

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V& VI Semesters

2018 SCHEME

TELECOMMUNICATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Department Vision

Imparting quality education in Electronics and Telecommunication Engineering through focus on fundamentals, research and innovation for sustainable development

Department Mission

- Provide comprehensive education that prepares students to contribute effectively to the profession and society in the field of Telecommunication.
- Create state-of-the-art infrastructure to integrate a culture of research with a focus on Telecommunication Engineering Education
- Encourage students to be innovators to meet local and global needs with ethical practice
- Create an environment for faculty to carry out research and contribute in their field of specialization, leading to Centre of Excellence with focus on affordable innovation.
- Establish a strong and wide base linkage with industries, R&D organization and academic Institutions.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO	Description
PEO1	Acquire appropriate knowledge of the fundamentals of basic sciences, mathematics,
	engineering sciences, Electronics & Telecommunication engineering so as to adapt to
	rapidly changing technology
PEO2	Think critically to analyze, evaluate, design and solve complex technical and managerial
	problems through research and innovation.
PEO3	Function and communicate effectively demonstrating team spirit, ethics, respectful and
	professional behavior.
PEO4	To face challenges through lifelong learning for global acceptance.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Analyze, design and implement emerging Telecommunications systems using devices, sub-
	systems, propagation models, networking of Wireless and Wire line communication systems.
PSO2	Exhibit Technical skills necessary to choose careers in the design, installation, testing,
	management and operation of Telecommunication systems.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

	V Semester					
Sl.	Course	Course Title	Page No.			
No.	Code					
1.	18HSI51	Intellectual Property Rights and Entrepreneurship	1			
2.	18TE52	Digital Modulation & Coding	3			
3.	18TE53	Digital Signal Processing	6			
4.	18TE54	Microwave Engineering	9			
5.	18TE55	Telecommunication Switching Systems	11			
6.	18TE5AX	Group A: Professional Electives (MOOC Courses)	13-20			
7.	18G5BXX	Group B: Global Electives	GE-B1- B38			

	VI Semester					
Sl.	Course	Course Title	Page No.			
No.	Code					
1.	18HEM61	Introduction to Management and Economics	21			
2.	18TE62	Antenna & Propagation	23			
3.	18TE63	Computer Communication Networks	26			
4.	18TE64	Minor Project	29			
5.	18TE6CX	Group C: Professional Electives	31-38			
6.	18TE6DX	Group D: Professional Electives	39-46			
7.	18G6EXX	Group E: Global Electives	GE-E1-E35			
8.	18HS68	Professional Practice-II	47			
		Employability Skills and Professional Development of Engineers	+/			

RV COLLEGE OF ENGINEERING®, BENGALURU- 560059

(Autonomous Institution Affiliated to VTU, Belagavi) TELECOMMUNICATION ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME						
Sl.	Course Code	Course Title	Course Title BoS Credit Allocation		ation	Total	
No	Course Coue	course rule	DOD	L	Т	Р	Credits
1.	18HSI51	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	3
2.	18TE52	Digital Modulation & Coding (Theory & Practice)	e e le				5
3.	18TE53	Digital Signal Processing (Common to TE, EE, EI) (Theory & Practice)	(Common to TE, EE, EI)			1	4
4.	18TE54	Microwave Engineering	TE	3	0	0	3
5.	18TE55	Telecommunication Switching Systems	e				3
6.	6. 18TE5AX Group A: Professional TE Electives (MOOC Courses)				0	0	3
7.	Respective				0	0	3
	Total Number of Credits				1	2	24
	Total	number of Hours/Week		21	2	5	28

	GR	OUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)					
Sl.	Sl. Course Code Course Title						
No.							
1.	18TE5A1	Introduction to Embedded System Design	12 Weeks				
2.	18TE5A2	Semiconductor Devices and Circuits	12 Weeks				
3.	18TE5A3	Control systems	12 Weeks				
4.	18TE5A4	Computer architecture and organization	12 Weeks				
5.	18CS5A5	The Joy of Computing using Python	12 Weeks				

RV COLLEGE OF ENGINEERING®, BENGALURU- 560059

	SIXTH SEMESTER CREDIT SCHEME							
Sl.	Course Code	Course Title	BoS	Credit Allocatio		ocation	Total	
No.	Course Coue		DOD	L	Т	Р	Credits	
1.	18HEM61	Introduction to Management and Economics	HSS	3	0	0	3	
2.	18TE62	Antenna & Propagation (Theory & Practice)	TE	4	0	1	5	
3.	18TE63	Computer Communication Networks (Theory & Practice)	3	0	1	4		
4.	18TE64	Minor Project	Minor Project TE		0	2	2	
5.	18TE6CX	Group C (PE)	TE	3	0	0	3	
6.	18TE6DX	Group D (PE)	TE	3	0	0	3	
7.	18G6EXX	Group E (GE) Respective BoS		3	0	0	3	
8.	8. 18HS68 Professional Practice-II Employability Skills and Professional Development of Engineers HSS					1	1	
	Total Number of Credits				0	5	24	
	Total number of Hours/Week					10+1	29+1	

(Autonomous Institution Affiliated to VTU, Belagavi) TELECOMMUNICATION ENGINEERING

	GROUP C: PROFESSIONAL ELECTIVES						
Sl.	Course Code	Course Title	Credits				
No.							
1.	18CS6C1	Internet of Things	03 Credits				
		(Common to all Branches)					
2.	18TE6C2	Image Processing & Computer Vision	03 Credits				
3.	18TE6C3	DSP Applications	03 Credits				
4.	18TE6C4	Operating Systems	03 Credits				

	GROUP D: PROFESSIONAL ELECTIVES							
SI.	Sl. Course Course Title							
No.	Code							
1.	18CS6D1	Machine Learning	03 Credits					
		(Common to AE, BT, CH, CV, EE, EI, TE, IM, ME)						
2.	18TE6D2	CMOS Digital Integrated circuits	03 Credits					
3.	18EC6D3	Data Structures and Algorithms (Common to EC & TE)	03 Credits					
4.	18TE6D4	JAVA	03 Credits					

	V Semester						
	GROUP B: GLOBAL ELECTIVES						
Sl. No.	Dept	Course Code	Course Title	Credits			
1	AS	18G5B01	Fundamentals of Aerospace Engineering	03			
2	BT	18G5B02	Nanotechnology	03			
3	СН	18G5B03	Fuel Cell Technology	03			
4	CS	18G5B04	Intelligent Systems	03			
5	CV	18G5B05	Remote Sensing and Geographic Information	03			
6	EC	18G5B06	Automotive Electronics	03			
7	EE	18G5B07	E-Mobility	03			
8	EI	18G5B08	Smart Sensors & Instrumentation	03			
9	IM	18G5B09	Operations Research	03			
10	IS	18G5B10	Management Information Systems	03			
11	ME	18G5B11	Automotive Mechatronics	03			
12	TE	18G5B12	Telecommunication Systems	03			
		Courses offere	ed by Science Department & HSS board				
13	PY	18G5B13	Quantum Mechanics of Hetero/Nano Structures	03			
14	PY	18G5B14	Thin Films and Nanotechnology	03			
15	CY	18G5B15	Advances in Corrosion Science and Technology	03			
16	MA	18G5B16	Computational Advanced Numerical Methods	03			
17	MA	18G5B17	Mathematics for Machine learning	03			
18	HSS	18G5B18	Engineering Economy	03			

	VI Semester						
	GROUP E: GLOBAL ELECTIVES						
Sl. No.	Dept	Course Code	Course Title	Credits			
1	AS	18G6E01	Aircraft Systems	03			
2	BT	18G6E02	Bioinspired Engineering	03			
3	СН	18G6E03	Sustainable Technology	03			
4	CS	18G6E04	Graph Theory	03			
5	CV	18G6E05	Disaster Management	03			
6	EC	18G6E06	Wearable Electronics	03			
7	EE	18G6E07	Energy Auditing and Management	03			
8	EI	18G6E08	Virtual Instrumentation & Applications	03			
9	IM	18G6E09	Systems Engineering	03			
10	IS	18G6E10	Introduction to Mobile Application Development	03			
11	ME	18G6E11	Industrial Automation	03			
12	TE	18G6E12	Mobile Network System & Standards	03			
		Courses offere	d by Science Department & HSS board				
13	PY	18G6E13	Thin film nanodevice fabrication technology	03			
14	CY	18G6E14	Chemistry of advanced energy storage devices for	03			
15	MA	18G6E15	Advanced Stastical Methods	03			
16	MA	18G6E16	Mathematical Modelling	03			
17	HSS	18G6E17	Foundation Course in Entrepreneurship	03			

					Semester						
	INTE		ЕСТ	UAL PROPERT		D ENTREPRENEU	RSH	P			
(Theory) Course Code : 18HSI51 CIE : 100 Marks											
	edits: L:T:P	:		:0:0		SEE	:	100 Marks			
		•					:				
	tal Hours			9L	·11.1 1.1 /	SEE Duration	:	3.00 Hrs			
				ves: 1The students			41				
1						build the perspectives o	n the	concepts and			
 to develop the linkages in technology innovation and IPR. 2 To encourage innovation, invention and investment and disclosure of new Technology and to 											
recognize and reward innovativeness											
3 To motivate towards entrepreneurial careers and build strong foundations skills to enable starting,											
U				a viable as well as			5 10 0	nuolo starting			
4						ng with critical skills	and	knowledge to			
				ed with entrepreneu							
				.							
				U	nit-I			08 Hrs			
Int	troduction: Typ	pes o	of In	tellectual Property	, WIPO.						
						patentable and non-pa					
					•	s; Biotechnology pate	ents,	protection of			
				ringement of patent							
Tr	ade Secrets: De	efini	ition			ade secrets in India.					
					it – II			08 Hr			
			•			rms of Trade marks, R	•				
						similarity; Transfer of	Trad	le Mark, ECC			
La	bel, Passing off,	, Inf	rıng			udies and Remedies.					
T		Ŧ			t –III		•	09 Hrs			
						ures of Industrial, De		Procedure for			
						Remedies, Case studies red by copy right, Co		the protoction			
					•	ns and performer's right					
	× •	-		of Copy Right with	• •	is and performer s rig	gints,	Exceptions 0.			
						er-crime; Meaning and	1 diff	erent types of			
		•		• -	•	and IT Amendment Ac		• •			
cyt		10 10	011		it –IV		1 200	07 Hrs			
Inf	roduction to E	ntro	enre	-		urship has changed the	wor				
				uncover the true fa							
					.	derstand how ordina	ry p	eople become			
						ges, and their success					
	÷		•			successful entrepreneu					
Ch	aracteristics of	f a S	Suco	essful Entreprene	eur Understand	the entrepreneurial jo	urney	and learn the			
coi	ncept of differe	nt e	entre	preneurial styles. I	dentify your o	wn entrepreneurship s	tyle l	based on your			
						out the 5M Model,					
ent	repreneurial sty	les	in tł	ne model, and how	they differ from	n each other. Commu	nicat	e Effectively			
						s about people can neg					
			•			communication brea	ıkdov	vn, such as			
				or listening, and le			-				
						e of listening in comm					
	-				e cues such as	eye contact and hands	hakes	to strengther			
COI	nmunication. (F	rac	tıcal		•. •.			0			
r		•	~		it –V	D 1 m 1 1 1 1		07Hrs			
						Design Thinking as					
						e the Design Thinking					
						rstand what customer f					
sel	ling effort shoul	id b	e cu	stomer-centric. Use	e the skills/tech	niques of personal sell	ing, S	now and Tell			

and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Reference Books

- **1.** Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law Pub Co. Ltd.-Delhi, ISBN: 9789350350300
- Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
- **3.** Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
- **4.** Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Comprehend the applicable source, scope and limitations of Intellectual Property within the
	purview of engineering domain.
CO2	Knowledge and competence related exposure to the various Legal issues pertaining to
	Intellectual Property Rights with the utility in engineering perspectives.
CO3	Enable the students to have a direct experience of venture creation through a facilitated
	learning environment.
CO4	It allows students to learn and apply the latest methodology, frameworks and tools that
	entrepreneurs use to succeed in real life.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. 50% weightage should be given to case studies. Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	-	-	-	-	2	-	1	2	2	-	1	
CO2	1	1	-	-	-	3	2	3	1	2	-	1	
CO3	-	1	-	-	-	2	1	3	3	3	3	3	
CO4	-	1	2	2	3	-	-	-	1	-	2	1	

	Semester: V										
	DIGITAL MODULATION & CODING										
(Theory & Practice)											
	urse Code	:	18TE52		CIE	:	100+50				
	edits: L:T:P	:	3:1:1		SEE	:					
	tal Hours	:	40L+26T+33P		SEE	:	3.00+3.0	JO Hrs			
Course Learning Objectives: The students will be able to											
	1 Explain the principles of detection concepts in digital communication systems.										
2	-			hniques and its application							
3	Explain the v	vari	ous performance	measures of Sources and C	Channels.						
4	Implement d	iffe	rent channel codi	ng and decoding schemes.							
5	Analyze vari	ous	spread spectrum	concepts and their applica	tions.						
6	Formulate si	mpl	le communication	systems with hardware/so	oftware and test	the	system.				
				UNIT-I				8 Hrs			
Teo Teo rad	chniques, Co chniques, Con	her npa grad	ent Quadrature- rison of various e modem, ISI, Ny	Digital Modulation For Modulation Techniques, modulation techniques, Q quist criterion for distorti	Non-coherent QAM technique	t B s, A	Binary M Application	odulation 1s-Digital			
				UNIT-III				10 Hrs			
Ent Inf	tropy, Source ormation, Ch	C anr	oding Theorem,		crete Memoryle	ess	Channels	, Mutual I Mutual			
				UNIT-IV				6 Hrs			
Lir	Error-Control Coding: Rationale for Coding and Types of Codes, Discrete Memoryless Channels, Linear Block Codes, Cyclic Codes, Convolution codes – Time domain and Transfer domain approaches.										
	UNIT-V 6 Hrs										
DS	SS Coherent I	Bina		do noise sequences, Notic Space Dimensionality and lications.							

LABORATORY EXPERIMENTS

Part A

The students are expected to simulate the following circuits/systems using LabVIEW or MATLAB tool.

- 1. Digital Modulation Scheme BPSK & QPSK generation and detection.
- 2. Quadrature Amplitude modulation generation and detection.
- 3. Spread Spectrum systems DSSS and FHSS.
- 4. Huffman Coding
- 5. Convolution Coding
- 6. Linear block code
- 7. To generate ASK/ FSK using Lab view / Matlab Simulink.

Part B

The students are expected to implement the following circuits on hardware.

- 1. Time Division Multiplexing.
- 2. Generation and Detection of ASK, FSK and BPSK signals.
- 3. Generation and Detection of Quadrature Phase Shift Keying & Differential Phase shift keying
- 4. Spread Spectrum -FHSS generation and Detection

Course	Outcomes: After completing the course, the students will be able to
CO1	Explain basic principles of digital modulation techniques, Source coding and channel coding
	schemes and theorem.
CO2	Analyze & design various modulation and demodulation circuits and wide band modulation
	techniques with and without noise.
CO3	Apply Probability Theory, Random Variables, Random process knowledge in formulating
	and solving mathematical model for digital Communication system and Information Theory.
CO4	Implement, Demonstrate and Evaluate the performance parameters of different digital
	communication circuits, Channel coder, Source Coder and wide band modulation techniques.

Refere	ence Books										
1	Digital communication, Simon Haykin, 1988, Reprint 2009, John Wiley, ISBN: 9788126508242.										
2	Communication Systems, Simon Haykin, 4 th Edition, 2006, John Wiley and Sons, ISBN: 9788126509041.										
3	Sam Shanmugam, Digital and Analog Communications, John Wiley, 2003.										
4	Lab VIEW Digital Signal Processing and Digital Communications, Cory L.Cork, 2005, Tata McGraw Hill, ISBN: 007060141.										

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	2	2							2			
CO2	2	3	3	2	3					2		3	
CO3	2	3	3	2	3				1			3	
CO4		3	3	3								3	

				Semester: V								
	DIGITAL SIGNAL PROCESSING											
				(Theory & Practice)								
	(Common to TE, EE & EI)											
	irse Code	:	18TE53		CIE	:						
	edits: L:T:P	:	3:0:1		SEE	:	100+50 Marks					
	al Hours	:	40L+33P		SEE	:	3.00+3.00	OHrs				
	Course Learning Objectives: The students will be able to1Explain signal processing operations, features of signal processors and applications of DSP.											
1 2		<u> </u>	Ŷ.	d representations of system		id applie	ations of D.	SP.				
				1 2	15.							
3	-		-	nd digital filters. discrete-time systems.								
4	Realize valio	us s		•				0.11				
TT	Cystoms and	7	Francformer	UNIT-I LTI Systems: Transfer F	Junction Co	ucolity or	nd Stability	8 Hrs				
Rea	tems and Syste Ilization of II allel-Form Stru	IR s	systems: D	irect form structures, Tra	ansposed str	ructures,	Cascade fo	orm and				
				UNIT-II commonly used Analog F				10 Hrs				
				ital Transformations: In IIR Filters using Impulse I				nation.				
FID	Filtona Cha		mistics of me	UNIT-III actical Frequency Selective	o Filtono Su	mmatria	and anti ar	8 Hrs				
				ctangular, Hann, Hamming								
				of Linear phase FIR fi								
				form, Linear Phase form, (
	ntization of c rflow.	oeff	icients in FI	R filters, Round-off effec	cts in digita	l filters:	Scaling to	prevent				
				UNIT-IV				7 Hrs				
TM Reg Apj	S320C67x Print sister files, Fun plications of	roce ctio DSI	ssor: Introd nal units and P: Digital A	s of fixed point and floating uction, Features, Interna operations, Data paths, co udio system, Speech Co cellation in electrocardiogr	1 architectu ntrol Registe oding and C	re, CPU er file. Compress	sion, Comp	act-Disc				
				UNIT-V				7 Hrs				
Dec	imation. Samp	oling	g rate convers	ng: Introduction, Up samp sion (Reduction, Increase) y phase structures and imp	, Sampling	rate char	-					

Laboratory Experiments Part – A

Simulation using MATLAB/SCILAB tool:

- 1) Computation of Circular, Linear Convolution, Correlation.
- 2) Study of multi rate operations.
- 3) Computation of DFT, IDFT.
- 4) Computation of Response of discrete-time systems.
- 5) Design of digital filters and study of response in time domain and frequency domain.

Part – B

Simulation using DSP hardware:

- 1) Implementation of various operations: DFT, Convolution and Correlation.
- 2) Design and implementation of various digital filters.

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Explain the various signal processing operations, features of filters and processors.									
CO2	Analyze signals and systems; and perform various signal processing operations.									
CO3	Design, implement and present analog & digital filters for required specifications.									
CO4	Evaluate the digital signal processing systems using simulation tool and DSP processors.									

Refe	rence Books
1	Digital Signal Processing, Proakis G, Dimitris G. Manolakis, 4th Edition, 2007, PHI, ISBN:
	81-317-1000-9.
2	Digital Signal Processing – Fundamentals and Applications, Li Tan, 2008, Elsevier,
	ISBN: 978-0-12-374090-8
3	Digital Signal Processors: Architecture, Programming and Applications,
	B. Venkataramani and M. Bhaskar, 2 nd Edition, 2012, McGraw Hill, ISBN:978-0-07-070256-
	1.
4	V.Udayashankara, Modern Digital Signal Processing, 2 nd Edition, 2012, PHI,
	ISBN: 978-81-203-4567-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2		3	2							1	
CO2	3	2	1		3							1	
CO3	3	3	2	2	3							2	
CO4	3	3	3	2	3				2			2	

	Semester: V										
	MICROWAVE ENGINEERING										
	(Theory)										
Cour	Course Code:18TE54CIE:100 Marks										
Credits: L:T:P		••	3:0:0		SEE		100 Marks				
Total Hours		:	40L		SEE Duration	:	3.00 Hrs				
Cour	rse Learning	O	ojectives: The	students will be able to)						
1	Use the con	ncej	pt of Electrom	agnetic field theory and	d network analysis	to ana	lyze microwave				
	transmission	n lii	ne and Wavegu	iides.							
2	Design an in	npe	edance matchin	ng circuit at microwave	frequency using tran	smissi	on lines.				
3	Analyze the	ch	aracteristics of	Microwave passive dev	rices, active devices	and va	cuum				
4	Measure va	riou	is network para	ameters used to analyze	microwave network	s.					

Unit-I	10 Hrs
Introduction to Microwaves: Properties, Frequency bands, Application of Microwaves in I	Domestic,
Industrial and Medical fields, Microwave Hazards.	
Transmission lines: The Lumped- Element Circuit Model for a Transmission Line, Te	erminated
Lossless Transmission Line, Slotted Line, Quarter Wave Transformer - The Impedance V	iewpoint,
Conjugate Matching, Low Loss Line, Distortionless Line, Terminated Lossy Line.	
Planar transmission lines: Stripline, Microstripline, Coplanar waveguides line.	
Unit – II	8 Hrs
S-Parameters: Review of S parameters and their properties and losses in microwave network	ks.
Basic Smith chart & Impedance Matching Smith Chart - Construction , Basic Sm	ith Chart
Operations ,Smith chart types-Impedance and Admittance Chart ,Single Stub Tuning- Shu	int Stubs,
Series Stubs (only smith chart solution) Matching – using Absorption and Resonance met	hod(only
Analytical solution).	
Unit –III	8Hrs
High frequency lines-Waveguides: Rectangular Waveguide-TE &TM modes, Cut-off	frequency
derivation, Excitation of waveguides.	
Microwave Vacuum Tube Devices: Working principle of Reflex Klystrons, Travelling Wa	ve Tubes
and Cylindrical Magnetron Construction, Operation (only Qualitative Discussion) and m	icrowave
performance.	
Unit –IV	7Hrs
Unit –IV Microwave Passive Devices: Passive Devices: Waveguides- Attenuators, Magic Tee	
	junctions,
Microwave Passive Devices: Passive Devices: Waveguides- Attenuators, Magic Tee	junctions, couplers
Microwave Passive Devices: Passive Devices: Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional	junctions, couplers
Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q	junctions, couplers pualitative
Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix.	junctions, couplers pualitative
Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp	unctions, couplers qualitative ass filter 7 Hrs
Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp Unit –V	unctions, couplers ualitative ass filter 7 Hrs tors, PIN
Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp Unit –V Active RF Components:Microwave Diode characteristics:SchottkyDiodes and Detection	junctions, couplers pualitative ass filter 7 Hrs tors, PIN s.
Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp Unit –V Active RF Components:Microwave Diode characteristics:SchottkyDiodes and Detec diodes:- as a switch and phaseshifter.Gunn diode-Modes, construction and V-I Characteristic	junctions, couplers pualitative ass filter 7 Hrs tors, PIN s. BT, Field
Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp Unit –V Active RF Components:Microwave Diode characteristics:SchottkyDiodes and Detec diodes:- as a switch and phaseshifter.Gunn diode-Modes, construction and V-I Characteristic RF Transistor construction and characteristics: Bipolar junction transistors –BJT, HI	junctions, couplers pualitative ass filter 7 Hrs tors, PIN s. BT, Field
Microwave Passive Devices: Passive Devices: Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp Unit –V Active RF Components:Microwave Diode characteristics:SchottkyDiodes and Detec diodes:- as a switch and phaseshifter.Gunn diode-Modes, construction and V-I Characteristic RF Transistor construction and characteristics: Bipolar junction transistors –BJT, HI effect transistors-MOSFET,MESFET,HEMT with their constructions and V-I characteristics	junctions, couplers pualitative ass filter 7 Hrs tors, PIN s. BT, Field
Microwave Passive Devices: Passive Devices: Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp Unit –V Active RF Components:Microwave Diode characteristics:SchottkyDiodes and Detec diodes:- as a switch and phaseshifter.Gunn diode-Modes, construction and V-I Characteristic RF Transistor construction and characteristics: Bipolar junction transistors –BJT, HI effect transistors-MOSFET,MESFET,HEMT with their constructions and V-I characteristics	junctions, couplers pualitative ass filter 7 Hrs tors, PIN s. BT, Field
 Microwave Passive Devices: Passive Devices:Waveguides- Attenuators, Magic Tee Ferrite Isolators, Ferrite Phase shifters, Circulators, Matched Load, two-hole directional Basic Properties of Power dividers, Wilkinson power dividers, Hybrid couplers-Q description with S-matrix. Filters:Low pass filter design by Insertion loss method, Filter Transformations-Bandp Unit –V Active RF Components:Microwave Diode characteristics:SchottkyDiodes and Detec diodes:- as a switch and phaseshifter.Gunn diode-Modes, construction and V-I Characteristic RF Transistor construction and characteristics: Bipolar junction transistors –BJT, HI effect transistors-MOSFET,MESFET,HEMT with their constructions and V-I characteristics Introduction to Microwave Integrated Circuits-HMIC,MMIC. 	junctions, couplers pualitative ass filter 7 Hrs tors, PIN s. 3T, Field

	Define the encurt parameters for design of merowave subsystems using active and passive
	devices.
CO2	Identify and design the transmission line for a given application.
CO3	Apply Smith Chart for microwave network/circuit analysis
CO4	Compute microwave network/circuit parameters and Evaluate their performances.

