

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road

Bengaluru – 560 059

Scheme and Syllabus of III & IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in DIGITAL COMMUNICATION ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Vision

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology.

Mission

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Quality Policy

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of III & IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in DIGITAL COMMUNICATION ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Department Vision

Imparting quality education in Electronics and Telecommunication Engineering through focus on fundamentals, research and innovation for sustainable development

Department Mission

- Provide comprehensive education that prepares students to contribute effectively to the profession and society in the field of Telecommunication.
- Create state-of-the-art infrastructure to integrate a culture of research with a focus on Telecommunication Engineering Education
- Encourage students to be innovators to meet local and global needs with ethical practice
- Create an environment for faculty to carry out research and contribute in their field of specialization, leading to Centre of Excellence with focus on affordable innovation.
- Establish a strong and wide base linkage with industries, R&D organization and academic Institutions.

РО	Description	
PO1:	Acquire in-depth knowledge of Digital Communication Engineering with an	
	ability to analyze, synthesize, evaluate existing and new technologies.	
PO2:	Learn and apply modern engineering tools to solve complex engineering	
	problems.	
PO3:	Engage in life-long learning independently, to contribute for multidisciplinary	
	research work.	
PO4:	Independently carry out research /investigation and development work t	
	solve practical problems.	
PO5:	Write and present a substantial technical report/document.	
PO6:	Demonstrate a degree of mastery over the area Digital Communication	
	Engineering. The mastery would be at a level higher than the requirements in	
	the appropriate bachelor program.	

PROGRAM OUTCOMES (POs)

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PHY	Physics
21.	CHY	Chemistry
22.	MAT	Mathematics

INDEX

	III Semester				
Sl. No.	Course Code	Course Title	Page No.		
1.	18MDC31	Wireless Communication	03		
2.	18 MDC34	Internship	07		
3.	18 MDC35	Dissertation Phase I	09		
		GROUP E: CORE ELECTIVES			
1.	18 MDC3E1	Short Range Wireless Communication	13		
2.	18 MDC3E2	Software Defined Networks.	15		
3.	18 MDC3E3	Network Security	17		

	IV Semester			
Sl. No.	Course Code	Course Title	Page No.	
1.	18 MDC 41	Dissertation Phase II	24	
2.	18 MDC 42	Technical Seminar	26	

RV COLLEGE OF ENGINEERNG[®], BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF TELECOMMUNICATION ENGINEERING

M.Tech in DIGITAL COMMUNICATION ENGINEERING

	THIRD SEMESTER						
Sl.	Sl. Course Course Title BoS		BoS	CREDIT ALLOCATION			Total
No.	Code			Lecture	Tutorial	Practical	Credits
				L	Т	Р	
1	18MDC31	Wireless	TE	4	1	0	5
1		Communication					
2	18MDC3EX	Elective -E	TE	4	0	0	4
3	18 MDC34	Internship	TE	0	0	5	5
4	18 MDC35	Dissertation Phase I	TE	0	0	5	5
	Total Credits			8	1	10	19
	Total Hours				2	20	30

LIST OF ELECTIVE COURSES

	III Semester				
	GROUP E: CORE ELECTIVES				
Sl. No.	Course Code	Host Dept	Course Title	Credits	
1.	18 MDC3E1	TE	Short Range Wireless Communication	04	
2.	18 MDC3E2	TE	Software Defined Networks.	04	
3.	18 MDC3E3	TE	Network Security	04	

	FOURTH SEMSESTER						
SI.	Course	Course Title	BoS	CRE	DIT ALLO	OCATION	Credits
No	Code	Course Title	D03	L	Т	Р	Creatis
1	18 MDC 41	Dissertation Phase II	TE	0	0	20	20
2	18 MDC 42	Technical Seminar	TE	0	0	2	2
		Total Credits		0	0	22	22
		Total Hours				44	44

