

Mechanical Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of VII & VIII Semester (2021 Scheme)

B.E. Programs : AI, AS, BT, CH, CS, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

		CURR	CURRICULUM STRUCTURE				
99 NIRF RANKING IN ENGINEERING (2024)	ISU(+ Times higher education world university Rainkings-2023 (asia) 5001-6000	61 CREE PROFESSIO CORES (PC)	DITS NAL	23 CREDITS BASIC SCIENCE			
	EDUFUTURE EXCELLENCE AWARD BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) BY ZEE DIGITAL		18 PROJECT	REDITS WORK /	12 CREDITS* OTHER ELECTIVES		
1001+ SUBJECT RANKING (ENGINEERING)	801+ SUBJECT RANKING (COMPUTER SCIENCE)	SCIENCE	INTERNS	HIP	& AEC		
IIRF 2023 ENGINEERING RANKING INDIA		PROFESSIONAL ELECTIVES	HUMANITIE SOCIAL SC	DITS IS & IENCE	160 CREDITS		
NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)	*ABILITY ENHANCE UNIVERSAL HUMAN INDIAN KNOWLEDG	*ABILITY ENHANCEMENT COURSES (AI UNIVERSAL HUMAN VALUES (UHV), INDIAN KNOWLEDGE SYSTEM (IKS), YO		IOIAL		
17 Centers of Excellence	Centers of Competence	MOUS: 90 INSDUSTF INSTITUTI	+WITH RIES / AG ONS IN	CADEN INDIA	1IC & ABROAD		
212 Publications On Web Of Science	669 Publications Scopus						
1093 Citations	(2023 - 24)	EXECU RS.40 (SPONS RESEAR	TED M CRORE ORED RCH P	IORE ES W ROJ	THAN ORTH ECTS &		
Skill Based Laboratories Across Four Semesters	Patents Granted	CONSU SINCE :	CONSULTANCY WORKS SINCE 3 YEARS				

Mechanical Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of VII & VIII Semester (2021 Scheme)

B.E. Programs : AI, AS, BT, CH, CS, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

MECHANICAL ENGINEERING

DEPARTMENT VISION

Quality Education in Design, Materials, Thermal and Manufacturing with emphasis on Research, Sustainable technologies, and Entrepreneurship for Societal Symbiosis

DEPARTMENT MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering
- Providing state-of-art laboratories and infrastructure for academics and research
- Facilitating faculty development through continuous improvement programs
- Promoting research, education and training in frontier areas of nanotechnology, advanced composites, surface technologies, MEMS and sustainable technology
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy
- Imbibing social and ethical values in students, staff and faculty through personality development programs

PROGRAM EDUCATIONAL OBJECTIVES

- PEO1 Successful professional careers with sound fundamental knowledge in Mathematics, Physical Sciences and Mechanical Engineering leading to leadership, entrepreneurship or pursuing higher education.
- PEO2 Expertise in specialized areas of Mechanical Engineering such as Materials, Design, Manufacturing and Thermal Engineering with a focus on research and innovation.
- PEO3 Ability of problem solving by adopting analytical, numerical and experimental skills with awareness of societal impact.
- PEO4 Sound communication skills, team working ability, professional ethics and zeal for life-long learning.

PROGRAM SPECIFIC OUTCOMES

- PSO1 Project Innovation: Competency, creativity and innovativeness in Mechanical Engineering with Multidisciplinary approach.
- PSO2 Research Innovation: Analytical, research and communication skills for placement in industries, research organizations and for pursuing higher education.
- PSO3 Special Labs: Knowledge in cutting edge technologies and skills in modern simulation tools.

LEAD SOCIETY

American Society of Mechanical Engineers - ASME

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	CH	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	AEC	Ability Enhancement Courses

RV COLLEGE OF ENGINEERING®, BENGALURU - 560 059

(Autonomous Institution Affiliated to VTU, Belagavi)

IV Year BE Programs of 2021 Scheme (Components and Credit Structure)

Mechanical Engineering [ME]

	SEVENTH SEMESTER										SEE Duration (H)	Max M SE	larks E
S1. No.	BoS	Course Code	Course Title	L	Т	Р	Credits	Category	Theory	Lab		Theory	Lab
1	HS	21HS71	Constitution of India and Professional Ethics	3	0	0	3	Theory	100		3	100	
2	ME	21ME72	Control Engineering	3	1	0	4	Theory	100		3	100	
3	ME	21ME73GX	Professional Core Elective-III (Group – G)	3	0	0	3	Theory	100		3	100	
4	ME	21ME74HX	Professional Core Elective-IV (Group- H)	3	0	0	3	Theory	100		3	100	
5	XX	21XX75IX	Institutional Electives – II (Group I)	3	0	0	3	Theory	100		3	100	
6	ME	21ME76I	Summer Internship - III	0	0	2	2	Internship		50	3		50
7	ME	21ME77P	Minor Project	0	0	2	2	Project		50	3		50
8	ME	21ME78	Robust Design	3	0	0	3	Theory	100		3	100	

Total

23

		R IV Year B	V COLLEGE O (Autonomou E Programs of M	FEI as In 202 lech	NG Isti 21 an	INEE tutior Scher ical B	RING®, n Affilia ne (Con Cnginee	BENGA ted to VT mponent ering [MI	LURU - `U, Bela ts and [E]	560 agavi Cred) 059) l it Struc	ture)	
			EIGHTH SEMI	ESTE	R				Max Ma CIE	arks ;	SEE	Max Ma	rks SEE
S1. No.	BoS	Course Code	Course Title	L	Т	Р	Credits	Category	Theory	Lab	(H)	Theory	Lab
1	ME	21ME81P	Major Project	0	0	12	12	Project		100	3		100
						Total	12						

INDEX

VII Semester									
Sl.	Course Code	Course Title	Page						
No.			No.						
1.	21HS71	Constitution of India and Professional Ethics	3						
2.	21ME72	Control Engineering	5						
3.	21ME73GX	Professional Core Elective-III (Group – G)	8-19						
4.	21ME74HX	Professional Core Elective-IV (Group- H)	20-33						
5.	21IE75IX	Institutional Electives – II (Group I)	34-65						
6.	21ME76I	Summer Internship	66						
7.	21ME77P	Minor Project	68						
8.	21ME78	Robust Design	70						

	Elective G										
Sl. No.	Course Code	Credits	Page No.								
1	21ME73GA	AI for Mechanical Engineers	03	8							
2	21ME73GB	Industrial Automation	03	10							
3	21ME73GC	Aerodynamics	03	12							
4	21ME73GD	Acoustics and Noise control	03	15							
5	21ME73GE	Reliability and Maintainability Engineering	03	17							

	Elective H										
Sl.	Course	Course Title	Course Title Credits Page N								
No.	Code										
1	21ME74HA	Advanced Finite Element Methods	03	20							
2	21ME74HB	Theory of Elasticity and Plasticity	03	22							
3	21ME74HC	Mechatronics Systems	03	25							
4	21ME74HD	Design of heat exchangers	03	28							
5	21ME74HE	Vehicle Dynamics	03	31							

	Institutional Electives II – Group I									
Sl.	Sl. Course BoS Course Title									
No.	Code									
1	21AS75IA	AS	Unmanned Aerial Vehicles	34						
2	21BT75IB	BT	Healthcare Analytics	36						
3	21CH75IC	CH	Sustainability and Life Cycle Analysis	38						
4	21CM75ID	CM	Advances in Corrosion Science & Management	40						
5	21CS75IE	CS	Prompt Engineering	42						
6	21CV75IF	CV	Integrated Health Monitoring of Structures	44						
7	21EC75IG	EC	Wearable Electronics	46						
8	21EE75IH	EE	E-Mobility	48						
9	21EI75IJ	EI	Programmable Logic Controllers & its applications.	50						

10	21ET75IK	ET	Space Technology and Applications	52
11	21IS75IL	IS	Mobile Applications Development	54
12	21IM75IM	IM	Project Management	56
13	21IM75IN	IM	Supply Chain Analytics	58
14	21ME75IO	ME	Nuclear Engineering	60
15	21HS75IQ	HS	Cognitive Psychology	62
16	21HS75IR	HS	Principle and Practices of Cyber Law	64

	VIII Semester										
Sl.	Course Code	Course Title	Page								
No.			No.								
1.	21ME81P	Major Project	72								

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII											
CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS											
Category: Professional Core											
			(Theory)								
Course Code	:	21HS71	CIE	:	100						
Credits: L:T:P	:	3:0:0	SEE	:	100						
Total Hours	:	45 L	SEE Duration	:	3 Hrs						

Unit-I	09 Hrs						
Salient features of Indian Constitution; Preamble to the Constitution of India; Provisions Relating to							
Citizenship in India-Modes of Acquisition and Termination of Citizenship of India. Scope &	Extent of						
Fundamental Rights-Articles 14-32 with case studies; Right to Information Act, 2005 with Case studi	es.						
Unit – II	09Hrs						
Significance of Directive Principles of State Policy; Fundamental Duties in the Constitution of Ir	idia; Union						
Executive- President and State Executive- Governor; Parliament & State Legislature; Council of Minis	ters; Union						
and State Judiciary; Emergency provisions; Elections commission. Human Rights & Human Rights Co	ommission.						
Unit –III	09 Hrs						
Consumer Protection Law - Definition and Need of Consumer Protection; Consumer Rights under the	e Consumer						
Protection Act, 2019; Unfair Trade Practice, Defect in goods, Deficiency in services; Product liability	y and Penal						
Consequences, False and Misleading Advertisement, E-Commerce, Alternate dispute Redress m	echanism;						
Redresses Mechanisms under the Consumer Protection Act, 2019.							
Unit –IV	09 Hrs						
Introduction to Labour and Industrial Law, Theory and Concept of Industrial Relations, Industria	l Relations						
Code 2020, Code on Social Security 2020, Code on Occupational Safety, Health and Working Condi	tions 2020,						
Code on Wages 2020, Industrial Disputes Act, The Factories Act, 1948, Analysis of Recent Amendments made							
in Labour Laws							
Unit –V	09 Hrs						

Scope and aims of engineering ethics (NSPE Code of Ethics), Responsibility of Engineers, Impediments to responsibility. Honesty, Integrity and reliability, Risks, Safety and Liability in Engineering.Corporate Social Responsibility, Statutory Provision regarding prohibition and prevention of Ragging, The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Equips with a comprehensive understanding of the legal and political framework of India, preparing them				
	to engage with complex legal, social, and political issues both as professionals and responsible citizens.				
CO2	Effectively advocate for consumer rights, navigate regulatory frameworks, and address emerging				
	challenges in the marketplace & empowers them with the legal knowledge and practical skills necessary				
	to protect consumers and promote fair business practices.				
CO3	Equipping with the knowledge and skills to navigate legal, ethical, and social issues in their professional				
	and personal lives & Cultivate a sense of professional integrity and responsibility, emphasizing the				
	importance of ethical behavior in engineering.				
CO4	Apply the knowledge to solve practical problems with regard to personal issues & business enterprises				

Refe	Reference Books					
1.	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2023 Edition					
2.	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5 th Edition, 2015, ISBN: 9789351452461.					
3.	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 8th Kindle Edition 2023, ASIN : B0C5CCJX63					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with differentcomplexity levels (Revised Bloom's Taxonomy Levels: Remembering,Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted.Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKSWILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE(THEORY)	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: (Internal Choice)	16		
5&6	Unit 3: (Internal Choice)	16		
7&8	Unit 4: (Internal Choice)	16		
9 & 10	Unit 5: (Internal Choice)	16		
	TOTAL	100		

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	Semester: VII					
	CONTROL ENGINEERING					
Category: Professional Core						
			(Theory)			
Course Code	:	21ME72		CIE	:	100 Marks
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks
Total Hours	:	45 L + 30 T		SEE Duration	:	3 Hours
		t	U nit-I			09 Hrs
Introduction to Co	ontr	ol Systems: Open-loo	p and closed-loop	p systems, typical B	lock	c Diagram Analysis for
understanding syste	m b	ehavior and stability.	Applications of C	Control Systems acro	ss e	ngineering, automation,
aerospace, and rob	otic	s. Differential Equation	on Model for de	escribing system dy	nam	ics. Electrical Circuits
representation and	ana	lysis in control system	ns. F-V and F-I	Analogy application	i in	control system design.
Translational and R	otati	ional Mechanical Syste	ms modeling for	control applications.	Pro	olem Solving exercises
		U	nit – II			09 Hrs
Block Diagram Al	geb	ra and Signal Flow (Graphs: Fundame	ental concepts of blo	ock	diagram representation,
including technique	s fo	r constructing block dia	agrams to model	various systems. App	olica	tions of block diagrams
in representing con	nple	x systems or processe	es and analysing	system interactions	Sig	gnal flow graphs as an
alternative system re	epre	sentation and their anal	lysis to understan	d signal paths. Probl	em-s	solving exercises.
Control System Co	omp	ponents: DC and AC	servomotors, tach	nometers, amplidyne	s, h	ydraulic and pneumatic
systems, and steppe	r mo	otors				
		Uı	nit —III			09 Hrs
Root Locus : R-H	cri	terion, angle and mag	nitude criterion,	Properties of Root	Loci	, Drawing Root Locus
Diagrams, Determin	natic	on of Damping Ratio, G	ain Margin, and P	hase Margin from R	oot I	Locus, stability analysis.
Simple problems						
Frequency Respon	se:	Nyquist and Bode Dia	agrams: Nyquist	criteria, sketching ai	nd o	btaining gain and phase
margin through Nyc	luist	t diagram, Bode plots:	Magnitude vs Pha	ise plots, understand	ng t	he relationship between
magnitude and phas	e in	logarithmic scale plots	Simple problem	S		00 Ц
						U9 HFS
State Space Analysis of Control Systems: Introduction to State Space Analysis covering the transition from						
classical to modern o	cont	rol theory. Understand	ing the Generalize	a State Equation as a	i run	damental representation
transfor functions	5. I 'oni	version of State Equation	g System State-3	pations for analysis of	nn u	logion Solution of State
Vector and explorat	ion	of the State Transition	Matrix Exploring	Controllability and	niu (Ohe	ervability concepts
	1011	I	nit-V	controllability and	003	09 Hrs
Types of Controlle	rs.	Overview of control ac	ctions including F	Proportional (P) Inte	oral	(I) and Derivative (D)
pneumatic controlle	rs. I	Inderstanding the com	bination of these	controllers in PD. PI.	and	PID configurations for
various control applications						
MATLAB in Control System Design: Utilizing MATLAB's Control System Toolbox for system analysis.						
design, and tuning. Hands-on experience in control system design and tuning processes. Exploration of automated						
PID tuning techniques and Graphical Bode Design methods. Practical application through solving simple control						
system problems using MATLAB.						
		Ex	xperiential Leari	ung		
Students must do f	our	exercises from the fol	lowing. (Each ex	xercise carries 10 m	ark	s)
1. Programmable Logic Controller (PLC) Based Level Control System						

2. Flow Control Characteristics Investigation using Flow Control Trainer

3. Temperature Control Performance Analysis with Temperature Control Trainer

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

- 4. PID Controller Tuning and Response Evaluation on PID Controller Trainer
- 5. Dynamic Response Study of DC Position Servo Mechanism using Demo Unit
- 6. Characterization of Inductive Transducer for Position Sensing Applications
- 7 Modal Testing of MS Cantilever Beam for Modal Parameter Estimation using FFT Analyzer
- 8 Modal Testing of Aluminum Plate in Free-Free Condition for Modal Parameter Estimation
- 9 Characterization of Step, Ramp, and Impulse Responses of First and Second Order Systems
- 10 Time Domain Specification Analysis of Under-Damped Second Order System
- 11 Stability Analysis of Control Systems using Routh-Hurwitz and Root Locus Methods
- 12 Frequency Response Analysis of Control Systems using Bode and Nyquist Plots

Course	Course Outcomes: After completing the course, the students will be able to:				
CO1	Understand fundamental principles of control engineering, including concepts of feedback, stability, and				
	control system design methodologies				
CO2	Apply mathematical modeling techniques to analyze and design control systems for various engineering				
	applications				
CO3	Demonstrate proficiency in utilizing control system tools and software for simulation, analysis, and				
	implementation of control strategies.				
CO4	Develop the ability to evaluate and optimize control systems' performance through analysis of system				
	dynamics, controller design, and tuning methodologies				

Refe	erence Books
1.	Modern Control Engineering", Katsuhiko Ogata, Pearson Education, 2010, ISBN: 978-0136156734
2	Feedback Control of Dynamic Systems", Gene F. Franklin, J. Da Powell, and Abbas Emami-Naeini, Pearson
۷.	Education, 2019, ISBN: 978-0133496598
3.	Automatic Control Systems", Benjamin C. Kuo and Farid Golnaraghi, Wiley, 2008, ISBN: 978-0470048962

