RV

RV Educational Institutions [®] RV College of Engineering [®] Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Bachelor of Engineering (B.E) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

MECHANICAL ENGINEERING 2021-2022

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome-based Quality education, emphasizing on experiential learning with the state-of-the-art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Teamwork, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.,) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT VISION

Quality Education in Design, Materials, Thermal and Manufacturing with emphasis on Research, Sustainable technologies, and Entrepreneurship for Societal Symbiosis.

DEPARTMENT MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering
- Providing state-of-art laboratories and infrastructure for academics and research
- Facilitating faculty development through continuous improvement programs
- Promoting research, education, and training in frontier areas of nanotechnology, advanced composites, surface technologies, MEMS and sustainable technology
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Successful professional careers with sound fundamental knowledge in Mathematics, Physical Sciences and Mechanical Engineering leading to leadership, entrepreneurship or pursuing higher education.
- **PEO2.** Expertise in specialized areas of Mechanical Engineering such as Materials, Design, Manufacturing and Thermal Engineering with a focus on research and innovation.
- **PEO3.** Ability of problem solving by adopting analytical, numerical, and experimental skills with awareness of societal impact.
- **PEO4.** Sound communication skills, team working ability, professional ethics, and zeal for life-long learning.

PSO	Description
PSO1	Demonstrate basic knowledge in Mathematics, basic science, Materials Science and
	Engineering to formulate and solve mechanical engineering problems
PSO2	Design mechanical and thermal systems by adopting numerical, analytical, and
	experimental techniques and analyse the results.
PSO3	Function in multidisciplinary teams with sound communication skills.
PSO4	Self-learn to acquire and apply allied knowledge and update the same by engaging in
	life-long learning, practice profession with ethics and promote entrepreneurship.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Lead Society: American Society of Mechanical Engineers – ASME

RV College of Engineering – Bengaluru – 59

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	CH	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

ABBREVIATIONS

INDEX

	VII Semester								
Sl. No.	Course Code	Course Title	Page No.						
1.	18HSC71	Constitution of India and Professional Ethics	1-2						
2.	18ME72	Vibration and Control Systems	3-5						
3.	18ME73	Finite Element Methods	6-8						
4.	18ME74	Internship	9-10						
5.	18ME7FX	Elective F (PE)	11-20						
6.	18ME7GX	Elective G (PE)	21-31						
7.	18G7HXX	Elective H (GE) - Robotics and Automation	GE1-GE33						

VIII Semester									
Sl. No.	Sl. No. Course Code Course Title								
1.	18MEP81	Major Project	32-34						

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) **MECHANICAL ENGINEERING**

SEVENTH SEMESTER CREDIT SCHEME										
Sl. No	Course Code	Course Title	BoS	(All	Total					
				L	Т	Р	Credits			
1.	18HSC71	Constitution of India and Professional Ethics	HSS	3	0	0	3			
2.	18ME72	Vibration and Control Systems	ME	3	0	1	4			
3.	18ME73	Finite Element Methods	ME	2	1	1	4			
4.	18ME74	Internship	ME	0	0	2	2			
5.	18ME7FX	Elective F (PE)	ME	3	0	0	3			
6.	18ME7GX	Elective G (PE)	ME	3	0	0	3			
7.	18G7HXX	Elective H (GE) - Robotics and Automation	Res. Dept.	3	0	0	3			
	Total Number of Credits						22			
		17	2	5						

Note: * Internship (6 weeks) is to be carried during the vacation after 6th semester and evaluation shall be conducted during 7th semester for 2 credits. ** Students should take other department Global Elective courses.

	Professio	nal Elective: Group F	Professional Elective: Group G				
Sl.	Course Code	Course Title	S1.	Course	Course Title		
No.			No.	Code			
1.	18ME7F1	Industry 4.0	1.	18ME7G1	Acoustics and Noise Control		
2.	18ME7F2	Metrology and Quality Control	2.	18ME7G2	Modeling and Simulation of		
					Manufacturing Process		
3.	18ME7F3	Micro and Nano Manufacturing	3.	18ME7G3	Manufacturing Systems		
					Automation		
4.	18ME7F4	Fundamentals of Aerodynamics	4.	18ME7G4	Design of Heat Exchangers		
5.	18ME7F5	Reliability and Maintainability	5.	18ME7G5	Solid Mechanics		
		Engineering					

RV College of Engineering – Bengaluru – 59

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) MECHANICAL ENGINEERING

EIGHTH SEMESTER CREDIT SCHEME										
SI.			BoS	Cre	dit Alloc	ation	Total Credits			
No.	Course Code	Course Litle		L	Т	Р				
1.	18MEP81	Major Project	ME	0	0	16	16			
		Total Number of Credits	0	0	16	16				
	То	otal number of Hours/Week	0	0	32					

	VII Semester								
	1		GROUP B: GLOBAL ELECTIVE	1					
SI.	Dept	Course	Course Title	Credits					
No.		Code							
			Courses offered by the Departments						
1.	1. AS 18G7H01 Unmanned Aerial Vehicles								
2.	BT	18G7H02	Bioinformatics	03					
3.	CH	18G7H03	Industrial Safety and Risk Management	03					
4.	CS	18G7H04	Web Programming	03					
5.	CV	18G7H05	Solid Waste Management and Statutory Rules	03					
6.	EC	18G7H06	Image Processing and Machine Learning	03					
7.	EE	18G7H07	Renewable Energy Sources and Storage	03					
8.	EI	18G7H08	Mems & Applications	03					
9.	IM	18G7H09	Project Management	03					
10.	IS	18G7H10	Cyber Forensics and Digital Investigations	03					
11.	ME	18G7H11	Robotics And Automation	03					
12.	TE	18G7H12	Space Technology and Applications	03					
			Courses offered by Science Departments and HSS Board						
13.	PY	18G7H13	Introduction to Astrophysics	03					
14.	CY	18G7H14	Materials for Advanced Technology and Spectroscopic Characterization	03					
15.	HSS	18G7H15	Applied Psychology for Engineers	03					
16.	HSS	18G7H16	Advance Course in Entrepreneurship	03					

Semester: VII									
CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS									
(Common to All Programs)									
Cou	rse Code	:	18HS71		CIE	:	100 Marks		
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours		
Cou	rse Learning	Ob	jectives: Th	e students will be able to					
1 Apply the knowledge of constitutional literacy to become aware of the fundamental rights and									
	duties in the	ir ro	ble as Engin	eers.					
2	Understand	ng	of ethical an	d legal aspects of advertising,	consumer problems	and	their redressal		
	mechanism r	ela	ted to produ	ct and service standards.	1 1 1 11 0 1		·		
3	Discuss the	kno	owledge of s	substantive Labor law and to	develop skills for l	egal	reasoning and		
	statutory inte	erpi	retations.						
4	Evaluate ind	livi	dual role, re	sponsibilities and emphasize	on professional/ er	igine	ering ethics in		
	shaping prot	ess	ions.						
				Unit I			10 Ums		
.	<u> </u>		0.1:			<u> </u>			
Indi	an Constituti	on	- Salient Iea	tures of Indian Constitution, I	Preamble to the Co	nstit	ution of India;		
Prov	isions Relatin	g to	o Citizenshij	o in India- at the Commencem	ient of the Constitu	tion	and Later with		
lates	t amendments	, IV.	lodes of Acc	usition and Termination of C	fragmenting of India.	Scoj	pe & Extent of		
Fund	iamental Righ	ts-A	Articles 14-3	2 with case studies; Right to In	formation Act, 200	5 W1	in Case studies.		
D			604 A D I			. 1.			
Dire	ctive Principl	les	of State Pol	cy -Significance of Directive I	rinciples of State P	oncy	, Fundamental		
Duti	es in the Col	nsti	tution of li	idia; Union Executive- Presi	dent and State Ex		ve- Governor;		
Pari	ament & State	e L	egisiature; C	ouncil of Ministers; Anti-defe	Line Distant		State Judiciary;		
Eme	rgency provi	S10	ns; Election	is, Administrative tribunals.	Human Rights	αF	Human Rights		
Con				Un:4 III			04 IIma		
Car	aumor Droto	ati	n Low D	Unit –III finition and Need of Consum	an Duatastian, Can		UO HIS		
tha	Consumer Pro		tion Act 20	10: Unfair Trada Practica, Da	fact in goods Def	iaian	in some in some in some		
Drod	uot liability	on	l Donal Co	reaction of the second Might	ading Advartisam	ont	E Commoreo		
Alto	moto disputo		dragg maah	nisequences, raise and wrise	under the Consum	on,	Protoction Act		
2010		NC		msm, Redresses Mechanisms	under the Consum		Totection Act,		
And	'. overview of Ir	ndi	an Penal Co	de 1860 (Law of Crimes)					
		iui		Unit – IV			06 Hrs		
Intr	aduction to I	ah	our Logisle	tions - Industrial Relation I	abour Problem an	dIa	bour Policy in		
Indi	• Labour We	lfai	e and Soci	al Security- Factories Act 19	48 Sexual Harassi	nent	of Women at		
Wor	knlace (Preve	nti	on Prohibit	ion and Redressal) Act 2013	the Child Labor	ır (P	Prohibition and		
Regulation) Act 1986 Maternity Benefit (Amendment) Act 2017; Industrial Dispute Act 1047									
Reference of Disputes to Boards Courts or Tribunals									
Init –V 07 Hrs									
Scor	ne and aime	of	engineeri	or ethics (NSPE Code of I	Ethics) Responsib	ility	of Engineers		
Imp	ediments to r	esr	onsibility	Honesty Integrity and reliab	ility Risks Safet	v an	d Liability in		
Engi	neering Corn	ora	te Social Re	sponsibility Statutory Provisio	n regarding prohibi	, and tion	and prevention		
	agging. Corp	Jiu		-poilsionity. Suturory 110/1810			and prevention		

Cours	e Outcomes: After completing the course, the students will be able to								
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability and								
	to take affirmative action as a responsible citizen.								
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to								
	professional environment, strengthen the ability to contribute to the resolve of human rights &								
	Ragging issues and problems through investigative and analytical skills.								
CO3	Understanding process of ethical and moral analysis in decision making scenarios and inculcate								
	ethical behavior as a trait for professional development.								
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business								
	Enterprises.								

Reference Books

1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
•	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5th
2	Edition, 2015, ISBN -13:978-9351452461
3	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6th Edition,
	2012, ISBN: 9789325955400
4	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics,
4	Wadsworth Cengage Learning, 5th Edition, 2009, ISBN-978-0495502791

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII									
	VIBRATION AND CONTROL SYSTEMS									
C	ourse Code	: 18ME72		CIE	:	100 + 50 Marks				
Credits: L:T:P		:	3:0:1	SEE	:	100 + 50 Marks				
Total Hours		:	40L + 30P	SEE Duratio	n :	3.00 Hours				
C	ourse Learning	; O	bjectives: The students wi	ll be able to						
1	Understand of	ba	sics of mechanical vibration	ons of single degree of freedom system	ns.					
2	Describe force	ed v	vibrations and two degree of	of freedom systems.						
3	Evaluate the r	esp	onse of multi degrees of fr	reedom systems						
4	Explore the ke	ey c	control system characterist	ics such as stability and accuracy usir	g free	quency response.				

5 Analyze different types of control systems and its operational features.

PART - A								
Unit-I	07 Hrs							
Vibration systems - Single degree freedom systems, Different types of damping, concept of critical dampin								
viscous damped systems - under damping, critical and over damping, logarithmic decrement, vibration isolation,								
transmissibility ratio, base excitation. Accelerometer and vibrometer.								
Unit – II	10 Hrs							
Forced Vibrations - Steady state solution with viscous damping due to Harmonic forces, solution and	response.							
Whirling of shafts without air damping.								
Two degree of freedom systems - Principal modes and normal modes of vibration, co-ordinate	coupling,							
generalized and principal co-ordinates.								
Unit –III	10 Hrs							
Multi degree Freedom systems:								
Influence coefficients, Maxwell reciprocal theorem, Matrix iteration, Modal analysis, Stodola's method.								
Control Systems - Types of control systems; Block Diagram Representation of Processes and Control Elements-								
Mathematical Modeling, F-V and F-I Analogy								
Unit –IV	07 Hrs							
Block Diagram Representation and Signal Flow Graphs:								
Block Diagram Representation, Representation of Feedback Control systems - Block Diagram, Sig	gnal Flow							
Graphs.								
Stability Analysis – RH criterion, Root locus method, numericals								
Unit –V	06 Hrs							
Frequency Response Analysis:								
Bode plots, Nyquist plots, Gain and Phase Margins.								
Types of Control Action; Proportional, Integral and Derivative controllers, P-D, P-I, P-I-D controllers.								
PART – B								
Section 1 - Vibrations	15 Hrs							
 Study of longitudinal and torsional vibrations using spring-mass system and circular disc and without damping. 	with							

- 2. Study of transverse vibrations using whirling of shafts.
- 3. Study of Vibration measurement using FFT analyzer.
- 4. Study of Modal analysis.
- 5. Interpretation of FFT results like finding problems like unbalance, misalignment, also finding damping coefficient.

Section 2 - Control Systems - Control Engineering laboratory executed using MATLAB 15 Hrs

- 6. Step, ramp and impulse response of first and second order system.
- 7. Identification of damping in second order system.
- 8. Analyse the time domain specifications of under-damped second order system.
- 9. Stability analysis using Routh-Hurwitz and Root Locus Methods.
- 10. Frequency response analysis using Bode plots and Nyquist plots.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand basics of vibration and control engineering.								
CO2:	Determine the natural frequencies of SDOF and MDOF systems.								
CO3:	Analyze the vibrations using measuring instruments and stabilize the control systems.								
CO4:	Evaluate the performance of mechanical systems using both hardware and software tools.								

Refere	ence Books
1	Mechanical Vibrations, Rao S.S., Prentice Hall, 5th Edition, 2010. ISBN 13-978-0132128193
2	Theory of Vibration with applications, Thomson W.T., Pearson Education Inc., 5th Edition, 2008,
	ISBN 13-978-8131704820
	Schaum's Outline of Mechanical Vibrations, Graham Kelly S, 1st Edition, McGraw-Hill, 1996,
3	ISBN 13-978-0070340411
4	Modern Control Engineering, Ogata, Prentice Hall of India, 2009, 5th Edition, New Delhi. ISBN:
4	13-978-0136156734
_	Control System Engineering, I. J. Nagrath and M. Gopal, New Age International, New Delhi, 6 th
5	Edition, 2018, ISBN 13- 978-9386070111
(Automatic Control Systems, Benjamin C. Kuo & Farid Golnaraghi, John Wiley & Sons, 8th
6	Edition, 2002, ISBN: 13- 978-9814126724

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average marks (AM) over a number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab is rewarded for 10 marks. Total marks for the laboratory is 50. Total CIE is 30(AM) + 10(T) + 1(IE) = 50 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level. Scheme of the Semester End Examination (SEE); Practice Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks: Total SEE for the laboratory is 50 marks

Semester	End Evaluation	(SEE)) Theory	(100]	Marks)) + Prac	tical (5	0 Marks)	Total:	150 N	Marks
~ emeseer				1-00-							

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	-	-	2	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	1	3	-	-	-	-	-	-	-	2	-	2
CO4	1	3	-	3	3	-	-	1	2	1	-	2

Semester: VII											
	FINITE ELEMENT METHODS										
Cou	rse Code	: 18ME73			CIE		100 + 50 Marks				
Credits: L:T:P		:	2:1:1		SEE	:	100 + 50 Marks				
Total Hours		:	27L + 30P		SEE Duration	:	3.00 Hours				
Cou	rse Learning C)bj	ectives: The stud	ents will be able to							
1	Understand th	ie fi	undamental mode	els of finite element methods.							
2	Develop math	ıem	atical models for	one dimensional bar and truss ele	ement.						
3	Compute ben	din	g moments and	shear forces for beams and two	-dimensional co	nsta	ant strain triangular				
	elements.										
4	Analyze dyna	mic	e behavior of mee	hanical systems using Eigen vect	ors.						
5	Solve using h	eat	flow conditions f	or one dimensional elements and	fins.						