Reference Books

Telecommunication Engineering

1	Microwave Engineering, David M Pozar, 3 rd Edition, 2011, John Wiley, ISBN-978-81-265-1049-8.
2	Microwave Engineering, Annapurna Das, Sisir K das, 2 nd Edition reprint, 2011, Tata McGraw-Hill, ISBN -13:978-0-07-066738-9, ISBN - 10: -0-07-066738-1.
3	Microwave devices and circuits, SamuelYLiao, 3 rd Edition, 2000, PHI, ISBN-81-203-0699-6.
4	Radio Frequency and Microwave Electronics, Mathew M. Radmanesh, 2001, Pearson Education Asia, ISBN-9780130279583.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	3
CO3	3	3	2	2	2	-	-	-	-	-	1	3
CO4	3	3	3	2	2	-	-	-	-	-	1	3

				Semest	er: V		
			TELECOM	MUNICATION	SWITCHING SYST	EMS	
(Theory)							
Course C	ode	:	18TE55		CIE	:	100 Marks
Credits: 1	L:T:P	:	3:0:0		SEE	:	100 Marks
Total Ho	ırs	:	40L		SEE	:	3.00 Hrs
Course L	earning	Ob	jectives: The	e students will be	able to		
1 Unde	erstand tl	he c	oncept of sw	itching over wired	and wireless channel	s.	
2 Expl	ain switc	ching	g, signaling,	traffic and standar	ds in telecommunication	ion netv	vorks.
3 Anal	yze how	a te	lecommunic	ation network han	dles traffic.		
4 Appl	y the con	ncep	ot of Grade of	f Service, Traffic a	and Grading in design	ing a m	ulti-stage network.
5 Anal	yze the s	steps	s in call hand	ling and call proce	essing		
0				UNIT-I			7Hrs
			distribution		message switching,	circuit	switching, register
Telecom	nunicati	ion	traffic: Intr	oduction, the uni	hing, reed-electronic s t of traffic, congesti	•	
mathemat	ical mod	lel, I	Lost-call syst	ems, queuing syst	ems, Numericals.		1
<u> </u>			~	UNIT-III			10Hrs
Types of service of	grading, f link s	, Tra yste	affic capacit	y of gradings, Ap ion of graph the	iple of gradings, Des oplications of grading eory to link systems	gs, link	systems. Grades o
				UNIT-IV			7 Hrs
Time- di networks,			0	of time-division	and time switching switching networks,		blocking networks
				UNIT-V			6Hrs
				s: Introduction, y, Stored-program	Call-processing fun control.	ictions,	Common control
			A	<u> </u>	ne students will be ab		
					or wired and wireless		
	alyze va twork.	ariou	us functions	related to call har	ndling and call proces	ssing in	Telecommunication
CO3 De	sign Net	two	rk models wi	th respect to Grad	e of service and traffic	c capaci	ty.
		ne pe	erformance o	f various types of	grading and link syste	ems.	
Reference	e Books						

1	Telecommunications, switching traffic and networks, J.E.Flood, 2005, Pearson education Ltd,
	ISBN: 1844860140.

2	Telecommunication switching systems and networks, Thiagarajan Viswanathan, 2004, Prentice
	Hall, ISBN: 1587202166.

3 Digital Telephony, John C.Bellamy, 3rd Edition, 2002, Wiley series, ISBN: 9814126357.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	1	-	-	-	-		-	1
CO2	3	1	1	1	1	-	-	-	-		-	1
CO3	3	3	2	1	1	-	-	-	-		-	1
CO4	3	3	2	1	1	-	-	-	-		-	1

	Semester: V							
	INTRODUCTION TO EMBEDDED SYSTEM DESIGN							
	(G	RO	UP-A: PROFE	SSIONAL ELECTI	VES, MOOC COUI	RS]	E)	
Cou	rse Code	:	18TE5A1		CIE Marks	:	100	
Crea	lits: L:T:P	:	3:0:0		SEE Marks	:	100	
Tota	l Hours	:	40L		SEE Duration	:	Online Exam	
Cou	rse Learning	Obj	ectives: The stu	dents will be able to				
1.	Describe the	con	cepts and syster	n components of emb	edded system.			
2.	Interpret emb	bedd	led system, gene	ral computing system	ns and the issues that	ari	se in	
	designing real-time systems.							
3.	3. Illustrate the Design and Development of the Program model.							
4.	Analyze the concepts of hardware debugging							
5.	Evaluate and	app	oly the concepts	of RTOS, IPC's and	Semaphores in real ti	me	embedded system	

Unit – I	7 Hrs
Introduction to Embedded Systems and Computer Systems Terminology. Modular ap Embedded System Design using Six-Box model: Input devices, output devices, embedded communication block, host and storage elements and power supply. Microcontroller Based Embedded System Design. Salient Features of Modern Microc Elements of Microcontroller Ecosystem and their significance.	computer,
Unit – II	9 Hrs
Design of Power Supply for Embedded Systems. Linear Regulator Topologies. Switchi Supply Topologies. Power Supply Design Considerations for Embedded Systems. Introduction to MSP430 Microcontroller. MSP430 CPU Architecture. Programming Me MSP430. Introduction to Lunchbox Platform. Fundamentals of Physical Interfacing. Connecting Input Devices:Switches, Keyboard an devices: LEDs, Seven Segment Displays(SSD). Assignment: MCQ/MSQ	ethods for
Unit – III	9 Hrs
Advanced Physical Interfacing: Driving load - high side, low side and H-bridge. Multiplexin including Charlieplexing. Shaft encoder. Programming the MSP430. Basics of version control system - Git. Installing and us Composer Studio(CCS). Introduction to Embedded C. Interfacing LEDs and Switches with using Digital Input and Output. MSP430 Clock and Reset System. MSP430 Clock so distribution. Types of Reset sources. Handling Interrupts in MSP430. Writing efficient	sing Code n MSP430 urces and
Unit – IV	7 Hrs
Interfacing Seven Segment Displays and Liquid Crystal Displays with MSP430. Low Pow in MSP430. Introduction to MSP430 Timer Module and it's Modes of Operation. Generating Pulse Width Modulation (PWM) using Timer Capture Mode. ADC operation in Interfacing analog inputs. Generating random numbers using LFSR and other methods. Add to MSP430. Custom Waveform generation using MSP430.	MSP430.
Unit – V	8 Hrs
Timer Capture Modes. Measuring frequency and time period of external signals and eve Communication Protocols: UART, SPI, I2C. Interfacing Universal Serial Communication (USCI) Module of the MSP430 for UART Communication. Advanced Coding Exercises Interrupt driven Programming. Building an Electronics Project. Circuit Prototyping techniques. Designing Single Purpose Computers using Finite State Mac Datapath (FSMD) approach. MSP430 Based Project Design and Implementation. Recap Coverage.	Interface based on chine with

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Identify the concepts of system components to assemble small embedded systems.
CO2	Analyze the synchronization of system components in embedded systems.
CO3	Apply firmware Design and development tools for designing Embedded System.
CO4	Apply the key concepts of Real-Time Operating Systems in Embedded system design.

Refere	ence Books
1	Designing Embedded Hardware, John Catsoulis. 2 nd edition, Shroff Publishers and Distributors. ISBN-10: 9788184042597.
2	Embedded System Design: A Unified Hardware / Software Introduction, Tony Givargis and Frank Vahid, Wiley. ISBN-10: 812650837X.
3	Operating Systems Internals and Design Principles, William Stallings, 7 th Edition, 2012, Pearson, Prentice Hall, ISBN: 978-0132309981.
4	MSP430 Microcontroller Basics, John H. Davies, Elsevier, ISBN-10: 9789380501857.
5	Programming Embedded Systems in C and C++, Micheal Barr, Shroff Publishers and Distributors. ISBN-10: 817366076X

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1							1			
CO2	3	1							1			
CO3	3	3	3	2	2				2			2
CO4	3	3	3	2	2				2			2

	Semester: V									
	SEMICONDUCTOR DEVICES AND CIRCUITS									
	(GROUP-A: PROFESSIONAL ELECTIVE, MOOC COURSE)									
Cours	se Code	:	18TE5A2		CIE Marks	••	100			
Credits: L:T:P		:	3:0:0		SEE Marks	••	100			
Total	Hours	:	40L		SEE Duration	••	Online Exam			
Cours	e Learning O	bj€	ectives: The stud	lents will be able to						
1	Design and c	har	acterize differen	tial amplifiers using l	BJT and MOSFET.					
2	Define the str	uc	ture of MOS trai	nsistors and explain g	eometrical effects of	a N	IOSFET.			
3	Analyze desi	gn	steps involved	in digital design and	d explain the need for	or 1	low power in IC			
	design.			-						
4	Analyze the o	les	ign issues of VL	SI-ICs.						

Unit – I	7 Hrs					
Excursion in Quantum Mechanics, Excursion in Solid State Physics.						
Unit – II	9 Hrs					
Density of States, Fermi Function and Doping, Recombination-Generation, Charge Transport and Continuity Equation, Metal-Semiconductor (MS) Junctions.						
Unit – III	9 Hrs					
PN Junctions, Bipolar Junction Transistors (BJT), Metal Oxide Semiconductor Capacitors and CV Characteristics.	(MOSCAP)					
Unit – IV	8 Hrs					
Metal Oxide Semiconductor Field Effect Transistors (MOSFET), MOSFET Continued.						
Unit – V	7 Hrs					
Connections: Circuit Design to Device Physics, Thin Film Transistors.						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Apply the fundamentals of semiconductor physics in MOS transistors							
CO2	Analyze the characteristics of MOS transistors.							
CO3	Evaluate the performance of various MOS transistors in the IC design.							
CO4	Design various VLSI sub systems.							

Refere	ference Books									
	Prof. Manish Jain, Physics, IISc Solid State Physics and Quantum Mechanics) Prof. Navakant Bhat, CENSE, IISc (Device Physics) Optional Reviewers Dr.Kaushik Mazumdar, ECE, IISc Prof. Venkatraman, Physics, IISc.									
2	Solid State Electronic Devices, Ben Streetman and Sanjay Banerjee, Prentice Hall.									
3	Introduction to Semiconductor Materials and Devices, M. S. Tyagi, Wiley Publications.									
4	Robert L Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall India publication, 10 th Edition, 2009, ISBN: 978-317-2700-3.									
5	D P Kothari,I J Nagrath, Basic Electronics, MCGraw Higher Ed, 2 nd Edition, ISBN: 9789352606467.									

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1					1		2		1
CO2	2	2	2					1		2		1
CO3	3	3	3					1		2		2
CO4	3	3	3					1		2		3

Telecommunication Engineering

	Semester: V									
	CONTROL SYSTEMS									
(GROUP-A: PROFESSIONAL ELECTIVE, MOOC COURSE)										
Cour	Course Code:18TE5A3CIE Marks:100									
Cred	lits: L:T:P	:	3:0:0	SEE Marks	:	100				
Tota	Total Hours : 40L SEE Duration : Online Exam									
Cour	rse Learning (Obj	ectives: The students w	ill be able to						
1.	Learn the fu	nda	mental concepts of Con	trol Systems.						
2.	Analyze the conventiona		1 I	ency response of control systems u	sin	g				
3.	Perform stal	oili	y analysis of control sys	stems						
4.	Design a Sta	abil	ized Control system usin	ng Classical Methods.						

Unit – I	8 Hrs						
Introduction to Control, Classification of Dynamic Systems, Closed Loop Control Systems							
Feedback, Mathematical Preliminaries – Complex Variables, Laplace Transform, Standard Inputs,							
Free and Forced Response, Transfer Function, Poles and Zeros.							
Unit – II	8 Hrs						
Response to various Inputs, Effect of Poles, Notion of Bounded Input Bounded Output							
stability, Effect of Zeros, Closed Loop Transfer Function, Dynamic Performance Specifica							
Order.	,						
Unit – III	8 Hrs						
Second Order Systems, Unit Step Response of Underdamped Second Order Systems, Concepts of							
Rise Time, Peak Time, Maximum Peak Overshoot and Settling	g Time.						
Controllers – Proportional (P), Integral (I) and Derivative (D) Blocks, Examples of PID cont	roller.						
Unit – IV	8 Hrs						
Routh's Stability Criterion, Use in Control Design, Incorporation of Performance Specifi	cations in						
Controller Design, Analysis of Steady State	Errors.						
Root Locus and its Application in Control Design, Frequency Response, Bode Plots, Nyquist	t Plots.						
Unit – V	8 Hrs						
Nyquist Stability Criterion, Relative Stability – Gain and Phase	Margins.						
Control System Design via Frequency Response - Lead, Lag and Lag-Lead Compensat	tion, Case						
Studies.	·						

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Model the Feedback Control Systems in Integro-Differential Equations and generalize								
	using Block Diagram and Signal flow graph methods.								
CO2	Analyze the first and second order system for stability due to various input test signals.								
CO3	Describe the stability of the control systems by Classical Methods.								
CO4	Evaluate the Dynamic Behavior of Control System using State Space Models.								

Refere	ences									
1	Modern	Control	Engineering,	Katsuhiko	Ogata,	Prentice	Hall.			
2	Feedback (Prentice H	•	namic Systems, Ge	ene Franklin,J.D	Powell,and	Abbas Emam	i-Naeini			
3	Automatic	Control Syste	ems, Benjamin C. F	Kuo, Prentice Ha	11.					
4	System Dynamics and Control, Eronini I. Umez-Eronini, Thomson Engineering.									
5	MATLAB	Tutorials.								

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1	2								
CO2	3		1	2								
CO3	3	2	2	1	2							
CO4	3	2	3	2	2							

	Semester: V										
	COMPUTER ARCHITECTURE AND ORGANIZATION (GROUP-A: PROFESSIONAL ELECTIVE, MOOC COURSE)										
Cours	Course Code:18TE5A4CIE Marks:100										
Credits: L:T:P		:	3:0:0		SEE Marks		100				
Total Hours : 40L SEE Duration :							Online Exam				
Cours	se Learning O	bje	ctives: The stud	lents will be able to							
1	Understand t	ne f	functions of maj	or components and the	eir organization in a c	con	nputer.				
2	Analyze the	/ari	ous processors,	Memory and bus arch	itectures.						
3	Analyze the a	lgo	orithms for comp	outational units.							
4	4 Choose an architecture and associated components for a given application.										

Unit – I	8 Hrs
Evolution of Computer Systems, Instruction Set Architecture.	
Unit – II	8 Hrs
Quantitative Principles of Computer Design, Control Unit Design, Memory System Design.	
Unit – III	8 Hrs
Design of Cache Memory Systems, Design of Arithmetic Unit, Design of Arithmetic Unit (co	ontd.)
Unit – IV	8 Hrs
Input-Output System Design, Input-Output System Design (contd.)	
Unit – V	8 Hrs
Instruction Set Pipelining, Parallel Processing Architectures	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the basic architecture and operational concepts involved in computer system							
	design.							
CO2	Identify the memory and bus structure requirements for a given system design.							
CO3	Design Memory of a computer & ALU by applying fast computation algorithms.							
CO4	Choose the appropriate processor for a particular application.							

Refe	erence Books
1.	Computer Architecture: A Quantitative Approach, D.A. Patterson and J.L. Hennessy, 5/E", Morgan Koffman, 2011.
2.	Computer Organization and Design: The Hardware/Software Interface, D.A. Patterson and J.L. Hennessy, 5/E", Elsevier India, 2016.
3.	Computer Organization and Architecture: Designing for Performance, W. Stallings, Pearson, 2015.
4	Computer Organization, C. Hamacher, Z. Vranesic and S. Zaky, 5/E", McGraw Hill, 2011.
5	Computer Architecture and Organization, J.P. Hayes, 3/E", McGraw Hill, 1998.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1					1		2		1
CO2	2	2	2					1		2		1
CO3	3	3	3					1		2		2
CO4	3	3	3					1		2		3

Telecommunication Engineering

	Semester: V						
				OF COMPUTING US			
	(0	GRO	DUP-A: PROFI	ESSIONAL ELECT	IVE, MOOC COUF	RSE	E)
Cou	rse Code	:	18CS5A5		CIE Marks	:	100
Credits: L:T:P		:	3:0:0		SEE Marks	:	100
Total Hours		••	39L		SEE Duration	:	Online Exam
Cou	rse Learning (Obj	ectives: The stu	dents will be able to			
1	Understand w	vhy	Python is a user	ful scripting language	for developers.		
2	Learn how to	us	e lists, tuples, an	d dictionaries in Pyth	on programs.		
3 Define the structure and components of a Python program.							
4	4 Develop cost-effective robust applications using the latest Python trends and technologies						

Unit – I	8 Hrs				
Motivation for Computing, Welcome to Programming!!, Variables and Expressions : Design your own calculator, Loops and Conditionals : Hopscotch once again. Lists, Tuples and Conditionals : Let's go on a trip, Abstraction Everywhere : Apps in your phone.					
Unit – II	8 Hrs				
Counting Candies : Crowd to the rescue, Birthday Paradox : Find your twin, Google Transla in any Language, Currency Converter : Count your foreign trip expenses.	te : Speak				
Unit – III	8 Hrs				
Monte Hall : 3 doors and a twist, Sorting : Arrange the books, Searching : Find in seconds, Substitution Cipher : What's the secret !!,Sentiment Analysis : Analyse your Facebook dataPermutations : Jumbled Words,Spot the similarities : Dobble game.					
Unit – IV	8 Hrs				
Count the words : Hundreds, Thousands or Millions, Rock, Paper and Scissor : Cheating networks effective in the second se					
Unit – V	7 Hrs				
Tic tac toe : Let's play, Snakes and Ladders : Down the memory lane, Recursion : Tower Page Rank : How Google Works !!.	of Hanoi,				

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Explore and apply the concept of python to solve real world problems.						
CO2	Design Classes and establish relationships among Classes for various applications from problem definition.						
CO3	Develop applications using google translator and gaming application.						
CO4	Implement real time application such as browser automation, NLP, Image processing etc using python						

Refe	rence Books:
1.	Head First Python, Paul Barry, 10th Edition, 2016, O'Reilly, ISBN 978-9352134823.
2.	Python Cookbook: Recipes for Mastering Python 3, David Beazley, Brian K. Jones, 9th Edition,
	2017, O'Reilly, ISBN 978-1449340377.
3.	Python: The Complete Reference, Martin C Brown, 7th Edition, 2018, McGraw Hill Education,
	ISBN 978-9387572942.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	1	-	-	1	-	-	-	2
CO2	3	3	2	1	1	-	-	1	-	-	-	2
CO3	3	3	3	2	1	-	-	2	-	-	-	2
CO4	3	3	3	2	1	-	-	2	-	-	-	2

	Semester: V							
	FUNDAMENTALS OF AEROSPACE ENGINEERING							
	(GROUP B: GLOBAL ELECTIVE)							
Com	(Theory) Course Code : 18G5B01 CIE : 100 Marks							
		:		•		:		
Cred	lits: L:T:P	:	3:0:0			:	100 Marks	
Hours		:	39L	SI	EE Duration	:	3.00 Hours	
Cou	rse Learning	g O	bjectives: To enable	the students to:				
1	Understand	l th	e history and basic pri	inciples of aviation				
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion							
3 Comprehend the importance of all the systems and subsystems incorporated on an air vehicle								
4 Appraise the significance of all the subsystems in achieving a successful flight								

Unit-I	08 Hrs
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosph	ere and its
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anat	omy of an
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard
Atmospheric Properties.	
Unit – II	08 Hrs
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Type	s of drag,
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclar	ure, Basic
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	lg.
Unit -III	07 Hrs
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Bray	ton Cycle,
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	engines,
Comparative merits and demerits of different types Engines.	-
Unit -IV	09 Hrs
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics	, Kepler's
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.	
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rock	ets: Solid,
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific	Impulse,
Exhaust Velocity, Simple Problems on rocket performance.	•
Unit -V	07 Hrs
Aerospace Structures and Materials: Introduction, General types of construction, Monocod	jue, Semi-
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	_
Course Outcomes: At the end of this course the student will be able to:	

Course	Course Outcomes: At the end of this course the student will be able to:							
CO1:	Appreciate and apply the basic principles of aviation							
CO2:	2: Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and							
GO2	aircraft materials during the development of an aircraft							
CO3:	Comprehend the complexities involved during development of flight vehicles.							
CO4 :	Evaluate and criticize the design strategy involved in the development of airplanes							

]	Ref	erence Books
	-	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN
	I	9780071086059.
		Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:
	2	1118174208, 9781118174203.

	3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
-		Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
	4	978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

Semester: V									
	NANOTECHNOLOGY								
			(GROUP B:	: GLOBAL ELEC	CTIVE)				
				(Theory)					
Cour	rse Code	:	18G5B02		CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks		
Tota	l Hours	:	39L		SEE Duration	••	3.00 Hours		
Cour	rse Learning ()bj	ectives: The student	ts will be able to					
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	inthesize and		
	characterize t	he	nanoparticles.						
2	Learn about	Na	ano sensors and th	heir applications ir	n mechanical, elect	rica	l, electronic,		
	magnetic, che	emi	cal fields.						
3	Apply the con	nce	pt of nanotechnolog	y in sensing, transdu	icing and actuating r	nec	hanism.		
4	4 Design the nanoscale products used in multidisciplinary fields.								
. <u> </u>									
	Unit-I 08 Hrs								

Omt-1	UO IIIS					
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon					
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like					
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid					
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicological/inorganic, protein & DNA based nanostructures.	gy health					
effects caused by nanoparticles.						
Unit – II	09 Hrs					
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and						
Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica	1 Vapour					
deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft litho	ography).					

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III							
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors							
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,							
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Biosensor							
Biosensors in modern medicine.							

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ Hrs
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanica	al cutting
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.	

Course (Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the structures of nano materials and their properties.									
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization									
	results.									
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its									
	knowledge in various fields.									
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.									