	III SEMESTER			
WIRELESS COMMUNICATION				
(Theory)				
Course Code: 18MDC31	CIE Marks: 100			
L:T:P: 4:1:0	: 4:1:0 SEE Marks: 100			
Hours: 40L				
	UNIT-I			
1.	modeling for wireless channels, input/output mode			
wireless channel, time and fr		08 Hrs		
	UNIT-II			
Point to point communi diversity, antenna diversity,	cation: detection in Rayleigh fading channel, t frequency diversity	ime 08 Hrs		
	UNIT-III			
Capacity of wireless chan	nels: AWGN channel capacity, resources of AW			
channel, Linear time invarian	nt Gaussian channels, capacity of fading channels.	08 Hrs		
	UNIT-IV			
MIMO Systems: Introduc	tion, Space Diversity and Systems Based on Sp	bace		
Diversity, Smart antenna sy	Diversity, Smart antenna system and MIMO, MIMO based System architecture, 08 Hr			
MIMO exploits multipath,	Space time Processing, Antenna considerations	for		
MIMO, MIMO channel Mo	deling, MIMO Channel measurement, MIMO Chan	nnel		
capacity, Space Time Codi	ing, Advantages and Applications of MIMO, MI	MO		
applications in 3G.				
	UNIT-V			
	channel modeling: multiplexing capability of MI			
· · · · · · · · · · · · · · · ·	of MIMO channels, modeling MIMO fading channel	els. 08 Hrs		
	pleting the course, the students will be able to			
i v	deling for wireless channel and diversity techniques	•		
CO2 Analyze the Modeling	CO2 Analyze the Modeling of MIMO fading channels.			
	hniques and multiplexing capability of MIMO channels			
CO4 Design a MIMO syste	em with smart antennas in wireless communication a	pplications.		
Reference Books				
1. Fundamentals of wi	reless communication, David Tse, P. Viswanath,			
2006,Cambridge,.ISI	3N 0-521-68749-7			
2. Wireless communic	ation, Upen Dalal, Oxford university Press, 2009			

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE); Theory (100 marks)

	III SEMESTER
	INTERNSHIP
Course Code: 18MDC33	CIE Marks: 100
L:T:P: 0:0:5	SEE Marks: 100
Hours: 10Hrs	SEE Duration: 03Hrs
Course Learning Objective	s (CLO): The students shall be able to
(1) Understand the process	of applying engineering knowledge to produce product and
provide services.	
· · · ·	f management and resource utilization
	nce of team work, protection of environment and sustainable
solutions.	al othios for lifelong looming
(4) Infolde values, profession	al ethics for lifelong learning. GUIDELINES FOR INTERNSHIP
1) The duration of the inter	rship shall be for a period of 8 weeks on full time basis between II
	beginning of III semester.
	t letters from the industry clearly specifying his / her name and the
	o on the company letter head with authorized signature.
-	
student has enrolled.	ed to the field of specialization or the M.Tech program in which the
	the first of the second state of the second state of the second sector is
	ternship training are advised to report their progress and submit
	to their respective guides.
	presentation on their internship activities in front of the departmental
• •	n approval of the presentation should the student proceed to prepare
	y of the internship final report. However interim or periodic reports
	by the industry / organization can be submitted as per the format
	ve industry /organizations.
	ted on bond paper – 80GSM, back to back print, with soft binding –
	and times new roman font size 12.
7) The broad format of the i	nternship final report shall be as follows
Cover Page	
• Certificate from C	College
Certificate from I	ndustry / Organization
Acknowledgemen	nt
• Synopsis	
• Table of Contents	
	le of the Organization – Organizational structure, Products, Services,
-	, Financials, Manpower, Societal Concerns, Professional Practices,
	ities of the Department -
-	-
	s Performed – summaries the tasks performed during 8 week period
-	ections – Highlight specific technical and soft skills that you acquired
during internship	
References & An	nexure leting the course, the students will be able to

Course Outcomes: After completing the course, the students will be able toCO1Apply engineering and management principles

R.V. College of Engineering – Bengaluru-59

CO2	Analyze real-time problems and suggest alternate solutions
CO3	Communicate effectively and work in teams
CO4	Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of the Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries	35%
(2) Ability to comprehend the functioning of the organization/ departments	20%
(3) Importance of resource management, environment and sustainability	25%
(4) Presentation Skills and Report	20%