Part A							
Unit-I	04 Hrs						
Introduction to FEM, Basic steps in FEM, Advantages and limitations, Rayleigh Ritz Method,	Galerkin's						
Method, Basic Equations of Elasticity: Stress-strain relationship, differential equations of equilibri	um, Strain						
displacement relations, Element types, Node numbering scheme (Numericals on Rayleigh	Ritz and						
Galerkin's method only)							
Unit – II	08 Hrs						
One Dimensional Finite Elements - Bar and Truss elements							
Linear element, Shape function, stiffness matrix, strain matrix, Elimination method, Penalty method,							
boundary conditions and assemblage load vector, Convergence and Compatibility conditions, stiffness matrix							
for Truss elements.							
Unit –III	08 Hrs						
Analysis of Beam Elements: Hermitian shape functions, formulations of element stiffness matric	es, load						
vectors, Analysis of bending moment and shear force, Numericals							
Two Dimensional CST Elements: Iso, super and sub-parametric representation, Shape functions	s, Jacobian						
matrix, B-matrix, element stiffness and load vectors, Numericals							
Unit –IV	03 Hrs						
Dynamic Analysis: Equations of motion, mass and stiffness matrices, distributed and consistent mas	s matrices,						
Eigen values and Eigen vectors. Numericals							
Unit –V	04 Hrs						
Analysis of Heat Transfer 1-D element: Steady State Heat Transfer, Galerkin's Formulation of Element							
Equations for Heat Transfer, Heat flux boundary condition, Analysis of composite slabs							
Analysis of thin fin: Numericals for Heat transfer through fins, Heat flux boundary condition, C	ircular and						
rectangular fins.							

	Part B	
	Experiments executed using ANSYS-Work Bench software tool.	32 Hrs
1.	Introduction to design modeler and problems related to 1D and 2D elements.	
2.	Basics of materials and material constants for FEM analysis.	
3.	Static structural analysis of plate with a hole.	
4.	Static structural analysis of connecting rod (import from SolidWorks).	
5.	Fatigue analysis of beam with rectangular cross section subjected to completely reversed cycle	es.
6.	Buckling analysis for a column with square cross section.	
7.	Analyze contact stresses for a plate subjected to contact load by a sphere.	

- 8. Impact analysis of a plate subjected to speeding bullet.
- 9. Analyze the mode shapes and modal frequencies for a free-free condition.
- 10. Analysis of heat transfer through the composite wall.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Define the fundamentals of finite element methods.								
CO2:	Develop the knowledge to analyse structures in static, dynamic and thermal conditions								
CO3:	Assess numerical techniques for solving engineering problems.								
CO4:	Formulate finite element model to implement industrial projects.								

Reference Books

1	Introduction to Finite Elements in Engineering, T.R. Chandrapatla, A D Belegundu, Pearson
1	Publications, 4th Edition, 2011, ISBN: 13-978-0132162746
2	Fundamentals of Finite Element Analysis, David Hutton, Tata McGraw Hill Education, 4th Edition,
	2017, ISBN: 13-978-0070601222
3	The Finite Element Method in Engineering, Rao S S, Butterworth-Heinemann, 5th Edition, 2017, ISBN
	- 13- 978-1856176613
4	A First Course in Finite Element Methods, Daryl L Logon, Thomson Brooks, 5th Edition, 2012,
	ISBN-13-978-8131517307

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average marks (AM) over a number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab is rewarded for 10 marks. Total marks for the laboratory is 50. Total CIE is 30(AM) + 10(T) + 1(IE) = 50 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

Scheme of the Semester End Examination (SEE); Practice Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks: Total SEE for the laboratory is 50 marks

Semester End Evaluation (SEE) Theory (100 Marks) + Practical (50 Marks) Total: 150 Marks

RV College of Engineering® – Bengaluru - 59

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	-	-	-	3	-	1
CO2	2	-	-	-	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	2	-	-	3
CO4	3	3	3	2	3	-	-	1	2	2	-	3

			SEMESTER :	VII		
			INTERNSHI	P		
Course Code	:	18ME74		CIE Marks	:	50
Credit L:T:P	:	0:0:2		SEE Marks	:	50
Hours/week	:	4		SEE Duration	:	3 Hrs
	1	1	GUIDELINE	S		
1) The duration	on of	the internship shal	l be for a period of 6/	8 weeks on full tim	e basis	after IV semester final
exams and	befo	re the commenceme	nt of VII semester.			
2) The studen	t mu	st submit letters fro	m the industry clearly	specifying his / her	· name	and the duration of the
internship (on th	e company letter he	ad with authorized sign	nature.		
3) Internship i	must A	be related to the fie	id of specialization of	the respective UG pi	rogram	ime in which the student
4) Students u	u. ndero	oing internship tra	ining are advised to r	enort their progress	and s	ubmit periodic progress
reports to t	heir i	espective guides	lining are advised to r	epoir men progress	and 5	uomit periodie progress
5) Students ha	ave t	o present the intern	ship activities carried	out to the departme	ntal co	mmittee and only upon
approval by	the	committee, the stud	ent can proceed to prep	are and submit the h	ard co	py of the final internship
report. How	vevei	r, interim or periodic	reports as required by	the industry / organ	ization	can be submitted as per
the format	accej	ptable to the respect	ive industry /organizat	ions.		-
6) The reports	shal	l be printed on A4 s	ize with 1.5 spacing an	d Times New Roma	n with	font size 12, outer cover
of the repo	ort (v	vrapper) has to be	Ivory colour for UG	circuit Programs an	d Ligł	nt Blue for Non-Circuit
Programs.						
7) The broad	form	at of the internship f	final report shall be as	follows		
• Co	ver F	Page				
• Ce	rtific	ate from College				
• Ce	rtific	ate from Industry /	Organization			
• Ac	• Acknowledgement					
• Sy	nopsi	s				
• Ta	ole o	f Contents				
• Ch	apter	1 - Profile of the	e Organization: Organ	izational structure,	Produ	icts, Services, Business
Par	tners	s, Financials, Manpo	ower, Societal Concern	s, Professional Prac	tices,	
• Ch	• Chapter 2 - Activities of the Department					
• Ch	apter	3 - Tasks Performe	d: summaries the tasks	s performed during 8	s-week	period
• Ch	• Chapter 4 – Reflections: Highlight specific technical and soft skills that you acquired during					
int	ernsh	up				
• Re	ieren	ces & Annexure				
After going three	ues:	the internshin the st	udent will be able to:			
CO1. Apply et	ngine	ering and managem	ent principles			
CO2: Analyse	real-	time problems and s	suggest alternate soluti	ons		
				0110		

- CO3: Communicate effectively and work in teams
- CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to	150/
	comprehend the functioning of the organization/ departments,	4370
Review-	Importance of resource management, environment and sustainability presentation	
II	skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

	Semester: VII						
	Industry 4.0						
			(0	Group F – Professional Elective)			
Cou	rse Code	:	18ME7F1		CIE	:	100 Marks
Crea	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning	Obj	ectives: The stude	ents will be able to			
1	1 Understand basics of Industry 4.0						
2	2 Process big data in digital manufacturing						
3	3 Integrate M2M and M2E using AI&ML						
4	4 Demonstrate AR/VR in manufacturing and training						
5	Design the m	ode	ls for Digital to P	roduct technologies in MSMEs			

Unit-I	07 Hrs		
Fundamentals of Industry 4.0 - The Various Industrial Revolutions, Need – Reason for Adopting In	dustry 4.0,		
Definition, Goals and Design Principles - Interoperability, Virtualization, Decentralization,	Real-time		
Capability, Service Orientation, Modularity. Individualization, Volatility, Energy and resource effici	ency. Road		
to Industry 4.0 - Internet of Things (IoT), Architecture of IoT, Technologies for IoT & Industrial	Internet of		
Things (IIoT), Internet of Services, Standardization, Cyber-Physical Systems, Smart Manufacturing	g, Network		
via Ethernet/ WiFi for high-speed data transmission, Mobile technologies.			
Unit – II	09 Hrs		
Present Scenario - Opportunities and Challenges - Lack of resources, Availability of skille	d workers,		
Broadband infrastructure, Policies, Future of Works and Skills in the Industry 4.0 Era, Dis	ruption as		
manufacturing's greatest modern challenge.			
Big Data for Digital Manufacturing - Evolution, Essential of Big Data in Industry 4.0, Big Data N	Ierits, Data		
transparency, Business Intelligence, Acquisition of Data, Data storage - Cloud computing, Traceabil	ity, Radio-		
Frequency Identification (RFID), GPS, Data transformation, Big Data Characteristics, Data as a new resource			
for organizations, Data driven applications, Harnessing and sharing knowledge in organizations, Data	analytics -		
Descriptive Analytics, Diagnostic analytics, Predictive Analytics, Prescriptive analytics, Cyber Securi	ty.		
Unit –III	09 Hrs		
M2M and M2E integration - End-to-end engineering of the overall value chain, Digital integration	platforms,		
Role of machine sensors, sensing classification according to measuring variables, M2M communication	on.		
AI&ML integration - Technology paradigms in production logistics - Intelligent conveyor system,	Intelligent		
commissioning system, Intelligent production machine, Intelligent load carrier, Application-specific	demand on		
Intelligent Objects (user-oriented functions), Technological realization of Intelligent Objects (produ	ct-oriented		
functions).			
Unit –IV	07 Hrs		
Augmented and Virtual Technologies – Basics, Operating software tools for AR/VR in Industry-M	aintenance,		
Assembly, Collaborative operations, Training, and other applications.			
Digital-to-Product - Additive Manufacturing technologies, Advantages, impact on environment, App	olications -		
Automotive, Aerospace, Electronics, Biotechnology, Design case studies.			
Unit –V	07 Hrs		
Smart Factories - Digital twin Digital and virtual factory Total Productive Maintenance Indust			
Smart Fuetories Digital titil, Digital and Virtual fuetory, Fotal Fromotive Maintenance, indust	ry 4.0 case		

Course	Course Outcomes: After completing the course, the students will be able to			
CO1:	Identify the basic components of Industry 4.0			
CO2:	Analyze the role of Big data for digital manufacturing			
CO3:	Design AR/VR models for industrial needs			
CO4:	Implement digital tools for virtual to reality in MSMEs			

Refe	rence Books
1	Industry 4.0: Managing The Digital Transformation, Alp Ustundag, Emre Cevikcan, 2017, Springer, ISBN: 978-3-319-57869-9, ISBN: 978-3-319-57870-5
2	The Concept Industry 4.0 - An Empirical Analysis of Technologies and Applications in Production Logistics, Christoph Jan Bartodziej, 2017, Springer Gabler, ISBN: 978-3-658-16501-7 ISBN: 978-3-658-16502-4
3	Industry 4.0 - The Industrial Internet of Things, Alasdair Gilchrist, 2016, APRESS, ISBN-13 978-1-4842-2046-7 ISBN: 13 978-1-4842-2047-4
4	Digitizing the Industry – Internet of Things connecting the Physical, Digital and Virtual Worlds, Ovidiu Vermesan, 2016, River Publishers, ISBN: 978-87-93379-81-7 ISBN 978-87-93379-82-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	1	-	2	-	-
CO2	-	3	2	2	3	-	-	1	1	-	-	1
CO3	-	2	3	2	3	-	-	-	2	-	-	1
CO4	-	-	2	3	1	1	1	2	-	2	-	2

	Semester: VII						
			METR	OLOGY AND QUALITY CONTROL			
			(Group F – Professional Elective)			
Cou	rse Code	:	18ME7F2	CIE		:	100 Marks
Crea	lits: L:T:P	:	3:0:0	SEE		:	100 Marks
Tota	l Hours	:	39 L	SEE I	Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand various types of measurement systems available for manufacturing industry.						
2	2 Identify advanced metrology and sensing systems.						
3 Construct control charts for variables and attributes to monitor processes and interpret the charts.							
4	4 Perform process homogenization & process harmonization, to estimate capability of various processes.						
5	Develop stra	tegie	es for conducting	design of experiments in process improvement	ents		

Unit-I	07 Hrs		
Inspection technologies and Non-destructive testing - Characteristics of measuring instruments,			
Contact and Non-contact inspection techniques, Machine vision system and application	s, Optical		
inspection methods, Non-contact and non-optical inspection techniques. Non-destructive	e testing:		
Magnetic particle inspection, Penetrant inspection, X-ray examination, Radiography,	Ultrasonic		
inspection.			
Unit – II	09 Hrs		
Metrology and sensing systems – Edge detection techniques, normalization, grey scale co	rrelation –		

reflectance, map concepts, surface roughness and texture characterization by photogrammetry, Scanning Electron Microscopy, X-ray Diffraction, Atomic Force Microscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy.

Holography – Basics, Holographic interferometry, double exposure holographic interferometry, sandwich hologram, real-time holography, time average holographic interferometer, character recognition.

Unit –III	09 Hrs
Control Charts for Variable and Attribute Data - Seven QC tools for continuo	us quality
improvement, Statistical basis of control charts, Basic principles of control charts, Controls	charts for
Mean, Range and Standard deviation. Brief discussion on - Control charts for	individual
measurements, Control chart for fraction non-conforming (p, np, 100p charts), Control cha	rt for non-
conformities (c and u charts). Process capability - Methods of estimating process capabilit	y, Process
capability indices- c_p and c_{pk}	
Acceptance Sampling – Concept of acceptance sampling, economics of inspection, A	Acceptance

Acceptance Sampling – Concept of acceptance sampling, economics of inspection, Acceptance sampling plans – Single, Double and Multiple Sampling. Operating Characteristic curves – construction and use. Determination of Average Outgoing Quality, Average Outgoing Quality Level, Average Total Inspection, Production Risk and Consumer Risk, Published Sampling Plans.

Unit –IV	07 Hrs
Robust Design: Introduction, S/N ratio for static conditions, counting degree of freedom, see	election of
standard orthogonal array, Linear graphs and interaction, Modification of linear graphs	, Column
merging, branching design, Dummy level technique, numericals on 2 ² and 2 ³ design, (Dem	onstration
using statistical software package – assignment only).	
Unit –V	07 Hrs

Quality Function Deployment: Introduction, QFD team, benefits, voice of customer, house of quality, QFD process, Failure tree analysis, Techniques of failure analysis. Failure mode effect analysis (FMEA) - Design & Process. ISO 9000, 14000 series - Definition and aims of standardization.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Identify an appropriate NDT technique as per the requirements.				
CO2:	Analyze various characterization techniques for materials.				
CO3:	Examine the data and draw inference about process capability.				
CO4:	Evaluate process parameters for optimum quality characteristic of products and services.				