Refere	Reference Books							
	B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Textbook of Nanosciences and							
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,							
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.							
	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1st Edition,							
2	2013, ISBN 9781439827123 (Unit III).							
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew							
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.							
	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,							
4	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

				Se	emester: V						
]	FUEL CEL		OLOGY	•				
	(GROUP B: GLOBAL ELECTIVE)										
(Theory)											
Cour	se Code	:	18G5B03		<u> </u>		CIE	:	100 Marks		
Cred	its: L:T:P	:	3:0:0				SEE	:	100 Marks		
Total Hours:39L							SEE Duration	:	3.00 Hours		
Cour	se Learning (ill be able to	0					
1	Recall the c										
2	Distinguish		• •				es				
3	Know the ap					ains					
4	Understand	the c	haracteriza	tion of fuel	cells						
				Unit	+ T				07 Hrs		
Intro	duction – I:			Unit	I-I				07 1115		
		hist	orical deve	elopments v	vorking pri	nciple of	fuel cell, compos	nen	ts of fuel cell		
	of the cell, Fu			-		—	—				
				Unit -		en prope			07 Hrs		
Туре	s of fuel cells	– II:		0					01 1115		
• •			Types of fuel cells – II:								
Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each									acid fuel cell.		
					•	•			acid fuel cell,		
					, advantage	•			acid fuel cell,		
molte		iel ce	ell, solid ox	ide fuel cell Unit -	, advantage	•					
molte	en carbonate fu iencies, losses	and	ell, solid ox kinetics– l	ide fuel cell Unit -	, advantage –III	es and disa		h	07 Hrs		
molte Effici Intrin	en carbonate fu iencies, losses usic maximum	and efficient	ell, solid ox kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficier	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses	en carbonate fu iencies, losses usic maximum	and efficient	kinetics– l kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficien I current, of	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses activa	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode	and and efficience ver a	kinetics– l kinetics– l ciency, vol and internal ction kinetic	ide fuel cell Unit - III: Itaic efficien I current, of	, advantage - III ncy, farada hmic losse	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses activa Fuel	en carbonate fu iencies, losses sisic maximum s, fuel crosso ation/electrode Cell Characte	ael ce and efficience ver a e/reac	kinetics- I ciency, vol and internation kinetic cs - IV:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV	ic efficie s, mass t	advantages of eac ncy, overall effic ransport/concentr	cien cien	07 Hrs cy, activation on losses, and 08 Hrs		
molte Effici Intrin losses activa Fuel In-sit	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Character u characteriza	ael ce and efficience ver a c/reace eristi	kinetics– l ciency, vol and internal ction kinetic cs – IV: I-V curve	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV voltage me	es and disa ic efficie s, mass t easuremen	advantages of eac	cien cien	07 Hrs cy, activation on losses, and 08 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience ver ac eristi ation: , elec	kinetics– I kinetics– I ciency, vol nd internation kinetic cs– IV: I-V curve ctrochemica	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I, current – I impedance	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry tu characteriz	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I current – I impedance s: Proton c ectrochemic	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity.		
molte Efficient Intrin losses activa Fuel In-sit cyclic Ex-si electr	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur	and a efficience of the second	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve trochemica technique area and ele	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appl	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficience eristi ation: , election face el cel	kinetics – 1 ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele ls – V:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - d impedance s: Proton c ectrochemic Unit	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue	and a efficiency ver a eristi ation: , electric ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficiency ver a eristi ation: , electric ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characterizate u characterizate tu characterizate cochemical sur ications of fue action and stor	and a efficience ver a eristi ation: , elect ation face el cell age c	ell, solid ox kinetics– I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydrogen	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V ransport, hy	es and disa ic efficie s, mass t easuremen opy v, flexural drogen st	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry c v	and a efficience ver a eristicon: , election face el cell cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage -III ncy, farada hmic losse -IV voltage ma e spectrosco onductivity cal activity -V ransport, hy rse, the stu	es and disa ic efficie s, mass t easuremen opy y, flexural drogen str udents wil	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell cage c cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs safety issues.		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell cage c cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues.		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu character	and a efficience ver a eristi ation: , elect ation face el cell age c c affte d the emica	ell, solid ox kinetics – I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydroger er complet fundament l engineeri	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - , current – I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce onductivity cal activity -V ansport, hy rse, the stu- acteristics es to distir	es and disa ic efficie s, mass t easuremen opy y, flexural drogen sta drogen sta udents wil of fuel cel nguish fue	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical nd s	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues. ntional energy		

Reference Books							
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287						
1	2009, Universities Press, ISBN – 13: 978 1420 060287						
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John						
2	Wiley & Sons, ISBN – 978 0470 848579						

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

				Semester: V							
INTELLIGENT SYSTEMS											
(GROUP B: GLOBAL ELECTIVE)											
(Theory)											
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks				
	dits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks				
	Fotal Hours : 39L SEE Duration : 3.0										
Course Learning Objectives: The students will be able to											
1.	Understand fundamental AI concepts and current issues.										
2.	Understand and apply a range of AI techniques including search, logic-based reasoning, neural										
	networks and reasoning with uncertain information.										
3.	Recognize	comp	outational proble	ms suited to an intelligent sy	stem solution.						
4.	Identify and list the basic issues of knowledge representation, blind and heuristic search.										
	Unit – I 07 Hrs										
Intr	oduction: Th	e Fo	undations of Ar	tificial Intelligence, History	of Artificial Intell	ige	nce, The State				
				ction, How Agents Should A		•					
		-	-	by Searching Search Strat							
	iding Repeate		-		<i>c c</i>						
				Unit – II			08 Hrs				
Info	rmed Searc	h M	ethods: Best-F	irst Search, Heuristic Fund	ctions, Memory	Bou	inded Search,				
Itera	tive Improve	ment	Algorithms								
Gan	ne Playing: I	Intro	luction: Games	as Search Problems, Perfect	t Decisions in Tw	vo-P	erson, Games				
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an I	Element of Chance	e					
				Unit – III			08 Hrs				
Kno	wledge Infer	ence	:				·				
Kno	wledge repre	senta	tion -Productio	n based system, Frame bas	sed system. Infer	ence	e - Backward				
chair	ning, Forward	d cha	ining, Rule val	ue approach, Fuzzy reasonir	ng - Certainty fac	tors	, Bayes Rule,				
Unce	ertainty Princ	iples	, Bayesian Theo	ry-Bayesian Network-Demp	ster - Shafer theor	y.					
Unit – IV 08 Hrs											
Lear	rning from (Obse	rvations: A Gen	neral Model of Learning Ag	ents, Inductive L	earr	ing, Learning				
	Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why Learning										
	Works: Computational Learning Theory										
			-	Learning in a Known Envi		e Lo	earning in an				
Unknown Environment, Active Learning in an Unknown Environment											
Unit – V 08 Hrs											
_		Expert Systems, Components, Production rules, Statistical reasoning, certainty factors, measure of									
1 1	belief and disbelief, Meta level knowledge, Introspection. Expert systems - Architecture of expert										
			Aeta level know	• • •	t systems - Arch	itec	ture of expert				
syste	ems, Roles o	f exp	Meta level knov pert systems - I	vledge, Introspection. Exper Knowledge Acquisition –Me DN, Expert systems shells.	t systems - Arch	itec	ture of expert				

Course Outcomes: After completing the course, the students will be able to									
CO 1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.								
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.								
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.								
CO 4:	Assess their applicability by comparing different Intelligent System techniques								

Reference Books:

AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
ISBN-13: 978-0-13-604259-4
Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
Hill, ISBN: 9780070087705
Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3rd Edition, 2007, ISBN-
13: 978-0134771007
Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

			Semester: V							
R	EMOT		ND GEOGRAPHIC II JP B: GLOBAL ELI		YSTI	EM				
			(Theory)							
Course Code	:	18G5B05		CIE	:	100 Marks				
Credits: L:T:I	Credits: L:T:P : 3:0:0 SEE : 100 Mark									
Total Hours	Total Hours:39 LSEE Duration:3.00 Hours									
Course Learn	ng Ob	jectives: The stu	dents will be able to							
1 Understan	d conc	ept of using pho	ographic data to determ	ine relative position	s of p	ooints.				
2 Study the	nethoo	ls of collection of	land data using Terrest	rial and Aerial cam	era.					
3 Analyze th	e data	gathered from v	rious sensors and interp	oret for various appl	icatio	ons.				
4 Apply the	4 Apply the principles of RS, GIS and GPS in various scopes of Civil Engineering.									
ł										
			Unit-I			07 Hı				

Unit-I	07 Hrs
Remote Sensing- Definition, types of remote sensing, components of remote sensing, elec	tromagnetic
spectrum, Black body, Atmospheric windows, energy interaction with earth surface feature	es. Spectral
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian	n and other
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key	elements.
Unit – II	08 Hrs
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry,	Introduction
to digital Photogrammetry.	
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –
flight planning.	
Unit –III	08 Hrs
Geographic Information System- Introduction, Functions and advantages, sources of da	ata for GIS.
Database - Types, advantages and disadvantages. Data Analysisoverlay operations, netwo	ork analysis,
spatial analysis. Outputs and map generation.	
GPS- components and working principles.	
Unit –IV	08 Hrs
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and r	nanagement
(prioritization of river basins, water perspective zones and its mapping), Highway and tra	ansportation
(highway alignment, Optimization of routes, accident analysis), Environmental Engine	ering (Geo-
statistical analysis of water quality, rainfall).	
Unit –V	08 Hrs
Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, ur	ban sprawl,
Change detection studies, forests and urban area, agriculture, Disaster Management. La	youts: Dead
and Dedict Cristian Constant	
end, Radial, Grid iron, Circular system.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Understand and remember the principle of Remote Sensing (RS) and Geographical Information								
	Systems (GIS) data acquisition and its applications.								
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs								

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	rence Books										
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3rd Edition, Wiley										
	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.										
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,										
2	John Wiley Publishers, New Delhi, ISBN – 8126532238.										
2	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,										
3	ISBN: 8122438121										
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.										
_	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,										
3	ISBN - 0198072392										

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V											
	AUTOMOTIVE ELECTRONICS											
			(GR	OUP B: GLOBAL ELECTIVE)								
		1	100	(Theory)		100 3.5						
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks						
Cr	redits: L:T:P	:	3:0:0	SEE Marks	:	100 Marks						
He	Hours: 39LSEE Duration: 3.00 Hours											
Co	ourse Learning	Ob	jectives: The s	tudents will be able to								
1	Acquire the kn	ow	ledge of autom	otive domain fundamentals, need of Electronics a	nd co	ommunication						
I	interfaces in A	utoi	motive systems									
2	Apply various	typ	es of sensors, a	ctuators and Motion Control techniques in Autom	otive	systems						
3	Understand dig	gital	engine contro	l systems and Embedded Software's and ECU's u	sed	in automotive						
3	systems.											
4	Analyse the co	nce	pts of Diagnost	ics, safety and advances in Automotive electronic	Syst	ems.						

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and
	communication interfaces in Automotive systems.
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive
	systems
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in
	automotive systems.
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.

Referen	ice Books
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-
	0471288357
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3rd Edition, Elsevier Butterworth-
	Heinemann. ISBN 0-7506-62190.
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-
	Heinemann. ISBN 0-75-066991-8.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

Semester: V											
	e- MOBILITY										
	(GROUP B: GLOBAL ELECTIVE)										
				(Theory)							
Co	ourse Code	:	18G5B07		CIE	:	100 Marks				
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks				
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours				
Course Learning Objectives: The students will be able to											
1	Understand th	ne b	asics of electric and	hybrid electric vehi	cles, their architectur	e ar	nd modelling.				
2	Explain differ	ent	energy storage tech	nologies used for el	ectric vehicles and th	leir	management				
	system.										
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for				
	electric vehic	les.									
4	Design EV S	imı	lator through perfo	ormance evaluation	and system optimiz	atio	n techniques				
	and need for t	the	charging infrastruct	ure.							

Unit-I	06 Hrs							
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy							
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, BEV Fuel								
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Power	ertrains,							
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Com	parison							
of Automotive and Other Transportation Technologies.	_							
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle							
Comparisons								
Unit – II	09 Hrs							
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery							
Charging, Protection, and Management Systems, Battery Models, Determining the Co	ell/Pack							
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.								
Battery Charging: Basic Requirements for Charging System, Charger Architecture	es, Grid							
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, W	Vireless							
Charging, The Boost Converter for Power Factor Correction.								
Unit -III	10 Hrs							
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	atteries,							
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Funct	ionality							
Comparison, Technology, Topology.								
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pro	otection,							
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commun	ication:							
Dedicated analog and digital wires.								
Unit –IV	07 Hrs							
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	used in							
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric							
machines, electric machine and power electronics integration Constraints.								
Unit –V	07 Hrs							
EV Simulation: system level simulation, EV simulator, simulator modules, perfo	ormance							
evaluation, system optimization.								
EV Infrastructure: Domestic charging infrastructure, Public charging infrast	ructure,							
Standardization and regulations, Impacts on power system.								

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies								
	and modelling.								
CO2:	Discuss and implement different energy storage technologies used for electric vehicles								
	and their management system.								
CO3:	Analyze various electric drives and its integration techniques with Power electronic								
	circuits suitable for electric vehicles.								
CO4 :	Design EV Simulator for performance evaluation and system optimization and								
	understand the requirement for suitable EV infrastructure.								

Refe	erence Books
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN
	9781119063667.
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,
2	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions
3	Technip, Paris, ISBN 978-2-7108-0994-4.
1	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford
-	university press, ISBN 0 19 850416 0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

Semester: V											
	SMART SENSORS & INSTRUMENTATION										
(GROUP B: GLOBAL ELECTIVE)											
(Theory)											
Cour	rse Code	:	18G5B08	CIE	:	100 Marks					
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Tota	l Hours	:	39L	SEE Dura	ation :	3.00 Hours					
Cour	rse Learning	g ()	bjectives: The	students will be able to							
1	Understand	l th	e fundamentals	of transducers and sensors.							
2	Demonstra	te t	he working prir	nciples of different transducers and sensors.							
3	Apply the	prir	nciples of differ	ent type of sensors and transducers on state	of art pr	oblems.					
4	Create a system using appropriate transducers and sensors for a particular application.										

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, A	dvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and problem	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potenti	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	.ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	l Sensors,
Gas flame detectors	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the basic principles of different transducers and sensors.								
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation								
	systems.								
CO3:	Analyze and evaluate the performance of different transducers and sensors for various								
	applications.								
CO4:	Create a system using appropriate transducers and sensors for a particular application.								

Refere	ence Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
1	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
2	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
1	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
4	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

				Semester: V					
			OI	PERATIONS RESEARCH					
(GROUP B: GLOBAL ELECTIVE)									
(Theory)									
Cour	rse Code	:	18G5B09	× × /	CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours		
Cour	rse Learning (Dbje	ectives: The stu	idents will be able to					
1	Develop the	ski	lls in the appl	cation of operations resear	rch models for	con	nplex decision-		
	making situat	ions	s	-			-		
2	Implement th	e m	ethodology and	tools of operations research	to assist decision	n-m	aking.		
	1			1					
				UNIT-I			07 Hrs		
Intro	oduction: OR	metl	hodology, Defii	ition of OR, Application of	OR to Engineeri	ng	and Managerial		
probl	lems, Features	of C	OR models, Lin	itations of OR.					
Line	ar Programm	ing	Definition, Ma	thematical Formulation, Sta	ndard Form, Sol	utio	n Space, Types		
	-	-		e, Solution through Graphic					
			•	ad assignments only)	e	,			
10 40		(ue	monstrations a	UNIT-II			10Hrs		
Sim	olex Method &	k Se	ensitivity Anal	ysis: Simplex methods, Arti	ficial Stating So	luti			
				nalysis - Graphical sensitiv	-				
	-		-	tput from software packages	• •	-	fulle sensitivity		
unury	sis. interpretat	1011	of grupineur ou	UNIT-III		01	10 Hrs		
Tran	sportation P	rob	lem:Formulatio	on of transportation mode	el. Basic feasib	le			
	-			hods, Unbalanced transpo			-		
	portation prob			n Transportation Problem	-				
probl		1011	is, variants	in multiportution recordin	s, rippiloutions	01	mansportation		
•		em	Formulation	of the Assignment problen	n Solution meth	hod	of assignment		
-	-			method of assignment problem			-		
-	-		raveling Salesm			icu	iou, variants in		
•	•		e						
Usag	ge of software t	0015	s to demonstrate	Transportation and Assignment	nent problems		06 11		
Droi	oot Managam	mt	Liging Notwork	UNIT-IV Analysis:Network construct	ation Datarmina	tion	06 Hrs		
-	-		-				-		
		, CI	PM - Elements	of crashing, Usage of softw	are tools to dem	ons	strate N/W flow		
probl	lems								
C	- The	1		UNIT-V			06 Hrs		
	=		-	son Zero Sum game, Pure st	-		-		
-			ne rules of do	minance, solution method	of games with	iou	t saddle point,		
Arith	metic method.								
Corre	man Autoomore	A 6	ton 00m-1-4:	the course the stordards	ll he able to				
				the course, the students wi			augh		
CO1			ie basic conce	pts of different models	or operations r	ese	arch and then		
	application			Models and Assignment M					

CO2:	Build and	solve Transp	portation M	odels and Assignment M	Iodels.
000	D :	. 1	1 1 1 1 1		1

CO3:	Design new simple models, like: CPM, MSPT to improve decision -making and develop
	critical thinking and objective analysis of decision problems.
CO4:	

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	2	2	-	-	-	1	-	-	1
CO2	-	2	-	-	-	-	-	-	-	1	-	1
CO3	2	-	-	2	2	-	-	1	-	-	-	-
CO4												

			Semester: V				
		MANAGEN	IENT INFORMATION SYS	TEMS			
		(GROU	P B: GLOBAL ELECTIV	E)			
		T	(Theory)				
Course Code	:	18G5B10		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3.00 Hours	
Course Learning	Obje	ectives: The stude	nts will be able to				
1 To understand the basic principles and working of information technology.							
2 Describe the	role	of information tec	hnology and information syste	ms in business.			
3 To contrast	and c	compare how inter	net and other information techn	ologies support bu	sine	ess processes.	
4 To give an	overa	all perspective of	he importance of application of	of internet technol	ogie	es in business	
administrati							
			Unit-I			08 Hrs	
Information system	ns in '	Global Business	Foday:				
The role of inform	nation	n systems in busi	ness today, Perspectives on	information system	ms,	Contemporar	
approaches to inform	natio	on systems, Hands	on MIS projects. Global E-Bu	siness and Collal	bor	ation: Busines	
process and information	ation	systems, Types of	business information systems	, Systems for colla	aboı	ation and tear	
work, The informati	on sy	stems function in	business. A Case study on E bu	isiness.			
			Unit – II			08 Hrs	
Information System	ns, O	Organizations and	Strategy:				
Organizations and	inforr	mation systems, H	low information systems impa	act organization a	nd	business firms	
Using information s	syster	ms to gain compe	itive advantage, management	issues, Ethical an	d S	ocial issues in	
Information System	ns: U	Understanding eth	cal and Social issues related t	o Information Sys	stem	ns, Ethics in an	
information society,	The	moral dimensions	of information society. A Case	study on business	pla	nning.	
			Unit –III			08 Hrs	
IT Infrastructure a	ınd E					08 Hrs	
		Emerging Techno		tform trends, Cont	emj		
IT infrastructure, In	frastr	Emerging Techno ructure component	logies:		-	porary softwar	
IT infrastructure, In platform trends, M	frastr Ianag	Emerging Techno ructure component gement issues. Se	l ogies: s, Contemporary hardware pla	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulner	abil	porary softwar ity and abuse ology and tool	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. See ty and control, Est n resources. A cas Excellence and C	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulnera ty and control, Tea	abil chn	porary softwar ity and abuse ology and tool 08 Hrs	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operatie Enterprise systems,	frastr Ianag ecurit nation onal I Supp	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage	logies: s, Contemporary hardware pla curing Information Systems ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy:	s: System vulnera ty and control, Tea ner relationship ma	abil chn ana	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the internet	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne	
IT infrastructure, In platform trends, M Business value of se for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne	
IT infrastructure, In platform trends, M Business value of se for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli ss an A Ca	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital G mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interner Building and E	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle	frastr lanag ecurit nation onal l Supp appli ass an A Ca dge:	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, H	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle The knowledge mage	frastr Ianag ecurit nation onal I Supp appli ess an A Ca dge: anage	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (e mobile digital platform and r Unit –V	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, F	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs nowledge wor	

Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand and apply the fundamental concepts of information systems.						
CO2:	Develop the knowledge about management of information systems.						
CO3:	Interpret and recommend the use information technology to solve business problems.						
CO4 :	Apply a framework and process for aligning organization's IT objectives with business strategy.						

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.							
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10 th Edition, 2011, ISBN: 978-0072823110.							
3	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4 th Edition, 2002, ISBN:978-0130617736.							
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	-	1	-	1
CO3	3	3	1	-	2	-	-	-	-	1	-	1
CO4	3	3	2	1	2	-	-	-	-	1	-	1

			V	Semester			
				'E MECHATRONICS			
			`	LOBAL ELECTIVE)		
0		1		Theory)	CIE		100 M
	se Code	:	18G5B11		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cour	rse Learning O	bje	ctives: The students will	be able to			
1	Identify vario	us N	Iechatronics systems of a	a modern automobile			
2	Describe how	the	proper quantity/grade of	fuel affects engine perfe	ormance.		
3	Understand B	hara	t-VI / EURO-VI emissio	on norms			
4	Apply the know	wle	dge of engineering and s	cience to analyse the per	rformance of Me	cha	tronics
	system						
5	Analyse vehic	ele s	ub-systems comprising o	f sensors and actuators			

Unit-I	06 Hrs
Automobile Engines	
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.
Unit-II	10 Hrs
Engine Auxiliary Systems:	
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.	
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Re	turn line,
Quantity control valve, Injectors – solenoid and piezo injectors.	
Unit-III	10 Hrs
Vehicular Auxiliary Systems:	
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,
Caster and Camber angle. Classification of tyres, Radial, Tubeless.	
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator	and air
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.	
Unit-IV	07 Hrs
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	rol units and
On-Board Diagnostic kit.	
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling
system- Components, working principle, Properties, Viscosity.	
Unit-V	06 Hrs
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	ensor,
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Describe the functions of Mechatronic systems in a modern automobile						
CO2:	Evaluate the performance of an engine by its parameters						
CO3:	Analyse the automotive exhaust pollutants as per emission norms						
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit						

Refere	nce Books								
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage								
	Learning, ISBN-13: 978-1428311497								
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,								
	SAE International, ISBN: 0768009871								
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527								
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-								
	Heinemann, ISBN 0-7506-7008-8								

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	1	2	1	-	-	1	2	3	-	-
CO2	2	1	2	1	3	-	-	2	2	3	-	-
CO3	1	2	2	1	2	-	-	2	2	3	-	-
CO4	1	2	2	1	2	-	-	2	2	1	-	1

	Semester: V							
			TELECOM	MUNICATION SYS	STEMS			
			(GROUP I	B: GLOBAL ELEC	(TIVE)			
				(Theory)				
Cou	rse Code	:	18G5B12		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	: 39L			SEE Duration	:	3.00 Hours	
Cou	rse Learning C	bje	ectives: The student	s will be able to			·	
1	Represent sch	em	atic of communicati	on system and identif	Ty its components.			
2	Classify satell	ite	orbits and sub-syste	ms for communication	on.			
3	Analyze differ	rent	telecommunication	i services, systems an	d principles.			
4	Explain the ro	le d	of optical communic	ation system and its	components.			
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds			

UNIT-I	06 Hrs
Introduction to Electronic Communication: The Significance of Human Commu	nication,
Communication Systems, Types of Electronic Communication, Modulation and Mult	iplexing,
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.	
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.	
Radio Receivers: Super heterodyne receiver.	
UNIT-II	10 Hrs
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.	
Wideband Modulation: Spread spectrum, FHSS, DSSS.	
Multiple Access: FDMA, TDMA, CDMA.	
UNIT-III	09 Hrs
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,
Ground Stations, Satellite Applications, Global Positioning System.	
UNIT-IV	07 Hrs
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical	c Cables,
Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network	vorks.
UNIT-V	07 Hrs
0111-1	
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	Internet
	Internet
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basics of communication systems.						
CO2	Analyze the importance of modulation and multiple access schemes for communication						
	systems.						
CO3	Analyze the operational concept of cell phone and other wireless technologies.						
CO4	Justify the use of different components and sub-system in advanced communication systems.						