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV College of Engineering®

Bengaluru - 560059, Karnataka, India

R

	Semester: VII						
AI FOR MECHANICAL ENGINEERS							
Category: Professional Core Elective							
Co	urse Code	•	21ME73GA	(Theory)	CIE	•	100 Marks
Cre	dits: L: T.P	•	3.0.0		SEE	•	100 Marks
Т	tal Hours	•	45 L		SEE Duration	•	3 Hours
10		•			SEL Durution	•	e mours
				Unit - I			09 Hrs
Intro	duction to Ar	tific	ial Intelligence: D	efinition and scope of Artificial	Intelligence (AI), I	Dist	inction between
narro	w AI and gen	eral	AI, Overview of A	Artificial Intelligence and its s	ubfields, Historica	l d	evelopment and
Miles	tones in AI, A	ppli	ications of AI in Me	echanical Engineering, Ethical	considerations and	soc	cietal impacts of
AI.							
				Unit – II			09 Hrs
Mach	ine Learning	g F	undamentals: In	ntroduction to machine learn	ning: supervised,	uns	supervised, and
reinfo	rcement learni	ng,	Data preprocessing	and feature engineering, Regres	sion analysis and p	redi	ctive modelling,
Class	ification algori	thm	s: decision trees, su	pport vector machines, and neu	ral networks		
				Unit – III			09 Hrs
AI A	pplications i	n I	Design and Optin	nization: Genetic algorithms a	and evolutionary c	omp	outation, Swarm
intelli	gence and par	ticl	e swarm optimizati	on, Optimization techniques for	or engineering desi	ign	problems, Case
studie	s: Design opti	miz	ation using AI techr	iiques			
				Unit – IV			09 Hrs
AI fo	or Predictive	Ma	aintenance and Fa	ault Detection: Introduction t	o predictive maint	ena	nce, Sensor data
analy	sis and anomal	y de	etection, Prognostics	and health management (PHM) systems, Conditio	n-b	ased monitoring
using	AI algorithms	, Re	eal-world application	ns in mechanical systems maint	enance.		
				Unit – V			09 Hrs
Auto	nomous Syste	ns a	and Robotics: Intro	duction to autonomous systems	and robotics, Perce	epti	on and decision-
makii	ig in autonomo	ous	systems, Control are	chitectures: reactive, deliberativ	e, and hybrid, Reir	ntor	cement learning
101 10		чрр		tonomous venicies, drones, and	i manufacturing for	DOIS	
Cou	rse Outcomes	Af	ter completing the	course, the students will be a	ble to:		
CO	Describing	fun	damental concepts	of AI within the theme.			
CO2	Designing	and	Analyzing AI Com	ponents for problem solving.			
CO	Identifying	, fo	rmulating and Solvi	ng Mechanical Engineering pro	blems using AI.		
CO ₄	Determinin	g a	nd applying AI prin	ciples in Mechanical Engineerin	ng applications.		
		0					
Reference Books							
1	"Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig, Pearson publisher. 2020.						
1	¹ ISBN-13: 978-0134610993						
2	"Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy, The MIT Press, 2012, ISBN-13:						
2.	2. 978-0262018029						
	"Introduction to Autonomous Robots" by Nikolaus Correll, Bradley Hayes, et al., MIT Press, 2019, ISBN-						
3.	^{3.} 13:978-0262038621						
	"Predictive M	aint	enance of Industria	l Control Systems" by Fan Ya	ng and Andrew K	usia	k, Wiley-IEEE
4	⁴ Press, 2019, ISBN-13: 978-1119387853						

Go, change the world

Experience Learning- LAB		
#	Student Must do Four exercises from the following (each Carries 10 Marks)	MARKS
	1. Machine Learning Applications in Mechanical Systems Optimization	
	2. Neural Network Modeling for Predictive Maintenance in Machinery	
	3. Robotics and Automation: Hands-on Experience with AI-driven Systems	
	4. Natural Language Processing for Human-Machine Interaction in Manufacturing	
	5. Computer Vision Techniques for Quality Control in Production Processes	
	6. Reinforcement Learning for Autonomous Control of Mechanical Systems	40
	7. Genetic Algorithms for Design Optimization in Engineering	
	8. Deep Learning Applications in Structural Health Monitoring	
	9. Fuzzy Logic Control Systems for Robotic Manipulation	
	10. Artificial Intelligence in Additive Manufacturing: Opportunities and Challenges	

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)	-			
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: (Internal Choice)	16			
5&6	Unit 3: (Internal Choice)	16			
7&8	Unit 4: (Internal Choice)	16			
9 & 10	Unit 5: (Internal Choice)	16			
	TOTAL	100			

Semester: VII					
INDUSTRIAL AUTOMATION					
Course Code : 21N	AE73GB		CIE	:	100 Marks
Credits: L:T:P :	3:0:0		SEE	:	100 Marks
Total Hours :	45 L		SEE Duration	:	3 Hours
Prerequisites: NIL					1
		Unit-I			09 hrs
Introduction to Industrial	Automati	on			
Automation in production sy	ystems, pri	nciples and str	ategies, levels of aut	omation, automat	tion and artificial
intelligence, Industrial auto	omation c	ircuits, proces	ss industries and di	screte manufact	uring industries,
continuous vs discrete contr	ol, comput	er based indus	trial control and auto	omation.	ſ
		Unit-2			10 hrs
Robot Drives and Actuator	rs				
Classification of end effect	ors, mecha	unical, magnet	ic and vacuum grip	pers, Functions of	of drive systems,
positive displacement pump	ps – gear,	vane and pist	on types, hydraulic	actuators, basic e	elements used in
hydraulic circuits, positive	displacem	ent compresso	ors, pneumatic actua	itors, electric mo	otors – DC, AC,
servo, stepper.					
		Unit - 3			10 hrs
Sensors and Robot vision s	systems	••. •	1		
Encoders, LVDT, Wrist ser	nsors, Prox	amity and ran	ge sensors, electro o	optical imaging s	ensors, Machine
vision system functions, sense	sing and di	gitising, prepr	ocessing – masking, i	neighbourhood av	veraging, median
filtering (Numericals), highe	er level vis	ion, applicatio	ns of robot vision sy	stem.	001
Unit-4 08 hrs				08 hrs	
Petrinet modelling for auto	omated sy	stems	. 10. 1	1 1 11	1
Classical petrinets – prelim	inary defi	nitions, transit	ional firing and rea	chability, represe	ntational power,
properties of petrinets. Stochastic petrinets – exponential timed petrinets. Generalized stochastic petrinets –					
firing rules, analysis, computation of performance measures. (Problems), Developing simple petrinet models					
for automation applications.					
		Unit-5			08 hrs
Logical Design of Automation circuits					
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sensors, step by					
step transition due to discrete successive signal, state diagram with time relays, components state diagram					
method, state diagrams and minimum realisations, sequential automation systems, Applications – Bi					
directional lead screw move	able work	table with two	speeds, Palindromi	c movement of a	a worktable with
memory.					

Course Outcomes:				
CO1	Recall and Illustrate the application of sensors actuators, switching elements and inspection			
	technologies in industrial automation.			
CO2	Build the circuit diagrams for fluid power automation, robot vision and identify its application			
	areas.			
CO3	Evaluate the concepts of analytical modeling paradigms for automation using state diagrams and			
	Petri Nets.			
CO4	Develop a suitable industrial automated system integrating all of the above advanced automation			
	concepts			

Reference	Books
1	Automation, production systems and computer integrated manufacturing, Mikell P Groover, 4th edition, 2016, Pearson education –ISBN: 978-9332572492
2	Performance modelling of automated manufacturing systems, N Vishwanadham, Y Narahari, 2015.
	PHI learning pvt ltd, ISBN: 978-81-203-0870-1
3	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0
4	Robotics and Flexible Automation, SR Deb, S Deb, 2 nd edition, 2017, McGrawhill Education, - ISBN – 0-07-007791-6

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: (Internal Choice)	16		
5&6	Unit 3: (Internal Choice)	16		
7&8	Unit 4: (Internal Choice)	16		
9 & 10	Unit 5: (Internal Choice)	16		
	TOTAL	100		

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII							
	AERODYNAMICS						
	Category: Professional Core Elective						
	(Theory)						
Course Code	:	21ME73GC	CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	45 L	SEE Duration	:	3 Hours		

Unit - I	09 Hrs		
Concepts of fluid dynamics - Basic Governing Equations: Continuity, Momentum, Energy and Navier-			
Stokes equation, Angular velocity, Vorticity, Strain, Circulation, Stream Function, Velocit	y Potential,		
Coefficient of Pressure, Pressure distribution on Air foil			
Unit – II	09 Hrs		
Potential Flows: Governing Equation: Laplace Equation, Uniform flow, Source flow,	Sink flow,		
Combination of a uniform flow with source and sink, Doublet flow, Non-lifting flow over a circul	ar cylinder,		
Vortex flow, Lifting flow over a circular cylinder, Kutta-Joukowski theorem and generati	on of Lift,		
D'Alembert's paradox.			
Unit – III	00 Ung		
	09 1115		
Incompressible Flow over Airfoils - Airfoil characteristics, Vortex Sheet, The Kutta Conditi	on, Kelvin's		
Incompressible Flow over Airfoils – Airfoil characteristics, Vortex Sheet, The Kutta Conditi circulation theorem and the starting vortex, Classical thin airfoil theory for symmetric Airfoil and	on, Kelvin's id cambered		
Incompressible Flow over Airfoils – Airfoil characteristics, Vortex Sheet, The Kutta Conditicirculation theorem and the starting vortex, Classical thin airfoil theory for symmetric Airfoil airfoil, Effect of Airfoil Thickness, Camber on the Airfoil Aerodynamic Characteristics.	on, Kelvin's nd cambered		
Incompressible Flow over Airfoils – Airfoil characteristics, Vortex Sheet, The Kutta Conditi circulation theorem and the starting vortex, Classical thin airfoil theory for symmetric Airfoil ar airfoil, Effect of Airfoil Thickness, Camber on the Airfoil Aerodynamic Characteristics. Unit – IV	on, Kelvin's nd cambered 09 Hrs		
Incompressible Flow over Airfoils – Airfoil characteristics, Vortex Sheet, The Kutta Conditi circulation theorem and the starting vortex, Classical thin airfoil theory for symmetric Airfoil an airfoil, Effect of Airfoil Thickness, Camber on the Airfoil Aerodynamic Characteristics. Unit – IV Incompressible Flow Over Finite Wings – Downwash and induced drag on wings, Vortex Fil	on, Kelvin's and cambered 09 Hrs ament, Biot-		
Incompressible Flow over Airfoils – Airfoil characteristics, Vortex Sheet, The Kutta Conditi circulation theorem and the starting vortex, Classical thin airfoil theory for symmetric Airfoil ar airfoil, Effect of Airfoil Thickness, Camber on the Airfoil Aerodynamic Characteristics. Unit – IV Incompressible Flow Over Finite Wings – Downwash and induced drag on wings, Vortex Fil Savart law and Helmholtz's theorems, Infinite and semi-infinite vortex filament, Prandtl's classic	on, Kelvin's nd cambered 09 Hrs ament, Biot- al lifting line		
Incompressible Flow over Airfoils – Airfoil characteristics, Vortex Sheet, The Kutta Conditi circulation theorem and the starting vortex, Classical thin airfoil theory for symmetric Airfoil an airfoil, Effect of Airfoil Thickness, Camber on the Airfoil Aerodynamic Characteristics. Unit – IV Incompressible Flow Over Finite Wings – Downwash and induced drag on wings, Vortex Fil Savart law and Helmholtz's theorems, Infinite and semi-infinite vortex filament, Prandtl's classic theory, Limitations of Prandtl's lifting line theory, Lifting surface theory.	on, Kelvin's nd cambered 09 Hrs ament, Biot- al lifting line		

Aerodynamic simulation – Flow Similarity, Principles of wind tunnel operation: Low speed, Transonic, supersonic and Hypersonic wind tunnels, Measurement Techniques in Wind Tunnels: Pressure Measurements, Force Balance, Hot wire anemometer.

	Course Outcomes: After completing the course, the students will be able to:
CO1	Apply fundamental principles of fluid dynamics to analyze the aerodynamic behavior of airfoils and
	wings.
CO2	Analyze potential flows to assess the aerodynamic performance of different bodies.
CO3	Determine the characteristics of incompressible flow pertaining to airfoils and wings.
CO4	Evaluate and simulate aerodynamic performance using wind tunnel measurement techniques.

Experience Learning- LAB		
i	# Student Must do Four exercises from the following (each Carries 10 Marks)	
 1. 2. 3. 	Wind Tunnel Testing: Design and conduct experiments to analyze airflow patterns and aerodynamic characteristics of various shapes and objects in a wind tunnel. Flight Simulation: Utilize flight simulators to experience and understand the effects of aerodynamic forces on aircraft performance and handling. Model Aircraft Design: Design, build, and test model aircraft to investigate aerodynamic principles such as lift, drag, and stability.	40

Go, change the world

- 4. Glider Construction and Flight: Construct gliders and conduct flight experiments to explore aerodynamic concepts related to lift generation and glide performance.
- 5. Airfoil Analysis: Experiment with different airfoil shapes and angles of attack to study their aerodynamic properties and performance characteristics.
- 6. UAV (Drone) Design: Design and test unmanned aerial vehicles (UAVs) to analyze aerodynamic efficiency, stability, and maneuverability.
- 7. Fluid Dynamics Demonstrations: Conduct hands-on demonstrations of fluid flow phenomena to observe and analyze aerodynamic principles in action.
- 8. Computational Fluid Dynamics (CFD): Use CFD software to simulate and visualize airflow around objects, providing insights into aerodynamic behavior and performance.
- 9. Aerospace Engineering Projects: Engage in team-based projects such as designing and building rockets, airplanes, or hovercraft to apply aerodynamic principles in real-world applications.
- 10. Aerodynamics in Sports: Investigate the aerodynamics of sports equipment (e.g., soccer balls, cycling helmets) through experimental testing and analysis to optimize performance and efficiency.

Refere	nce Books
1	Fundamentals of Aerodynamics, Anderson J.D., 5 th Edition, 2011, McGraw-Hill
	Edition, New York ISBN:9780073398105.
2	Aerodynamics for Engineering Students, E. L. Houghton, P.W, Carpenter 5 th Edition, 2010, Elsevier, New York. ISBN: 9780080493855.
3	Aerodynamics,Clancy L.J.,Sterlingbook house, 5thEdition,2006,New Delhi. ISBN: 9788175980570
4	Theoretical Aerodynamics, Louis M. Milne-Thomson, Imported Edition, 4t ^h Edition, 2011, Dover Publications, USA, ISBN: 080-075961980.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS			
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: (Internal Choice)	16		
5&6	Unit 3: (Internal Choice)	16		
7&8	Unit 4: (Internal Choice)	16		
9 & 10	Unit 5: (Internal Choice)	16		
	TOTAL	100		

	Semester: VII						
			ACOUS	STICS AND NOISE CONTR	OL		
	Category: Professional Core Elective						
0	(Theory)						
Cour	rse Code	:	ZIME/3GD		CIE	:	100 Marks
Credi	ts: L: T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	45 L		SEE Duration	:	3 Hours
				Ilnit - I			09 Hrs
Fundar	nentals of A	COU	stics - Sound Acou	stics Noise Pollution Wave pr	opagation The Fou	atic	on of State The
Fauatio	n of Contin	mits	The Simple Ford	e Equation Fuler's Equation	The Linear Wave	E Fo	uation Speed
of Sou	nd in Fluid	le	Harmonic plane V	Wayes Energy Density Acc	ustic Intensity	nec	rific Acoustic
Un Sou	nco Sphoric	10, 101 1	vavas Dagibal Scal	aves, Energy Density, Acc	Justice Intensity, C	pec	The Acoustic
Impeda	lice, spliette		waves, Decider Scal	Unit II			00 Hrs
Dofloat	ion and Tre	nci	mission in fluids	Changa in Madia, Transmissio	on from one fluid to	2.02	other: Normal
inciden	oo Tronomi		n though a Eluid I	avar: Normal Incidence, Trat	armission from on	o fl	uid to another
oblique	incidence	SSIC Nor	mal anaifia agais	tia impadanaa		сп	
Dofique	ion and Tr		mai specific acous	Perfection from the surface of	f a colid Transmi	onio	n though a thin
partition	n. Method of	ans f Im	nnssion in sonus – lages.	Reflection from the surface of	or a solid, Transilli	SSIC	n mough a unn
F	.,			Unit – III			09 Hrs
Acoust	Acoustic Measurements – Sound Level Meters, Intensity Level Meters, Octave Band Filters, Acoustic						
analyse	rs, Dosimet	er,	Measurement of S	ound Power, Sound Power M	leasurement in a F	Reve	erberant Room,
Sound	Power Mea	asu	rement – Anechoi	c or Semi-Anechoic Room, s	sound Power Surv	vey	Measurements,
Measur	ement of the	e Di	rectivity Factor, No	ise Measurement Procedures,	Problems.		
				Unit – IV			09 Hrs
Noise S	ources – So	und	Transmission Indoo	ors and Outdoors, Fan Noise, El	ectric Motor Noise	, Pu	mp Noise, Gas
compre	ssor Noise,	Tra	ansformer Noise, C	cooling Tower Noise, Noise f	rom gas ventilatio	on, 7	Appliance and
Equipn	nent noise,	Val	ve noise, Air Dis	tribution system noise, Nois	e Control, Histor	ical	Background,
Princip	les of Noise	e Co	ontrol, Noise Cont	rol at the source, Noise Cont	rol in the transmi	ssio	n path, Noise
control	at the Rece	iveı					
	Unit – V 09 Hrs						
Noise S	tandards –	ISC	O guidelines for No	ise control, dB Arithmetics, O	ctave band freque	ncy	analysis, Noise
rating,	rating, Acoustic mathematics, transmission loss, insertion loss.						
	Cou	irse	Outcomes: After	completing the course, the stu	idents will be able	to:	
CO1	Identify va	rio	us sources of indus	trial noise and understand their	ir impacts		
CO2	Formulate	ma	thematical models	to characterize industrial noise	e source		
CO3	Assess and	l im	plement control m	echanisms to mitigate noise fr	om diverse indust	rial	sources

CO4	Implement ISO standards to ensure effective noise control practices in industrial settings	

	Experience Learning- LAB			
	# Student Must do Four exercises from the following (each Carries 10 Marks)		MARKS	
1.	Sound	d Absorption Coefficients Measurement Using Impedance Tube Metho.		
2.	Chara	Characterization of Room Acoustics Through Reverberation Time Measurements		
3.	Desig	Design and Construction of Acoustic Panels for Noise Reduction		
4.	Analysis of Sound Transmission Loss in Building Structures			
5.	Evalu	ation of Noise Levels in Different Industrial Environments		

- 6. Testing and Calibration of Sound Level Meters
- 7. Study of Active Noise Control Techniques Using Adaptive Filters
- 8. Acoustic Design of Auditoriums and Performance Spaces
- 9. Measurement and Analysis of Noise Pollution in Urban Environments
- 10. Implementation of Noise Control Strategies in HVAC Systems

	Reference Books			
1	M. L. Munjal, Noise and Vibration Control, 2014, World Scientific Press: Singapore, 1st Edition, ISBN 978-981-4434-737			
2.	E. G. Williams, Fourier Acoustics: Sound Radiation and Near Field Acoustic Holography, 1999, Academic Press: New York, 1st Edition, ISBN: 13-978-0127539607			
3.	R J Peteres, Acoustics and Noise Control, Taylor & Francis India, 2019, 3rd Edition, ISBN 13- 9781138653504			
4	Möser & Michael, Engineering Acoustics - An Introduction to Noise Control, 2019, 1st Edition, Springer Publications, ISBN: 13-978-3540927228			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS			
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: (Internal Choice)	16		
5 & 6 Unit 3: (Internal Choice)		16		
7 & 8 Unit 4: (Internal Choice)		16		
9 & 10 Unit 5: (Internal Choice)				
	TOTAL	100		

