

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

TELECOMMUNICATION ENGINEERING

Department Vision

Imparting quality education in Electronics and Telecommunication Engineering through focus on fundamentals, research and innovation for sustainable development

Department Mission

- Provide comprehensive education that prepares students to contribute effectively to the profession and society in the field of Telecommunication.
- Create state-of-the-art infrastructure to integrate a culture of research with a focus on Telecommunication Engineering Education
- Encourage students to be innovators to meet local and global needs with ethical practice
- Create an environment for faculty to carry out research and contribute in their field of specialization, leading to Center of Excellence with focus on affordable innovation.
- Establish a strong and wide base linkage with industries, R&D organization and academic Institutions.

PEO	Description						
PEO1	cquire appropriate knowledge of the fundamentals of basic sciences, athematics, engineering sciences, Electronics & Telecommunication agineering so as to adapt to rapidly changing technology						
PEO2	Think critically to analyze, evaluate, design and solve complex technical and nanagerial problems through research and innovation.						
PEO3	Function and communicate effectively demonstrating team spirit, ethics, respectful and professional behavior.						
PEO4	To face challenges through lifelong learning for global acceptance.						

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Analyze, design and implement emerging Telecommunications systems using devices, sub-systems, propagation models, networking of Wireless and Wire line communication systems.
PSO2	Exhibit Technical skills necessary to choose careers in the design, installation, testing, management and operation of Telecommunication systems.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

TELECOMMUNICATION ENGINEERING

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	CHY	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	TE	Telecommunication Engineering
13.	PHY	Engineering Physics
14.	SEE	Semester End Examination
15.	MAT	Engineering Mathematics
16.	PCE	Professional Core Elective
17.	GE	Global Elective

INDEX

V Semester						
Sl. No.	Course		Page No.			
	Code			_		
1.	16HSI51	IPR & Entrep	IPR & Entrepreneurship			
2.	16TE52	Digital Signa	l Processing	4		
3.	16TE53	Digital Com	nunication	7		
4.	16TE54	Telecom Swi	tching System	9		
5.	16TE55	Microwave E	Engineering	11		
		GROUP A: Pl	ROFESSIONAL CORE ELECTIVES			
1.	16TE5A1	Digital Desig	n and Verification using Verilog	13		
2.	16TE5A2	Control Syste	ems	15		
3.	16TE5A3	Video Engine	eering	17		
4.	16TE5A4	Computer Or	Computer Organization and Architecture			
GROUP B: GLOBAL ELECTIVES						
Sl. No.	Course	Host Dept	Course Title	Page No.		
	Code					
1.	16G5B01	BT	Bioinformatics	21		
2.	16G5B02	СН	Fuel Cell Technology	23		
3.	16G5B03	CV	Geoinformatics	25		
4.	16G5B04	CSE	Graph Theory	27		
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	29		
6.	16G5B06	EEE	Hybrid Electric Vehicles	31		
7.	16G5B07	IEM	Optimization Techniques	33		
8.	16G5B08	E&I	Sensors & Applications	35		
9.	16G5B09	ISE	Introduction To Management Information	37		
		ISE	Systems			
10.	16G5B10	ME	Industrial Automation	39		
11.	16G5B11	TCE	Telecommunication Systems	41		
12.	16G5B12	MAT	Computational Advanced Numerical Methods	43		
13.	16G5B13	AE	Basics of Aerospace Engineering	45		

	VI Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	16HEM61	Foundations of Management & Economics	47			
2.	16TE62	Computer Communication Networks	49			
3.	16TE63	Information Theory& Coding	52			
4.	16TE64	Radiating Systems	54			
	(GROUP C: PROFESSIONAL CORE ELECTIVES				
1.	16TE6C1	CMOS Circuit Design	56			
2.	16TE6C2	ARM Processor	58			
3.	16TE6C3	Multimedia Communication	60			
4.	16TE6C4	Operating Systems	62			
	(GROUP D: PROFESSIONAL CORE ELECTIVES				
1.	16TE6D1	Microwave Integrated Circuits	64			
2.	16TE6D2	Digital Signal Processor Architecture	66			
3.	16TE6D3	Cryptography and Network Security	68			
4.	16TE6D4	JAVA	70			
		GROUP E: GLOBAL ELECTIVES				
1.	16G6E01	Bioinspired Engineering	72			
2.	16G6E02	Green Technology	74			
3.	16G6E03	Solid Waste Management	76			
4.	16G6E04	Introduction to Web Programming	78			
5.	16G6E05	Automotive Electronics	80			
6.	16G6E06	Industrial Electronics	82			
7.	16G6E07	Project Management	84			
8.	16G6E08	Virtual Instrumentation	86			
9.	16G6E09	Introduction to Mobile Application Development	88			
10.	16G6E10	Automotive Engineering	90			
11.	16G6E11	Mobile Network System and Standards	92			
12.	16G6E12	Applied Partial Differential Equations	94			
13.	16G6E13	Aircraft Systems	96			
14.	16G6E14	Employability Skills and	98			
		Professional Development of Engineers				

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF TELECOMMUNICATION ENGINEERING

FIF	TH SEN	<i>IESTER</i>	CREDIT	SCHEME

SI.	Course	Course Title	POS		Total				
Cod	Code	Course The	DOS	L	Т	Р	S	Credits	
1.	16HSI51	IPR & Entrepreneurship	HSS	3	0	0	0	3	
2.	16TE52	TE52 Digital Signal Processing		3	0	1	1	5	
3.	16TE53	Digital Communication	TE	3	0	1	1	5	
4.	16TE54	Telecom Switching System	TE	3	0	0	0	3	
5.	16TE55	Microwave Engineering	TE	3	1	0	0	4	
6.	16TE5AX	Elective A (PCE)	TE	3	1	0	0	4	
7.	16G5BXX	Elective B (GE)	TE	3	0	0	1	4	
	Total number of Credits							28	
	Total Number of Hours / Week				4	4	12**	29	

SIXTH SEMESTER CREDIT SCHEME								
Sl. Course		Course Title	BOS	Credit Allocation				Total
No.	No. Code	course mike	DOD	L	Т	Р	S	Credits
1.	16HEM61	Foundations of Management & Economics	HSS	2	0	0	0	2
2.	16TE62	Computer Communication Networks	TE	4	0	1	0	5
3.	16TE63	Information Theory& Coding	TE	3	1	0	0	4
4.	16TE64	Radiating Systems	TE	3	0	1	1	5
5.	16TE6CX	Elective C (PCE)	TE	3	1	0	0	4
6.	16TE6DX	Elective D (PCE)	TE	3	0	0	1	4
7.	16G6XX	X Elective E (GE)		3	0	0	0	3
8. 16HS68 Professional Practice-III (Employability Skills and Professional Development of Engineers) HSS		HSS	0	0	1	0	1	
	To	tal number of Credits						28
	Total Number of Hours / Week				4	6	8**	30

** Non-contact hours

	V Sem						
	GROUP A: PROFESSIONAL CORE ELECTIVES						
Sl. No.	Sl. No. Course Code Course Title						
1.	16TE5A1	Digital Design and Verification using Verilog					
2.	16TE5A2	Control Systems					
3.	16TE5A3	Video Engineering					
4.	16TE5A4	Computer Organization and Architecture					

	GROUP B: GLOBAL ELECTIVES							
Sl. No.	Host Dept	Course Code	Course Title	Credits				
1.	BT	16G5B01	Bioinformatics	4				
2.	СН	16G5B02	Fuel Cell Technology	4				
3.	CV	16G5B03	Geoinformatics	4				
4.	CSE	16G5B04	Graph Theory	4				
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning	4				
6.	EEE	16G5B06	Hybrid Electric Vehicles	4				
7.	IEM	16G5B07	Optimization Techniques	4				
8.	E&I	16G5B08	Sensors & Applications	4				
9.	ISE	16G5B09	Introduction To Management Information Systems	4				
10.	ME	16G5B10	Industrial Automation	4				
11.	TCE	16G5B11	Telecommunication Systems	4				
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4				
13.	AE	16G5B13	Basics of Aerospace Engineering	4				

	VI Sem						
	GROUP C: PROFESSIONAL CORE ELECTIVES						
Sl. No.	Sl. No. Course Code Course Title						
1.	16TE6C1	CMOS Circuit Design					
2.	16TE6C2	ARM Processor					
3.	16TE6C3	Multimedia Communication					
4.	16TE6C4	Operating Systems					
		GROUP D: PROFESSIONAL CORE ELECTIVES					
1.	16TE6D1	Microwave Integrated Circuits					
2.	16TE6D2	Digital Signal Processor Architecture					
3.	16TE6D3	Cryptography and Network Security					
4.	16TE6D4	JAVA					

	GROUP E: GLOBAL ELECTIVES						
Sl. No.	Host Dept	Course Code	Course Title	Credits			
1.	BT	16G6E01	Bioinspired Engineering	3			
2.	СН	16G6E02	Green Technology	3			
3.	CV	16G6E03	Solid Waste Management	3			
4.	CSE	16G6E04	Introduction to Web Programming	3			
5.	ECE	16G6E05	Automotive Electronics	3			
6.	EEE	16G6E06	Industrial Electronics	3			
7.	IEM	16G6E07	Project Management	3			
8.	E&I	16G6E08	Virtual Instrumentation	3			
9.	ISE	16G6E09	Introduction to Mobile Application Development	3			
10.	ME	16G6E10	Automotive Engineering	3			
11.	TCE	16G6E11	Mobile Network System and Standards	3			
12.	MAT	16G6E12	Applied Partial Differential Equations	3			
13.	AE	16G6E13	Aircraft Systems	3			
14.	HSS	16C6E14	Employability Skills and	1			
		1000E14	Professional Development of Engineers				

V SEMESTER						
	INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP					
		(Theory)				
(Common to AE, CSE, ECE, EEE, ISE, TE)						
Cour	se Code:16HSI51	CIE Marks: 100				
Cred	its: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Hom	s: 36L	SEE Duration: 03Hrs				
Cour	rse Learning Objectives: The students	will be able to				
Cour	To build awareness on the various for	ms of IPR and to build the perspectives on the	concents			
1	and to develop the linkages in technolo	gy innovation and IPR	concepts			
	To equip students on the need to pr	otect their own intellectual works and develo	on ethical			
2	standards governing athical works	oteet then own interfectual works and develo	sp cunca			
	To motivate towards antropropagrial	caracter and build strong foundations skills	to anabla			
3	to motivate towards entrepreneurial	as well as sustainable venture				
	Starting, building and growing a viable	as well as sustainable venture.	wladge to			
4	Develop all entrepreneurial outlook all	a mind set along with critical skins and kno	wieuge to			
	manage risks associated with entrepren					
T 4			05.11			
	duction: Types of Intellectual Property,	wipo, wio, ikips.	07 Hrs			
Pater	its: Introduction, Scope and salient feat	tures of patent; patentable and non-patentable				
inver	tions, Patent Procedure - Overview, Ira	nster of Patent Rights; Biotechnology patents,				
prote	ction of traditional knowledge, infringen	nent of patents and remedy, Case studies.				
Trad	e Secrets: Definition, Significance, Too	Is to protect Trade secrets in India.				
		UNIT-II				
Trad	e Marks: Concept, function and different	nt kinds and forms of Trademarks, Registrable	04 Hrs			
and r	non- registrable marks. Registration of	trade mark; Deceptive similarity; Assignment				
and t	ransmission: ECO Label, Passing off:	Offences and penalties. Infringement of trade				
mark	with Case studies.	g				
T 1			00.11			
Industrial Design: Introduction, Protection of Industrial Designs, Protection and U						
Requ	irements for industrial Design. Pr	ocedure for obtaining Design Protection,				
Revo	cation, Infringement and Remedies, Cas	e studies.				
Сору	Right: Introduction, Nature and scope	e, Rights conferred by copy right, Copy right				
prote	ction, transfer of copy rights, right of	broad casting organizations and performer's				
rights	s, Case Studies.					
Intel	lectual property and cyberspace: Er	nergence of cyber-crime; Grant in software				
patent and Copyright in software; Software piracy; Data protection in cyberspace.						
		UNIT-IV				
Intro	duction to Entrepreneurship – Learn	how entrepreneurship has changed the world.	08 Hrs			
Ident	ify six entrepreneurial myths and uncove	er the true facts. Explore E-cells on Campus				
Liste	n to Some Success Stories: - Global leg	rends Understand how ordinary people become				
SUCCE	essful global entrepreneurs their journe	vs their challenges and their success stories				
Unde	rstand how ordinary people from th	eir own countries have become successful				
entre	nreneurs					
Char	acteristics of a Successful Entreprene	ur Understand the entrepreneurial journey and				
learn	the concept of different entrepreneuri	al styles. Identify your own entrepreneurship				
styla	based on your personality traits strait	ar styles. Identify your own entrepreneurship				
Mod	Model each of the five entropreparties strong in the model and have there differ from each					
othor	where Communicate Effectively Learning the intermediate and now they differ from each					
otilei	communicate Effectively: Leafin in	ow incorrect assumptions and infiniting our				
opini	ons about people can negatively impa	as missempunication, identify the parties				
	h cause communication breakdown, such	as miscommunication and poor listening, and				
learn	now to overcome them.	the importance of listering in the				
Com	munication Best Practices. Understand	the importance of listening in communication				
and	earn to listen actively. Learn a few b	body language cues such as eye contact and				
hand	snakes to strengthen communication. (Pr	actical Application).				

	UNIT-V	
Desi	gn Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs
solv	ing process. Describe the principles of Design Thinking. Describe the Design Thinking	
proc	ess.	
Sale	s Skills to Become an Effective Entrepreneur: - Understand what is customer focus	
and	how all selling effort should be customer-centric. Use the skills/techniques of personal	
selli	ng, Show and Tell, and Elevator Pitch to sell effectively.	
Mar	aging Risks and Learning from Failures: - Identify risk-taking and resilience traits.	
Und	erstand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical	
App	lication) Appreciate the role of failure on the road to success, and understand when to	
give	up. Learn about some entrepreneurs/risk-takers. (Practical Application).	
Are	You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real	
pictu	re of the benefits and challenges of being an entrepreneur. Identify the reasons why	
peop	ble want to become entrepreneurs. Help participants identify why they would want to	
becc	me entrepreneurs.	
Cou	se Outcomes: After completing the course, the students will be able to	
CO	Comprehend the applicable source, scope and limitations of Intellectual Property v	within the
	purview of engineering domain.	
CO	2 Knowledge and competence related exposure to the various Legal issues pert	aining to
	Intellectual Property Rights with the utility in engineering perspectives.	
CO	3 Enable the students to have a direct experience of venture creation through a	facilitated
	learning environment.	
CO	4 It allows students to learn and apply the latest methodology, frameworks and	tools that
	entrepreneurs use to succeed in real life.	
Refe	erence Books	
1	Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law	Pub Co.
	LtdDelhi, ISBN: 9789350350300	
2	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 ^s	^t Edition,
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.	
3	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K.,	
	ISBN: 8180380025, 9788180380020.	
4	Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi,	
	ISBN: 9780198072638.	

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

	Semester: V					
	DIGITAL SIGNAL PROCESSING					
	(Theory & Practic	ce)				
Cou	rse Code: 16TE52	CIE Marks: 100+50				
Cred	Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50					
Hours: 36L SEE Duration: 03Hrs+03Hr						
Cou	rse Learning Objectives: The students will be able t	0				
1	Analyze the time domain and frequency domain repre-	esentations of discrete-time signals				
2	Apply efficient method for calculating the DFT & ID	PFT.				
3	3 Design & implement FIR & IIR filters.					
4	4 Perform Frequency transformations in Analog and Digital domains.					
5	Define the various structures for discrete-time system	IS.				

UNIT-I	
Discrete Fourier Transform: Discrete Fourier Transform (DFT), DFT as a linear	08 Hrs
Transformation and Relationship of DFT to other transform.	
Properties of DFT: Periodicity, Linearity and Symmetry properties,	
Multiplication of two DFTs and circular convolution, additional DFT properties.	
Linear filtering methods based on the DFT: Use of DFT in linear filtering, Filtering of	
long data sequences.	
UNIT-II	
Frequency Analysis of Signals using DFT.	07 Hrs
Efficient computation of DFT: FFT Algorithms: Direct computation of DFT, Divide	1
and conquer approach to computation of DFT, Radix-2 FFT Algorithms for the	
computation of DFT and Inverse DFT.	
Discrete Cosine Transform (DCT): Forward DCT, Inverse DCT, Relationships between	
DFT and DCT, Energy Compaction property of DCT.	
UNIT-III	
Analog Filters: Characteristics of commonly used Analog Filters –Butterworth and	08 Hrs
Chebyshev Type-1 filters.	
Design of Digital IIR Filter from Analog Filters: IIR Filter design by Impulse	
Invariance, IIR Filter Design by the Bilinear Transformation.	
Frequency Transformations: Frequency transformation in the Analog Domain,	
Frequency transformation in the Digital Domain.	
UNIT-IV	
Design of Digital Filters: Causality and its Implications, Characteristics of practical	07 Hrs
Frequency Selective Filters.	
Design of FIR Filters: Symmetric and anti-symmetric FIR Filters, Design of Linear phase	
FIR Filters using Windows, Design of Linear phase FIR filters by frequency Sampling	
method, Design of FIR Differentiators and Hilbert Transformers.	
UNIT-V	
Structures for the realization of the discrete time systems:	06 Hrs
Structures for FIR systems: Direct form structure, Cascade form structures, frequency	
Sampling structures, lattice Structure.	
Structure for IIR systems: Direct form structures, Signal Flow Graphs and	
Transposed Structures, Cascade Form Structures, Parallel- Form.	1

Laboratory Experiments

Part – A

Simulation using MATLAB/SCILAB tool.

- 1. Computation of DFT, IDFT
- 2. Computation of Circular and Linear Convolution, and Correlation.
- 3. Computation of Response of digital systems
- 4. Design and simulation of digital filters.

Part – B

Simulation using DSP hardware.

- 1. Implementation of various operations: DFT, IDFT, Convolution and Correlation.
- 2. Design and implementation of various digital filters

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Analyze signals and perform various signal processing operations, using DFT.				
CO2	Explain and implement the FFT algorithms for efficient computation of the DFT.				
CO3	Design, implement and present various digital filters for the required specifications				
CO4	Evaluate the digital signal processing systems using simulation tool and DSP processors.				

Reference Books

KUU	Tence Dooks
1	Digital Signal Processing, Proakis G, Dimitris G. Manolakis, 4th Edition, 2007, PHI,
	ISBN: 81-317-1000-9.
2	Fundamentals of Digital Signal Processing, Lonnie C. Ludeman, 2013, John Wiley & Sons,
	ISBN: 978-81-265-2222-4.
3	Digital Signal Processing, Monson H.Hayes, 2 nd Edition, 2011, Schaum's Outline Series,
	ISBN: 0071635092
4	Discrete Time Signal Processing, Alan .V. Oppemheim, 2 nd Edition, 2002, PHI, ISBN: 81-
	7808-244-6.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of Quizzes (Q), Tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		3	2							1
CO2	3	2			2							1
CO3	3	3	2	2	3				2	2	1	2
CO4	3	3	3	2	3				2	2	1	2

	Semester: V					
	DIGITAL COMMUNICATION					
	(Th	eory & Practice)				
Cou	Course Code: 16TE53 CIE Marks: 100+50					
Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50		SEE Marks: 100+50				
Hou	Hours: 36L SEE Duration: 03Hrs+03Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Explain the principles of Digital communication Systems.					
2	2 Compare different modulation techniques and its application.					
3	3 Analyze various spread spectrum concepts and their applications					
4	Design sub systems with software/hardware and analyze their performances.					

