Scheme and Syllabus of III & IV Semesters
(Autonomous System of 2018 Scheme)

Master of Technology (M.Tech)
in
DIGITAL COMMUNICATION ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING
Vision

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology.

Mission

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Quality Policy

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.
Scheme and Syllabus of III & IV Semesters
(Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in
DIGITAL COMMUNICATION ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING
Department Vision

Imparting quality education in Electronics and Telecommunication Engineering through focus on fundamentals, research and innovation for sustainable development

Department Mission

- Provide comprehensive education that prepares students to contribute effectively to the profession and society in the field of Telecommunication.
- Create state-of-the-art infrastructure to integrate a culture of research with a focus on Telecommunication Engineering Education.
- Encourage students to be innovators to meet local and global needs with ethical practice.
- Create an environment for faculty to carry out research and contribute in their field of specialization, leading to Centre of Excellence with focus on affordable innovation.
- Establish a strong and wide base linkage with industries, R&D organization and academic Institutions.

PROGRAM OUTCOMES (POs)

<table>
<thead>
<tr>
<th>PO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1:</td>
<td>Acquire in-depth knowledge of Digital Communication Engineering with an ability to analyze, synthesize, evaluate existing and new technologies.</td>
</tr>
<tr>
<td>PO2:</td>
<td>Learn and apply modern engineering tools to solve complex engineering problems.</td>
</tr>
<tr>
<td>PO3:</td>
<td>Engage in life-long learning independently, to contribute for multidisciplinary research work.</td>
</tr>
<tr>
<td>PO4:</td>
<td>Independently carry out research /investigation and development work to solve practical problems.</td>
</tr>
<tr>
<td>PO5:</td>
<td>Write and present a substantial technical report/document.</td>
</tr>
<tr>
<td>PO6:</td>
<td>Demonstrate a degree of mastery over the area Digital Communication Engineering. The mastery would be at a level higher than the requirements in the appropriate bachelor program.</td>
</tr>
</tbody>
</table>

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>VTU</td>
<td>Visvesvaraya Technological University</td>
</tr>
<tr>
<td>2.</td>
<td>BS</td>
<td>Basic Sciences</td>
</tr>
<tr>
<td>3.</td>
<td>CIE</td>
<td>Continuous Internal Evaluation</td>
</tr>
<tr>
<td>4.</td>
<td>SEE</td>
<td>Semester End Examination</td>
</tr>
<tr>
<td>5.</td>
<td>CE</td>
<td>Professional Core Elective</td>
</tr>
<tr>
<td>6.</td>
<td>GE</td>
<td>Global Elective</td>
</tr>
<tr>
<td>7.</td>
<td>HSS</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>8.</td>
<td>CV</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>9.</td>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>10.</td>
<td>EE</td>
<td>Electrical & Electronics Engineering</td>
</tr>
<tr>
<td>11.</td>
<td>EC</td>
<td>Electronics & Communication Engineering</td>
</tr>
<tr>
<td>12.</td>
<td>IM</td>
<td>Industrial Engineering & Management</td>
</tr>
<tr>
<td>13.</td>
<td>EI</td>
<td>Electronics & Instrumentation Engineering</td>
</tr>
<tr>
<td>14.</td>
<td>CH</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>15.</td>
<td>CS</td>
<td>Computer Science & Engineering</td>
</tr>
<tr>
<td>16.</td>
<td>TE</td>
<td>Telecommunication Engineering</td>
</tr>
<tr>
<td>17.</td>
<td>IS</td>
<td>Information Science & Engineering</td>
</tr>
<tr>
<td>18.</td>
<td>BT</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>19.</td>
<td>AS</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>20.</td>
<td>PHY</td>
<td>Physics</td>
</tr>
<tr>
<td>21.</td>
<td>CHY</td>
<td>Chemistry</td>
</tr>
<tr>
<td>22.</td>
<td>MAT</td>
<td>Mathematics</td>
</tr>
</tbody>
</table>

