

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.,) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

MECHANICAL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.,) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

DEPARTMENT OF MECHANICAL ENGINEERING

Mechanical Engineering

DEPARTMENT VISION

Quality Education in Design, Materials, Thermal and Manufacturing with emphasis on Research, Sustainable technologies and Entrepreneurship for Societal Symbiosis.

DEPARTMENT MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering
- Providing state-of-art laboratories and infrastructure for academics and research
- Facilitating faculty development through continuous improvement programs
- Promoting research, education and training in frontier areas of nanotechnology, advanced composites, surface technologies, MEMS and sustainable technology
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Successful professional careers with sound fundamental knowledge in Mathematics, Physical Sciences and Mechanical Engineering leading to leadership, entrepreneurship or pursuing higher education.
- **PEO2.** Expertise in specialized areas of Mechanical Engineering such as Materials, Design, Manufacturing and Thermal Engineering with a focus on research and innovation.
- **PEO3.** Ability of problem solving by adopting analytical, numerical and experimental skills with awareness of societal impact.
- **PEO4.** Sound communication skills, team working ability, professional ethics and zeal for life-long learning.

PSO	Description
PSO1	Demonstrate basic knowledge in Mathematics, basic science, Materials Science and
	Engineering to formulate and solve mechanical engineering problems
PSO2	Design mechanical and thermal systems by adopting numerical, analytical and
	experimental techniques and analyse the results.
PSO3	Function in multidisciplinary teams with sound communication skills.
PSO4	Self-learn to acquire and apply allied knowledge and update the same by engaging in life-
	long learning, practice profession with ethics and promote entrepreneurship.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Lead Society: American Society of Mechanical Engineers – ASME

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

V Semester						
Sl. No.	Course Code	Course Title	Page No.			
1.	18HEM51	Introduction to Management and Economics	1			
2.	18ME52	CAD /CAM (Theory and Practice)	3			
3.	18ME53	Heat Transfer (Theory and Practice)	6			
4.	18ME54	Design of Machine Elements-I (Theory and Practice)	9			
5.	18ME5AX	Elective A: *	12-20			
6.	18G5BXX	Elective B: **	GE-B1-B38			

VI Semester						
Sl. No.	Course Code	Course Title	Page No.			
1.	18HSI61	Intellectual Property Rights & Entrepreneurship	21			
2.	18ME62	Turbo Machinery	24			
3.	18ME63	Design of Machine Elements-II	27			
4.	18ME64	Minor Project*	30			
5.	18ME6CX	Elective C (PE)	32-42			
6.	18ME6DX	Elective D (PE)	43-52			
7.	18G6EXX	Elective E **	GE-E1-E35			
8.	18HS68	Professional Practice- II (Employability skills and Professional development of Engineers)	53			

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) MECHANICAL ENGINEERING

FIFTH SEMESTER CREDIT SCHEME								
SI No	Course Code	Course Title	BoS	Credit Allocation			Total	
51.110	Course Coue	Course The	DUS	L	Т	Р	Credits	
1.	18HEM51	Introduction to Management and Economics	HSS	3	0	0	3	
2.	18ME52	CAD /CAM (Theory and Practice)	ME	3	1	1	5	
3.	18ME53	Heat Transfer (Theory and Practice)	ME	3	1	1	5	
4.	18ME54	Design of Machine Elements-I (Theory and Practice)	ME	3	1	1	5	
5.	18ME5AX	Elective A: *	ME	3	0	0	3	
6.	6. 18G5BXX Elective B: ** Respective Dept.				0	0	3	
	Total Number of Credits					3	24	
		Total number of Hours/Week		18	6	6	30	

GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)						
Sl. No.	Course Code	Course Title	Duration			
1.	18ME5A1	Financial Accounting	12 Weeks			
2.	18IM5A2	Decision Support System for Managers	12 Weeks			
3.	18ME5A3	Managerial Economics	12 Weeks			
4.	18ME5A4	Rapid Manufacturing	12 Weeks			
5.	18CS5A5	The Joy of Computing using PYTHON	12 Weeks			