GUIDELINES FOR INDUSTRIAL TRAINING

- 1. The duration of industrial training must be for a minimum of 1 week and maximum of 8 weeks on full time basis.
- 2. Industrial Training in which students pays a fee to the organization / industry will not be considered.
- 3. He/she can undergo training in one or more industry /organization.
- 4. The student must submit letters from the industry clearly specifying his / her name and the duration of the training provided by the company with authorized signatures.
- 5. Industrial training must be related to the field of specialization or the M.Tech program in which the student has enrolled.
- 6. Students undergoing industrial training are advised to use ICT tools such as Skype to report their progress and submission of periodic progress reports to the faculty members.
- 7. Every student has to write and submit his/her own industrial training report to the designated faculty.
- 8. Students have to make a presentation on their industrial training in front of the departmental committee and only upon approval of the presentation should the student proceed to prepare and submit the hard copy of the final report.
- 9. 9. The reports shall be printed on bond paper 80GSM, back to back print, with soft binding A4 size with 1.5 spacing and times new roman font size 12.
- 10. The broad format of the industrial training report shall be as follows
 - Cover Page
 - Certificate from College
 - Training Certificate from Industry / Organization
 - Acknowledgement
 - Executive Summary
 - Table of Contents
 - Chapter 1 Profile of the Organization Organizational structure, Products, Services,
 - Business Partners, Financials, Manpower, Societal Concerns, Professional Practices
 - Chapter 2 Details of the Training Modules

•	Chapter 3 – Reflections – Highlight specific technical and soft skills that you acquired
•	References & Annexure
Course	e Outcomes: After completing the course, the students will be able to
CO1	Understand the process of applying engineering knowledge to solve industrial
	Problems.
CO2	Develop skills through training relevant to industrial requirement
CO3	Communicate effectively and work in teams
CO4	Imbibe ethical practices and develop it as life skill.

Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation on the application of engineering knowledge	25%
(2) Ability to comprehend the importance of skilling and training	25%
(3) Importance of communication, professional ethics, sustainability	20%
(4) Oral Presentation and Report	30%

GUIDELINES FOR INDUSTRIAL VISITS

- 1. Student must visit a minimum of THREE organizations/industry. The duration of the visit per organization must be for ONE full day, during which he/she must comprehend the importance of organization structure, function of various departments, application of engineering knowledge, resource management, and importance to environment and safety, professional ethics.
- 2. It is mandatory to visit ONE private multi-national company or public sector industry / organization, ONE medium-small enterprise and ONE rural based or NG organization.
- 3. The student must submit letter from the industry clearly specifying his / her name and the date of visit to the industry with authorized signatures.
- 4. Industrial visit must be related to the field of specialization or the M.Tech program in which the student has enrolled.
- 5. Every student has to write and submit his/her own report on each industrial visit and submit the report to the designated faculty advisor for evaluation.
- 6. A photograph outside the industry with the name and logo of the industry in the background along with the students and faculty members could be included in the report.
- 7. Students have to make a presentation on their industrial visit in front of the departmental committee and only upon approval of the presentation should the student proceed to prepare and submit the hard copy of the final report.
- 8. The reports shall be printed on bond paper 80GSM, back to back print, with soft binding A4 size with 1.5 spacing and times new roman font size 12.
- 9. The broad format of the industrial visit report shall be as follows

- Cover Page
- Certificate from College
- Acknowledgement
- Synopsis / Executive Summary
- Table of Contents
- Chapter 1 Profile of the PSU or MNC must include Organizational structure, Products, Services, Financials, Manpower, Societal Concerns, Professional Practices
- Chapter 2 Profile of the SME must include Organizational structure, Products, Services, Financials, Manpower, Societal Concerns, Professional Practices
- Chapter 3 Profile of the NGO must include Organizational structure, services,
- Chapter 4 Comparative Analysis of PSU/MNC SME NGO
- References & Annexure (Permission letters from the organizations for the visit & photographs)

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	CO1 Classify the role of different industries and organization in addressing the needs of the		
	society.		
CO2	Explain the process of applying engineering knowledge in industries and organizations.		
CO3	Describe the importance of communication and team work.		
CO4	Recognize the importance of practicing professional ethics and need for life skills.		

Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries	25%
(2) Ability to comprehend the functioning of the organization/ departments	30%
(3) Importance of resource management, environment and sustainability	20%
(4) Presentation Skills and Report	25%

III	ISEMESTER
DISSER	TATION PHASE I
Course Code: 18MDC35	CIE Marks: 100
L:T:P: 0:0:5	SEE Marks: 100
Hours: 10Hrs	SEE Duration: 03Hrs
Course Learning Objectives:	

Course Learning Objectives

The students shall be able to

- 1. Understand the method of applying engineering knowledge to solve specific problems.
- 2. Apply engineering and management principles while executing the project
- 3. Demonstrate good verbal presentation and technical report writing skills.
- 4. Identify and solve complex engineering problems using professionally prescribed standards.

GUIDELINES FOR DISSERTATION PHASE I

- 1. Major project will have to be carried out by only one student in his/her area of interest.
- 2. Each student has to select a contemporary topic that will use the technical knowledge of their program of specialization.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The project can be carried out on-campus or in an industry or an organization with prior approval from the Head of the Department.
- 5. The standard duration of the project is for 16 weeks, however if the guide and the evaluation committee of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the guide and the committee.
- 6. It is mandatory for the student to present his/her work in one of the international conferences or publish the research finding in a reputed unpaid journal with impact factor.

Course Outcomes: After going through this course the students will be able to

CO1: Conceptualize, design and implement solutions for specific problems.

CO2: Communicate the solutions through presentations and technical reports.

CO3: Apply project and resource managements skills, professional ethics, societal concerns

CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

Phase	Activity	Weightage
4 th week	Topic approval along with Synopsis	20%
8 th week	Literature survey with Problem Statement	20%
12 th week	Motivation and Objectives	20%
15 th week	Preliminary report for the approval of selected topic along with methodology.	40%

R.V. College of Engineering – Bengaluru-59

CIE Evaluation shall be done with marks distribution as follows:

• Selection of the topic	10%
• Literature review and framing of objectives	25%
• Defining the brief methodology along with the	
algorithm development/experimental setup	25%
Presentation	20%
• Report writing	20%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Formulation of Project Objectives & Methodology	20%
3.	Presentation	25%
4.	Report	20%
5.	Viva Voce	30%

	III SEMESTER		
SHORT	RANGE WIRELESS COMMU	NICATION	
	(Group E: Core Elective)		
Course Code: 18MDC3E1 CIE Marks: 100			
L:T:P::4:0:0		SEE Marks: 100	
Hours: 45L		SEE Duration: 3Hrs	
	UNIT-I		
Introduction to Short Ra	nge Wireless Communication	(SWC): Growth of	09 Hrs
standards, Market, Wireless	s architecture, wireless paramete	ers, Enabling factors,	
Design rules for SRC, Shor	t-range vs medium/long range co	ommunications., High	
	ations, Review of frequency regu		
	e Art SWC systems: WLAN, Blu	etooth, ZigBee, NFC,	
UWB, BAN, 60GHz, LiFi, a			
	UNIT-II		
	high-rate systems: High rate		09 Hrs
	v and Application Scenario's, E		
	7 Millimeter wave radio standa		
	te systems, Review of channel e	estimation techniques,	
Impact on channel estimation	1		
	UNIT-III	A 1 . · · · · · · · ·	00.11
	coding for high rate systems:		09 Hrs
-	FDM systems, WPAN link archit		
	B channels with shadowing, WP	1	
	nillimeter wave radio systems, n	-	
and system architectures for	multi-Gb/s, RF Packaging and An	itenna design issues.	
DIN Lawren Dastar Lawr	UNIT-IV		00 II
	es for High Data Rate (Gb)		09 Hrs
	s, MIMO for UWB systems, Ad		
	nased array based on analog b OFDM Signals, Soft Iterative Eq	0	
	ls, power-amplifier utilization - s	11	
6	atching receive algorithm for eq		
distortion noise.	latening receive argorithm for eq	ualization of m-band	
distortion noise.	UNIT-V		
Low rate systems & Fm	erging concepts in Short Ran	ge communications.	09 Hrs
	ate UWB communications - Over		07 1115
0			
examples, ZigBee, Impulse radio based UWB (IEEE 802.15.4a), Low latency MAC for WPANs (IEEE 802.15.4e), Active RFID (IEEE 802.15.4f), Smart utility			
Networks (IEEE 802.15.4g), Energy efficiency in Low rate systems- Background,			
Energy saving MACs.			
e. e	UROOF' (UWB radio-over-optical-fibre), UROOF - user applications and basic		
system configuration, Fundamentals of UROOF Technologies, Link Analysis of			
UROOF Systems, Analysis of UWB Technologies for UROOF, Visible Light			
Communications, Discrete Multitone Modulation, Potential applications of VLC,			
Technical challenges of implementing VLC.			
Course Outcomes: After completing the course, the students will be able to			
	res and operations of state-of-the-		
networking standards.	-	0	
	rformance of short range commu	inication systems in pr	esenceof
noise and other interfe		J - F-	