INDEX

III Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>18MDC31</td>
<td>Wireless Communication</td>
<td>03</td>
</tr>
<tr>
<td>2.</td>
<td>18 MDC34</td>
<td>Internship</td>
<td>07</td>
</tr>
<tr>
<td>3.</td>
<td>18 MDC35</td>
<td>Dissertation Phase I</td>
<td>09</td>
</tr>
</tbody>
</table>

GROUP E: CORE ELECTIVES

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>18 MDC3E1</td>
<td>Short Range Wireless Communication</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>18 MDC3E2</td>
<td>Software Defined Networks.</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>18 MDC3E3</td>
<td>Network Security</td>
<td>17</td>
</tr>
</tbody>
</table>

IV Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>18 MDC41</td>
<td>Dissertation Phase II</td>
<td>24</td>
</tr>
<tr>
<td>2.</td>
<td>18 MDC42</td>
<td>Technical Seminar</td>
<td>26</td>
</tr>
</tbody>
</table>
THIRD SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>BoS</th>
<th>CREDIT ALLOCATION</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
</tr>
<tr>
<td>1</td>
<td>18MDC31</td>
<td>Wireless Communication</td>
<td>TE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>18MDC3EX</td>
<td>Elective -E</td>
<td>TE</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>18 MDC34</td>
<td>Internship</td>
<td>TE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>18 MDC35</td>
<td>Dissertation Phase I</td>
<td>TE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Hours</td>
<td></td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

LIST OF ELECTIVE COURSES

III Semester

GROUP E: CORE ELECTIVES

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Host Dept</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18 MDC3E1</td>
<td>TE</td>
<td>Short Range Wireless Communication</td>
<td>04</td>
</tr>
<tr>
<td>2</td>
<td>18 MDC3E2</td>
<td>TE</td>
<td>Software Defined Networks.</td>
<td>04</td>
</tr>
<tr>
<td>3</td>
<td>18 MDC3E3</td>
<td>TE</td>
<td>Network Security</td>
<td>04</td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>BoS</th>
<th>CREDIT ALLOCATION</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
</tr>
<tr>
<td>1</td>
<td>18 MDC41</td>
<td>Dissertation Phase II</td>
<td>TE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>18 MDC42</td>
<td>Technical Seminar</td>
<td>TE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Hours</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
UNIT-I
Wireless channel: physical modeling for wireless channels, input/output model of wireless channel, time and frequency response. 08 Hrs

UNIT-II
Point to point communication: detection in Rayleigh fading channel, time diversity, antenna diversity, frequency diversity 08 Hrs

UNIT-III
Capacity of wireless channels: AWGN channel capacity, resources of AWGN channel, Linear time invariant Gaussian channels, capacity of fading channels. 08 Hrs

UNIT-IV
MIMO Systems: Introduction, Space Diversity and Systems Based on Space Diversity, Smart antenna system and MIMO, MIMO based System architecture, MIMO exploits multipath, Space time Processing, Antenna considerations for MIMO, MIMO channel Modeling, MIMO Channel measurement, MIMO Channel capacity, Space Time Coding, Advantages and Applications of MIMO, MIMO applications in 3G. 08 Hrs

UNIT-V
Spatial multiplexing and channel modeling: multiplexing capability of MIMO channels, physical modeling of MIMO channels, modeling MIMO fading channels. 08 Hrs

Course Outcomes: After completing the course, the students will be able to
CO1 Describe physical modeling for wireless channel and diversity techniques.
CO2 Analyze the Modeling of MIMO fading channels.
CO3 Evaluate diversity techniques and multiplexing capability of MIMO channels.
CO4 Design a MIMO system with smart antennas in wireless communication applications.