UNIT-I	
Base-band shaping for Data Transmission: Discrete PAM signals, power spectra	08 Hrs
of discrete PAM signals(Derivation of power spectra for NRZ,RZ only), ISI, Nyquist	
criterion for distortion less base-band binary transmission, correlative coding, eye	
pattern, base-band M-ary PAM systems for data transmission, Adaptive Equalization for	
data transmission.	
UNIT-II	
Detection Concepts: Model of Digital communication System, Gram-Schmidt	06 Hrs
Orthogonalization procedure. Geometric Interpretation of Signals, Response of	
Bank correlators to Noisy Input Detection of known signals in noise	
Drobability of Error Correlation Deceiver Metched Eilter Deceiver	
Fiobability of Effor, Conclation Receiver, Matcheu Filter Receiver.	
UNIT-III	
Digital Modulation Techniques-I: Digital Modulation Formats, Coherent Binary	08 Hrs
Modulation Techniques, Coherent Quadrature - Modulation Techniques, Non-coherent	
detection Techniques, Comparison of various modulation techniques, M-ary Modulation	
Techniques - QAM Modulation.	
UNIT-IV	
Digital Modulation Techniques- II: Power Spectra, Bandwidth Efficiency, Effect of	08 Hrs
ISI, Bit versus Symbol Error Probabilities, Synchronization, Applications - Digital radio	
and voice grade modem.	
Multi Carrier Modulation: Multi- Channel Radio, Discrete Multi Tone data	
Transmission system, OFDM.	
UNIT-V	
Spread Spectrum Modulation: Pseudonoise sequences, Notion of Spread Spectrum, PN	06 Hrs
sequences, DSS Coherent Binary PSK, Signal-Space Dimensionality and Processing	
Gain, Probability of Error, Frequency-Hop spread spectrum, Applications.	

Laboratory Experiments

Part A

The students are expected to simulate the following circuits/systems using Lab VIEW.

1. Time Division Multiplexing.

- 2. ASK, FSK, BPSK, DPSK & QPSK generation and detection, BER analysis.
- 3. Quadrature Amplitude modulation generation and detection, BER analysis
- 4. Spread Spectrum systems –DSSS and FHSS

Part B

The students are expected to implement the following circuits on hardware.

- 1. Time Division Multiplexing.
- 2. Generation and Detection of ASK, FSK and BPSK signals.
- 3. Generation and Detection of Quadrature Phase Shift Keying & Differential Phase shift keying
- 4. Spread Spectrum –FHSS generation and Detection

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain basic principles of baseband Pulse Shaping, digital modulation techniques and wide						
	band modulation techniques.						
CO2	Analyze the behaviour of communication systems with and without noise.						
CO3	Design various modulation and demodulation circuits and wide band modulation techniques.						
CO4	Implement, Demonstrate and Evaluate the performance parameters of different digital						
	communication circuits.						

Refere	ence Books
1	Digital communication, Simon Haykin, 1988, Reprint 2009, John Wiley, ISBN:
	9788126508242.
2	Communication Systems, Simon Haykin, 4 th Edition, 2006, John Wiley and Sons, ISBN:
	9788126509041.
3	Lab VIEW Digital Signal Processing and Digital Communications, Cory L.Cork, 2005, Tata
	McGraw Hill, ISBN: 007060141.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory - 100 Marks

CIE is executed by way of Quizzes (Q), Tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2							2		
CO2	2	3	3	2	3					2		3
CO3	2	3	3	2	3				1			3
CO4		3	3	3								3

	Semester: V							
	TELECOM SWITCHING SYSTEM							
	(Theory)							
Cou	Course Code: 16TE54 CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100								
Hours: 35L SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	s will be able to						
1	Define the importance of switching over wired and wireless channels.							
2	Understand the signaling principles in telecommunication networks.							
3	Explain switching, signaling, traffic and standards in telecommunication networks.							
4	Analyze how a telecommunication network handles traffic.							

UNIT-I					
Evolution of Switching Systems telecommunication switching: Introduction, message					
switching, circuit switching, register-translator, senders, distribution frames, cross bar					
systems, need of trunking, electronic switching, reed-electronic systems, digital systems.					
UNIT-II					
Time-division switching: Introduction, Space and time switching, Time-division	07 Hrs				
switching networks, Grades of service of time-division switching networks, Non-blocking					
networks, Synchronization.					
UNIT-III					
Switching networks: Single-stage networks, Principle of gradings, Design of progressive					
grading. Types of grading. Traffic capacity of gradings. Applications of gradings, link					
systems. Grades of service of link systems, application of graph theory to link systems.					
systems. Grades of service of fink systems, application of graph theory to fink systems,					
stek-sense non blocking networks, seetonanzed switching networks.					
UNIT-IV					
Telecommunication traffic: Introduction, the unit of traffic, congestion, traffic	07 Hrs				
measurement, a mathematical model, Lost-call systems, queuing systems, simulation.					
UNIT-V					
Signalling: Introduction, Customer line Signalling, Audio-frequency junctions and trunk					
circuits, FDM Carrier systems, PCM Signalling, Inter-register Signalling, Common-					
channel signalling principles, CCIT Signalling system No:6, CCIT Signalling system No:7,					
Digital customer line signalling.					

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Explain the concepts of switching in wired and wireless communication.								
CO2	Identify the classes of switching and grading analysis for a given switching network.								
CO3	Analyze the importance of telecommunication services.								
CO4	Design telecommunication networks for switching, signaling and traffic standards.								

Ref	erence Books
1	Telecommunications, switching traffic and networks, J.E.Flood, 2005, Pearson education
	Ltd, ISBN: 1844860140.
2	John, C.Bellamy-"Digital Telephony"-Wiley series, 3 rd Edition, 2002. ISBN: 9814126357.
3	Thiagarajan Viswanathan-"Telecommunication switching systems and networks"-Prentice Hall,
	2004, ISBN: 1587202166.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1									
CO2		3	2					1	2	1		2
CO3		3	2							1		2
CO4		3	3					1	2	2		2

Low-1 Medium-2 High-3

	Semester: V							
	MICROWAVE ENGINEERING							
(Theory)								
Course Code: 16TE55 CIE Marks: 100								
Cree	dits: L:T:P:S: 3:1:0:0	SEE Marks: 100						
Hours: 36L+24T SEE Duration: 03Hrs								
Cou	Course Learning Objectives: The students will be able to							
1	Use the concept of Electromagnetic f	field theory and network analysis to analyze microwave						
1	transmission line and Waveguides.							
2	2 Design an impedance matching circuit at microwave frequency using transmission lines.							
Analyze the characteristics of Microwave passive devices, active devices and vacuu								
3	devices.							
4	Measure various network parameters used to analyze microwave networks.							

UNIT-I

Introduction to Microwaves: Properties, Frequency bands, Application of Microwaves	08 Hrs				
in Domestic, Industrial and Medical fields, Microwave Hazards.					
Transmission Line Theory: The Lumped- Element Circuit Model for a Transmission					
Line- Wave Propagation on a Transmission Line, The Lossless Line, The Terminated					
Lossless Transmission Line- Special Cases of Lossless Terminated Lines, The Slotted					
Line, The Quarter Wave Transformer - The Impedance Viewpoint, Generator and Load					
Mismatches- Load Matched to Line, Generator matched to Load Line, Conjugate					
Matching, Lossy Transmission Lines- The Low Loss Line, The Distortionless Line, The					
Terminated Lossy Line.					
UNIT-II					
High Frequency Lines and Waveguides: Rectangular Waveguide-TE modes, TM modes	07 Hrs				
for unloaded rectangular waveguides from Maxwell's equations, Attenuation as function of					
frequency, Excitation of Waveguides - Aperture Coupling (Qualitative Discussion),					
Coaxial Line - TEM modes, Higher order modes, Microstrip - Formulas for Effective					
Dielectric Constant, Characteristic Impedance and Attenuation.					
UNIT-III					
Basic Smith chart & Impedance Matching and Tuning: Smith Chart – Construction,	07 Hrs				
Basic Smith Chart Operations ,Smith chart types-Impedance and Admittance Chart Single					
Stub Tuning- Shunt Stubs, Series Stubs, Double Stub Tuning- only Smith Chart Solution.					
UNIT-IV					
Microwave Network Analysis & Passive Devices: Review of S parameters and their	07 Hrs				
properties. Passive Devices: Attenuators, Basic Properties of power Magic Tee junctions,					
Ferrite Isolators, Ferrite Phase Circulators.					
UNIT-V					
Active RF Components: Microwave Diode characteristics-Schottky Diodes and	07 Hrs				
Detectors, PIN diodes, Gunn diode-Modes and construction, RF Transistor construction					
and characteristics - FETs, BJTs, Microwave Integrated Circuits-Hybrid Microwave					
Integrated Circuits, Monolithic Microwave Integrated Circuits.					
Microwave Vacuum Tube Devices: Reflex Klystrons, Travelling Wave Tubes and					
Cylindrical Magnetrons-Construction, Operation (Only Qualitative Discussion).					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Define the circuit parameters for design of microwave subsystems using active and passive							
	devices.							
CO2	Identify and design the transmission line for a given application.							
CO3	Apply Smith Chart for microwave network/circuit analysis.							
CO4	Compute microwave network/circuit parameters and Evaluate their performances.							

Ref	erence Books
1	Microwave Engineering, David M Pozar, 3rd Edition, 2011, John Wiley, ISBN-978-81-265-
	1049-8.
2	Microwave Engineering, Annapurna Das, Sisir K das, 2 nd Edition, Reprint 2011, Tata McGraw-
	Hill, ISBN -13:978-0-07-066738-9/10: -0-07-066738-1.
3	Microwave devices and circuits, Samuel .Y.Liao, 3rd Edition, 2000, PHI, ISBN-81-203-0699-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												2
CO2	3	3	2									3
CO3	3	2	2	2	1						1	3
CO4	3	3	2		1						1	3

Low-1 Medium-2 High-3

	Semester: V							
	DIGITAL DESIGN AND VERIFICATION USING VERILOG							
	(GROUP A: PROFESSIONAL CORE ELECTIVE)							
(Theory)								
Cou	rse Code: 16TE5A1		CIE Marks: 100					
Crea	lits: L:T:P:S: 3:1:0:0		SEE Marks: 100					
Hours: 36L+24T SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	s will be able to						
1	Explain design flow and hierarchical modeling concepts							
2	Develop Verilog modules in various modeling techniques							
3	Identify types of delay models and timing checks							
4	Classify different Verification technique	ues and perform logic	synthesis.					

UNIT-I				
Overview of Digital Design with Verilog HDL: Evolution of CAD, emergence of HDLs,	07 Hrs			
typical HDL-based design flow in HDLs.				
Hierarchical Modeling Concepts: Top-down and bottom-up design methodology,				
differences between modules and module instances, parts of a simulation, design block,				
stimulus block.				
Basic Concepts, Modules and Ports.				
UNIT-II				
Introduction to Modeling styles, Gate-Level Modeling: Gate types, Examples, Gate	07 Hrs			
delays, Examples.				
Dataflow Modeling: Continuous assignments, Delays, Operator types, Examples				
Behavioral Modeling: Structured procedures, initial and always statements, Blocking and				
non blocking assignments, Timing controls, Conditional statements, Multi-way branching.				
UNIT-III				
Behavioral Modeling: Loops, Sequential and parallel blocks, Generate blocks.	08 Hrs			
Tasks and Functions: Differences between tasks and functions, Tasks, Functions.				
Useful Modeling Techniques: Procedural continuous assignments, Overriding				
parameters, Conditional Compilation and Execution, Time scales.				
Delays and Timing: Delay models: Distributed, Lumped and Pin-to-pin delays, Path delay				
modeling, Timing checks, Delay back-annotation.				
UNIT-IV				
Switch-Level Modeling: Switch-modeling elements, Delay specification on switches.	07 Hrs			
Examples: CMOS gates, Latch, Multiplexer.				
Logic Synthesis with Verilog HDL: Introduction to logic synthesis, Impact of logic				
synthesis, Verilog HDL Synthesis, Synthesis design flow.				
UNIT-V				
Functional and Timing verification of Gate-level netlist, Modeling tips: Verilog coding	07 Hrs			
style, Design partitioning and constraint specification.				
Verification Techniques: Traditional verification flow, architectural modeling, Functional				
verification, Simulation, Analysis, Coverage, Assertion checking, Formal verification,				
Semi-formal verification, Equivalence checking.				

Course	e Outcomes: After completing the course, the students will be able to
CO1	Define modeling concepts, modules, operators and data types in Verilog.
CO2	Identify various types of delay models, timing checks and modeling techniques.
CO3	Classify different verification techniques and analyze design flow using Logic synthesis.
CO4	Develop Verilog HDL codes in various modeling styles to model digital circuits.

Ref	erence Books
1	Verilog HDL: A Guide to Digital Design and Synthesis, Samir Palnitkar, 2 nd Edition, 2003,
	Prentice Hall PTR, ISBN: 0-13-044911-3.
2	Verilog HDL Primer, J Bhasker, 1st Edition, 2008, BS Publications, ISBN-13: 978-8178001425.
3	Verilog Hardware Description Language, Thomas & Moorby, 5th Edition, 2014, Springer
	ISBN-13: 978-1475775891.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1	2	2	3	3	3							
CO2	2	2	1	1	2							
CO3	3	3	3	2	2							
CO4	1	2	3	3	3							

Low-1 Medium-2 High-3

	Semes	ter: V					
	CONTROL SYSTEMS						
	(GROUP A: PROFESSIO	NAL CORE ELECTIVE)					
	(The	ory)					
Cou	rse Code: 16TE5A2	CIE Marks: 100					
Cree	lits: L:T:P:S: 3:1:0:0	SEE Marks: 100					
Hours: 37L+24T SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The students will b	e able to					
1	Learn the fundamental concepts of control sy	stems & stabilized Control systems using Classical					
1	Methods.						
Analyze the time response and frequency response of control systems using Conv							
Approach.							
3	Perform stability analysis of control systems.						
4	Design stabilized control systems using Class	ical Methods.					

UNIT-I

Introduction and Modeling of Systems: The control system, open loop and closed loop	07 Hrs
control systems. Mathematical models of electrical circuits.	
Transfer functions: Block diagram reduction Technique, Signal Flow Graphs,	
Mason's gain formula (No derivation).	
UNIT-II	
Time Response of feedback control systems: Standard test signals, Unit step response	07 Hrs
of First and second order systems, Time response specifications (No derivations for	
the time specifications) of second order systems, steady – state errors and error constants.	
UNIT-III	
Stability analysis: Concepts of stability, Necessary conditions for stability, Routh-	07 Hrs
stability criterion, Relative stability analysis.	
Root-Locus Techniques: Introduction, The root locus concepts, Construction of root loci.	
UNIT-IV	
Stability in the frequency domain: Mathematical preliminaries, Nyquist stability criterion	09 Hrs
(Inverse polar plots excluded). Assessment of relative stability using Nyquist criterion.	
Frequency domain analysis: Introduction, Correlation between time and frequency	
response, Bode plots.	
UNIT-V	
Introduction to State variable analysis: Concepts of state, state variable and state	07 Hrs
models for electrical systems, Solution of state equations loss Concept of	
Controllability and observability, Pole placement by state Feedback.	

Course	e Outcomes: After completing the course, the students will be able to
CO1	Model the Feedback Control Systems in Integro-Differential Equations and generalize using
	Block Diagram and Signal flow graph methods.
CO2	Analyze the first and second order system for stability due to various input test signals.
CO3	Describe the stability of the control systems by Classical frequency analysis Methods.
CO4	Evaluate the Dynamic behaviour of Control System using State Space Models.

Reference Books

Γ

1	Control system Engineering, I J Nagrath and M Gopal, 5 th Edition, 2012, New Age
	International (P) Ltd., ISBN: 81-224-1192-4.
2	Feedback and Control System, Joseph J Distefano III et al., 2 nd Edition, 2007, Schaum's Outlines, TMH, ISBN-13: 978-0071635127.
3	Automatic Control Systems, Benjamin Kuo, Farid Golnaagi, 8th Edition, 2009, Wiley
	Publication, ISBN-13: 978-0470048962.

٦

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1	2								
CO2	3		1	2								
CO3	3	2	2	1	2							
CO4	3	2	3	2	2							

Low-1 Medium-2 High-3

	S	Semester: V	7							
	VIDEO ENGINEERING									
	(GROUP A: PROFESSIONAL CORE ELECTIVE)									
		(Theory)								
Cou	rse Code: 16TE5A3			CIE Marks: 10)0					
Cree	dits: L:T:P:S: 3:1:0:0			SEE Marks: 10)0					
Hou	rs: 36L+24T	SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	will be able	e to							
1	Describe the scanning principles used in	n television.								
2	Analyze the video broadcasting standar	rds.								
2	Represent pictures in optical and	analogous e	electrical	representation	using	appropriate				
3	standards.	-		-	-					
4	Analyze different video compression ar	nd transmissi	ion standa	rds.						

UNIT-I

Picture and scanning Principle: Picture characteristics (Monochrome and Color), scanning types, resolution and bandwidth, various standards. Need of synchronization, building composite video signals for monochrome, gamma correction, characteristics of Human eye, trichromatic coloring , color triangle, conversion of color picture to primary colors, compatibility, Bandwidth requirement, Color difference signals, Generation of luminance and chrominance in NTSC, PAL and SECAM. Differential Phase error and Weighting factor, Encoders and Decoders. Building Composite Video in each system. Standard definition of composite video parameters. UNIT-II

Pickup and Display devices: Pickup Tubes, MOS and CCDs Working Principle of each
and their important Characteristics, Comparison of different devices. Video- Display
Tubes, LCD and Plasma.07 Hrs

UNIT-III

Television Application of Video: Mixing of various video and audio sources. Broadcast
Television, Modulation and Bandwidth requirement. Transmitting system (NTSC,
PAL, SECAM) corresponding Receiving Systems, HDTV & CCTV system.07 Hrs

01111-1	
Digitizing Video: Advantages of Digital Video, Comparison of analog and digital video.	07 Hrs
Definition of Pixel, Pixel Arrays, Different standards used. Sampling of video, Bandwidth	
requirement. Sampling luma and chroma. Standards adopted. compression,	
Compression strategies. Macro Blocks, Sampling Composite and Component digital	
signals, I,B,P frames. Quantization, motion compensation, Synchronization, Encoding	
process in H.261, H.263 and MPEG 1 ATSC and HDTV, HD SDI, Interleaving in HD	
SDI.	

UNIT-V

Digital recording, Direct to Home TV (Principles and Technology), IPTV.

Course	Course Outcomes: After completing the course, the students will be able to										
CO1	Explain the characteristics of picture and scanning principles.										
CO2	Analyze composite video signals and receiver front end.										
CO3	Analyze bandwidth requirement, modulation techniques, processing for video broadcasting.										
CO4	Apply the DVB standards for the design of video system blocks.										

07 Hrs

Ref	erence Books
1	Television and Video Engineering, Dhake A.M., 1995, TMH, ISBN-13:978-0-07-460105-1.
2	Video Demystified, Keith Jack, 4th Edition, 2007, Elsevier, ISBN: 0-7506-7822-4.
3	The Art of Digital Video, John Watkinson, 4 th Edition, 2008, Focal press, ISBN-0-240-51586-2.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1		2					1	2		1
CO2		2		1	2					2	1	2
CO3	2	1	2	2	2							2
CO4	2	2	3		1			2			1	

	Semester: V								
	COMPUTER ORGANIZATION AND ARCHITECTURE								
	(GROUP A: PROFESSIONAL CORE ELECTIVE)								
(Theory)									
Cou	Course Code: 16TE5A4 CIE Marks: 100								
Cred	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100								
Hou	Hours: 38L+24T SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	s will be able to							
1	Understand the functions of major con	ponents and their org	anization in a computer.						
2	Analyze the various processors, Memory and bus architectures.								
3	Analyze the algorithms for computational units.								
4	Choose an architecture and associated	components for a give	en application.						