Refere	ence Books
1	ASM Handbook Vol. 17: Nondestructive Evaluation and Quality Control, ASM, ASM International
	Publications, 1st Edition, 1989, ISBN - 13- 978-0871700230.
	Advanced Holography: Metrology and Imaging, Izabela Naydenova (Editor), IntechOpen Publishers, 1st
2	Edition, 2011, ISBN 13-978-9533077291.
2	Statistical Quality Control - A Modern Introduction, D C Montgomery, John Wiley and Sons, 6th
3	Edition, 2009, ISBN 13-978-81-265-2506-5.
4	Quality Engineering using Robust Design, Madhav S Phadke, Prentice Hall, 1st Edition, 1989, ISBN-13-
	978-0137451678.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	-	-	1	-	-	2	-	2	1	-	1			
CO2	2	3	2	2	2	-	-	-	1	-	-	-			
CO3	1	3	2	2	3	-	-	-	1	1	2	-			
CO4	-	-	3	2	3	1	1	1	2	1	3	1			

High-3: Medium-2: Low-1

	Semester: VII										
MICRO AND NANO MANUFACTURING											
	urse Code	•	(18MF7F3	Group F – Professional Elective)	CIF	•	100 Marks				
Cre	dits: L:T:P	•	3:0:0		SEE	•	100 Marks				
Tot	al Hours	:	40 L		SEE Duration	:	3.00 Hours				
Co	urse Learning	; OI	bjectives: The stu	idents will be able to			1				
1	1 Understand different micro and Nano Machining processes and methods to join material at micro/nano										
	scale										
2	Comprehend	Pro	ocess parameters	of Micro and Nano Machining.							
3	Grasp the Pri	nci	pal or working of	Nano and Micro Machining proces	ss.						
4	Appreciate th	ne N	Non-Destructive a	nd Destructive tools available for a	nalyzing subsurface	e de	fects				
5	Gain knowle	dge	the latest machin	ning methods in the field of MEME	s, Integrated Circui	ts a	nd Solar Cells				
				Unit-I			07 Hrs				
Cor	ventional Mi	cro	and Nano mach	ining							
Mic	ro-turning, mi	cro	-drilling, micro-n	nilling, micro- grinding and ultra-p	recision processes,	Pro	duct quality in				
mic	romachining.										
Nar	o grinding, d	iam	ond and nano gr	rinding tools, Preparation of subst	rate, Hot Filament	Ch	emical Vapou				
Dep	osition proces	s, 1	Nucleation and dia	amond growth, Deposition on comp	olex substrates.						
				Unit – II			10 Hrs				
Nor	n-Convention	al N	/licro and Nano-	Machining							
Me	chanical Ener	·gy	Based Processes	: Abrasive Jet Machining, Water .	Jet Machining, Ultr	asoi	nic Machining				
(AJ	M, WJM and U	JSN	A). Working Princ	ciples, equipment used, Process Para	ameters, MRR-Vari	atio	n in technique				
use	d.										
The	ermal Energy	Bas	sed Processes: La	ser Beam machining (LBM), plasm	a Arc machining (P	AM	I), and Electro				
Bea	m Machining	(EE	BM). Principles, E	Equipment, Types, Beam control tec	chniques.						
				Unit –III			10 Hrs				
Mic	ro and Nano	Fal	brication process	ses							
Pro	cessing of N	/lic1	o and Nano s	structures, Chemical vapor depo	osition, Physical	vap	or deposition				
pho	tolithography,	we	t etching, dry etcl	hing.							
Spe	cial processes	5									
Ado	litive Processi	ng,	Optical lithogra	phy, Chemical etching, Micro ber	nding with LASER	. –	LASER micr				
wel	ding – Electro	n be	eam micro weldin	ıg,							
				Unit –IV			06 Hrs				
Sur	face finishing										
Mic	ro extrusion	- N	Aicro and Nano	structured surface development b	by Nano plastic fo	rmi	ng and Rolle				
Imp	orinting										
Nar	o Polishing A	bra	sive Flow finishir	ng – Magnetic Abrasive Finishing –	- Magneto rheologio	al f	inishing –				
Magneto Rheological abrasive flow finishing - Magnetic Float polishing – Elastic Emission Machining –											
che	mo-mechanica	l Po	olishing								
Met	trology for mic	cro	machined compo	nents – Ductile regime machining -	- AE based tool wea	ir co	ompensation –				
Ma	chining of Mic	ro g	gear, micro nozzl	e, micro pins – Applications.							
				Unit –V			07 Hrs				
Cha	aracterization	of	Surface and Sub	surface Damage in Nano and Mic	cromachining: Des	truc	tive evaluation				
tech	nologies: Cro	ss-s	ectional microsco	opy, Preferential etching, Non-destr	ructive evaluation to	echr	nologies: X-ra				
diff	diffraction, Micro-Raman spectroscopy, and Laser scattering.										

Applications: Applications in optical manufacturing: Aspheric lens, Fresnel lens, and micro-structured components, Semiconductor and electronics related applications: Semiconductor wafer production and LSI substrate planarization

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Select of different micro and Nano Machining processes and joining methods for material at micro/nano								
	scale								
CO2:	Develop MRR for Micro and Nano Machining Processes								
CO3:	Analyze the effect of process parameter on micro and nano machining processes.								
CO4:	Characterize the subsurface of materials by destructive and Non-Destructive methods post micro or nano								
	machining								

Refere	ence Books
1	Micro Manufacturing Processes, Jain V K, Taylor & Francis Group CRC Press, I Edition, 2012, ISBN –
2	Nano and Micromachining, J. Paulo Davim, Mark J. Jackson, John Wiley & Sons, II Edition, 2013,
	ISBN – 10-1848211031
2	Introduction to Micro machining, Jain V.K, Alpha Science International Ltd, 2 nd Edition, 2014, ISBN –
5	13-978-1842658918
4	Fundamentals of Microfabrication and Nanotechnology, Marc J Madou, CRC Press, 3rd Edition,
	Volume 2, 2011, ISBN-10-0849331803.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	1	1	-	1	-	3	-	2		
CO2	2	2	3	-	-	-	-	1	1	1	-	1		
CO3	-	3	2	1	2	-	-	-	-	-	2	-		
CO4	-	-	-	2	2	-	-	-	2	-	-	1		

	Semester: VII											
	FUNDAMENTALS OF AERODYNAMICS											
	(Group F – Professional Elective)											
Cour	Course Code:18ME7F4CIE:100 Marks											
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Hou	rs	:	39 L		SEE Duration	:	3.00 Hours					
Cou	rse Learning O	bje	ctives: To ena	ble the students to:								
1	Extend the fur	ndai	mentals of fluid	dynamics for airfoil application	1.							
2	Understand th	e in	nportance of po	tential flows in assessing the flo	ws over various b	odi	es.					
3	Analyse the b	eha	viour of various	s airfoils subjected to incompres	sible flows.							
4	Assess the inc	om	pressible flow l	behaviour over wings.								
5	Familiarize w	ith 1	types of wind tu	innels, instrumentation and mea	surement techniqu	ies.						

Unit-I	07 Hrs					
Concepts of fluid dynamics - Basic Governing Equations: Continuity, Momentum, Energy and	d Navier-					
Stokes equation, Angular velocity, Vorticity, Strain, Circulation, Stream Function, Velocity Potential,						
Coefficient of Pressure, Pressure distribution on Air foil.						
Unit -II	09 Hrs					
Potential Flows: Governing Equation: Laplace Equation, Uniform flow, Source flow, S	ink flow,					
Combination of a uniform flow with source and sink, Doublet flow, Non-lifting flow over a circular	r cylinder,					
Vortex flow, Lifting flow over a circular cylinder, Kutta-Joukowski theorem and generation	n of Lift,					
D'Alembert's paradox.						
Unit -III	09 Hrs					
Incompressible Flow over Airfoils - Airfoil characteristics, Vortex Sheet, The Kutta Condition	, Kelvin's					
circulation theorem and the starting vortex, Classical thin airfoil theory for symmetric Airfoil and	cambered					
airfoil, Effect of Airfoil Thickness, Camber on the Airfoil Aerodynamic Characteristics.						
Unit –IV	07 Hrs					
Incompressible Flow Over Finite Wings - Downwash and induced drag on wings, Vortex Filam	nent, Biot-					
Savart law and Helmholtz's theorems, Infinite and semi-infinite vortex filament, Prandtl's classical l	ifting line					
theory, Limitations of Prandtl's lifting line theory, Lifting surface theory.						
Unit –V	07 Hrs					
Aerodynamic simulation - Flow Similarity, Principles of wind tunnel operation: Low speed, 7	Fransonic,					
supersonic and Hypersonic wind tunnels, Measurement Techniques in Wind Tunnels:	Pressure					
Measurements, Force Balance, Hot wire anemometer.						
Course Outcomes: At the end of this course the student will be able to:						
CO1: Apply the principles of fluid dynamics for airfoil and wings.						

CO2. A	Analyse the potential flows in assessing the aerodynamic behaviour of various bodies.													
CO3: D	Determine incompressible flow characteristics of airfoils and wings.													
CO4: E	Evaluate and simulate aerodynamic performance characteristics using wind tunnel measurement techniques.													

Refer	rence Books
1	Fundamentals of Aerodynamics, Anderson J.D., 5th Edition, 2011, McGraw-Hill International
1	Edition, New York ISBN:9780073398105.
2	Aerodynamics for Engineering Students, E. L. Houghton, P.W, Carpenter 5th Edition, 2010, Elsevier,
	New York. ISBN: 9780080493855.
2	Aerodynamics, Clancy L. J., Sterling book house, 5th Edition, 2006, New Delhi. ISBN:
5	9788175980570.
4	Theoretical Aerodynamics, Louis M. Milne-Thomson, Imported Edition, 4th Edition, 2011, Dover
4	Publications, USA, ISBN: 080-075961980.
_	Low-Speed Wind Tunnel Testing, Jewel B Barlow, William H Rae, Alan Pope. 3rd Edition, 1999,
Э	John Wiley & Sons, ISBN-10: 0471557749 ISBN-13: 978-0471557746.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	-	-	-	-	1	-	-	1	3	-	2			
CO2	1	3	3	2	2	-	-	1	2	-	-	1			
CO3	1	2	2	3	2	-	-	-	-	1	-	1			
CO4	1	2	-	2	1	1	1	2	-	-	2	-			

	Semester: VII											
	RELIABILITY AND MAINTAINABILITY ENGINEERING											
	(Group F – Professional Elective)											
Cou	Course Code : 18ME7F5 CIE : 100 Marks											
Crec	dits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours					
Cou	rse Learning (Dbj	ectives: The stude	ents will be able to								
1	Understand th	ne p	robability theory	for reliability and maintainability.								
2	Identify the s	tatis	stical models for f	ailure data analysis.								
3	3 Develop the reliability models for state-dependent systems.											
4	Design system	ns f	or optimum relial	pility.								
5	Analyse mair	ntair	nability of system	s.								

Unit-I 07 Hrs
Probability Theory - Concepts and Definitions - Reliability, Maintainability and Availability, Reliability and
quality, Basic elements of reliability, Achievement of reliability, Measurement of Reliability, Causes of failures
and unreliability, Elementary properties of probability, Random Experiments, Events, Sample Space,
Probability rules, Conditional Probability, Bayes' theorem, Theorem of total probability, independent
events, Random variables, Discrete distributions, Continuous distributions, Mathematical expectation
and variance of random variables
Unit – II 09 Hrs
Failure Data Analysis - Failure density, failure rate, Reliability function, PDF, CDF, MTTF, MTBF, Hazard
rate function, Bath Tub curve, Time dependent hazard models, Stress dependant hazard models, Conditional
Reliability
Failure Models - Constant Failure Rate Model - Exponential Reliability Function, Failure Modes,
Applications, Two-Parameter Exponential Distribution, Poisson Process, Redundancy and the CFR Model,
Time-Dependent Failure Model – Weibull distribution, Normal distribution and Lognormal distribution
Unit –III 09 Hrs
Reliability of systems - Serial, parallel and combined configurations, System structure function, Minimal Cuts
and Minimal Paths, Common Mode failures, Three-state devices - Series Structure, Parallel Structure, Low-
Level Redundancy and High-Level Redundancy
Reliability of state-dependent systems - Markov Analysis, Load-sharing system, Stand-by system -
Identical Standby Units, Standby System with Switching Failure, Three-Component Standby system,
Degraded system
Unit –IV 07 Hrs
Design for reliability - Reliability analysis, Reliability design process, Reliability specification and
system measurements - System Effectiveness, Economic Analysis and Life-Cycle Costs, Reliability
allocation - Exponential case, Optimal Allocations, ARINC, AGREE method, Redundancies, Design
methods - Parts and material selection, Derating, Redundancy Optimization, FMEA, FTA
Unit –V 07 Hrs
Design for maintainability - Analysis of downtime, Repair-time distribution - Exponential Repair
Times, Lognormal Repair Times, System repair time, Reliability under preventive maintenance, State-
dependant systems with repair, Maintenance requirements - Measurement and Specifications,
Maintenance Concepts and procedures, Component Reliability and maintainability, Design methods -

Preventive and Predictive maintenance

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify statistical tools to characterize the reliability and maintainability.					
CO2:	Establish reliability and maintainability strategies for efficient running of the systems.					
CO3:	Formulate the statistical models to enhance system reliability.					
CO4:	Develop reliable and maintainable systems.					

Reference Books

1	Probability & Statistics for Engineers and Scientists, Ronald E. Walpole, Raymond H. Myers, Sharon L.							
	Myers, Keying Ye, 2012, Pearson Publication, ISBN 10: 0-321-62911-6 ISBN 13: 978-0-321-62911-1							
2	An Introduction to Reliability and Maintainability engineering; Charles E. Ebeling, 2004, Tata McGraw-							
2	Hill Publishing Company Limited, ISBN - 13 : 978-0-07-042138-7 ISBN - 10 : 0-07-042138-2							
2	Reliability Engineering, E Balagurusamy, 1984, Tata McGraw-Hill Publishing Company Limited							
3	ISBN - 13 : 978-0-07-048339-2 ISBN - 10 : 0-07-048339-6							
4	Reliability Engineering, L S Srinath, 2005, Affiliated East-West Press Pvt. Ltd, ISBN 13:							
4	9788176710480 ISBN 10: 8176710482							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	-	-	2	3	-	-
CO2	2	2	3	2	1	-	-	-	1	-	3	-
CO3	1	2	3	3	2	1	-	-	1	1	2	1
CO4	1	2	3	3	2	1	-	-	1	1	2	1

	Semester: VII							
	ACOUSTICS AND NOISE CONTROL							
	(Group G – Professional Elective)							
C	Course Code : 18ME7G1 CIE : 100 Marks							
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours		:	39 L		SEE Duration		3.00 Hours	
C	ourse Learning	g 0	bjectives: The st	udents will be able to				
1	Understand th	le fi	undamentals of a	coustics for industrial applications.				
2	Comprehend	the	concepts of reflect	ction and transmission of sound in fluid	ds and solids.			
3	3 Familiarize with acoustic measurement systems.							
4	4 Develop industrial acoustic noise reduction systems.							
5	Analyze noise	e co	ntrol systems as	per ISO standards.				