Reference Books

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)
CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE); Theory (100 marks)
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.
III SEMESTER
INTERNSHIP

<table>
<thead>
<tr>
<th>Course Code: 18MDC33</th>
<th>CIE Marks: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:T:P: 0:0:5</td>
<td>SEE Marks: 100</td>
</tr>
<tr>
<td>Hours: 10Hrs</td>
<td>SEE Duration: 03Hrs</td>
</tr>
</tbody>
</table>

Course Learning Objectives (CLO): The students shall be able to

1. Understand the process of applying engineering knowledge to produce product and provide services.
2. Explain the importance of management and resource utilization.
3. Comprehend the importance of teamwork, protection of environment and sustainable solutions.
4. Imbibe values, professional ethics for lifelong learning.

GUIDELINES FOR INTERNSHIP

1. The duration of the internship shall be for a period of 8 weeks on full time basis between II semester final exams and beginning of III semester.
2. The student must submit letters from the industry clearly specifying his/her name and the duration of the internship on the company letter head with authorized signature.
3. Internship must be related to the field of specialization or the M.Tech program in which the student has enrolled.
4. Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
5. Students have to make a presentation on their internship activities in front of the departmental committee and only upon approval of the presentation should the student proceed to prepare and submit the hard copy of the internship final report. However interim or periodic reports and reports as required by the industry/organization can be submitted as per the format acceptable to the respective industry/organizations.
6. The reports shall be printed on bond paper – 80GSM, back to back print, with soft binding – A4 size with 1.5 spacing and times new roman font size 12.
7. The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry/Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 - Profile of the Organization – Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 - Activities of the Department -
 - Chapter 3 – Tasks Performed – summaries the tasks performed during 8 week period
 - Chapter 4 – Reflections – Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course Outcomes: After completing the course, the students will be able to

CO1 Apply engineering and management principles
R.V. College of Engineering – Bengaluru-59

<table>
<thead>
<tr>
<th>CO2</th>
<th>Analyze real-time problems and suggest alternate solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO3</td>
<td>Communicate effectively and work in teams</td>
</tr>
<tr>
<td>CO4</td>
<td>Imbibe the practice of professional ethics and need for lifelong learning.</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE):
A committee comprising of the Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):
The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

- (1) Explanation of the application of engineering knowledge in industries 35%
- (2) Ability to comprehend the functioning of the organization/departments 20%
- (3) Importance of resource management, environment and sustainability 25%
- (4) Presentation Skills and Report 20%

GUIDELINES FOR INDUSTRIAL TRAINING

1. The duration of industrial training must be for a minimum of 1 week and maximum of 8 weeks on full time basis.
2. Industrial Training in which students pays a fee to the organization / industry will not be considered.
3. He/she can undergo training in one or more industry/organization.
4. The student must submit letters from the industry clearly specifying his/her name and the duration of the training provided by the company with authorized signatures.
5. Industrial training must be related to the field of specialization or the M.Tech program in which the student has enrolled.
6. Students undergoing industrial training are advised to use ICT tools such as Skype to report their progress and submission of periodic progress reports to the faculty members.
7. Every student has to write and submit his/her own industrial training report to the designated faculty.
8. Students have to make a presentation on their industrial training in front of the departmental committee and only upon approval of the presentation should the student proceed to prepare and submit the hard copy of the final report.
9. The reports shall be printed on bond paper – 80GSM, back to back print, with soft binding – A4 size with 1.5 spacing and times new roman font size 12.
10. The broad format of the industrial training report shall be as follows
 - Cover Page
 - Certificate from College
 - Training Certificate from Industry/Organization
 - Acknowledgement
 - Executive Summary
 - Table of Contents
 - Chapter 1 - Profile of the Organization – Organizational structure, Products, Services,
 - Business Partners, Financials, Manpower, Societal Concerns, Professional Practices
 - Chapter 2 – Details of the Training Modules
Chapter 3 – Reflections – Highlight specific technical and soft skills that you acquired
References & Annexure

Course Outcomes: After completing the course, the students will be able to

CO1	Understand the process of applying engineering knowledge to solve industrial Problems.
CO2	Develop skills through training relevant to industrial requirement
CO3	Communicate effectively and work in teams
CO4	Imbibe ethical practices and develop it as life skill.