			Semester: VII			
		RELIABILITY &	& MAINTAINABILITY ENG	GINEERING		
		Categ	ory: Professional Core Electiv	ve		
			(Theory)			
Course Code		21ME73GE		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours

Unit - I 09 I	Hrs	
Probability Theory - Concepts and Definitions - Reliability, Maintainability and Availability, Reliab	ility	
and quality, Basic elements of reliability, Achievement of reliability, Measurement of Reliability, Causes of		
failures and unreliability, Elementary properties of probability, Random Experiments, Events, Sar	nple	
Space, Probability rules, Conditional Probability, Bayes' theorem, Theorem of total probability, indepen	dent	
events, Random variables, Discrete distributions, Continuous distributions, Mathematical expectation	and	
variance of random variables		
Unit – II 09 I	Irs	
Failure Data Analysis – Failure density, failure rate, Reliability function, PDF, CDF, MTTF, MT	̈́ΒF,	
Hazard rate function, Bath Tub curve, Time dependent hazard models, Stress dependant hazard mod	lels,	
Conditional Reliability		
Failure Models - Constant Failure Rate Model - Exponential Reliability Function, Failure Mc	des,	
Applications, Two-Parameter Exponential Distribution, Poisson Process, Redundancy and the	CFR	
Model, Time-Dependent Failure Model – Weibull distribution, Normal distribution and Lognormal distribution	tion	
Unit – III 09 I	Irs	
Reliability of systems – Serial, parallel and combined configurations, System structure function, Min	imal	
Cuts and Minimal Paths, Common Mode failures, Three-state devices – Series Structure, Parallel Structure,		
Low- Level Redundancy and High-Level Redundancy		
Reliability of state-dependent systems - Markov Analysis, Load-sharing system, Stand-by system - Iden	tical	
Standby Units, Standby System with Switching Failure, Three-Component Standby system, Degraded sy	stem	
Unit – IV 09 I	Irs	
Design for reliability – Reliability analysis, Reliability design process, Reliability specification and sy	stem	
measurements - System Effectiveness, Economic Analysis and Life-Cycle Costs, Reliability allocatio	n –	
Exponential case, Optimal Allocations, ARINC, AGREE method, Redundancies, Design methods - I	Parts	
and material selection, Derating, Redundancy Optimization, FMEA, FTA		
Unit – V 09 I	Irs	
Design for maintainability – Analysis of downtime, Repair-time distribution – Exponential Repair Ti	mes,	
Lognormal Repair Times, System repair time, Reliability under preventive maintenance, State- dependant		
systems with repair, Maintenance requirements - Measurement and Specifications, Maintenance Concepts and		
procedures, Component Reliability and maintainability, Design methods - Preventive and Predie	ctive	
maintenance		

Go, change the world

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	Experience Learning- LAB			
# Student Must do Four exercises from the following (each Carries 10 Marks)		MARKS		
1.	Filter	ring observations in Excel		
2.	Distr	ibution Sampling in Excel		
3.	Desc	riptive Statistics		
4.	Нурс	othesis testing		
5.	Expl	oratory Data Analysis		
6.	Mod	eling data		
7.	7. Time Series Analysis		40	
8.	Mon	te Carlo Simulations		
9.	Powe	er Analysis		
10.	0. Statistical Process Control			
11.	. Design of Experiments			
12.	Data	management		

	Course Outcomes: After completing the course, the students will be able to:		
CO1	Identify statistical tools to characterize the reliability and maintainability.		
CO2	Establish reliability and maintainability strategies for efficient running of the systems.		
CO3	Formulate the statistical models to enhance system reliability.		
CO4	Develop reliable and maintainable systems.		

Reference Books

1	Probability & Statistics for Engineers and Scientists, Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, 2012, Pearson Publication, ISBN 10: 0-321-62911-6 ISBN 13: 978-0-321-62911-1
2.	An Introduction to Reliability and Maintainability engineering; Charles E. Ebeling, 2004, Tata McGraw- Hill Publishing Company Limited, ISBN - 13 : 978-0-07-042138-7 ISBN - 10 : 0-07-042138-2
3.	Reliability Engineering, E Balagurusamy, 1984, Tata McGraw-Hill Publishing Company Limited, ISBN - 13 : 978-0-07-048339-2 ISBN - 10 : 0-07-048339-6
4	Reliability Engineering, L S Srinath, East-West Press Pyt. Ltd 2005, ISBN 13: 9788176710480

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS		
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1: (Compulsory)	16	
3 & 4	Unit 2: (Internal Choice)	16	
5&6	Unit 3: (Internal Choice)	16	
7 & 8	Unit 4: (Internal Choice)	16	
9 & 10	Unit 5: (Internal Choice)	16	
	TOTAL	100	

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

			Semester: VII	
ADVANCED FINITE ELEMENT METHOD				
		Catego	ory: Professional Core Elective	
Course Code		01N/157011A	(Theory)	0. 1. (1
Course Code	:	21ME/3HA		JU Marks
Credits: L:1:P	:	3:0:0		JU Marks
Total Hours	:	45 L	SEE Duration :	3 Hours
			Init I	00 Ung
MATHEMATICA	гр	DEI IMINADIES	Cont - 1 Set Notation Eurotion Notation Vectors Matrices Tens	09 IIIS
Differential Equation		KELIWIINAKIES	Set Notation, Function Notation, Vectors, Matrices, Tens	Domondont
Uniterential Equation	ns, a F	Variational Calculus	S.Finite Element Basics. weak Form of PDEs, Linear Time-	-Dependent
Heat Equation, Finn	еЕ	iement dasis runcti		00.11
Unit – II 09 Hr			09 Hrs	
BENDING OF PLATES AND SHELLS Review of Elasticity Equations – Bending of Plates and Shells – Finite				
Element Formulatio	on o	f Plate and Shell E	lements - Conforming and Non-Conforming Elements –	C0 and C1
Continuity Elements – Degenerated shell elements- Application & Examples				
			Unit – III	09 Hrs
NON-LINEAR PR	OB	LEMS Introduction	n – Iterative Techniques – Material non-linearity – Elast	o Plasticity
Plasticity – Visco Plasticity – Geometric Non linearity – large displacement Formulation-Solution				
procedureApplication in Metal Forming Process and Contact Problems				
			Unit – IV	09 Hrs
DYNAMIC PROB	LE	M Direct Formulati	on – Free, Transient and Forced Response – Solution Pr	ocedures -
Eigen solution- Sub	ospa	ce Iterative Techni	que - Response analysis-Houbolt, Wilson, Newmark -	Methods -
Explicit & Implict N	/leth	ods- Lanchzos, Rec	luced method for large size system equations.	
			Unit – V	09 Hrs
DYNAMIC FRAC	TU	RE, Stochastic Fini	te Elements, Contact, Mesh Generation, Multi-scale Meth	ods, Multi-
physics Problems. Error Estimates And Adaptive Refinement Error norms and Convergence rates - h refinement				
with adaptivity – Ac	lapt	ive refinement.		
				
		E	xperience Learning- LAB	
	tud	ent Must do Four e	xercises from the following (each Carries 10 Marks)	<u> </u>
1. "Exploring Ma	ther	natical Foundations	in ANSYS: From Set Notation to Variational Calculus"	
2. "Mastering Fin	ite l	Element Basics in A	NSYS: Implementing Weak Form PDEs and Time Integrat	tion

- Techniques"
- 3. "Elasticity Equations and Finite Element Formulation for Plate and Shell Bending in ANSYS"
- 4. "Understanding Conforming and Non-Conforming Plate and Shell Elements in ANSYS: Applications and Case Studies"
- 5. "Exploring Iterative Techniques and Material Non-Linearity in ANSYS: Applications in Elasto-Plasticity and Visco-Plasticity"
- 6. "Addressing Geometric Non-Linearity and Large Displacement in ANSYS: Solution Procedures and Applications in Metal Forming and Contact Problems"
- 7. "Dynamic Problem Formulation in ANSYS: Eigen Solutions, Subspace Iterative Techniques, and Response Analysis"
- 8. "Analysis of Free, Transient, and Forced Dynamic Responses in ANSYS: Solution Procedures and Methodologies"
- 9. "Dynamic Fracture Analysis in ANSYS: Incorporating Stochastic Finite Elements and Contact Mechanics"

10. "Multi-scale Methods and Multi-physics Problems in ANSYS: Error Estimates, Adaptive Refinement, and Mesh Generation Strategies"

	Course Outcomes: After completing the course, the students will be able to:
CO1	Explain the fundamentals of finite element methods
CO2	Develop the knowledge to analyses, structures under static and dynamic conditions.
CO3	Selection of numerical techniques for solving engineering problems
CO4	Explore the use of finite element method knowledge to implement industrial project

Reference Books		
1	Bathe K.J., "Finite Element Procedures in Engineering Analysis", Prentice Hall, ISBN: 0-13-301458-4,	
1	1996	
c	T.J.R. Hughes (2000), The Finite Element Method: Linear Static and Dynamic Finite Mechanics,	
۷.	Butterworth-Heinemann.Element Analysis, Dover Publications. ISBN(13)-978-0486411811	
3.	O. C. Zienkiewicz and R. L. Taylor (2000), The Finite Element Method: Volume 2 Solid Mechanics,	
	Butterworth-Heinemann. ISBN: 0 7506 5055 9	
4	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, Concepts and Applications of Finite	
	Element Analysis, 4th Edition, ISBN: 978-0-471-35605-9	

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS (PART A)	MARKS
1	Objective type questions covering entire syllabus	20
PART B(Maximum of TWO Sub-divisions only)		
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: (Internal Choice)	16
5&6	Unit 3: (Internal Choice)	16
7&8	Unit 4: (Internal Choice)	16
9 & 10	Unit 5: (Internal Choice)	16
	TOTAL	100

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII						
THEORY OF ELASTICITY AND PLASTICITY						
Category: Professional Core Elective						
Course Code	•	21ME74HR	(Theory)	CIE	•	100 Marks
Credits: L: T:P	•	3:0:0		SEE	•	100 Marks
Total Hours	•	45 L		SEE Duration	•	3 Hours
i oturi i touris	•			SLL Durution	•	C Hours
			Unit - I			09 Hrs
Mathematical Theory of Elasticity Elasticity, stress, strain, Hooke's law, two- dimensional idealisations, plane stress and plane strain problems, equations of equilibrium, strain- displacement relations, constitutive relations, compatibility conditions, displacement and traction boundary conditions. Two-dimensional problems in rectangular coordinates: Stress function, solution by polynomials, Saint Vénant's principle, bending of a cantilever determination of displacements.						
		2	Unit – II			09 Hrs
Two-dimensional problems in polar coordinates : General equations, problems of axisymmetric stress distribution, pure bending of curved bars, effect of circular hole on stress distribution in plates, concentrated force at a point on a straight boundary. Stress-strain Problems in Three Dimensions: Principal stresses, principal strains, three-dimensional problems						
			Unit – III			09 Hrs
Introduction to Cartesian Tensors main remsons mation haves of cartesian tensors, special tensors and tensors operations, the Kronecker's delta, the permutation tensor, the e- δ identity, symmetry and skew- symmetry, contraction, derivatives and the comma notation, Gauss' theorem, the base vectors and some special vector operations, eigenvalue problem of a symmetric second order tensor, equations of elasticity using index notation. Constitutive Relations for linearly elastic materials: Elasticity tensor, Material symmetry, Isotropic materials, constitutive assumptions, work theorems, stored energy. Strong ellipticity, anisotropic materials09 HrsEnergy Theorems: Strain energy and complementary energy, Clapeyron's theorem, virtual work and potential energy principles, principle of complementary potential energy, Betti's reciprocal theorem, principle of linear superposition, uniqueness of elasticity solution. Torsion of straight bars: Elliptic and equilateral triangular cross-section, membrane analogy, narrow rectangular cross-section, torsion of rectangular bars, torsion of rolled profile						
sections, hollow sha	fts a	and thin tubes.		C I		
			Unit – V			09 Hrs
Introduction to Plasticity : One-dimensional elastic-plastic relations, isotropic and kinematic hardening, yield function, flow rule, hardening rule, incremental stress-strain relationship, governing equations of elastoplasticity.						
		F	xperience Learning- LAB]
# Stude	ent	Must do Four exer	cises from the following (each	Carries 10 Mark	s)	MARKS
 "Exploring El Two-Dimension "Python-Based and Application 	astional I Ai on o	city Theory with P Idealizations" nalysis of Two-Dimo f Saint Vénant's Pri	ython: Analyzing Stress, Strain ensional Elasticity Problems: St nciple"	n, and Hooke's La tress Function Solu	w ir tions	
3. "Analyzing T Axisymmetric	wo- Str	Dimensional Elast	icity Problems in Polar Coon Pure Bending of Curved Bars"	rdinates using Pyt	hon	

4. "Python-Based Stress-Strain Analysis in Three Dimensions: Principal Stresses, Principal Strains, and Three-Dimensional Problem Solving"

Bengaluru - 560059, Karnataka, India

- 5. "Understanding Cartesian Tensors with Python: Transformation Laws, Special Tensors, and Tensor Operations"
- 6. "Implementation of Constitutive Relations for Linearly Elastic Materials in Python: Elasticity Tensor, Material Symmetry, and Isotropic Assumptions"
- 7. "Exploring Energy Theorems in Elasticity with Python: Strain Energy, Complementary Energy, and Virtual Work Principles"
- 8. "Analysis of Torsion in Straight Bars using Python: Membrane Analogy, Torsion of Various Cross-Sections, and Hollow Shafts"
- 9. "Introduction to Plasticity: Exploring One-Dimensional Elastic-Plastic Relations and Incremental Stress-Strain Relationships with Python"
- 10. "Understanding Plasticity: Isotropic and Kinematic Hardening, Yield Function, and Governing Equations of Elastoplasticity in Python"

	Course Outcomes: After completing the course, the students will be able to:
CO1	Understand mathematical formulation of elasticity problem as a well-posed boundary value problem
CO2	Solve simple engineering problems with mathematical rigour. Such solutions can act as bench-mark
	solutions for testing computational methods and software.
CO3	Appreciate the Cartesian tensor notation; thereby understand modern technical literature well
CO4	Enable understanding of literature and advanced books on theory of plasticity

	Reference Books
1	Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, Mc Graw Hill, Singapore, 1982
2.	Ameen, M., Computational Elasticity–Theory of Elasticity, Finite and Boundary Element Methods, Narosa Publishing House, 2004.
3.	Leipholz, H., Theory of Elasticity, Noordhoff International Publishing, Layden, 1974.
4	Chakrabarty, J, Theory of Plasticity, Elsevier, London, 2006

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: (Internal Choice)	16		
5&6	Unit 3: (Internal Choice)	16		
7&8	Unit 4: (Internal Choice)	16		
9 & 10	Unit 5: (Internal Choice)	16		
	TOTAL	100		

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

MECHATRONICS SYSTEMS Category: Professional Core Elective (Theory) Course Code : 21ME74HC CIE : 100 Mari Credits: L:T:P : 3:0:0 SEE : 100 Mari Total Hours : 45 L SEE Duration : 3 Hours Unit - I OP Hi Introduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati - automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and increment encoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo moti pulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sig conditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processin difference equations, data acquisition. O9 Hr Digital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of log ates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first or and second order systems, steady state errors and error constants, performance measures for first and second or systems Numericals <th></th>				
Category: Professional Core Elective (Theory) Course Code : 21ME74HC CIE : 100 Marl Credits: L:T:P : 3:0:0 SEE : 100 Marl Total Hours : 45 L SEE Duration : 3 Hours Introduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati - - automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and increment encoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo mot pulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sig conditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processin difference equations, data acquisition. 09 Hr Digital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first on and second order systems, steady state errors and error constants, performance measures for first and second order systems Numericals	MECHATRONICS SYSTEMS			
(Theory) Course Code : 21ME74HC CIE : 100 Mari Credits: L:T:P : 3:0:0 SEE : 100 Mari Total Hours : 45 L SEE Duration : 3 Hours Introduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati - automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and incremetencoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo mot pulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sig conditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processit difference equations, data acquisition. 09 Hr Digital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first or and second order systems, steady state errors and error constants, performance measures for first and second order systems Numericals	Category: Professional Core Elective			
Course Code: 21ME74HC CIE: 100 Marl Credits: L:T:P: 3:0:0 SEE: 100 Marl Total Hours: 45 L SEE Duration: 3 Hours Unit - I09 HiIntroduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati- automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and incrementencoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo motpulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sigconditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processindifference equations, data acquisition.Unit - II09 HrDigital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters.Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first onand second order systems, steady state errors and error constants, performance measures for first and second orsystems, - Numericals	(Theory)			
Credits: L:T:P : 3:0:0 SEE : 100 Marl Total Hours : 45 L SEE Duration : 3 Hours Unit - I 09 Hi Introduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati - automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and increme encoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo mot pulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sig conditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processin difference equations, data acquisition. 09 Hr Digital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of lo gates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first or and second order systems, steady state errors and error constants, performance measures for first and second or systems, - Numericals	arks			
Total Hours i 45 L SEE Duration i 3 Hours Unit - I 09 Hi Introduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati - automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and increment encoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo mot pulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sig conditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processin difference equations, data acquisition. Unit – II 09 Hr Digital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first or and second order systems, steady state errors and error constants, performance measures for first and second or systems, - Numericals	arks			
Unit - I09 HiIntroduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati- automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and incrementencoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo mottpulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sigconditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processindifference equations, data acquisition.Unit – II09 HrDigital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters.Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first orand second order systems, steady state errors and error constants, performance measures for first and second orsystems, - Numericals	urs			
Unit - I09 HiIntroduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati- automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and incrementencoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo mottpulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sigconditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processindifference equations, data acquisition.Unit – II09 HrDigital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters.Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first orand second order systems, steady state errors and error constants, performance measures for first and second orsystems, - Numericals				
Introduction to Mechatronics: Traditional and mechatronic design of automatic washing machine, Applicati - automatic door, and temperature control. Principle and working of hall sensor, LVDT, absolute and increme encoders, photoelectric sensors, inductive and capacitive proximity sensors, Brushless DC, AC and servo mot pulse width modulation by H bridge circuit, Stepper motor: variable reluctance and permanent magnet, sig conditioning - amplifiers (No derivation - only numericals and applications), filtering, digital signal processin difference equations, data acquisition. Unit – II 09 Hr Digital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of lo gates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first or and second order systems, steady state errors and error constants, performance measures for first and second or systems, - Numericals	Hrs			
Unit – II09 HrDigital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters.Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first orand second order systems, steady state errors and error constants, performance measures for first and second orsystems, - Numericals	ations nental notors, signal ssing -			
Digital circuits: Karnough maps – 3 variable and 4 variable, Combinational logic circuits- Multiplexers, BCI 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first or and second order systems, steady state errors and error constants, performance measures for first and second or systems, - Numericals	Hrs			
 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first or and second order systems, steady state errors and error constants, performance measures for first and second or systems Numericals 	CD to			
	 7 segment display, calender subsystem in a smartwatch, sequential logic - Digital lock, timing diagrams of logic gates, , design of logic networks, flip-flops - positive and negative edge triggered, Binary Counters. Dynamic Responses of Systems: Closed loop system, Terminology, transfer functions, step response of first order and second order systems, steady state errors and error constants, performance measures for first and second order systems - Numericals 			
Unit – III 09 Hr	Hrs			
Microcontroller Interfacing: Input/output addressing, interface requirements, central heating system, periphy	pheral			
interface adapters, MC6821 PIA, interfacing a stepper, serial communication interface, interfacing a sev	seven-			
segment display, interfacing motors, windshield wiper motion, bathroom scales.				
Microcontroller Programming: Programming basics: data types, control structures, functions, Interrupts,	ts, and			
real-time operating systems (RTOS) for microcontrollers, Code optimization techniques for memory and sp	speed			
constraints, Project: writing and debugging microcontroller programs for mechanical applications.				
Unit – IV 09 Hr	Hrs			
Electrical/Electronic interfacing with Fluid power systems: Symbolic representations of hydraulic and pneumatic components, Drilling machine circuit, electrical control of regenerative circuit, pressure control circuit., Direct and indirect control, Latching, Multi cylinder sequencing circuits, cyclic operation with proximity sensors, box sorting system, circuit for stamping device.				
Unit – V 09 Hr	Hrs			
Fundamentals of Ladder Diagram for PLC: Principle of operation, modifying the operation with ladder logic , basic PLC instructions, and concepts of ladder diagram, latching, timer instructions, counter instructions. Examples with ladder logic programs, simple programs using Boolean logic and narrative descriptions. Relay to ladder conversion examples.PLC programming for mechanical applications: Central heating system, valve sequencing, water level control, overhead garage door, sequential process, continuous filling operation, Fluid pumping with timers, conveyor belt				