Unit-I	07 Hrs
Fundamentals of Acoustics - Sound, Acoustics, Noise Pollution, Wave propagation, The Equation o	f State, The
Equation of Continuity, The Simple Force Equation Euler's Equation, The Linear Wave Equation	1, Speed of
Sound in Fluids, Harmonic plane Waves, Energy Density, Acoustic Intensity, Specific Acoustic	Impedance,
Spherical waves, Decibel Scales, Cylindrical Waves	
Unit – II	09 Hrs
Reflection and Transmission in fluids – Change in Media, Transmission from one fluid to anoth	er; Normal
incidence, Transmission though a Fluid Layer; Normal Incidence, Transmission from one fluid	to another
oblique incidence, Normal specific acoustic impedance.	
Reflection and Transmission in solids – Reflection from the surface of a solid, Transmission the	ough a thin
partition, Method of Images.	
Unit –III	10 Hrs
Acoustic Measurements - Sound Level Meters, Intensity Level Meters, Octave Band Filters	s, Acoustic
analysers, Dosimeter, Measurement of Sound Power, Sound Power Measurement in a Reverberant F	loom,
Sound Power Measurement - Anechoic or Semi-Anechoic Room, sound Power Survey Mea	asurements,
Measurement of the Directivity Factor, Noise Measurement Procedures, Problems.	
Unit –IV	07 Hrs
Noise Sources – Sound Transmission Indoors and Outdoors, Fan Noise, Electric Motor Noise, Pump	Noise, Gas
compressor Noise, Transformer Noise, Cooling Tower Noise, Noise from gas ventilation, App	pliance and
Equipment noise, Valve noise, Air Distribution system noise, Noise Control, Historical Background	, Principles
of Noise Control, Noise Control at the source, Noise Control in the transmission path, Noise co	ntrol at the
receiver	
Unit –V	06 Hrs
Noise Standards - ISO guidelines for Noise control, dB Arithmetics, Octave band frequency anal	ysis, Noise
rating, Acoustic mathematics, transmission loss, insertion loss.	
Course Outcomes: After completing the course, the students will be able to	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Recognize different sources of industrial noise and their effects.					
CO2:	Develop mathematical models for industrial noise sources.					
CO3:	Evaluate controlling mechanism for various industrial noise sources.					
CO4:	Adopt ISO standards for noise control.					

Refer	ence Books
1	M. L. Munjal, Noise and Vibration Control, 2014, World Scientific Press: Singapore, 1 st Edition, ISBN 978-981-4434-737
2	E. G. Williams, Fourier Acoustics: Sound Radiation and Near Field Acoustic Holography, 1999, Academic Press: New York, 1 st Edition, ISBN: 13-978-0127539607
3	R J Peteres, Acoustics and Noise Control, Taylor & Francis India, 2019, 3 rd Edition, ISBN 13- 9781138653504
4	Möser & Michael, Engineering Acoustics - An Introduction to Noise Control, 2019, 1 st Edition, Springer Publications, ISBN: 13-978-3540927228

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	1	2	-	-	-	1	1	1	-	1
CO2	2	3	3	3	1	1	-	-	1	-	-	1
CO3	1	3	3	3	2	1	1	-	1	-	-	1
CO4	-	-	2	-	1	1	1	2	1	1	-	1

	Semester: VII						
	MODELLING AND SIMULATION OF MANUFACTURING PROCESSES						
	(Group G – Professional Elective)						
C	Course Code : 18ME7G2 CIE : 100 Marks						
Credits: L:T:P		:	3:0:0	SEI	E	:	100 Marks
Total Hours		:	39 L	SEI	E Duration	:	3.00 Hours
C	ourse Learning	g 0	bjectives: The stude	ents will be able to			
1	Understand an	nd a	apply the modelling	principles of casting and welding proces	sses.		
2	Analyse and e	eval	uate the loads and f	orces in forming processes.			
3	B Develop and analyze models for traditional and non-traditional machining processes.						
4	Understand the basic principles of fuzzy logic and neural networks.						
5	Apply the prin	ncip	oles of neural netwo	rks and fuzzy logic principles for the ca	se studies.		

Unit-I	07 Hrs
Modelling of Sand-Casting and Fusion Welding: Casting: Mechanism of solidification -	- Rate of
solidification, Solidification of large casting in an insulating mould (Numericals); Fusion Weld	ling: Heat
Source - Emission and ionisation of electric arc, arc structure, characteristics and power, modes	s of metal
transfer in arc welding, Arc efficiency (Numericals); Heat input to the weld, Relation between w	veld cross-
section and energy input, Heat input rate, Heat flow equations - A practical application, Width c	of the heat
affected zone, Cooling rates, Constant resistance heat source (Numericals).	
Unit – II	09 Hrs
Modelling of Forming Processes: Relation between engineering and true stress-strain – Strain	hardening
index, Volume constancy, Hollomon equation, Strain rate and True stress relation, Flow stress, Yie	ld criteria
(Numericals); Slab method: Forging – Forging pressure for circular disc (Numericals).	
Wire Drawing – Drawing stress, Maximum reduction (Numericals); Extrusion (Round ba	r/wire) –
Extrusion work load & Stress analysis (Numericals); Deep Drawing: Blank holding and drav	ving force
analysis (Numericals).	
Unit –III	09 Hrs
Modelling of Machining Processes: Review on Orthogonal cutting; Machining with Controlled	Contact:
Natural contact length - Hahn's and Zorev's analysis, Shear angle in controlled contact orthogon	al cutting
(Numericals); Oblique Cutting: Direction of chip flow, Rake angles, Cutting ratios, Velocity rel	lationship,
Shear angle; Mechanics of Turning Process: Analysis of chip flow direction, Effective rake angle, I	Power and
forces, Specific cutting resistance (Numericals).	
Ultrasonic Machining: Grain throwing and grain hammering models, parametric analysis an	d process
Parameters (Numericals); Electric Discharge Machining: Analysis of R-C circuits, Condition for	maximum
power generation, Material removal rate, Surface finish, Process parameters (Numericals); Electric	ron Beam
Machining: Mathematics and mechanics, Process parameters (Numericals).	
Unit –IV	07 Hrs
Introduction to Fuzzy Logic: Crisp and Fuzzy sets operations and properties, Representation of a	fuzzy set,
Membership functions, Definitions in fuzzy sets, Standard operations in fuzzy sets and relations, M	easures of
fuzziness and inaccuracy of fuzzy sets (Numericals); Fuzzy Logic Controller: Mamdani approach, 7	Fakagi and
Sugeno's approach (Numericals).	
Unit –V	07 Hrs
Fundamentals of Neural Networks: Artificial neuron, Transfer functions; Multi-Layer Feed	-Forward
Neural Network: Training of network using back-propagation algorithm (Numericals); Neuro-Fuzz	y System:
Mamdani Approach - Tuning of the Neuro-Fuzzy System using a Back-Propagation algorithm (Nu	umericals);
Adaptive Neuro-Fuzzy Inference System: Takagi and Sugeno's approach (Numericals).	

RV College of Engineering® – *Bengaluru* - 59

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Analyse models for metal casting and fusion welding processes.						
CO2:	Apply models to analyse forces in forming processes.						
CO3:	Analyse models for traditional and non-traditional machining processes.						
CO4:	Apply the principles of soft computing tools to create models for the manufacturing process inputs						
	and outputs.						

Refe	rence Books
1	"Manufacturing Science", Amitabha Ghosh, East-West Press Pvt Ltd, 2 nd ed., 2010, ISBN-13: 978-
	81-767-1063-3.
2	"Welding Science and Technology", Md. Ibrahim Khan, New Age International (P) Limited, 2017,
	ISBN-13: 978-81-224-2621-5.
3	"Welding Processes and Technology", R.S. Parmar, Khanna Publishers, 3 rd Edition, 2020, ISBN-13:
	978-81-7409-126-2.
4	"Principles of Metal Manufacturing Processes", J. Beddoes & M. J. Bibby, Elsevier Butterworth-
	Heinemann, 2006, ISBN-13: 978-81-312-0133-6.
5	"Fundamentals of Metal Cutting and Machine Tools", B.L Juneja, G.S. Sekhon & Nitin Seth, New
	Age International (P) Limited, 2003, 2 nd Revised ed., 2003, ISBN-13: 978-81-224-1467-7.
6	"Unconventional Machining Processes", Jagadeesha T, Dreamtech Press, Wiley India Pvt Ltd. 2021,
	ISBN-13: 978-9-389-97605-2.
7	"Soft Computing – Fundamentals and Applications", Dilip K. Pratihar, Narosa Publishing House
	Pvt. Ltd. Revised Edition, 2015, ISBN-13: 978-81-8487-495-2.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	1	-	-	-	-	-	-	3
CO2	3	3	2	2	2	-	-	-	2	-	-	3
CO3	3	2	2	2	3	-	-	-	2	-	-	3
CO4	1	2	2	3	3	-	-	-	2	-	-	3

			Semester: VII				
		MANUF	ACTURING SYSTEMS AUTOMA	TION			
		(Group G – Professional Elective)			400 35 3	
Course Code	:	18ME7G3		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39 L	1	SEE Duration	:	3.00 Hours	
Course Learning	<u>;</u> 0	bjectives: The sti	Idents will be able to	1.6			
I Recognize the	e im	portance of shop	floor layout and components in an au	tomated factory		1	
automation	opro	opriate material	handling and storage system, trans	ster lines and st	orag	ge butters for	
3 Apply analyti	cal	modelling using	queues, queuing networks and Petrine	ts.			
4 Determine per	rfoi	mance measures	for scheduling single machine, flow s	hop and job shop	pro	duction.	
5 Develop a stra	ateg	gy for implementi	ng automation in a manufacturing fac	ility.			
r						1	
			Unit-I			07 Hrs	
Introduction to a	iuto	omation and mai	nufacturing metrics				
Basic elements, p	lan	t configurations,	categories of automation, machine cer	nters, and robot w	′ork	cell, Types of	
Industrial trucks,	aut	omated guided ve	chicle systems and conveyors, Autom	ated storage/Retr	ieva	al and carousal	
systems. Manufa	act	aring metrics (Numericals) - Production rate, pro	oduction capacit	γ, ι	itilization and	
availability, man	ula	cluring lead tim	and repeatebility	; costs, economi	c ji	usumention of	
industrial robots,	res	olution, accuracy	Unit II			00 Hrs	
Analysis of mata	ria	I transport and a	toraga systems			091118	
Analysis of vehic	rie ie	hased systems	AGVS routing Conveyor analysis –	Single direction	co	ntinuous loon	
recirculating Siz	ing	the rack structu	re throughput storage capacity and	through put ana	lvsi	s for carousal	
storage systems ()	Nui	nericals)	ie, anoughput, storage explority and	unougn put une	1901		
Assembly line ba	lar	icing and autom	ated production lines				
Line balancing	alg	orithms –largest	candidate rule, Kilbridge and w	vester, ranked p	osit	ional weights	
(Numericals). Co	nfig	gurations of autor	nated production lines. Work part tra	insfer mechanism	s, s	torage buffers,	
analysis of transfe	er li	nes with no inter	nal parts storage, with internal parts s	torage (Numerica	ıls)		
			Unit –III			09 Hrs	
Automated Asse	mb	ly Systems				·	
System configura	tioi	ns, part delivery a	t workstations, quantitative analysis	of parts delivery s	syste	em, single and	
multi-station asse	multi-station assembly machines, partial automation, Numericals						
Queuing models							
Notation for que	ues	s, examples of q	ueuing and queuing network mode	els in manufactur	ring	, performance	
measures, little's	measures, little's result, M/M/1 queue, M/M/1/N queue, M/M/m queue, batch arrival queuing systems, M/G/1,						
M/D/1, GI/M/1 queues (Numericals)							
			Unit –IV			07 Hrs	
Petrinet modellin	ng i	tor automated sy	stems	1 1.11.		· 1	
Classical petrinets – preliminary definitions, transitional firing and reachability, representational power,							
properties of perinets. Stochastic petrinets – exponential timed petrinets. Generalized stochastic petrinets –							
Thing fules, analy	Irring rules, analysis, computation of performance measures. (Problems)						
Scheduling and	or	trol of monufact	uring systems			0/ 1118	
Scheuning and control of manufacturing systems Single machine. N machine scheduling scheduling rules, minimizing the number of tardy jobs, minimizing							
makespan Gantt chart flow shop scheduling Johnsons rule branch and bound technique CDS heuristic							
palmers heuristic.	palmers heuristic, job shop scheduling – heuristic procedures, n jobs and m- machines scheduling. Numericals						

RV College of Engineering® – *Bengaluru* - 59

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Illustrate the basic elements in an automated manufacturing work cell layout, production line system							
CO2:	Apply the mathematical equations to compute manufacturing metrics, select appropriate material							
	handling and storage system, line balancing and transfer lines.							
CO3:	Evaluate the concepts of analytical modeling paradigms for automation using queues and queuing							
	networks and Petri Nets.							
CO4 :	Develop a suitable database for scheduling and loading methods in a flexible manufacturing system.							

Refere	ence Books						
1	Automation, production systems and computer integrated manufacturing, Mikell P Groover, 4th						
	edition, 2016. Pearson education -ISBN: 978-9332572492						
2	Performance modelling of automated manufacturing systems, N Vishwanadham, Y Narahari, 2015.						
	PHI learning pvt ltd, ISBN: 978-81-203-0870-1						
	Computer-integrated Manufacturing: Automation in Manufacturing, R. Panneerselvam, P.						
3	Senthilkumar, P. Sivasankaran, 1st edition, 2020 Cengage Learning India Pvt. Ltd. ISBN: 978-						
	9353503208						
4	Production and operations management, R Paneerselvam, second edition, 2009, PHI learning pvt ltd,						
	ISBN:978-81-203-2767-2						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	1	-	1	-	1
CO2	-	2	2	3	-	-	1	-	-	-	3	-
CO3	3	2	2	1	-	-	1	-	-	1	2	-
CO4	-	-	1	2	1	2	-	2	2	2	-	1

	Semester: VII							
	DESIGN OF HEAT EXCHANGERS							
			(*	Group G – Professional Elective)				
C	ourse Code	:	18ME7G4	CIE Mar	ks	:	100 Marks	
Credits: L:T:P		:	3:0:0	SEE Mar	ks	:	100 Marks	
Total Hours		ours : 3		SEE Dur	ation	:	3.00 Hours	
C	ourse Learning	Ob	jectives: The	students will be able to				
1	To learn the the	rma	al analysis on v	various parts of the heat exchangers.				
2	2 To analyze the sizing and rating of the heat exchangers for various applications.							
3	3 To evaluate the factors affecting heat transfer process.							
4	4 To quantify the heat transfer in various systems.							

UNIT-I

07 Hrs

10 Hrs

Introduction To Heat Exchanger Design: Classification of heat exchangers and their applications. Flow arrangements and temperature distributions in heat exchangers. Overview of Heat Exchanger Design Methodology, Heat Exchanger Variables

and Thermal Circuit, Overall heat transfer coefficient, fouling factor, Concentric-Tube Heat Exchangers, Mean temperature difference Concept: - LMTD for parallel flow and counter flow arrangement, correction factor for LMTD for cross flow and multi-pass heat exchangers, Numericals.

UNIT-II Shell And Tube Heat Exchangers

Constructional features. Applications. Effectiveness-NTU method for heat exchanger design/analysis. Rating and sizing problem. Correlations for tube side pressure drop and heat transfer coefficients. Pressure drop and heat transfer coefficient correlations for shell side flow, Numeticals

ByPass And Leakage Calculation Procedure For Shell And Tube Heat Exchanger

Heat balance equations: LMTD: reference temperature calculations: evaluation of fluid properties: flow assignments: tube side flow area calculations; viscosity correction factor, shell side equivalent diameter, calculation of shell side heat transfer coefficient, evaluation for wall temperature, evaluation of overall heat transfer coefficient, Calculation of surface area. Calculations of tube side and shell side pressure drops, Numericals

UNIT-III09 HrsSteam Condensers - Specifications of other details as per TEMA standards. Flow arrangement for
increased heat recovery: - lack of heat recovery in 1-2 exchangers true temperature difference in a 2-4
exchanger. Calculation procedure for steam condensers, Numericals

Heat pipes and Micro scale heat exchangers -Heat pipes, construction, working principle, application, and analysis. Special heat pipes. Micro-scale heat Exchangers and heat sinks; heat transfer and fluid flow through narrow conduits, special design considerations

UNIT-IV

Compact Heat Exchangers

Compact heat exchangers, Enhancement of heat transfer, Extended surface or Fin, fundamental of extended surface heat transfer, Fin tube heat exchanger.