Scheme of Continuous Internal Evaluation (CIE):
A committee comprising of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):
The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1. Explanation on the application of engineering knowledge 25%
2. Ability to comprehend the importance of skilling and training 25%
3. Importance of communication, professional ethics, sustainability 20%
4. Oral Presentation and Report 30%

GUIDELINES FOR INDUSTRIAL VISITS
1. Student must visit a minimum of THREE organizations/industry. The duration of the visit per organization must be for ONE full day, during which he/she must comprehend the importance of organization structure, function of various departments, application of engineering knowledge, resource management, and importance to environment and safety, professional ethics.
2. It is mandatory to visit ONE private multi-national company or public sector industry / organization, ONE medium-small enterprise and ONE rural based or NG organization.
3. The student must submit letter from the industry clearly specifying his / her name and the date of visit to the industry with authorized signatures.
4. Industrial visit must be related to the field of specialization or the M.Tech program in which the student has enrolled.
5. Every student has to write and submit his/her own report on each industrial visit and submit the report to the designated faculty advisor for evaluation.
6. A photograph outside the industry with the name and logo of the industry in the background along with the students and faculty members could be included in the report.
7. Students have to make a presentation on their industrial visit in front of the departmental committee and only upon approval of the presentation should the student proceed to prepare and submit the hard copy of the final report.
8. The reports shall be printed on bond paper – 80GSM, back to back print, with soft binding – A4 size with 1.5 spacing and times new roman font size 12.
9. The broad format of the industrial visit report shall be as follows
• Cover Page
• Certificate from College
• Acknowledgement
• Synopsis / Executive Summary
• Table of Contents
• Chapter 1 - Profile of the PSU or MNC – must include Organizational structure, Products, Services, Financials, Manpower, Societal Concerns, Professional Practices
• Chapter 2 – Profile of the SME – must include Organizational structure, Products, Services, Financials, Manpower, Societal Concerns, Professional Practices
• Chapter 3 - Profile of the NGO – must include Organizational structure, services,
• Chapter 4 – Comparative Analysis of PSU/MNC – SME – NGO
• References & Annexure (Permission letters from the organizations for the visit & photographs)

Course Outcomes: After completing the course, the students will be able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Classify the role of different industries and organization in addressing the needs of the society.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Explain the process of applying engineering knowledge in industries and organizations.</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe the importance of communication and team work.</td>
</tr>
<tr>
<td>CO4</td>
<td>Recognize the importance of practicing professional ethics and need for life skills.</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE):
A committee comprising of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):
The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries 25%
(2) Ability to comprehend the functioning of the organization/departments 30%
(3) Importance of resource management, environment and sustainability 20%
(4) Presentation Skills and Report 25%
III SEMESTER
DISSERTATION PHASE I

Course Code: 18MDC35
CIE Marks: 100
L:T:P: 0:0:5
SEE Marks: 100
Hours: 10Hrs
SEE Duration: 03Hrs

Course Learning Objectives:
The students shall be able to
1. Understand the method of applying engineering knowledge to solve specific problems.
2. Apply engineering and management principles while executing the project
3. Demonstrate good verbal presentation and technical report writing skills.
4. Identify and solve complex engineering problems using professionally prescribed standards.

GUIDELINES FOR DISSERTATION PHASE I
1. Major project will have to be carried out by only one student in his/her area of interest.
2. Each student has to select a contemporary topic that will use the technical knowledge of their program of specialization.
3. Allocation of the guides preferably in accordance with the expertise of the faculty.
4. The project can be carried out on-campus or in an industry or an organization with prior approval from the Head of the Department.
5. The standard duration of the project is for 16 weeks, however if the guide and the evaluation committee of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the guide and the committee.
6. It is mandatory for the student to present his/her work in one of the international conferences or publish the research finding in a reputed unpaid journal with impact factor.