Experience Learning- LAB			
#	Student Must do Four exercises from the following (each Carries 10 Marks)	MARKS	
1."Exploring Fluid power systems: Introduction to hydraulic, pneumatic, electrical interfaces in			
powerpack"		40	
2."Hands-On Introduction to Electropneumatics: Applications in machine tools"			

Bengaluru - 560059, Karnataka, India

3 "Microcontroller Interfacing for IoT Applications: Sensors, Actuators, and Analog-Digital Conversion"
4 "Hands-On Microcontroller Interfacing: Implementing ADC, DAC, and Serial Communication Protocols for Sensor Integration"
5 "Microcontroller Programming Essentials: Data Types, Control Structures, and Interrupt Handling"
6 "Advanced Microcontroller Programming Techniques: Real-Time Operating Systems, Code Optimization, and Project Development for Mechanical Applications"
7 "Introduction to Microcontroller-Based Control Systems: Feedback Control Theory and PID Implementation"
8 "Design and Implementation of Closed-Loop Control Systems using Microcontrollers: Case Studies in Mechanical Engineering Applications"

9 "Introduction to PLC Programming for Mechanical Applications: Understanding Ladder Diagrams and Basic Conventions"

10 "Hands-On PLC Programming: Applications in Mechanical Engineering Including Valve Sequencing, Water Level Control, and Sequential Processes"

	Course Outcomes: After completing the course, the students will be able to:
CO1	Select appropriate sensors and transducers and devise an instrumentation system for collecting
	information about processes.
CO2	Apply the electrical and digital logic concepts to inspect the functioning of mechatronic systems.
CO3	Evaluate a control system for effective functioning of Mechatronics systems using digital electronics,
	microprocessors, fluid power systems, microcontrollers and programmable logic controllers
CO4	Develop conceptual design for Mechatronics products based on potential customer requirements

	Reference Books		
1	Bolton W., 'Mechatronics-Electronic Control System in Mechanical and Electrical Engineering', Pearson		
	Education, 4th Edition, 2012; ISBN:9788131732533		
2.	Tilak Thakur 'Mechatronics', Oxford University Press, I Edition, 2016, ISBN: 9780199459329		
3.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-13: 978-0-07-		
	351088-0		
4	Anthony Esposito, 'Fluid Power with Applications', 7th Edition, 2013, ISBN - 13; 9789332518544.		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration	40

(20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	
MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO. CONTENTS			
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1: (Compulsory)	16	
3 & 4	Unit 2: (Internal Choice)	16	
5&6	Unit 3: (Internal Choice)	16	
7&8	Unit 4: (Internal Choice)	16	
9 & 10	Unit 5: (Internal Choice)	16	
	TOTAL	100	

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII					
	DESIGN OF HEAT EXCHANGERS				
		Categ	ory: Professional Core Elective		
	(Theory)				
Course Code	:	21ME74HD	CIE	:	100 Marks
Credits: L:T:P	••	3:0:0	SEE	:	100 Marks
Total Hours	:	45 L	SEE Duration	ı :	3 Hours

Unit - I	09 Hrs		
Introduction To Heat Exchanger Design: Classification of heat exchangers and their applic	Introduction To Heat Exchanger Design: Classification of heat exchangers and their applications. Flow		
arrangements and temperature distributions in heat exchangers. Overview of Heat Exchanger Design I	Methodology,		
Heat Exchanger Variables and Thermal Circuit, Overall heat transfer coefficient, fouling factor,	Concentric-		
Tube Heat Exchangers, Mean temperature difference Concept: - LMTD for parallel flow	and counter		
flow arrangement, correction factor for LMTD for cross flow and multi-pass heat exchangers, N	lumericals.		
Unit – II	09 Hrs		
Shell And Tube Heat Exchangers: Constructional features. Applications. Effectiveness-NTU r	nethod for		

heat exchanger design/analysis. Rating and sizing problem. Correlations for tube side pressure drop and heat transfer coefficients. Pressure drop and heat transfer coefficients for shell side flow, Numerical

ByPass And Leakage Calculation Procedure For Shell And Tube Heat Exchanger

Heat balance equations: LMTD: reference temperature calculations: evaluation of fluid properties: flow assignments: tube side flow area calculations; viscosity correction factor, shell side equivalent diameter, calculation of shell side heat transfer coefficient, evaluation for wall temperature, evaluation of overall heat transfer coefficient, Calculation of surface area. Calculations of tube side and shell side pressure drops, Numericals

Unit – III	09 Hrs	
Steam Condensers - Specifications of other details as per TEMA standards. Flow arrange	gement for	
increased heat recovery: - lack of heat recovery in 1-2 exchangers true temperature differen	ce in a 2-4	
exchanger. Calculation procedure for steam condensers, Numericals		
Heat pipes and Micro scale heat exchangers -Heat pipes, construction, working principle, application, and		
analysis. Special heat pipes. Micro-scale heat Exchangers and heat sinks; heat transfer and fluid flow through		
narrow conduits, special design considerations		
Unit – IV	09 Hrs	
Compact Heat Exchangers: Compact heat exchangers, Enhancement of heat transfer, Extended surface or		
Fin, fundamental of extende surface heat transfer, Fin tube heat exchanger.		
Plate Fin Heat Exchangers (DEHE) Types Construction Entrication Design Application Multi stream DEHE		

Plate Fin Heat Exchangers (PFHE), Types, Construction, Fabrication, Design, Application, Multi-stream PFHE. Unit – V 09 Hrs

Selection of Heat Exchangers and Their Components: Selection Criteria Based on Operating Parameters -Operating Pressures and Temperatures, Cost, Fouling and Cleanability, Fouling and Cleanability, Fluids and Material Compatibility, Fluid Type, General Selection-Guidelines for Major Exchanger Types, Some Quantitative Considerations - Screening Methods, Performance Evaluation Criteria, Evaluation Criteria Based on the Second Law of Thermodynamics.

Course Outcomes: After completing the course, the students will be able to:		
CO1	Select appropriate heat exchangers for the given application.	
CO2	Identify how to design common type of heat exchangers.	
CO3	Analyze single and multiphase heat transfer systems and friction coefficient correlation.	
CO4	Develop sizing of condenser and air-cooled heat exchangers.	

Go, change the world

	Experience Learning- LAB			
	#	Student Must do Four exercises from the following (each Carries 10 Marks)	MARKS	
1.	"Desi	gn and Analysis of Concentric-Tube Heat Exchangers: Applying LMTD Concepts		
	and C	Correction Factors"		
2.	"Prot	otype Models for Heat Exchanger Design: Exploring Flow Arrangements, Thermal		
	Circu	its, and Overall Heat Transfer Coefficients"		
3.	"Desi	gn and Analysis of Shell and Tube Heat Exchangers: Effectiveness-NTU Method,		
	Ratin	g, and Sizing"		
4.	"Proc	edure for Bypass and Leakage Calculation in Shell and Tube Heat Exchangers: Heat		
	Balar	ce Equations, LMTD, and Pressure Drop Calculations"		
5.	"Desi	gn and Calculation Procedure for Steam Condensers: TEMA Standards, Flow		
	Arran	gements, and Numerical Analysis"		
6.	5. "Exploring Heat Pipes and Microscale Heat Exchangers: Construction, Working 40			
	Princ	iple, Applications, and Special Design Considerations"		
7.	7. "Design and Analysis of Fin Tube Heat Exchangers: Fundamental Concepts and			
	Appli	cations of Extended Surface Heat Transfer"		
8.	"Expl	oring Plate Fin Heat Exchangers (PFHE): Types, Construction, and Multi-stream		
	Confi	gurations for Enhanced Heat Transfer"		
9.	"Sele	ction Criteria for Heat Exchangers: Operating Parameters, Cost, Fouling, and		
	Mate	rial Compatibility"		
10.	"Guio	lelines for Heat Exchanger Selection: Screening Methods, Performance Evaluation,		
	and S	econd Law of Thermodynamics Criteria"		
		-		

	Reference Books		
1	Sadik Kakal and Hogtan Liu, "Heat Exchangers Selection, rating and Thermal Design", CRC Press, 2012, 3rd Edition, ISBN: 9781439849903		
2.	T. Taborek, G.F. Hewitt and N. Afgan, Heat Exchangers - Theory and practice, McGraw Hill Book Co., 1st Edition, 1980, ISBN: 978-0070628069.		
3.	Walkers, Industrial Heat Exchangers-A Basic Guide, McGraw Hill Book Co., 1st Edition, 1980, ISBN: 10: 0891162305		
4	Arthur, P. Frass, Heat Exchanger Design, John Wiley and Sons, 2nd Edition, 1989, ISBN: 978-0-471-62868-2		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration	40

(20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
PART B							
	(Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: (Internal Choice)	16					
5&6	Unit 3: (Internal Choice)	16					
7&8	Unit 4: (Internal Choice)	16					
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII								
VEHICLE DYNAMICS								
Category: Professional Core Elective								
(Theory)								
Course Code	:	21ME74HE		CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45 L		SEE Duration	:	3 Hours		
Unit - I 09 Hrs								
Introduction: Vehicle Dynamics terminology, The Driver-Vehicle-Ground System, Vehicle Fixed Coordinate								

System (SAE) and Earth Fixed Coordinate System; **Mechanics Of Pneumatic Tires**: Functions, Tire construction – Bias-ply Tire and Radial-ply, Tire Forces And Moments – Tire (Wheel) Axis System, Rolling Resistance of Tires, Tractive (Braking) Effort And Longitudinal Slip (Skid), Cornering Properties of Tires – Slip Angle and Cornering Force, Slip Angle and Aligning Torque, Camber and Camber Thrust; **Front Wheels Alignment:** Need, Centre-Point Steering – Camber, King Pin Inclination, Negative Scrub Radius, Caster, Front-Wheel Toe-In or Toe-out, Toe-Out-On-Turns.

Unit – II09 HrsPerformance Characteristics of Road Vehicles (two-axle vehicle): Equation of Motion and Maximum TractiveEffort – Front & Rear Wheel Drive (No Numerical Problems); Vehicle body Aerodynamics: Mechanics of AirFlow around a Vehicle, Pressure Distribution on a Vehicle, Aerodynamic Forces and moments, Factorsinfluencing aerodynamic resistance coefficient (CD) and lift coefficient (CL) – Body shape, shape of the front andrear end, front and rear spoiler, angle of attack, ground clearance, load, operational factors.

Braking Performance: Braking Characteristics of a Two-Axle Vehicle - analysis of maximum braking force that the tire-ground contact can support, Loss of directional stability due to lock-up of rear tires, Quantitative determination of the conditions under which the front or the rear tires will lock first. (No Numerical Problems); **Antilock Brake Systems**: Elements of an ABS, criteria employed in existing ABS, Various layouts of ABS for passenger cars, Electromechanical Brake system; **Traction Control Systems** - prime functions.

Unit – III	09 Hrs			
Handling Characteristics of Road Vehicles: Ackermann Steering Geometry, Error Curve of a Steering Linkage				
(No Numerical Problems); Steady-State Handling Characteristics of A Two Axle Vehicle: Simplif	ied Steady-			
State Handling Model for a Two-Axle Vehicle. Neutralsteer, Understeer, Oversteer. (Numerical Problems)				
Steady-State Response to Steering Input: Yaw Velocity Response, Lateral Acceleration Response, Curvature				
Response (Numerical Problems); Testing of Handling Characteristics: Constant Radius Test, Con	stant Speed			
Test, Constant Steer Angle Test, Vehicle Stability Control.				

 Unit – IV
 09 Hrs

 Vehicle Ride Characteristics: Human Response to Vibration - methods for assessing human tolerance to vibration; Two-Degree-of-Freedom Vehicle Model - Sprung and Unsprung Mass (Quarter car model), Aspects to evaluate the overall performance of a suspension system – Vibration isolation, suspension travel and road holding.

Two-Degree-of-Freedom Vehicle Model - Pitch and Bounce (Numerical Problems); **Concept of Active and Semi-Active Suspension Systems** – Electrorheological Damper and Magnetorheological Damper.

Unit – V09 HrsElectric Vehicles (EV's): Electric and hybrid electric vehicle (HEV) components, Power transmission path in in
ICE, EV and HEV, electric motor and engine ratings, Gear Ratio, Torque-speed characteristics, Planetary Gear
Set; Hybrids based on Architecture – series and parallel, Series-Parallel, Series-Parallel 2 × 2 Hybrid; Hybrids
based on Transmission Assembly – Pre- and Post-transmission Hybrids, P0–P4 Hybrid Architectures, 48V
Hybrid Architectures, Hybrids based on degree of Hybridization, Plug-In Hybrid Electric Vehicle, Skateboard
Chassis.Hybrid Vehicle Control Strategy: Vehicle Supervisory Controller; Mode Selection Strategy –
Mechanical power-split hybrid modes- Electric Only, Engine Starting, Parallel Mode, Power-Split Mode,

Engine Brake Mode and Regeneration Mode; **Series-parallel 2 × 2 hybrid modes**-Electric Only, Series Mode, Power-Split Mode and Parallel Mode; Plug-In Hybrid Electric Vehicle.

Experience Learning- LAB					
Ŧ	# Student Must do Four exercises from the following (each Carries 10 Marks)	MARKS			
1)	"Introduction to Vehicle Dynamics: Terminology and Driver-Vehicle-Ground System"				
2)	"Mechanics of Pneumatic Tires: Construction, Forces, and Moments in Vehicle Dynamics"				
3)	"Front Wheels Alignment and Steering Geometry: Camber, Caster, Toe-In/Toe-Out, and				
	Performance Effects"				
4)	"Performance Characteristics of Road Vehicles: Equation of Motion, Tractive Effort,				
	Aerodynamics, Power Plant, and Transmission Analysis"				
5)	"Analysis of Braking Performance in Road Vehicles: Stopping Distance, Brake Fade, and				
	Efficiency"				
6)) "Handling Characteristics and Steering Geometry in Road Vehicles: Pitching, Yawing,				
	Ackermann Steering, and Error Curve Analysis"	40			
7)) "Analysis of Steady-State Handling Characteristics of Two-Axle Vehicles: Neutralsteer,				
	Understeer, and Oversteer"				
8)	"Testing and Control of Vehicle Handling Characteristics: Steady-State Response,				
	Directional Stability, and Vehicle Stability Control"				
9)) "Understanding Vehicle Vibration and Human Comfort: Analysis of Single and Two Degree-				
	of-Freedom Models"				
10)	"Advanced Suspension Systems for Vehicle Vibration Control: Active and Semi-Active				
	Systems, Electrorheological and Magnetorheological Dampers"				

Course Outcomes: After completing the course, the students will be able to:					
CO1	Understand the terminology related to vehicle dynamics.				
CO2	Analyse and apply principles of mechanics of pneumatic tyres front wheel alignment to the two axle				
	road vehicles				
CO3	Understand and explain the performance characteristics, braking performance and handling				
	characteristics of road vehicles.				
CO4	Analyse vehicle vibrations and apply to the vehicle suspension systems of the two axle road				

Ref	erence Books
1	Theory of Ground Vehicles , 3 rd Edition, J.Y. Wong, John Willey and Sons, 2005, ISBN 978-8126565405.
2.	Automobile Mechanics, 8th Edition, N.K. Giri, Khanna Publishers, 2013, ISBN 81-7409-216-1.
3.	Electric and Hybrid Vehicles Design Fundamentals, 3rd Edition, CRC Press, 2021, ISBN: 978-0-367-69393-0 (pbk).