Plate Fin Heat Exchangers (PFHE), Types, Construction, Fabrication, Design, Application, Multi-stream PFHE.

07 Hrs

UNIT-V	05 Hrs
of Heat Exchangers and Their Components	

Selection Criteria Based on Operating Parameters - Operating Pressures and Temperatures, Cost, Fouling and Cleanability, Fouling and Cleanability, Fluids and Material Compatibility, Fluid Type,

General Selection-Guidelines for Major Exchanger Types, Some Quantitative Considerations - Screening Methods, Performance Evaluation Criteria, Evaluation Criteria Based on the Second Law of Thermodynamics,

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Select appropriate heat exchangers for the given application.					
CO2	Identify how to design common type of heat exchangers.					
CO3	Analyze single and multiphase heat transfer systems and friction coefficient correlation.					
CO4	Develop sizing of condenser and air-cooled heat exchangers.					

Refe	rence Books
1.	Sadik Kakal and Hogtan Liu, "Heat Exchangers Selection, rating and Thermal Design", CRC Press,
	2012, 3 rd Edition, ISBN: 9781439849903
2.	T. Taborek, G.F. Hewitt and N. Afgan, Heat Exchangers - Theory and practice, McGraw Hill
	Book Co., 1st Edition, 1980, ISBN: 978-0070628069.
3.	Walkers, Industrial Heat Exchangers-A Basic Guide, McGraw Hill Book Co., 1st Edition, 1980,
	ISBN: 10: 0891162305
4.	Arthur, P. Frass, Heat Exchanger Design, John Wiley and Sons, 2 nd Edition, 1989, ISBN: 978-0-471-
	62868-2
5.	J.P.Gupta, Fundamentals of Heat exchanger and pressure vessels technology, Hemisphere Publishing
	Corporation, Springer Verlag (outside NA), 1st Edition, 1986, ISBN: 13:978-0891163442

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Selection
	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	1	2	-	-	-	-	-	-	-			
CO2	2	3	2	2	-	-	1	-	-	-	-	-			
CO3	2	2	3	3	-	-	-	-	-	-	-	-			
CO4	2	3	3	2	-	-	-	-	-	1	1	-			

	Semester: VII											
	SOLID MECHANICS											
	(Group G – Professional Elective)											
C	ourse Code	:	18ME7G5		CIE	:	100 Marks					
Credits: L:T:P		P : 3:0:0			SEE		100 Marks					
Τα	otal Hours	urs : 39 L			SEE Duration		3.00 Hours					
C	ourse Learning	g 0	bjectives: The student	ts will be able to								
1	Understand co	onc	epts of stress, strain an	nd constitutive relations								
2	Describe Stree	ss-S	Strain relations for isot	tropic elastics and plastic materia	ls							
3	Apply failure	the	ories in the analysis of	f elastic and plastic materials								
4	Evaluate stres	ses	and deformation due	to torsional								
5	Analyze the a	xis	ymmetric problems for	r stresses								

Unit-I	07 Hrs								
Analysis of Stress: State of Stress at a point, Normal and Shear Stress Components, Rect	angular Stress								
Components, Stress Components on an Arbitrary Plane, Principal Stresses, Stress Invariants, Mohr's Circle for									
Three-Dimensional State of Stress, Octahedral Stresses, State of Pure Shear, Decomposition into Hydrostatic									
and Deviatoric, Differential Equations of Equilibrium, Boundary conditions, Equations of I	Equilibrium in								
Cylindrical Coordinates.									
Unit – II	09 Hrs								
Analysis of Strain: Deformations, Deformations about a Point, Change in Length of a Linear E	lement, Linear								
Components, Rectangular Strain Components, State of Strain at a Point, Change in Length of L	inear Element,								
Cubical Dilation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Con	ditions, Strain								
Invariants.									
Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hook's Law	, Stress-Strain								
Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus, Young's Modulus, Po	oisson's Ratio,								
Relations between Elastic Constants, Displacement equations of Equilibrium									
Unit –III	09 Hrs								
Yield Criteria: Theories of Failure, Use of Factor of Safety, Mohr's Theory of Failure, Ideally	Plastic Solids,								
and Stress Space.									
General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress-Strain Re	lations (Plastic								
Flow), Prandl-Reuss Equations, Saint Venant-Von Mises Equations.									
Unit –IV	07 Hrs								
Torsion: General Prismatic Bars of Solid Sections with different cross sections, Membrane An	alogy, Torsion								
of Thin-Walled Tubes and Thin-Walled Multiple-Cell Closed Sections, Torsion of Bars with Th	in Rectangular								
Sections, Centre of Twist and Flexure Centre.									
Unit –V	07 Hrs								
Axisymmetric Problems: Thick-Walled Cylinders subjected to Internal and External Press	ures – Lame's								
Problem, Rotating Disks of Uniform Thickness, Rotating shafts, and cylinders.									
Course Outcomes: After completing the course, the students will be able to									
CO1: Analyze solid mechanics problems using classical methods for stresses and strains.									
CO2: Apply various Yield Criteria of obtaining Yield Stresses and deformations.									

CO3: Estimate stresses in members under torsion for different sections.

CO4: Solve stress distribution of axisymmetric problems.

Refere	Reference Books									
1	Advanced Mechanics of solids, L. S. Srinath, Tata McGraw Hill, 3 rd Edition, 2017, ISBN 13: 978-									
	00/0/02608:									
2	Theory of Elasticity, S. P. Timoshenko, Mc. Graw Hill, 3rd edition, 1972, ISBN 978-0-13-223319-									
	3.									
3	Applied Elasticity, T G Seetharam, PHI Publications, 2 nd Edition, 1985, ISBN 978-0-13-223319-3									
4	Theory and Analysis of Elastic Plates & Shells, J N Reddy, CRC Press, NY, USA, 2 nd Edition,									
4	ISBN: 9780849384158									

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) =100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	3	3	1	2	-	-	1	-	2	-	1		
CO2	3	3	3	2	1	1	-	1	1	-	-	1		
CO3	-	1	3	3	2	2	1	1	-	-	-	-		
CO4	1	2	3	2	1	-	-	-	-	2	-	-		

Semester: VII												
UNMANNED AERIAL VEHICLES												
(Group H: Global Elective)												
Course Code	:	18G7H01	CIE	:	100 Marks							
Credits: L:T:P:S	:	3:0:0	SEE	:	100 Marks							
Hours	:	39 L	SEE Duration:	:	3.00 Hours							

Cou	rse Learning Object	tives: The	students v	will be	able	to

1	Get an overview of the history of UAV systems
2	Understand the importance of aerodynamics, propulsion, structures and avionics in the design of UAV
3	Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion systems, integration with manned systems
4	Comprehend the importance of guidance and navigation of a UAV

Unit-I	07 Hrs								
Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unmanned aerial									
systems, Overview of UAV Systems-System Composition, Classification of UAVs based on size, range									
and endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.									
Unit – II 08 Hrs									
Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characteristic	cs, Basic								
aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flappin	ng wings,								
Airframe configurations-HTOL, VTOL and Hybrids.									
Unit -III	08 Hrs								
Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV (general intr	oduction),								
Selection criteria for structure, Types of structural elements used in UAV their significance and									
characteristics.									
UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Pisto	n, Rotary,								
Gas turbine engines, electric or battery powered UAVs.									
Unit -IV	08 Hrs								
Payloads of UAVs : Non-dispensable Payloads- Electro-optic Payload Systems, Radar Imaging	Payloads,								
Electronic Warfare Payloads, Dispensable Payloads and other payloads.									
Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi	cles- Rail								
Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO Launch	of UAVs,								
UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute Recovery, VTC)L UAVs,								
Mid-Air Retrieval, Shipboard Recovery.									
Unit -V	08 Hrs								
UAV Navigation and Guidance Systems									
Navigation, Dead Reckoning, Inertial, Radio Navigation, Satellite-Way point Navigation, UAV Guidance,									
Types of guidance, UAV communication systems, Ground control station, Telemetry, UAS future									
Course Outcomes: At the end of this course the student will be able to:									

Cours	Course Outcomes. At the end of this course the student will be able to:									
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs									
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs									
CO3	Determine and evaluate the performance of UAV designed for various Missions and applications									
CO4	Appreciate the guidance and navigation systems for enabling the versatility of UAV systems									

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1st Edition,
1	2010, Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4th Edition, 2012, Wiley, ISBN:
2	978-1-119-97866-4
2	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
3	Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-
4	Hill, Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed
	Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	2
CO3	1		3	3	-	-	-	-	-	-	-	2
CO4	3	3	3	3	-	2	1	2	-	-	-	2

	Semester: VII						
				BIOINFORMATICS	5		
				(Group H: Global Elect	ive)	_	
Co	urse Code	:	18G7H02		CIE	:	100 Marks
Cre	edits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tot	al Hours	:	39 L		SEE Duration	:	3.00 Hours
Co	irse Learning	O	ojectives: The	students will be able to			
1	Acquire the k	no	wledge of biol	ogical database and its role in in	nsilico research		
2	Understand th	ne e	essential algorit	thms behind the biological data	analysis such as]	Dyna	amic programming, Dot
	plotting, Evol	luti	onary and Clus	stering algorithms along with th	neir implementati	on.	
3	Use various to	ool	s and technique	es for the prediction of linear &	non-linear structu	res c	of both macro and micro
	molecules and	d st	udy the dynam	nics of macromolecules and Hig	gh Throughput Vi	rtual	Studies.
4	Perform anno	otat	ion of unknow	wn DNA and Protein sequence	es and explore t	the p	principles of molecular
	modelling						
5	Apply the k	no	wledge towar	ds analyzing the sequences	using programm	ning	languages and Drug
	development						
				Unit-I			08 Hrs
Bio	molecules and	l Ir	ntroduction to	Bioinformatics:			
Inti	oduction to B	ion	nolecules. Stru	icture, Types and Functions of	f Carbohydrates,	Lipi	ds, Nucleic Acids and
Pro	teins. Genetic	coc	le, Codon dege	eneracy, Genes and Genomes. I	ntroduction to Bi	oinfo	ormatics, Goals, Scope,
Ap	plications in bi	olo	gical science a	ind medicine. Biological databa	ises – Sequence, s	struc	ture, Special Databases
and applications - Genome, Microarray.							
	Unit – II 08 Hrs						
Sec	Sequence analysis: Introduction, Types of sequence alignments, Pairwise sequence alignment, Multiple						

sequence alignment, Alignment algorithms Needleman & Wunch, Smith & Waterman and Progressive global alignment, Database Similarity Searching- Scoring matrices - BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next Generation Sequencing - Alignment and Assembly. Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation

Unit –III Predictive and structural bioinformatics: Gene prediction programs - ab initio and homology based approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. Predicting RNA secondary structure, Protein structure basics, structure visualization, comparison and classification. Protein structure predictive methods using protein sequence, Protein identity based on composition. Structure prediction - Prediction of secondary structure.

Unit –IV 07 Hrs PERL: Introduction to Perl, writing and executing a Perl program, Operators, Variables and Special variables. Object Oriented Programming in Perl-Class and object, Polymorphism, inheritance and encapsulation. Data Types - Scalar, Array and Associative array. Regular Expressions (REGEX), Components of REGEX -Operators, Metacharacters and Modifiers.

Unit –V

07 Hrs

09 Hrs

BioPERL: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl - Sequence retrieval from Database and submission of sequence to online Database, Indexing and accessing local databases, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Parsing BLAST and FASTA results.

CO1: Demonstrate the knowledge of retrieval of the biological data in the essential formats and its ana CO2: Analyse the gene, protein and RNA data to find the degree of similarities and identifying the pat	Course	Course Outcomes: After completing the course, the students will be able to							
CO2: Analyse the gene protein and RNA data to find the degree of similarities and identifying the pat	CO1:	Demonstrate the knowledge of retrieval of the biological data in the essential formats and its analysis.							
Final joe and gene, protein and re of auta to find the degree of similarities and identifying the par	CO2:	Analyse the gene, protein and RNA data to find the degree of similarities and identifying the patterns							
CO3: Apply the drug designing methods for screening and inventing the new targets and drugs	CO3:	Apply the drug designing methods for screening and inventing the new targets and drugs							
CO4: Predict the structure of a compound and design the molecule.	CO4:	Predict the structure of a compound and design the molecule.							

Refere	ence Books
1.	Essential Bioinformatics, Jin Xiong, 2006, Cambridge University Press, ISBN: 978-05-216-00828.
2	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and
Ζ.	B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN:
	9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN:
	978-01-208-87866.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VII							
	INDUSTRIAL SAFETY AND RISK MANAGEMENT						
(Group H: Global Elective)							
Course Code :			18G7H03		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning	; O	bjectives: The stud	dents will be able	e to		
1 Select appropriate risk assessment techniques.							
2 Analyze public and individual perception of risk.							
3	3 Relate safety, ergonomics and human factors.						

4 Carry out risk assessment in process industries

Unit-I	08 Hrs
Introduction: Introduction to industrial safety engineering, major industrial accidents, s	safety and
health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard	actuation,
Actuation transition, Causal factors, Hazard recognition.	
Unit – II	08 Hrs
Risk assessment and control: Individual and societal risks, Risk assessment, Risk p	erception,
Acceptable risk, ALARP, Prevention through design.	
Hazard Identification Methods: Preliminary Hazard List (PHL): Overview, met	hodology,
worksheets, case study. Preliminary Hazard Analysis (PHA): Overview, methodology, w	orksheets,
risk index, example.	
Unit –III	08 Hrs
Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Process parameter	ers, Guide
words, HAZOP matrix, Procedure, Example. Failure Modes and Effects Analysis	(FMEA):
Introduction, system breakdown concept, methodology, example.	
Unit –IV	08 Hrs
Application of Hazard Identification Techniques: Case of pressure tank, system by	reakdown
structure, safety ontology, Accident paths, HAZOP application, risk adjusted discou	nted rate
method, probability distribution, Hiller's model	
Unit –V	07 Hrs
Safety in process industries and case studies: Personnel Protection Equipment (PF	E): Safety
glasses, face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, ty	pes of foot
PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Cher	nical plant
explosion and fire.	1
Course Outcomes: After completing the course, the students will be able to	
CO1: Recall risk assessment techniques used in process industry	

CO1:	Recall risk assessment techniques used in process industry.
CO2:	Interpret the various risk assessment tools.
CO3:	Use hazard identification tools for safety management.
CO4:	Analyze tools and safety procedures for protection in process industries.