Course Outcomes: After going through this course the students will be able to
CO1: Conceptualize, design and implement solutions for specific problems.
CO2: Communicate the solutions through presentations and technical reports.
CO3: Apply project and resource managements skills, professional ethics, societal concerns
CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)
Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Activity</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th week</td>
<td>Topic approval along with Synopsis</td>
<td>20%</td>
</tr>
<tr>
<td>8th week</td>
<td>Literature survey with Problem Statement</td>
<td>20%</td>
</tr>
<tr>
<td>12th week</td>
<td>Motivation and Objectives</td>
<td>20%</td>
</tr>
<tr>
<td>15th week</td>
<td>Preliminary report for the approval of selected topic along with methodology.</td>
<td>40%</td>
</tr>
</tbody>
</table>
CIE Evaluation shall be done with marks distribution as follows:

- Selection of the topic: 10%
- Literature review and framing of objectives: 25%
- Defining the brief methodology along with the algorithm development/experimental setup: 25%
- Presentation: 20%
- Report writing: 20%

Scheme for Semester End Evaluation (SEE):
The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1. Brief write-up about the project: 5%
2. Formulation of Project Objectives & Methodology: 20%
3. Presentation: 25%
4. Report: 20%
5. Viva Voce: 30%
III SEMESTER
SHORT RANGE WIRELESS COMMUNICATION
(Group E: Core Elective)

Course Code: 18MDC3E1 CIE Marks: 100
L:T:P::4:0:0 SEE Marks: 100
Hours: 45L SEE Duration: 3Hrs

UNIT-I
Introduction to Short Range Wireless Communication (SWC): Growth of standards, Market, Wireless architecture, wireless parameters, Enabling factors, Design rules for SRC, Short-range vs medium/long range communications., High rate vs Low rate communications, Review of frequency regulations and available frequency bands, State of the Art SWC systems: WLAN, Bluetooth, ZigBee, NFC, UWB, BAN, 60GHz, LiFi, and VLC. 09 Hrs

UNIT-II
Channel Estimation for high-rate systems: High rate UWB and 60GHz communications - Overview and Application Scenario’s, ECMA-368 High rate UWB standard, ECMA-387 Millimeter wave radio standard, IEEE 802.15.3C, Channel models for high rate systems, Review of channel estimation techniques, Impact on channel estimation error on performance. 09 Hrs

UNIT-III
Adaptive Modulation and coding for high rate systems: Adaptive modulation and coding, AMC in MB-OFDM systems, WPAN link architecture in ECMS-368, Packet level model for UWB channels with shadowing, WPAN link performance analysis, AMC in 60GHz millimeter wave radio systems, modulation techniques and system architectures for multi-Gb/s, RF Packaging and Antenna design issues. 09 Hrs

UNIT-IV
PHY Layer Design Issues for High Data Rate (Gbps) communication: Principles of MIMO systems, MIMO for UWB systems, Adaptive Antenna Array Systems Design, active phased array based on analog beam-forming, PAPR Reduction for Discrete-time OFDM Signals, Soft Iterative Equalization for Clipped and Filtered COFDM Signals, power-amplifier utilization - significantly improved by clipping and filtering; matching receive algorithm for equalization of in-band distortion noise. 09 Hrs

UNIT-V
Low rate systems & Emerging concepts in Short Range communications: ZigBee networks and low rate UWB communications - Overview and application examples, ZigBee, Impulse radio based UWB (IEEE 802.15.4a), Low latency MAC for WPANs (IEEE 802.15.4e), Active RFID (IEEE 802.15.4f), Smart utility Networks (IEEE 802.15.4g), Energy efficiency in Low rate systems- Background, Energy saving MACs. UROOF’ (UWB radio-over-optical-fibre), UROOF - user applications and basic system configuration, Fundamentals of UROOF Technologies, Link Analysis of UROOF Systems, Analysis of UWB Technologies for UROOF, Visible Light Communications, Discrete Multitone Modulation, Potential applications of VLC, Technical challenges of implementing VLC. 09 Hrs

Course Outcomes: After completing the course, the students will be able to

CO1 Explain the architectures and operations of state-of-the-art short range wireless networking standards.