Go, change the world

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1 Objective type questions covering entire syllabus						
	PART B					
(Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: (Internal Choice)	16				
5&6	Unit 3: (Internal Choice)	16				
7 & 8 Unit 4: (Internal Choice)						
9 & 10	Unit 5: (Internal Choice)	16				
	TOTAL	100				

	Semester: VII						
UNMANNED AERIAL VEHICLES							
Category: Institutional Elective-II							
(Theory)							
Co	ourse Code	:	21AS75IA		CIE	:	100 Marks
	edits: L:T:P	:	3:0:0		<u>SEE</u>	:	100 Marks
T	otal Hours	:	45L		SEE Duration	:	3.00 Hours
			Unit-I				08Hrs
Introdu	ction to Unmann	ed	Aerial Vehicles	(UAVs): His	story of UAVs. N	Jeed	1 of unmanned aerial systems.
Overvie	w of UAV System	s-S	ystem Compositi	on, Classes an	d Missions of U	AVs	-Classification of UAVs based
on size,	range and enduran	ce,	Applications, Exa	amples of UA	Vs		
			Unit – II	-			11Hrs
Aerody	namics & Propul	sior	aspects of UAV	Vs: Basic Aer	odynamic Equati	ons	, Air foils, lift, drag, moments,
Aircraft	Polar, The Real	Win	g and Airplane,	Induced Drag	, Total Air-Vehi	cle	Drag, Flapping Wings, Rotary
wings.							
Propuls	ion:Thrust Genera	tior	and basic thrust	equation, Sou	rces of Power for	UA	Vs- Piston, Rotary, Gas turbine
engines,	electric or battery	pov	wered UAVs.				
Unit –III 08Hrs							
Airtrame	e of UAVs: Mecha	nıc	loading, basics of	types of load	calculation and st		tural engineering, Material used
IOT UAV	(general introduct	tion), FRP and metho	ds of usage in	UAV, Testing of	FK	P specimens for UAV, selection
manufac	turing UAV struct		structural elemen	its used in OF	v men significat	ice	and characteristics, methods of
manurac	turing OAV struct	uic	Unit _IV				10Hrs
Pavload	s for UAVs: Baro	met	ers Acceleromet	er Magnetom	eter RADAR and	ran	ge finder Non-dispensable and
dispensa	ble Pavloads-Opti	cal.	electrical, weapo	on, imaging pa	vloads.		ge maer, rom aspensaere and
I		,	Unit –V	,)		08Hrs
Mission	Planning and (Con	trol: Air Vehicl	e and Payloa	d Control, Reco	nna	issance/Surveillance Payloads,
Weapon	Payloads, Other P	ayl	oads, Data-Link H	Functions and	Attributes, Data-I	Link	Margin, Data-Rate Reduction,
Launch	Systems, Recovery	y Sy	stems, Launch ar	nd Recovery 7	rade-offs.		
Course Outcomes: At the end of this course the student will be able to :							
Understand the role of UAVs in the current generation for diverse applications ranging from commercial					ations ranging from commercial		
	to military purpo	ses					
CO2:	Apply the funda and application	mer	ital concepts of A	Aerospace En	gineering to Desig	gn a	a UAV for a particular Mission
Evaluate the performance of UAV with a perspective of Aerodynamics, Propulsion, Structures for a							
given Mission							

CO4: Critically appraise and optimize the performance of the UAV for a given Mission profil
--

Refere	ence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

Go, change the world

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
I	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: (Internal Choice)	16
5&6	Unit 3: (Internal Choice)	16
7&8	Unit 4: (Internal Choice)	16
9 & 10	Unit 5: (Internal Choice)	16
	TOTAL	100

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

				Semester: Vl	I					
HEALTHCARE ANALYTICS										
Category: Institutional Elective II										
(Theory)										
Co	ourse Code	:	21BT75IB		CIE	:	100 Marks			
Cre	edits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Te	Total Hours : 45 L SEE Duration : 3 Hours									
				Unit-I			09 Hrs			
Introd	luction to tools	an	d databases: Intr	oduction to Bioin	formatics, Goals,	Sc	ope, Applications, Sequence			
databa	ses, Structure da	itał	bases, Special data	abases, Application	ns of these databa	ses	, Database similarity search:			
Unique	e requirements o	f d	atabase searching	, Heuristic Databas	se Searching, Basi	c L	local Alignment Search Tool			
(BLAS	ST), FASTA, Co	mp	arison of FASTA	and BLAST, Data	base Searching wi	th	Smith-Waterman Method			
				Unit – II			09 Hrs			
Seque	nce Analysis: 🛛	Гур	bes of Sequence a	alignment -Pairwis	se and Multiple s	equ	uence alignment, Alignment			
algorit	hms, Scoring m	atr	ices, Statistical si	gnificance of sequ	uence alignment.	Mι	Itiple Sequence Alignment:			
Scorin	g function, Exha	aus	tive algorithms, H	euristic algorithm	s, Profiles and Hid	lde	n Markov Models: Position-			
Specif	ic scoring matric	ces,	, Profiles, Markov	Model and Hidde	n Markov Model,	Sc	oring matrices – BLOSSUM			
and PA	AM									
Molec	ular Phylogene	etic	s: Introduction,	Terminology, For	ms of Tree Rep	rese	entation. Phylogenetic Tree			
Constr	ruction Methods	- L	istance-Based, Cl	haracter-Based Me	thods and Phyloge	ene	tic Tree evaluation.			
T		0		Unit –III	• 0		09 Hrs			
Introd	luction to Next	-G	eneration Sequer	icing (NGS) anal	ysis: Sanger sequ	enc	cing principles - history and			
landma	arks, of Sequen	cin	g Technology Pla	attorms, A survey	of next-generation	on	sequencing technologies, A			
review	of DNA enrich	ime	ent technologies,	Base calling algor	ithms, Base qualit	ty,	phred values, Reads quality			
checks	s, Interpretations	Irc	om quality checks.	Adapter and prim	er contamination.	Pro	beessing reads using clipping			
of reac	is-Advantages a	na	disadvantages of p	processing of reads			00 11			
Stanot	unal analysis e	C	atoma Dialagua C	Unit –I v	mana abinitia ar		09 Hrs			
Detect	ion of functions	Зy Loi	tes and orden bio	in the DNA Bred	$\frac{1}{1}$	lu I dor	nonology-based approaches			
basics	structure visual		tion comparison (and classification	Drotoin structure n	uai	lictive methods using protein			
sequer	, structure visual	12a ntit	w based on com	no classification.	n of secondary	atru	acture Scope Applications			
Conce	nts implementat		of systems biolog	w Mass spectrom	etry and Systems	hia	logy			
Conce	pts, implementat	.101	1 of systems bloto	Init _V	etry and Systems	010	10gy.			
Drug	Screening: Intr	od	uction to Comput	ter-aided drug dis	covery target sel	ect	ion ligand preparation and			
enume	ration molecula	ou ar c	locking post-docl	cing processing n	olecular dynamic	icei is s	imulations applications and			
test ca	ses	u t	ioening, post doei	ing processing, in	ioreeulur aynamie	00	inductions, apprications and			
test eu										
	Course	0	utcomes. After co	moleting the cou	rse the students	wi	l he shle to:-			
CO1	Comprehend F	Sio	informatics Tools	Understand and e	ffectively utilize v	/ari	ous bioinformatics tools and			
	databases for s	ear	uence and structur	e analysis.		uII	sus sionionatios tools and			
CO2	Investigate an	d a	pply innovative s	sequencing techno	logies and analyti	ical	methods to solve complex			
	biological que	stic	ons and advance re	search in genomic	s and molecular bi	iola	ogv.			
CO3	Analyze Next	-G	eneration Sequen	cing: Proficiency	in NGS techno	109	ies, including data quality			
	assessment and read processing techniques and handle big data.									
CO4	Apply bioinformatics tools to model and simulate various biological processes, leveraging gene									

Ref	erence Books
1.	Xiong J. Essential bioinformatics. Cambridge University Press; 2006 Mar 13.
2.	Buehler LK, Rashidi HH, editors. Bioinformatics basics: applications in biological science and medicine. CRC Press; 2005 Jun 23.
3.	Ghosh Z, Mallick BM. Bioinformatics principles and Applications. Oxford University Press; 2018 Jun 13.

prediction programs including both ab initio and homology-based approaches.

4.	Low L, Tammi MT. Introduction to next generation sequencing technologies. Bioinformatics. WORLD SCIENTIFIC. 2017 Jul 26:1-21.
5.	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
6.	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS MARKS

		MAKINO
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARK S				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(Ma	aximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related top	ics)				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

			Semester: V	VII			
	-	SUSTAINABII	JITY AND LIF	E CYCLE ANAL	YS	IS	
Category: Institutional Elective II							
			(Theory)				
Course Code	:	21CH75IC		CIE	:	10	00 Marks
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	45L		SEE Duration	:		3 Hours
			Unit-I				09Hrs
Introduction to susta	aina	ability: Introduc	tion to Sustainat	oility Concepts and	l Li	fe Cycle A	nalysis, Material
flow and waste mana	gen	nent, Chemicals	and Health Effe	cts, Character of E	nvi	ronmental	Problems
		U	nit – II				09 Hrs
Environmental Dat	a (Collection and	LCA Methode	ology: Environme	enta	l Data Co	ollection Issues,
Statistical Analysis	of	Environmental	Data, Common	n Analytical Inst	run	nents, Ove	erview of LCA
Methodology Goal	, D	efinition.					
		U	nit –III				09 Hrs
Life Cycle Assessme	ent	: Life Cycle Im	pact Assessmen	t, Life Cycle Inte	rpr	etation, LC	CA Benefits and
Drawbacks.							
Wet Biomass Gasif	fier	s: Introduction,	Classification	of feedstock for	bi	ogas gene	ration, Biomass
conversion technolo	ogie	es: Photosynth	esis, Biogas	generation, Facto	ors	affecting	bio-digestion,
Classification of bio	ogas	s plants, Floati	ng drum plant	and fixed dome	pl	ant their	advantages and
disadvantages.							
		U	nit –IV				09 Hrs
Design for Sustainal	bilit	ty: Green Sustai	nable Materials,	Environmental De	esig	n for Susta	ainability.
Dry Biomass Gasi	fiei	s: Biomass en	nergy conversion	on routes, Therm	nal	gasificatio	on of biomass,
Classification of gasi	fier	s, Fixed bed sys	tems:				
		t	J nit –V				09Hrs
Case Studies: Odor H	Rem	oval for Organi	cs Treatment Pla	nt, Bio-methanatio	on,	Bioethanol	production. Bio
fuel from water hyaci	nth	•					
Course Outcomes: A	Afte	r completing th	ne course, the st	udents will be ab	le t	0:-	
CO1 Understand	the	sustainability a	challenges facin	g the current ge	ner	ation and	l systems_based

CO1	Understand the sustainability challenges facing the current generation, and systems-based
	approaches required to create sustainable solutions for society.
CO2	Identify problems in sustainability and formulate appropriate solutions based on scientific
	research, applied science, social and economic issues.
CO3	Apply scientific method to a systems-based, trans-disciplinary approach to sustainability
CO4	Formulate appropriate solutions based on scientfic research, applied science, social and economic
	issues.

Reference Books 1. Sustainable Engineering Principles and Practice, Bavik R Bhakshi, 2019, Cambridge University Press, ISBN - 9781108333726. 2. Environmental Life Cycle Assessment , Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked, Alexandre Jolliet, Pierre Crettaz , 1st Edition, CRC Press, ISBN: 9781439887660 . 3. Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy, Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons , ISBN-9781119493938

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THE	ORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

		Sem	ester: VII			
ADVANC	ES	IN CORROSION	N SCIENCE AND	MANAGEMENT	[
		Category: Inst	itutional Electiv	ve II		
		(7)	Theory)			
Course Code	:	21CM75ID		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42 L		SEE Duration	:	03 Hours

Basics of corrosion:Introduction: Galvanic series, Pilling-Bedworth ratio, Types: Galvanic corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, erosion corrosion, stress corrosion in different engineering materials: Concrete structures, duplex, stainless stells, ceramics, composites. Corrosion in different engineering materials: Concrete structures, duplex, stainless stells, ceramics, composites. 08 Hrs Corrosion mechanism:Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys. 08 Hrs Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion and of India. Corrosion results, so il and gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Intit – IV 09 Hrs Corrosion Testing and monitoring: Intit – V 09 Hrs Corrosion Control:Principles of corrosion prevention, metal specific industries, lectrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs		UO IIIS
corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, erosion corrosion, stress corrosion, season cracking, hydrogen embrittlement, bacterial corrosion. Corrosion in different engineering materials: Concrete structures, duplex, stainless steels, ceramics, composites. 08 Hrs Corrosion mechanism:Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys. 08 Hrs Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion issues in specific industries, corrosion auditing in industries, corrosion map of India. Corrosion resting and monitoring: 09 Hrs Corrosion Testing and monitoring: Inti – IV 09 Hrs Corrosion Testing and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Basics of corrosion: Introduction: Galvanic series, Pilling-Bedworth ratio, Types: Galv	anic
Corrosion, season cracking, hydrogen embrittlement, bacterial corrosion. Corrosion in different engineering materials: Concrete structures, duplex, stainless steels, ceramics, composites. Unit-II 08 Hrs Corrosion mechanism: Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. 08 Hrs Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion fetct in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper,	corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, erosion corrosio	n, stress
Corrosion in different engineering materials: Concrete structures, duplex, stainless steels, ceramics, composites. Unit-II 08 Hrs Corrosion mechanism: Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys. Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. Unit – III 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion issues in specific industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment-decrease in velocity, passivity, removal oxidizer, Inhibitors and polarization method. Unit –V 09 Hrs	corrosion, season cracking, hydrogen embrittlement, bacterial corrosion.	
ceramics, composites. Unit-II 08 Hrs Corrosion mechanism:Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys. Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. Image: Corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion in different engineering materials: Concrete structures, duplex, stainless s	teels,
Unit-II08 HrsCorrosion mechanism:Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys. Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe.08 HrsCorrosion: Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe.Unit – III08 HrsEffects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion feet in electronic industry.09 HrsCorrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method.09 HrsCorrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.09 Hrs	ceramics, composites.	
Corrosion mechanism:Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys. Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. Unit – III 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industried gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Unit-II	08 Hrs
differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys. Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. Unit – III 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion mechanism: Electrochemical theory of corrosion, Crevice corrosion-mechan	nism of
metals and alloys. Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. Unit – III 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	differential aeration corrosion, mixed potential theory for understanding common corro	sion of
Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe. Unit – III 08 Hrs Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	metals and alloys.	
calculation for Al, Cu, Ni and Fe.Unit – III08 HrsEffects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry.09 HrsCorrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method.09 HrsCorrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosi	on and its
Unit – III08 HrsEffects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry.India. O9 HrsCorrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method.09 HrsCorrosion Control: Principles of corrosion prevention, material selection, design constentions, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.vapor	calculation for Al, Cu, Ni and Fe.	
Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indirect losses - Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Unit – III	08 Hrs
Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. Unit –IV 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. Unit –V 09 Hrs Corrosion Control: Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Effects of corrosion: The direct and indirect effects of corrosion, economic losses, Indir	ect losses -
corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India. Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry.09 HrsCorrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method.09 HrsCorrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.09 Hrs	Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Im	portance of
Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry. 09 Hrs Unit –IV 09 Hrs Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	corrosion prevention in various industries, corrosion auditing in industries, corrosion m	ap of India.
gas Industries, corrosion effect in electronic industry.Unit –IV09 HrsCorrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method.09 HrsCorrosion Control:Principles of corrosion prevention, material selection, design constentions, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.Value 100	Corrosion issues in specific industries-power generation, chemical processing industr	ies, oil and
Unit –IV09 HrsCorrosion Testing and monitoring:Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method.Unit –V09 HrsCorrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	gas Industries, corrosion effect in electronic industry.	
Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. Unit –V 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Unit –IV	
Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. Unit –V 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.		09 Hrs
measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. O9 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion Testing and monitoring:	09 Hrs
rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method. Unit –V 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion Testing and monitoring : Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p	09 Hrs
polarization method. 09 Hrs Unit –V 09 Hrs Corrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion Testing and monitoring : Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of	09 Hrs preparation, of corrosion
Unit -V09 HrsCorrosion Control:Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.09 Hrs	Corrosion Testing and monitoring : Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolat	09 Hrs preparation, of corrosion ion. Linear
Corrosion Control: Principles of corrosion prevention, material selection, design considerations, control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion Testing and monitoring : Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolat polarization method.	09 Hrs preparation, of corrosion ion. Linear
control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolat polarization method. Unit –V	09 Hrs preparation, of corrosion ion. Linear 09 Hrs
passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.	Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolat polarization method. Unit –V Corrosion Control:Principles of corrosion prevention, material selection, design consi	09 Hrs oreparation, of corrosion ion. Linear 09 Hrs derations,
deposition-sputtering, Electroless plating of Nickel.	Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolat polarization method. Unit –V Corrosion Control:Principles of corrosion prevention, material selection, design consi control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors an	09 Hrs oreparation, of corrosion ion. Linear 09 Hrs derations, d
	Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolat polarization method. Unit –V Corrosion Control:Principles of corrosion prevention, material selection, design consi control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors an passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physica	09 Hrs oreparation, of corrosion ion. Linear 09 Hrs derations, d l vapor
	Corrosion Testing and monitoring: Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface p measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolat polarization method. Unit –V Corrosion Control:Principles of corrosion prevention, material selection, design consis control of environment- decrease in velocity, passivity, removal oxidizer, Inhibitors an passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physica deposition-sputtering, Electroless plating of Nickel.	09 Hrs oreparation, of corrosion ion. Linear 09 Hrs derations, d l vapor

	Course Outcomes: After completing the course, the students will be able to
CO1:	Understand the causes and mechanism of various types of corrosion
CO2:	Apply the knowledge of chemistry in solving issues related to corrosion.
CO3:	Analyse and interpret corrosion with respect to practical situations.
CO4:	Develop practical solutions for problems related to corrosion.

Reference Books								
1	Corrosion Engineering, M.G, Fontana, 3rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.							
2	Principles and Prevention of Corrosion, D. A Jones, 2nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.							