Refer	Reference Books						
1	Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina, Lulu publication, ISBN:1291187235						
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X						
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.						
4	Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	I	-	1	-	1	-

CO-PO Mapping

				Semester: VI	[
			W	EB PROGRAM	MING		
	(Group H: Global Elective)						
Cou	rse Code	:	18G7H04		CIE	:	100 Marks
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning	Ob	jectives: The stude	ents will be able to			
1	Understand	the	standard structure	of HTML/XHTMI	and its differences	5.	
2	Adapt HTM	La	nd CSS syntax & s	emantics to build w	veb pages.		
3	Learn the de and Ajax to	efin des	itions and syntax o ign web pages.	f different web pr	ogramming tools su	ıch	as JavaScript, XML
4	Design and different tec	de hnie	evelop interactive, ques such as CSS, J	client-side, serv JavaScript, XML a	er-side executable nd Ajax.	W	eb applications using
	·		•	• -	**		
				Unit-I			07 Hrs
Introduction to Web, HTML and XHTML: Fundamentals of Web(Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox), XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links, Lists, Tables, Forms, Frames. HTML 5: Core HTML attributes, headings, paragraphs and breaks, quotations, preformatted text, lists, horizontal rules, block-level elements, text-level elements The audio Element; The video Element;							
			-,	Unit – II			08 Hrs
Intro Font <spa The Over</spa 	CSS (Cascading Style Sheet) Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution. The Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives,</div>						
oper	ations, and ex		ssions, sereen outp	Unit –III	put, control statem	ient	5. 19 Hrs
JavaScript (continued): Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts. JavaScript and HTML Documents: The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and							
		,		Unit –IV	<u> </u>		08 Hrs
Dynamic Documents with JavaScript:Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements.Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling;Cookies; Session Tracking.							
Unit –V 07 Hrs							
XML:Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets. Ajax: Overview of Ajax; Basics of Ajax: The Application; The Form Document; The Request Phase; The Response Document; The Receiver Phase.							

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic syntax and semantics of HTML/XHTML.
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style
	Sheet.
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and utilize the
	concepts of XML & Ajax to design dynamic web pages.
CO4:	Develop web based applications using PHP, XML and Ajax.

Reference Books

1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013,
	ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006,
2	ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw
	Hill, 2003, ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

				Semester: VII					
	SOLID WASTE MANAGEMENT AND STATUTORY RULES								
			(Grou	p H: Global Elective)					
Cours	Course Code:18G7H05CIE:100 Marks								
Credi	ts: L:T:P	:	3:0:0	S	SEE	:	100 Marks		
Total	Hours	:	39 L	S	SEE Duration	:	3.00 Hours		
Cours	se Learning Ob	jec	tives: The students	will be able to					
1	1 Impart the knowledge of present methods of solid waste management system and to analyze the								
	drawbacks.								
2	Understand va	irio	us waste manageme	nt statutory rules for the	e present system.				
3	Analyze diffe	ren	t elements of solid v	waste management and	design and develo	p r	ecycling options		
	for biodegrad	lab	e waste by compost	ing.					
4	Identify hazar	rdo	us waste, e-waste, j	plastic waste and bio	medical waste and	l th	eir management		
	systems.								
				Unit-I			08 Hrs		
Intro	Introduction: Present solid waste disposal methods. Merits and demerits of open dumping, incineration,								
pyroly	pyrolysis, composting, sanitary landfill. Scope and importance of solid waste management. Definition and								
function	functional elements of solid waste management.								

Sources: Sources of Solid waste, types of solid waste, composition of municipal solid waste, generation rate, Problems.

Collection and transportation of municipal solid waste: Collection of solid waste- services and systems, Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to collection system.

				Unit – II					08 Hrs
Composting	Aerobic	and	anaerobic	composting	-	process	description,	process	microbiology,
Vermicompos	ting, Site	visit to	o compost p	lant, Numerica	al p	oroblems.			

Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction occurringin landfill-Gas and Leachate movement, Control of gas and leachate movement, Site visit to landfill site.Unit –III08 Hrs

Hazardous waste management: Definitions, Identification of hazardous waste, Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016 with amendments. Site visit to hazardous landfill site

Unit –IV08 HrsBio medical waste management: Classification of bio medical waste, collection, transportation, disposal
of bio medical waste, Biomedical waste management (Management & Handling Rules) 2016 with
amendments. Site visit to hospital to observe biomedical waste collection and transportation system and visit
to biomedical waste incineration plant.08 Hrs

Unit –V

07 Hrs

E-waste management: Definition, Components, Materials used in manufacturing electronic goads, Recycling and recovery integrated approach. e-waste (Management) Rules 2016 and amendments. Site visit to e- waste treatment plant.

Plastic waste management: Manufacturing of plastic with norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with amendments.

RV College of Engineering® – Bengaluru - 59

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand the current solid waste management system and statutory rules.
CO2:	Analyse drawbacks in the present system and provide recycling and disposal options for each
	type of waste in compliance to rules.
CO3:	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management
	system.
CO4:	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal
	waste management as per the rules laid by Ministry of Environment, Forest and Climate change.

Referen	ce Books :
1	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993,
1	McGraw hill publication. ISBN 978-0070632370
2	Electronic waste management, R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC
2	Publication, ISBN 9780854041121
2	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change
3	Notification, New Delhi, 8 th April 2016
1	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016,
4	Ministry of Environment, Forest and Climate Change Notification, New Delhi, 04th April, 2016.
5	Biomedical waste management (Management & Handling Rules) 2016, Ministry of
3	Environment & Forest Notification, New Delhi, amendment on 28th March, 2016.
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change
0	Notification, New Delhi, 23 rd March, 2016.
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of
/	Environment, Forest and Climate Change Notification, New Delhi, 27th March, 2018

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	2	1	-	1	-	2
CO2	2	2	2	2	-	1	2	1	-	-	-	-
CO3	1	-	2	2	-	1	2	1	-	1	-	-
CO4	2	-	-	3	-	1	2	1	-	-	-	1

CO3: Write programs for specific applications in image processing

CO4: Apply different techniques for various applications using machine learning techniques.

Refere	ence Books
1	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, 3rd
1	Edition, ISBN 978-81-317-2695-2.
	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection,
2	and Pattern Recognition Using Python, Himanshu Singh, 1st Edition, Apress, ISBN:978-1-
	4842-4149-3
2	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer, 2008,
5	ISBN: 978-0387-31073-2
4	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition, Prentice
	Hall India 2004, ISBN: 978-0136085928

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for assignment is 20. The total marks of CIE are 100.

Total CIE is 30(Q)+50(T)+20(EL)=100Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	-	-	-	-	-	-	1
CO2	-	3	-	1	2	-	-	1	2	-	-	1
CO3	3	-	2	1	3	-	-	1	1	1	-	1
CO4	3	3	3	3	2	-	-	1	1	1	-	1

	Semester: VII								
	RENEWABLE ENERGY SOURCES AND STORAGE SYSTEM (Group H: Global Elective)								
Co	ourse Code	:	18G7H07	CIE	:	100 Marks			
Cı	edits: L:T:P	:	3:0:0	SEE	:	100 Marks			
Total Hours : 39 L SEE Duration : 3.00 H				3.00 Hours					
Co	ourse Learning	Ob	jectives: The stud	dents will be able to					
1	Understand Co	once	pts of nonconvent	tional energy sources and allied techno	logy	required for			
	energy conver	sion							
2	2 Analyse the Basics of battery working and sizing of battery for a given application.								
3	3 Design aspects of solar and wind power systems.								
4	Energy storage	e tec	hniques						

UNIT-I	08 Hrs
Basics of Renewable Energy: Energy balance of the earth, Solar radiation, wind energy	, geothermal
energy.	
Geothermal Energy - principles, technical description, heat supply by hydro-geotherm	nal systems,
heat supply by deep wells, geothermal generation, economic and environmental analysi	s.
Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification,	Theory of
Gasification, Gasifier and Their Classifications, Updraft, Downdraft and Cross-dra	ft Gasifiers,
Applications of Biomass Gasifier.	
Tidal Energy: Introduction, Tidal Energy Resource, Tidal Power Basin, Adva	intages and
Disadvantages of Tidal Power.	
- Unit II	AQ IIma
Uliit – II	Uo HIS
Photo Voltaic Systems: PV Cell, Module and array; Equivalent electrical circuit, Open	-circuit
voltage and short circuit current, I-V and P-V curves, Array design, Peak power Trackin	ıg, System
Components,	
Grid Connected Solar PV Power System: Introduction to grid connected PV system, C	onfiguration
of Grid-connected solar PV system, Components of Grid -connected solar PV sy	stems, Grid
connected PV system Design for small power Applications, Grid- connected PV system	n design for
power plants.	
Unit -III	08 Hrs
Wind Power: Introduction, site selection, Advantages and Disadvantages, Wind power	installations
in the world.	
Wind Speed and Energy: Speed and Power Relations, Power Extracted from the wind. I	Rotor-Swept
Area, Air Density, Global Wind Patterns, Wind Speed Distribution, Weibull	Probability,
Distribution, Mode and Mean Speeds, Root Mean Cube Speed, Mode, Mean, and R	MC Speeds,
Energy Distribution, Digital Data Processing, Effect of Hub Height, Importance of Re	eliable Data,
Wind Speed Prediction, Wind Energy Resource Maps.	
Wind Power Systems: System Components, Tower, Turbine, Blades, Speed Cont	rol, Turbine
Rating, Power vs Speed and TSR.	
	00 11
	U8 Hrs
wind Power Systems: Maximum Energy Capture, Maximum Power Operation Co	onstant-ISK
Scheme, Peak-Power-Tracking scheme, System-Design Trade-offs, Turbine Towers a	nd Spacing,
Number of Blades, Rotor Upwind or Downwind, Horizontal vs. Vertical Axis.	
System Control Requirements: Speed Control, Kate Control.	D: 1-
Environmental Aspects: Audible Noise, Electromagnetic Interference (EMI), Effects of	on Birds.

	Unit –V	07 Hrs
Energy storage		

Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charging, Battery management

Flywheels: Energy Relations, Components, Benefits over battery

Other Storage devices: Superconducting magnetic energy storage, Compressed air, Pumped storage hydropower, Hydrogen Energy storage

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the concepts of power generation from various renewable sources.								
CO2:	Design the Size of the battery required for solar PV applications.								
CO3:	Design main components of solar and wind power systems.								
CO4:	Execute projects in renewable power generation.								

Refere	nce Books
1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt,
1	Wolfgang Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013),
2	PHI, Learning private limited New Delhi ISBN: 978-81-203-4711-3
2	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition.
5	CRC Group ,Taylor and Francis group, New Delhi ,ISBN 978-0-8493-1570-1
4	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN
4	978-0-12-812902-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	2	2	3	2	-	-	-	-	-	1	-	1			
CO2	3	3	2	1	1	2	-	-	-	1	-	1			
CO3	3	2	2	2	2	2	2	1	-	1	-	1			
CO4	3	3	3	3	2	3	1	1	1	3	1	3			

Semester: VII												
MEMS AND APPLICATIONS												
			(Group H: Global Elective)									
Course Code	:	18G7H08			:	100 Marks						
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Total Hours: 39 LSEE Duration: 3.00 Hours												
Course Learning Objectives: The students will be able to												
1 Understand the rudiments of Micro fabrication techniques.												
2 Identify and associate the various sensors and actuators to applications.												
3 Analyze different	ma	aterials used for	MEMS.									
4 Design applicatio	ns (of MEMS to di	sciplines.									
			Unit-I			06 Hrs						
Overview of MEM	S	& Microsyster	ms: MEMS and Microsystems	, Typical MEMS ar	nd r	nicro system						
products, Evolution	of	micro fabricati	on, Microsystems and microel	ectronics, Multidiscij	olina	ary nature of						
Microsystems, Desig	n a	nd manufacture	e, Applications of Microsystems	s in automotive, heal	thca	re, aerospace						
and other industries.			.			~						
Working Principle	of	Microsystems	s: Biomedical and biosensors.	Micro sensors: Acc	usti	c, Chemical,						
Optical, Pressure, Th	erm	nal.										
			Unit – II			09 Hrs						
Micro actuation: Us	sing	g thermal forces	s, shape memory alloys, Piezoel	ectric crystals and ele	ectro	ostatic forces.						
MEMS with mi	cro	actuators:	Microgrippers, micromotors,	microvalves and	d	micropumps,						
microaccelerometers.	, mi	crofluidics.		1 1		F1						
Introduction to Sca	lin	g: Scaling in (Jeometry, Scaling in Rigid bo	dy dynamics, Scaling	g in	Electrostatic						
forces, scaling in elec	ctro	magnetic force	s and scaling in fluid mechanics.			00.11						
	10	1.54		A 1	• •	09 Hrs						
Materials for MEN	15	and Microsys	tems: Substrates and waters, A	Active substrate mate		ls, Silicon as						
substrate material, Si		on Compounds,	SI-Piezoresistors, GaAs, Quartz	z, Piezoelectric Crysta	us, I	Polymers and						
packaging materials.	In	ree level of M	icrosystem packaging, Die leve	el packaging, Device	lev							
System level packa	lgin baar	g. Interfaces	in microsystem packaging. Es	ssential packaging t	echi	nologies: die						
preparation, Surface	bon	ding, wire bon	ung, Sealing, 3D packaging.			00 11						
Mianagygtom Eabri	2.24	ion Duccoss		Dhatalithe another I	~ ~							
Diffusion Ovidation	cal	CVD DVD Serve	ttaring Deposition by Eniter	Photoninography, I	on	Implantation,						
Diffusion, Oxidation	1, (. f.	C V D,P V D-Spu	hering, Deposition by Epitax	y, Elening, LIGA I	broc	ess: General						
description, materials for substrates and photoresists, Electropiating and SLIGA process.												
Unit –V 07 Hrs												
Silicon Consolitive		Jors, Systems al	iu Smart Materials: An Overv	re ontio concorr Cor	dura	tomotria Car						
Sincon Capacitive A		mb drive Mag	to resistive Pressure sensor, F1b	d analyzar Diaza ala		a Inlaiat Drint						
head Micromirror or		for Video proj	action Micro PCP Systems Sm	analyzer, Flezo ele	oma	e mikjet Prim						
neau, microinnifor ar	ray	Tor video proje	eenon, where-reck systems, sin	art materials and syst	ems	•						
Course Outcomes:	۸ f+.	n completing	the course the students will be	ablata								

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the operation of micro devices, micro systems and their applications.								
CO2:	Apply the principle of material science to sensor design.								
CO3:	Analyze the materials used for sensor designs.								
CO4:	Conceptualize and design micro devices, micro systems.								