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) MECHANICAL ENGINEERING

SIXTH SEMESTER CREDIT SCHEME							
SI.	Course Code		Daf	Cre	cation	Total	
No.	Course Code	Course Thie	B02	L	Т	Р	Credits
1.	18HSI61	Intellectual Property Rights & Entrepreneurship	HSS	3	0	0	3
2.	18ME62	Turbo Machinery	ME	3	1	1	5
3.	18ME63	Design of Machine Elements-II	ME	3	0	1	4
4.	18ME64	Minor Project*	ME	0	0	2	2
5.	18ME6CX	Elective C (PE)	ME	3	0	0	3
6.	18ME6DX	Elective D (PE)	ME	3	0	0	3
7.	18G6EXX	Elective E **	Respective BOS	3	0	0	3
8.	18HS68	Professional Practice- II (Employability skills and Professional development of Engineers)	HSS	0	0	1	1
	Total Number of Credits					5	24
		Total number of Hours/Week		18	2	10	30

GROUP C: PROFESSIONAL ELECTIVES						
Sl. No.	Course Code	Course Title	Credits			
1.	18CS6C1	Internet of Things	03			
2.	18ME6C2	Gas Dynamics and Combustion	03			
3.	18ME6C3	Foundation of Mechatronics	03			
4.	18ME6C4	Advanced Mechanism Design	03			
5.	18ME6C5	Advanced Manufacturing Processes	03			

GROUP D: PROFESSIONAL ELECTIVES						
Sl. No.	Course Code	Course Title	Credits			
1.	18CS6D1	Machine Learning	03			
2.	18ME6D2	Refrigeration and Air-Conditioning	03			
3.	18ME6D3	Hydraulics and Pneumatics	03			
4.	18ME6D4	Product Design and Development	03			
5.	18ME6D5	Vehicle Dynamics	03			

	V Semester						
	GROUP B: GLOBAL ELECTIVE						
Sl.	Dept	Course	Course Title	Credits			
No.		Code					
			Courses offered by the Departments				
1.	AS	18G5B01	Fundamentals of Aerospace Engineering	03			
2.	BT	18G5B02	Nanotechnology	03			
3.	CH	18G5B03	Fuel Cell Technology	03			
4.	CS	18G5B04	Intelligent Systems	03			
5.	CV	18G5B05	Remote Sensing and Geographic Information System	03			
6.	EC	18G5B06	Automotive Electronics	03			
7.	EE	18G5B07	E-Mobility	03			
8.	EI	18G5B08	Smart Sensors & Instrumentation	03			
9.	IM	18G5B09	Operations Research	03			
10.	IS	18G5B10	Management Information Systems	03			
11.	ME	18G5B11	Automotive Mechatronics	03			
12.	TE	18G5B12	Telecommunication Systems	03			
		(Courses offered by Science Departments and HSS Board				
13.	PY	18G5B13	Quantum Mechanics of Hetero/Nano Structures	03			
14.	PY	18G5B14	Thin Films and Nanotechnology	03			
15.	CY	18G5B15	Advances in Corrosion Science and Technology	03			
16.	MA	18G5B16	Computational Advanced Numerical Methods	03			
17.	MA	18G5B17	Mathematics for Machine Learning	03			
18.	HSS	18G5B18	Engineering Economy	03			

	VI Semester					
	GROUP E: GLOBAL ELECTIVE					
Sl.	Dept	Course	Course Title	Credits		
No.	-	Code				
			Courses offered by the Departments			
1.	AS	18G6E01	Aircraft Systems	03		
2.	BT	18G6E02	Bio-inspired Engineering	03		
3.	CH	18G6E03	Sustainable Technology	03		
4.	CS	18G6E04	Graph Theory	03		
5.	CV	18G6E05	Disaster Management	03		
6.	EC	18G6E06	Wearable Electronics	03		
7.	EE	18G6E07	Energy Auditing and Management	03		
8.	EI	18G6E08	Virtual Instrumentation & Applications	03		
9.	IM	18G6E09	Systems Engineering	03		
10.	IS	18G6E10	Introduction to Mobile Application Development	03		
11.	ME	18G6E11	Industrial Automation	03		
12.	TE	18G6E12	Mobile Network System and Standards	03		
		(Courses offered by Science Departments and HSS Board			
13.	PY	18G6E13	Thin Film Nanodevice Fabrication Technology	03		
14.	CY	18G6E14	Chemistry of Advanced Energy Storage Devices for E-Mobility	03		
15.	MA	18G6E15	Advanced Statistical Methods	03		
16.	MA	18G6E16	Mathematical Modelling	03		
17.	HSS	18G6E17	Foundational Course in Entrepreneurship	03		

	Semester: V						
]	IN]	FRODUCTION TO M	IANAGEMENT	& ECONOMICS		
			[]	(THEORY)			
Co	urse Code	:	18HEM51		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		Hours : 39L SEE Durat		SEE Duration	:	03 Hrs	
Co	urse Learning O	bje	ectives: The students wi	ill be able to			
1	Understand	the	evolution of manageme	ent thought.			
2	Acquire kno	wl	edge of the functions of	Management.			
3	3 Gain basic knowledge of essentials of Micro economics and Macroeconomics.						
4	Understand	the	concepts of macroecon	nomics relevant to	different organizatio	nal	contexts.