UNIT-I						
Basic Structures of Computers, Machine Instructions and Programs: Review of basic	07 Hrs					
Operational concepts - Bus structures, Performance, Processor clock, Basic Performance						
equation, Pipelining & Superscalar operation, Multiprocessor & Multicomputer, General						
features if CISC & RISC, Big – endian Little –endian assignments, Assembler Directives,						
Stacks & Queues : Subroutines : Subroutine Nesting.						
UNIT-II						
Input/ Output Organization: Accessing I/O devices, Interrupts, Interrupt Hardware,	08 Hrs					
Enabling & Disabling Interrupt, Handling Multiple devices, Controlling Device Requests,						
Exceptions, Direct Memory Access, Bus Arbitration, Buses - Synchronous Bus,						
Asynchronous Bus.						
UNIT-III						
The Memory System: Review of Memory classification, characteristics and basic						
organization of memory chips. Static Memories, Asynchronous DRAMs, Synchronous						
DRAMs, Organization of Larger Memories, Memory System Considerations, Rambus						
memory; Cache Memories - Mapping functions, Performance considerations,						
Interleaving, Hit Rate & Miss Penalty, Virtual Memories - Address Translation.						
UNIT-IV						
Arithmetic unit: Implementation of Addition & Subtraction of Signed Numbers: Design	08 Hrs					
of fast adders-Carry-Look ahead Addition; Multiplication of positive numbers - Signed-						
Operand Multiplication, Booth Algorithm, Fast Multiplication, Bit-pair Recoding of						
Multipliers; Integer division, Floating – Point Numbers & Operations.						
UNIT-V						
Advanced Processor Architecture: Introduction to Advanced Architecture ARM,	07 Hrs					
SHARC, Tiger SHARC, DSP, Architecture of DSP, Processor and memory organizations,						
instruction level parallelism.						

Course	e Outcomes: After completing the course, the students will be able to
CO1	Describe the basic architecture and operational concepts involved in computer system design.
CO2	Identify the memory and bus structure requirements for a given system design.
CO3	Design Memory of a computer & ALU by applying fast computation algorithms.
CO4	Choose the appropriate processor for a particular application.

Reference Books

1	Computer organization, Carl Hamacher, Z Vranesic& S Zaky, 5th Edition, 5th Reprint 2012, Tata
	McGraw- Hill, ISBN 10: 1259005275.
2	Computer System Architecture, Morris Mano, 3 rd Edition, 1992, PHI, ISBN: 978-0131755635.
3	Embedded Systems Architecture Programming and Design, Raj Kamal, 5 th Reprint, 2005, Tata
	McGraw Hill, ISBN-10: 933290149X.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1					1		2		1
CO2	2	2	2					1		2		1
CO3	3	3	3					1		2		2
CO4	3	3	3					1		2		3

Low-1 Medium-2 High-3

BIOINFORMATICS (Group B: Global Elective) (Theory) Course Code:16G5B01 CIE Marks: 100 Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100 Hours:04 SEE Duration: 200									
(Group B: Global Elective) (Theory) Course Code:16G5B01 CIE Marks: 100 Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100 Hours:04 SEE Duration: 211cc									
Course Code:16G5B01 CIE Marks: 100 Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100 Hours:04 SEE Duration: 211cc									
Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100 Hours: 04 SEE Duration: 211-2									
Creatis: L: 1: F; 5: 4:0:0:0 SEE Marks: 100 Hours: 04 SEE Dynation: 211-2									
Hours:04 SEE Duration: 3Hrs									
Course Learning Objectives: The students will be able to									
1 Understand the underlying technologies of Bioinformatics and Programming									
2 Explore the various algorithms behind the computational genomics and proteomic structur									
bioinformatics modeling and simulation of molecular systems									
3 Apply the tools and techniques that are exclusively designed as data analytics to investigate the									
significant meaning hidden behind the high throughput biological data.									
4 Analyze and evaluate the outcome of tools and techniques employed in the processes									
biological data preprocessing and data mining.									
Unit-I									
Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of 09 Hrs									
Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy,									
Genes and Genomes. Bioinformatics & Biological Databases: Introduction to									
Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological									
databases – Sequence, structure, Special Databases and applications - Genome, Microarray,									
Metabolic pathway, motif, and domain databases. Mapping databases - genome wide									
maps. Chromosome specific human maps.									
Unit – II									
Sequence Alignment: Introduction. Types of sequence alignments - Pairwise and Multiple 09 Hrs									
sequence alignment. Alignment algorithms (Needleman & Wunch. Smith & Waterman and									
Progressive global alignment). Database Similarity Searching- Scoring matrices –									
BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next									
Generation Sequencing – Alignment and Assembly. Molecular Phylogenetics:									
Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction									
Methods - Distance-Based & Character-Based Methods and Phylogenetic Tree evaluation.									
Unit -III									
Predictive methods: Predicting secondary structure of RNA Protein and Genes – 09 Hrs									
algorithms to predict secondary structure of RNA Protein and Gene Prediction of Tertiary									
structure of Protein Protein identity and Physical properties of protein Molecular									
Modeling and Drug Designing: Introduction to Molecular Modeling. Methods of									
Molecular Modeling and Force Fields used in Molecular Modeling. Drug designing process									
- deriving Pharmacophore. Receptor Mapping. Estimating Receptor-Ligand interactions									
and Molecular Docking.									
Unit _IV									
Perl: Introduction to Perl writing and executing a Perl program Operators Variables and 09 Hrs									
Special variables. Data Types – Scalar Array and Associative array Regular Expressions									
(REGEX). Components of REGEX - Operators. Metacharacters and Modifiers									
Subroutines – types of functions, defining and calling functions in Perl calling function -									
call by value and call by reference. Object Oriented Programming in Perl-Class and object.									
Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package.									
Perl Module – writing and calling module.									
Unit _V									
BioPerl: Introduction to BioPerl BioPerl Modules Applications of BioPerl – Sequence 10 Hrs									
retrieval from Database and submission of sequence to online Database Indexing and									
accessing local databases. Transforming formats of database record. Sequence alignments									
BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment Restriction									
mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and									

other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1	Understand the Architecture and Schema of online databases including structure of records									
	in these databases.									
CO2	Explore the Mind crunching Algorithms, which are used to make predictions in Biology,									
	Chemical Engineering, and Medicine.									
CO3	Apply the principles of Bioinformatics and Programming to the problems related to process									
	simulation and process engineering in Biological system.									
CO4	Use Bioinformatics tools and Next Generation Technologies to model and simulate									
	biological phenomenon.									

Refere	ence Books
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text
1.	processing and scripting, O'Reilly Media, Inc., 4thedition, 2012, ISBN-13: 978-0596004927
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach,
۷.	new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624
2	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and
5.	MySQL, Oxford University Press, 1st edition, 2009.
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal
4.	Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

	Semester: V							
	FUEL CELL TECHNOLOGY							
	(Group B: Global Elective)							
	(The	eory)						
Cou	Course Code: 16G5B02 CIE Marks: 100							
Crec	Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100							
Hou	Hours: 45L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students will l	be able to						
1	Recall the concept of fuel cells							
2	Distinguish various types of fuel cells and their functionalities							
3	Know the applications of fuel cells in various domains							
4	Understand the characterization of fuel cells							

UNIT-I

Introduction: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their	09 Hrs
properties.	
UNIT-II	
Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel	09 Hrs
cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages	
and disadvantages of each.	
UNIT-III	
Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum	09 Hrs
efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and	
Tafel equation.	
UNIT-IV	
Fuel Cell Characterization: current – voltage curve, in-situ characterization, current –	09 Hrs
voltage measurement, current interrupt measurement, cyclic voltammetry,	
electrochemical impedance spectroscopy and ex-situ characterization techniques.	
UNIT-V	
Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen	09 Hrs
production, storage, handling and safety issues.	

Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the fundamentals and characteristics of fuel cells				
CO2	Apply chemical engineering principles to distinguish fuel cells from conventional energy				
	systems				
CO3	Analyze the performance of fuel cells using different characterization techniques				
CO4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems				

Ref	cerence Books
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	_	_	3	-	2	-	-	_
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

High-3 : Medium-2 : Low-1

	Semester: V							
	GEOINFORMATICS							
	(Group B: Global Elective)							
		(Theory)						
Cou	Course Code:16G5B03 CIE Marks: 100							
Hrs/	Hrs/Week: L:T:P:S: 4:0:0:0 SEE Marks: 100							
Crec	Credits: 48L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	s will be able to						
1	To understand concept of using photog	graphic data to determine relative positions of points						
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative land							
² information								
3	3 To analyze the data gathered from various sensors and interpret for various applications							
4	4 To understand the various applications of RS, GIS and GPS							

UNIT-I		
Remote Sensing- Definition, types of remote sensing, components of remote sensing, Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition elements. Fundamentals of image rectification. Digital Image classification - supervised and unsupervised.		
UNIT-II		
 Photogrammetry: Introduction types of Photogrammetry, Advantages of Photogrammetry, Introduction to digital Photogrammetry. Locating points from two phases determination of focal length. Aerial Photogrammetry: Advantages over ground survey methods - geometry of vertical phographs, scales of vertical photograph. Ground coordination- relief displacement, scale ground coordinates – flight planning. 		
UNIT-III		
Geographic Information System- Introduction, Functions and advantages, sources of data for GIS. Database – Types, advantages and disadvantages. Data Management – Transformation, Projection and Coordinate systems. Data input methods, Data Analysis overlay operations, network analysis, spatial analysis. Outputs and map generation. Introduction to GPS- components and working principles.	10 Hrs	
UNIT-IV		
Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources engineering and management (prioritization of river basins, water perspective zones and its mapping), Case studies on applications of GIS and RS in highway alignment, Optimization of routes, accident analysis, Environmental related studies. Case studies on applications of GIS and RS in Disaster Management (Case studies on post disaster management - Earthquake and tsunami and pre disaster management - Landslides and floods) Urban Planning & Management - mapping of zones, layouts and infrastructures.	09 Hrs	

UNIT-V

Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping.	09 Hrs
Case studies on infrastructure planning and management- Case studies on urban sprawl.	l
Change detection studies - case studies on forests and urban area. Case studies on	l
agriculture. Applications of geo-informatics in natural resources management: Geo	1
Technical case Studies, site suitability analysis for various applications.	1
	1

Course Outcomes: After completing the course, the students will be able to

- 1 Understand the principle of Remote Sensing (RS) and Geographical Information Systems (GIS) data acquisition and its applications.
- 2 Apply RS and GIS technologies in various fields of engineering and social needs.
- 3 Analyze and evaluate the information obtained by applying RS and GIS technologies.
- 4 Create a feasible solution in the different fields of application of RS and GIS.

Reference Books

- Geographic Information System-An Introduction, Tor Bernharadsen, 3rd Edition, Wiley India Pvt. Ltd. New Delhi, 2009.
 Driverial and Formation and Lange Laterna Action Library Control of the Edition Laboratory of the Edition of the Edition and Laboratory and Labora
- 2 Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5th Edition, John Wiley Publishers, New Delhi, 2007.
- **3** Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008.
- 4 Remote Sensing, Robert A. Schowengerdt, 3rd Edition, Elsevier India Pvt Ltd, New Delhi, 2009

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

Semester: V						
GRAPH THEORY						
(Group I	B : Global Elective)					
	(Theory)					
Course Code:16G5B04	CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hours: 45L	SEE Duration: 3 Hrs					

Cou	Course Learning Objectives: The students will be able to						
1	Understand the basics of graph theory and their various properties.						
2	Model problems using graphs and to solve these problems algorithmically.						
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.						
4	Optimize the solutions to real problems like transport problems etc.,						

UNIT-I					
Introduction to graph theory: Introduction, Mathematical preliminaries, definitions	09 Hrs				
and examples of graphs, degrees and regular graphs, sub graphs, directed graphs, in					
degrees and out degrees in digraphs.					
Basic concepts in graph theory: Paths and cycles, connectivity, homomorphism and					
isomorphism of graphs, connectivity in digraphs.					
UNIT-II					
Graph representations, Trees, Forests: Adjacency matrix of a graph, Incidence matrix	09 Hrs				
of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees,					
Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees					
of complete graphs, An application to electrical networks, Minimum cost spanning trees.					
UNIT-III					
Fundamental properties of graphs and digraphs: Bipartite graphs, Eulerian graphs,	09 Hrs				
Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.					
Planar graphs, Connectivity and Flows: Embedding in surfaces, Euler's formula,					
Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.					
UNIT-IV					
Matchings and Factors: Min-Max theorem, Independent sets and covers, Dominating	09 Hrs				
sets, maximum bipartite matching.					
Coloring of graphs: The chromatic number of a graph, Results for general graphs, The					
chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal					
graphs, powers of graphs, Edge coloring of graphs					
UNIT-V					
Graph algorithms: Graph connectivity algorithms, Breadth first search and Depth first	09Hrs				
search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost					
spanning tree algorithms, Algorithm of Kruskal's and Prim's.					
Course Outcomes: After completing the course, the students will be able to					
CO1 Understand and explore the basics of graph theory.					
CO2 Analyse the significance of graph theory in different engineering disciplines					
CO3 Demonstrate algorithms used in interdisciplinary engineering domains.					
CO4 Evaluate or synthesize any real world applications using graph theory.					

Refe	Reference Books			
1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,			
	ISBN-0130144002.			
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,			
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.			
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,			
	2010,PHI, ISBN:9780262033848			

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

Low-1 Medium-2 High-3

Semester: V							
ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING							
(Group B: Global Elective)							
(Theory)							
Cou	rse Code: 16G5B05		CIE Marks: 100				
Credits: L:T:P:S: 4:0:0:0			SEE Marks: 100				
Hours: 46L		SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to						
1	Define what is Neural Network and model a Neuron and Express both Artificial Intelligence						
1	and Neural Network.						
2	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning,						
-	Competitive learning and	Competitive learning and Boltzmann learning.					
	Implement Simple perception, Perception learning algorithm, Modified Perception learning						
3	algorithm, and Adaptive linear combiner, Continuous perception, learning in continuous						
	perception.						
	Analyze the limitation of Single layer Perceptron and Develop MLP with 2 hidden layers,						
4	Develop Delta learning rule of the output layer and Multilayer feed forward neural network						
	with continuous perception	ons.					
UNIT-I							
Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron, 08 Hrs							
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,							
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical							
notes.							

UNIT-II

Learning Processes: Introduction, Error correction learning, Memory-based learning,
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,
learning with and without teacher, learning tasks, Memory and Adaptation.10 Hrs

UNIT-III

Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple
perception, Perception learning algorithm, Modified Perception learning algorithm,
Adaptive linear combiner, Continuous perception, Learning in continuous perception.10 HrsLimitation of Perception.10 Hrs

UNIT-IV

Multi-Layer Perceptron Networks:Introduction, MLP with 2 hidden layers, Simple layer10 Hrsof a MLP, Delta learning rule of the output layer, Multilayer feed forward neural networkwith continuous perceptions, Generalized delta learning rule, Back propagation algorithm.10 Hrs

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks, Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and examples (Google, image/speech recognition).

Course Outcomes: After completing the course, the students will be able to				
CO1	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.			
CO2	Perform Pattern Recognition, Linear classification.			
CO3	Develop different single layer/multiple layer Perception learning algorithms			
CO4	Design of another class of layered networks using deep learning principles.			
CO4	Design of another class of layered networks using deep learning principles.			
Refe	erence Books			
------	---			
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson			
	Prentice Hall, ISBN-13: 978-0-13-147139-9			
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing			
	Company, ISBN: 9780534954604			
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-			
	262-11255-8			
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,			
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7			

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

		Semester: V						
	HYBRID ELECTRIC VEHICLES							
	(Group D: Global Elective) (Theory)							
Cou	rse Code : 16G5B06	CIE Marks : 100						
Cred	lits : L:T:P:S 4:0:0:0	SEE Marks : 100						
Hou	rs : 45L	SEE Duration : 3Hrs						
Cou	rse Learning Objectives: The students	will be able to						
1	Explain the basics of electric and fundamentals.	hybrid electric vehicles, their architecture, technolog	ies and					
2	Explain plug – in hybrid electric ver electronics devices used in hybrid electric	nicle architecture, design and component sizing and the ric vehicles.	e power					
3	Analyze various electric drives suita technologies used for hybrid electric ve	ble for hybrid electric vehicles and Different energy hicles and their control.	storage					
	Demonstrate different configurations	of electric vehicles and its components, hybrid	vehicle					
4	configuration by different techniques	, sizing of components and design optimization and	energy					
	management.							
		¥7. %, ¥						
Intro	duction: Sustainable Transportation A	Unit-1 Brief History of HEVs. Why EVs Emerged and Eailed	07 Ung					
Archi	tectures of HFVs Interdisciplinary Nati	ure of HEVs. State of the Art of HEVs. Challenges and	07 1115					
Kev	Fechnology of HEVs.	the of fill vs, state of the fift of fill vs, chancinges and						
Hybr	ridization of the Automobile: Vehicle	Basics, Basics of the EV, Basics of the HEV, Basics of						
Plug-	In Hybrid Electric Vehicle (PHEV), Basi	cs of Fuel Cell Vehicles (FCVs).						
		Unit-II						
HEV	Fundamentals: Introduction, Vehicle N	Addel, Vehicle Performance, EV Powertrain Component	10 Hrs					
Sizin	g, Series Hybrid Vehicle, Parallel Hybrid	Vehicle, Wheel Slip Dynamics.						
Plug	of Blandad PHEVs, Eval Economy of	on to PHEVS, PHEV Architectures, Equivalent Electric f PHEVs, Power Management of PHEVs, Component						
Sizin	g of EREVs. Component Sizing of Blend	ed PHEVs, Vehicle-to-Grid Technology						
21211		Unit-III	·					
Powe	er Electronics in HEVs: Power electro	nics including switching, AC-DC, DC-AC conversion,	10 Hrs					
electr	onic devices and circuits used for	control and distribution of electric power, Thermal						
Mana	gement of HEV Power Electronics.							
Batte	ries, Ultracapacitors, Fuel Cells, an	d Controls: Introduction, Different batteries for EV,						
Batte	ry Characterization, Comparison of Dif	Storage Devices Elivished Energy Storage System						
Hydr	aulic Energy Storage System Fuel Ce	lls and Hybrid Fuel Cell Energy Storage System and						
Batte	Battery Management System							
Unit-IV								
Elect	Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor Drives, 10Hrs							
Perm	anent Magnet Motor Drives, Switched	Reluctance Motors, Doubly Salient Permanent Magnet						
Mach	Machines, Design and Sizing of Traction Motors, Thermal Analysis and Modelling of Traction							
Motors. (only functional treatment to be given)								
Integ	UNIT-V							
Sizin	g the propulsion motor, sizing the power	er electronics, selecting the energy storage technology,	oomis					
Com	nunications, supporting subsystems.							
Ener	gy Management Strategies: Introduction	on to energy management strategies used in hybrid and						
electr	ic vehicle, classification of different e	nergy management strategies, comparison of different						
energ	energy management strategies, implementation issues of energy strategies.							

Cours	Course Outcomes: After completing the course, the students will be able to					
1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and					
	fundamentals.					
2	Evaluate the performance of electrical machines and power electronics converters in HEVs.					
3	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies and					
	control and select appropriate technology.					
4	Design and evaluate the sizing of subsystem components and Energy Management strategies in HEVs.					
Reference Books:						
1	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris, Masrur					
	A.and Gao D.W. Wiley Publisher, 1 st Edition, 2011, <i>ISBN</i> :0-824-77653-5					
2	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E. Gay					
	Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.					
3	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press,					
	2001, ISBN 0 19 850416 0.					
4	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao, Giorgio					
	Rizzoni, ISBN: 978-1-4471-6779-2.					