CO2 Analyze the error performance of short range communication systems in presence of noise and other interferences.
CO3 Gain in-depth knowledge about multicarrier and multiantenna techniques and their applications in current and emerging communication systems.

CO4 Identify various technical challenges on low rate systems and short range communication systems.

Reference Books

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)
CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE); Theory (100 marks)
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.
III SEMESTER

SOFTWARE DEFINED NETWORKS

(Group E: Core Elective)

<table>
<thead>
<tr>
<th>Course Code: 18MDC3E2</th>
<th>CIE Marks: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:T:P:: 4:0:0</td>
<td>SEE Marks: 100</td>
</tr>
<tr>
<td>Hours: 41 L</td>
<td>SEE Duration: 3Hrs</td>
</tr>
</tbody>
</table>

UNIT-I

Software Defined Networking: Introduction, Modern Data Center, Traditional Switch Architecture, Layer 2 & 3 Control, Evolution of switches and control planes, Data Center Innovation & Needs, The Evolution of Networking Technology, Forerunners of SDN, Open Source Contributions and Network Virtualization.

08 Hrs

UNIT-II

How SDN Works: Fundamental Characteristics of SDN, SDN Operation SDN Devices, SDN Controller, SDN Applications.

The Open Flow Specification: Open Flow Overview, Open Flow 1.0 and Open Flow Basics, Open Flow 1.1, 1.2, and 1.3 Additions and Open Flow Limitations.

08 Hrs

UNIT-III

09 Hrs

UNIT-IV

SDN in Other Environments: Consistent Policy Configuration, Global Network View, WANs, Service Provider and Carrier Networks, Campus Networks, Hospitality Networks, Mobile Networks, In-Line Network Functions, and Optical Networks. **Players in the SDN Ecosystem:** Academic Research Institutions, Industry Research Labs and Network Equipment Manufacturers.

08 Hrs

UNIT-V

SDN Applications: Reactive versus Proactive Applications, A Simple Reactive Java Application, Background on various Controllers like Floodlight Controller, Open Daylight Controller, Cisco XNC Controller, and Hewlett-Packard Controller. Switch Considerations, Creating NV Tunnels, Offloading Flows in the Data Center, Access Control for the Campus, Traffic Engineering for Service Providers.

08 Hrs

Course Outcomes: After completing the course, the students will be able to

- **CO1** Explain and discuss the basic concepts and architectural differences of conventional networking approaches and SDN.
- **CO2** Analyze and apply implementation of SDN through Open Flow Switches.
- **CO3** Apply the principles of SDN for the design of data centre using SDN elements of reputed vendors.
- **CO4** Design and implement software defined network application on SDN-based networking devices.

Reference Books

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)
CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE); Theory (100 marks)
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.
<table>
<thead>
<tr>
<th>Course Code: 18MDC3E3</th>
<th>CIE Marks: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:T:P::4:0:0</td>
<td>SEE Marks: 100</td>
</tr>
<tr>
<td>Hours: 45L</td>
<td>SEE Duration: 3Hrs</td>
</tr>
</tbody>
</table>

UNIT-I

Introduction: OSI Security Architecture, Classical Encryption techniques: Symmetric Cipher Model, Substitution Techniques, Transportation Techniques.
Block Ciphers and Data Encryption Standards: Traditional Block Cipher Structure, The Data Encryption Standard, A DES Example, The Strength of DES.
Advanced Encryption Standard: AES Transformation Functions, AES Key Expansion, An AES Example, AES Implementation.