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

· · · · · · · · · · · · · · · · · · ·				Semester: V				
	(QUA	NTUM MECHA	NICS OF HETERO	/NANO STRUCT	JRES	5	
			(GROU	P B: GLOBAL EL	ECTIVE)			
~	~ .			(Theory)				. <u>.</u>
	se Code	:	18G5B13		CIE	:	100 M	
	ts: L:T:P Hours	:	3:0:0 39L		SEE SEE Duration	:	100 M 3.00 H	
) Dhie	Sectives: The studen	ts will be able to	SEE Duration	:	5.00 П	lours
	8	÷			coossos os wo rodu	o dir	ansion	
	 3 Understand the differences observed in transport properties of low dimensional materials. 4 Apply the role of heterostructures in devices 							
					1 (1 ((1	
	-	now	ledge to design and	d develop smart devic	ces and sensors that	runs	on the q	uantum
1	technology.							
				Unit-I				08 Hrs
Dovio	w of Quantu	m M	Iechanics and Soli					U8 Hrs
	-			tainty Principle, grou	n valaaity. Tima in	1	donton	d damam dami
	•	•	•	• • • •		•		•
	•			, Perturbation theory				
	•		•	states and its depend		•		
-		-		ons and holes in b	ands, Effective ma	ass, o	listinct	regimes of
condu	ction and the	imp	ortant parameters c					
			ors and lower dim	Unit – II				08 Hrs
differe (From	ent geometrie 0-Dim to 3 I	es-Sq		l and intra-band pro Friangular and their	cess. Quantum we	lls o	t nanos	
			-	and its effect on band		n Dot		s and wells
). Strained Layers a ects in them.			n Dot		s and wells in Quantum
	tum Nano sti	c eff	-	Unit –III		n Dot		s and wells
Quant Archit Homo Lattice genesi	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III	semiconductor cont on and strain doped ling Approximation nechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga.	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r	semiconductor cont on and strain doped ling Approximation mechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs) in details, Vells. Super lattice. The ocus will be per lattices:
Quant Archit Homo Lattice genesi on Ga. Stark e	ecture and w -junction, He e: Kronig Pe as of Quantun As), hot elect effect.	c efference ructo vorki etero nney n Tr trons	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr 2. Perpendicular tra	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur	semiconductor cont on and strain doped ling Approximation nechanism, experin neling. Electric fiel	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs 0 in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form antum point contacts ircuit laws for quantu- c field. Landau qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The per lattices: 08 Hrs to explain d rings and ide. Density gnetic field.
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta Shubn	tecture and w -junction, He e: Kronig Pe is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol ttes of a 2D ikov-de Haas	c eff ructivork: etero nney n Tr crons str ance lation syst	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua Unit –V	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	After successful completion of the course the student will be able to identify the different domains
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and
	Photonics.
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at
	the core of nano and meso technology.
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)
CO4 :	The student can apply the concepts in an interdisciplinary manner and can create new ideas and
	products related to appliances and sensors, that use the said concepts.

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
1	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
3	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
3	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1 st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
(Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
6	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	3	2	2	-	-	-	1
CO2	3	3	3	2	1	2	1	1	-	-	-	1
CO3	3	3	3	2	1	1	1	1	-	-	-	1
CO4	1	2	1	2	1	2	2	1	2	2	-	1

				Semester: V					
			THIN FILM	IS AND NANOTE	CHNOLOGY				
			(GROU	P B: GLOBAL EI	LECTIVE)				
(Theory)									
	rse Code	:	18G5B14		CIE	:	100 Marks		
	dits: L:T:P	:	3:0:0 39L		SEE SEE Duration	:	100 Marks		
	al Hours rso Loorning (:)bic	SPL ctives: The students	will be able to	SEE Duration	:	3.00 Hours		
<u>1</u>			asics of thin films st		X 7				
2					y. us techniques and the	air ch	aracterization		
4	methods.	now	ledge of unit time p	reparation by vario	us techniques and the		aracterization		
3		w1	dga to salact the mo	et potential mathe	ls to produce thin fill	me fo	r wonted		
3	applications.	JWIE	uge to select the III	si potential metho	is to produce thin fill	115 10	n wanteu		
4	**	thin	film applications.						
-+	Asses typical	um	min applications.						
				Unit-I			08 H	Hre	
Non	ostructures an			0			001		
Type dime Quai	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st	ructures, Multilayer	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) 1 ge	
Type dime Quan and	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st sis.	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic	nsional nano-struct thin films and sup cal-chemical prop	tured materials. Carl	bon N ynthe	Nano Tubes (CN esis through Sol and challenges	NT) l gel s of	
Type dime Quar and nanc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lictur lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) l ge s of	
Type dime Quan and nanc Thir	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lime lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup cal-chemical prop Unit – II	tured materials. Carl per lattice clusters. S erties. Current tren	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H	NT) 1 ge ⁻ s of Hrs	
Type dime Quan and nanc Thir Vac	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nan Film Prepara uum technolog	lime lime ll st sis. note tion y- I	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit	NT) 1 ge s of Hrs ition	
Type dime Quar and nanc Thir Vac (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT). 1 gei s of Hrs ition	
Type dime Quan and nanco Thir Vacu (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum nal evaporation, E Sputtering, Magne	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering.	NT) 1 gel s of Hrs ition	
Type dime Quan and nanc Thir Vac (PV) depc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter	ictur lime ll st sis. note tion y- I :: E ring	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT) 1 gel s of Hrs ition	
Type dime Quan and nanco Thir Vacu (PV) depo	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter	ictum lime ll st sis. note tion y- I :: E ring	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and	bon N ynthe nds sical S pration	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H	NT) 1 ge ² s of Hrs ition e arc Hrs	
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret	ictum lime ll st sis. note tior y- I : E : E : ing on a	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and p paration & Engineer	bon N ynthe nds sical S pration Ion b	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov	NT) 1 ge s of Hrs ition e arc Hrs	
Type dime Quar and nance Thir Vace (PV) depoe Surf Nucl Clea	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat	ictum lime ll st sis. note tion y- I :: E ring on a tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre uing, Base Coats an	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s of <u>Hrs</u> ition e arc <u>Hrs</u> wwth ce of	
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o <u>Hrs</u> itior e arc <u>Hrs</u> wwth ce of	
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence rowth. Properties	NT) 1 ge s or Hrs itior itior e arc Hrs wwth ce of es of	
Type dime Quan and nance Thir Vace (PV) depce Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D Films: Adhesio	tion y - I y - I y - I y - I i : E ing on a tical tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Thern : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Fhickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre hing, Base Coats an Effect of Deposition Physical, Chemical Unit –IV	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o	
Type dime Quar and nancc Thir Vacu (PV) depcc Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o	tion tion y- H ing note ing n a tical ion Defe on, '	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV S:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S pration Ion b ing fo iing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o Hrs	
Type dime Quan and nance Thir Vacu (PV) depce Surf Nucl Clea thin Thin Thin Film	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o n thickness me	tion y- I tical tical tical tical tical tical tical tical tical tical tical tical tical tical	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, min Film Properties rement: Quartz cry	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer and Top Coats. Thin F on Parameters on fill and Mechanical.	bon N ynthe nds sical S oration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H r methods. Surf	NT) 1 ge s or Hrs itior e ard Hrs with ce of es of Hrs rface	
Type dime Quar and nance Thir Vact (PV) depo Surf Nucl Clea thin Thin Thin Thin Thin Thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D a Films: Adhesio racterization o a thickness met phology and to	tion y- I is: E ing on a tical tical f T asun	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, in Film Properties rement: Quartz cry raphy by SEM, A	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo FM. Film compos	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil and Mechanical.	bon N ynthe nds sical S ration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence owth. Properties 08 H r methods. Surf ctron Spectrosco	NT) l ge s o Hrs ition e ard Hrs with ce o es o Hrs copy	

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.

Unit –V

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic mechanism of surface modification and thin film growth.
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization
	methods.
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted
	applications.
CO4:	Detailed knowledge of thin film selection for various applications.

Refere	ence Books
1	Thin Film Phenomenon, K.L.Chopra, 1 st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
4	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

				Semester	: V			
	4	ADV	VANCES IN C		ENCE AND TECHNOL	OGY	7	
	-			ROUP B: GLOBA				
			X -	(Theory				
Cou	rse Code	:	18G5B15		CIE	:	100 Ma	rks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Ma	ırks
Tota	al Hours	:	39L		SEE Duration	:	3.00 Ho	ours
Cou	rse Learning (Dbje	ectives: The stu	dents will be able	0			
1	Understand th	ne fi	Indamental & so	ocio, economic asp	pects of corrosion.			
2	Identify pract	ices	for the prevent	ion and remediatio	n of corrosion.			
3	Analyzing me	etho	dologies for pre	edicting corrosion t	endencies.			
4					nt suitable corrosion contr	ol me	asures.	
-	L'unduce vuil	040	corrosion situat	ions and impremen		01 1110	ubui obi	
				Unit-I				08 Hrs
Intr	oduction to con	rros	ion and its effe					00110
					on, economic losses, In	direct	losses -	Shutdown
					nvironmental damage, I			
			-	•	ustries, corrosion map of	-		CONTOSION
-				-	-			:1 and as
		_			on, chemical processing	indu	stries, o	ii and gas
Indu	stries, pulp and	pap	per plants, corro	sion effect in elect	ronic industry.			I
				Unit – II				08 Hrs
		nic	-	•	pes: Galvanic corrosion, stress corrosion, seas			
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling- r corrosion, o perature corros nanism of diffe	erosion corrosion sion, bacterial corro rential aeration co	pes: Galvanic corrosion, , stress corrosion, seas osion, corrosion in polyme rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling-H r corrosion, on perature corros	erosion corrosion sion, bacterial corro rential aeration co s.	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o	nic nula tem necl of m	series, Pilling-H ar corrosion, on perature corros manism of diffe metals and alloys	erosion corrosion sion, bacterial corre- rential aeration co s. Unit –III	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe	nic nula tem necl of m	series, Pilling-H ar corrosion, of aperature corros nanism of diffe aetals and alloys t engineering n	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials	, stress corrosion, seas osion, corrosion in polymo rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com Con	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures,	nic nula tem necl of m ren	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for und	hydrogen terials. lerstanding 07 Hrs
corre emb Crev com Corre Corre	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj	series, Pilling-H ar corrosion, o aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymo rrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nic ourbaix diagram	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs 0ys. on and its
corre emb Crev com Con Con Con The calce	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The calcu	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u>	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in	son c er (pla theor n and metal	stic) mat stic) mat y for und Super all corrosid	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs
corre emb Crev com Cor Cor Cor The calce Adv	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro	nic nula tem necl of m ren fic du ific Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV naterial selection,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	son c er (pla theory n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment
corrections control co	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic,
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating
corrections of the correction of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj fic 1 of Cu, 1 Osion Sion Sion	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren fic 1 of Cu, 1 osion city, oppo	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV material selection, moval oxidizer, Chromium, physic Unit –V	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, res er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corrections of the second seco	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro case in veloc croplating of Co ickel.	nic nula tem mecl of n ren fic 1 of Cu, 1 of Cu, 1 osion city, oppe	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys tengineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, re- passivity, re- er, Nickel and O hods: Specime ray, service test	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment, ss.	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	on control on and metal control tors, ering,	Super all corrosid	hydroger terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- organic ess plating 09 Hrs Accelerated

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the causes and mechanism of various types of corrosion
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.
CO4:	Develop practical solutions for problems related to corrosion.

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

				Semester: V				
		CC	OMPUTATIONA	L ADVANCED NUN	IERICAL METHO	ODS		
			(GRO	UP B: GLOBAL ELI	ECTIVE)			
		-	1	(Theory)	I			
	rse Code	:	18G5B16		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
	al Hours	:) :/	39L	unta uvill ha ahla ta	SEE Duration	:	3.00 Hours	
	0	•		ents will be able to	1 1 1			
1	-		•	lternative methods to s	solve algebraic and	trans	cendental equations	
-	•		merical techniques		· C. 11			
2		-	_	echniques arising in va			<u> </u>	
3		val	ue and boundary	value problems whi	ich have great sigr	nfica	nce in engineering	
	practice.			1 •	1.1.1.1.1.1	1		
4								
	phenomena. Demonstrate elementary programming language, implementation of algorithms and computer							
5					plementation of alg	gorith	ims and computer	
	programs to solve mathematical problems.							
				TT •4 T			07.11	
Unit-I 07 Hrs Algebraic and Transcendental Equations: 07 Hrs								
0			-		ive method Aitken	nrook	Muller method	
			nulation using MA	ce - Fixed point iteration	ive method, Altken	proce	ess, wunter method,	
Chei	bysnev method.	. 511					07 11	
Into	rpolation:			Unit – II			07 Hrs	
	-	e di	fferences Finite d	lifferences of a polyno	mial Divided differ	ence	Newton's divided	
difference interpolation formula, Hermite interpolation, Spline interpolation - linear, quadratic and cubic spline interpolation. Simulation using MATLAB.								
spin		. 51		Unit –III			08 Hrs	
Diff	erential Equat	ions	s I•				001115	
	-			methods to solve diffe	erential equations B	Round	ary value problems	
	Runge-Kutta and Runge-Kutta-Felhberg methods to solve differential equations, Boundary value problems (BVPs) - Rayleigh-Ritz method, Shooting method, Differential transform method to solve differential							
	equations. Simulation using MATLAB.							
equu	dions. Sindian			Unit –IV			08 Hrs	
Diff	erential Equat	ions	s II:	Cint IV			UO III S	
				blems - Runge-Kutta r	nethod, Milne metho	od. C	ubic spline method.	
			-	ear, Nonlinear differen			-	
				Unit –V			09 Hrs	
Eige	en Value Probl	ems	5:				07 1115	
0				ver method, Inverse	Power method. Bo	ounds	on Eigen values.	
-		-		hod for symmetric m			-	
	8 		,					

MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and									
	corresponding computational techniques.									
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application									
	problems.									
CO3:	Analyze the physical problem and use appropriate method to solve numerically using									
	computational techniques.									
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems									
	arising in engineering practice.									

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.
L	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage
2	Learning, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private
5	Ltd., ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata
-	Mcgraw Hill, ISBN-10: 0-07-063416-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

MATHEMATICS FOR MACHINE LEARNING (GROUP B: GLOBAL ELECTIVE) (Theory) Course Code : 1865B17 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Code : 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Vector Calculus and Continuous					Semester: V						
(Theory) Course Code : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 3:0:0 More SEE 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations,				MATHEMAT		E LEARNING					
Course Code : 18G5B17 CIE : 100 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Hours of machine intelligence.				(GROU	P B: GLOBAL ELI	ECTIVE)					
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 391 SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Indextand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. O7 Hrs Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Intel Interization and Multivariate Taylor Series, Optimization. Unit - II 07 Hrs Orthogonal Projections, Rotation											
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learnin algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decisi problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit -I Of Hrs Vector Calculus and Continuous Optimization Inter I OT Hrs Sign colspan= 2 Unit - II OT Hrs Vector S			-				-				
Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit - II Vector Calculus and Continuous Optimization Init - III <td col<="" th=""><th></th><th></th><th>:</th><th></th><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th>:</th> <th></th> <th></th> <th></th> <th></th> <th></th>			:							
1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Brobability and Distributions: Onstruction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit -IV 08 Hrs											
foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -III 08 Hrs <td <="" colspan="2" td=""><td></td><td>6</td><th>•</th><th></th><th></th><td>concepts of linear</td><td>· əla</td><td>ebra that form the</td></td>	<td></td> <td>6</td> <th>•</th> <th></th> <th></th> <td>concepts of linear</td> <td>· əla</td> <td>ebra that form the</td>			6	•			concepts of linear	· əla	ebra that form the	
2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs <td>I</td> <td></td> <th></th> <th>-</th> <th>n the fundamental</th> <td>concepts of inteal</td> <td>arg</td> <td></td>	I			-	n the fundamental	concepts of inteal	arg				
algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Inear Algebra: 7 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2			<u> </u>	or calculus and ontir	nization to understa	nd th	he machine learning			
3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Linear Algebra: 07 Hrs 8 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement 1 Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs 1 Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert 1 Unit – II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2			-	or calculus and optim	inzation to underste	ina u				
learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	3			<u>^</u>	nd distributions to	analyze possible a	annlia	cations of machine			
4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	U		leept	s of probability a	nd distributions to	unaryze possible a	ippin	cations of machine			
5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II O7 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	4		ncer	ts of regression and	estimation to solve a	problems of machin	e lea	rning			
problems. O7 Hrs Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	-							-			
Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 07 Nrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	5	•	чрр	iopriate mathemati	cur teeninques 101 (and the and th	Pun				
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs		Problems.									
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Linear Regression: 08 Hrs				l	Unit-I			07 Hrs			
Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Line	ar Algebra:						·			
Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Revi	Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, Inner									
Unit – II07 HrsVector Calculus and Continuous Optimization:Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing GradientBackpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, OptimizationUsing Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization.Unit –III08 HrsProbability and Distributions:Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule aBayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of VariableInverse Transform.Unit –IV08 HrsLinear Regression:	Prod	Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement,									
Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs								Sonar Complement			
Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression: 08 Hrs	Inner	-		-							
Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:		r Product of Fu	Incti	ons, Orthogonal Pro	jections, Rotations, S nit – II						
Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect	r Product of Fu	nction	ons, Orthogonal Pro U Continuous Optimi	ojections, Rotations, S nit – II zation:	Singular Value Dec	ompo	osition. 07 Hrs			
Unit –III08 HrsProbability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:08 Hrs	Vect Grad	r Product of Fu cor Calculus an lients of Vect	nction nd C	ons, Orthogonal Pro U: Continuous Optimiz /alued Functions,	ojections, Rotations, S nit – II zation: Gradients of Matri	Singular Value Dec	ompo Cor	mputing Gradients			
Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization			
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.			
Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus an lients of Vect cpropagation an g Gradient Des	nd C tor-V nd A	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.			
Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Des	nd C tor-V nd A scent	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim Un butions:	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C	Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs			
Unit –IV08 HrsLinear Regression:08	Vect Grad Back Usin Prob	r Product of Fu cor Calculus and lients of Vecto coropagation and g Gradient Des coability and Distruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and			
Linear Regression:	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and			
	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, C	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables			
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, C	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and			
Problem Formulation, Parameter Estimation, Bayesian Linear Regression, Maximum Likelihood	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu for Calculus and lients of Vector g Gradient Des pability and Di struction of a I es' Theorem, C rse Transform.	nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Des Dability and Di struction of a H es' Theorem, O rse Transform.	inction nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
•	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs 108 Hrs 108 Hrs 108 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discu- sian Distribution, C Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim t, Constrained Optim Un butions: ability Space, Discussian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg	Conve vlor S conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the setting of the setting of the setting.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dess oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri istri Prob Gaus istri ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Class	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable			
Orthogonal Projection. Density Estimation with Gaussian Mixture Models:	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, C	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables			
Density Estimation with Caussian Mixture Models.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	05 ition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
Density Estimation with Gaussian Mixture Woulds.	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs			
•	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim t, Constrained Optim Un butions: ability Space, Discussian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve ylor S Conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the provide term of the provide term of the provide term of the perspective of term of the perspective of term of	Vect Grad Back Usin Prob Cons Baye Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Perspective	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri Prob Gaus istri ion, ion, ion, ion, ion, Mod	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Cow- Persp Clas	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable			
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Orthe Dens Gaus Persp Dime Prob Low- Persp Clas Sepa	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dess bability and Distruction of a H ess' Theorem, O rise Transform. Car Regression lem Formulation ogonal Projections sian Mixture H pective. ensionality Re lem Setting, N -Rank Approx pective. sification with arating Hyperp	inction nd C tor-V nd A scent istri istri ion, ion, ion, ion, Mod educ Aaxi imat a Suj blane	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable			

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.
CO2:	Orient the basic concepts of mathematics towards machine learning approach.
CO3:	Apply the linear algebra and probability concepts to understand the development of different
	machine learning techniques.
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical
	problems.

Refere	Reference Books								
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,								
1	2020, Cambridge University Press.								
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge								
4	Press, ISBN: 0692196382, 9780692196380.								
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-								
5	978-81-203-4160-9.								
1	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd								
4	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.								

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

			V Semester					
			ENGINEERING ECONOMY					
		(0	ROUP B: GLOBAL ELECTIVI	E)				
		I	(Theory)		1	[
Course Code	:	18G5B18		CIE	:	100 Marks		
Course Code		18G5B02		SEE	:	100 Marks		
Total Hours	rs : 39L			SEE Duration		03 Hours		
Course Learnin	ng O	bjectives: Stud	lents are expected to					
1. To incul	cate	an understandi	ng of concept of money and its imp	portance in the ev	valu	ation of		
projects.								
2. Analyze the present worth of an asset.								
3. Evaluate	the	alternatives ba	sed on the Equivalent Annual Wort	h.				
4. Illustrate concept of money and its importance in evaluating the projects.								

Unit – I	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engineering	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Futu	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR miscon	nceptions,
Problems.	
Unit – IV	06 Hrs
Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in	adequacy,
economic life for cyclic replacements, Exercises, Problems.	
Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	
Unit – V	06 Hrs
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, I	Exercises,
Problems.	
Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	8.
Course Outcomes: After going through this course the student will be able to	
CO 1: Explain the time value of money, and how to sketch the cash flow diagram	

	1
CO 2:	Compare the alternatives using different compound interest factors, Select a feasible alternative
	based on the analysis.
CO 3:	Formulate a given problem for decision making

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Reference Books:								
1.	Engineering Economy, Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5							
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN – 81-							
	203-1743-2.							
3.	Cost Accounting, Khan M Y, 2 nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248							
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna							
	Publishers, ISBN 8174091009							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

]	[N]	TRODUCTION TO MA	Semester ANAGEMENT & ECO Fheory)	NOMICS			
Co	urse Code	:	18HEM61	CIE	:	100 Marks		
Credits: L:T:P		: 3:0:0		SEE	:	100 Marks		
Total Hours		Hours : 39L		SEE D	uration :	3.00 Hrs		
Co	urse Learning O	bje	ctives: The students wil	l be able to	·	·		
1	Understand	the	evolution of management	nt thought.				
2	Acquire knowledge of the functions of Management.							
3	Gain basic knowledge of essentials of Micro economics and Macroeconomics.							
4	Understand the concepts of macroeconomics relevant to different organizational contexts.							

Unit-I	07 Hrs
Introduction to Management: Management Functions, Roles & Skills, Management H	History –
Classical Approach: Scientific Management & Administrative Theory, Quantitative A	pproach:
Operations Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: Sy	ystems &
Contingency Theory. Case studies.	
Unit – II	09 Hrs
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	Strategic
Management Process, Corporate & Competitive Strategies. Case studies.	U U
Organizational Structure & Design: Overview of Designing Organizational Structur	e: Work
Specialization, Departmentalization, Chain of Command, Span of Control, Centraliz	zation &
Decentralization, Formalization, Mechanistic & Organic Structures. Case studies.	
Unit –III	09 Hrs
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	Theory,
McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Th	
Motivation: Adam's Equity & Vroom's Expectancy Theory. Case studies.	
Managers as Leaders: Behavioral Theories: Ohio State & University of Michigan Studies,	Blake &
Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's St	ituational
Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadersh	nip. Case
studies.	-
Unit –IV	07 Hrs
Introduction to Economics: Importance of Economics, Microeconomics and Macroec	onomics,
Theories and Models to Understand Economic Issues, An Overview of Economic Systems.	Demand,
Supply, and Equilibrium in Markets for Goods and Services, Price Elasticity of Demand a	
Elasticity of Supply, Elasticity and Pricing, Changes in Income and Prices Affecting Con	sumption
Choices, Monopolistic Competition, Oligopoly.	•
Unit –V	07Hrs
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic produ	ct(GDP),
components of GDP, the Labor Market, Money and banks, Interest rate, Macroeconomic m	odels- an
overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The	AS-AD-
model, The complete Keynesian model, The neo-classical synthesis, Exchange rate determin	ation and
the Mundell-Fleming model	

	ks										
Stephen	Robbins,	Mary	Coulter	&Neha	arikaVo	hra,	Manageme	nt, Po	earson	Educa	ation
Publicatio	ons, 10th Ed	dition, IS	BN: 978	-81-317-	2720-1.						
James Sto	oner, Edwa	rd Freen	nan & Da	niel Gill	bert Jr,	Manag	gement, PH	I, 6th I	Edition,	ISBN	: 81-
203-0981	-2.						-				
Steven A	. Greenlav	v ,Davić	I Shapiro	,Princip	les of 1	Microe	economics,	2nd Ec	lition,IS	BN:97	/8-1-
947172-3	4-0										
Dwivedi.l	D.N, Ma	croecond	mics: '	Theory	and	Policy	,McGraw	Hill	Educa	tion;	3rd
	Publicatio James Sto 203-0981 Steven A 947172-34	Publications, 10th Eduances Stoner, Edwa 203-0981-2. Steven A. Greenlav 947172-34-0	Publications, 10th Edition, IS James Stoner, Edward Freen 203-0981-2. Steven A. Greenlaw ,David 947172-34-0	Publications, 10th Edition, ISBN: 978 James Stoner, Edward Freeman & Da 203-0981-2. Steven A. Greenlaw ,David Shapiro 947172-34-0	Publications, 10th Edition, ISBN: 978-81-317- James Stoner, Edward Freeman & Daniel Gill 203-0981-2. Steven A. Greenlaw ,David Shapiro,Princip	Publications, 10th Edition, ISBN: 978-81-317-2720-1. James Stoner, Edward Freeman & Daniel Gilbert Jr, 203-0981-2. Steven A. Greenlaw ,David Shapiro,Principles of 247172-34-0	Publications, 10th Edition, ISBN: 978-81-317-2720-1. James Stoner, Edward Freeman & Daniel Gilbert Jr, Manag 203-0981-2. Steven A. Greenlaw ,David Shapiro,Principles of Micros 947172-34-0	Publications, 10th Edition, ISBN: 978-81-317-2720-1. James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PH 203-0981-2. Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics, 947172-34-0	Publications, 10th Edition, ISBN: 978-81-317-2720-1. James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th 1 203-0981-2. Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Ec 947172-34-0	Publications, 10th Edition, ISBN: 978-81-317-2720-1. James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, 203-0981-2. Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Edition,IS 947172-34-0	Publications, 10th Edition, ISBN: 978-81-317-2720-1. James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, ISBN: 203-0981-2. Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Edition,ISBN:97 947172-34-0

Telecommunication Engineering

	Edition,2010,ISBN-13: 978-0070091450.
5	Peter Jochumzen, Essentials of Macroeconomics, e-book(www.bookboon.com), 1st Edition.,
	2010, ISBN:978-87-7681-558-5.