Unit-I	07 Hrs
Introduction to Management: Management Functions, Roles & Skills, Management H	History –
Classical Approach: Scientific Management & Administrative Theory, Quantitative A	pproach:
Operations Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: Sy	ystems &
Contingency Theory. Case studies	
Unit – II	09 Hrs
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	Strategic
Management Process, Corporate & Competitive Strategies. Case studies	•
Organizational Structure & Design: Overview of Designing Organizational Structur	e: Work
Specialization, Departmentalization, Chain of Command, Span of Control, Centraliz	ation &
Decentralization, Formalization, Mechanistic & Organic Structures. Case studies	
Unit –III	09 Hrs
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	Theory,
McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary The	eories of
Motivation: Adam's Equity & Vroom's Expectancy Theory, Case studies	
Managers as Leaders: Behavioral Theories: Ohio State & University of Michigan Studies,	Blake &
Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Si	ituational
Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadersh	nip, Case
studies	
Unit –IV	07 Hrs
Introduction to Economics: Importance of Economics, Microeconomics and Macroeconomics	onomics,
Theories and Models to Understand Economic Issues, An Overview of Economic Systems.	Demand,
Supply, and Equilibrium in Markets for Goods and Services, Price Elasticity of Demand a	and Price
Elasticity of Supply, Elasticity and Pricing, Changes in Income and Prices Affecting Cons	sumption
Choices, Monopolistic Competition, Oligopoly.	
Unit –V	07Hrs
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic produc	ct (GDP),
Components of GDP, The Labor Market, Money and banks, Interest rate, Macroeconomic me	odels- an
overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The	AS-AD-
model, The complete Keynesian model, The neo-classical synthesis, Exchange rate determinated	ation and
the Mundell-Fleming model.	
Reference Books	

Refe	erence Books
1	Stephen Robbins, Mary Coulter & Neharika Vohra, Management, Pearson Education
	Publications, 10th Edition, ISBN: 978-81-317-2720-1.
2	James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, ISBN: 81-
	203-0981-2.
3	Steven A. Greenlaw, David Shapiro, Principles of Microeconomics, 2 nd Edition, ISBN:978-1-
	947172-34-0

4	Dwivedi. D.N, Macroeconomics: Theory and Policy, McGraw Hill Education; 3 rd Edition, 2010, ISBN-13: 978-0070091450.
5	Peter Jochumzen, Essentials of Macroeconomics, e-book (www.bookboon.com), 1st Edition.,
	2010 ISBN:978-87-7681-558-5

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Explain the principles of management theory & recognize the characteristics of an organization.
CO2:	Demonstrate the importance of key performance areas in strategic management and design
	appropriate organizational structures and possess an ability to conceive various organizational
	dynamics.
CO3:	Select & Implement the right leadership practices in organizations that would enable systems
	orientation.
CO4 :	Understand the basic concepts and principles of Micro economics and Macroeconomics.

Continuous Internal Evaluation (CIE);

Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **50% weightage should be given to case studies.**

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	-	1	-	-	3	-	3	3	3	3	3
CO2	3	2	-	-	-	-	-	1	2	3	2	2
CO3	-	-	1	-	-	2	-	2	2	3	3	3
CO4	2	-	2	-	-	3	1	3	2	2	3	3

	Semester: V							
	CAD /CAM							
			(Theor	y & Practice)				
Cour	Course Code : 18ME52 CIE : 100 + 50 Marks							
Credits: L:T:P			3:1:1	SEE	:	100 + 50 Marks		
Total Hours : 39L + 26T + 32.5P SEE Duration : 03 + 03 Hours					03 + 03 Hours			
Cour	se Learning	Obj	ectives: The students will	be able to				
1	Provide bas	sic f	oundation in computer aid	led design / manufacturing				
2	Understand	l the	fundamentals to create an	nd manipulate geometric mo	odels			
3	Get acquain	nted	with the basic CAD softw	vare designed for geometric	mod	leling		
4	Learn work	ting	principles of NC machine	s CNC control and part pro	gran	nming		
5	Develop ex	pert	ise in G&M and APT prog	gramming				