R.V. College of Engineering – Bengaluru-59

CO3	Gain in-depth knowledge about multicarrier and multiantenna techniques and their	
	applications in current and emerging communication systems.	
CO4	Identify various technical challenges on low rate systems and short range	
	communication systems.	
Refere	Reference Books	
1	Reliable Communications for Short-Range Wireless Systems, Ismail Guvenc,	
	Sinan Gezici, Zafer Sahinoglu and Ulas C. Kozat, 1st Edition, 2011, Cambridge	
	University Press, ISBN: 978-0-521-76317-2.	
2	Essentials of short-range wireless, Nick Hunn, 1st Edition, 2010, Cambridge	
	University Press, ISBN: 978-0521760690	

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE); Theory (100 marks)

		III SEMESTER	
	,	SOFTWARE DEFINED NETWORKS	
		(Group E: Core Elective)	
Course	Course Code: 18MDC3E2 CIE Marks: 100		
L:T:P:	: 4:0:0	SEE Marks: 100	
Hours:	41L	SEE Duration: 3Hrs	
		UNIT-I	
		ng: Introduction, Modern Data Center, Traditional Switc	
		trol, Evolution of switches and control planes, Data Center	
		ution of Networking Technology, Forerunners of SDN, Ope	n
Source	Contributions and Netw	UNIT-II	
How SI	M Worker Fundamon	tal Characteristics of SDN, SDN Operation SDN Devices	
	ontroller, SDN Applicat		, 08 Hrs
		n : Open Flow Overview, Open Flow 1.0 and Open Flow	
-	-	d 1.3 Additions and Open Flow Limitations.	•
Dusies,	open 110 1.1, 1.2, un	UNIT-III	
Spectru	m Analyzer: Commo	on Measurements Using the Spectrum Analyzer, Types of	f 09 Hrs
-		Behind Spectrum Analyzers, Building Blocks of a Spectrum	
		ctrum Analyzer, Extending the Frequency Range, Dynami	
Range a	nd Sensitivity, Compor	nent Characterization.	
		UNIT-IV	
		s: Consistent Policy Configuration, Global Network View	
		Carrier Networks, Campus Networks, Hospitality Networks	
	-	work Functions, and Optical Networks. Players in the SDI	
-		arch Institutions, Industry Research Labs and Networ	k
Equipm	ent Manufacturers.	ττωτέρι χ	
SDN A	nnlightiong. Depative	UNIT-V versus Proactive Applications, A Simple Reactive Jav	
		arious Controllers like Floodlight Controller, Open Dayligh	
		ller, and Hewlett-Packard Controller. Switch Considerations	
	2	ding Flows in the Data Center, Access Control for th	· ·
	, Traffic Engineering for		-
		pleting the course, the students will be able to	
CO1	Explain and discuss	the basic concepts and architectural differences of co	onventional
	networking approach		
	0 11	nplementation of SDN through Open Flow Switches.	
	· · · ·	of SDN for the design of data centre using SDN e	elements of
	reputed vendors.		
	*	nt software defined network application on SDN-based	
	networking devices.		
	ce Books		
1		tworks: A Comprehensive approach, Paul Goransson, C	nuck Black.
-		Edition, Elsevier, ISBN-13: 978-0128045558, ISBN-10: 0	
	2014.		- 7
2	Software Defined Ne	etworking design and deployment, Patricia A. Morreale	, James M.
		CRC Press, ISBN-10: 1482238632, ISBN-13: 978-1482238	
3	SDN: Software Defin	ed Networks: An Authoritative Review of Network,	
	Programmability Tec	chnologies, Thomas D. Nadeau, Ken Gray, 1 st Edition, ISBN	1-13: 978-
	1449342302, ISBN-10		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE); Theory (100 marks)