Cours	Course Outcomes: After completing the course, the students will be able to										
CO1	Explain the principles of management theory & recognize the characteristics of an organization.										
CO2	Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.										
CO3	Select & Implement the right leadership practices in organizations that would enable systems orientation.										
CO4	Understand the basic concepts and principles of Micro economics and Macroeconomics.										

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

50% weightage should be given to case studies. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

	CO-PO Mapping											
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1			3		3	3	3	3	3
CO2	3	2						1	2	3	2	2
CO3			1			2		2	2	3	3	3
CO4	2		2			3	1	3	2	2	3	3

	Semester: VI										
	ANTENNA AND PROPAGATION										
(Theory & Practice)											
Coi	Course Code : 18TE62 CIE Marks : 100+50=150										
Credit: L:T:P		:	4:0:1		SEE Marks	:	100+50=150				
Total Hours		:	52L+33P		SEE Duration	:	3.00+3.00 Hrs				
Cou	ırse Learnin	g Ob	jectives: The stu	dents will be able to							
1	Understand	vario	us parameters of	Antenna and Basic Ant	tenna theory.						
2	Analyze and	l Desi	ign the antenna a	nd antenna arrays for v	arious applications	•					
3	Learn the fundamentals of Smart Antennas design.										
4	Measure An	itenna	Parameters and	learn the physical effec	ts in wave propaga	atior	l.				

UNIT-I	10 Hrs
Antenna Basics: Basic antenna parameters, Radiation patterns, Radiation Intensity, Beam a	rea, Beam
Efficiency, Directivity and Gain, Aperture antennas, Antenna field zones, Shape-impedan	ce, Power
theorem & its applications, Radiation intensity, Power patterns, Examples of Power patterns	. Electric
dipole-fields of short dipole, radiation resistance of short and half wave dipole.	
UNIT-II	10 Hrs
Antenna arrays: Field patterns, Phase patterns of Point sources, Arrays of two isotropic point	nt sources,
Arrays of Non-isotropic sources, Pattern multiplication and synthesis, Array of n-isotropic poi	int sources
with equal amplitude and spacing, Broadside, End fire arrays & Extended end-fire arrays, dip	ole arrays
with parasitic elements, Yagi-Uda array, Phased Array Antennas.	
UNIT-III	10 Hrs
Types of Antennas: Microwave antennas: Rectangular Horn antenna and its radiation char	acteristics,
Parabolic antenna: General properties, Paraboloid reflector, Feed methods for parabolic reflecto	rs.
Broadband antennas: Helical antenna geometryand its modes, Practical considerations for the	monofilar
Axial-mode Helical antenna.	
Microstrip Antennas: Introduction, Advantages and Limitations, Rectangular Microstrip	o antenna,
feeding methods. Antennas for Terrestrial Mobile communication systems.	
UNIT-IV	10 Hrs
Introduction to Smart Antennas: Smart Antenna Configurations, Switch Beam Antennas,	Adaptive
Antenna Approach, Space Division multiple access, Architectures of smart antennas, Be	nefits and
drawbacks, Basic Principles, Mutual Coupling Effects. Direction of Arrival and Beamforming C	Concepts.
UNIT-V	12 Hrs
Wave Propagation: Introduction, Definitions, Characterizations and general classifications	, different
modes of wave propagation, Ray/Mode concepts, Ground wave propagation (Qualitative tr	
Introduction, Plane earth reflections, Space and surface waves, wave tilt, curved earth reflection	
Space wave propagation - Introduction, field strength variation with distance and height, effect	
curvature, absorption, scattering phenomena, tropospheric propagation, fading and path loss ca	
Summary of Wave Characteristics in different frequency ranges.	
Antenna Measurements: Anechoic Chamber, Gain, Polarization, Radiation Pattern and	Impedance
mismatch measurement of an Antenna.	T

Laboratory Experiments

Students are expected to implement the following circuits on Microwave Benches

- 1. Characterization of Reflex Klystron, Gunn diode sources
- 2. Characterization of Directional Coupler, Tee junctions, Circulator and Isolator,
- 3. Horn antenna, Parabolic Dish, Micro strip antennas,
- 4. Microstrip Passive components

The students are expected to simulate the following Antennas using RF CAD tools

- 1. Radiation characteristics of Dipole antenna,
- 2. N- isotropic point source array
- 3. Rectangular Microstrip patch antenna

of wave
_

Refer	ence Books	5
1	Antennas,]

1	Antennas, John D. Kraus & Ronald J. Marhefka, 4 th Edition, 2011, Mc Graw Hill, ISBN -0-07-060185-2.
2	Antenna Theory, Constantine A Balanis, 2 nd Edition, 2005, John Wiley & Sons, ISBN – 9971-51-233-5.
3	Introduction to Smart Antennas, Constantine A Balanis, Bannides, 2007, ISBN: 1598291769.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

Semester: VI COMPUTER COMMUNICATION NETWORKS (Theory & Practice)								
Cou	Course Code:18TE63CIE:100+50 Marks							
Cred	lits: L:T:P	••	3:0:1		SEE	:	100+50 Marks	
Tota	Total Hours:40L+33PSEE Duration:3.00+3.00 Hrs							
Cou	rse Learning (Dbj	ectives: The stud	lents will be able to	0:			
1	Understand th	ne f	unctionalities of	various elements o	of the network.			
2	Understand the design aspects in computer networks.							
3	Gain the know	wle	dge of routing, in	ternetworking and	l congestion contr	ol.		
4	Explore netw	ork	s layer, transport	layer and applicat	ion layer protocol	s.		

UNIT-I	08 Hrs
Introduction: Networks: Network Criteria, Physical Structures, Network types: Local Area	Network,
Wide Area Network, Switching, The Internet, Accessing the Internet.	
Network Models: TCP / IP protocol suite: Layered Architecture, Layers in the TCP/IP	Protocol
Suite, Description of Each Layer, Encapsulation and Decapsulation, Addressing, Multiple	exing and
Demultiplexing, The OSI Model: OSI versus TCP/IP, Lack of OSI Model's Success.	
Introduction to Physical Layer: Performance.	
Switching: Introduction : Three Methods of Switching , Switching and TCP/IP Layers,	
Switched Networks : Three Phases, Efficiency, Delay, Packet Switching : Datagram Networks	etworks ,
Virtual-Circuit Networks.	
Introduction to Data-Link Layer: Introduction: Nodes and Links, Services, Two Cate	gories of
Links, Two Sublayers, Link-Layer Addressing: Three Types of addresses.	
UNIT-II	08 Hrs
Link Layer: Data Link Control (DLC): DLC Services: Framing, Flow and Error	
Connectionless and Connection-Oriented, High Level Data Link Control (HDLC) : Confi	
and Transfer Modes, Framing, Point-to-Point Protocol (PPP): Services, Framing, Transition	n Phases,
Multiplexing.	
Media Access Control (MAC): Random Access, Controlled Access.	
Wired LANs: Ethernet: Ethernet Protocol, Standard Ethernet: Characteristics, Addressing	g, Access
Method, Efficiency of Standard Ethernet.	
Wireless LANs: Introduction: Architectural Comparison, Characteristics, Access Contro	ol, IEEE
802.11 Project: Architecture, MAC Sublayer, Addressing Mechanism.	
UNIT-III	09Hrs
Network Layer : Introduction to Network Layer: Network-Layer Services: Packetizing , Rom	
Forwarding, Other Services, Network-Layer Performance, Ipv4 Addresses : Address Space	
Addressing, Classless Addressing, Dynamic Host Configuration Protocol (DHCP),	
Address Resolution (NAT), Forwarding Of IP Packets : Forwarding Based on Destination	Address,
Forwarding Based on Label, Routers as Packet Switches.	
Network-Layer Protocols: Internet Protocol (IP): Datagram Format, Fragmentation	,Options,
Security of IPv4 Datagrams, IPv6 Protocol: Packet Format.	
UNIT-IV	08 Hrs
Network Layer: Unicast Routing: Routing Algorithms: Distance-Vector Routing, L	
Routing, Path-Vector Routing, Unicast Routing Protocols: Internet Structure, Routing Inf	
Protocol (RIP), Open Shortest Path First (OSPF), Border Gateway Protocol Version 4 (BGP4	
Transport Layer: Introduction : Transport-Layer Services, Connectionless and Connection	
Protocols, Transport-Layer Protocols: Simple Protocol, Stop-and-Wait Protocol, Go-Back-N	Protocol
(GBN), Selective-Repeat Protocol, Bidirectional Protocols: Piggybacking.	
UNIT-V	07 Hrs

Telecommunication Engineering

Transport-Layer Protocols: Introduction: Services, Port Numbers. User Datagram Protocol: User Datagram, UDP Services, UDP Applications. Transmission Control Protocol: TCP Services, TCP Features, Segment A TCP Connection, Windows in TCP, Flow Control, Error Control, TCP Congestion Control, TCP Timers.

LABORATORY EXPERIMENTS				
Part- A				
Experiments Using Routers and Switches: Configuration of Cisco router, IP static				
routing and RIP using Cisco router, and VLAN using Cisco switch.				
Part- B				
Experiments Using Qualnet: Experiments on PPP, IEEE 802.3 and IEEE 802.11, RIP				
and OSPF protocols for wired networks.				
Part-C				
Programs based on implementation of various algorithm using C/C++.				
1. Program for error detecting code using CRC-CCITT (16-bits).				
2. Shortest Path algorithm to find suitable path for transmission.				
3. Spanning Tree algorithm to find loop less path.				
4. Implement a client and server communication using sockets programming.				
5. Message queues of FIFOs as IPC Channel.				
6. Implement a simple multicast routing mechanism.				
7. Computation of Linear Block code using C++ Program.				
8. Implementation of congestion control algorithm.				

Cours	e Outcomes: After completing the course, the students will be able to :
CO1	Explain the principles of computer network and layered model of networking.
CO2	Apply the algorithms/techniques of routing, congestion and Quality of Service to solve problems related to Computer Networks.
CO3	Design and Implement protocols and algorithms for TCP/IP model.
CO4	Evaluate and compare various algorithms/protocols available to address networking issues.
Refere 1	ence Books Data Communications and Networking, Behrouz A Forouzan, 5 th Edition, 2013, Tata
	McGraw-Hill, ISBN – 9781259064753.
2	Computer Networks, Andrew S Tanenbaum, 5 th Edition, 2014, Pearson Education; ISBN – 978-81-7758-165-2.
3	Computer Networking, A Top-Down Approach, James Kurose and Keith Ross, 6 th Edition, 2013, ISBN-13: 978-0-13-285620-1.
4	Data and Computer Communications, William Stallings, 8th Edition, 2009, Pearson Education, ISBN-13: 978-0131392052.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks**

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	-	-	-	-	1	-	2
CO2	3	2	2	1	2	-	-	-	-	1	-	2
CO3	2	2	2	2	2	-	-	-	-	1	-	2
CO4	3	3	3	3	2	-	-	-	-	1	-	2

	Semester: VI								
				Minor Project					
Cou	rse Code	:	18TE64	C	IE	:	50 Marks		
Cred	lits: L:T:P	:	0:0:2	SI	EE	:	50 Marks		
Hou	rs	:	26P	SI	EE Duration	:	02 Hours		
Cou	rse Learning O	bje	ectives: To enal	ble the students to:					
	Knowledge A	ppli	ication: Acquin	e the ability to make links act	ross different an	rea	as of knowledge		
1	and to genera	te,	develop and ev	valuate ideas and information	so as to apply	th	ese skills to the		
	project task.								
2				tills to communicate effectivel	• I	t i	deas clearly and		
4	² coherently to a specific audience in both the written and oral forms.								
3	Collaboration: Acquire collaborative skills through working in a team to achieve comm				chieve common				
5 goals.									
4	Independent l	Lea	rning: Learn o	n their own, reflect on their lea	arning and take	ap	propriate action		
-+	to improve it.								

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Interpreting and implementing the project in the chosen domain by applying the concepts							
	learnt.							
CO 2:	The course will facilitate effective participation by the student in team work and							
	development of communication and presentation skills essential for being part of any of the							
	domains in his / her future career.							
CO 3:	Appling project life cycle effectively to develop an efficient product.							
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area or							
	carry out research work in an industrial environment.							

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, Problem definition, Literature review, formulation of objectives, methodology	10M
II	Mid-term evaluation to review the progress of implementation, design, testing and result analysis along with documentation	15M
III	Submission of report, Final presentation and demonstration	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	1	2	2	2	2	2
CO2	3	3	3	3	2	2	1	2	2	2	2	2
CO3	3	3	3	3	2	2	1	2	2	2	2	2
CO4	1	1	1	1	1	1	1	2	1	2	1	1

	Semester: VI						
	INTERNET OF THINGS						
			· · · · · · · · · · · · · · · · · · ·	E C: PROFESSIONA	· · · · · · · · · · · · · · · · · · ·		
1			(Common to All Bran	ches)		
Cou	rse Code	:	18CS6C1		CIE Marks	:	100
Cree	lits: L:T:P	:	3:0:0		SEE Marks	:	100
Tota	l Hours	: 39L			SEE Duration		3.00 Hrs
Cou	rse Learning	g Obj	jectives: The stu	idents will be able to			
1.	Understand	desi	gn principles in	Iot ,edge ,fog comput	ing and its challeng	ges	
2.	Identify the Internet Connectivity, security issues and its protocols						
3.	3. Explore and implement Internet of Things (IoT) and New Computing Paradigms						
4.	Apply and analyze the Orchestration and resource management inioT, 5G, Fog, Edge, and Clouds						

Unit – I	8 Hrs					
Internet of Things Strategic Research and Innovation Agenda: Internet of Things Vision ,IoT						
Strategic Research and Innovation Directions, IoT Applications, Internet of Things ar	nd Related					
Future Internet Technologies, Infrastructure, Networks and Communication, Process	ses , Data					
Management, Security, Privacy & Trust, Device Level Energy Issues.						
Unit – II	8 Hrs					
Internet of Things Standardisation: Status, Requirements, Initiatives and Organ	isations -					
Introduction, M2M Service Layer Standardisation, OGC Sensor Web for IoT, IEEE and IH						
T. Simpler IoT Word(s) of Tomorrow, More Interoperability Challenges to Cope Today-F	Physical vs					
Virtual, Solve the Basic First — The Physical Word, The Data Interoperability, The	Semantic					
Interoperability, The Organizational Interoperability, The Eternal Interoperability, The I	mportance					
of Standardisation — The Beginning of Everything.	-					
Unit – III	8 Hrs					
Internet of Things Privacy, Security and Governance: Introduction, Overview of Acti	vity Chain					
- Governance, Privacy and Security Issues, Contribution From FP7 Project, Security and						
Challenge in Data Aggregation for the IoT in Smart Cities-Security, Privacy and Trust in	n Iot-Data-					
Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach.						
Unit – IV	8 Hrs					
Internet of Things (IoT) and New Computing Paradigms: Fog and Edge Computing C	Completing					
the Cloud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9						
of Fog and Edge Computing, Business Models, Addressing the Challenges in Federa	ting Edge					
Resources, The Networking Challenge, The Management Challenge, Integrating IoT	' + Fog +					
Cloud.	_					
Unit – V	7 Hrs					
Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds: In	troduction					
,Background, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Netwo	ork Slicing					
Management in Edge and Fog.	-					
Course Outcomes: After completing the course, the students will be able to						

Course	Outcomes: After completing the course, the students will be able to
CO1	Understand and Explore Internet of Things (IoT) with New Computing Paradigms like 5G,
	Fog, Edge, and Clouds.
CO2	Analyze Prototyping and demonstrate resource management concepts in New Computing
	Paradigms.
CO3	Apply optimal wireless technology to implement Internet of Things and edge computing
	applications.
CO4	Propose IoT-enabled applications for building smart spaces and services with security
	features, resource management and edge computing.

Ref	erence Books:
1.	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers, 2013ISBN: 978-87-
	92982-73-5(Print) ISBN: 978-87-92982-96-4(E-Book).
2.	Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya, Satish Narayana Srirama, 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, 2017, TMH Publications, ISBN:9789352605224.
4.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, 1 st Edition, 2013, Willy Publications ,ISBN: 978-1-118-47347-4.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	2	2	-	-	1	-	2
CO2	2	2	1	1	-	2	2	-	1	1	-	3
CO3	1	2	1	1	-	2	2	-	1	1	-	2
CO4	1	2	2	2	-	3	3	1	2	2	-	3

				Semester: VI			
				ESSING & COMPUT PROFESSIONAL EI (Theory)			
Course Code			18TE6C2		CIE	:	100 Marks
Credits: L:T:P		: 3:0:0			SEE		100 Marks
Tota	l Hours	:	40L		SEE Duration	:	3.00 Hrs
Cou	rse Learning ()bje	ectives:				
1	List and under	rsta	nd various process	ses and steps employed	l in image processin	g.	
2	Illustrate diffe	eren	t transforms used	in image operations.			
3	Analyze imag	e ei	nhancement and re	estoration processes an	d techniques.		
4	Apply image	pro	cessing in real time	e applications.			

Unit-I	8 Hrs
Introduction: Introduction to Digital Image Processing, Origins of Digital Image	Processing,
Examples of fields that use DIP, Fundamental Steps in digital Image Processing, Compo	onents of an
Image Processing System.	
Digital Image Fundamentals: Elements of Visual Perception, A Simple Image Forma	tion Model,
Basic Concepts in Sampling and Quantization, Representing Digital Images, Spatial and	Gray-level
Resolution, Zooming and Shrinking Digital Images, Some Basic Relationships Betw	veen Pixels,
Linear and Nonlinear Operations.	
Unit – II	8 Hrs
Image Transforms: Two-dimensional orthogonal& unitary transforms, Properties	of unitary
transforms, two dimensional discrete Fourier transform, discrete cosine transform, sine	transform,
Hadamard transform, Haar transform, Slant transform, KL transform.	
Unit -III	8 Hrs
Image Enhancement in Spatial domain: Some Basic Gray Level Transformations,	Histogram
Processing, Enhancement using Arithmetic/Logic Operations, Basics of Spatial Filtering,	Smoothing
Spatial Filters, Sharpening Spatial Filters.	-
Image Enhancement in the Frequency Domain: Smoothing Frequency-Domain Filters,	Sharpening
Frequency Domain Filters, Homomorphic Filtering.	
Unit –IV	8 Hrs
Image Restoration: A Model of the Image Degradation/Restoration Process, Noi	se Models,
Restoration in the Presence of Noise Only-Spatial Filtering, Periodic Noise red	luction by
Frequency Domain Filtering, Linear, Position-Invariant Degradations, Est	imating the
Degradation Function, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering.	-
Color Fundamentals, Color Models, Pseudo-color Image Processing, Basics of Full-C	olor Image
Processing.	C
Unit –V	8 Hrs
Morphological Image Processing: Preliminaries, Dilation and Erosion, Opening a	nd Closing,
The Hit-or-Miss Transformation, Some Basic Morphological Algorithms.	
Image Segmentation: Detection of Discontinuities, Edge Linking and Boundary	Detection,
Thresholding, Region-Based Segmentation.	
Course outcomes: On completion of the course, the student should have acquired the abil	ity to
CO1 Understand digital image processing fundamentals and its applications.	
CO2 Apply image processing techniques in both spatial and frequency domains.	

CO3	Analyze	and	apply	different	operations	on an image	e for various	applications.	

CO4 Apply and justify the use of image processing in modern multimedia communication, society and Technology.

3 Digital Signal Processing – Fundamentals and Applications, Li Tan, 2008, Elsevier.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3		3				1			2
CO2	3		3		3				1	2		2
CO3	3	3		3	2	1						2
CO4	2	2	1	2		2	1		2	2		3

Refere	ence Books
1	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, Pearson Education, 2 nd Edition, 2001, ISBN-13: 978-0131687288.
2	Fundamentals of Digital Image Processing, Anil K. Jain, Pearson Education / PHI, 2001, ISBN: 9780133361650.
3	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, 2 nd edition, Pearson Education, 2001.
4	Digital Image Processing, William K. Pratt, 3 rd Edition John Wilely, 2004.