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

Low-1 Medium-2 High-3

V Semester						
OP	TIMIZATION TECHNIQU	JES				
(Group B: Global Elective)						
	(Theory)					
Course Code : 16G5B07		CIE Marks : 100				
Credits : L: 1: P: S:4:0:0:0		SEE Marks: 100				
Hours : 44L Course Learning Objectives: The st	udents will be able to	SEE Duration : 05 Hrs				
1 To understand the concepts behind ontimization techniques						
2 To explain the modeling framewor	ks for solving problems using	ontimization techniques				
3. To design and develop optimizatio	n models for real life situation	ns.				
4. To analyze solutions obtained using	g optimization methods.					
5. To compare models developed usir	g various techniques for opti	mization.				
	UNIT – I					
Introduction: OR Methodology Def	inition of OR Application of	of OR to Engineering and	09 Hrs			
Managerial problems. Features of OR	models. Limitations of OR.	of the Engineering and	•••			
Lincon Drogromming, Definition	Mathematical Formulation	Standard Form Solution				
Space Types of solution Eessible E	Mathematical Formulation,	olution through Graphical				
Method Problems on Product Mi	y Blending Marketing F	Finance Agriculture and				
Personnel	x, Dichaing, Marketing, I	mance, Agriculture and				
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables						
UNIT – II						
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity						
analysis - changes in RHS, Changes in objectives, Primal-Dual relationships, Economic						
interpretation of duality, Post optimal analysis - changes affecting feasibility and optimality,						
Revised simplex method.						
	UNIT – III					
Transportation Problem: Formulati	on of Transportation Model	, Basic Feasible Solution	08 Hrs			
using North-West corner, Least Cost,	Vogel's Approximation Met	hod, Optimality Methods,				
Unbalanced Transportation Problem,	Degeneracy in Transportation	on Problems, Variants in				
Transportation Problems.						
Assignment Problem: Formulation	of the Assignment proble	em, solution method of				
assignment problem-Hungarian Me	thod, Variants in assignm	ent problem, Travelling				
Salesman Problem (TSP).	τινιτ τν					
UNII - IV						
Queuing Theory . Queuing system and then characteristics, The Wi/Wi/1 Queuing system, Steady state performance analyzing of $M/M/1$ queuing models. Introduction to $M/M/C$ and						
M/Ek/1 queuing models						
Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without						
saddle point - Arithmetic method, Graphical Method, The rules of dominance.						
UNIT – V						
Markov chains: Definition, Absolut	e and n-step transition proba	abilities, Classification of				
the states, Steady state probabilities a	nd mean return times of erg	odic chains, First passage				
times, Absorbing states. Applications	in weather prediction and inv	entory management.				
Over view of OR software's used in pa	ractice.					

Cours	Course Outcomes: After going through this course the student will be able to				
CO1	Understand the various optimization models and their areas of application.				
CO2	Explain the process of formulating and solving problems using optimization methods.				
CO3	Develop models for real life problems using optimization techniques.				
CO4	Analyze solutions obtained through optimization techniques.				
CO5	Create designs for engineering systems using optimization approaches.				

Reference Books:

1	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
2	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
3	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata
	McGraw Hill, ISBN 13: 978-0-07-133346-7
4	Operations Research Theory and Application, J K Sharma, 4 th Edition, 2009, Pearson Education
	Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

	V Semester						
	SENSORS & APPLICATIONS						
	(Group B: Global Elective)						
	(Theory)						
Cou	rse Code:16G5B08	CIE Marks: 100					
Credits/Week: L:T:P:S:4:0:0:0 SEE Marks: 100							
Hours:44L SEE Duration: 3Hrs							
Cour	Course Learning Objectives: The students will be able to						
1	Impart the principles and working modes	of various types of Resistive, Inductive, Capacitive,					
	Piezoelectric and Special transducers.						
2	2 Give an idea about the applications of various transducers and selection criteria of a transducer						
	for a particular application.						
3	Give an insight into the static and dynamic	characteristics of different orders of instruments.					
4	4 Describe different data conversion techniques and their applications.						

UNIT-I					
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs				
Advantages of Electrical transducers.					
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.					
Strain gauge: Theory, Types, applications and problems.					
Thermistor, RTD: Theory, Applications and Problems.					
UNIT-II					
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs				
compensation, advantages and disadvantages of thermocouple.					
LVDT: Characteristics, Practical applications and problems.					
Capacitive Transducers: Capacitive transducers using change in area of plates, distance					
between plates and change of dielectric constants, Applications of Capacitive Transducers					
and problems.					
UNIT-III					
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs				
electric materials, equivalent circuit, loading effect, and Problems.					
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:					
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic					
of the design of sensor, applications.					
UNIT-IV					
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs				
potential sensor.					
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled					
device.					
Tactile sensors: Construction and operation, types.					
UNIT-V					
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary	07 Hrs				
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and					
Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain					
Amplifier.					

Course	Outcomes: After completing the course, the students will be able to
CO1	Remember and understand the basic principles of transducers and smart sensors.
CO2	Apply the knowledge of transducers and sensors to comprehend digital instrumentation systems.
CO3	Analyze and evaluate the performance of different sensors for various applications.
CO4	Design and create a system using appropriate sensors for a particular application

Referen	Reference Books							
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,							
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.							
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC							
	Press, ISBN: 9781498716246.							
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:							
	978-81-203-3569-1.							
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3rd Edition, 2009, PHI,							
	ISBN: 978-81-203-3858-6.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

Semester: V						
INTRODUCTION TO MANAGEMENT INFORMATION SYSTEMS						
(Group B: Global Elective) (Theory)						
Course Code: 16G5B09		CIE Marks: 100				
Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hours: 45L		SEE Duration: 3Hrs				
Course Learning Objectives	: The students wil	ll be able to				
1 To understand the basic p	principles and work	ing of information technology.				
2 Describe the role of infor	mation technology	and information systems in business.				
3 To contrast and compar	e how internet an	nd other information technologies support	t business			
processes.			-1			
4 To give an overall pers	pective of the imp	portance of application of internet technological	ologies in			
business administration.	TT					
Information Systems in Cl	obal Business Tor	day: The role of information systems in	AO Hrs			
husiness today Perspective	s on information	systems Contemporary approaches to	071115			
information systems Hands-c	on MIS projects	systems, contemporary approaches to	1			
Global E-Business and Coll	aboration. Busines	ss process and information systems. Types	1			
of business information sy	stems. Systems for	or collaboration and team work. The	1			
information systems function	in business. A Case	e study on E business.	1			
	U	NIT II				
Information Systems, Org	anizations and St	trategy: Organizations and information	09 Hrs			
systems, How information	systems impact o	organization and business firms, Using	1			
information systems to gain c	ompetitive advanta	ge, management issues.	1			
Ethical and Social issues in	n Information Sys	stems: Understanding ethical and Social	1			
issues related to Information	n Systems, Ethics	in an information society, The moral	1			
dimensions of information so	ciety. A Case study	on business planning.	1			
	UN	NIT III				
IT Infrastructure and E	merging Technol	ogies: IT infrastructure, Infrastructure	09 Hrs			
components, Contemporary l	nardware platform	trends, Contemporary software platform	1			
trends, Management issues.			1			
Securing Information Syst	ems: System vuln	nerability and abuse, Business value of	l			
security and control, Establish	shing framework for	or security and control, Technology and	1			
tools for protecting information	on resources. A case	e study on cybercrime.				
			00 11			
Achieving Operational Ex	cellence and Cu	stomer Intimacy: Enterprise systems,	09 Hrs			
Supply Chain Management (SCM) systems, Cu	istomer relationship management (CRM)	1			
systems, Enterprise application	n. Irota Disital Cas	day E commence and the internet E	1			
E-commerce: Digital Mar	kets Digital Goo	ds: E-commerce and the internet, E-	l			
commerce-business and technology, The mobile digital platform and mobile E-commerce,						
Building and E-commerce web site. A Case study on EKP.						
UNIT V Managing Knowledge The knowledge management landscape Enterprise wide 00 Urg						
knowledge management sy	stom Knowledge III	work systems Intelligent techniques	09 Hrs			
Enhancing Decision Making	ng: Decision male	ing and information systems Business	1			
intelligence in the enterprise	ng. Decision intelligen	ce constituencies	1			
Building Information System	ms. Systeme as nla	nned organizational change. Overview of	1			
systems development.	as. Systems us plu	anica organizational change, overview of	1			

Course	Outcomes: After completing the course, the students will be able to
CO1	Understand and apply the fundamental concepts of information systems.
CO2	Develop the knowledge about management of information systems.
CO3	Interpret and recommend the use information technology to solve business problems.
CO4	Apply a framework and process for aligning organization's IT objectives with business
	strategy.
Referen	ace Books
1	Management Information System Managing the Digital Firm Kannoth C. Laudon and Jana
I	Management mormation System, Managing the Digital Finn, Kenneth C. Laudon and Jane
	P. Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10th Edition,
	2011, Global McGraw Hill, ISBN: 978-0072823110
3	Information Systems The Foundation of E-Business, Steven Alter, 4th Edition, 2002, Pearson
	Education, ISBN:978-0130617736
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:
	9780070616349

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

	Semester: V							
	INDUSTRIAL AUTOMATION							
	(Group B: Global	l Elective)						
	(Theory							
Cou	rse Code: 16GB510	CIE Marks: 100						
Crea	lits: L:T:P:S : 4:0:0:0	SEE Marks: 100						
Hours: 44L SEE Duration: 3 Hrs								
Cou	rse Learning Objectives: The students should be ab	le to:						
1	Identify types of actuators, sensors and switching dev	vices for industrial automation.						
2	Explain operation and controls of Hydraulic and Pne	eumatic systems.						
3	Understand fundamentals of CNC, PLC and Industria	al robots.						
4	Define switching elements and sensors which are inte	erfaced in an automation system.						
5	Describe functions of Industrial switching elements a	nd Inspection technologies for automation.						
6	6 Select sensors to automatically detect motion of actuators.							
7	Develop manual part programs for CNC and Ladder logic for PLC.							
8	Develop suitable industrial automation systems using	gall the above concepts.						

UNIT-I

Automation in Production Systems: Manufacturing support systems, Automation principles and	08 Hrs				
strategies, Levels of Automation, Production Concepts and Mathematical models, Numericals					
Automated Production Lines: Fundamentals, Applications, Analysis with no storage, Analysis					
with storage buffer, Numericals					
UNIT-II					
Switching theory and Industrial switching elements: Binary elements, binary variables, Basic	08 Hrs				
logic gates, Theorems of switching algebra, Algebraic simplification of binary function, Karnough					
maps, Logic circuit design, problems. Electromechanical relays, Moving part logic elements,					
Fluidic elements, Timers, Comparisons between switching elements, Numericals					
Industrial Detection Sensors and Actuators: Introduction, Limit switches, Reed switches,					
Photoelectric sensors- methods of detection, Hall effect sensors, Inductive proximity sensors,					
Capacitive proximity sensors, Pneumatic back pressure sensors, Absolute encoder, Incremental					
encoder, Pressure switches and temperature switches; their working principles and applications,					
Brushless DC motors, Stepper motors and Servo motors					
UNIT-III					
Hydraulic Control circuits: Components, Symbolic representations, Control of Single and	10 Hrs				
Double Acting Cylinder, Regenerative Circuit application, Pump unloading circuit, Double Pump					
Hydraulic System, speed control circuits, accumulator circuits					
Pneumatic Control circuits: Components, Symbolic representations as per ISO 5599, Indirect					
control of double acting cylinders, memory control circuit, cascading design, automatic return					
motion, quick exhaust valve circuit, and cyclic operation of a cylinder, pressure sequence valve					
and time delay valve circuits.					
UNIT-IV					
Introduction to CNC: Numerical control, components of CNC, classification, coordinate	08 Hrs				
systems, motion control strategies, interpolation, programming concepts					
Industrial Robotics: Components of Robots, base types, classification of robots, end of arm					
tooling, robot precision of movement, programming, justifying the use of a robot, simple					
numericals					
UNIT-V					
Programmable logic control systems: Difference between relay and PLC circuits, PLC	10 Hrs				
construction, principles of operation, latching, ladder diagrams, programming instructions, types					
of timers, forms of counters, writing simple ladder diagrams from narrative description and					
Boolean logic.					
Programming exercises on PLC with Allen Bradley controller: Programming exercises on					
motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder,					
can counting, conveyor belt control, alarm system, sequential process, and continuous filling					
operation on a conveyor.					

Γ

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Illustrate applications of sensors actuators, switching elements and inspection technologies in industrial							
	automation							
2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its application							
	areas							
3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres							
	interfaced with Robots							
4	Develop suitable industrial automated system integrating all of the above advanced automation concepts							
Ref	erence Books							

1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls, Joji P, 1st Edition, Wiley India, ISBN - 978-81-265-1542-4
3.	Fluid Power with Applications, Anthony Esposito, 7th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

	Semester: V							
	TELECOMMUNICATION SYSTEMS							
	(Group B: Global Elective)							
	(Theory)							
Cou	rse Code:16G5B11		CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100								
Hours: 46L SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	s will be able to						
1	Represent schematic of communication	n system and identify	its components.					
2	Classify satellite orbits and sub-systems for communication.							
3	Analyze different telecommunication services, systems and principles.							
4	Explain the role of optical communication	tion system and its con	nponents.					
5	Describe the features of wireless techn	ologies and standards.						

UNIT-I						
Introduction to Electronic Communication: The Significance of Human	09 Hrs					
Communication, Communication Systems, Types of Electronic Communication,						
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of						
Communication Applications.						
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.						
UNIT-II						
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	10 Hrs					
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.						
Wideband Modulation: Spread spectrum, FHSS, DSSS.						
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time						
division multiplexing						
Multiple Access: FDMA, TDMA, CDMA, Duplexing.						
UNIT-III						
Satellite Communication:						
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,						
Satellite Applications, Global Positioning System.						
UNIT-IV						
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-	09 Hrs					
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division						
Multiplexing, Passive Optical Networks.						
UNIT-V						
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.	09 Hrs					
Advanced Mobile Phone System (AMPS)						
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell						
Phones.						
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless						
Networks, WiMAX and Wireless Metropolitan-Area Networks.						

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Describe the basics of communication systems.				
CO2	Analyze the importance of modulation and multiple access schemes for communication				
	systems.				
CO3	Compare different telecommunication generations, wired and wireless communication.				
CO4	Justify the use of different components and sub-system in advanced communication systems.				

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
2	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

	Semester: V					
	COMPUTATIONAL ADVANCED NUMERICAL METHODS					
	(Group B: Global Elective)					
	(Theory)					
Cou	rse Code:16G5B12	CIE Marks: 100				
Cred	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100					
Hou	Hours: 44L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Adequate exposure to learn alternative methods and analyze mathematical problems to					
	determine the suitable numerical techniques.					
2	2 Use the concepts of interpolation, eigen value problem techniques for mathematical problems					
	arising in various fields.					
3	3 Solve initial value and boundary value problems which have great significance in engineering					
	practice using ordinary differential equations.					
4	4 Demonstrate elementary programming language, implementation of algorithms and computer					
	programs to solve mathematical problems.					

Unit-I		
Algebraic and Transcendental equations: Roots of equations in engineering practice,	08 Hrs	
Polynomials and roots of equations, Fixed point iterative method, Aitken's process,		
Muller's method, Chebychev method.		
Unit – II	I	
Interpolation: Introduction to finite differences, Finite differences of a polynomial,	08 Hrs	
Divided differences and Newton's divided difference interpolation formula, Hermite		
interpolation, Spline interpolation-linear, quadratic and cubic spline interpolation.		
Unit -III		
Ordinary Differential Equations: Solution of second order initial value problems-Runge-	09 Hrs	
Kutta method, Milne's method, Boundary value problems (BVP's)-Shooting method,		
Finite difference method for linear and nonlinear problems, Rayleigh-Ritz method.		
Unit –IV		
Eigen value problems: Eigen values and Eigen vectors, Power method, Inverse Power	09 Hrs	
method, Bounds on Eigen values, Greschgorin circle theorem, Jacobi method for		
symmetric matrices, Givens method.		
Unit –V	I	
Computational Techniques: Algorithms and Matlab programs for Fixed point iterative	10 Hrs	
method, Aitken's-process, Muller's method, Chebychev method, Newton's divided		
difference method, Hermite interpolation, Spline interpolation, Power method, Inverse		
Power method, Runge-Kutta method, Milne's method, Shooting method, Rayleigh-Ritz		
method, Jacobi method and Givens method.		

Course	e Outcomes: After completing the course, the students will be able to
CO1	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen
	value problems, Differential equations and corresponding computational techniques.
CO2	Apply the knowledge and skills of computational techniques to solve algebraic and
	transcendental equations, Ordinary differential equations and eigen value problems.
CO3	Analyze the physical problem and use appropriate method to solve roots of equations,
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems
	numerically using computational techniques.
CO4	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value
	problems arising in engineering practice.

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-
	2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9th Edition,
2	2012, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
5	Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
4	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

Low-1 Medium-2 High-3

Se	emester: V			
BASICS OF AEROSPACE ENGINEERING				
(Group B	: Global Elective)			
	(Theory)			
Course Code:16GE5B13	CIE Marks: 100			
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100			
Hours: 44L	SEE Duration: 3Hours			

Course Learning Objectives: To enable the students to:

- 1 Understand the history and basic principles of aviation
- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I	
Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions, Introduction to Unconventional and Autonomous Air vehicles.	08 Hrs
Unit – II	
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.	
Unit -III	
Aircraft Propulsion: Introduction, Classification of powerplants, Piston Engine: Types of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines, Introduction to ramjets and scramjets, Comparative merits and demerits of different types Engines.	

Unit -IV	
Introduction to Space Flight: History of space flight, Evolution of Indian Space Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories. Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets, Types of rockets.	08 Hrs
Unit -V	
Aerospace Structures and Materials : Introduction, General types of construction,	
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage	
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum	07 Hrs
alloy, titanium, stainless steel and composite materials, Low temperature and high	
temperature materials.	

Cours	Course Outcomes: At the end of this course the student will be able to			
CO1	Appreciate and apply the basic principles of aviation			
CO2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and aircraft materials during the development of an aircraft			
CO3	Comprehend the complexities involved during development of flight vehicles.			
CO4	Evaluate and criticize the design strategy involved in the development of airplanes			

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN
	9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York,
4	ISBN:1118174208, 9781118174203.
2	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International,
3	ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN:
4	978-1-85617-932-4

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

	VI SEMESTER FOUNDATIONS OF MANAGEMENT AND ECONOMICS									
	(Theory)									
	(Common to AE, CSE, ECE, EEE, ISE, TE)									
Cou	Course Code:16HEM61 CIE Marks: 50									
Cred	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50									
Hou	Hours: 23L SEE Duration: 02Hrs									
Cou	rse Learning Objectives: The students	will be able to								
1	Understand the evolution of management	nt thought.								
2	Acquire knowledge of the functions of Management.									
3	Gain basic knowledge of essentials of M	Aicro economics and M	Aacroeconomics.							
4	Understand the concepts of macroeconc	omics relevant to differ	rent organizational contexts.							