Refe	rence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata McGraw Hill
1	Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015, Wiley
	Publications, ISBN-:978-81-265-2715-1.
3	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.
4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006, Wiley-
	INDIA. ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-		-	1	-	1		
CO3	3	3	2	2	1	-	-		-	1	-	1		
CO4	3	3	3	3	1	-	-		1	1	1	1		

			Semester: V	II							
PROJECT MANAGEMENT											
(Group H: Global Elective)											
Course Code	:	18G7H09		CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total Hours : 39L SEE Duration : 3.0 Hours											
Course Learning Objectives: The students will be able to											
1 To understand the p	orin	ciples and comp	onents of project	management.							
2 To appreciate the in 3 To avalain different	iteg	rated approach t	o managing proj	ects.	roio	at					
5 10 explain unicien	t pi	ocess groups and	a knowledge ale	is used to manage p	loje	UI.					
			Unit-I				07 Hrs				
Introduction: What is	pro	oject, what is p	roject manageme	ent, relationships ar	non	g portfolio n	nanagement,				
program management,	pro	ject managemer	nt, and organizat	ional project manag	geme	ent, relations	hip between				
project management, or	bera	tions manageme	ent and organizat	ional strategy, busin	iess	value, role o	f the project				
manager, project manag	gem	ent body of kno	wledge.				1 5				
0 1 5 0		<u> </u>	Unit – II				09 Hrs				
Organizational influer	nces	& Project life	cycle: Organizat	ional influences on	proj	ect managem	ent, project				
state holders & governa	nce	e, project team, r	project life cycle.		1 5	e	1 5				
Project Integration M	lan	agement: Deve	lop project char	er, develop project	ma	nagement pla	an, direct &				
manage project work, r	nor	nitor & control p	project work, per	form integrated cha	inge	control, clos	se project or				
phase.		1	5 1	C	U		1 5				
•			Unit –III				09 Hrs				
Project Scope Manag	em	ent: Project sco	pe management,	collect requirement	ts de	efine scope, o	create WBS,				
validate scope, control s	scoj	pe.									
Project Time Manage	eme	ent: Plan schedu	ule management	, define activities,	sequ	ence activiti	es, estimate				
activity resources, estim	nate	activity duratio	ns, develop sche	dule, control schedu	le.						
•			Unit –IV				07 Hrs				
Project Cost managen	ıen	t: Project Cost n	nanagement, esti	mate cost, determin	e bu	dget, control	costs.				
Project Quality manag	gen	ent: Plan qualit	y management, p	perform quality assu	ranc	e, control qu	ality.				
Unit –V 07 Hrs											
Project Risk Manage	eme	ent: Plan risk 1	nanagement, id	entify risks, perfor	mc	qualitative ri	sk analysis.				
perform quantitative ris	k a	nalysis, plan risk	resources, cont	ol risk.		•	. ,				
Project Procurement	Project Procurement Management : Project Procurement Management conduct procurements control										
procurements, close procurement.											
<u> </u>											

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the concepts, tools and techniques for managing large projects.								
CO2:	Explain various knowledge areas and process groups in the project management framework.								
CO3:	Analyze and evaluate risks in large and complex project environments.								
CO4:	Develop project plans for various types of organizations.								

Refe	rence Books
1	A Guide to the Project Management Body of Knowledge (PMBOK Guide), Project Management
	Institute, 5 Edition, 2013, ISBN: 978-1-935389-07-9
2	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th
2	Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
2	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10 th
3	Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt,

٦

1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	-	-	-	-	-	-	-	-	-	-	-			
CO2	2	2	-	1	1	-	-	-	-	-	-	-			
CO3	-	-	-	-	-	-	1	1	-	-	-	-			
CO4	2	-	3	-	1	-	-	-	-	-	-	-			

	Semester: VII CVRED EODENSICS AND DICITAL INVESTIGATIONS											
		C	I DER FORENSIC	oup H: Global Elective)	SHGATIONS							
Cou	rse Code	:	18G7H10	,	CIE	:	100 Marks					
Crea	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours					
Course Learning Objectives: The students will be able to												
1 To provide an understanding Computer forensics fundamentals and comprehend the impact of												
cybercrime and forensics.												
2 Describe the motive and remedial measures for cybercrime, detection and handling.												
3	Demonstrate a	ind	investigate the use	of I ools used in cyber for	ensics.		~ ~					
4	Analyse areas	an	ected by cybercrime	e and identify Legal Persp	ectives in cyber sec	urii	.y.					
				Unit-I			09 Hrs					
Intro	oduction to C	yb	ercrime: Cybercrir	ne: Definition and Orig	ins of the Word,	C	ybercrime and					
Infor	mation Security	y, V	Vho are Cybercrimi	nals, Classifications of Cy	bercrimes, Cyberc	rim	e Era: Survival					
Man	tra for the Netiz	ens										
Cybe	er offenses: H	ow	Criminals Plan I	'hem : How Criminals Pl	lan the Attacks, S		l Engineering,					
Cybe	erstalking, Cyb	er c	ate and Cybercrim	es, Botnets: The Fuel for	r Cybercrime, Atta	ick	Vector, Cloud					
Com	puting.			Unit _ II			08 Hrs					
Cyb	ercrime [.] Mob	ile	And Wireless De	vices: Introduction Pr	oliferation of Mol	nile	and Wireless					
Devi	ces. Trends in	M	obility. Credit Car	d Frauds in Mobile and	Wireless Comput	ting	Era. Security					
Chal	lenges Posed l	y .	Mobile Devices, R	egistry Settings for Mob	vile Devices, Auth	enti	cation Service					
Secu	rity, Attacks o	n 1	Mobile/Cell Phones	s, Mobile Devices: Secu	rity Implications	for	organizations,					
Orga	nizational Mea	sur	es for Handling Mo	bile devices, Organization	nal Security Policie	s ar	nd Measures in					
Mob	ile Computing 1	Era	, Laptops.									
				Unit –III			07 Hrs					
Tool	s And Metho	ls	Used In Cybercrin	ne: Introduction, Proxy S	Servers and Anony	ymi	zers, Phishing,					
Pass	word Cracking	,	Leveloggers and Sp	ywares, Virus and Wor	ms, Trojan Horse	s a	nd Backdoors,					
Dhie	anography, Dos hing and Idant	s an	d DDoS Attacks, St Thaft: Introduction	QL Injection, Buffer Over	(ID Thaft)	vire	less networks.					
T IIIS	ning and Ident	ny	There. Introduction	Init_IV	(ID Then).		08 Hrs					
Und	erstanding Co	mn	uter Forensics. In	roduction Historical Bac	ekground of Cyber	for	ensics Digital					
Fore	nsics Science.	The	Need for Compute	er Forensics. Cyber foren	sics and Digital E	vide	ence. Forensics					
Anal	ysis of E-Mai	l, I	Digital Forensics L	ife Cycle, Chain of Cu	stody Concept, N	etw	ork Forensics,					
Appi	oaching a Co	mp	uter Forensics Inv	vestigation, Setting up	a Computer Fore	nsic	s Laboratory:					
Unde	erstanding the F	Req	uirements, Compute	r Forensics and Steganog	raphy, Relevance of	of th	ne OSI 7 Layer					
Mod	el to Computer	·Fo	orensics, Forensics	and Social Networking	Sites: The Securit	y/Pı	rivacy Threats,					
Com	puter Forensics	fro	om Compliance Pers	spective, Challenges in Co	omputer Forensics,	Spe	ecial Tools and					
Tech	niques, Forensi	cs /	Auditing, Anti-fore	nsics.								
	Unit –V 07 Hrs											
Cybe	ercrime And C	yb	er Security: The Lo	egal Perspectives-Introdu	ction, Why Do We	Ne	ed Cyber laws:					
The	The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India,											
Digi	Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.											
Сош	rse Outcomes:	Af	er completing the	course, the students will	be able to							
CO1	: Interpret the	ba	sic concepts of cvbe	er security, cyber law and	their roles.							
CO2	: Articulate e	vid	ence collection and	legal challenges.								
CO3	: Discuss too	l su	pport for detection of	of various attacks.								
CO4	: Demonstrat	e th	rough use of proper	tools knowledge on the c	yber security, Cybe	rcri	me and					
	forensics											

forensics

RV College of Engineering® – Bengaluru - 59

Refere	ence Books :
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives, Sunit Belapure and Nina Godbole, , Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.
2	Introduction to information security and cyber laws, Dr. Surya Prakash Tripathi, Ritendra Goyal, Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.
3	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J. Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 -1-118 84965 -1
4	Cyber Forensics, Technical Publications, I. A. Dhotre, 1 st Edition, 2016, ISBN-13: 978- 9333211475

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	-	-	-	-	-	-	3	1	-	-	
CO2	1	2	-	2	2	-	-	2	2	3	1	2	
CO3	2	3	-	2	2	2	-	2	3	2	-	-	
CO4	3	2	3	2	3	1	-	2	3	2	1	1	

	Semester: VII									
	ROBOTICS AND AUTOMATION									
	(Group H – Global Elective)									
C	ourse Code	:	18G7H11		CIE	:	100 Marks			
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks			
Total Hours		:	39 L		SEE Duration	:	3.00 Hours			
C	ourse Learning Ob	ject	tives: The stude	nts will be able to						
1	Understand the co	nce	pts of robotics a	nd automation.						
2	Impart the knowle	dge	of robotic progr	ramming and robotic opera	tion control					
3	Selection and anal	ysis	s of robot config	uration and kinematics						
4	Importance of auto	oma	tion manufactur	ing techniques and process	ing industries					
5	Development of a	utor	nation system fo	or manufacturing and proce	ssing industries					

Unit-I	06 Hrs						
Introduction - Basics of kinematics, Anatomy of robot, Robot configuration, Robot joints, Se	nsors and						
drive system, Control modes, Specification of robots, Robot programming methods.							
Unit – II	09 Hrs						
Robot Kinematics - Position and orientation of objects, Objects coordinate frame, Rotation mat	rix, Euler						
angles roll, pitch and yaw angles coordinate transformations, Joint variables and position of end	l effector,						
Homogeneous transformation.							
D-H parameters and conventions, D-H matrix, Direct kinematic and inverse analysis of planar a	nd 3 DoF						
robots.							
Unit –III	10 Hrs						
Trajectory planning - Introduction, Path versus trajectory, Joint-space versus Cartes	sian-space						
descriptions, Basics of trajectory planning, Joint-space trajectory planning, Third-order and F	ifth-order						
polynomial trajectory planning.							
Automation in Production Systems - Manufacturing support systems, Automation principles and							
strategies, Levels of Automation, Production Concepts and Mathematical models, Numericals.							
Unit –IV	08 Hrs						
Machine Vision - Object recognition by features, Basic features used for object identification, I	Moments,						
Template matching, Discrete Fourier descriptors, Computed Tomography (CT), Depth measurer	ment with						
vision systems, Scene analysis versus mapping, Range detection and Depth analysis, Stereo	imaging,						
Scene analysis with shading and sizes, Specialized lighting, Image data compression, Intrafrar	ne spatial						
domain techniques, Interframe coding, Compression techniques, Colour images, Heuristics, Ap	plications						
of vision systems							
Unit –V	06 Hrs						
Flexible Manufacturing Systems - Introduction to FMS - concepts, integration in the data p	processing						
systems, FMS scheduling. Case studies.							
Material Handling systems - Conveyors - AGVs - industrial robots in material handling - A	utomated						
Storage and retrieval system.							
Distributed data processing in FMS - Database Management System and their applications in C.	AD/CAM						
and FMS – distributed systems in FMS - Integration of CAD and CAM							
Course Outcomes: After completing the course, the students will be able to							
CO1: Understand the characteristics and working principle of robots.							

CO2:	Apply the related mathematical model to formulate the kinematics and trajectory plannir	ig of
	industrial robot.	

CO3:	Analyse the machine vision for effective Flexible Manufacturing Systems.

CO4: Develop model and integrate drives for industrial robots and automation systems.

Refer	ence Books
1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3 rd Edition,
	New York, ISBN:006045931X
2	John J. Craig, "Introduction to Robotics", Pearson Education International, 3 rd Edition,
2	ISBN:109876543, 1-13-123629-6
2	Mikell P Groover, "Automation, Production Systems, and Computer-integrated Manufacturing",
3	Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2
4	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and Simulation",
4	CRC Press, 1987, ISBN 9780824777180

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	2	-	2
CO2	3	3	1	3	1	1	-	-	-	2	-	2
CO3	2	-	2	-	1	1	-	-	2	-	-	2
CO4	3	3	2	3	1	1	-	2	3	-	3	2

			Semester: VII								
Advanced course in Entrepreneurship											
	<u> </u>	((Group H: Global Electiv	e)	1	100 35 3					
Course Code	:	18G7H16		CIE	:	100 Marks					
Credits: L:T:P	Credits: L:1:P : : 100 T_4 LH 204 : 100										
101a1 HOURS : 39 L SEE DURATION : 3.00 HOURS Course Learning Objectives: The students will be able to											
1 A convirte addi	<u>g U</u>	of the sulada on	d abilla for developing and	ultr anataman tuaat	i	nto o noncotable					
business.	tion	ai knowledge an	d skins for developing ear	Try customer tract		nto a repeatable					
2 Learn the too service and b	ols a usin	and methods for a less models, build	achieving sustainable grow	th, such as by refi a sales and financ	ning ial pl	their product or					
3 Develop bran	d st	rategy and create	digital presence. Develop o	channel strategy fo	r cust	tomer outreach.					
4 Leverage so	cial	media to reach	new customers cost effect	tively, Develop s	strate	gies to increase					
revenues and	exp	and markets		J i	•	5					
L											
			Unit-I			07 Hrs					
Intro to building	g Pi	roducts & Value	e Proposition: Diagnose:	: Where are you to	day o	n the Product Life					
Cycle? Assess yo	bur	Start-up's attract	tiveness								
Competition &	tes	sting: Conduct a	Competition Analysis Id	lentify your Compo	etitive	e Advantage					
			Unit – II			06 Hrs					
Market Validat	tion	: Market validat	tion, Customer Usability Int	terviews, Analyzin	g Cus	stomer feedback					
Delivering Val	ue:	Enlist marketing	g channels, Identify partne	ers for your ventu	re, Ci	reate a Sales					
plan				•							
			Unit –III			07 Hrs					
Customer acqu	isit	ion & growth c	hannels: Types of Marke	eting Channels: 7	Farge	ting Blogs,					
Unconventional	PR	, Search Engine	Marketing, Search Engin	ne Optimization,	Socia	al ads, display ad					
and existing plat	for	ms, Email Market	ting, Viral Marketing, Affil	iate programs, M	agazi	ines, Newspaper,					
Radio and					•						
TV ads, Offline	Ad	s, Trade Shows									
		,	Unit –IV			10 Hrs					
Business mode	l: R	eiterate and Refine	e your Business Model Canv	as, Choose the righ	nt bus	iness model for					
your start-up			-	e							
Financial Plan	nin	g: Forecasting sa	ales and revenue projection	ons, Cash-flow st	atem	ent					
			Unit –V	,		09 Hrs					
Pitching: Create	yo	ur funding plan, B	Build your pitch deck and co	ompose your pitch		•					

Experiential Learning: Student teams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Develop strategies to increase revenues and expand markets, Explore licensing and franchising
	for business expansion.
CO2:	Leverage technologies and platforms for growth stage companies, Develop key metrics to track
	progress.
CO3:	Basics of registering a company, Understanding business regulations and compliances.
CO4:	Advanced concepts of business finance, Financial planning.