	III SEMESTER	
	NETWORK SECURITY	
(Group E: Core Elective)		
Course Code: 18MDC3E3 CIE Marks: 100		
L:T:P::4:0:0 SEE Marks: 100		
Hours: 45L	SEE Duration: 3Hrs	
	UNIT-I	[
	ity Architecture, Classical Encryption techniques:	
	ubstitution Techniques, Transportation Techniques.	08 Hrs
	Encryption Standards: Traditional Block Cipher	
	ion Standard, A DES Example, The Strength of DES.	
• •	ndard: AES Transformation Functions, AES Key	
Expansion, An AES Example		
Dublic Voy Counterrouby	UNIT-II and DSA: Dringing of Dublic Key Countequateres	
	and RSA: Principles of Public-Key Cryptosystems, r Public-Key Cryptosystems: Diffie-Hellman Key	08 Hrs
0	graphic System, Elliptic Curve Arithmetic, Elliptic	UO IIIS
	prandom Number Generation Based on an Asymmetric	
Cipher.	Standom Number Generation Based on an Asymmetric	
Cipitei.	UNIT-III	
Cryptographic Hash Func	tions: Applications of Cryptographic Hash Functions,	
	is, Hash Functions Based on Cipher Block Chaining,	08 Hrs
Secure Hash Algorithm (SH		00 1115
6	odes: Message Authentication Requirements, Message	
6	Authentication Functions, Requirements for Message Authentication Codes,	
	Based on Hash Functions: HMAC, MACs Based on	
-	CMAC, Authenticated Encryption: CCM and GCM,	
-	eration Using Hash Functions and MACs.	
Digital Signatures: Digital	Signatures, Elgamal Digital Signature Scheme, Schnorr	
Digital Signature Scheme, N	IST Digital Signature Algorithm, Elliptic Curve Digital	
Signature Algorithm, RSA-I	PSS Digital Signature Algorithm.	
	UNIT-IV	
	and Cloud Security: Network Access Control,	
	Protocol, IEEE 802.1X Port-Based Network Access	08 Hrs
Control.		
	y: Wireless Security, Mobile Device Security, IEEE	
802.11 Wireless LAN Overv	iew, IEEE 802.11i Wireless LAN Security.	
Electropic Mail Securit	UNIT-V Internet Meil Architecture Emeil Formets Emeil	
•	Internet Mail Architecture, Email Formats, Email	00 TT
Threats and Comprehensive Email Security, S/MIME, Pretty Good Privacy, 08 Hrs		
DNSSEC, DNS-Based Authentication of Named Entities, Sender Policy		
Framework, Domain Keys Identified Mail. IP Security: Overview, IP Security Policy, Encapsulating Security Payload,		
•	tions, Internet Key Exchange.	
	bleting the course, the students will be able to	
	addressed by Network Security and understand the co	ncents of
cryptography and Net	• •	
	techniques and algorithms to provide security to the tra	ansmitted
information.	termiques and argonanins to provide security to the un	
miormation.		