UNIT-I

UNIT-I							
Introduction to Management: Management Functions, Roles & Skills, Management History – Classical Approach: Scientific Management & Administrative Theory, Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies, Contemporary Approach: Systems & Contingency Theory.	04 Hrs						
UNIT-II	1						
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	02 Hrs						
Strategic Management Process, Corporate & Competitive Strategies.							
Organizational Structure & Design: Overview of Designing Organizational Structure:	03 Hrs						
Work Specialization, Departmentalization, Chain of Command, Span of Control,							
Centralization & Decentralization, Formalization, Mechanistic & Organic Structures.							
UNIT-III							
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	03 Hrs						
Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary							
Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory.							
Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan	03 Hrs						
Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey							
& Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional &							
Transformational Leadership.							
UNIT-IV	<u> </u>						
Introduction to Economics: Concept of Economy and its working, basic problems of an							
Economy, Market mechanism to solve economic problems, Government and the economy,							
Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of							
microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of							
UNII-V Errentish of Managements Drive and inflation Dechangements Cross demotion	04 11						
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- classical synthesis, Exchange rate determination and the Mundell-Fleming model	04 Hrs						
Course Outcomes: After completing the course, the students will be able to							
CO1 Explain the principles of management theory & recognize the characteristi	cs of an						
organization.							
CO2 Demonstrate the importance of key performance areas in strategic management a	nd design						
appropriate organizational structures and possess an ability to conceive various orga dynamics.	inizational						
CO3 Select & Implement the right leadership practices in organizations that would enab	le systems						
orientation.							
CO4 Understand the basic concepts and principles of Micro economics and Macroeconom	ics						

Refe	erence Books
1	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 10th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5th Edition, 2009,
	TMHPub.Co.Ltd, ISBN: 13:978-0-07-008056-0.
4	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5	Essentials of Macroeconomics, (www.bookboon.com), Peter Jochumzen, 1st Edition. 2010,
	e-book, ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

Low-1 Medium-2 High-3

	Semester: VI							
COMPUTER CON	MUNICATION NETWORKS							
(Theory & Practice)								
Course Code: 16TE62	CIE Marks: 100+50							
Credits: L:T:P:S: 4:0:1:0	SEE Marks: 100+50							
Hours: 45L	SEE Duration: 03Hrs+	03Hrs						
Course Learning Objectives: The student	s will be able to	. 1						
1 Explain the concepts of networks and networks using OSI reference model a	Explain the concepts of networks and how communication takes place between computers and networks using OSI reference model and TCP/IP model.							
2 Apply fundamentals of Digital Comm	unications and switching systems.							
3 Analyze flow control, congestion cont	rol and QOS of the network for reliable data trar	ısfer.						
4 Implement and Evaluate various proto	cols at Link, Network, Transport layer and Appl	ication						
	UNIT-I							
Introduction: Overview Of The Internet:	Networks, Switching, The Internet, Accessing	09 Hrs						
the Internet, Hardware and Software. Protoc	ol Layering: Scenarios, TCP/IP Protocol Suite,							
The OSI Model.								
Physical layer & transmission media : Data And Signals: Analog and Digital, Transmission Impoirment, Data Data Limita Deformance, Dandwidth Utilization								
Iransmission Impairment, Data Rate Limits, Performance. Bandwidth Utilization, Multiplaying Transmission Modia: Cuidad Madia, Unguidad Madia								
Multiplexing. Transmission Media: Guided Media, Unguided Media.								
UNII-II Data Link Layan Wined Networks: Introduction Nodes and Links Two Types of Links								
Data-Link Layer: Wired Networks: Introduction, Nodes and Links, Two Types of Links, Two Sublayers, Data Link Control (DLC): Enoming, Flaw, and Enger Control Enger								
Two Sublayers. Data Link Control (DLC): Framing, Flow and Error Control, Error								
Detection and Correction, Two DLC Protocols. Multiple Access Protocols: Random								
Ethernet Protocol IEEE project 802 Standa	rd Ethernet East Ethernet (100 Mbps) Gigabit							
Ethernet Protocol IEEE project 602, Standard Ethernet, Past Ethernet (100 Mops), Olgabit Ethernet Virtual LANs								
	UNIT-III							
Network I aver: Introduction: Network-L	over Services Packet Switching Network	00 Hrs						
Laver Performance, Network Laver Congest	ion	071115						
Network-Layer Protocols: IPv4 Datagram	n Format IPv4 Addresses Forwarding of IP							
Packets ICMPv4 Unicast Routing General	al Idea Routing Algorithms Unicast Routing							
Protocols.	a loou, Routing Highlinnis, Onloust Routing							
UN11-1V Transport Layor: Introduction: Transport Layor Services								
Transport Layer: Introduction: Transport-Layer Services.								
NProtocol (GBN) Selective-Repeat Protocol Ridirectional Protocols: Piggybacking								
Internet Transport-Laver Protocols.								
User Datagram Protocol (UDP): User Datagram, UDP Services, UDP Applications.								
Transmission Control Protocol (TCP):TC	CP Services, TCP Features, Segment, A TCP							
Connection, State Transition Diagram, W	indows in TCP, Flow Control, Error Control,							
TCP Congestion Control, TCP Timers, Opt	ions.							
	UNIT V	<u> </u>						

Application Layer: Introduction: Providing Services, Application-Layer Paradigms.							
Client-Server Paradigm: Application Programming Interface, Using Services of the							
transport layer.							
Standard Client-Server Applications: World Wide Web and HTTP, FTP, Electronic							
Mail, TELNET, Secure Shell (SSH), Domain Name System (DNS).							
Peer-To-Peer Paradigm: P2P Networks, Distributed Hash Table (DHT).							

Part- A Experiments Using Routers and Switches: Configuration of Cisco router, Cisco switch, IP static routing and RIP using Cisco router, and VLAN using Cisco switch. Part- B Experiments Using Qualnet: Experiments on FTP, Telnet, IEEE 802.3 and IEEE
Experiments Using Routers and Switches: Configuration of Cisco router, Cisco switch, IP static routing and RIP using Cisco router, and VLAN using Cisco switch. Part- B Experiments Using Qualnet: Experiments on FTP, Telnet, IEEE 802.3 and IEEE
switch, IP static routing and RIP using Cisco router, and VLAN using Cisco switch. Part- B Experiments Using Qualnet: Experiments on FTP, Telnet, IEEE 802.3 and IEEE
Part- B Experiments Using Qualnet: Experiments on FTP, Telnet, IEEE 802.3 and IEEE
Experiments Using Qualnet: Experiments on FTP, Telnet, IEEE 802.3 and IEEE
802 11
802.11.
Part-C
Programs based on implementation of various algorithm using C/C++.
1. Program for error detecting code using CRC-CCITT (16-bits).
2. Shortest Path algorithm to find suitable path for transmission.
3. Spanning Tree algorithm to find loop less path.
4. Implement a client and server communication using sockets programming.
5. Message queues of FIFOs as IPC Channel.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Identify the functions of different layers in the network models.								
CO2	Analyze various protocols and algorithms in the network model.								
CO3	Design and Implement protocols and algorithms for computer networks.								
CO4	Evaluate the performance parameters of networks models.								

Reference Books

1	Computer Networks - A Top-Down Approach, Behrouz A. Forouzan, Firouz Mosharraf, ,
	Special Indian Edition, 2012, McGraw Hill Publishers, ISBN-13: 978-1-25-900156-7.
2	Computer networks, Andrew S. Tanenbaum, 5 th Edition, Prentice Hall, ISBN-13: 978-0- 13-212695-3.
3	Computer Networking A Top-Down Approach featuring the Internet, James F. Kurose, Keith W. Ross, 3 rd edition, Pearson Education.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory - 100 Marks

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2								
CO2	2	2	2	2	2	2			2			
CO3	2	3	3	3	2	2			2			
CO4	3	3	3	3	2	2			2			

	Semester: VI						
	INFORMATION THEORY & CODING						
	(Theo	ry)					
Cou	rse Code: 16TE63	CIE Marks: 100					
Cree	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100						
Hou	Hours: 38L+24T SEE Duration: 03Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the need for Source coding and Channel coding in Communication systems.						
2	2 Apply the Shannon's theorem for the performance analysis.						
3	Analyze various Error control coding techniqu	es.					

UNIT-I 08 Hrs Definitions of probability, Joint and conditional probabilities, Total probability and Bayes theorems, Independent Events. Measure of Information, Units of Information, Discrete memory less source(DMS) and Entropy, Logarithmic inequalities, Properties of Entropy, Information Rate, Extension of a zero memory source, Sources with finite memory -Markov sources. Extension of a Markov Source. UNIT-II Source Encoding: Source coding Theorem, Huffman coding, Discrete memory less **08 Hrs** channels, Mutual Information, Channel Capacity, Channel coding theorem, Differential Entropy and mutual Information for continuous ensembles, Channel Capacity theorem. UNIT-III Error Control Coding: Rationale for Coding, Types of Codes, Discrete memory less 08 Hrs channel. Linear Block codes: Repetition codes, Syndrome decoding, Minimum distance considerations, Hamming Codes. Cyclic Codes: Generator Polynomial, Generator Matrix, Encoder, Syndrome calculation, Cyclic Redundancy Check (CRC) codes, Maximum Length codes, Bose-Chaudhury-Hocquenghem (BCH) Codes, Reed-Solomon Codes. UNIT-IV **Convolution Codes:** Convolution Encoding – Time domain approach, Transform Domain **07 Hrs** Approach, State, Tree and Trellis diagrams. **UNIT-V** Decoding of Convolution Codes using Viterbi algorithm.Distance Properties of **07 Hrs** Convolution codes, Sequential Decoding of Convolution Codes, Trellis Codes, Applications of Error-control Coding, Turbo Codes.

Course Outcomes: After completing the course, the students will be able to					
CO1	Explain the importance of source coding and channel coding in digital communication.				
CO2	Apply various source coding techniques to reduce redundancy.				
CO3	Analyze and develop various channel coding schemes.				
CO4	Design the convolution coding and decoding schemes.				

Reference Books 1 Digital & Analog communication systems, K Sam Shanmugam, Reprint 2008, John Wiley & Sons, ISBN: 978-81-265-0914-0. 2 Digital Communications, Simon Haykin, 2009, John Wiley, ISBN: 9788126508242. 3 Communication Systems, Simon Haykin, 4th Edition, 2006, John Wiley, ISBN: 9788126509041. 4 Analog and Digital Communications, H.P. Hsu, 2nd Edition, 2006, Tata McGraw Hill, ISBN: 0071402284 / 9780071402286.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2							2		
CO2	2	2	2	2	2							2
CO3	2	2	3	2	2					1		2
CO4	3	2	3	2	3					1		2

Low-1 Medium-2 High-3

Semester: VI							
	RADIATING SYSTEMS						
	(The	eory & Practice)					
Cou	rse Code: 16TE64		CIE Marks: 100+50				
Crea	Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50						
Hou	Hours: 35L SEE Duration: 03Hrs+03Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Learn the fundamental concepts of antenna design.						
2	Analyze and Design the antenna for various applications.						
3	3 Employ concept of Beam forming in Smart antenna design.						
4	Characterize the waveguide and mic	cro strip components	and evaluate their				

UNIT-I	

01111-1		
Antenna Basics: Basic antenna parameters, Radiation patterns, Radiation Intensity,	07 Hrs	
Beam area, Beam Efficiency, Directivity and Gain, Aperture antennas, Fields from		
oscillating electric Dipole with mathematical derivations, Antenna field zones,		
Power theorem & its applications, Radiation intensity, Power patterns, Examples of		
Power patterns. Electric dipole-fields of short dipole, radiation resistance of short		
and half wave dipole.		
UNIT-II		
Antenna arrays: Field patterns, Phase patterns of Point sources, Arrays of two	07 Hrs	
isotropic point sources, Arrays of Non-isotropic sources, Pattern multiplication and		
synthesis, Array of n-isotropic point sources with equal amplitude and spacing,		
Broadside, End fire arrays & Extended end-fire arrays, dipole arrays with parasitic		
elements, Yagi-Uda array.		
UNIT-III		
Types of Antennas: Microwave antennas- Rectangular Horn antenna and its radiation	07 Hrs	
characteristics, Parabolic antenna-General properties, Paraboloidal reflector, Feed		
methods for parabolic reflectors. Broadband antennas- Helical antenna geometry and		
its modes, Practical considerations for the monofilar Axial-mode Helical antenna.		
Broadband basics, Rumsey's Principle, Log-Periodic Antenna.		
UNIT-IV		
Smart Antennas : Smart Antenna Configurations, Switch Beam Antennas,	07 Hrs	
Adaptive antenna approach, Space Division multiple access, Architectures of smart		
antennas, Benefits and drawbacks, Basic Principles, Mutual Coupling Effects,		
Antennas for terrestrial mobile communication systems(Base station Antennas).		
UNIT-V		
Microstrip Antenna: Introduction, Advantages and Limitations, Rectangular	07 Hrs	
Microstrip antennas, feeding methods, Characteristics of Microstrip Antennas, Impact		
of Different parameters on Characteristics, brief method of analysis - Transmission		

line model, Printed Antennas for handheld applications.

LABORATORY EXPERIMENTS

Students are expected to implement the following circuits on Microwave Benches

- 1. Characterization of Reflex Klystron, Gunn diode sources.
- 2. Characterization of Directional Coupler, Tee junctions, Circulator and Isolator.
- 3. Horn antenna, Parabolic Dish, Micro strip antennas.
- 4. Microstrip Passive components.

The students are expected to simulate the following Antennas using RF CAD tools

- 1. Radiation characteristics of Dipole antenna.
- 2. N- isotropic point source array.
- 3. Rectangular Microstrip Patch antenna.

	Course Outcomes: After completing the course, the students will be able to
CO1	Define the performance parameters for Antennas.
CO2	Identify antennas for different frequency applications
CO3	Analyze array antenna for different patterns.
CO4	Design and implement Antennas for required radiation characteristics

Refei	Reference Books					
1	Antennas, John D. Kraus & Ronald J. Marhefka, 4 th Edition, 2011, Mc Graw Hill,					
	ISBN -0-07-060185-2.					
2	Antenna Theory, Constantine A Balanis, 2 nd Edition, 2005, John Wiley & Sons, ISBN –					
	9971-51-233-5.					
3	Introduction to Smart Antennas, Constantine A Balanis, Bannides, 2007, ISBN: 1598291769					

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of Quizzes (Q), Tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1								1
CO2	2	2	1	1								1
CO3	2	2	2	2	2							1
CO4	2	2	2	2	2							1

	Semester: VI							
	CMOS CIRCUIT DESIGN							
	(GROUP C: PROFESSIONAL CORE ELECTIVES)							
	(Theory)							
Cou	Course Code: 16TE6C1 CIE Marks: 100							
Crea	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100							
Hou	Hours: 36L+24T SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	Define the structure of MOS transistors and explain geometrical effects of a MOSFET.							
2	Draw stick diagram and corresponding layout for a given digital circuit.							
3	Analyze design steps involved in digital design and explain the need for low power in IC							
	design.							
4	Evaluate the circuit reliability and sign	al integrity issues in D	SM IC design.					

UNIT-I

Review of MOS transistor: MOSFET operations, MOS current equation.	07 Hrs
Physical and geometrical effects on the behavior of the MOS transistor: Back-	
bias effect, Zero field mobility, Carrier mobility degradation, Channel length	
modulation, Punch through, Hot carrier effects, and Weak inversion behavior.	
UNIT-II	
CMOS circuits: Electrical design of CMOS circuits: CMOS inverter, Dissipation of	08 Hrs
a CMOS inverter, CMOS Buffer design, Noise margins, Digital CMOS circuits:	
pass transistor logic, Static CMOS circuits, Clocked static CMOS circuits, Dynamic	
CMOS circuits. Choosing a CMOS implementation. Clocking strategies.	
UNIT-III	
Fabrication: Basic fabrication operations nMOS process staps	07 Hrs
Fabreation. Basic fabreation operations, invos process steps.	07 1115
CMOS Fabrication: n-well, p-well and twin-tub.	
VLSI Layout: MOS layer, Stick diagrams, Layout design rules, Layout diagrams for	
Boolean equations.	
UNIT-IV	
VLSI and ASICs: Introduction, Abstraction levels for VLSI, Digital VLSI design.	07 Hrs
Low power IC design: Sources of CMOS power consumption, Technology options	
for low power, Design options for low power (excluding topics from capacitance	
reduction).	
UNIT-V	
Circuit Reliability: Introduction, Design for Reliability: Introduction, Latch-up in	07 Hrs
CMOS circuits, ESD and its protection Electro-migration, Hot-carrier degradation.	
Signal Integrity: Introduction, Clock distribution and critical timing issues, Clock	
generation and synchronization in different domains on a chip, Testing, Yield.	

Course	e Outcomes: After completing the course, the students will be able to
CO1	Apply the fundamentals of semiconductor physics in MOS transistors.
CO2	Analyze VLSI fabrication flow involved in IC design and create layouts for Boolean
	functions.
CO3	Justify the need for low power, circuit reliability and signal integrity in IC design.
CO4	Design digital circuits for Boolean functions and realize them in variants of CMOS logic.

Refei	rence Books
1	Deep-Submicron CMOS ICs, Harry Veendrick, 2 nd Edition, 2000, Kluwer academic
	publishers, ISBN: 9044001116.
2	Basic VLSI Design, Douglas A. Pucknell and Kamran Eshraghian, 3 rd Edition, 2003, PHI,
	ISBN: 8120309863.
3	CMOS Digital Integrated Circuits: Analysis and Design, Sung-Mo Kang and Yusuf
	Leblebici, 3 rd Edition, Tata McGraw-Hill, ISBN: 0070530777, 2003.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2							
CO2		1		1	3							
CO3	2	1	1	2	3							
CO4	1	1	1	2	3							

Low-1 Medium-2 High-3

	Semester: VI								
	ARM PROCESSOR								
	(GROUP C: PROFESSIONAL CORE ELECTIVES)								
		(Theory)							
Cou	Course Code: 16TE6C2 CIE Marks: 100								
Crea	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100								
Hou	Hours: 36L+24T SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Describe basic architecture and operation	ons of arm processors							
2	Explain Thumb instruction set for programming.								
3	Design an embedded system using ARM processor.								
4	Analyze the working principles of the c	cross compilers.							

UNIT-I								
ARM embedded systems: ARM Architecture.	08 Hrs							
ARM processor fundamentals: Registers current program status register, pipeline,								
exceptions, interrupts and vector table, core extensions, Architecture revisions, ARM								
processor families.								
UNIT-II								
Cache: The memory Hierarchy & Cache Memory, Cache architecture, discussions on	08 Hrs							
latest applications of ARM.								
Introduction to ARM instruction set: Data processing instructions, Branch								
Instructions, Load Store Instructions, Software Interrupt Instruction, Program status								
Register Instructions.								
UNIT-III								
Introduction to ARM instruction set: Loading Constants, ARMv5E Extensions, and	07 Hrs							
Conditional Execution. Basic Programming.								
Introduction to the THUMB Instruction set: Thumb register Usage, ARM-Thumb								
Interworking, other branch instructions, Data Processing Instructions, Single register								
Load – store Instructions.								
UNIT-IV								
Introduction to the THUMB Instruction set: Multiple register Load Store	06 Hrs							
Instruction, Stack Instructions, Basic Programming.								
Interrupts & Exception Handling: Exception Handling, Interrupts, Interrupt								
handling schemes.								
UNIT-V								
Embedded firmware Design and Development: Embedded firmware design	07 Hrs							
approaches, Embedded firmware Design languages.								

	Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the basic design principles of ARM processor based system.									
CO2	Identify the different attributes for designing ARM processor based application.									
CO3	Analyze the execution of Thumb instructions.									
CO4	Design ARM based embedded system.									

Refe	Reference Books								
1	ARM system developer's guide, Andrew N. Sloss, 2008, Elsevier, ISBN: 9781558608740.								
2	Introduction to Embedded systems, Shibu KV, 9th Reprint, 2013, McGraw Hill,								
	ISBN: 8186308792.								
3	ARM Assembly Language – Fundamentals and Techniques, William Hohl, 2009, CRC Press,								
	ISBN: 9781439806104.								
4	ARM Assembly Language An Introduction, J.R. Gibson, 2010, CENGAGE Learning,								
	ISBN: 9788131513606.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2			1	1	1			1	
CO2	3	2	2			1	1	1			1	
CO3	2	1	1									
CO4	3	3	3	1	2	1		1				1

Low-1 Medium-2 High-3

	Semester: VI								
	MULTI MEDIA COMMUNICATION								
	(GROUP C: PROFESSIONAL CORE ELECTIVES)								
	(Theory)								
Cou	ourse Code: 16TE6C3 CIE Marks: 100								
Cree	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100								
Hou	Hours: 38L+24T SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Describe data compression algorithms	for multimedia comm	unication.						
2	Analyze lossless compression techniques for digital data.								
3	Use quantizers and transform coding for data compression.								
4	Apply multimedia system standards for	different applications	3.						
5	Explain multimedia networks and their	applications.							