CIE is executed by the way of Tests (T), Quizzes (Q) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1				1			
CO2	3	2	2	1	1				1			
CO3	3	2	2	1	1				1			
CO4	3	3	2	2	1				1			

				Semest	or• VI		
				DSP APPLI			
			(CROUP		SIONAL ELECTIVE)		
			(GROUI	(Theo			
C	ourse Code	:	18TE6C3		CIE Marks	:	100
L	:T:P	:	3:0:0		SEE Marks	:	100
Т	otal Hours	:	40L		SEE Duration	:	3.00 Hrs
C	ourse Learnin	g O	bjectives: The	e students will h	be able to		
1	Explain the p	roce	ess of up sample	ing and down s	ampling of signals.		
2	Design the fi	lter	banks and M-cl	hannel QMF ba	nk.		
3	Design an ad	apti	ve filter based o	on LMS/RLS al	gorithm for different application	tions	
4	Explain the v	ario	ous concepts of	Image Processi	ng such as filtering, histogra	m, co	mpression etc.
5	Describe vari	ous	applications su	ich as audio, CI	D, mobile telephony and set	top bo	DX.
				UNIT-I			08 Hrs
Mu	lti-rate DSP:	Inti	roduction, Con		ing rate conversion; Noble	Identi	
					ns: Design of Phase shifters,		
Sys	stems with diffe	eren	t sampling rates	s, Narrow band	filters, Sub band Coding of	Speed	h signals.
				UNIT-II			08 Hrs
Dig	gital Filter Ba	nks	: Concepts, Po	olyphase structu	ares of uniform filter banks	, Trar	nsmultiplexers –
				DM conversion			
	-			•	, Perfect Reconstruction, Po	• •	-
					, Perfect Reconstruction Ty	vo-ch	annel FIR QMF
			sub band Codin	•			
	-		nk: Alias-free	and Perfect rec	construction condition, Poly	phase	form of the M-
cha	nnel QMF Bar	ık.					
				UNIT-III			
			a of adaptive f				08 Hrs
					s of adaptive filtering, Wein		er theory, Basic
	tem modelling		ithm, Recursiv	e least squares	s algorithm, Applications	- Noi	er theory, Basic se cancellation,
sup	pression, adapt		ithm, Recursive adaptive teleph	e least squares		- Noi	er theory, Basic se cancellation,
			ithm, Recursiv	e least squares hone echo cano ement.	s algorithm, Applications	- Noi	er theory, Basic se cancellation, llation, Jammer
-		ive	ithm, Recursive adaptive teleph signal enhance	te least squares hone echo cano ement. UNIT-IV	s algorithm, Applications - cellation, multi-path effect	– Noi cance	er theory, Basic se cancellation, llation, Jammer 08 Hrs
		tive g B	ithm, Recursive adaptive teleph signal enhance Basics: Notation	te least squares hone echo cano ement. UNIT-IV n and Data for	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa	– Noi cance lizatie	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level
adji	ustment and co	g B ontra	ithm, Recursive adaptive teleph signal enhance Basics: Notation ast, Image filter	te least squares hone echo cano ement. UNIT-IV n and Data for	s algorithm, Applications - cellation, multi-path effect	– Noi cance lizatie	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level
adji		g B ontra	ithm, Recursive adaptive teleph signal enhance Basics: Notation ast, Image filter	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa	– Noi cance lizatie	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image
adjı spe	ustment and co ctra, Image con	g B ontra	ithm, Recursiv adaptive teleph signal enhance Basics: Notation ast, Image filten ession.	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation	- Noi cance llizatio and o	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs
adju spe	ustment and co ctra, Image con plications: Au	g B ontra npro dio	ithm, Recursive adaptive teleph signal enhance Basics: Notation ast, Image filter ession. applications – c	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r	- Noi cance lizatio and o ecogn	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital
adju spe Ap aud	ustment and co ctra, Image con plications: Au lio system, Hig	g B ontra npro dio gh q	ithm, Recursive adaptive teleph signal enhance Basics: Notation ast, Image filten ession. applications – c juality ADC fo	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio,	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu	- Noi cance llizatio and o ecogn lltirato	er theory, Basic se cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band
adju spe Ap aud dig	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering,	g B ontra npro dio gh q h	ithm, Recursiv adaptive teleph signal enhance Basics: Notation ast, Image filten ession. applications – c juality ADC fo igh resolution	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio, n narrow ba	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu and spectral analysis. C	- Noi cance ilizatio and o ecogn iltirato D reo	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system,
adju spe Ap aud dig	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering,	g B ontra npro dio gh q h	ithm, Recursiv adaptive teleph signal enhance Basics: Notation ast, Image filten ession. applications – c juality ADC fo igh resolution	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio, n narrow ba	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu	- Noi cance ilizatio and o ecogn iltirato D reo	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system,
adju spe Ap aud dig	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering, ecommunicatio	g B ontra npro dio gh q h on a	ithm, Recursiv adaptive teleph signal enhance Basics: Notation ast, Image filter ession. applications – c juality ADC fo high resolution pplications – di	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio, n narrow ba igital cellular m	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu and spectral analysis. C tobile telephony, set-top box	- Noi cance ilizatio and o ecogn iltirato D reo for di	er theory, Basic ise cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system, gital TV.
adju spe Ap aud dig Tel	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering, ecommunicatio	g B ontra mpro dio gh q h on a e O	ithm, Recursive adaptive teleph signal enhance Basics: Notation ast, Image filten ession. applications – co juality ADC fo igh resolution pplications – di utcomes: After	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio mi or digital audio, n narrow ba igital cellular m r completing th	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu and spectral analysis. C obile telephony, set-top box	- Noi cance ilizatio and o ecogn iltirato D reo for di be ab	er theory, Basic se cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system, gital TV.
adju spe Ap aud dig	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering, ecommunicatio Cours D1 Explain th	g B pontra mpro dio gh q b bon a e O e in	ithm, Recursive adaptive teleph signal enhance Basics: Notation ast, Image filten ession. applications – co juality ADC fo igh resolution pplications – di utcomes: After	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio mi or digital audio, n narrow ba igital cellular m r completing th	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu and spectral analysis. C tobile telephony, set-top box	- Noi cance ilizatio and o ecogn iltirato D reo for di be ab	er theory, Basic se cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system, gital TV.
adju spe Apj aud dig Tel	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering, ecommunicatio Cours 01 Explain th applicatio	dio dio bntra dio gh q h h n a e O h e in ns.	ithm, Recursiv adaptive teleph signal enhance Basics: Notation ast, Image filter ession. applications – c juality ADC fo igh resolution pplications – di utcomes: After nportance and f	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio, n narrow ba igital cellular m r completing the functions of Dec	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu and spectral analysis. C obile telephony, set-top box ne course, the students will cimator, Interpolator, Adapti	- Noi cance ilizatio and o ecogn iltirato D reo for di be ab	er theory, Basic se cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system, gital TV.
adju spe Ap aud dig Tel CC	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering, ecommunicatio Cours D1 Explain th applicatio D2 Apply diff	g B ontra mpro dio gh q h on a e O ne in ns. fere	ithm, Recursive adaptive teleph signal enhance Basics: Notation ast, Image filter ession. applications – c juality ADC fo igh resolution pplications – di utcomes: After nportance and f	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio mi or digital audio, n narrow ba igital cellular m r completing the functions of Deco	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu and spectral analysis. C obile telephony, set-top box ne course, the students will cimator, Interpolator, Adapti data.	- Noi cance ilizatio and o ecogn iltirato D reo for di be ab	er theory, Basic se cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system, gital TV.
adju spe Apj aud dig Tel	ustment and co ctra, Image con plications: Au lio system, Hig ital filtering, ecommunicatio Cours 01 Explain th applicatio 02 Apply diff 03 Design an	g B ontra mpro dio gh q h on a h e O h s. fere: d A	ithm, Recursiv adaptive teleph signal enhance Basics: Notation ast, Image filter ession. applications – of juality ADC fo igh resolution pplications – di utcomes: After nportance and f nt DSP operation nalyze filter basi	re least squares hone echo cano ement. UNIT-IV n and Data for ring enhanceme UNIT-V digital audio mi or digital audio mi or digital audio, n narrow ba igital cellular m r completing th functions of Deco ons for various on nks and Adapti	s algorithm, Applications cellation, multi-path effect rmats; Histogram and Equa ent, Pseudo-color generation xing, speech synthesis and r DAC for hi-fi systems, mu and spectral analysis. C obile telephony, set-top box ne course, the students will cimator, Interpolator, Adapti data.	- Noi cance ilizatio and o ecogn iltirato D reo for di be ab	er theory, Basic se cancellation, ellation, Jammer 08 Hrs on, Image level detection, Image 08 Hrs ition, CD digital e narrow band cording system, gital TV.

Refer	Reference Books									
1	Digital Signal Processing, Proakis and Monolakias, 4 th Edition, 2013, Pearson/PHI, ISBN: 81-317-1000-9.									
	ISDN: 81-51/-1000-9.									
2	Digital Signal Processing – A Practical approach, E.C. If eachor and B.W. Jervis,									
	2 nd Edition, 2002, Pearson Education.									

Telecommunication Engineering

				SEMESTER: V					
				OPERATING SYST					
			(GROU	P C: PROFESSIONAL	L ELECTIVE)				
(Theory)									
Cour	rse Code	••	18TE6C4		CIE	:	100 Marks		
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks		
Total Hours : 4		40L		SEE Duration	:	3.00 Hours			
Cou	rse Learning	Ob	jectives: The	students will be able to	0				
1	Define fund	ame	ntal principle	s of operating system de	sign and kernel im	plei	nentation.		
2	Explain the	clas	ses of Operati	ing system and their sign	nificance.				
3	Analyse the	vari	ious aspect of	Process, Threads and C	PU Scheduling.				
4	Analyse the	diff	erent approac	hes to Process Synchror	nization and Deadlo	ocks			
5	Explain the	key	concepts of N	Iemory Management an	d File Managemen	t.			

_					
_	E		and a set Manager and	Management and I	
	HVD191	n the key conce	nte ot Memore	/ Management and I	HILE Management
2	LADIA		DIS OF MICHIOLY		The Management.

UNIT-I	07 Hrs
Overview of Operating Systems: Abstract Views of Operating Systems, Goals of an OS,	Operation
of an OS, Classes of OS -Batch Processing Systems, Multiprogramming Systems, Tin	ne Sharing
Systems, Real-Time Operating Systems, Distributed Operating Systems.	
UNIT-II	10 Hrs
Processes: Process concept, Process Scheduling, Operations on processes, cooperating pro-	ocess, Inter
process communication, Multithreading Models, Threading Issues.	
CPU Scheduling: Basic concepts, Scheduling Criteria, Scheduling Algorithms, Multi	i-processor
scheduling, Thread scheduling.	_
UNIT-III	10 Hrs
Process Synchronization: The critical selection problem, Peterson's solutions, Synch	nronization
Hardware, Semaphores.	
Deadlocks: System models, Deadlocks Characterization, Methods for handling Deadlocks	, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.	
UNIT-IV	07 Hrs
Memory management: Swapping, Contiguous Memory Allocation, Paging, Structure o	f the Page
Table, Segmentation.	C
Virtual Memory: Demand Paging, Copy-on-write, Page Replacement, Allocation of	of Frames,
Thrashing.	
UNIT-V	06 Hrs
File Systems: File concept, Access methods, Protection, File-system structure, H	File-system
Implementation, Directory Implementation and Allocation Methods.	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Identify and interpret various functions, goals and classes of operating system.						
CO2	Describe the key concepts of Process, Threads and CPU Scheduling.						
CO3	Evaluate the performance of various algorithms in Operating systems with respect to Process						
	Synchronization and Deadlocks.						
CO4	Analyse the key aspects in Memory and File management.						

Reference Books

1.	Operating System Concepts, A Sliberschatz and P B Galvin, 7th Edition, 2011, Addison Wesley,
	Reprint 2011, ISBN:978-81-265-0962-1.
2.	Operating Systems -A Concept Based Approach, D. M. Dhamdhere, 2 nd , Edition, 2006,

 TMHISBN NO: 0-07-061194-7.

 Operating Systems Internals and Design Principles, William Stallings, 7th Edition, 2012, Pearson,

 3. Prentice Hall, ISBN:978-0132309981.

Telecommunication Engineering

4. Operating Systems, Design and Implementation, Andrew S. Tanenbaum, 2006, Pearson Education, ISBN:978-0131429383.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2		1						1	
CO2	2	3	2		2						1	
CO3	3	3		1	2						1	
CO4	1	2		2	2				-		1	

	Machine Learning (GROUP D: PROFESSIONAL ELECTIVE) (Common to AE, BT, CH, CV, EE, EI, TE, IM, ME)							
Co	urse Code	:	18CS6D1		CIE Marks	:	100	
Cr	edits: L:T:P	:	3:0:0		SEE Marks	:	100	
To	tal Hours	:	39L		SEE Duration	:	3.00 Hrs	
Co	urse Learning	g Obj	ectives: The stu	dents will be able to				
1	1 Understand the concepts of supervised and unsupervised learning.							
2	2 Analyze models such as support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-means clustering and more in Python							
3								

Unit – I	08 Hrs
Introduction to Machine Learning: Introduction, What is Human Learning?, Types	of Human
Learning, What is Machine Learning?Types of Machine Learning - Supervised	learning,
Unsupervised learning, Reinforcement learning, Comparison - supervised, unsuper	vised, and
reinforcement learning, Problems Not To Be Solved Using Machine Learning, Appl	ications of
Machine Learning, State-of-The-Art Languages/Tools In Machine Learning, Issues in	n Machine
Learning.	
Preparing to Model: Introduction, Machine Learning Activities, Basic Types of Data i	n Machine
Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing	-
Unit – II	08 Hrs
Modelling and Evaluation: Introduction, Selecting a Model, Training a Model (for	Supervised
Learning), Model Representation and Interpretability, Evaluating Performance of a Model,	Supervised
learning - classification, Supervised learning - regression, Unsupervised learning -	clustering,
Improving Performance of a Model.	
Basics of Feature Engineering, Introduction, Feature Transformation, Feature construction	
Feature extraction, Feature Subset Selection, Issues in high-dimensional data, Key drivers	
selection - feature relevance and redundancy, Measures of feature relevance and redundance	cy, Overall
feature selection process, Feature Selection Approaches.	-
Unit – III	08 Hrs
Bayesian Concept Learning: Introduction, Why Bayesian Methods are Important?, Bayes	
Bayes' Theorem and Concept Learning, Brute-force Bayesian algorithm, Concept of	
learners, Bayes optimal classifier, Naïve Bayes classifier, Applications of Naïve Bayes	
Handling Continuous Numeric Features in Naïve Bayes Classifier, Bayesian Belief	
Independence and conditional independence, Use of the Bayesian Belief network in machin	e learning.
Unit – IV	08 Hrs
Supervised Learning: Classification Introduction, Example of Supervised Learning, Classification	assification
Model, Classification Learning Steps, Common Classification Algorithms, k-Nearest	
(KNN), Decision tree, Random forest model, Support vector machines.	0
Super vised Learning: Regression, Introduction, Example of Regression, Common	Regression
Algorithms, Simple linear regression, Multiple linear regression, Assumptions in Regression	n Analysis,
Main Problems in Regression Analysis, Improving Accuracy of the Linear Regressi	on Model,
Polynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation.	
Unit – V	07 Hrs
Unsupervised Learning: Introduction, Unsupervised vs Supervised Learning, Appl	lication of
Unsupervised Learning, Clustering, Clustering as a machine learning task, Differen	t types of
clustering techniques, Partitioning methods, K-Medoids: a representative object-based	technique,
Hierarchical clustering, Density-based methods - DBSCAN, Finding Pattern using Associ	ation Rule,
Definition of common terms, Association rule, The apriori algorithm for association rul	e learning,
Build the apriori principle rules.	

Telecommunication Engineering

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Explore and apply the fundamentals of machine learning techniques.					
CO2	Understand different techniques of data pre processing.					
CO3	Analyze the strength and weakness of different machine learning models to solve real world problems.					
CO4	Implement and apply different supervised and unsupervised machine learning algorithms.					

Reference Books 1. Machine Learning, Amit Kumar Das, SaikatDutt, Subramanian Chandramouli, Pearson Education India, April 2018 ISBN: 9789389588132. Introduction to Machine Learning, EthemAlpaydin, 2nd Edition, 2010, PHI Publication, ISBN-2. 978-81-203-4160-9. Practical data science with R, Zumel, N., & Mount J, Manning Publications, 2014, ISBN 3. 9781617291562 Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 4. Nikhil Buduma, O'Reilly Publications, 2016 Edition, ISBN-13: 978-1491925614. Pattern Recognition and Machine Learning, Christopher M Bishop, Springer, February 2006, 5. ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2. The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, 6. Springer, Second Edition, April 2017, ISBN 978-0-387-84858-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	-	-	-	-	-	-	1
CO2	2	2	2	2	1	-	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	-	1
CO4	3	3	3	3	2	2	-	-	-	-	-	2

	Semester: VI							
	CMOS DIGITAL INTEGRATED CIRCUITS							
			(GROU	JP D: PROFESSIONA	L ELECTIVE)			
				(Theory)				
Cou	Course Code:18TE6D2CIE:100 Marks						Aarks	
Credits: L:T:P			3:0:0		SEE		100 N	Aarks
Tota	l Hours		39L		SEE Duration		3.00	Hrs
Cou	rse Learning	Oł	jectives: The	students will be able t	0			
1	Define the s	tru	cture of MOS	transistors and explain s	second-order effects of a	M	OSFET	
2	Explain the	var	ious sources o	f power in CMOS circu	its and ways to minimiz	e.		
3	3 Realize digital circuits in variants of CMOS logic.							
4	4 Draw stick diagram for a given CMOS digital circuit.							
	Unit-I 08 Hrs							

Unit-1						
Review of MOS transistor: MOSFET operation, MOSFET current-voltage characteristics.						
Geometrical effects: Channel length modulation, Substrate bias effect, Short-channe	effects,					
Narrow-channel effects, Sub threshold conduction, DIBL, punch-through, Hot-carrier injection						

Unit – II	08 Hrs
Review of different forms of pull-up. CMOS inverter operation with VTC, Design of CMOS	s inverter,
Supply voltage scaling, CMOS ring oscillator circuit, Switching Power Dissipation o	f CMOS
Inverters, CMOS logic circuits, Pseudo-nMOS logic.	

Unit –III

CMOS transmission gates, CPL logic, CMOS D-latch and Flip-flop.

Fabrication Process Flow: Basic Steps, Fabrication of the nMOS Transistor, CMOS nWell Process, Stick diagram for CMOS logic circuits.

Dynamic CMOS logic, Domino logic, TSPC Dynamic CMOS circuits.

Unit –IV	08 Hrs				
Low-Power CMOS Logic Circuits: Need for low-power design, Overview of Power Consumption,					
Low-Power design through Voltage Scaling, Variable-Threshold CMOS (VTCMOS)	Circuits,				
Multiple-Threshold CMOS (MTCMOS) Circuits, Pipelining Approach, and Parallel P	rocessing				
Approach, Introduction to adiabatic CMOS gates.	-				
Unit –V	07 Hrs				
Memories: 4-bit x 4-bit NOR and NAND based ROM array, Full CMOS SRAM cell,	One-				
Transistor DRAM Cell.On-Chip Clock Generation and Distribution, Concepts of H	lierarchy,				
Regularity, Modularity and Locality, Design quality.	-				

Course	e Outcomes: After completing the course, the students will be able to
CO1	Apply the fundamentals of semiconductor physics in MOS transistors and analyze
	geometrical effects of MOS transistors.
CO2	Analyze the working of CMOS inverter and to realize the Boolean functions in variants of
	CMOS logic and draw stick diagrams for CMOS circuits.
CO3	Justify the need for low-power design, and analyze various sources of power consumption
	and approaches to minimize them.
CO4	Design and realize combinational, sequential digital circuits and memory cells in CMOS
	logic.

Refere	Reference Books									
1	CMOS Digital Integrated Circuits: Analysisand Design, Sung-Mo Kang and Yusuf Leblebici, 3 rd Edition, Tata McGraw-Hill, ISBN: 0070530777, 2003.									
2	Basic VLSI Design, Douglas A. Pucknell and Kamran Eshraghian, 3 rd Edition, 2003, PHI, ISBN: 8120309863.									

Telecommunication Engineering

08 Hrs

3 Deep-Submicron CMOS ICs, Harry Veendrick, 2nd Edition, 2000, Kluwer academic publishers, ISBN: 9044001116.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	1	1	3							1			
CO2	2	2	2	1	3							1			
CO3	2	2	1	2	3							1			
CO4	1	2	2	2	3							1			

	Semester: VI													
	DATA STRUCTURES AND ALGORITHMS													
	(GROUP D: PROFESSIONAL ELECTIVE)													
(Common to EC and TE)														
Cou	Course Code:18EC6D3CIE:100 Marks													
Cree	dits: L:T:P	:	3:0:0		SEE	:	100 Marks							
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours							
Cou	rse Learning O	bje	ectives: The stu	dents will be able to										
1	Formulate and	1 a	pply object-ori	ented programming	, using C++/Java,	as	a modern tool to solve							
	engineering pr	obl	ems.											
2	Demonstrate a	n u	inderstanding of	f basic data structure	es (such as an array-	bas	ed list, linked list, stack,							
	queue, binary	sea	rch tree) and alg	gorithms.										
3	Demonstrate t	he	ability to analy	ze, design, apply a	nd use data structu	res	and algorithms to solve							
	engineering pr	obl	ems and evalua	te their solutions.										
4	Demonstrate a	an	understanding	of analysis of algo	rithms. Study an a	algo	orithm or program code							
	segment that	co	ntains iterative	constructs and an	alyze the asymptot	ic	time complexity of the							
	algorithm or co	ode	segment.											

Unit-I	08Hrs
Introduction to data structures: Introduction to oops concepts. Introduction to data represent	ntation, Linear
Lists, Linked Representation	
Algorithm Analysis: Mathematical Background, Model, What to Analyze, Running Time Ca	lculations.
Unit – II	08 Hrs
Stack and queue: Stack and queue implementation using linear list and linked list. Stac	k application-
Parenthesis matching, Queue application-railroad car rearrangement.	
Hashing: Hash table representation- ideal hashing, hashing with linear open addressing, ha	sh tables with
chains.	
Unit –III	07 Hrs
Binary and other Trees: Trees, Binary Trees, Properties and Representation of Binary	Frees-Formula
Based Representation, Linked Representation, Common Binary Tree Operations.	
Binary Search Tree (BST). Organizing data in a BST. Inserting and deleting items in a BST.	
Unit –IV	08 Hrs
Priority Queues (Heaps): Model, Simple Implementations, Binary Heap, Leftist Heaps.	
Graph Algorithms: Definitions, Properties of graphs, Representation of Graphs, Shortest-Pa	th Algorithms,
Network Flow Problems, Minimum Spanning Tree, Depth-First Search, Breadth-First Search	,Introduction
to NP-Completeness.	
Unit –V	08 Hrs
Searching and Sorting Techniques: Sorting Techniques: Bubble sort, Merge sort, Selecti	on sort', Heap
sort, Insertion Sort. Searching Techniques: Sequential Searching, Binary Searching, Search Tu	rees.
Algorithm Design Techniques: Greedy Algorithms, Divide and Conquer, Dynamic	Programming,
Randomized Algorithms, Backtracking Algorithms.	. –

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Acquire the knowledge of importance of data structures in computer programs.								
CO2	Represent and solve data analytics problems using graph algorithms.								
CO3	Implement classic data structures: array lists, linked lists, stacks, queues, heaps, binary trees, hash								
	tables.								
CO4	Evaluate the performance of various algorithms built using different data structures.								

Refer	rence Books
1	Data Structures and Algorithm Analysis in C++ (3rd edition), by M. A. Weiss. Addison-Wesley,
1	ISBN-10: 032144146X & ISBN-13: 9780321441461.
2	Sartaj Sahani; "Data structures, Algorithms and applications in c++"; McGraw Hill; 2000;1st
2	Edition; ISBN: 10:007236226X.
2	Data Structures Using C++, D.S. Malik, 2 nd Edition, 2009, Cengage Learning, ISBN- 13: 978-0-324-
5	78201-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	3	-	-	-	-	-	-		-	-			
CO2	3	2	2	3	-	-	-	2	2		-	-			
CO3	2	2	3	3	-	-	-	2	2		-	-			
CO4	3	3	3	3	2	3	2	3	3	3	2	3			

		Semeste	er: VI					
		JAV						
	(GRO		IONAL ELECTIVE)					
	10756	(Theo			100 Marks			
Course Code								
Credits: L:T:P	: 3:0:0		SEE	:	100 Marks			
Total Hours	: 40L		SEE Duration	:	3.00 Hrs			
Course Learning	, U							
^	•	v .	ogramming by considering suit	table	use-cases an			
			ructs specified in Java.					
2 Build award programs of		programming consu	ructs and methods in Java and	mp	lement simple			
· · ·		vanced programmin	g concepts in Java to cater th	ne de	mand of full			
fledged app		ancea programmin						
<u> </u>		apply concepts in to	o workable code.					
		Unit-I			08 Hr			
Java Programm	ing Fundame	entals: Java Langu	age introduction, Java featu	ires,				
			programs), Lexical Issues, Ja					
			conversion and Casting, Array					
Control-Branchin				-	•			
		Unit – II			08 Hr			
Introducing class	ses: Class fund	amentals, declaring	objects, Classes-Object Refere	nces,	Instance			
			ntroducing methods, Method D					
	•	lethod Overloading.	0					
•		•	, uses of super, Dynamic Met	hod I	Dispatch,			
Abstract classes, l		e			1 /			
		Unit -III			08 Hrs			
Packages and	Interfaces Pa		rotection, Importing package	es at				
			eptions, java's built-in exception		id interfaces			
-	v		odel, Thread life cycle, main		d creation o			
			ling thread, creating multipl					
-			on, suspending, resuming, and					
1 / 5	,	Unit –IV		11	08 Hrs			
Introduction to	Iava CIII. A		sics, Architecture, Applet Lit	Fector				
		assing parameters to		lecyc	ie, iepaint (
AWT: AWT class	0 1	01	rippicis.					
			e and JComponent, Icons &	lab	els Handlin			
Threading issues,			e una recomponent, recons e	. 1uo	cis, mananin			
Threading issues,		Unit –V			08 Hrs			
Servlets: Servlet	Lifecycle The		; JDBC Driver Types; JDBC	Pack				
			with the Database. J2ME basic					
and J2ME Archite				, 02				
Course enterer	. On committee	on of the course the	e student should have acquired	the	bility to			

Course	Course outcomes: On completion of the course, the student should have acquired the ability to								
CO1	D1 Understand the fundamentals concepts and its applications of JAVA such as Exceptions,								
	Applets, AWT, Swings, JDBC, JSP.								
CO2	Apply the concepts of classes, instances & Inner classes in Java, inheritance, exceptions								
	and threading concepts in programming.								
CO3	Create applications using the concepts of Applets, Swings, and Servlets.								
CO4	Design and implement applications using Java allied technologies.								

