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks		
Total Hours	:	26P		SEE Duration	:	02 Hrs		
Contents 26 Hrs								

- 1. Introduction to photography.
- 2. Understanding the terminologies of DSLR.
- 3. Elements of photography.
- 4. Introduction to script writing, storyboarding.
- 5. Understanding the visualization and designing a set.
- 6. Basics of film acting
- 7. Video editing using software
- 8. Introduction to cinematography.
- 9. Understanding about lighting and camera angles.
- 10. Shooting a short film.

Students must form groups of 2-4 and present a short film which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -					
CO1	Understand basics of photography and videography and improve their skills.				
CO2	Appreciate the skills acquired from photography.				
CO3	Perform and present photos and films in a presentable manner.				
CO4	Develop skills like team building and collaboration.				

Reference Books					
1.	Read This If You Want to Take Great Photographs – Henry Carroll				
2.	The Digital Photography Book: Part 1 – Scott Kelby				

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
FOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Approved by AICTE, New Delhi

- Chirolotty, Bolaga									
	Semester: IV								
	UNIVERSAL HUMAN VALUES								
		(Comn	non to all Programs)						
	(Theory)								
Course Code	:	HS248AT		CIE	:	50 Marks			
Credits: L:T:P	:	2:0:0		SEE	:	50 Marks			
Total Hours	:	28L		SEE Duration	:	2 Hours			

Unit-I	10 Hrs

Course Introduction:

Need, Basic Guidelines, Content and Process for Value Education: Purpose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration 'Natural Acceptance' and Experiential Validation Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facility, Understanding Happiness and Prosperity correctly.

Practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility.

Understanding Harmony in the Human Being - Harmony in Myself: Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' Understanding the Body as an instrument of Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health; Practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life.

Unit – II 10 Hrs

Understanding Harmony in the Family and Society:

Harmony in Human Human Relationship: Understanding values in human-human relationship; meaning of Justice and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship, Understanding the meaning of Trust.

Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Unit –III 08 Hrs

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence: Understanding the harmony in the Nature, Interconnectedness and mutual fulfilment among the four orders of nature recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all pervasive space, Holistic perception of harmony at all levels of existence.

Practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Course	Outcomes: After completion of the course the students will be able to
CO1	Become more aware of themselves, and their surroundings (family, society, nature); they would
	become more responsible in life, and in handling problems with sustainable solutions,
CO2	Understand human relationships and human nature in mind so that they will have better critical ability.
CO3	Become sensitive to their commitment towards what they have understood (human values, human
	relationship and human society).
CO4	Apply what they have learnt to their own self in different day-to-day settings in real life.

Refe	erence Books
1	Human Values and Professional Ethics, R. R. Gaur, R Sangal, G P Bagaria, 1 st Edition, 2010, Excel Books, New Delhi, ISBN: 9788174467812.
2	Human Values, A.N. Tripathi, 3 rd Edition, 2019, New Age Intl. Publishers, New Delhi, ISBN: 9788122425895.
3	India Wins Freedom, Maulana Abdul Kalam Azad, 1st Edition, 1988, Orient Blackswan, ISBN: 97881250051481.
4	The Story of My Experiments with Truth, Mohandas Karamchand Gandhi, 1 st Edition, 2011, Create Space Publishing platform, ISBN: 9781463694876.
5	Small is Beautiful, E. F Schumacher, 1st Edition, 2011, (PBD)VINTAGE, ISBN: 9780099225614.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	1
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Duiz will be evaluated for 5 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & amp; Phase II (10) ADDING UPTO 20 MARKS.	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	Q. NO. CONTENTS			
	PART A	•		
1	Objective type questions covering entire syllabus	10		
	PART B (Maximum of TWO Sub-divisions only)	1 00		
2	Unit 1 : (Compulsory)	08		
3 & 4	Unit 2 : Question 3 or 4	08		
5 & 6	Unit 3: Question 5 or 6	08		
7 & 8	Unit 4: Question 7 or 8	08		
8 & 9	Unit 5 : Question 9 or 10	08		
	TOTAL	50		

Approved by AICTE, New Delhi

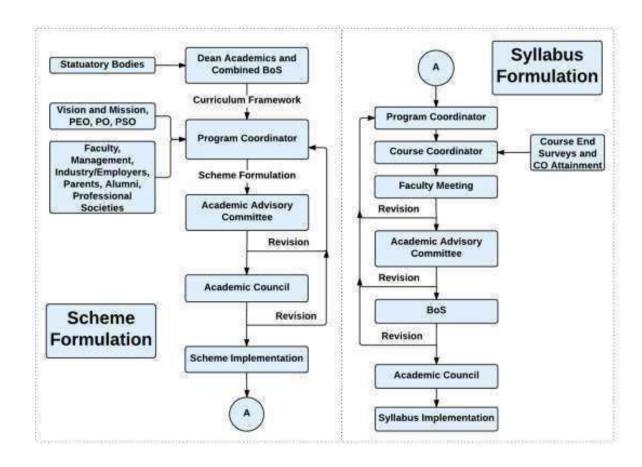
,, 3					
		\$	Semester: IV		
		Bridge Cou	rse: MATHEMA	ГІСS	
		(Manda	tory Audit Course	e)	
		(Comm	on to all Programs	s)	
Course Code	:	MAT149DT	CII	E :	50 Marks
Credits: L: T: P	:	2:0:0	SE	E :	NO SEE (AUDIT COURSE)
Total Hours	:	30L			