UNIT-I

Multimedia Communications: Multimedia information representation, multimedia							
networks, multimedia applications, Qos-Network QoS and application QoS.	07 Hrs						
UNIT-II							
Multimedia Information Representation: Digitization principles, Text formats –	07 Hrs						
Unformatted, formatted and hypertext, Images- Graphics, Documents; Audio and							
Video.							
UNIT-III							
Text and Image Compression: Compression principles, Text compression- Huffman coding, Arithmetic Coding,LZ, LZW coding; Image compression- GIF, TIFF, Digitized documents and pictures, JPEG.	08 Hrs						
UNIT-IV							
Audio and Video Compression: Audio compression - DPCM, Adaptive DPCM, Adaptive and Linear predictive coding, CELP, MPEG and Dolby audio coders. Video compression - video compression principles; Standards - H.261, H.263, MPEG, MPEG-1, MPEG-2, MPEG-4.	08 Hrs						
UNIT-V							
Multimedia Entertainment Networks: Cable TV networks – HFC networks, Satellite TV networks – broadcast television principles, digital television, services, Terrestrial television networks principles, digital television and interactive services, High speed PSTN access technologies –ADSL, VDSL.	08 Hrs						

Course	e Outcomes: After completing the course, the students will be able to
CO1	Analyze different multimedia data for processing.
CO2	Apply Sampling, Quantization and transform coding for data compression.
CO3	Describe multimedia system standards such as JPEG & MPEG.
CO4	Describe the functioning of Cable TV, satellite TV, digital TV and High speed access
	technologies.

Refe	rence Books
1	Multimedia Communications, Fred Halsall, 2008, Pearson Education, ISBN: 1405814292.
2	Fundamentals of Multimedia, Li and Drew, 2006, PHI, ISBN: 9788120328174.
3	Multimedia Communication Systems, K.R. Rao, Zoran S.Bojkovic, D.A.Milovanovic, 2009,
	PHI, ISBN: 8120321456.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	3	2							2
CO2	3	2	2	1	2							
CO3	1	1	2	2	2	2			2			
CO4	1	2	1	1		3	2		3	1	1	2

Low-1 Medium-2 High-3

	Semester: VI								
	OPERATING SYSTEMS								
	(GROUP C: PROFESSIONAL CORE ELECTIVES)								
	(Theory)								
Cou	Course Code: 16TE6C4 CIE Marks: 100								
Cree	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100								
Hou	Hours: 38L+24T SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Define fundamental principles of operating system design and kernel implementation.								
	Interpret the concepts of memory hie	rarchy and caching and how they affect							
	performance.								
2	Analyze resource management in Operating System.								
3	Evaluate and identify the algorithms for resource management.								
4	Implement operating system algorithms using any high level language.								

UNIT-I					
Introduction: Operating Systems, Goals of an OS, Operations of OS, Resource	07 Hrs				
Allocation and Related Functions, User Interface related functions, Classes of OS					
Multiprogramming Systems, Time Sharing System, Real-Time Operating System.					
Structure of Operating System: Operation of an OS, Structure of the supervisor,					
Virtual Machine OS, Kernel Based OS, Microkernel Based OS.					
UNIT-II					
Processes: Process concept, Process Scheduling, Operations on processes,	07 Hrs				
cooperating process, Inter process communication, Multithreading Models, Threading					
Issues.					
CPU Scheduling: Basic concepts, scheduling criteria, scheduling algorithms, multi-					
processor scheduling, thread scheduling.					
UNIT-III					
Process Synchronization: The critical selection problem, Peterson's solutions,	08 Hrs				
Synchronization Hardware, Semaphores.					
Deadlocks: System models, Deadlocks Characterization, Methods for handling					
Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection,					
Recovery from deadlock.					
UNIT-IV					
Memory management: Swapping, Contiguous Memory Allocation, Paging,	08 Hrs				
Structure of the Page Table, Segmentation.					
Virtual Memory: Demand Paging, Copy-on-write, Page Replacement, Allocation of					
Frames, Thrashing, Memory-Mapped Files, and Allocation Kernel Memory.					
UNIT-V					
File Systems: File concept, Access methods, Protection, File-system structure, File-	08 Hrs				
system Implementation, Directory Implementation and Allocation Methods.					
Case Studies: Windows Overview, Thread Management, Scheduling Management,					
Memory Management, I/Os, File System.					
	1				

	Course Outcomes: After completing the course, the students will be able to									
CO1	Identify and interpret various functions, goals and resource management in operating system.									
CO2	Describe and Implement key parameters to improve the Process Scheduling, Memory									
	Management and I/O file system.									
CO3	Apply the knowledge learnt to support the system in terms of best performance using									
	resources.									
CO4	Compare and analyze the functionality of different operating system like windows using case									
	study.									

Refe	rence Books
1	Operating System Concepts, A Sliberschatz and P B Galvin, 7th Edition, Reprint 2011,
	Addison Wesley, ISBN: 978-81-265-0962-1.
2	Operating Systems – A Concept Based Approach, D. M. Dhamdhere, 5 th Edition, Reprint
	2005, TMH, ISBN: 0-07-061194-7.
3	Operating Systems Internals and Design Principles, William Stallings, 7th Edition, 2012,
	Pearson Prentice Hall, ISBN: 978-0132309981.
4	Operating Systems, Design and Implementation, Andrew S. Tanenbaum, 2006, Pearson
	Education, ISBN: 978-0131429383.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	1	1							
CO2	2	3	2	1	1							
CO3	2	3	2	1	1							
CO4	1	2	2	2	2				1			

	Semester: VI								
	MICROWAVE INTEGRATED CIRCUITS								
	(GROUP D: PROFESSIONAL CORE ELECTIVES)								
(Theory)									
Cou	Course Code: 16TE6D1 CIE Marks: 100								
Crea	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 34L SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	1 Recognize the effects of miniaturization of microwave devices.								
2	Analyze the design issues of RFICs.								
3	3 Identify Passive Circuit Elements in RF systems.								
4	Design RF active subsystems on RFICs	3.							

UNIT-I

UNIT-I						
Introduction: Lower Frequency Analog Design and Microwave Design Versus	06 Hrs					
Radio Frequency Integrated Circuit Design, Types of MICs - HMICs, MMICs.	1					
Issues in RFIC design, noise, linearity: Introduction, Noise, thermal Noise, Noise	1					
figure, The noise figure of an Amplifier circuits and components in series, Linearity	1					
and Distortion in RF circuits, Third-order and second order Intercepts point, the 1-db	1					
compression point, Broadband measures of linearity.	1					
UNIT-II						
Impedance Matching: Introduction, review of smith chart, impedance matching	07 Hrs					
using LC networks, bandwidth and Q factor of matching networks.	1					
The use and design of passive circuit elements in IC technologies: Introduction,	1					
sheet resistance and the skin effect, parasitic capacitance & inductance, Applications	1					
of On-chip spiral inductors and transformers, On chip Transmission lines.						
UNIT-III						
LNA Design: Common-Emitter Amplifier, Noise in Amplifiers, Input-Referred Noise	07 Hrs					
Model of the Bipolar Transistor, Noise Figure of the Common-Emitter Amplifier,	1					
Input	1					
Matching of LNAs for Low Noise, Relationship Between Noise Figure and Bias	1					
Current, Linearity in Amplifiers - Exponential Nonlinearity in the Bipolar Transistor,	1					
Nonlinearity in the Output Impedance of the Bipolar Transistor, High- Frequency	1					
Nonlinearity in the Bipolar Transistor	1					
INIT-IV						
Mixers: Mixing with Nonlinearity Basic Mixer Operation Controlled	07 Hrs					
Transconductance Mixer, Double-Balanced Mixer, Mixer Noise, Linearity, Improving						
Isolation. Image Rejection.	1					
Voltage-Controlled Oscillators : The LC Resonator. Configuration of the	1					
amplifier as Colpitts oscillator. Analysis of an Oscillator as a Feedback System.	1					
Negative Resistance Generated by the Amplifier, The Effect of Parasitics on the	1					
Frequency of Oscillation, Large-Signal Nonlinearity in the Transistor, Phase						
Noise.						
UNIT-V						
Power Amplifiers: Power Capability, Efficiency Calculations, Matching	07 Hrs					
Considerations, Classification of Power Amplifiers, Amplifier Classes for RF	l					
Integrated Circuits, AC Load Line, Matching to Achieve Desired Power,	l					
Transistor Saturation, Current Limits, Power Combining, Thermal Runaway-	l					
Ballasting, Breakdown Voltage, Effects of Nonlinearity.	1					

Г

Course Outcomes: After completing the course, the students will be able to							
CO1	Explain design concepts and performance parameters in RFICs.						
CO2	Identify different Passive Circuit Elements on RF ICs.						
CO3	Analyze the characteristics of RF subsystems.						
CO4	Design various RF subsystems for RF transceivers.						

Refe	rence Books								
1	Radio Frequency Integrated Circuit Design, John Rogers, Calvin Plett, , 2003, Artech house, ISBN-13- 978-1580535021(UNIT-I & II).								
2	Radio Frequency and Microwave Electronics, Mathew M. Radmanesh, Prentice Hall Communications Engineering and Emerging Technologies Series, 2001, ISBN- 9780130279583 (UNIT-III, IV & V).								
3	Microwave amplifiers-Analysis and Design, Gulliermo Gonzalez, 2 nd edition, 1997, Prentice Hall- Technology & Engineering, ISBN-13: 978-0132543354.								

CIE is executed by way of Quizzes (Q), Tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2					1		1
CO2	2	2	2	2	2					1		2
CO3	3	3	2	2	2					1		2
CO4	3	3	3	2	3					1		2
	Semester: VI											
-----	--	----------------------	--	--	--	--	--	--	--			
	DIGITAL SIGNAL PROCESSOR ARCHITECTURE											
	(GROUP D: PROFESSION	NAL CORE ELECTIVES)										
	(Theory)											
Cou	Course Code: 16TE6D2 CIE Marks: 100											
Cre	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100										
Hou	Hours: 38L SEE Duration: 03Hrs											
Cou	Course Learning Objectives: The students will be able to											
1	1 Describe the architectural features of DSP processor.											
2	Analyze various addressing modes of TMS32	0C54xx DSP processor										
3	3 Compare the architectural features of different fixed point DSPs.											
4	4 Interface Memory and Parallel I/O Peripherals and CODEC to Programmable DSP Device											
5	5 Develop different applications on TMS320C54xx DSP processo											
6	6 Write the simple programs to implement different DSP algorithms											
	UNIT I											

0111-1				
Introduction to Digital Signal Processing: Introduction, A Digital Signal-Processing	07 Hrs			
System, Linear Time-Invariant Systems, Digital Filters, Decimation and Interpolation.				
Architectures for Programmable Digital Signal-Processing Devices : Introduction,				
Basic Architectural Features, DSP Computational Building Blocks, Bus Architecture				
and Memory, Data Addressing Capabilities, Address Generation Unit,				
Programmability an Program Execution, Speed Issues, Features for External				
Interfacing.				
UNIT-II				
Programmable Digital Signal Processors: Introduction, Commercial Digital	08 Hrs			
Signal-processing Devices, Data Addressing Modes of TMS320C54xx Digital Signal				
Processors, Data Addressing Modes of TMS320C54xx Processors, Memory Space of				
TMS320C54xx Processors, Program Control, TMS320C54xx Instructions and				
Programming, On-Chip peripherals, Interrupts of TMS320C54xx Processors,				
Pipeline Operation of TMS320C54xx Processors.				
UNIT-III	I			
Implementations of Basic DSP Algorithms and FFT algorithms: The O-notation.	08 Hrs			
FIR Filters, IIR Filters, Interpolation Filters, Decimation Filters, Adaptive filters, An				
FFT Algorithm for DFT Computation. A Butterfly Computation, Overflow and				
Scaling, Bit-Reversed Index Generation, FFT Implementation on the TMS320C54xx.				
Computation of the Signal Spectrum.				
	0.0 77			
Interfacing Memory and Parallel I/O Peripherals to Programmable DSP	08 Hrs			
Devices: Introduction, Memory Space Organization, External Bus Interfacing Signals,				
Memory Interface, Parallel I/O Interface, Programmed I/O, Interrupts and I/O, Direct				
Memory Access.				
Interfacing Serial Converters to a Programmable DSP Device: Introduction,				
Synchronous Serial Interface, A multi-channel Buffered Serial Port (McBSP), A				
CODEC Interface Circuit.				
UNIT-V				
Applications: DSP system, DSP based Biotelemetry Receiver, Speech processing	07 Hrs			
Systems, Image Processing Systems.				
Overview of Floating Point Processors: Architectural features of C67X processor.				

	Course Outcomes: After completing the course, the students will be able to
CO1	Explain basic requirements and features of programmable DSP devices.
CO2	Describe the importance of McBSP, CODEC interfaces and DSP applications.
CO3	Analyze and develop simple programs to implement different DSP algorithms.
CO4	Design interfaces for digital signal processors with memory and I/O peripherals.

Refe	rence Books
1.	Digital Signal Processing, Avatar Singh and S Srinivasan, 2004, Thomson
	Learning ISBN: 9788131500347.
2.	Digital Signal Processors, B Venkataramani and M Bhaskar, 2 nd Edition, 2011,
	TMH ISBN: 0072393912.
3.	Digital Signal Processing – A Practical approach, E.C.Ifeachor and B.W.Jervis, 2 nd
	Edition, 2002, Pearson Education, ISBN: 0201596199.

CIE is executed by way of Quizzes (Q), Tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PO												
CO1	3	2	2	2	2	2					1	1
CO2	2	2	2	1	1						1	1
CO3	3	3	3	2	3	2					2	2
CO4	3	2	3	3	3	2					2	2

Low-1	Medium-2	High-3
-------	----------	--------

	Semester: VI									
	CRYPTOGRAPHY AND NETWORK SECURITY									
	(GROUP D: PROFESSIONAL CORE ELECTIVES)									
	(Theory)									
Cou	Course Code: 16TE6D3 CIE Marks: 100									
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100										
Hou	Hours: 36L SEE Duration: 03Hrs									
Cou	Course Learning Objectives: The students will be able to									
1	Define the fundamentals of Security and cryp	tography for da	ita tran	smission.						
2	Explain the principles of cryptography and encryption									
3	Analyze modern stenographic techniques	and differen	ntiate	between	stenography	and				
	cryptography									
4	Explain IRM features and describe DRM systems and technologies									
5	Identify the necessity of data security in vario	us industries.								

UNIT-I

Introduction: Introduction to encryption, Importance of prime numbers, Types of	07 Hrs		
encryption, How encryption is used.			
Classical Encryption Techniques: Symmetric Cipher Model, Substitution			
Techniques, Transposition Techniques.			
Block Ciphers and Data Encryption Standards (DES): Block Cipher Principles,			
The Data Encryption Standard, The Strength of DES.			
UNIT-II			
Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems, The	08 Hrs		
RSA Algorithm, Key management, Diffie-Hellman key exchange.			
Message Authentication and Hash Functions: Authentication Functions, Message			
Authentication Codes (MAC), Hash Functions, Security of MAC and Hash			
Functions.			
UNIT-III			
Authentication Applications: Kerberos, X-509 Authentication Service, Public-Key	07 Hrs		
Infrastructure.			
Electronic Mail security: Pretty good privacy, S/MIME, Data compression using ZIP,			
Radix-64 conversion.			
UNIT-IV			
Steganography: Introduction to Steganography, Modern Techniques Steganography,	07 Hrs		
Comparison between steganography and cryptography, Stenographic Techniques,			
Detecting steganography, Stegoanalysis, uses of Steganography.			
Information Rights Management: Introduction to IRM, Features, Naming			
conventions of IRM.			
Digital Right Management: Introduction to DRM, Environment For DRM Systems,			
Evaluation Criteria for DRM Systems, Common DRM techniques, DRM			
technologies.			
UNIT-V			
Encryption and Data Security in Industries: Data encryption (local and Cloud) in	07 Hrs		
Banking and Financial Transactions, Data encryption Methods used in Secure Auto			
teller Machines, Role of encryption in Mobile industry, Importance of Email Encryption			
in Health Care Industry.			

Γ

	Course Outcomes: After completing the course, the students will be able to							
CO1	Explain the fundamental concepts, issues, principles and theories of cryptography and							
	Encryption for data transmission.							
CO2	Apply contemporary theories, process and tools in the development and evaluation of							
	solutions to product design							
CO3	Analyze cryptographic and stegnographic techniques, and differentiate between them.							
CO4	Design solutions to securely communicate in the appropriate form with the clients.							

Refei	rence Books
1	Cryptography and Network Security, Williams Stallings, 2003, Pearson Education/PHI, ISBN: 0-13-111502-2.
2	Network Security, Perlman - Kaufman Spenciner, 2002, Pearson Education/PHI, ISBN: 9971–51–345–5.
3	Cryptography & Network Security, Atul Kahate, 2003, TMH, ISBN-81-203-2186-3.
4	Investigator's Guide to Steganography, Gregory Kipper,

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2			1			2			
CO2	3	3	2	2	2	1			2			
CO3	3	3	3	2	2	1			2			
CO4	3	3	3	2	2	1			2			

Low-1	Medium-2	High-3
-------	----------	--------

	Semester: VI					
		JAVA				
	(GROUP D: PROFE	SSIONAL CORE ELECTIVES)				
		(Theory)				
Cou	rse Code: 16TE6D4	CIE Marks: 100				
Cre	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	rs: 35L	SEE Duration: 03	Irs			
Cou	rse Learning Objectives: The students	will be able to				
1	Map the concepts learnt in object orie	nted programming by considering suitable	use-cases and			
_	implement same using the programmin	g constructs specified in Java.	1 1			
2	build awareness of basic programmin	g constructs and methods in Java and imp	lement simple			
3	Introduce utilities and advanced prog	ramming concents in Java to cater the de	mand of full			
5	fledged application.	ranning concepts in Java to cater the ut	inand of full-			
4	Develop a project that will apply conce	epts in to workable code.				
-		F == == = = = = = = = = = = = = = = = =				
		UNIT-I				
Java Programming Fundamentals: Java Language introduction, Java features, why 07 Hrs						
Java	Java is important to internet, Hello World (simple java programs), Lexical Issues,					
Java	class Libraries, Variables, Data Types-	the primitive Types, Type conversion and				
Cast	Casting, Arrays. Operators, Flow Control-Branching, Looping.					
		UNIT-II				
Intr	oducing classes: Class fundamenta	ls, declaring objects, Classes-Object	07 Hrs			
Refe	References, Instance Variables, The new operator, The Dot (.) Operator, introducing					
methods, Method Declaration, Method Calling, Constructors, Method Overloading.						
Inheritance: Inheritance basics, Method Overriding, uses of super, Dynamic						
Method Dispatch, Abstract classes, Enumerations, Type wrappers.						
UNIT-III						
Pac	Packages and Interfaces: Packages, Access protection, Importing packages and 07 Hrs					
Inter exce	Interfaces. Excepton handling: Excepton types, uncaught exceptions, java's built-in exceptions.					
Mul	Multithreaded programming: The java thread model, Thread life cycle, main					
threa	thread, creation of threads using implementing runnable and extending thread.					

thread, creation of threads using implementing runnable and extending thread, creating multiple threads, Thread priorities, synchronization, Inter thread communication, suspending, resuming, and stopping threads.

UNIT-IV07 HrsIntroduction to Java GUI
Applets: Applet Basics, Architecture, Applet Lifecycle, repaint (), update, HTML
APPLET Tags, passing parameters to Applets.
AWT: AWT classes, Window fundamentals.
Swings: Introduction to Swings, JApplet, JFrame and JComponent, Icons & labels,
Handling Threading issues, Text Fields, Buttons.07 HrsUNIT-VServlets: servlet Lifecycle, The Concept of JDBC; JDBC Driver Types; JDBC
Packages; Database Connection; Associating the JDBC/ODBC Bridge with the07 Hrs

Database. J2ME basics, J2ME overview and J2ME Architecture.