Telecommunication Engineering

Refere	ence Books
1	The Complete Reference–Java, Herbert Schildt, 7 th Edition,TMH Publications, ISBN-10: 0071808558.
2	The Complete Reference - J2EE, JimKeogh, TMHpublications, ISBN: 10, 0070529124.
3	The Complete Reference J2ME, Jim Keogh, 2006, Tata McGraw Hill, ISBN: 9780070534155.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	2	2	1			1				1			
CO2	3	3	3	2	2			1				1			
CO3	3	3	3	1	1			1				1			
CO4	3	3	3	2	1			1				1			

	Semester: VI											
	AIRCRAFT SYSTEMS											
	(GROUP E: GLOBAL ELECTIVE)											
	(Theory)											
Cou	rse Code	:	18G6E01	С	IE	:	100 Marks					
Crec	lits: L:T:P		3:0:0	SI	EE	••	100 Marks					
Hou	rs	:	39L	SI	EE Duration		3.00 Hours					
Cou	rse Learning O	bje	ectives: To ena	ble the students to:								
1	List the variou	is s	ystems involve	d in the design of an aircraft								
2	Demonstrate t	he 1	technical attrib	utes of all the subsystems of an	n aircraft							
3												
4	Demonstrate t	he i	integration of the	he systems with the airplane								

Unit-I	07Hrs						
Flight Control Systems: Primary and secondary flight controls, Flight control linkage	e system,						
Conventional Systems, Power assisted and fully powered flight controls.							
Unit – II	10Hrs						
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or						
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	e of bleed						
air, Landing gear and braking, Shock absorbers-Retraction mechanism.							
Unit -III	08Hrs						
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its con	Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components,						
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.							
Unit -IV	07Hrs						
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-						
icing system, Fire detection- warning and suppression. Crew escape aids.							
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system.	l a typical						
	a typical 07Hrs						
lubricating system.	07Hrs						
lubricating system. Unit -V	07Hrs						
lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	07Hrs Vavigation						

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane								
CO2:	Comprehend the complexities involved during development of flight vehicles.								
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle								
CO4 :	Demonstrate the different integration techniques involved in the design of an air vehicle								

Reference Books

	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A.,3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO									PO12			
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

	Semester: VI BIO INSPIRED ENGINEERING (GROUP E: GLOBAL ELECTIVE)										
(Theory) Course Code : 18G6E02 CIE : 100 Marks											
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks				
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours				
Cou	rse Learning ()bj	ectives: The studen	ts will be able to							
1	To familiarize	e er	igineering students	with basic biologica	l concepts						
2	Utilize the si	mil	arities noted in nat	ture for a particular	problem to bring i	nsp	iration to the				
	designer.			_		_					
3	Explain appli	cat	ions such as smart	structures, self-heali	ng materials, and ro	bot	ics relative to				
	their biologic	al a	inalogs		-						
4	To gain an u	nde	rstanding that the d	esign principles from	m nature can be tran	islat	ed into novel				
	devices and st	truc	ctures.	_							
	devices and structures.										

Unit-I	08 Hrs						
Introduction to biological systems: General and Special biomolecules, Plant, an	imal and						
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural networks,							
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsuper	vised and						
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems with case							
study Harvesting Desert Fog.							
Unit – II	08 Hrs						
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and	l physical						
functions of biological composites of engineering – related case study: Camera from eyes	, clothing						
designs and hooks from Velcro Criteria for future materials design and processing. Con	mputation						
Cellular systems: Cellular automata - modelling with cellular systems with cellular s	systems –						
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.							
Unit –III	08 Hrs						
Engineering of synthetic organs: Growth, development and principle of artificial skins	s, hearing						
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pa	acemaker,						
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Appl	ication of						
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods							
Unit –IV	07 Hrs						
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequivalence.	uivalence,						
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, I	ssues on						
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar	Products,						
Challenges involved in Biosimilars.							
Unit –V	08 Hrs						
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural	systems,						
learning in behavioural systems – co evolution of body and control. Behaviour in cognitiv	ve science						
and artificial intelligence. Biological inspiration for robots, Robots as biological mo							
robotics behaviour, Application of sleek scale of shark skin.							
Course Outcomest After completing the course the students will be able to							

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Remember and explain the concepts of biological and physiological processes								
CO2:	CO2: Elucidate the basic principles for design and development of biological systems.								
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems								

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

MUICIC	LICC DOORS
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI
2	
_	Global, 2016. ISBN: 1466698128, 9781466698123.
	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN:
3	1606502255, 9781606502259.
	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature -
4	
-	Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	-	-	1	3	2	-	1	1	1	-	
CO2	3	3	2	3	2	-	1	2	-	1	2	-	
CO3	2	2	2	3	3	3	2	2	-	1	2	2	
CO4	2	2	3	3	2	-	1	2	1	-	-	-	

			Semester: VI								
		SUSTA	AINABLE TECHNO	DLOGY							
		(GROU	P E: GLOBAL ELE	CTIVE)							
			(Theory)								
Course Code	:	18G6E03		CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0		SEE	: 100 Ma						
Total Hours	:	39L		SEE Duration	:	3.00 Hours					
Course Learning	; Obj	ectives: The stud	ents will be able to								
		•	life cycle assessment.								
			t methodology using a		es.						
4 Use concep	ts of s	systems-based, tr	ans-disciplinary appro	bach to sustainability.							
			TT •4 T								
Introduction to a			Unit-I			08 Hrs					
Introduction to s		•	pts and Life Cycle	Analysis Matarial	flor	v and west					
		•	ects, Character of Env	-	110	w and wast					
management, enc	mea		Unit – II	inoninentai i robieniis		07 Hrs					
Environmental I)ata (Collection and L	CA Methodology:			07 111					
			es, Statistical Analys	sis of Environmenta	l D	ata, Commo					
			CA Methodology. – Go			,					
•			Unit –III			08 Hrs					
Life Cycle Assess	smen	t:				·					
			cle Interpretation, LCA	A Benefits and Drawb	acks						
Wet Biomass Ga											
			ck for biogas generation								
-	•	0	ctors affecting bio-dia		1 of	biogas plants					
Floating drum pla	nt and	a fixed dome plai	nt their advantages and Unit –IV	d disadvantages.		08 Hrs					
Design for Susta	nahi	1:4	Unit –I v								
0		•	ental Design for Susta	inahility							
Dry Biomass Ga			chiai Design for Susta	maomry.							
v			rmal gasification of bi	iomass. Classification	of g	asifiers. Fixe					
bed systems:		,	0	,	0	,					
•			Unit –V			08 Hrs					
Case Studies:											
	r Org	anics Treatment	Plant, Bio-methanatic	on, Bioethanol produc	tion.	Bio fuel from					
water hyacinth.											
		<u> </u>	he course, the studer								
			challenges facing the	-	and	systems-base					
approach	es req	uired to create su	stainable solutions fo	r society.							
CO2: Identify	oroble	ems in sustainab	ility and formulate a	ppropriate solutions	based	l on scientifi					
research,	applie	ed science, social	and economic issues.								
	~ ~		stems-based, trans-dis		susta	inability					
11 2		•	ns based on scientific			÷					
	- upp			- research, applied s		e, social all					

]	Reference Books											
	1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge	
	1	University Press, ISBN - 9781108333726.										

economic issues.

	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VI									
	GRAPH THEORY								
		(GROUP E: O	GLOBAL ELECT	TIVE)					
			(Theory)						
Course Code	:	18G6E04		CIE Marks	:	100 Marks			
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE Marks : 100 Marks								
Total Hours	:	39L		SEE Duration	:	3.00 Hours			

Cour	se Learning Objectives: The students will be able to
1	I understand the basics of smark the same and their requires a moment

Cour		ing Ob	jeen co.	Incs	luucin	9 WH						
1	Understa	and the	basics of	graph	theory	and	their	various	prope	erties.		
0	37 11	1.1	•	1	1.	1	.1	1.1	1		•	11

2

- Model problems using graphs and to solve these problems algorithmically. Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, 3 etc.
- Optimize the solutions to real problems like transport problems etc., 4

UNIT-I	07 Hrs
Introduction to graph theory	
Introduction, Mathematical preliminaries, definitions and examples of graphs, degree	es and regular
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	C
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	y in digraphs.
UNIT-II	09 Hrs
Graph representations, Trees, Forests	·
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	d properties of
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spann	ning trees and
forests, Spanning trees of complete graphs, An application to electrical networks, I	Minimum cos
spanning trees.	
UNIT-III	09 Hrs
Fundamental properties of graphs and digraphs	•
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in wei	ighted graphs
Eulerian digraphs.	0 0 1
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratow	ski's theorem
Dual of a planar graphs.	
UNIT-IV	07 Hrs
Matchings and Factors	
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite m	atching.
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynom	ial of a graph
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge color	ing of graphs
UNIT-V	07Hrs
Graph algorithms	
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest pa	ath algorithms
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm	•
and Prim's.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the basics of graph theory.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1.	Understand and explore the basics of graph theory.						
CO2.	Analyse the significance of graph theory in different engineering disciplines						
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.						
CO4.	Evaluate or synthesize any real world applications using graph theory.						

Reference	Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

			Semester: VI					
		DI	ISASTER MANAGE	MENT				
(GROUP E: GLOBAL ELECTIVE)								
(Theory)								
Course Code : 18G6E05 CIE : 100 Marks								
Credits: L:T:P								
Total Hours	:	39L		SEE Duration	:	3.00 Hours		
Course Learning	Ob	jectives: The stu	dents will be able to		_	1		
1 Study the env	viror	nmental impact of	of natural and manmad	e calamities				
2 Learn to anal	yze	and assess risk i	nvolved due to disaster	rs.				
		ole of public part						
4 Learn the ma	nage	ement tools and	mitigation techniques.					
			Unit-I			08 Hrs		
Natural disasters				111 .1 1				
			Hazards- floods, land					
			ients, harmful gases, B					
			tivities. Preparation of Post disaster plans. Re					
organization and a			-	ner camp organizatio	II. N	ole of voluntary		
organization and a	inte	u torees during (Unit – II			07 11		
Diale analysis and			Unit – 11			07 Hrs		
Risk analysis and			alysis. Analytical te	abriques and tools	of	rick accomment		
			k characterization. Ris					
emergency respon					. 1010	inagement, i ii ii		
			Unit –III			08 Hrs		
Environmental In	npa	ct Assessment (
			ciples of EIA. Regula	atory framework in I	ndia	. Environmental		
inventory. Base lin				-				
			Unit –IV			08 Hrs		
Assessment and M	Met	hodologies						
		0	es, Socio economic an	d cultural environment	ntal	assessment. EIA		
			list approaches. Econo					
EIA. Public partic	cipa	tion in environn	nental decision makin	g. Procedures for rev	iewi	ng EIA analysis		
and statement. Dec	cisic	on methods for e	valuation of alternative	es.				
			Unit –V			08 Hrs		
Disaster Mitigati	on a	nd Managemer						
e		0	management, tools an	d techniques, primary	and	l secondary data		
Natural disasters its causes and remedies-Earthquake hazards-Causes and remedies, Flood and Drought								
assessment, causes and remedies, Landslides-causes and remedies. Fire hazards in buildings, Fire								
hazard management, Traffic management, Cyclones and hurricanes, inter department cooperation.								
Regional and glob	al d	isaster mitigation	n.	-		_		
Course Outcome	s: A	fter completing	g the course, the stude	ents will be able to				
			f disasters and manage		ter s	ituation.		
CO2. Estimata			the might by conductin			1		

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	Reference Books								
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.								
2	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.								
3	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,								
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN:9780470052457.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-

			Sen	nester: VI		
			WEARABLI	E ELECTRONICS		
			(GROUP E: GI	LOBAL ELECTIVE)		
			(7)	Theory)		
Cou	rse Code	:	18G6E06	CIE	:	100 Marks
Cre	dits: L:T:P	:	3:0:0	SEE	:	100 Marks
Tota	al Hours	:	39L	SEE Duration	:	3.00 Hours
Cou	rse Learning	Obj	ectives: The students will	be able to		
1	Explain the t	ypes	and application of wearab	le sensor.		
2	Describe the	wor	king of sensitivity, conduc	tivity and energy generation in wear	abl	e devices.
3	Explain the v	varic	us facets of wearable appli	cation, advantage & challenges.		
4	Understand of	liffe	rent testing and calibration	in wearable devices.		

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III	07 Hrs
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of con	nductive fibre,
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case	studies, Hands
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &.	Ref 3: Chapter
6,9]	
Unit –IV	08 Hrs

	00 1115
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradien	ıt,
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]	

Unit –V	08 Hrs
Wearable antennas for communication systems: Introduction, Background of textile an	tennas, Design
rules for embroidered antennas, Integration of embroidered textile surfaces onto polyn	mer substrates,
Characterizations of embroidered conductive, textiles at radio frequencies, RF p	erformance of
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna
CO2:	Analysis measurable quantity and working of wearable electronic devices.
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem
	statement.

Refer	rence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
l	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
5	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

				Semester: VI			
			ENERGY AUD	ITING AND MAN	AGEMENT		
	(GROUP E: GLOBAL ELECTIVE)						
				(Theory)		_	
Co	ourse Code	:	18G6E07		CIE	:	100 Marks
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours
Co	ourse Learning	g O	bjectives: The stud	ents will be able to			
1	Understand th	ne r	eed for energy audi	t, energy manageme	nt and the concepts	of t	ooth.
2	Explain Proce	esse	es for energy audit o	of electrical systems.			
3	Design and de	eve	lop processes for en	ergy audit of mecha	nical systems.		
4	Prepare the fo	orm	at for energy audit of	of buildings and ligh	ting systems.		

Unit-I	06 Hrs
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit,	Place of
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project F	inancing
Options, Energy Monitoring and Training.	
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Measurement, Light M	urement,
Speed Measurement, Data Logger and Data Acquisition System,	
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types	of
Power Plants, Energy Audit of Power Plant.	
Unit – II	10 Hrs
Electrical Load Management: Electrical Passiag Electrical Load Management, Variable	•

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III 10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving
Measures in Furnaces, Furnace Efficiency
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy
Conservation Methods
Unit –IV 07 Hrs
Unit –IV 07 Hrs Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System.
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System. Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air – Conditioning

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments										
	needed.										
CO2:	Design and perform the energy audit process for electrical systems.										
CO3:	Design and perform the energy audit process for mechanical systems										
CO4 :	Propose energy management scheme for a building										

Reference Books

INCIG	LICHCE DOORS
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6 th Edition, 2015, CRC Press, ISBN: 0-88173-542-6
3	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	2	1	2	3	2	1	1	1	2	
CO2	3	3	2	2	2	2	3	2	1	1	2	2	
CO3	3	3	2	2	2	2	3	2	1	1	2	2	
CO4	3	3	2	2	2	2	3	3	1	1	2	2	

				Semester: VI							
	VIRTUAL INSTRUMENTATION & APPLICATIONS										
	(GROUP E: GLOBAL ELECTIVE)										
(Theory)											
	rse Code	:	18G6E08		CIE	:	100 Marks				
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks				
	al Hours	:	39L		SEE Duration	:	3.00 Hours				
		<u> </u>	v	e students will be able to							
1				e between conventional and graph	ical programmin	g					
2				and virtual instrument.	6.1.4	•••	• • • •				
3	Analyzing LabVIEW	the	e dasies of dat	a acquisition and learning the cond	cepts of data acqu	1151	tion with				
4		7 A 1	real time annl	cation using myRIO and myDAQ	programming co	nce	ents				
-	Developing	5 a 1	icai tine appi			mee					
				Unit-I			07 Hrs				
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Comp	oonents of LabVI	EW					
Cont	troller, Indic	ato	rs data type	s, wiring tool, debugging tools	, Creating Sub-	Vis	s, Boolean, -				
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Typ	be Def, Strict Typ	e E	Def.				
				Unit – II			09 Hrs				
For	Loop, While	Lo	op, Shift reg	sters, stack shift register, feedbac	k node, and tunn	el,	elapsed time,				
				mula node, Sequence structures, I			^				
	,		,	Unit –III			09 Hrs				
Arra	vs and cluste	ers.	Visual displa	y types- graphs, charts, XY graph,	Introduction to	Str					
	-		-	cal examples, File Formats, File I/			-				
	8		JI	Unit –IV		1	07 Hrs				
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure Mo	odel, Master-Sla	ve	Model, State				
	•			n using Semaphore, Introduction to							
		-		ssistants, Analysis Assistants, I							
			-	ured it as Virtual labs, Counters, L							
)	<u> </u>	Unit –V			07 Hrs				
Sign	al Processing	y A	pplication- Fo	purier transforms, Power spectrum	. Correlation met	hoo					
-				on using myRIO, Communication			-				
	e			re myRIO for speed control of I	•						
			•	and onboard sensors. Develop	•		• •				
~ ~	isition and p			and onoodra sensors. Develop	ment of control		, stem, mage				
acqu	instruori and p		coome								

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.										
CO2:	Apply the theoretical concepts to realize practical systems.										
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.										
CO4 :	Create a VI system to solve real time problems using data acquisition.										

Reference Books										
	1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning								
1	I	Pvt.Ltd , ISBN: 978-8120340305								

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017, Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
4	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	-	-	-	-	-	1	1	-	1	
CO2	1	3	2	1	2	-	-	-	1	1	-	1	
CO3	2	2	3	3	3	-	-	-	1	1	-	2	
CO4	1	2	2	3	3	1	0	2	3	2	1	2	

	Semester: VI								
	SYSTEMS ENGINEERING								
			(GROUP I	E: GLOBAL ELECT	IVE)				
				(Theory)		1	1		
Cou	rse Code	:	18G6E09	CI	E	:	100 Marks		
Crec	lits: L:T:P	:	3:0:0	SE	E	:	100 Marks		
Total Hours		: 39 L		SE	SEE Duration		3.00 Hours		
Cou	rse Learning (Obje	ectives:						
1.	Understand th	he L	ife Cycle of System	IS.					
2.	Explain the re	ole	of Stake holders and	their needs in organiz	ational system	ıs.			
3.	Develop and	Doc	cument the knowled	ge base for effective s	ystems engine	ering	g processes.		
4.	4. Apply available tools, methods and technologies to support complex high technology systems.								
5.	Create the fra	me	works for quality pro	ocesses to ensure high	reliability of s	syste	ems.		

UNIT-I	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, Or	rigins of
System Engineering, Examples of Systems Requiring Systems Engineering, System Eng	ineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	s.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of C	Complex
systems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evol	utionary
Characteristics of the description of the sector of the sector of the sector of the description of the sector of t	

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems10 Hrs

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs				
Engineering Design: Implementing the System Building blocks, requirements analysis, Fu	nctional				
analysis and design, Component design, Design validation, Configuration Management, proble	ems.				
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test plan	Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and				
preparation, System integration, Developmental system testing, Operational test and eva	aluation,				
problems.					
LINIT – V	06 Hrs				

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the Life Cycle of Systems.						
CO2:	Explain the role of Stake holders and their needs in organizational systems.						
CO3:	Develop and Document the knowledge base for effective systems engineering processes.						
CO4:	Apply available tools, methods and technologies to support complex high technology systems.						
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.						

Reference Books:

-	
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	1
CO2	-	2	3	-	1	-	-	1	-	-	2	-
CO3	-	3	-	-	-	2	2	1	-	3	2	-
CO4	-	-	2	1	-	-	-	-	-	-	-	-
CO5	1	1	-	2	-	1	2	-	3	-	-	-

			S	emester: VI										
	I	NTI	RODUCTION TO MOBI	LE APPLICATION I	DEVELOPMEN	JT								
			(GROUP E: C	GLOBAL ELECTIV	'E)									
		_		(Theory)			<u></u>							
	e Code	:	18G6E10		CIE	:	100 Marks							
	ts: L:T:P	:	3:0:0		SEE	:	100 Marks							
Total]		:	39L		SEE Duration	:	3.00 Hours							
			ctives: The students will b		1 1									
1	-		e knowledge on essentials		<u>^</u>									
2			e basic and advanced featu											
3	-		lls in designing and buildi		÷ .		rm.							
4		-	nd publish innovative mot			•								
5	Comprehen	d th	e knowledge on essentials	of android application	development.									
			T	•			00.11							
TA	1 4*		Un	it-I			08 H							
	luction:		. 1 . 1	1° (° T (1		1 т	/ 11° A 1							
		-	systems and smart phone				-							
	-		oid app project, deploying			JIL	Jesign: Building							
•			, Layouts, Views and Reso		•	• • • •	Intende Tredit							
			The Activity Lifecycle,		-									
-		ng s	upport libraries, The And	droid Studio Debugger	, Testing androi	ld a	ipp, The Andro							
Suppo	rt Library.		T T •/											
I. ann a			Unit	; – II			08 H							
	experience:	T	anut Controlo Monuo Co	man Naviation Dear	lan Wiener Deliel		1							
			nput Controls, Menus, Sch		-		-							
	-		Themes, Material Design,	Providing Resources in	or Adaptive Lay	outs	s, resulig app (
Tesun	g the User Inte	eria		TTT			00 11							
Work	ing in the bac	lzar	Unit	-111			08 H							
	0	0	vncTask and Async Task	Loader Connect to th	a Internet Bree	daa	st Docoivors							
-			heduling and optimizing											
	Ferring Data E	-	v , v	background tasks - Iv	otifications, Sen	Cut	ning Alarins, a							
1141151			Unit	IV			08 H							
All ah	out data:			- I V			00 11							
		ting	s, Storing Data, Shared Pro	eferences Ann Setting	s Storing data us	sinc	sol ite - SOL							
		-	e. Sharing data with conten		-	-								
			s and Debugging, Displayi		-		os and Fragmer							
-		-	ogramming: Internet, E	÷ •	-	-								
			web pages and maps, con											
		-	d services, Sensors.	municating with SND		au								
301 1100	lo - Location (Jase		t V			07 H							
			Uni	t - V			1 U/ H							
Hardy	vare Sunnort	8					0711							
	ware Support			curity Firebase and A	dMob Publish	and								

Form Factors, Using Google Services.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Comprehend the basic features of android platform and the application development process.					
	Acquire familiarity with basic building blocks of Android application and its architecture.					
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating					
	Android features in developing mobile applications.					
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android					
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting					
	tools.					
CO4:	Create innovative applications, understand the economics and features of the app marketplace by					
	offering the applications for download.					

Refere	Reference Books							
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,							
1	2015, ISBN-13 978-0134171494							
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent							
2	Publishing Platform, ISBN: 9781519722089							
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370							
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1st Edition,							
4	2012, ISBN-13: 9788126525898							
=	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1st Edition, 2011, ISBN-13:							
5	978-1-4302-3297-1							
(Android Developer Training - https://developers.google.com/training/android/							
6	Android Testing Support Library - https://google.github.io/android-testing-support-library/							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	3	-	-	-	-	-	-	2
CO2	3	-	-	-	3	-	-	-	-	-	1	2
CO3	-	3	3	-	3	-	1	-	-	2	1	3
CO4	3	3	3	1	3	2	1	2	2	1	1	3

	Semester: VI								
	INDUSTRIAL AUTOMATION (GROUP E: GLOBAL ELECTIVE)								
				OBAL ELECTIVE) (OERY)					
Cour	Course Code : 18G6E11 CIE : 100 Marks								
Cred	Credits: L:T:P :		3:0:0	SEE	:	100 Marks			
Total Hours : 39 L SEE Duration : 3.00 Hours						3.00 Hours			
Cou	rse Learning (Dbj	ectives: The students will	be able to					
1	Identify the v	aric	ous types of Actuators, ser	nsors and switching devices us	sed in	n industrial			
	automation.								
2	Understand	the	fundamentals of CNC, PL	C and Industrial robots.					
3	Describe the	fun	ctions of hardware compo	nents for automation					
4	Prepare simple manual part programs for CNC and Ladder logic for PLC.								
5	Demonstrate	the	ability to develop suitable	e industrial automation system	is usi	ng all the concepts			

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation.
continuous and discrete control, basic elements of an automated system, advanced automation	functions,
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	ensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation s	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic mo	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	atic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	·
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,
	-

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection
	technologies in industrial automation.
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and
	identify its application areas.
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning
	centres interfaced with Robots.
CO4:	Develop a suitable industrial automated system integrating all of the above advanced
	automation concepts

Referen	ce Books
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0
	TTESS, 2010, ISBN - 978-1-4987-0540-0
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st
	Edition, 2011, ISBN -13-978-8126529889.
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-
	13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	-	3	1	-	-	-	1	-	1
CO2	2	2	3	2	2	-	-	-	1	2	-	1
CO3	2	2	3	3	2	-	-	-	-	2	-	-
CO4	3	3	3	2	2	-	-	-	-	2	-	1

	Semester: VI							
	MOBILE NETWORK SYSTEM AND STANDARDS (GROUP E: GLOBAL ELECTIVE) (Theory)							
Cou	Course Code:18G6E12CIE:100 Marks							
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks		
Hrs/	Week	:	40L	SEE Duration	:	3.00 Hrs		
Cou	rse Learning	; Ol	ojectives: The	students will be able to				
1	Understand the perform		•	ciples of cellular communication and	factors that	t might degrade		
2	2 Describe the second-Generation pan-European digital mobile cellular communication standards.							
3	3 Analyze the 3G cellular technologies including GPRS and UMTS.							
4								

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	eduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	r system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	f FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	
rippileutons, i in cless Locul in cu networks, i termore cleare, standards, i ippileuton	s.

architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the concepts and terminologies for Cellular Communication.							
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.							
CO3	Compare the performance features of 2G and 3G Cellular Technologies.							
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.							