Refer	rence Books
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A.,
1	2012.
2	Entrepreneurship. Roy, R., 2012. Oxford University Press
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper
4	Perennial Modern Classics

-

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(M1, M2 and M3) +50(T) +20(M4) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

			Semester: VII				
		INT	RODUCTION TO ASTROPHYSIC	CS			
	(Group H: Global Elective)						
Course Code	:	18G7H13		CIE	:	100 Marks	
Credits: L: T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39 L	S	SEE Duration	: .	3.00 Hours	
Course Learning	Obj	jectives: The s	tudents will be able to				
1 Familiarize wit	h th	ne various celes	stial bodies and the laws governing th	eir behavior			
2 Understand the	fur	ndamental cond	epts of relativity and establish the rel	lation between li	ight a	and matter	
3 Study the meth	ods	used to identit	y and investigate the nature of differ	ent stellar bodie	5		
4 Determine the	cha	racteristic featu	ares of any star by understanding its s	pectral propertie	es		
5 Contemplate th	e co	omplex system	of the milky way galaxy and its com	ponents			
			Unit-I			07 Hrs	
Fundamental con	cep	ts in Astronor	ny:				
Origin of the Ur	nive	erse, Major co	onstituents of the universe, Cosmi	ic Microwave	Radi	ation (CMR)	
background, Geoc	enti	ric Universe,	Retrograde Motion of planets, Brie	f introduction 1	to th	e Copernican	
Revolution, Positio	ons	of the Celestia	l Sphere: Altitude-Azimuth Coordina	ate System, Equ	atori	al Coordinate	
System, Solar Syst	em,	Planets - laws	of motion of planets, inner planets, o	outer planets,			
			Unit – II			08 Hrs	
Theory of Special	Re	lativity:					
Galilean Transform	nati	ons, Failure of	Galilean Transformations, Lorentz	Fransformations	, Der	rivation, Time	
& Space in Specia	ıl R	elativity, Mon	entum & Energy in Relativity, Dop	pler Effect for 1	light	(Red & Blue	
Shift), The equival	enc	e principle, the	principle of minimal gravitational co	oupling, Schwar	zsch	ild spacetime,	
Past-Present-Future	e (L	ight Cone diag	gram).				
			Unit –III			08 Hrs	
Stellar Astrophys	ics:						
Blackbody radiation	on, (Connection be	tween Color and Temperature, Stella	ar Parallax, Mag	nituo	de Scale, Life	
cycle of stars (Bir	th,	Life & Death), Hertzsprung-Russel Diagram, Cla	ssification of B	inar	y Stars, Mass	
Determination usi	ng	Visual Binari	es, Eclipsing Spectroscopic Binarie	es, Formation of	of Sp	pectral Lines,	
Schrodinger's tim	e-de	ependent and	independent equations, Boltzmann-	-Saha Equation	, Ch	andrashekar's	
Limit, black holes	(qu	alitatively).				1	
			Unit –IV			08 Hrs	
Light and Matter	:						
Dispersion of lig	,ht	(Prism & G	rating), Spectral Lines, de-Brogli	e's Wavelength	and	d Frequency,	
Heisenberg's Unce	Heisenberg's Uncertainty Principle, Broadening of Spectral lines						
Spectral Characte	eriz	ation of Stars					
Description of the	Description of the Radiation Field, Stellar Opacity, Transfer Equation, Profile of Spectral Lines, Optical						
I elescopes, Radio	Tel	escopes (Case	Studies)			0.0 11	
			Unit –V			U8 Hrs	
Galaxy Astronom	y:						
The Milky way C	ala	xy, Counting	the Stars, Historical Models, Differ	rential & Integr	ated	Star Counts,	

Extrasolar planets, Methods of detection of extrasolar planets, Distance to the Galactic Centre, Galactic Coordinate System, Classification of Galaxies, Introduction to Elliptical galaxies, Irregular galaxies, Dwarf galaxies.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Contemplate the nature of our universe by identifying and studying the behavior of celestial					
	bodies.					
CO2:	Explain the usefulness of the theory of relativity, light and matter in establishing the fundamental					
	behavior of stellar bodies.					
CO3:	Utilize various techniques to discover the components of our universe and conclude their					
	celestial properties.					
CO4:	Interpret the spectral properties of any astronomical body to illustrate its properties.					
CO5:	Inspect the milky way galaxy to identify the proponents and their characteristic features.					

Refere	ence Books
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2 nd
1	Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press, ISBN-
2	9780521016278.
	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-
3	0935702057.
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-0387949437.
5	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st
5	Edition, 1983, Wiley, ISBN: 9780471873167.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 20.

Total CIE is 30(Q) +50(T) +20(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	-	1	-	-	2
CO2	3	2	2	2	-	-	1	-	1	-	-	2
CO3	2	3	1	2	2	1	1	-	2	1	-	2
CO4	3	3	1	2	2	1	2	-	3	3	-	2

	Semester: VII						
	MATERIALS FOR ADVANCED TECHNOLOGY AND SPECTROSCOPIC						
				CHARACTERIZATION			
				(Group H: Global Elective)			
Co	ourse Code	:	18G7H14	CIE	:		100 Marks
Cı	redits: L:T:P	:	3:0:0	SEE	:		100 Marks
To	otal Hours	: 40 L		SEE Durat	ion :		3.00 Hours
Co	ourse Learning	; O]	bjectives: Th	e students will be able to			
1	Apply the bas	ic c	concepts of C	hemistry to develop futuristic materials for	high-tec	h a	applications in the
	area of Engine	eeri	ng.				
2	2 Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems						
	in engineering field.						
3	3 Develop analytical capabilities of students so that they can characterize, transform and use materials						
	in engineering and apply knowledge gained in solving related engineering problems.						

Unit-I

Coating and packaging materials	
Surface Coating materials:	
Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chlorid	e & its
copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.	
Properties required in a pigment and extenders.	
Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, molybdate o	orange,
chrome green, ultramarine blue, iron blue, cadmium red.	
Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pig	gments,
metal flake pigments, extenders.	
Developments in new polymers such as dendrimers, biopolymers & biodegradable polymers.	
Packaging materials:	
Food products: Cellulosic and Polymeric packaging materials and their properties - including	barrier
properties, strength properties, optical properties. Glass, aluminum, tin, paper, plastics, composites.	
Pharmaceutical products: Injectables and tablet packaging materials.	
Unit – II 0)8 Hrs

Adhesives

Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One-part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.

Unit –III

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication. -Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes.

08 Hrs

08 Hrs

Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

NMR spectroscopy:

Unit –V

Unit –IV

08 Hrs

in

08 Hrs

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent –magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Course Outcomes: After completing the course, the students will be able to

CO1:	Identify sustainable engineering materials and understand their properties.
CO2:	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications
	different areas of engineering.
CO3:	Analyze and evaluate the specific application of materials.

CO4: Design the route for synthesis of material and its characterization.

1		
	Reference	Books

110101	
1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38th Editon, Tata McGraw-Hill
1	Publishing Company Limited-2015, ISBN: 9780074517963
	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-
2	4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
	Spectroscopy of organic compounds by P.S.Kalsi, New Age International (P) ltd, Publisher, 2005,
3	ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill Publishing
4	Company Limited, 1996, ISBN :0074622382 9780074622384.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	2	2	-	-	1	-	-
CO3	-	3	-	2	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	1	1	-	-	-	-	1

	Semester: VII							
	APPLIED PSYCHOLOGY FOR ENGINEERS							
(Group H: Global Elective)								
Course	e Code	:	18G7H15	CIE	:	100 Marks		
Credit	s: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total l	Hours	:	39 L	SEE Duration	:	3.00 Hours		
Course	e Learning ()bje	ectives: The stu	adents will be able to				
1	To apprecia	ite l	human behavio	or and human mind in the context of learner's ir	nmedi	iate society and		
	environmer	nt.						
2	To understa	and	the importance	e of lifelong learning and personal flexibility to	susta	in personal and		
	Professiona	l de	evelopment as t	the nature of work evolves.				
3	To provide	sti	udents with ki	nowledge and skills for building firm founda	tion f	or the suitable		
	engineering	g pro	Diessions.		1	:-1		
4	To prepare	stu(an conculting	on as effective Engineering Psychologists in an in	laustr	1a1,		
5	To enable a	tud	ents to use psy	ngamzauon. chological knowledge, skills, and values in occu	nation	nal nurquite in a		
5	variety of s	ettii	as that meet n	ersonal goals and societal needs	patioi	lai puisulis ili a		
	vullety of 5	ettin	igs that meet p	ersonar gouis and societar needs.				
				Unit-I		07 Hrs		
Introd	uction to Psy	ych	ology: Definit	tion and goals of Psychology: Role of a Psycho	logist	in the Society:		
Today'	s Perspective	es (Branches of p	sychology). Psychodynamic, Behavioristic, Co	gnitiv	ve, Humanistic,		
Psycho	logical Resea	irch	and Methods	to study Human Behavior: Experimental, Obser	vatior	n, Questionnaire		
and Cli	nical Method	l.				1		
				Unit – II		09 Hrs		
Intellig	ence and A	ptit	ude: Concept	and definition of Intelligence and Aptitude, N	ature	of Intelligence.		
Theorie	es of Intellig	enc	e – Spearman,	Thurston, Guilford Vernon. Characteristics of	In	telligence tests,		
I ypes	of tests. Me	asu	Creater of Inte	elligence and Aptitude, Concept of IQ, Meas	ureme	ent of Multiple		
Intellig	ence – Fluid	and	Crystamzed II	Unit III		00 11.		
Dorson	ality: Conce	nt r	nd definition	of personality Approaches of personality psy	choor			
Cultura	1 Interpersor	pra 1 al a	and developme	ntal Humanistic Behaviorist Trait and type and	roact	nes Assessment		
of Per	sonality: Sel	f-	report measur	es of Personality. Questionnaires. Rating So	ales	and Projective		
techniq	ues, its Char	acte	eristics, advant	ages & limitations, examples. Behavioral Asses	sment	t. Psychological		
Stress:	a. Stress- D	efir	ition, Sympton	ms of Stress, Extreme products of stress v s l	Burno	ut, Work Place		
Trauma	a. Causes of	S	tress – Job re	elated causes of stress. Sources of Frustrat	ion, 1	Stress and Job		
Perform	nance, Stress	Vu	Inerability-Stre	ess threshold, perceived control				
				Unit –IV		07 Hrs		
Applic	ation of Psy	cho	logy in Work	ing Environment: The present scenario of inf	ormat	ion technology,		
the role	the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in							
the fie	the field of Information Technology. Distance learning, Psychological consequences of recent							
developments in Information Technology. Type A and Type B Psychological Counseling - Need for								
Counse	ling, Types –	- D1	rectea, Non- D	irected, Participative Counseling.		07 11		
Logmi	Unit –V 07 Hrs							
the pro	ng: Definitio	on, ' act:	on Discrimina	- Classical Conditioning, Basics of Classical C	SUDILI SULT	oning (Paviov),		
hasics	of operant of	ncu	itioning Sched	hules of reinforcement Cognitive Social and	(SKI) Sacha	es to learning		
		anu.	vational Learni	ng Trial and Error Method Insightful Learning	Jacin			

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the application of psychology in engineering and technology and develop a route to
	accomplish goals in their work environment.
CO2:	Define learning and compare and contrast the factors that cognitive, behavioral, and
	Humanistic theorists believe influence the learning process.
CO3:	Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting
	in their enhancement and apply effective strategies for self-management and self-improvement.
CO4:	Apply the theories into their own and others' lives in order to better understand their personalities
	and experiences.

Reference Books						
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India					
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.					
3	3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN – $81-317 - 1132 - 3$					
4	4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5					

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII							
Advanced course in Entrepreneurship								
(Group H: Global Elective)								
Course Code		18G7H16		CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours : 39 L SEE Duration				:	3.00 Hours			
Course Learning Objectives: The students will be able to								
Acquire additional knowledge and skills for developing early customer traction into a repeatable business.								
2 Learn the too service and b	2 Learn the tools and methods for achieving sustainable growth, such as by refining their product or service and business models, building brand strategy, making a sales and financial plan							
3 Develop brar	3 Develop brand strategy and create digital presence. Develop channel strategy for customer outreach.							
4 Leverage so	cial	media to reach	new customers cost effect	ctively, develop s	trateg	gies to increase		
revenues and	exp	and markets		J J				
L								
			Unit-I			07 Hrs		
Intro to buildin	g Pi	roducts & Value	e Proposition: Diagnose:	Where are you to	day o	n the Product Life		
Cycle? Assess y	our	Start-up's attract	tiveness	•	•			
Competition &	tes	ting: Conduct a	Competition Analysis Id	lentify your Compe	etitive	e Advantage		
Unit – II 06 Hrs								
Market Valida	tion	: Market validat	tion, Customer Usability Int	terviews, Analyzin	g Cus	stomer feedback		
Delivering Val	ue:	Enlist marketing	g channels, Identify partne	ers for your ventu	re, Cı	reate a Sales		
plan								
Unit –III 07 Hrs								
Customer acqu	iisit	ion & growth c	hannels: Types of Marke	eting Channels: 7	Targe	ting Blogs,		
Unconventional PR, Search Engine Marketing, Search Engine Optimization, Social ads, display ad								
and existing platforms, Email Marketing, Viral Marketing, Affiliate programs, Magazines, Newspaper,								
Radio and								
TV ads, Offline Ads, Trade Shows								
Unit –IV 10 Hrs								
Business model: Reiterate and Refine your Business Model Canvas, Choose the right business model for								
vour start-up								
Financial Planning: Forecasting sales and revenue projections. Cash-flow statement								
Unit –V 09 Hrs								
Pitching: Create	e yoi	ur funding plan. B	Build your pitch deck and co	ompose your pitch.				

Experiential Learning: Student teams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Course Outcomes: After completing the course, the students will be able to						
CO1:	Develop strategies to increase revenues and expand markets, Explore licensing and franchising					
	for business expansion.					
CO2:	Leverage technologies and platforms for growth stage companies, Develop key metrics to track					
	progress.					
CO3:	Basics of registering a company, Understanding business regulations and compliances.					
CO4:	Advanced concepts of business finance, Financial planning.					
Refer	Reference Books					
-------	---	--	--	--	--	--
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.					
2	Entrepreneurship. Roy, R., 2012. Oxford University Press					
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International					
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial					
4	Modern Classics					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(M1, M2 and M3) +50(T) +20(M4) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester VIII						
	MAJOR PROJECT						
Co	Course Code:18MEP81CIE:100 Marks						
Credits: L:T:P :		:	0:0:16		SEE	:	100 Marks
Total Hours		:	32		SEE Duration	:	3.00 Hours
Co	Course Learning Objectives: The students will be able to						
1.	Acquire the ab	ility	to make links across of	different areas of knowle	edge and to generate, o	levelo	p and evaluate
	ideas and information so as to apply these skills to the project task.						
2.	2. Acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific						
	audience in both written and oral forms.						
3.	3. Acquire collaborative skills through working in a team to achieve common goals.						
4.	4. Self-learn, reflect on their learning and take appropriate action to improve it.						
5.	5. Prepare schedules and budgets and keep track of the progress and expenditure.						

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- > Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution.
- The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- > The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's* (Centre of *Excellence*) identified by the college or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in **NPTEL** from the discipline of **Humanities and Social Sciences**, **Management**, **Multidisciplinary and Design Engineering**. The course chosen could be either of 4w/8w/12w duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. **The same will be considered as one of the components during project evaluation of phase 2 and phase 5.**

Project Evaluation:

- > Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.

RV College of Engineering – Bengaluru – 59

- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➢ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Course Outcomes of Major Project:

Cours	e outcomes of Mujor Projecti
CO1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain
	problems.
CO2	Design, develop, present and document innovative/multidisciplinary modules for a complete engineering
	system.
CO3	Use modern engineering tools, software and equipment to solve problem and engage in life-long learning
	to follow technological developments.
CO4	Function effectively as an individual, or leader in diverse teams, with the understanding of professional
	ethics and responsibilities.

CIE Assessment:

The following are the weightings given for the various stages of the project.

1. Selection of the topic and formulation of objectives	10%
2. Design and Development of Project methodology	25%
3. Execution of Project	25%
4. Presentation, Demonstration and Results Discussion	30%
5. Report Writing & Publication	10%
SEE Assessment:	

The following are the weightages given during Viva Examination.
1. Written presentation of synopsis 10%
2. Presentation/Demonstration of the project

2.	Presentation/Demonstration of the project		30%
3.	Methodology and Experimental Results & Discussion	30%	
4.	Report		10%
5.	Viva Voce		20%

Calendar of Events for the Project Work:

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th	Finalization of project and guide allotment
Semester	
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being carried out
	in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by
	Department project Committee and guide for internal assessment. Finalization of
	CIE.

Scheme of Evaluation for Cl	Έ	Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks	
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%	
Project Evaluation II	25%	Project Demo / Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

Evaluation Scheme for CIE and SEE

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

RV College of Engineering – Bengaluru – 59

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.