	Course Outcomes: After completing the course, the students will be able to
CO1	Understand the fundamentals concepts and its applications of JAVA such as Exceptions,
	Applets, AWT, Swings, JDBC, JSP.
CO2	Apply the concepts of classes, instances & Inner classes in Java, inheritance, exceptions
	and threading concepts in programming.
CO3	Create applications using the concepts of Applets, Swings, and Servlets.
CO4	Design and implement applications using Java allied technologies.

Refe	rence Books
1	The Complete Reference – Java, Herbert Schildt, 7 th Edition, TMH Publications,
	ISBN-10: 0071808558.
2	The Complete Reference -J2EE, Jim Keogh, TMH publications, ISBN-10, 0070529124.
3	The Complete Reference J2ME, Jim Keogh, 2006, Tata McGraw Hill,
	ISBN: 9780070534155.

CIE is executed by way of Quizzes (Q), Tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1			1				1
CO2	3	3	3	2	2			1				1
CO3	3	3	3	1	1			1				1
CO4	3	3	3	2	1			1				1

	Semester: VI					
	В	IOINSPIRED ENGINEERING	Ţ			
	(Group E: Global Elective)					
Com	rao Codou16C6E01	(Theory)	CIE Morket 100			
Cru	15e Coue:10G0E01		CIE Marks: 100 SEE Marks: 100			
Hou	nts: L:1:1:5: 5:0:0:0 rs: 36I		SEE Marks: 100			
Cou	rse Learning Objectives:		SEE Duration, SHIS			
1	To familiarize engineering st	udents with basic biological conc	cents			
2	Litilize the similarities note	d in nature for a particular pr	oblem to bring inspiration	on to the		
4	designer.	a in nature for a particular pro-	blem to bring inspiration	on to the		
3	Explain applications such a	s smart structures, self-healing	materials, and robotics r	elative to		
-	their bio logical analogs		·····, ···,			
4	To gain an understanding th	nat the design principles from n	ature can be translated i	nto novel		
	devices and structures and a	n appreciation for how biologic	cal systems can be engin	neered by		
	human design					
r						
.		Unit-I				
	oduction to Biology: Biomole	cules-Proteins, carbohydrates, li	pids and Nucleic acids.	06 Hrs		
Cell	types- Microbial, plant, and	nal.Organ system- Circulatory,	digestive, respiratory,			
excit	etory and hervous system. Sens	se organs. Plant process- Photosy	ynthesis.			
		Unit – II				
Intro	oduction to Biomimetics: We	ealth of invention in nature as	inspiration for human	08 Hrs		
inno	vation: Mimicking and inspir	ration of nature- synthetic life.	Nature as a model for			
struc	ture and tools: Biological c	lock, honey comb as strong	light weight structure.			
Mate	erials and processes in biology	y- Spider web, honey bee as a n	nulti-material producer,			
hono	figiery for biominatic technol	sird and insect as source of inspi	iring flight. Robotics as			
Dene	ficiary for biominietic technolo	Unit -III				
Biol	ogical materials in Engin	eering mechanisms: Introduc	ction Comparison of	08 Hrs		
biolo	ogical and synthetic materials:	Silk processing and assembly	by insects and spiders-	00 1115		
High	performance fibers from natu	re, Seashells- High performance	e organic and inorganic			
com	posites from nature. Shark sl	tin- Biological approaches to e	efficient swimming via			
contr	col of fluid dynamics, Muscl	es- Efficient biological conver	sion from chemical to			
mech	nanical engineering.					
		Unit –IV				
Biol	ogical inspired process and p	roducts: Artificial neural netwo	rks, genetic algorithms,	08 Hrs		
medi	cal devices. Biosensors. Plant	as Bioinspirations: Energy effici	ency, Biomimetic super			
hydr	hydrophobic surfaces- lotus leaf effect. Bionic leaf and Photovoltaic cells.					
Imn	lanta in Prostiga: Artificial S	Unit – V	on organs Introduction	07 II.		
Artif	icial kidney liver blood lur	upport and replacement of hum	an organs-introduction,	07 Hrs		
Visu	Visual prosthesis artificial eve. Sense and sensors: Artificial tongue and nose Diomimetic					
echo	echolation. Limitations of organ replacement systems					
	centration. Emittations of organ replacement systems.					
Course Outcomes: After completing the course, the students will be able to						
CO1	CO1 Remember and explain the fundamentals of Biology.					
CO2	Describe the basic principle	es of design in biological systems	S.			
CO3	Differentiate biological ph	enomena to support inspiration	for visual and conceptu	al design		
	problems		*	-		

CO4 Create engineered solutions to customer needs utilizing a variety of bio-inspiration techniques.

Refere	ence Books
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: 8123928726/
	ISBN 13: 9788123928722.
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press,
	ISBN: 9780849331633.
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version.
	Wiley John and Sons, 2012. ISBN: 1118092449.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

	Semester: VI						
	GREEN TECHNOLOGY						
	(Group	E: Global Elective)					
		(Theory)					
Cou	Course Code: 16G6E02 CIE Marks: 100						
Crea	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hours: 36L SEE Duration: 3Hrs							
Cou	Course Learning Objectives:						
1	1 Learn the tools of green technology.						
2	Know various forms of renewable energy.						
3	3 Study the environmental consequences of energy conversation.						
4	4 Understand energy audits and residential energy audit.						
5	Understand the application of green te	chnology in various industries.					

Unit-I		
Current Practices and Future Sustainability: Need for green technology, fundamentals	07 Hrs	
of energy and its impact on society and the environment, the mechanics, advantages and	1	
disadvantages of renewable energy sources, energy conservation and audits, zero waste	l	
technology, life cycle assessment, e.xtended product responsibility, concept of atom	l	
economy, tools of Green technology	1	
Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner	1	
production, cleaner production technologies.		
Unit – II		
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's	08 Hrs	
surface, solar radiation geometry, solar radiation measurements	1	
Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar	l	
heating of buildings), space cooling (or solar cooling of building), solar thermal electric	l	
conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar	l	
cooking.	l	
Geothermal Energy: Resource identification and development, geothermal power	1	
generation systems, geothermal power plants case studies and environmental impact	1	
assessment.		
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet	07 Hrs	
Processes, dry Processes, blogas generation, factors affecting blodigestion, types of blogas	1	
plants (KVIC model & Janata model), selection of site for blogas plant.	1	
Bio Energy (Inermal Conversion): Methods for obtaining energy from biomass, thermal	l	
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification	l	
process, applications of the gasifiers.		
Unit – IV	07.11	
wind Energy: Introduction, Basic components of wECS (wind Energy Conversion system) algorification of WEC systems, types of wind machines (Wind Energy Collectors)	07 Hrs	
borizontal axial machines and vortical axis machines	l	
Ocean Thermal Energy: OTEC Introduction, easen thermal electric conversion (OTEC)	l	
methods of ocean thermal electric power generation open cycle OTEC system the closed		
or Anderson OTEC cycle Hybrid cycle	l	
Energy from Tides: Basic principles of tidal power components of tidal power plants	1	
operation methods of utilization of tidal energy advantages and limitations of tidal power	1	
generation	1	
Soucharden.		

Unit –V	
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles	07 Hrs
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for	
motor vehicle, safety and management, hydrogen technology development in India	
Application of Green Technology: Electronic waste management, bioprocesses, green	
composite materials, green construction technology	
Sustainability of industrial waste management: Case studies on cement industry, iron	
and steel industry, petroleum sectors, marble and granite industry, sugar industry	

Course	e Outcomes: After completing the course, the students will be able to
CO1	Recall the fundamentals of various forms of energy
CO2	Explain the principles of various forms of renewable energy
CO3	Apply the concept of zero waste, atom economy for waste management
CO4	Create a waste management plan incorporating tools of green technology in various industries

Reference Books

1101010	
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VI									
SOLID WASTE MANAGEMENT									
	(Group E: Global Elective)								
	(The	ory)							
Cou	rse Code:16GE6E03	CIE Marks: 100							
Cree	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students will be	e able to							
1	Impart the knowledge of present methods of solid waste management system and to analyze the								
1	drawbacks.								
2	Understand various waste management statute	ory rules.							
2	Analyze different elements of solid waste m	anagement, design and develop recycling options							
3	for biodegradable waste by composting.								
1	Identify hazardous waste, e-waste, plastic wa	aste and bio medical waste and their management							
4	systems.								

UNIT-I				
Introduction: Land Pollution. Scope and importance of solid waste management.	08 Hrs			
Present solid waste disposal methods. Merits and demerits of open dumping, feeding to				
hogs, incineration, pyrolysis, composting, sanitary landfill. Definition and functional				
elements of solid waste management.				
Sources: Sources of Solid waste, types of solid waste, composition of municipal solid				
waste, generation rate, Numerical Problems.				
Collection and transportation of municipal solid waste: Collection of solid waste-				
services and systems, Municipal Solid waste (Management and Handling) 2000 rules with				
2016 amendments. Site visit to collection system.				
UNIT-II				
Composting Aerobic and anaerobic composting - process description, process	08 Hrs			
microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.				
Sanitary land filling: Definition, advantages and disadvantages, site selection, methods,				
reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate				
movement, Site visit to landfill site.				
UNIT-III				
Hazardous waste management: Definitions, Identification of hazardous waste,	06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport,				
processing, disposal, hazardous waste (Management and handling) rules 2008 with				
classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site.				
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site.				
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection,	06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and	06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and	06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant.	06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V	06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing	06 Hrs 06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing electronic goods, Recycling and recovery integrated approach. E- waste (management and	06 Hrs 06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing electronic goods, Recycling and recovery integrated approach. E- waste (management and handling) rules 2011.Site visit to e- waste processing facility.	06 Hrs 06 Hrs			
Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous waste (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill site. UNIT-IV Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with amendments. Site visit to hospital to see the collection and transportation system and visit to biomedical waste incineration plant. UNIT-V E-waste management: Definition, Components, Materials used in manufacturing electronic goods, Recycling and recovery integrated approach. E- waste (management and handling) rules 2011.Site visit to e- waste processing facility. Plastic waste management: Manufacturing of plastic with norms. Plastic waste	06 Hrs 06 Hrs			

Course Outcomes: After completing the course, the students will be able to										
CO1	Understand the existing solid waste management system and to identify their drawbacks.									
CO2	Analyze drawbacks in the present system and provide recycling and disposal options for each									
	type of waste.									
CO3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific									
	management system.									
CO4	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal									
	waste management as per the rules laid by Ministry of Environment & Forest.									

Tex	t Books											
1	Integrated Solid Waste Management : Engineering principles and management issues George											
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.											
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243.											
2	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous,											
	Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.											
3	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC											
	Publication, 2009, ISBN 9780854041121.											

Reference Books

1	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
2	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.
3	Biomedical waste (Management & Handling) rules, 1998. Ministry of Environment and Forest
	Notification, New Delhi, 20thJuly 1998, and amendment.
4	E- waste (management and handling) rules 2011. Ministry of Environment and Forest
	Notification, New Delhi, 12th May 2011.
5	The Plastic Manufacture, Sale and usage Rules2009. Ministry of Environment and Forest
	Notification, New Delhi, amendment on February 4, 2011.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	3	1	2	2	2	-	-	-	2
CO2	2	3	1	2	1	2	2	2	1	-	-	2
CO3	2	1	-	2	1	1	2	2	-	-	-	-
CO4	3	-	1	1	-	2	2	2	-	-	-	1

CO-PO Mapping

Semester :VI							
INTRODUCTION TO WEB PROGRAMMING							
(Group I	E : Global Elective)						
_	(Theory)						
Course Code:16G6E04	CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hours: 36L	SEE Duration: 3 Hrs						

Cou	Course Learning Objectives: The students will be able to								
1	Understand the basic concepts used in web programming.								
2	Learn the definitions and syntax of different web technologies.								
3	Utilize the concepts of JavaScripts, XML and PHP.								
4	Design and develop web pages which are quick, easy and well-presented using different								
4	techniques such as CSS,XML and JavaScripts.								

UNIT-I

UNIT-I			
Introduction to Web Concepts: Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules, block-level elements, text-level elements.XHTML – 1: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox. XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.XHTML (continued): Lists, Tables, Forms, Frames.	07 Hrs		
formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution. The Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements.</div>			
UNIT-III			
JavaScript (continued): Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts. JavaScript and HTML Documents: The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object; DOM tree traversal and modification.			
UNIT-IV			
UNIT-IV Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements. Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling; Files; Cookies; Session Tracking.			
UNIT-V XML: Introduction: Syntax: Document structure: Document Type definitions:	05 Hrs		
Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT Style sheets; XML processors; Web services.	55 1115		

Course Outcomes: After completing the course, the students will be able to								
CO1	Understand and explore internet related concepts that are vital for web development.							
CO2	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.							
CO3	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.							
CO4	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.							

Refere	ence Books
1	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications, Chris Bates, 3rd Edition, , 2006, Wiley India,
	ISBN : 978-81-265-1290-4.
3	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4.
4	Thomas A Powell, The Complete Reference to HTML and XHTML, 4 th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

	Semester: VI									
AUTOMOTIVE ELECTRONICS										
	(Group E: Global Elective)									
(Theory)										
Cou	Course Code: 16G6E05 CIE Marks: 100									
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100									
Hou	Hours:36L SEE Duration: 3Hrs									
Cou	rse Learning Objectives: The students	will be able to								
1	Understand the application of principle	s of sensing technolog	y in automotive field							
2	Apply control systems in the automotive domain									
3	Understand automotive specific commu	inication protocols / te	chniques							
4	Analyze fault tolerant real time embedd	led systems								

UNIT-I

0111-1							
Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol,	08 Hrs						
diesel and gas engines, electric motors and control systems. Basic Automotive System,							
System Components, Evolution of Electronics in Automotive. Alternators and charging,							
battery technology, Ignition systems. Working principles of various electronic components							
and accessories used in Automotive. Developments in existing engine forms and							
alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic							
Transmission systems.							
UNIT-II							
Sensor Technologies in Automotive: In-vehicle sensors: Working principles, Characteristics, limitations and use within the automotive context of the following:	07 Hrs						
Temperature sensing e g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate.							
Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-							
Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic							
transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel							
injection. Interfacing principles: Operation, topologies and limitations of all sensors							
covered in the above to in-vehicle processing or communications nodes. Use of Actuators:							
Types, working principle, Characteristics, limitations and use within the automotive context							
of each type.							
UNIT-III							
Automotive Control Systems: Control system approach in Automotive: Analog and	07 Hrs						
Digital control methods, stability augmentation, control augmentation. Transmission							
control, System components and functions. Cruise control, traction control, actuator							
limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle							
braking fundamentals, Antilock systems. Variable assist steering and steering control.							
Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Anti-							
theft System, Emission Course-system control. Control techniques used in hybrid system.							
Electronic Engine control: Motion equations, modeling of linear and non-linear systems,							
numerical methods, system responses Objective of Electronic Engine control. Spark							
Ignition and Compression Ignition Engines and their electronic controls. Engine							
management testing: Engine management system strategies and implementation.							
Simulation and implementation methods. Methods of improving engine performance and							
efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and							
Architecture.							
UNIT-IV							

Automotive Communication Systems: Communication interface with ECU's: Interfacing techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS),

for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Acquire the knowledge of automotive domain fundamentals and need of electronics in
	Automotive systems
CO2	Apply various sensors and actuators for Automotive applications
CO3	Analyze different control systems and communication interfaces used in automotive systems.
CO4	Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,
3	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial
	Information Technology Series, CRC press.
4	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,
	Springer 2 nd Edition 2005 ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

	SEMESTER – VI										
	INDUSTRIAL ELECTRONICS										
	(Group E: Global Elective)										
		(Theory)									
Cours	se Code: 16G6E06	CIE Marks: 100									
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100									
Hours: 36L		SEE Duration: 3Hrs									
Cours	se Learning Objectives: '	The students will be able to									
1	Explain the working of	the devices used in power electronic circuits in industrial applications									
2	Analysing and designing and economically and Id	g power electronic circuits which handle the electrical energy efficiently lentify the typical practical problems with industrial exposure acquired									
3	Use basic concepts of design and working of electronic circuits for conversion and control of electrical energy										
4	Apply the knowledge to industrial problems with	o work as part of teams on multidisciplinary projects and to discuss regard to application of Power Electronics.									

Unit-I						
Power semi-conductor Devices and static characteristics: Construction, working &						
characteristics of MOSFET, SCR, IGBT. Comparison of Power BJT, MOSFET, SCR,						
IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design of R, R-C, and UJT						
(pulse train) Gate triggering methods of SCR.						
Unit-II						
Thyristor Dynamic characteristics, Specifications and Protection: Gate characteristics	07 Hrs					
of SCR, Dynamic characteristics of SCR. Design of Snubber circuit for SCR, Line						
Commutation and Forced Commutation circuits with design, Gate protection &						
overvoltage protection of SCR.						
Unit-III						
Converters: Single Phase Controlled Convertor- Full wave Half and Fully controlled line	06 Hrs					
commutated bridge converters, Derivation of average load voltage and current. Three phase						
converters -Six pulse converters- with R load- Active inputs to the convertors with and						
without Freewheeling diode, Derivation of average load voltage and current.						
Converter applications: Industrial Applications of Half and Fully controlled converters to						
DC drives (Control of DC drives).						
Unit-IV						
Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and						
Current limit control strategies –Derivation of load voltage and currents with R, RL of Step						
down, Step up Chopper, Step up/Down Chopper – load voltage expression.						
Application of choppers to subway cars, Industrial drives, battery operated vehicles.						
Unit-V						
Classification of Choppers and Applications: Type A, Type B, Type C, Type D, Type E						
choppers and their industrial Applications, AC Chopperphase control type.						
Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter,						
bridge inverter(single phase) - Voltage control techniques for inverters Pulse width						
modulation techniques UPS-online, offline (Principle of operation only.						

Course Outcomes: After completing the course, the students will be able to								
CO1	Understand the comprehensive working of different devices and their applications.							
CO2	Analyze the application of skills in controlling and conversion of electrical energy.							
CO3	Evaluate and distinguish the performance of converters and inverters.							
CO4	Ability to implement their knowledge and skills in design of applications.							

Ref	erence Books
1	Power Electronics, M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
	Power Electronics : Circuits, Devices and Applications, M. H. Rashid, Prentice Hall of India, 2 nd
2	Edition, ISBN : 0131228153, 9780131228153, 2004
3	Power Electronics, P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	Power Electronics, P S Bimbra P.S Bimbra , Khanna Publication, ISBN:978-7409-279-3,
	5 th Edition.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping															
CO/PO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	2	2	1	1	2	0	1	3	2	2
CO2	3	2	2	3	3	0	1	0	0	0	2	1	3	2	2
CO3	3	2	2	3	2	2	0	1	0	0	1	2	3	2	2
CO4	3	3	3	3	2	3	2	0	1	0	0	1	3	3	3

Low-1 Medium-2 High-3

VI Semester								
PROJECT MANAGEMENT								
(Group E: Global Elective)								
(Theory)								
Course Code : 16G6E07	CIE Marks : 100							
Credits : L: T: P: S:3:0:0:0	SEE Marks : 100							
Hours : 33L	SEE Duration : 03 Hrs							
Course Learning Objectives: The students will be able to								
1. To understand the principles and components of project manage	ment.							
2. To appreciate the integrated approach to managing projects.								
3. To explain the processes of managing project cost and project p	rocurements.							
Unit – I								
Introduction: What is project, what is project management, relation	onships among portfolio	06 Hrs						
management, program management, project management, and	organizational project							
management, relationship between project management, operation	tions management and							
organizational strategy, business value, role of the project manag	er, project management							
body of knowledge.								
UNIT – II								
Organizational influences & Project life cycle: Organizational influences on project								
management, project state holders & governance, project team, project life cycle.								
Project Integration Management: Develop project charter, develop project management								
plan, direct & manage project work, monitor & control project work, perform integrated								
change control, close project or phase.								
UNIT – III								
Project Scope Management: Project scope management, colle	ect requirements define	07 Hrs						
scope, create w BS, validate scope, control scope.								
Project Time Management: Plan schedule management, dell activities activity recourses activity durati	ne activities, sequence							
activities, estimate activity resources, estimate activity duration	ons, develop schedule,							
UNII – IV Project Cost monogoment, Project Cost monogoment, estimate	aast datamaina hudaat	06 IIma						
entrel costs	cost, determine budget,	UO HIS						
Control Costs.	orm quality assurance							
control quality	orm quanty assurance,							
UNIT – V								
Project Risk Management: Plan risk management identify risks, perform qualitative risk								
analysis perform quantitative risk analysis plan risk resources control risk								
Project Procurement Management: Project Procurement	Management, conduct							
procurements, control procurements, close procurement.								
Course Outcomes: After going through this course the student	will be able to							
CO1 Understand the concepts, tools and techniques for managing	large projects.							