3 Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4 Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOD	RY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII								
PROMPT ENGINEERING								
Category: Institutional Elective - II								
(Theory)								
(Course Code	:	21CM75IE		CIE		:	100 Marks
C	redits: L:T:P	:	3:0:0		SEE		:	100 Marks
,	Fotal Hours	:	42		SEE Dura	tion	:	03 Hours
			Unit-I				0	8Hrs
Introdu	ction to Prompt Engin	ee	ering					
Raise of	Context Learning, Pro	mj	pts, Prompt Engi	neering, LLM Setti	ngs, Basics of	f pron	ptii	ng, Elements
of a Pro	mpt, Settings for Prom	pt	ing Language M	odel, General Tips	for Designin	g Proi	npt	s, Designing
Prompts	for Different Tasks: fev	ν e	examples of com	non tasks using diff	erent prompts	- Text	Sui	nmarization,
Informat	ion Extraction, Quest	101	n Answering, T	ext Classification,	Conversation	N/Role	Pla	ayıng, Code
Generati	on, Reasoning		TI				0	0.11
Technic			Unit – II				<u>U</u>	8 Hrs
Shot Dr	ues for Effective Prom	ipi	s Techniques des	f thought (CoT) r	rompting 7	comp	lex	CoT Solf
Consiste	ncy Knowledge Ger) 101	ration Promoting	Program-aided	Language M	odel 1	ΈΔ	L) ReAct
Direction	ney, Knowledge Oer		ation i rompting	, i iograni-aideu	Language W	ouer	цл	L), KCACI,
Direction	iai Stillardis Trompting		Unit –III				0	7 Hrs
Best Pra	ctices in Prompt Engi	ne	ering Tools & II	DEs Capabilities incl	lude: Develop	ing an	d ex	perimenting
with pro	mpts. Evaluating prom	pt	s. Versioning and	deploying prompt	s: Advanced	promp	ting	techniques:
advanced	applications with LLN	As	0		,		- C	1
LLMs and external tools/APIs LLMs with External Tools; Data-augmented Generation – Steps. External								
Data, QA	A with sources, Summar	riz	ation using sourc	ces				
Linit IV 00 II								
Annlica	tions of Promnt Engin	ee	ring. LLM Ann	lications. Function (Calling with I	I Ms.	- Ge	otting Started
with Fur	ction Calling Function		alling with GPT.	4 Function Calling	with Open-S	ource	LLI	Ms
Function	n Calling Use Cases:	C	onversational Ag	ents. Natural Langu	age Understa	nding	. M	ath Problem
Solving,	API Integration, Inform	na	tion Extraction		8		,	
			Unit –V				0	8 Hrs
Opportu	inities and Future Dir	ec	tions					
Model sa	afety, Prompt Injection,	P	rompt Leaking, J	ail Breaking;				
Reinforc	ement Learning from	Η	uman Feedback	(RLHF) Popula	ar examples:	aClau	de	(Anthropic),
ChatGP	ſ (OpenAI),						-	
Future directions: Augmented LMs, Emergent ability of LMs, Acting / Planning - Reinforcement								
Learning, Multimodal Prompting, Graph Prompting								
Course Outcomes: After completing the course, the students will be able to								
CO1	Demonstrate an une	de	rstanding of pr	ompt engineering	principles in	ncludi	ng l	now prompt
	structure and phrasing	g iı	mpact the perform	nance of AI models	•			
CO2	Design and implome	an	t offoctive prov	nts. to create and	apply promp	te for	Vor	ious natural
	language processing (NIP) tasks such as text generation summarization and translation using							
AI models.								

CO3 Critically evaluate the effectiveness of prompts - assess the quality and performance of prompts in terms of accuracy, coherence, and relevance, identifying areas for improvement.

CO4 Apply prompt engineering techniques in real-world scenarios - use prompt engineering strategies to address practical problems in domains such as education, healthcare, and business, demonstrating the applicability of AI-driven solutions.

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

CO5 Collaborate on projects involving prompt engineering - work effectively in teams to design, implement, and evaluate prompt-based solutions, showcasing their ability to contribute to complex AI-related projects.

Reference	e Books
	Unlocking the Secrets of Prompt Engineering: Master the art of creative language generation to
1	accelerate your journey from novice to pro, Gilbert Mizrahi, Jan 2024, 1st Edition, Packt
	Publishing, ISBN-13:978-1835083833
C	Prompt Engineering for Generative AI, James Phoenix, Mike Taylor, May 2024, O'Reilly Media,
۷.	Inc.,ISBN: 9781098153434
2	Prompt Engineering for LLMs, John Berryman, Albert Ziegler, O'Reilly Media, Inc. Dec 2024,
3.	ISBN: 9781098156152
4	The Art of Asking ChatGPT for High-Quality Answers_ A Complete Guide to Prompt
4.	Engineering, Ibrahim John, Nzunda Technologies Limited, 2023, ISBN-13: 9781234567890
5	Programming Large Language Models with Azure Open AI: Conversational programming and
	prompt engineering with LLMs, Francesco Esposito, Microsoft Pr, 1st Edition, April 2024, ISBN-
	13: 978-0138280376

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Semester: VII						
INTEGRATED HEALTH MONITORING OF STRUCTURES							
		Catego	ry: Institutional	Elective - II			
	1		(Theory)	I			
Course Code	:	21CV75IF		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	42L		SEE Duration	:	3Hours	
			Unit-I			08 Hrs	
Structural Health:	Fac	tors affecting Health	of Structures, Caus	es of Distress, Regu	lar N	laintenance, Importance	
of maintenance							
Structural Health structural health mo	Mo nito	nitoring: Concepts, ring, Structural Safe	Various Measures, ty in Alteration.	Analysis of behavio	or of	structures using remote	
			Unit – II			08 Hrs	
Materials: Piezo-e	lect	ric materials and oth	er smart materials, o	electro-mechanical	impe	dance (EMI) technique,	
adaptations of EMI	tech	nique, Sensor techno	ologies used in SHM	[_	
Structural Audit: Assessment of Health of Structure, Collapse and Investigation, Investigation Management,							
SHM Procedures, SHM using Artificial Intelligence							
	Unit –III 08 Hrs						
Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sensor systems and hardware							
requirements, Static	Re	sponse Measurement					
			Unit –IV			08 Hrs	
Dynamic Field Te	stin	g: Types of Dynam	nic Field Test, Stre	ess History Data, D	ynar	nic Response Methods,	
Hardware for Remo	te E	Data Acquisition Syst	ems, Remote Struct	ural Health Monitori	ng.		
Unit –V 08 Hrs							
Remote Structural Health Monitoring: Introduction, Hardware for Remote Data Acquisition Systems,							
Advantages, Case studies on conventional and Remote structural health monitoring							
Case studies: Structural Health Monitoring of Bridges, Buildings, Dams, Applications of SHM in offshore							
Structures- Methods used for non-destructive evaluation (NDE) and health monitoring of structural components							
Course Outcomes: After completing the course, the students will be able to:							

Course Outcomes: After completing the course, the students will be able to:				
Diagnose the distress in the structure understanding the causes and factors.				
Understand safety aspects, components and materials used in Structural Health Monitoring.				
Assess the health of structure using static field methods and dynamic field tests.				
Analyse behavior of structures using remote structural health monitoring				

Refer	ence Books
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, 2006,
	John Wiley and Sons, ISBN: 978-1905209019
2	Health Monitoring of Structural Materials and Components Methods with Applications,
	Douglas E Adams, 2007, John Wiley and Sons, ISBN:9780470033135
3	Structural Health Monitoring and Intelligent Infrastructure, J. P. Ou, H. Li and Z. D. Duan,
	Vol1,2006, Taylor and Francis Group, London, UK. ISBN: 978-0415396523
4	Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, 2007, Academic
	Press Inc, ISBN: 9780128101612

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VII							
	WEARABLE ELECTRONICS						
		Category	: Institutional Elect	ive - II			
			(Theory)				
Course Code	••	21EC75IG		CIE		100 Marks	
Credits: L:T:P	:	3:0:0		SEE	••	100 Marks	
Total Hours	:	39L		SEE	••	03 Hours	
				Duration			

Unit-I	07 Hrs			
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of Big Data, The				
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,			
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Application	ns of Wearables.			
[Ref 1: Chapter 1.1]				
Unit – II	08 Hrs			
Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Techno	ology, Sampling			
Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability	, Interface with			
the Body, Textile Integration, Power Requirements, Applications: Personal Health, Spor	ts Performance,			
Safety and Security, Case studies. [Ref 1: Chapter 2.1]				
Unit –III	07 Hrs			
Wearable Textile: Conductive fibres for electronic textiles: an overview, Types of co	onductive fibre,			
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,			
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case	e studies, Hands			
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &.	[Ref 3: Chapter			
6,9]				
Unit –IV	08 Hrs			
Energy Harvesting Systems: Introduction, Energy Harvesting from Tempera	ture Gradient,			
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for U	Jltra-Low Input			
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy	Transmission,			
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]				
Unit –V	08 Hrs			
Wearable antennas for communication systems: Introduction, Background of textile antennas, Design				
rules for embroidered antennas, Integration of embroidered textile surfaces onto polymer substrates,				
Characterizations of embroidered conductive, textiles at radio frequencies, RF performance of				
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]				
Course Outcomes: After completing the course, the students will be able to				

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna					
CO2:	Analysis measurable quantity and working of wearable electronic devices.					
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges					
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem					
	statement.					

Refere	ence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
1	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing; 1
	edition, ISBN-13: 978-0081002018.
3	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill Education,
	1st Edition, ISBN-13: 978-1260116151.

Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang, Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
 Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos Miguel Costa, Wiley, 1 edition, ISBN-13: 978-1119287421

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Real time problem solving (10) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS			
	PART A			
1	Objective type of questions covering entire syllabus	20		
PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5&6	Unit 3: Question 5 or 6	16		
7 & 8 Unit 4: Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII						
E-MOBILITY						
Category: Institutional Elective - II						
(Theory)						
Course Code	Course Code : 21EE75IH CIE : 100Marks					
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours
			Unit-I			06 Hrs
E-Mobility: A Brief	f Hi	story of the Electric	Powertrain, Energy S	ources for Propulsion	n an	d Emissions, The Advent
of Regulations, Driv	ve C	Cycles, BEV Fuel Co	onsumption, Range,	Carbon Emissions fo	or C	onventional and Electric
Powertrains, An Ov	verv	iew of Conventiona	l, Battery, Hybrid, ai	nd Fuel Cell Electric	Sy	stems, A Comparison of
Automotive and C	Othe	r Transportation 7	echnologies. Vehic	le Dynamics: Vehi	cle	Load Forces, Vehicle
Acceleration, Simpl	e D	rive Cycle for Vehic	cle Comparisons			
			Unit – II			09 Hrs
Batteries: Batteries	Ту	pes and Battery Pac	k, Lifetime and Sizi	ng Considerations, B	atte	ry Charging, Protection,
and Management Sy	/ste	ms, Battery Models,	, Determining the Ce	ll/Pack Voltage for a	Gi	ven Output\Input Power,
Cell Energy and Dis	scha	irge Rate.		A 1 .	<u> </u>	
Battery Charging:	Bas	Sic Requirements for	Charging System, Cl	arger Architectures,	Gri	d Voltages, Frequencies,
and wiring, Chargi	ng ati a	Standards and Tech	inologies, SAE J1//	2, where s Charging	g, 1	The Boost Converter for
Fower Factor Correct	Power Factor Correction.					
Battery Management System: BMS Definition Li-Ion Cells Li-Ion BMSs Li-Ion Batteries BMS Options:						
Functionality CCC	'V	Chargers Regulato	rs Balancers Prote	ctors Functionality	л С	omparison Technology
Topology Measure	eme	nt. Voltage Temp	erature Current M	anagement [•] Protecti	on	Thermal Management
Balancing. Distribut	ted	Charging, Evaluatio	n. External Commun	ication: Dedicated ar	nalo	g and digital wires.
Unit –IV 09 Hrs						
Electric Drive train: Overview of Electric Machines, classification of electric machines used in automobile						
drivetrains, modellin	ng o	of electric machines,	Power Electronics, co	ontrolling electric ma	chi	nes, electric machine and
power electronics in	iteg	ration Constraints.	,	U		,
Energy Manageme	ent	Strategies: Introdu	ction to energy mar	agement strategies	use	d in hybrid and electric
vehicles, Classification of different energy management strategies, Comparison of different energy management						
strategies and implementation issues of energy management strategies.						
Unit –V 09 Hrs						
Charger Classification and standards: classification based on charging, levels (region-wise), modes, plug types,						
standards related to: connectors, communication, supply equipments, EMI/EMC.						
Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the						
propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications,						
supporting subsyste	supporting subsystems					
Communications, S	Sup	porting Subsystem	s: In vehicle network	IS- UAN		
Course Outcomes After completing the course the standard with a standard with the standard						
		1 / / /		•		

COI	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and modelling.
CO 2	Discuss and implement different energy storage technologies used for electric vehicles and their
	management system.
CO 3	Analyze various electric drives and its integration techniques with Power electronic circuits suitable for

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Re	ference Books
1.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN 9781119063667.
2.	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition, 2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3.
3.	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions Technip, Paris, ISBN 978-2-7108-0994-4.
4.	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford university press, ISBN 0 19 850416 0

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
MAXIMUM MARKS FOR THE CIE THEORY				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8 Unit 4 : Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16		
TOTAL 100				

Go, change the world

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII							
PROGRAMMABLE LOGIC CONTROLLER'S AND APPLICATIONS							
	Category: Institutional Elective II						
(Theory)							
Course Code	:	21EI75IJ	CIE	:		100Marks	
Credits: L:T:P		3:0:0	SEE	:		100 Marks	
Total Hours	••	45 L	SEE Durat	tion :		3 Hours	

Unit-I	09 Hrs	
Introduction: Introduction to Industrial Automation, Historical background, Different parts and	types of	
Industrial automation Block diagram of PLC PLC Versus Other types of Controls PLC Product Ar	plication	
Ranges Fixed and Modular I/O Hardware PLC Operation: Binary Data representation. Input and out	put status	
files for modular PIC Addressing concept	put status	
INIT II	09 Hrs	
PIC Hardware: The I/O section Discrete I/O Modules Analog I/O Modules Special I/O Mod	1/0	
The induces in the rossection, Discrete Polynomials, Analog Polynomials, Special Polynomials	D: (
specifications, input and Output modules: Brief overview of Discrete and Analog input modules,	Discrete	
and TTL/Relay output modules		
Unit –III	09 Hrs	
Basics of PLC Programming: Processor memory organization, Program scan, PLC programming languages,		
Basic Relay Instruction, Bit or relay instructions, NO, NC, One Shot, Output latching software, negated Output		
and Internal Bit Type instructions, mode of operations		
Unit –IV	09 Hrs	
Special programming Instructions : Timer and Counter Instructions: On delay and Off delay and retentive		
timer instructions, PLC Counter up and down instructions, combining counters and timers.		
Program Control & Data manipulation Instructions: Data handling instructions, Sequencer instructions,		
Programming sequence output instructions.		
UNIT V	09 Hrs	
SCADA & DCS : Building Block of SCADA System, Hardware structure of Remote Terminal Unit, Block		
diagram of Distributive Control System		

Case Studies: Bottle filling system, Material Sorter. Elevator, Traffic control, Motor sequencers, Piston extraction and retraction using timers and counters.

Cours	Course Outcomes: After completing the course, the students will be able to: -			
CO1	Understand the basic concepts of PLC's and SCADA techniques.			
CO2	Apply the programming concepts to interface peripheral.			
CO3	Analyze and evaluate the automation techniques for industrial applications.			
CO4	Develop a system for automation application.			

	Reference Books							
1.	Programmable Logic controllers, Frank D. Petruzella, Mc Graw hill, 4 th Edition, ISBN:9780073510880, 2017							
2.	Introduction to Programmable Logic Controllers, Garry Dunning, CENGAGE Learning, 3rd Edition, 2017, ISBN: 978-8131503027							
3.	Industrial Control and Instrumentation, Bolton W, Universities Press, 6th Edition, 2006. ISBN 978-0128029299							
4.	Computer Based Industrial control, Krishna Kant, PHI Publishers, 2nd Edition, 2010. ISBN 978-8120339880.							

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII						
	SPACE TECHNOLOGY AND APPLICATIONS					
		Category: In	nstitutional Elect	tive II		
	(Theory)					
Course Code	:	21ET75IK		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
TotalHours	:	45 L		SEE	:	3 Hours

Unit-I	9 Hrs
Earth's environment: Atmosphere, ionosphere, Magnetosphere, VanAllen Radiation belts, I	nterplanetary
medium, Solar wind, Solar- Earth Weather Relations. Launch Vehicles: Rocketry, Propellants	, Propulsion,
Combustion, Solid, Liquid and Cryogenic engines, Control and Guidance system, Ion propulsion	and Nuclear
Propulsion.	
Unit– II	9Hrs

Satellite Technology: Structural, Mechanical, Thermal, Power control, Telemetry, Telecomm and Quality and Reliability, Payloads, Classification of satellites. Satellite structure: Satellite Communications, Transponders, Satellite antennas.

Unit-III9HrsSatellite Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, Multiple Access Techniques.Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Education, Telemedicine,
Satellite navigation, GPS.

Unit-IV9HrsRemote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land
mapping, geology, Urban development resource Management, and image processing techniques. Metrology:
Weather forecast (Long term and short term), weather modelling, Cyclone predictions, Disaster and flood
warning, rainfall predictions using9Hrs

Space Missions: Technology missions, deep space planetary missions, Lunar missions, zero gravity experiments, space biology and international space Missions. **Advanced space systems:** Remote sensing cameras, planetary payloads, space shuttle, space station, Interspace communication systems.

Unit-V

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Explain various Orbital Parameters, Satellite Link Parameters, Propagation considerations and Radar				
	systems.				
CO2	Apply the concepts to determine the parameters of satellite, performance of radar and navigation systems.				
CO3	Analyze the design issues of satellite and its subsystems, radars and navigations ystems.				
CO4	Evaluate the performance of the satellite systems and its parameters, radar and navigation				
	Systems.				

ReferenceBooks				
1.	Atmosphere, weather and climate, RGBarry, Routledge publications, 2009, ISBN- 10:0415465702.			
2.	Fundamentals of Satellite Communication, KN RajaRao, PHI,2012, ISBN: 978-8120324015			
3.	Satellite Communication, Timothypratt, JohnWiley,1986ISBN: 978-0-471-37007 -9, ISBN10: 047137007X.			
4	Remote sensing and applications, BCPanda, VIVAbooksPvt.Ltd.,2009, ISBN: 108176496308.			

9 Hrs

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: (Internal Choice)	16		
5&6	Unit 3: (Internal Choice)	16		
7 & 8 Unit 4: (Internal Choice)		16		
9 & 10	Unit 5: (Internal Choice)	16		
	TOTAL	100		

Semester: VII					
MOBILE APPLICATION DEVELOPMENT					
	Category: Institutional Elective II				
	(Theory)				
Course Code	:	21IS75IL	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
TotalHours	:	45L	SEE Duration	:	03 Hours

<u>Prerequisite</u>: - Programming in Java.