UNIT-II

Public Key Cryptography and RSA: Principles of Public-Key Cryptosystems, The RSA Algorithm.
Other Public-Key Cryptosystems: Diffie-Hellman Key Exchange, Elgamal Cryptographic System, Elliptic Curve Arithmetic, Elliptic Curve Cryptography, Pseudorandom Number Generation Based on an Asymmetric Cipher.

UNIT-III

Cryptographic Hash Functions: Applications of Cryptographic Hash Functions, Two Simple Hash Functions, Hash Functions Based on Cipher Block Chaining, Secure Hash Algorithm (SHA), SHA-3.
Message Authentication Codes: Message Authentication Requirements, Message Authentication Functions, Requirements for Message Authentication Codes, Security of MACs, MACs Based on Hash Functions: HMAC, MACs Based on Block Ciphers: DAA and CMAC, Authenticated Encryption: CCM and GCM, Pseudorandom Number Generation Using Hash Functions and MACs.
Digital Signatures: Digital Signatures, Elgamal Digital Signature Scheme, Schnorr Digital Signature Scheme, NIST Digital Signature Algorithm, Elliptic Curve Digital Signature Algorithm, RSA-PSS Digital Signature Algorithm.

UNIT-IV

Network Access Control and Cloud Security: Network Access Control, Extensible Authentication Protocol, IEEE 802.1X Port-Based Network Access Control.

UNIT-V

Electronic Mail Security: Internet Mail Architecture, Email Formats, Email Threats and Comprehensive Email Security, S/MIME, Pretty Good Privacy, DNSSEC, DNS-Based Authentication of Named Entities, Sender Policy Framework, Domain Keys Identified Mail.

Course Outcomes: After completing the course, the students will be able to

- **CO1** Describe the issues addressed by Network Security and understand the concepts of cryptography and Network security.
- **CO2** Apply cryptographic techniques and algorithms to provide security to the transmitted information.
CO3 Analyze the concepts of Authentication and Hash functions.

CO4 Understand and analyze System level security issues.

Reference Books

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
<th>Edition</th>
<th>ISBN-13</th>
<th>ISBN-10</th>
</tr>
</thead>
</table>

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE); Theory (100 marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.
IV SEMESTER

DISSEMINATION PHASE II

<table>
<thead>
<tr>
<th>Course Code: 18MDC41</th>
<th>CIE Marks: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:T:P::0:0:20</td>
<td>SEE Marks: 100</td>
</tr>
<tr>
<td>Hours: 40</td>
<td>SEE Duration: 3Hrs</td>
</tr>
</tbody>
</table>

Course Learning Objectives: The students shall be able to
1. Understand the method of applying engineering knowledge to solve specific problems.
2. Apply engineering and management principles while executing the project
3. Demonstrate good verbal presentation and technical report writing skills.
4. Identify and solve complex engineering problems using professionally prescribed standards.

GUIDELINES DISSEMINATION PHASE II

1. Major project will have to be done by only one student in his/her area of interest.
2. Each student has to select a contemporary topic that will use the technical knowledge of their program of specialization.
3. Allocation of the guides preferably in accordance with the expertise of the faculty.
4. The project can be carried out on-campus or in an industry or an organization with prior approval from the Head of the Department.
5. The standard duration of the project is for 16 weeks, however if the guide and the evaluation committee of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the guide and the committee.
6. It is mandatory for the student to present his/her work in one of the international conferences or publish the research finding in a reputed unpaid journal with impact factor.