Total Hours : 30L	
Unit-I	10 Hrs
Multivariable Calculus:	
Partial Differentiation: Introduction, simple problems. Total derivative, composite functions.	Jacobians -
simple problems.	
Vector Differentiation: Introduction, velocity and acceleration, gradient, divergence - solene	oidal vector
function, curl – irrotational vector function and Laplacian, simple problems.	
Unit – II	10 Hrs
Differential Equations:	
Higher order linear differential equations with constant coefficients, solution of homogeneous	equations -
Complementary functions. Non-homogeneous equations – Inverse differential operator method	l of finding
particular integral based on input function (force function).	
Unit –III	10 Hrs
Numerical Methods:	

Numerical Methods:

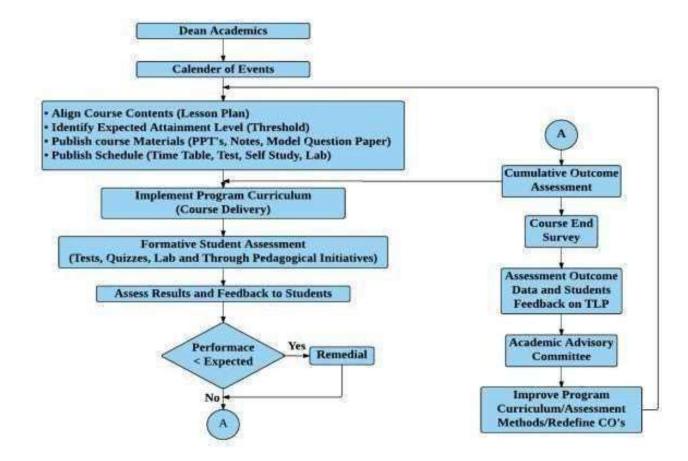
Solution of algebraic and transcendental equations – Intermediate value property, Newton-Raphson method. Solution of first order ordinary differential equations – Taylor series and 4^{th} order Runge-Kutta methods. Numerical integration – Simpson's $1/3^{rd}$, $3/8^{th}$ and Weddle's rules. (All methods without proof).

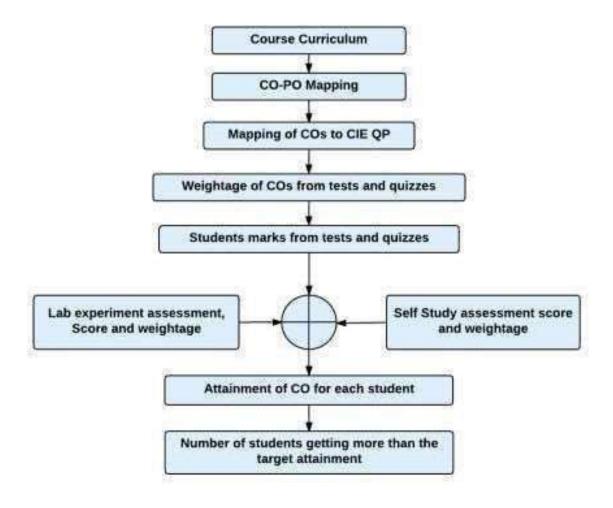
Course	Outcomes: After completing the course, the students will be able to
CO1:	Illustrate the fundamental concepts of partial differentiation, vector differentiation, higher order linear
	differential equations and numerical methods.
CO2:	Derive the solution by applying the acquired knowledge of differential calculus, differential equations,
	velocity, and acceleration vectors to the problems of engineering applications.
CO3:	Evaluate the solution of the problems using appropriate techniques of differential calculus, vector
	differentiation, differential equations, and numerical methods.
CO4:	Compile the overall knowledge of differential calculus, vector differentiation, differential equations
	and numerical methods gained to engage in life – long learning.


Referen	nce Books
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9-1.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.
3	A Textbook of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010, Lakshmi Publications, ISBN: 978-81-31808320.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley & Sons, ISBN: 978-0470458365.

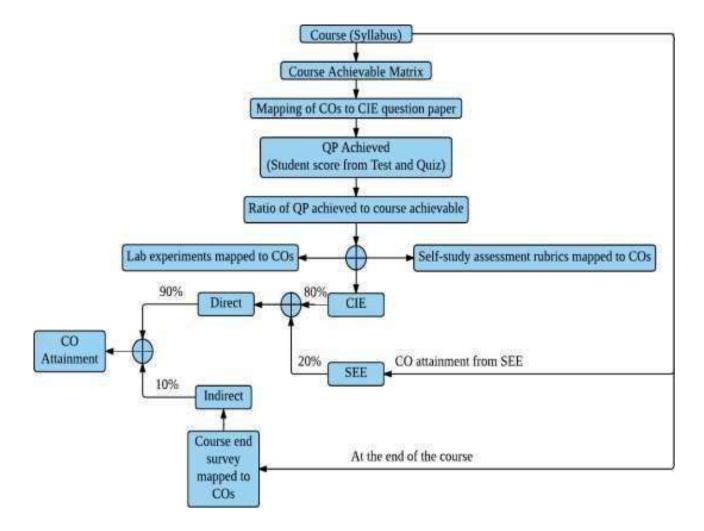
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 30 Marks, adding upto 60 Marks. FINAL TEST MARKS WILL BE AVERAGE OF TWO TESTS.	30
	MAXIMUM MARKS FOR THE CIE THEORY	50

Approved by AICTE, New Delhi


Curriculum Design Process


Approved by AICTE, New Delhi

Academic Planning and Implementation


Approved by AICTE, New Delhi

Process for Course Outcome Attainment

Approved by AICTE, New Delhi

Final CO Attainment Process

Approved by AICTE, New Delhi

Program Outcome Attainment Process

Technological University, Belagavi

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.