Unit-I	09 Hrs	
Introduction: Smart phone operating systems and smart phones applications. Introduction to Android, Installing		
Android Studio, creating an Android app project, deploying the app to the emulator and a	device. UI Design:	
Building a layout with UI elements, Layouts, Views and Resources, Text and Scrolling Views	• •	
Activities and Intents, The Activity Lifecycle, Managing State, Activities and Implicit Inter-	ents, The Android	
Studio Debugger, Testing the Android app, The Android Support Library.		
Unit–II	09 Hrs	
User experience: User interaction, User Input Controls, Menus, Screen Navigation, Recycler	View, Delightful	
user experience, Drawables, Styles, and Themes, Material Design, Testing app UI, Testing the	User Interface	
Unit–III	09 Hrs	
Working in the background: Async Task and Async Task Loader, Connect to the Internet, H	Broadcast	
Receivers and Services. Scheduling and optimizing background tasks – Notifications, Schedu	ing Alarms, and	
Transferring Data Efficiently		
Unit–IV	09 Hrs	
All about data: Preferences and Settings, Storing Data, Shared Preferences. Storing data usin	g SQLite, SQLite	
Database. Sharing data with content providers.		
Advanced Android Programming: Internet, Entertainment and Services. Displaying web	pages and maps,	
communicating with SMS and emails, Sensors.		
Unit–V	09 Hrs	
Hardware Support & devices: Permissions and Libraries, Performance and Security. Fire ba	se and AdMob,	
Publish and Polish, Multiple Form Factors, Using Google Services.		
Course Outcomes: After completing the course, the students will be able to		
CO1: Comprehend the basic features of android platform and the application development	nt process. Acquire	
familiarity with basic building blocks of Android application and its architecture.		
CO2: Apply and explore the basic framework, usage of SDK to build Android applications incorporatin		
Android features in developing mobile applications.		
CO3: Demonstrate proficiency in coding on a mobile programming platform using	advanced Android	
technologies, handle security issues, rich graphics interfaces, using debugging and trou	bleshooting tools.	
CO4: Create innovative applications, understand the economics and features of the app mark	etplace by offering	
the applications for download.		

Refere	nce Books
1	Android Programming, Phillips, Stewart, Hardyand Marsicano, Big Nerd Ranch Guide, 2 nd Edition, 2015, ISBN-13 978-0134171494
2	AndroidStudioDevelopmentEssentials-Android6, NeilSmyth,2015, Create space Independent Publishing Platform, ISBN:9781519722089
3	Android Programming–Pushing the limits, EricHellman,2013, Wiley, ISBN-13:978-1118717370
4	Professional Android2ApplicationDevelopment, RetoMeier, Wiley India Pvt. Ltd, 1 st Edition, 2012,ISBN-13:9788126525898

5	BeginningAndroid3, Mark Murphy, A press Springer India Pvt Ltd,1stEdition,2011, ISBN-13:978-1-4302-3297-1
6	AndroidDeveloperTraining-https://developers.google.com/training/android/ AndroidTestingSupportLibrary-https://google.github.io/android-testing-support-library/

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO.	O. CONTENTS MARKS			
	PART A	-		
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII						
PROJECT MANAGEMENT						
		Cate	gory: Institutional I	Elective II		
			(Theory)			
Course Code	:	21IM75IM		CIE	:	100Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours

Unit-I	06 Hrs
Introduction: Project, Project management, relationships among portfolio management, program m	anagement,
project management, and organizational project management, relationship between project m	anagement,
operations management and organizational strategy, business value, role of the project management	ger, project
management body of knowledge.	

 Generation and Screening of Project Ideas: Generation of ideas, monitoring the environment, corporate appraisal, scouting for project ideas, preliminary screening, project rating index, sources of positive net present value.

 Unit – II
 09 Hrs

	07 III 5
Project Scope Management: Project scope management, collect requirements define scope, create WI	BS, validate
scope, control scope.	

Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle.

Unit –III	09 Hrs
Project Integration Management: Develop project charter, develop project management plan, direct & mana	
project work, monitor & control project work, perform integrated change control, close project or phase.	
Project Quality management: Plan quality management, perform quality assurance, control quality.	
Unit –IV	09 Hrs

Project Risk Management: Plan risk management, identify risks, perform qualitative risk analysis, perform quantitative risk analysis, plan risk resources, control risk.

Project Scheduling: Project implementation scheduling, Effective time management, Different scheduling techniques, Resources allocation method, PLM concepts. Project life cycle costing.

Unit –V	09 Hrs
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined activ	vities, logic
diagrams and networks, Project evaluation and review Techniques (PERT) Planning, Computeri	zed project
management.	

	Course Outcomes: After completing the course, the students will be able to: -
CO 1	Understand the fundamental concepts of project management and its relationship with organizational
	strategy, operations management, and business value.
CO 2	Apply techniques for generating, screening, and evaluating project ideas, considering factors such as net
	present value and project rating index.
CO 3	Create Work Breakdown Structures (WBS), utilization of PERT/CPM for developing project schedule,
	alongside requirement collection, scope definition, scope validation, and scope control.
CO 4	Develop skills in project integration, quality, risk management, and scheduling, enabling effective project
	planning, execution, monitoring, and control.

Ref	Ference Books
1.	Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK
	Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9
2	Harold Kerzner, Project Management A System approach to Planning Scheduling & Controlling, John
	Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
3	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review, Tata
	McGraw Hill Publication, 7th Edition, 2010, ISBN 0-07-007793-2.

4 Rory Burke, "Project Management – Planning and Controlling Techniques", John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of 1 WO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Bengaluru - 560059, Karnataka, India

				Semester: VII					
			SUI	PPLY CHAIN ANA	LYTICS				
			Cate	gory: Institutional I	Elective II				
				(Theory)					
Course	Code	:	21IM75IN	· · · · · · · · · · · · · · · · · · ·	CIE	:	100 Marks		
Credits	: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total H	ours	:	42L		SEE Duration	:	03 Hours		
	Unit-I 06 Hrs								
Introduc	ction: Supply	y Cl	hain, Supply Chain I	Management, Busine	ss Analytics, Suppl	y Ch	ain Analytics.		
Data-Dr	iven Supply	Ch	ains: Data and its va	lue in SCM, Data Sc	ource in Supply Cha	ins, 1	Big Data, Introc	luction to	
Python	(Concepts or	nly)).						
				Unit – II				08 Hrs	
Data Ma	anipulation:	Da	ta Manipulation, Da	ta Loading and Writ	ing, Data Indexing	and	Selection, Data	Merging	
and Cor	nbination, L	Data	Cleaning and Prepa	aration, Data Compu	tation and Aggrega	tion,	Working with	Text and	
Datetim	e Data (Con	cep	ts only).	TT:4 TTT				00 II	
Custom	or Managam	ont	Customore in Sun	Unit –III	nding Customore	Duil	ding a Customa	U8 Hrs	
SC Col	ort Analysis		EM Analysis Clust	pry Channs, Understa	ununig Customers,	Duiio	unig a Custome	a-Centric	
Supply	Managemei	s, n nt∙	Procurement in S	upply Chains Supr	lier Selection Su	innlia	er Evaluation	Supplier	
Relation	ship Manag	em	ent. Supply Risk Ma	inagement. Regression	on Algorithms (Con	cents	s only).	Buppher	
Itelation	isinp manag	UIII	ent, supply fusit the	Unit –IV		eepu	, only).	08 Hrs	
Wareho	use and Ir	ive	ntory Management	: Warehouse Mana	gement. Inventory	v M	anagement, W	arehouse	
Optimiz	ation, Class	ific	ation Algorithms (C	oncepts only).		/			
Demand	l Manageme	nt:	Demand Manageme	nt, Demand Forecast	ing, Time Series Fo	oreca	sting, Machine	Learning	
Method	s (Concepts	onl	y).					-	
				Unit –V				06 Hrs	
Logistic	s Managem	ent	: Logistics Manager	nent, Modes of Trar	sport in Logistics,	Log	istics Service F	Providers,	
Global Logistics Management, Logistics Network Design, Route Optimization (Concepts only).									
Experiential Learning:									
Data Vi	sualization:	Da	ta Visualization in	Python, Creating a I	Figure in Python, I	orm	atting a Figure.	, Plotting	
Duthon	Charls, Plott	ing a fe	with Seaborn, Geog	graphic Mapping with	i Basemap, visualiz	Zing	Starbucks Loca	uons.	
ryuion j	the syllabus	g IC	or various argoritining	s applied to supply cl	iani processes and i	noue		II the live	
units of	units of the synabus.								
Course Outcomes: After completing the course, the students will be able to know									
CO1:	Understan	d sı	upply chain concepts	s. systemic and strate	gic role of SCM in	globa	al competitive		
001	environme	nt.	·····	, ~ , ~ , ~	B	0	r r		
CO2:	Evaluate a	lter	native supply and di	stribution network st	ructures using optim	nizat	ion models.		
CO3:	Develop or	ptir	nal sourcing and inv	entory policies in the	supply chain conte	ext.			
CO4:	Select app	rop	riate information tec	hnology frameworks	for managing supp	ly ch	ain processes.		
Referen	nce Books								
1.	Kurt Y. Liu	, Si	upply Chain Analyti	cs - Concepts, Techi	niques and Applica	tions	, Palgrave – M	acmillan,	
	Springer Nature Switzerland AG, 2022, ISBN 978-3-030-92224-5 (eBook)								

 Işık Biçer, Supply Chain Analytics - An Uncertainty Modeling Approach, 2023, Springer Texts in Business and Economics, Springer Nature Switzerland AG, e-ISSN 2192-4341, e-ISBN 978-3-031-30347-0
 Supply Chain Management – Strategy, Planning & Operation, Sunil Chopra, Peter Meindl & D V Kalra, 6th Edition, 2016, Pearson Education Asia; ISBN: 978-0-13-274395-2.

4. Supply Chain Management – Creating Linkages for Faster Business Turnaround, Sarika Kulkarni & Ashok Sharma, 1st Edition, 2004, TATA Mc Graw Hill, ISBN: 0-07-058135–5

Go, change the world

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

		Sen	iester:	VII		
		NUCLEAR	R ENGI	NEERING		
Category: Institutional Elective II						
			Theory			
Course Code	:	21ME75IO		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45		SEE Duration	:	3 Hours
Prerequisites: Basi	c know	ledge of Physics and Math	nematics	at the college level		
		Unit-I				09 hrs
Introduction to Nu	clear Ei	ngineering : Historical Dev	elopmen	t of Nuclear Engineering,	Overview	w of Nuclear Energy
Applications, Nuclea	ar Physi	cs Fundamentals: Atomic S	Structure	and Nuclear Models: Nuc	clear Ford	ces and Interactions,
Nuclear Reactions a	nd Cros	ss-sections, Types of Nucle	ear React	tions: Fission and Fusion	Reaction	s, Neutron-Induced
Reactions, Applicat	ions in	Power Generation and Indu	ustry, Nı	clear Power Generation:	Basic Pr	rinciples of Nuclear
Reactors, Types of N	Juclear	Reactors, Radiation Basics,	Types o	f Radiation (Alpha, Beta,	Gamma),	, Radioactive Decay
and Decay Chains, U	Units of	Radioactivity and Radiatio	n Measu	rement		
		Unit-2				10 hrs
Nuclear Reactors :	Types	of Nuclear Reactors, Reactor	or Comp	onents and Their Functio	ns, Nucle	ear Reactor Kinetics
and Control, Neutr	on Inte	eractions and Transport, N	Neutron	Moderation and Absorp	otion, Re	actor Kinetics and
Dynamics, Specific	Dynamics, Specific Types of Nuclear Reactor, Light Water Reactors: Pressurized Water Reactor (PWR) and Boiling					
Water Reactor (BWR), Heavy Water Reactors: Canada Deuterium Uranium (CANDU), Gas-Cooled Reactors: Gas-						
Cooled Reactor and Fast Breeder Reactor (and HTGR), Liquid Metal-Cooled Reactors (LMFR).						
Unit - 3 10 hrs						
Nuclear Fuel Cycle	: Introd	luction to the Nuclear Fuel C	Cycle: Im	portance of Fuel Cycle M	anageme	nt, Uranium Mining
and Ore Processing	, Types	of Uranium Deposits, Min	ning Met	hods and Processing Tec	hniques,	Environmental and
Health Consideration	ns, Urar	ium Enrichment and Fuel F	abricatio	on: Enrichment Technolog	gies (Cent	rifugation, Gaseous
Diffusion), Fuel Fat	orication	Processes, Quality Contro	I and Sa	tety Measures, Nuclear R	eactors a	nd Fuel Utilization:
Fuel Assembly Desi	gn and	Composition.				001
		Unit-4			· •	08 hrs
Radiation Protection	on and S	Safety: Basics of Ionizing R	Ladiation	, Types of Ionizing Radiat	10n, Inte	raction of Radiation
with Matter, Units	of Radia	ation Measurement, Biologi	ical Effe	cts of Radiation, Determi	nistic and	Stochastic Effects,
Acute and Chronic Radiation Effects, Risk Assessment and Dose, Response Relationships, Radiation Dose						
Assessment: External and Internal Dosimetry, Radiation Monitoring Devices, Occupational and Public Dose Limits,						
Kaulation Salety Measures:, Emergency Response and Contingency Planning: Emergency Procedures and Drills,						
F	10	Unit-5	1 T	Assessment Life Coult	A	U8 nrs
Environmental and	1 Societ	al Aspects : Environmenta	I Impact	Assessment: Life Cycle	Analysis	of Nuclear Energy,
Considerations See	i IVIIIII	ig and Fuel Cycle Opera	uions, K	autoactive waste Mana	gement	and Environmental
Dringinlag of Ethics	ietal Pe	acceptions and Attitudes, Fa	actors Ir	muencing Public Percept	JOII, Ethi	car Considerations:
Tasknology Nuclea	s III INU r Enore	ward Climate Changes Carl	u Energ	y and Social Justice, Et	mcal D1	iemmas in Nuclear
i i ecimology, inuclea	i Energ	y and Chinale Change: Car	UUII F'UU	iprint of inuclear Power.		

Course Ou	Course Outcomes:					
CO1	Understand nuclear physics: grasp atomic structure, nuclear models, and the forces driving nuclear					
	interactions					
CO2	Evaluate various reactor types and advanced concepts, applying kinetics and controls to ensure safe					
	and efficient nuclear reactor analysis and design.					
CO3	Examine the nuclear fuel cycle from mining to recycling, assess environmental impact and safety, and					
	promote responsible, sustainable practices throughout.					
CO4	Apply ionizing radiation principles for safety measures; integrate communication and regulatory					
	compliance into emergency response plans effectively.					

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Refe	erence Books
1	Bodansky, D. (2007). "Nuclear Energy: Principles, Practices, and Prospects." Springer. ISBN-13: 978-
	0387261994.
2	Lamarsh, J. R., & Baratta, A. J. (2001). "Introduction to Nuclear Engineering." Prentice Hall. ISBN-13:
	978-0201824988.
3	Duderstadt, J. J., & Hamilton, L. J. (1976). "Nuclear Reactor Analysis." John Wiley & Sons. ISBN-13:
	978-0471223634.
4	Knoll, G. F. (2008). "Radiation Detection and Measurement." John Wiley & Sons. ISBN-13: 978-
	0470131480

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: VII						
COGNITIVE PSYCHOLOGY						
			Category: Instit	tutional Elective I	Ι	
			(Th	eory)		
Course Code	:	21HS75IQ		CIE	:	100 Marks
Credits: L:T:P	:	03		SEE	:	100 Marks
Total Hours	:	42 L		SEE Duration	:	3 Hours

	Unit-I	09 Hrs		
Fundar	Fundamentals & current trends in cognitive psychology: Definition, Emergence of cognitive psychology,			
Cognitiv	ve development theories and perspectives; Current status and trends in cognitive Psy	ychology.		
Researc	h methods in cognitive psychology- goals of research. Distinctive research method. Curren	t areas of		
research	in cognitive psychology, (Educational application, marketing and advertisement).			
	Unit – II	08 Hrs		
Basic co	ognitive processes: Sensation and Perception: Sensory receptors and Brain, The constancie	es, pattern		
recognit	ion, Modularity, Imagery: Characteristics of Imagery, Cognitive maps. Attention and Inf	formation		
processi	ng: Nature and Types, Theories and models of attention. Neuropsychological studies of A	Attention.		
Conscio	usness: – meaning, Modern Theories and Contemporary Research of Consciousness.			
	Unit –III	08 Hrs		
Reason	ing, Creativity and Problem- Solving: Reasoning definition, types, influencing factors. C	reativity-		
definitio	on, steps involved in creative process, obstacles involved in creativity, enhancing tech	niques of		
creativit	y. Meta cognition: Problem solving, steps in problem solving, types, methods, obstacles an	nd aids of		
problem	i Solving.			
	Unit –IV	08 Hrs		
Psychol	inguistics: Definition, characteristics of language, theories - Chomsky. Structure of	Language		
(Propert	ties), Stages in Language Development, Neurological Language. Comprehension and Pr	oduction.		
Bilingua	alism, Multilingualism and Learning disability.	00.11		
C ' 4 '	Unit –V	09 Hrs		
Cogniti	ve Neuroscience: Definition and emergence of cognitive neuroscience, Scope of Neuro	oscience,		
structur	e and functions of Brain, Brain Plasticity, intelligence and Neuroscience. Meta-cognitive s	strategies.		
Artificia	a intelligence, Robotics, Models on Information Processing.			
Course	Outcomest After completing the course, the students will be able to:			
COULSE	Course Outcomes: After completing the course, the students will be able to: -			
COI	behaviors and mental processes			
CO2	Define learning and compare and contrast the factors that cognitive behavioural and H	umanistic		
02	theorists believe influence the learning process			
<u> </u>	uncontoto beneve influence une teatining process.			
005	resulting in their enhancement and enply effective strategies for self management	and solf		
	improvement			
	Improvement.			

CO4	Apply the theories to their own and others' lives to better understand their personalities and
	experiences.