Course Outcomes: After completing the course, the students will be able to

CO1	Conceptualize, design and implement solutions for specific problems.
CO2	Communicate the solutions through presentations and technical reports.
CO3	Apply project and resource managements skills, professional ethics, societal concerns
CO4	Synthesize self-learning, sustainable solutions and demonstrate life long learning

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Activity</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th week</td>
<td>Review and refinement of Objectives and methodology.</td>
<td>20%</td>
</tr>
<tr>
<td>10th week</td>
<td>Mid-term progress review shall check the compliance with the objectives and methodology presented in Phase I, review the work performed.</td>
<td>40%</td>
</tr>
<tr>
<td>15th week</td>
<td>Oral presentation, demonstration and submission of project report. Outcome and publication</td>
<td>40%</td>
</tr>
</tbody>
</table>

CIE Evaluation shall be done with marks distribution as follows:
- Review of formulation of objectives and methodology 10%
- Design and simulation/algorithm development/experimental setup 25%
- Conducting experiments/implementation/testing/analysis 25%
- Demonstration & Presentation 20%
- Report writing 20%
Scheme for Semester End Evaluation (SEE):
The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1. Brief write-up about the project 5%
2. Formulation of Project Objectives & Methodology 20%
3. Experiments / Analysis Performed; Results & Discussion 25%
4. Report 20%
5. Viva Voce 30%
IV SEMESTER

TECHNICAL SEMINAR

<table>
<thead>
<tr>
<th>Course Code: 18MDC42</th>
<th>CIE Marks: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:T:P::0:0:2</td>
<td>SEE Marks: 50</td>
</tr>
<tr>
<td>Hours: 4</td>
<td>SEE Duration: 3 Min</td>
</tr>
</tbody>
</table>

Course Learning Objectives (CLO): The students shall be able to:

1. Understand the technological developments in their chosen field of interest
2. Explain the scope of work and challenges in the domain area
3. Analyze these engineering developments in the context of sustainability and societal concerns.
4. Improve his/her presentation skills and technical report writing skills

GUIDELINES TECHNICAL SEMINAR

1. The presentation will have to be done by individual students.
2. The topic of the seminar must be in one of the thrust areas with in-depth review and analysis on a current topic that is relevant to industry or on-going research.
3. The topic could be an extension or complementary to the project.
4. The student must be able to highlight or relate these technological developments with sustainability and societal relevance.
5. Each student must submit both hard and soft copies of the presentation.

Course Outcomes: After completing the course, the students will be able to

CO1	Identify topics that are relevant to the present context of the world
CO2	Perform survey and review relevant information to the field of study.
CO3	Enhance presentation skills and report writing skills.
CO4	Develop alternative solutions which are sustainable

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

Rubrics for Evaluation:

1) Topic – Technical Relevance, Sustainability and Societal Concerns	15%
2) Review of literature	25%
3) Presentation Skills	35%
4) Report	25%
Curriculum Design Process
Academic Planning and Implementation

- Align Course Contents (Lesson Plan)
- Identify Expected Attainment Level (Threshold)
- Publish course Materials (PPT’s, Notes, Model Question Paper)
- Publish Schedule (Time Table, Test, Self Study, Lab)

Implement Program Curriculum (Course Delivery)

Formative Student Assessment (Tests, Quizzes, Lab and Through Pedagogical Initiatives)

Assess Results and Feedback to Students

- Performance < Expected
 - Yes: Remedial
 - No: A

Cumulative Outcome Assessment

Course End Survey

Assessment Outcome Data and Students Feedback on TLP

Academic Advisory Committee

Improve Program Curriculum/Assessment Methods/Redefine CO’s
Process for Course Outcome Attainment

Course Curriculum → CO-PO Mapping → Mapping of COs to CIE QP → Weightage of COs from tests and quizzes → Students marks from tests and quizzes → Lab experiment assessment, Score and weightage → Self Study assessment score and weightage → Attainment of CO for each student → Number of students getting more than the target attainment

Final CO Attainment Process

Course (Syllabus) → Course Achievable Matrix → Mapping of COs to CIE question paper → QP Achieved (Student score from Test and Quiz) → Ratio of QP achieved to course achievable → Lab experiments mapped to COs ↔ Self-study assessment rubrics mapped to COs → Direct 90% → CIE 80% ↔ SEE 29% ↔ CO attainment from SEE → At the end of the course
Program Outcome Attainment Process

Guidelines for Fixing Targets
- The target may be fixed based on last years’ average attainment