Reference Books

Keitt									
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education								
1	Private Limited, ISBN: 978-0-07-068178-1.								
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,								
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.								
3	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,								
5	ISBN-13:978-0-19-806066-6.								
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,								
4	Pearson, ISBN 97881-317-3186-4.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

	Semester: VI						
	r	ΓH		EVICE FABRICAT		GY	7
			(GROU)	P E: GLOBAL ELE	CTIVE)		
C	(Theory)						
	rse Code	:	18G6E13		CIE	:	100 Marks
	lits: L:T:P	:	3:0:0		SEE	:	
	l Hours	:	39L		SEE Duration	:	3.00 Hours
-	<u> </u>		ectives: The students				
1			ing of vacuum and r		C (1) C'1 1		
2	-	_	-	nd characterization o		ostri	uctures
3	U 11 1		<u> </u>	for desired application			
4	Fabricate and	Eva	aluate thin film nand	devices for advanced	d applications		
				Unit-I			08 Hrs
Vacu	um Technolog	gy:					
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	nd pumping, Q-rate	e ca	lculation, Basics of
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo mo	olec	ular, and Cryogenic
	-		-	pump (TSP); differe			• •
				and Penning gauges.	I I O , I		
cone	ept of cupuoli			Unit – II			08 Hrs
Subs	strate Surfaces	&]	Thin Film Nucleation				00 1115
Aton	Atomic view of substrate surfaces, Thermodynamic aspects of nucleation, Kinetic processes in nucleation						
				tion and growth (Brie		•	
Defe	cts in Thin Fil	ms:					

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	CO1: Choose the right choice of material for the desired application						
CO2:	Improve the desired nanostructures and their properties						
CO3:	Fabricate appropriate Nanodevices						
CO4:	Optimize the nanodevice fabrication process for repeatability.						

Refere	Reference Books								
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-								
1	0030839931								
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.								
2	Microfabrication for Industrial Applications, Regina Luttge, 1st Edition, William Andrew,2011,								
3	ISBN: 9780815515821.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-		-	2
CO2	3	2	2	2	-	-	-	-	-		-	2
CO3	2	3	3	2	2	1	1	1	-	1	-	2
CO4	2	3	3	2	2	2	2	2	2	2	-	2

					Semeste	er: VI					
	CHEMIS	TRY	OF AD	VANCE	D ENERGY S		E DEVICES I	FOR E	2-N	IOBILIT	Y
				(GRO	OUP E: GLOB	BAL ELEC	CTIVE)				
(Theory)											
	e Code	:	18G6E	14			CIE		:	100 Mar	
						100 Mar					
Total]			39L				SEE Duration	n	:	3.00 Hou	irs
1					ents will be abl dvanced storag						
				-		•					mina
			-		e devices for E	· · ·					-
V	vehicles.				mistry to ana		•				ric/nybri
4 I	Develop kno	owled	lge of bat	ttery mar	nagement syste	em and recy	cling of stora	ge dev	vice	es.	
			~	~	Unit-I						07 Hrs
		0	•	•	ns in Electric						
-			-	•	es and sustaina	-			-		
	-				on. Vehicle pe				-		
			•	•••	and power re	•	ts for various	HEV	S	and EVs	Vehicle
Fundar	mentals of b	attery	y technol	ogy in hy	ybrid vehicles.						
					Unit – II						08 Hrs
Advan	ced Lithiu	m ior	a Battery	7 Techno	logy for Floot	twig wohigh	0.0.0				
				Ittimu	hogy for Elect	uric-venicio	es:				
Basic of	concepts of	lithiu	•		vanced Lithiun			y: Cel	1 c	onstructio	n, batter
	-		um batter	ries, Adv		n batteries	for E-mobilit	•			
compo	nents, prin	ciple	um batter of oper	ries, Adv ration, e	vanced Lithiun	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prin	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prinuction, wor	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr sulfide	nents, prinuction, wor	ciple king olid-s	um batter of oper and futur tate batte	ries, Adv ration, e re applica pries.	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	nd packs y, Li-iro
compo Constr sulfide Future	nents, prin uction, worl cells and so e Scope in n	ciple king blid-s	um batter of oper and futur tate batte	ries, Adw ration, e re applica pries. Batterie	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs
compo Constr sulfide Future Limita	nents, prin uction, word cells and so e Scope in r tions of lit	ciple king blid-s blid-s	um batten of oper and futur tate batte Lithium batteries	ries, Adv ration, e re applica eries. Batterie s. Const	vanced Lithium electrode fabri ations of Li-po Unit –III es:	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs n-Lithiur
compo Constr sulfide Future Limita batterie	e Scope in r tions of litters: Sodium-	ciple king blid-s blid-s non- l hium batte	um batter of oper and futur tate batte Lithium batteries ry, Magr	ries, Adv ration, e re applica eries. Batterie s. Const nesium b	vanced Lithiun electrode fabri ations of Li-po Unit –III es: ruction, comp	n batteries rication, el olymer batt ponents, we Metal Hyd	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery,	attery ttery, 1 pplicat Zebra	m Li-	odules an Air batter	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterie iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s non- l hium batte es, l b-Aci	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterid iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt	ciple king blid-s bon- hium batte es, 1 b-Acie	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices:	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l	pplicat Zebra Sportat	m Li- ion ior es.	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu	e Scope in r tions of litters sed batterintal plate Pt tistry of Alter action to su	ciple king blid-s blid-s non- hium batte es, I b-Acid ernat	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin	pplicat zebra sportat batterio	ma Li- ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt istry of Alter action to su tors and Ul	ciple king blid-s blid-s blid-s blid-s b blid-s blid	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E mo	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors	pplicat Zebra sportat batterio g and s, Aqu	ion ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organio	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulicons and Ul	ciple king blid-s blid-s non-l hium batte es, l b-Acie ernat per c tra ca er ca	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitors,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa	n batteries fication, el olymer batt ponents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito	pplicat pplicat Zebra sportat batterio g and s, Aqu	ma Li- Lion ion es. ap ieo dva	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	n-Lithiur dium an battery 08 Hrs obstress 08 Hrs of Supe capaciton ery-supe , Battery
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organic capacit Solar C	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f	ciple king blid-s blid-s on- l hium batte es, l b-Acie es, l b-Acie ernat per c tra ca for la coltaic	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Future Limita batterid iron-ba horizon Chemi Introdu capacit organid capacit Solar C Batter	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov	ciple king blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ection, workin per capacitors Ultra capacito on for transpor age devices fo	g and s, Aquors, Aquor	me Li- Li- ior es. ap leo dva ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar o	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptristerion of Alteriations and Ulic based superior of the construction of superior of the construction	ciple king blid-s blid-s non- bhium batte es, 1 b-Acie es, 1 b-Acie ernat per c tra ca for la coltaic ance a ent Sy	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor; apacitor; c) hybridi and Recy ystems (E	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries fication, el olymer batt bonents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizations energy stors	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back	me Li- Lion ion es. ap eo dva ap -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of ancel solar of l controls.	d packs y, Li-iro 08 Hrs n-Lithium dium and battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery	e Scope in re- tions of litters: Sodium- ased battering tal plate Pterson istry of Alters istry of Alters istr	ciple king blid-s blid-s non-l hium batte es, l b-Acie er cap for la oltaic ance a ent Sy Viana	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, coacitors, rge vehic co) hybridi and Recy ystems (E gement:	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet cles, Batt ization, a ycling: BMS), Fu Passive o	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e <u>Unit –V</u> undamentals of cooling – PCN	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su acitors and hybridization energy stors f battery ma M systems,	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito on for transpor age devices fo anagement sys	g and sportat g and s, Aquors. A rtation or back stems a ng – L	me Li- Lion ior es. ap leo dv: ap -up	odules an Air batter Air batter ans of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of solar of ancel solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non-l hium batte es, l b-Acid ernat per c tra ca for la coltaic ance a coltaic ance a for la	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, c) hybridi and Recy ystems (E gement: 1 hnologies	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN pology and eco	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery Battery safety	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid ernat per c tra ca for la coltaid ent Sy Mana recy	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor; apacitor; apacitor; c) hybridi and Recy ystems (E gement: hnologies cling pro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn ocess. Re	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN ology and ecc egulations and	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric							
	vehicles.							
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion							
	devices for vehicle electrification.							
CO3:	Analyses of battery management, safety, global market trends for large format batteries.							
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy							
	consumption, reuse and recycling.							

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	-	-	-	1	-	1
CO2	3	3	2	2	2	-	-	-	1	1	-	1
CO3	2	2	3	3	2	-	-	-	3	1	2	1
CO4	3	3	2	3	2	-	-	-	2	1	3	1

				Semester: VI					
			ADVANCE	ED STATISTICAL	METHODS				
	(GROUP E: GLOBAL ELECTIVE)								
(Theory)									
	rse Code	:	18G6E15		CIE	:	100 Marks		
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks		
	ll Hours	:	39L		SEE Duration	:	3.00 Hours		
			ctives: The student		-1: C'				
T	1 Adequate exposure to understand the basic knowledge on classification and regression trees that form								
			analyzing data.						
2		-	•	and conjoint analysis	· ·				
3		-		analysis and factor	analysis which hav	ve g	reat significance in		
	engineering p	ract	ice.						
4	Demonstrate	the p	practical importance	e of regression and lo	glinear models.				
				Unit-I			07 Hrs		
Clas	sification and	Reg	ression Trees:						
			-	orical or Quantitative	-	ion [Frees, Classification		
Trees	s, Stopping Ru	les, l	Pruning and Cross-V	Validation, Loss func	tions, Geometry.				
				Unit – II			07 Hrs		
Clus	ster Analysis:								
Intro	duction, Types	s of	Clustering, Correlat	tions and Distances,	Hierarchical Cluster	ring,	Partitioning via K-		
mear	ns, Additive Tr	ees.							
				Unit –III			08 Hrs		
Conj	joint Analysis:	:							
Intro	duction, Addit	tive	Tables, Multiplicat	tive Tables, Comput	ting Table Margins	bas	sed on an Additive		
Mod	el, Applied Co	njoii	nt Analysis.	-					
		0	•	Unit –IV			08 Hrs		
Disc	riminant Anal	ysis	and Factor Analys	sis:			Ι		
Intro	duction, Linea	r Di	scriminant Model,	Linear discriminant	function, Discrimi	nant	analysis, Principal		
				nponents versus Fact			•		
	1 /			Unit –V	5 / 11		09 Hrs		
Logi	stic Regressio	n an	d Loglinear Mode				•> 115		
	0		0	ogit, Conditional Lo	git. Discrete Choice	e Lo	git. Stepwise Logit.		
	ng a Loglinear	-	-				5, Step Logit,		
1 1111	is a Dogimear	.,100							
Сош	rse Outcomes	Aft	er completing the	course, the students	will be able to				
CO1			1 0	of statistical methods		ielde	engineering		
	1								
002	CO2: Apply the knowledge and skills of statistical techniques to understand various types of analysis.								

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge goined to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Reference Books							
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.						
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4 th Edition, 2003, Marcel Decker, New York. ISBN: 0-8247-4052-1.						

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey, ISBN: 0-471-36091-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

				Semester:	VI					
			MA	THEMATICAL						
	(GROUP E: GLOBAL ELECTIVE)									
~	~ .		10000	(Theory			400.7.7.7			
	rse Code	:	18G6E16		CIE	:	100 Marks			
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
	al Hours):)::	39L	lanta mill ha ahla t	SEE Duration	:	3.00 Hours			
	0			lents will be able t		1:				
1	· ·				lge of mathematical mode	nng.				
	2 Use the concepts of discrete process models arising in various fields.									
3	3 Apply the concepts of modeling of nano liquids which have great significance in engineering practice.									
4	Demonstrate	the	practical impor	tance of graph th	eoretic models, variationa	ıl pro	blem and dynamic			
	programming	5 .								
				Unit-I			07 Hrs			
Eler	nentary Mathe	ema	tical Modeling:							
Basi	c concepts. Re	al v	world problems,	(Science and En	gineering), Approximatio	n of	the problem, Steps			
	-		-		l, Logistic model, Model					
		-	-	•	blems), Chemical reaction					
				0 01	trical circuits (LCR).	1, DI	ug ubsorption from			
0100		011 0	a projectile, et	Unit – II	inear chedits (LCK).		07 Hrs			
Dia	crete Process	Ма	dolar	0mt – 11			07 1115			
				T . 1			1 1 1 1 1			
			—		discrete models-simple of		-			
		diff	erence equation	is in economics,	modeling through difference equations in economics, finance, population dynamics and genetics and					
prob	bability theory.		probability theory.							
Mod	leling of Nano			Unit –III			08 Hrs			
		_	_				•			
	o liquids-Basic	_	_		of nano liquids-Buongio	rno]	•			
Nan	•	c co	oncepts, Mathem	natical modeling			Model (Two phase			
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio	vatio	Model (Two phase n equation for two			
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two			
Nan mod phas	lel): Relative in se nano liquids:	c co mpo The	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two			
Nan mod phas Gra	el): Relative in se nano liquids: ph Theoretic N	c co mpo The Mod	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum Unit –IV	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs			
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs			
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs cted graphs, signed			
Nan mod phas Gra Mat grap	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte	c co mpo The Mod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph raphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs			
Nan mod phas Gra Mati grap Var	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble	c co mpo The VIod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming:	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	e Continuity equates of the n continuity equation of the	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems y and Dynamic Pr es and techniqu s with engineerin	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs			
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple isiple isiple	encepts, Mathem ortance of the n e Continuity equa elels: g through graph raphs. Problems and Dynamic Pr es and techniqu s with engineerin ter completing t	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs olem and dynamic			
Nan mod phas Gra Mati grap Var Opti prog Cou	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic			
Nan mod phas Gra Mat grap Var Opti prog	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic			
Nan mod phas Gra Mati grap Var Opti prog Cou	 Relative in se nano liquids: ph Theoretic Mematical modules and weighte iational Problection princet gramming, Problection I: Explore the analysis. 	c co mpo The Mod elin, d gr em a ciple iem a ciple iem a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to idamental concep- wledge and skill	hatical modeling anoparticle transp ation, Momentum Unit –IV hs-Models in tern with engineering a Unit –V rogramming: hes, Mathematica ing applications. the course, the stup pts of mathematica is of discrete and	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prob	Model (Two phase n equation for two 08 Hrs eted graphs, signed 09 Hrs olem and dynamic lds engineering. nd various types of			

Refere	ence Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
1	81-224-0006-X.
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
2	Cheltonham, ISBN: 0470271779, 9780470271773.
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
4	Hall/CRC Textbook, ISBN 9781439854518.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	(GROUP E: GLOBAL ELECTIVE)								
	(Theory)								
Co	ourse Code : 18G6E17	CIE Marks	:	100 Marks					
Cr	redits: L:T:P : 3:0:0	SEE Marks	:	100 Marks					
	tal Hours : 39L	SEE Duration	:	3.00 Hours					
Co	ourse Learning Objectives:								
1	To make participants self-discover	their innate flow, entrepreneurial style, and identif	y pr	roblems					
	worth solving thereby becoming en	ntrepreneurs							
2	To handhold participants on lean methodology to craft value proposition and get ready with lean								
	canvas								
3	To create solution demo by conduc	cting customer interviews and finding problem-solu	itioi	n fit for					
	building Minimum Viable Product	(MVP)							
4	To make participants understand cost structure, pricing, revenue types and importance of adopting								
	shared leadership to build good tea	um							
5	To help participants build a strong brand and identify various sales channels for their products and								
	services								
	To take participants through basics of business regulations and other legal terms along-with								
6	understanding of Intellectual Property Rights								

Unit-I	08 Hrs				
Self-Discovery and Opportunity Discovery					
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identify	ving				
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Id	lentifying				
the Entrepreneurial Style.					
Unit – II	08 Hrs				
Customer, Solution and Lean Methodology					
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Ea	rly				
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Mode	l and				
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.					
Unit – III	07 Hrs				
Problem-Solution Fit and Building MVP					
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce	-Raise-				
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interview	vs;				
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.					
Unit – IV	07 Hrs				
Financial Planning & Team Building					
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Ide	ntifying				
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping	and				
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and					
Responsibilities.					
Unit – V	09 Hrs				
Marketing, Sales, Regulations and Intellectual Property					
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business					

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Showcase the ability to discern distinct entrepreneurial traits				
CO2	Know the parameters to assess opportunities and constraints for new business ideas				
CO3	Understand the systematic process to select and screen a business idea				
CO4	Design strategies for successful implementation of ideas				
CO5	Create Business Model and develop Minimum Viable Product				

Refer	Reference Books:						
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.						
2	Entrepreneurship. Roy, R., 2012. Oxford University Press						
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International						
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial						
4	Modern Classics						
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar						
3	Publishing Ltd.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

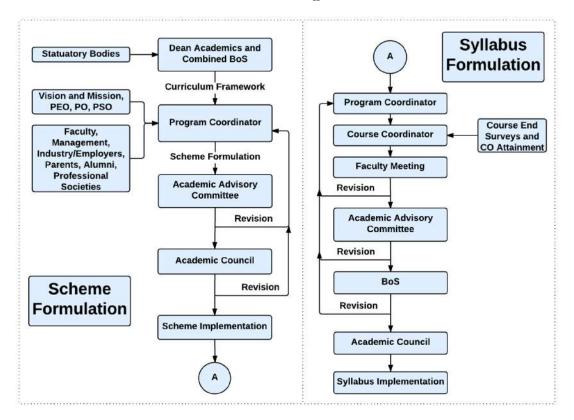
CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

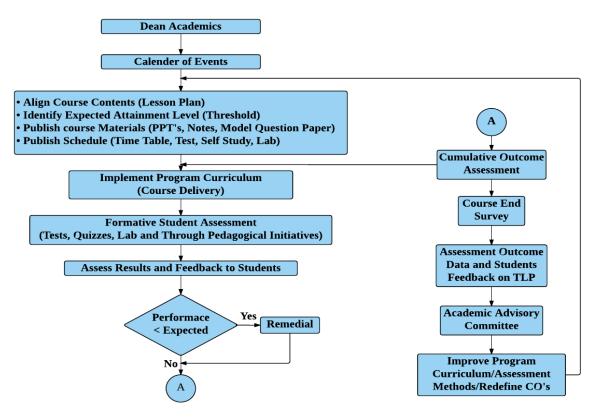
	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

	Semester VI							
	PROFESSIONAL PRACTICE – II							
	EMPLOYAB	ILITY SKILLS AND PRO	OFESSIONAL DEVI	ELOPMENT OF ENGINEERS				
Co	urse Code	18HS68		CIE Marks: 50				
Cr	edits: L:T:P	0:0:1		SEE Marks: 50				
Ho	urs:	18 Hrs/Semester		CIE Duration: 2.00 Hrs				
Co	urse Learning	Objectives: The students	will be able to					
1	Improve qualit	ative and quantitative prob	lem solving skills.					
2	2 Apply critical and logical thinking process to specific problems.							
3	Ability to verbally compare and contrast words and arrive at relationships between concepts based							
5	on verbal reaso	oning.						

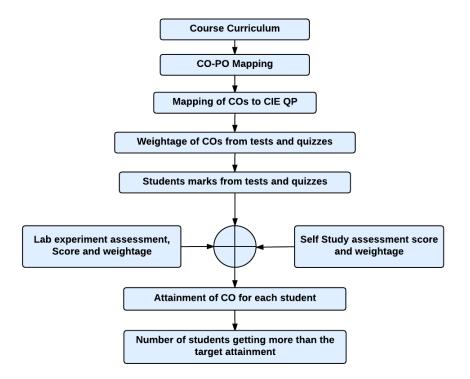

4 Applying good mind maps that help in communicating ideas as well as in technical documentation

V Semester	
UNIT-I	
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc. Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning.	06 Hrs
UNIT-II	
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion- Theory & Evaluation : Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD.	06 Hrs
UNIT-III.A	<u>.</u>
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.	06 Hrs
VI Semester	
UNIT-III.B	
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.	06 Hrs
UNIT-IV	<u>.</u>
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.	06 Hrs
UNIT-V	-
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.	06 Hrs

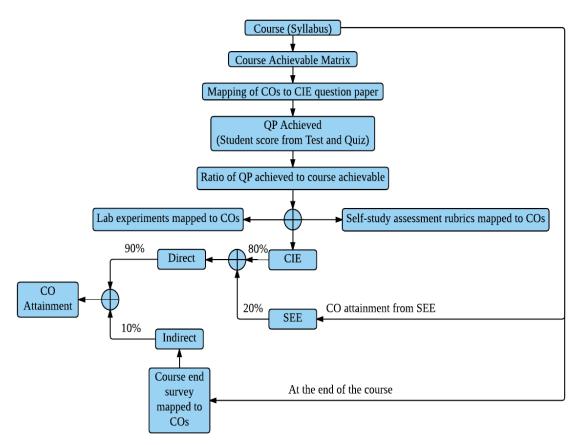
Cou	Course Outcomes: After completing the course, the students will be able to						
CO1	CO1 Inculcate employability skill to suit the industry requirement.						
CO ₂	Analyze problems using quantitative and reasoning skills						
CO3	Exhibit verbal aptitude skills with appropriate comprehension and application.						
CO4	Focus on Personal Strengths and Competent to face interviews and answer						
Refe	rence Books						
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:						
	0743272455						
2.	2. How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:						
	9789380914787						
3.	3. Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,						
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204						
4.	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738						

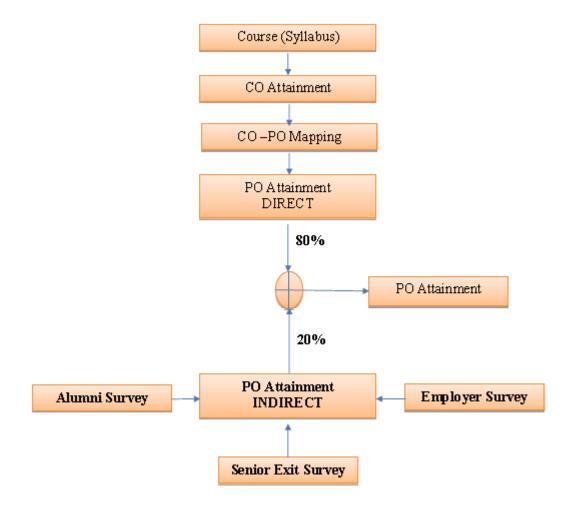

Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 5 th semester and evaluated for 50 marks.	50%
V Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired	
	through the training module.	
	SEE is based on the test conducted at the end of the 5 th semester The test	
	will have two components a Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks.	
Phase II	During the 6 th semester a test will be conducted and evaluated for 50 marks.	50%
VI Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 6 th semester The test	
	will have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks	
Phase III	At the end of the VI Sem Marks of CIE (5th Sem and 6th Sem) is consolidated	for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of VI	At the end of the VI Sem Marks of SEE (5 th Sem and 6 th Sem) is consolution	idated for 50
Sem	marks (Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	



Curriculum Design Process


Academic Planning And Implementation



Final CO Attainment Process

RV College Of Engineering[®], Bengaluru- 560059

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.