CO3	Analyze the concepts of Authentication and Hash functions.
CO4	Understand and analyze System level security issues.
Refere	nce Books
1	Cryptography And Network Security - Principles and Practices, William
	Stallings Pearson Education Limited, 7 th Edition, 2017. ISBN-13: 978-0134444284
	ISBN-10: 0134444280 .
2	Cryptography and Network Security, Behrouz A. Forouzan, Tata McGraw-Hill,
	2008, ISBN-13: 978-0-13-187319-3.
3	Computer Security: Principles and Practice , William Stallings, Lawrie Brown ,
	Pearson Education Limited, 4 th Edition. <i>ISBN</i> -10: 9780134794105.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE); Theory (100 marks)

	IV SEMESTER			
DISSERTATION PHASE II				
Course Code: 18MDC41	CIE Marks: 100			
L:T:P::0:0:20	SEE Marks: 100			
Hours: 40	SEE Duration: 3Hrs			
	s: The students shall be able to			
1. Understand the method of	f applying engineering knowledge to solve specific problems.			
	anagement principles while executing the project			
	presentation and technical report writing skills.			
	ex engineering problems using professionally prescribed standards.			
GUIDELINES DISSERTATION PHASE II				
1. Major project will have to	be done by only one student in his/her area of interest.			
2. Each student has to select	a contemporary topic that will use the technical knowledge of their			
program of specialization				
3. Allocation of the guides p	referably in accordance with the expertise of the faculty.			
4. The project can be carried out on-campus or in an industry or an organization with prior approval from the Head of the Department.				
5. The standard duration of	5. The standard duration of the project is for 16 weeks, however if the guide and the evaluation			
committee of the department, after the assessment feel that the work is insufficient and it has				
to be extended, then the student will have to continue as per the directions of the guide and				
the committee.				
6. It is mandatory for the stu	ident to present his/her work in one of the international conferences			
or publish the research fir	ding in a reputed unpaid journal with impact factor.			
	pleting the course, the students will be able to			
	and implement solutions for specific problems.			
CO2 Communicate the sol	ations through presentations and technical reports.			
CO3 Apply project and res	ource managements skills, professional ethics, societal concerns			
CO4 Synthesize self-learni	ng, sustainable solutions and demonstrate life long learning			

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

Phase II	Activity	Weightage
5 th week	Review and refinement of Objectives and methodology.	20%
10 th week	,	
15 th week	Oral presentation, demonstration and submission of project report. Outcome and publication	40%

CIE Evaluation shall be done with marks distribution as follows:

• Review of formulation of objectives and methodology	
• Design and simulation/ algorithm development/experimental setup	
• Conducting experiments / implementation / testing / analysis	25%
Demonstration & Presentation	
• Report writing	20%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	1. Brief write-up about the project	
2.	Formulation of Project Objectives & Methodology	20%
3.	Experiments / Analysis Performed; Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

	IV SEMESTER			
TECHNICAL SEMINAR				
Course Code: 18MDC42	CIE Marks: 50			
L:T:P::0:0:2	SEE Marks: 50			
Hours: 4	SEE Duration: 3 Min			
Course Learning Objective	s (CLO): The students shall be able to:			
(1) Understand the technological developments in their chosen field of interest				
	work and challenges in the domain area			
(3) Analyze these engineering developments in the context of sustainability and				
societal concerns.				
(4) Improve his/her prese	entation skills and technical report writing skills			
GUIDELINES TECHNICAL SEMINAR				
1) The presentation will have to be done by individual students.				
· •	inar must be in one of the thrust areas with in-depth review and			
	topic that is relevant to industry or on-going research.			
, 1	extension or complementary to the project			
	able to highlight or relate these technological developments with			
sustainability and soc				
· · · · · · · · · · · · · · · · · · ·	omit both hard and soft copies of the presentation.			
	pleting the course, the students will be able to			
	e relevant to the present context of the world			
· · · · · · · · · · · · · · · · · · ·	eview relevant information to the field of study.			
	skills and report writing skills.			
CO4 Develop alternative s	plutions which are sustainable			

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

Rubrics for Evaluation:

1) Topic – Technical Relevance, Sustainability and Societal Concerns	
2) Review of literature	25%
3) Presentation Skills	35%
4) Report	25%

Curriculum Design Process

Process for Course Outcome Attainment

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last years' average attainment