CO2 Explain various sub processes in the project management frameworks.

CO3 Analyze and evaluate risks in large and complex project environments.

CO4 Develop project plans for various types of organizations.

Reference Books:

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

	VI Semester						
	VIRTUAL INSTRUMENTATION						
	(Group E: Global Elective)						
		(Theory)					
Course Code:16G6E08 CIE Marks: 100							
Credits/Week: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hours:35L SEE Duration: 3Hrs							
Cours	Course Learning Objectives: The students will be able to						
1	1 Understand the difference between conventional and graphical programming, basic data						
	acquisition concepts.						
2	2 Differentiate the real time and virtual instrument.						
3	3 Develop ability for programming in LabVIEW using various data structures and program						
	structures.						
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with						
	LabVIEW.						

UNIT-I	
Graphical Programming Environment: Basic of Virtual Instrumentation, Conventional	06 Hrs
and Graphical Programming. Introduction to LabVIEW, Components of LabVIEW and	l
Labels.	l
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code	l
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch	l
actions, String data types, enum, ring, Dynamics.	l
UNIT-II	
Fundamentals of Virtual Instrumentation Programming: For Loop, While Loop, shift	09 Hrs
registers, stack shift register, feedback node, and tunnel.	l
Timing function : Timing VI, elapsed time, wait function.	l
Case structures, formula node, Sequence structures, Arrays and clusters, visual display	l
types- graphs, charts, XY graph. Local and Global variables.	l
UNIT-III	
Error Handling- error and warning, default error node, error node cluster, automatic and	08 Hrs
manual error handling.	
String Handling: Introduction, String Functions, LabVIEW String Formats.	l
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.	l
Design patterns: Producer/consumer, event handler, derived design pattern, Queued	l
message handler, Producer/consumer (events), Producer/consumer (state machine).	1
UNIT-IV	
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal	06 Hrs
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.	l
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,	l
DAQ Assistants, Analysis Assistants.	l
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,	l
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.	l
UNIT-V	
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process	l
Communication, Notifier, Semaphore, Data Sockets.	1
Simulation of systems using VI: Development of Control system, Image acquisition and	1
processing.	L

Course	e Outcomes: After completing the course, the students will be able to
CO1	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.
CO2	Apply the theoretical concepts to realize practical systems.
CO3	Analyze and evaluate the performance of Virtual Instrumentation Systems.
CO4	Create a VI system to solve real time problems using data acquisition.

Reference Books

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1 st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

		Semester: VI			
	INTRODUCTION TO	O MOBILE APPLICA	TION DEVELOPMENT		
	(Group E: Global Elect	ive)		
Co	urse Code: 16G6E09	(Theory)	CIE Marks: 100		
Cre	edits: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Ho	urs : 36L		SEE Duration: 3Hrs		
Co	urse Learning Objectives: The s	tudents will be able to			
1	Learn Android application develo	opment platform for mol	bile devices and use it.		
2	Understand mobile application an	rchitecture and its compo	onents.		
3	Define Android specific program	nming concepts such as	s activities, intents, fragments	, services,	
	broadcast receivers and content p	providers.			
4	Describe sensors like motion s	sensors, environmental	sensors, and positional sens	ors; most	
	commonly embedded in Android	l devices along with their	r application programming inte	erface.	
		UNIT I			
Ov	erview of Software platforms ar	nd Development: Mobil	le OS: Android development	07 Hrs	
plat	form and tools, Programming	g language, Emulator	, SDK and Development		
Env	Applications and Activ	:	Application Manifest File		
Creating Applications and Activities: Introducing the Application Manifest File;					
Lif	activities	, Architecture Fatterns (MVC), Android Application		
LIII	UNIT II				
Use	er Interface Design: Fundame	ental Android UI De	sign: Introducing Layouts:	07 Hrs	
Introducing Fragments.					
Intents and Broadcasts: Introducing Intents; Creating Intent Filters and Broadcast					
Receivers.					
UNIT III					
Database and Content Providers: Introducing Android Databases; Introducing SQLite; 0				07 Hrs	
Co	ntent Values and Cursors; Wo	orking with SQLite D	atabases; Creating Content		
Providers; Using Content Providers; Case Study: Native Android Content Providers.					
		UNIT IV			
Location Based Services, Telephony and SMS: Using Location-Based Services; Using 08 H				08 Hrs	
the Emulator with Location-Based Services; Selecting a Location Provider; Using					
Proximity Alerts; Using the Geocoder; Example: Map-based activity; Hardware Support					
for	for Telephony; Using Telephony; Introducing SMS and MMS.				
	UNIT V				
Hardware Support and Devices (AUDIO, VIDEO, AND USING THE CAMERA):				07 Hrs	
Using Sensors and the Sensor Manager; Monitoring a Device's Movement and					
Ori	entation; Introducing the Environ	nmental Sensors; Playir	ng Audio and Video; Using		
Au	tio Effects; Using the Camera; Re	cording Video			
G					

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Assess the basic framework and usage of SDK to build GUI and apply advanced				
	technologies in developing Android mobile applications.				
CO2	Differentiate techniques for persisting user data, such as shared preferences, traditional file				
	systems (internal and external storage), and SQLite database				
CO3	Articulate the communication programming features and capabilities of Android platforms.				
CO4	Design and create innovative, sophisticated mobile applications using Android platform.				

Refe	erence Books
1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3 rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace
	Independent Publishing Platform, ISBN: 9781519722089

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

		Seme	ster: VI				
		AUTOMOTIVE	E ENGINEERING	J			
	(Group E: Global Elective)						
	(Theory)						
Cou	rse Code:	16G6E10		CIE Marks: 100			
Crea	lits: L:T:P:S	3:0:0:0		SEE Marks: 100			
Hou	rs:	36L		SEE Duration: 3Hrs			
Cou	rse Learning Ol	ojectives: The students will	be able to				
1	1 Identify the different sub-systems in automobiles.						
2	2 Describe the functions of each of the sub-systems and its effect.						
2	Discuss fuel injection, transmission, braking, steering, suspension, air intake and exhaus						
3	systems.						
1	Explain the i	mportance of selection of	suitable sub-sy	stem for a given performance			
-	requirement.						

UNIT-I

Automobile Engines: Classifications of Internal Combustion Engines based on no. of	06 Hrs
cylinders, Arrangement of cylinders, Type of fuel and no. of strokes. Engine construction	
and nomenclature. Thermodynamic principles of Otto and Diesel cycle. Operation in a 4	
stroke engine. Direct and indirect injection. Combustion stages in engines. Fuels:	
Gasoline, Diesel, LPG and Natural Gas For automotive applications. Fuel properties-	
Octane number and Cetane number. Pollutants and Emission norms- Regulated pollutants	
and its effects, Regulations as per emission norms.	
UNIT-II	
Engine Auxiliary Systems: AirIntake and Exhaust System- Working principle of Air	08 Hrs
filters, Intake manifold, Turbocharger, Intercooler, Exhaust manifold, Catalytic	
convertor, Exhaust Gas Recirculation system, Muffler.	
Cooling system- Components, working principle, Coolant.	
Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.	
Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter.	
Working of ignition system, Battery, Immobilizer.	
UNIT-III	
Transmission: Clutch- Classification and working, Gear box- Classification, Working of	08 Hrs
sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft,	
Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and	
balancing classification of tyres, Radial, Tubeless.	
UNIT-IV	
Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of	06 Hrs
springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic,	
parking brake, Front and rear wheel brakes. Antilock Braking Systems.	
Steering- components and operation of power steering.	
Vehicle frame and body classification- Hatchback, Sedan, SUV.	
Safety systems- Passive safety systems, Active safety systems- Principle of Electronic	
Stability Program, Air bags, Crash testing methods.	
UNII-V	
Demonstrations of Automobile Systems: Engine performance measurement in terms of	06 Hrs
Demonstrations of Automobile Systems: Engine performance measurement in terms of Brake power, Emission measurement and principle, Drawing Valve Timing Diagram for	06 Hrs

Cou	Course Outcomes: After completing the course, the students will be able to				
1	Describe the different types of automotive systems. (L1-L2)				
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)				
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)				
4	Evaluate the performance of engines by determining Brake Power. (L6)				

Γ

Refe	erence Books
1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,
	SAE International, ISBN: 0768009871
2.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527.
3.	Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,
	1 st Edition, 2009, ISBN: 9781856175784.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

	Semester: VI					
	MOBILE NETWORK SYSTEMS AND STANDARDS					
	(GROUP E	: GLOBAL ELECT	(VE)			
	(Theory)					
Cou	rse Code: 16G6E11		CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100			SEE Marks: 100			
Hou	Hours: 34L SEE Duration: 03Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Understand land mobile concepts, radio link design and cellular network.					
2	2 Compare the standards of WPAN, WLAN and WMAN.					
3	3 Analyze WPAN, WLAN and WMAN standards and their architecture.					
4	Design and demonstrate wireless netw	orks for various appli	cations.			

Cellular Wireless Networks: Principles of cellular Networks, cellular system06 Hrscomponents and Operations, channel assignment, Attributes of CDMA in cellular06 Hrssystem.06 Hrs

 UNIT-II

 Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE.
 08 Hrs

 UNIT-III

Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in
the network.06 Hrs

				UNIT-I	V				
Wireless	Personal	Area	Networks:	Networ	k arc	hitecture,	components,	08 Hrs	
Applicatio	ons, Zigbee,	Bluetoo	th.						
Wireless 1	Local Area	networ	ks: Network Ar	chitecture	e, Stan	dards, Appl	ications.		
				UNIT-V	7			•	
Wireless	Metropoli	an Ar	ea Networks:	IEEE 8	02.16	standards,	advantages,	06 Hrs	
XX/X / A NT N	T	•, ,	\mathbf{D} (1 A	1					

WMAN Network architecture, Protocols, Applications.

	Course Outcomes: After completing the course, the students will be able to
CO1	Describe the architectures and characteristics of different mobile networks. (L1-L2)
CO2	Apply the Network standards to a suitable application (L3)
CO3	Analyze the operation of various network technologies and standards (L4)
CO4	Evaluate the performance of various network technologies (L5)

Refere	ence Books
1	Wireless Communication, UpenaDalal, 1 st Edition, 2009, Oxford higher Education,
	ISBN-13:978-0-19-806066-6.
2	Wireless and Mobile Networks Concepts and Protocols, Dr.sunil Kumar s Manvi, 2010,
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
	Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

Low-1 Medium-2 High-3

		Semester: VI			
	APPLIED PARTIAL DIFFERENTIAL EQUATIONS				
	(GROUP E: GLOBAL ELECTIVE)				
		(Theory)			
Cou	rse Code:16G6E12		CIE Marks: 100		
Crea	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Hou	rs: 35L		SEE Duration: 3Hrs		
Cou	rse Learning Objectives:				
1	Adequate exposure to learn	basics of partial differential eq	uations and analyze mat	hematical	
	problems to determine the su	itable analytical technique.			
2	Use analytical techniques and	finite element technique for the	e solution of elliptic, para	bolic and	
	hyperbolic differential equati	ons.			
3	Solve initial value and bound	dary value problems which have	e great significance in en	gineering	
	practice using partial differen	tial equations.			
4	Identify and explain the basic	es of partial differential equation	is and use the same to ar	alyze the	
	behavior of the system.				
					
D (Unit-1		0	
Part	al Differential Equations of	first order:	11 04 1	07 Hrs	
Intro	duction to formation of partia	al differential equations, Cauch	y problem, Orthogonal		
Suria	ices, First order non-linea	r partial differential equations	ons-Charpit's method,		
Class	silication and canonical forms				
TH:	tia Differential Forestions.	Unit – II		07 II	
Emp	uction of Lonloop and Doigo	an aquation Conception of your	able method Divisibilit	0/ Hrs	
Derivation of Laplace and Poisson equation, Separation of variable method, Dirichlet					
problem, Neumann problem, Solution of Laplace equation in cylindrical and spherical					
0001					
Unit - M Derobolia Differential Equations:			07 Hrs		
Form	nation and solution of Diffusion	n equation Dirac-Delta function	Separation of variable	0/1115	
meth	od Solution of Diffusion equa	tion in cylindrical and spherical	coordinates		
Init_IV					

Unit –I v		
Hyperbolic Differential Equations:	07 Hrs	
Formation and solution of one dimensional wave equation, D'Alembert's solution,		
vibrating string, Forced vibration, Periodic solution of one dimensional wave equation in		
cylindrical and spherical coordinates, Vibration of Circular membrane.		
Unit –V		
	07 11	

Numerical solutions of Partial Differential Equations:07 HrsFinite difference method for Elliptic, Parabolic and Hyperbolic partial differentialequations, Introduction to the finite element method-simple problems.07 Hrs

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Identify and interpret the fundamental concepts of formation and solution of parabolic,					
	hyperbolic and elliptic differential equations using analytical and numerical methods.					
CO2	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,					
	hyperbolic and elliptic differential equations arising in the field of science and engineering.					
CO3	Analyze the physical problem to establish mathematical model and use appropriate method to					
	solve and optimize the solution using the appropriate governing equations.					
CO4	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of					
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.					

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012,
L	ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10th Edition, 2016, ISBN: 978-
2	81-265-5423-2.
	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar,
3	R. K. Jain, New Age International Publishers, 6th Edition, 2012, ISBN-13: 978-81-224-2001-
	2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005,
	ISBN 13: 9780072466850.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	Semester: VI
AIF	CRAFT SYSTEMS
(Gro	up E: Global Elective)
	(Theory)
Course Code: 16GE6B13	CIE Marks: 100
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100
Hours: 36L	SEE Duration: 3Hrs

Course Learning Objectives:

To enable the students to:

- 1 List the various systems involved in the design of an aircraft
- 2 Demonstrate the technical attributes of all the subsystems of an aircraft
- 3 Explain the significance of each systems and its subsystems for developing an airplane
- 4 Demonstrate the integration of the systems with the airplane

Unit-I							
Flight Control Systems : Primary and secondary flight controls, Flight control linkage							
system, Conventional Systems, Power assisted and fully powered flight controls.							
Unit – II							
Aircraft Hydraulic & Pneumatic Systems : Components of a typical Hydraulic system,							
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and	00 II.ma						
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction	UO IIIS						
mechanism.							
Unit -III							
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its							
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel	07 Hrs						
control unit.							

Unit -IV							
 Environmental Control Systems : Air-conditioning system, vapour cycle system, deicing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 	07 Hrs						
Unit -V							
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.	07 Hrs						

Cours	Course Outcomes: At the end of this course the student will be able to								
CO1	Categorise the various systems required for designing a complete airplane.								
CO2	Comprehend the complexities involved during development of flight vehicles.								
CO3	Explain the role and importance of each systems for designing a safe and efficient flight								
005	vehicle.								
CO4	Demonstrate the different integration techniques involved in the design of an air vehicle.								

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education,
	ISBN 9780071086059.
2	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems
4	Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

High-3 : Medium-2 : Low-1

	V/VI	Semester						
	PROFESSION	AL PRACTICE – III						
]	EMPLOYABILITY SKILLS AND PROFES	SSIONAL DEVELOPMENT OF ENGIN	EERS					
Co	urse Code: 16HS68	CIE Marks: 50						
Cr	edits: L:T:P:S: 0:0:1:0	SEE Marks: NA						
Но	urs: 18 Hrs	CIE Duration: 02 Hrs						
Co	urse Learning Objectives: The students will	be able to						
1	Improve qualitative and quantitative problem	solving skills.						
2	Apply critical and logical thinking process to	specific problems.						
3	Ability to verbally compare and contrast wor on verbal reasoning.	rds and arrive at relationships between con-	cepts, based					
4	Applying good mind maps that help in comm	unicating ideas as well as in technical docu	mentation					
		Somester						
	т Т	INIT.I						
An	titude Test Prenaration- Importance of Apti	tude tests Key Components Quantitative	06 Hrs					
Ap	titude – Problem Solving, Data Sufficiency.	Data Analysis - Number Systems, Math	00 1115					
Vo	cabulary, fraction decimals, digit places etc.							
Rea	asoning and Logical Aptitud - Introduc	tion to puzzle and games organizing						
information, parts of an argument, common flaws, arguments and assumptions. Analytical								
Rea	asoning, Critical Reasoning.							
	U	NIT-II						
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing								
Hig	ther Vocabulary, Grammar, Comprehension	and Application, Written Ability. Non-						
Ve	bal Reasoning, Brain Teasers. Creativity Apti	tude.						
Gr	Dup Discussion - Theory & Evaluation : Un	derstanding why and how is the group						
dis	cussion conducted, The techniques of group	discussion, Discuss the FAQs of group						
dis	cussion, body language during GD.							
	UN	IT-III.A						
Re	sume Writing- Writing Resume, how to wr	rite effective resume, Understanding the	06 Hrs					
bas	ic essentials for a resume, Resume writing t	tips Guidelines for better presentation of						
fac	S.							
	VI	Semester						
	UNI	T-III.B						
Tee	chnical Documentation - Introduction to te	echnical writing- Emphasis on language	06 Hrs					
dif	erence between general and technical writing,	Contents in a technical document, Report						
des	ign overview & format Headings, list & spec	cial notes, Writing processes, Translating						
technical information, Power revision techniques, Patterns & elements of sentences.								
Co	Common grammar, usage & punctuation problems.							
	UNIT-IV							
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews -								
Qu	estions asked & how to handle them, Body lar	nguage in interview, Etiquette, Dress code						
in	nterview, Behavioral and technical interview	vs, Mock interviews - Mock interviews						
wit	h different Panels. Practice on stress interv	views, technical interviews, General HR						
inte	erviews etc.							
	U	INIT-V						
Int	erpersonal Relations - Optimal Co-existence,	Cultural Sensitivity, Gender sensitivity	06 Hrs					

Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.

Cou	rse Outcomes: After completing the course, the students will be able to						
CO	Inculcate employability skill to suit the industry requirement.						
CO2	CO2 Analyze problems using quantitative and reasoning skills.						
CO3 Exhibit verbal aptitude skills with appropriate comprehension and application.							
CO ²	Focus on Personal Strengths and Competent to face interviews and answer.						
Refe	erence Books						
1	1 The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition,						
	ISBN: 0743272455.						
2	2 How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016,						
	ISBN: 9789380914787.						
3	3 Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,						
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204.						
4	Aptimithra: Best Aptitude Book ,Ethnus,2014 Edition, Tata McGraw Hill ISBN: 9781259058738.						

Scheme of Continuous Internal Examination (CIE) Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35 Marks	50%
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18	
	hours of training sessions.	
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35 Marks	50%
	Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18	
	hours of training sessions.	
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for 50 marks	s (Average of
	Test1 and Test 2 (T1+T2/2). The grading is provided by the Coe. The final	CIE marks is
	scrutinized by the committee comprising of HSS- Chairman, Training	Co-ordinator,
	respective department Staff Placement co-ordinator before submitting to CoE.	

SEE: NA

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					1		1	1	1	2	1
CO2	1	2	2					1	2	1	2	1
CO3			3			1		2	1	2	1	
CO4						1	3	1	1	1	1	

Curriculum Design Process

Academic Planning and Implementation

Process for Course Outcome Attainment

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.