Reference Books				
1	Sterberg R.J and Sternberg Karin(2012) Cognitive Psychology 6 th Edition Woods worth Cenguage			
	Learning			
2	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.			
3	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.			
4	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII						
PRINCIPLES AND PRACTICES OF CYBER LAW						
		Categor	y: Institutiona	l Elective		
(Theory)						
Course Code	:	21HS75IR		CIE	:	100
Credits: L:T:P	:	03		SEE	:	100
Total Hours	:	45 L		SEE Duration	:	3 Hours
			Unit-I			08 Hrs
Introduction - Or	igin	and meaning	of Cyberspace	e; Introduction to	Indi	an Cyber Law,
Distinction betwee	n (cyber Crime a	nd Convention	al Crime, Cyber C	rın.	unals and their
Objectives, Kinds of	of C	yber Crime &	Cyber Threats, o	challenges of cyberd	rım	es, Overview of
General Laws and P	roce	edures in India.			•	
Cyber Jurisdiction	ι - C	concept of Juris	diction, Jurisdic	tion in Cyberspace,	Issi	les and concerns
of Cyberspace Juris	dict	ion in India, In	ternational posi	tion of Cyberspace J	uris	sdiction, Judicial
interpretation of Cy	bers	pace Jurisdictic	on.Activities:Cas	se Studies and Practi	cal	Applications
		U	nit – II			08 Hrs
Information Techr	iolo	gy Act: A brief	overview of In	formation Technolog	gy A	Act 2000, IT Act
2000 vs. IT Amendn	nent	Act 2008, Rele	vant provisions	from Indian Penal Co	ode,	Indian Evidence
Act, Bankers Book	Evic	lence Act, Rese	rve Bank of Ind	ia Act, etc.		
Electronic Signatu	re a	nd Digital Sig	nature - Meanir	ig & Concept of Rel	eva	nce of Signature,
Handwritten signatu	ire	vs Digital Sign	ature, Technolo	gical Advancement	and	development of
signature, Digital Signature: IT Act, 2000, Cryptography, Public Key and Private Key, Public						
Key Infrastructure E	Elect	tronic Signature	e vs. Digital Sign	nature, E-Commerce	e un	der IT Act 2000,
Issues and challenge	es of	f E-Commerce.	Activities:Case	Studies and Practical	Ap	plications
		U	nit –III			08 Hrs
Data Protection an	id P	rivacy Concer	ns in Cyberspa	ce - Need to protect	da	ta in cyberspace,
Types of data, Lega	ıl fr	amework of da	ta protection, D	ata protection bill -a	n o	verview, GDPR,
Concept of privacy	', P1	rivacy concerns	s of cyberspace	, Constitutional fran	mev	vork of privacy,
Judicial interpretation	on o	f privacy in Ind	ia.			
Data Privacy and I	Data Privacy and Data Security- Defining data, meta-data, big data, non- personal data. Data					
protection, Data pr	ivac	cy and data se	curity, Data pro	otection regulations	of	other countries-
General Data Protection Regulations (GDPR),2016 Personal Information Protection and						
Electronic Docume	ents	Act (PIPEDA	A)., Social med	lia- data privacy a	nd	security issues.
Activities:Case Stud	lies	and Practical A	pplications			
		U	nit –IV			08 Hrs
		IP Protec	tion Issues in C	Cyberspace		
Copyright Issues in	n Cy	yberspace- Cop	oyright infringer	nent in digital enviro	onm	ent. Indian legal
protection of copyri	ght	in cyberspace.				
Trademark Issues	in (Cyberspace - D	omain Name V	s Trademark, Domai	n N	ame dispute and
Related Laws, Different Form of Domain in Cyberspace.						
Patent Issues in Cyberspace - Legal position on Computer related Patents - Indian Position on						
Patents.		_				
Activities:Case Stud	lies	and Practical A	pplications			

Digital Forensics - Computer Forensics, Mobile Forensics, Forensic Tools ,Anti-Forensics **Cyber Crime & Criminal Justice Agencies** - Cyber Crime Cells, Cyber Crime Appellate-Cyber Crime Investigation, Investigation Procedure - FIR - Charge Sheet

Unit –V

07 Hrs

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Understand the importance of professional practice, Law and Ethics in their personal lives and				
	professional careers.				
CO2	Build in Depth Knowledge of Information Technology Act and Legal Frame Work of Right to				
	Privacy, Data Security and Data Protection.				
CO3	Identify the bone of contentions of cybercrime investigation techniques, evaluate problem-solving				
	strategies, and develop science-based solutions.				
CO4	Develop an Understanding of the Relationship Between E-Commerce and Cyberspace.				

Referen	nce Books
1	Cyber Law by Dr. Pavan Duggal Publisher: LexisNexis, ISBN-10: 8196241070, ISBN-13: 978-
	8196241070
	Introduction to Information Security and Cyber Laws by Surya Prakash Tripathi, Ritendra Goel,
2	Praveen Kumar Shukla ASIN: 9351194736, Publisher: Dreamtech Press, ISBN-10: 9789351194736,
	ISBN-13: 978-9351194736.
3	Cyber Forensics in India: A Legal Perspective by Nishesh Sharma, 1 st Edition, ISBN:
	9788131250709.
4	Cyber Laws, Justice Yatindra Singh, 6 th Edition, Vol. 1, ISBN : 9789351437338

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE HEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7&8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	

MAXIMUM MARKS FOR THE CIE HEORY 100

100

TOTAL

Semester: VII						
Course Code		SU 21ME761	MMER INTE	CIE		50 Montra
Course Coue	•	2111E/01 0.0.2		SFE	•	50 Marks
Hours/Week	:	04		SEE Duration	:	2 Hours
	•	•		SEL Durunon		
			GUIDELI	NES		
1. The duration of t	he ir	nternship shall	be for a period	d of 6/8 weeks on f	ull t	time basis after VI semester
final exams and b	efor	e the commend	cement of VII s	semester.		
2. The student must	subi	mit letters fron	n the industry c	learly specifying hi	s / ł	ner name and the duration of
the internship on	the c	company letter	head with auth	norized signature.		
3. Internship must b student has enrol	e rel led.	lated to the field	ld of specializa	tion of the respecti	ve U	UG programme in which the
4. Students undergo	oing	internship tra	ining are advi	sed to report their	pro	ogress and submit periodic
5 Students have to	nres	ent the interns	hin activities o	arried out to the de	nar	tmental committee and only
upon approval by	the	committee th	e student can t	proceed to prepare a	and	submit the hard copy of the
final internship re	enort	However, int	erim or period	ic reports as require	d b	v the industry / organization
can be submitted	as p	er the format a	cceptable to th	e respective industr	v /o	rganizations.
6. The reports shall	be pi	rinted on A4 si	ze with 1.5 spa	cing and Times Nev	v Ro	oman with font size 12, outer
cover of the repo	rt (w	rapper) has to	be Ivory color	r for UG circuit Pro	grai	ms and Light Blue for Non-
Circuit Programs	•		2		U	U
7. The broad format	oft	he internship f	inal report shal	l be as follows		
8. Cover Page		-	-			
9. Certificate from (Colle	ege				
10. Certificate from I	ndus	stry / Organiza	tion			
11. Acknowledgemen	nt					
12. Synopsis						
13. Table of Contents	5					
14. Chapter 1 - Profil	e of t	the Organizatio	on: Organizatio	nal structure. Produ	cts.	Services, Business Partners,
Financials, Manp	owei	r, Societal Con	cerns, Professi	onal Practices.	,	
15. Chapter 2 - Activ	ities	of the Departr	nent			
16. Chapter 3 - Tasks	Per	formed: summ	arv of the task	s performed during	8-v	veek period
17. Chapter 4 – Refle	ection	ns: Highlight s	pecific technic	al and soft skills ac	auir	ed during internship
18. References & An	nexu	ire	1		1	
Course Outcomes						
After going through the	inte	ernship the st	ident will be	able to:		
CO1: Apply Engineerir	ng ar	nd Manageme	ent principles			
CO2: Analyze real-time	e pro	blems and su	iggest alterna	te solutions		
CO3: Communicate eff	ectiv	vely and worl	c in teams			
CO4: Imbibe the practic	ce of	f professional	ethics and ne	ed for lifelong lea	irni	ng.
Scheme of Continuous	s Int	ternal Evalua	ation (CIE):	_		_
The evaluation comm	ittee	shall consis	st of Guide,	Professor/Associ	ate	Professor and Assistant
Protessor. The commit	tee s	shall assess th	e presentatio	n and the progress	s rej	ports in two reviews. The
evaluation criteria shall be as per the rubrics given below:						

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in	25 Marks
	industries, ability to comprehend the functioning of the organization/ departments.	
Review - II	Importance of resource management, environment and	25 Marks
	sustainability, presentation skills and report writing	

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

Scheme of Evaluation for SEE			
Particulars	%Marks		
Project Synopsis (Initial Writeup)	10%		
Project Demo/Presentation	30%		
Methodology and Results Discussion	30%		
Project Work Report	10%		
Viva-voce	20%		
Total	100		

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VII						
MINOR PROJECT						
Course Code	:	21ME77P	CIE	:	50 Marks	
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks	
Hours/Week	:	04	SEE Duration	:	2 Hours	

GUIDELINES

1. The minor project is to be carried out individually or by a group of students. (maximum of 4 members and minimum of 3 students).

2. Each student in a team must contribute equally in the tasks mentioned below.

3. Each group has to select a current topic that will use the technical knowledge of their program of study after detailed literature survey.

4. The project should result in system/module which can be demonstrated, using the available resources in the college.

5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.

6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carrying out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integration testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course Outcomes:

After going through the minor project the student will be able to:

CO1: Interpreting and implementing the project in the chosen domain by applying the concepts learnt. CO2: The course will facilitate effective participation by the student in team work and development of communication and presentation skills essential for being part of any of the domains in his / her future career.

CO3: Appling project life cycle effectively to develop an efficient product.

CO4: Produce students who would be equipped to pursue higher studies in a specialized area or carry out research work in an industrial environment.

Bengaluru - 560059, Karnataka, India

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in three review phases. The evaluation criteria shall be as per the rubrics given below:

ReviewPhase	e Activity					
Phase-I	e-I Synopsis submission, approval of the selected topic, Problem					
	definition, Literature review, formulation of objectives,					
	methodology					
Phase - II	Mid-term evaluation to review the progress of implementation,	15 Marks				
	design, testing and result analysis along with documentation					
Phase -III	Submission of report, Final presentation and demonstration	25 Marks				

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

Scheme of Evaluation for SEE				
Particulars	%Marks			
Project Synopsis (Initial Writeup)	10%			
Project Demo/Presentation	30%			
Methodology and Results Discussion	30%			
Project Work Report	10%			
Viva-voce	20%			
Total	100			

Semester: VII								
ROBUST DESIGN								
Category: Professional Core								
~ ~ .	1 1		(Theory)	~~~~	<u> </u>	10075		
Course Code	:	21ME78		CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45 L		SEE Duration	:	3 Hours		
		Unit -	Ι			09 Hrs		
Review of Statisti	cs:	Introduction, Normal Distr	ribution, Distribution	of Sample Means	, t-I	Distribution, F-		
Distribution, Confid	lenc	e Intervals, Hypotheses Test	ing					
Fundamentals of I	Exp	erimental Design: Experim	entation, Analysis of	Variance, Basic Pr	inci	ples of Design,		
Terminology Used i	n D	esign of Experiments, Steps	in Experimentation, N	ormal probability p	lots	, problems		
		Unit –	I			09 Hrs		
Single-Factor Exp	erin	nents: Completely Random	ized Design, Analysis	of Variance, Ran	don	nized Complete		
Block Design, Balar	ncec	l Incomplete Block Design (BIBD), Latin Square D	Design, problems				
Multi-Factor Facto	oria	Experiments: Two-factor	Experiments, Statistica	l Model for a Two-	fact	or Experiment,		
Estimation of Mode	l Pa	rameters, Three-factor Factor	rial Experiment, Experi	iments with Randor	n Fa	ctors, problems		
Unit – III 09 Hrs								
Response Surface Methods: Designs for Fitting First-order Model, Central Composite Design (CCD), Box-								
Behnken Designs, P	rob	lems						
Quality Loss Func	tion	: Taguchi Quality Loss Fun	ction, Estimation of Q	uality Loss, S/N ra	tio,	Robust Design,		
Basis of Taguchi me	etho	ds, Steps in Experimentatior	n, problems					
		Unit – I	IV			09 Hrs		
Orthogonal Array	s:]	Introduction, Assignment of	of Factors and Intera	ctions, Linear Gra	aph,	Selection and		
Application of Orthe	ogoi	nal Arrays, problems						
Data Analysis Fro	m	Taguchi Experiments: Va	riable Data with Mai	in Factors Only, V	Vari	able Data with		
Interactions, Attribute Data Analysis, Confirmation experiments, Confidence intervals, Problems								
		Unit –	V			09 Hrs		
Multi-response op	timi	ization problems: Introduc	tion, Engineering Jud	gment, assignment	t of	Weights, Data		
Envelopment Analy	sis l	based Ranking Method, Grey	y Relational Analysis, 1	Problems		-		
Metaheuristic Algo	orith	ms: Principal Component A	nalysis (PCA), genetic	algorithm, case stud	dies	on Automotive		
Disc Pad Manufactu	iring	g, Optimization of Flash But	t Welding Process					

Course	Course Outcomes: After completing the course, the students will be able to:					
CO1	Illustrate the basic concepts of operations research and management in manufacturing systems.					
CO2	Solve linear programming problems using appropriate techniques and optimization solvers, interpret the					
	results obtained					
CO3	Apply the concepts of purchase, stores and inventory management and analyse and evaluate material					
	requirement decisions					
CO4	Evaluate the concepts of analytical modeling paradigms for automation using queueing theory and					
	scheduling algorithms.					

Ref	erence Books
1	Applied Design Of Experiments And Taguchi Methods, K. Krishnaiah and P. Shahabudeen, PHI Learning
1	Private Limited, ISBN-978-81-203-4527-0
2.	R.B Khanna, Production and Operations Management, 2 nd Edition, 2015, ISBN: 9788120351219
3.	Panneerselvam, R. Operations Research, 3 rd Edition, PHI, 2015, ISBN: 978-93-5443-789-2

Go, change the world

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS					
	PART A				
1	1 Objective type questions covering entire syllabus				
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: (Internal Choice)	16			
5&6	Unit 3: (Internal Choice)	16			
7&8	Unit 4: (Internal Choice)	16			
9 & 10	Unit 5: (Internal Choice)	16			
	TOTAL	100			

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VIII							
MAJOR PROJECT							
Course Code	:	21ME81P		CIE	:	100 Marks	
Credits: L:T:P	:	0:0:12		SEE	:	100 Marks	
Hours/Week	:	24		SEE Duration	:	03 Hours	

GUIDELINES

- The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- The detailed Synopsis (approved by the department Project Review Committee) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project.
- The project may be carried out In-house / Industry / R & D Institution. The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the field of respective program areas or in line with CoE's(Centre of Excellence) identified by the college or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in NPTEL from the discipline of Humanities and Social Sciences, Management, Multidisciplinary and Design Engineering. The course chosen could be either of 4w/8w/12w duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. The same will be considered as one of the components during project evaluation of phase 2 and phase 5.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of Industry project, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.

- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Course Outcomes:

After going through the major project the student will be able to:

CO1: Apply knowledge of mathematics, science and engineering to solve respective engineering domain problems.

CO2: Design, develop, present and document innovative/multidisciplinary modules for a complete engineering system.

CO3: Use modern engineering tools, software and equipment to solve problem and engage in life-long learning to follow technological developments.

CO4: Function effectively as an individual, or leader in diverse teams, with the understanding of professional ethics and responsibilities.

Scheme of Continuous Internal Evaluation (CIE):

The following are the weightings given for the various stages of the project.

0 000	U	3	
1.Selection of the topic and formulation o	f objectives		10%
2.Design and Development of Project me	thodology		25%
3.Execution of Project			25%
4. Presentation, Demonstration and Results	Discussion		30%
5.Report Writing & Publication	1		10%

Scheme for Semester End Evaluation (SEE):

The following are the weightages given during Viva Examination.

1. Written presentation of synopsis	10%	
2.Presentation/Demonstration of the project	30%	
3. Methodology and Experimental Results & Discussion	30%	
4.Report	10%	
5.VivaVoce	20%	

Go, change the world

Calendar of Events for the Project Work:

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry(In case of project being carried out
	In industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by
	Department project Committee and guide for internal assessment. Finalization of
	CIE.

Evaluation & Scheme for CIE and SEE

Scheme of Evaluation for CIE		Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks	
Project Evaluation I	10%	Project Synopsis(Initial Writeup)	10%	
Project Evaluation II	25%	Project Demo/Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

Course Outcomes of Major Project:

Cours	e outcomes of Major Project.
CO1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain
	problems.
CO2	Design, develop, present and document innovative/multidisciplinary modules for a complete engineering
	system.
CO3	Use modern engineering tools, software and equipment to solve problem and engage in life-long learning
	to follow technological developments.
CO4	Function effectively as an individual, or leader in diverse teams, with the understanding of professional
	ethics and responsibilities.

Calendar of Events for the Project Work:

Week	Event	
Beginning of 7 th Semester	Formation of group and approval by the department committee.	
7 th Semester	Problem selection and literature survey	
Last two weeks of 7 th	Finalization of project and guide allotment	
Semester		
II Week of 8 th Semester	Synopsis submission and preliminary seminar	
III Week	First visit of the internal guides to industry (In case of project being carried out in	
	industry)	
III to VI Week	Design and development of project methodology	
VII to IX Week	Implementation of the project	
X Week	Submission of draft copy of the project report	
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by Department	
	project Committee and guide for internal assessment. Finalization of CIE.	

Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CIE		Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks	
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%	
Project Evaluation II	25%	Project Demo / Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

Curriculum Design Process

Process For Course Outcome Attainment

Program Outcome Attainment Process

KNOWLEDGE & ATTITUDE PROFILE

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM OUTCOMES (POs)

- * **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- * PO2: Problem Analysis: Identify, formulate, review research literature and analyze engineering problems reaching substantiated complex conclusions with consideration for sustainable development. (WK1 to WK4)
- * **PO3:** Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex * engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- * **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- PO6: The Engineer and The World: Analyze and evaluate societal and environmental * aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- * PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- * **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- * **PO9:** Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- * **PO10:** Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and * ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- RUTARACT (Social welfare club
- 7. RAAG (Youth club)
- 8. EVUKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Professionalism, Commitment, Integrity, Team Work, Innovation

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India +91-80-68188110 www.rvce.edu.in

Go, change the world[®]

Scan Here