Unit-I	06 Hrs
Fundamentals: CAD/CAM, Product life cycle, Production, Plant layout, Automation	, Role of
computers in Industrial Manufacturing, Benefits of CAD/CAM. Introduction to product data	a standards
and data structures. CAD/CAM Software: Graphics software, Application software, Evaluation	on criteria.
Interactive computer graphics: Coordinate systems, Windowing, Clipping- Cohen	Sutherland
algorithm, Sutherland - Hodgeman algorithm. Basics of Geometric Modelling: Req	uirements,
Wireframe and Solid modelling. Geometric Construction Methods, Modelling Facilitie	s Desired.
Computer-Aided drafting: Drafting Set-up, drawing structure, Basic Geometric Command	ds, display
control commands, Editing a drawing, Dimensioning.	

Unit-II 10 Hrs Introduction to CNC and DNC Machine Tools: Elements of CNC and DNC with block diagram. P. L, and C- type CNC control systems. Types of DNC systems. Differences, Advantages and limitations of CNC and DNC. Basics of CNC machine tools: coordinate system, Axes designation of different machine tools namely turning, milling, turn mill centres. Reference points. Automatic tool changer. CNC Machine Tools – Structure: Machine tool structure, Spindle bearings, Guideways, Transmission system, Recirculating ball screws, Layout of modern CNC machine- operator interface. CNC tooling, Tool pre-setters and ISO coding for holders and inserts. NC/CNC programming: Coding systems, Types of codes, Preparatory and Miscellaneous codes, Introduction to ISO based G & M codes for NC part programming, Absolute and incremental programming

Unit-III

10 Hrs NC/CNC programming: Basic of turning center programming Single pass (G90, G92, G94) and multipass (G71 to G76) canned cycles in turning. Typical programming exercises. Basic of machining centre programming, Concepts cutter radius compensations (G40 to G42), Tool length compensation (G43) and Sub programming. Drilling Canned Cycles in Machining Centre (G80 to G86). Typical programming exercises.

Macro programming: Defining and calling macros, types of variables. Variable declaration, usage of variables, local variables, assigning local variables, simple and modal macro calls, input range of variables, Macro functions – Arithmetic, trigonometric, rounding, logical. Branches and loops – IF, WHILE- Conditional and unconditional branching. Simple programming exercises.

Unit-IV	07 Hrs
Homogeneous Transformations of 2D and 3D Geometry (Numerical Problems): T	ranslation,
Scaling, Rotation, Reflection. Concatenation of transformations, Rotation and scaling about	ıt arbitrary
point, Reflection about arbitrary line and Mathematics of projections (Numerical	Problems):
Introduction, Parallel and non-parallel projections, orthographic, Isometric projections, one	point and
two-point perspective projections.	
Unit-V	06 Hrs

CAD Modelling and Data Processing for RP: CAD model preparation, Data Requirements, Data formats (STL, SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP), Data interfacing, Part orientation and support generation, Support structure design, Model Slicing and contour data organization, direct and adaptive slicing, Tool path generation.

PART- B CAD/CAM LABORATORY

Section I

15 Hrs

17.5 Hrs

Simulation of part programming for turning operations using canned cycles (Facing, Plane turning, Grooving, Thread cutting, Peck drilling, Boring and combination)

Section II

Simulation of part programming for milling and drilling operations (Profile milling with and without sub program, Slab milling, Circular pocket, Rectangular pocket, Scaling, Mirroring, Rotation, Peck drilling, Deep hole drilling on bolt circle, datum shift and combination) Development of one model using 3D printing machine.

Cours	Course Outcomes: After completing the course, the students will be able to					
1	Acquire knowledge of representation and transformation techniques to create programming					
	codes that generate and transform geometric entities.					
2	Analyse the constructions, structure and programming concepts for computer integrated					
	turning and machining centers.					
3	Apply the concepts of machining for the purpose of selection of appropriate machining					
	parameters and cutting tools for CNC milling and turning.					
4	Develop Manual part programs and APT programs for 2D complex profiles and validate					
	manual NC part program data using standard commercial CAM package.					

Refere	ence Books
1.	Chennakesava R. Alavala, CAD/CAM: Concepts and Applications, Published by PHI, 2008,
	ISBN 10: 8120333403 / ISBN 13: 9788120333406.
2.	P N Rao, CAD/CAM, 3rd Edition, 2010, Tata McGraw Hill Publication, ISBN: 978-0-07-
	068193-4.
3.	Mikell P Groover, Emory W. Zimmers Jr, CAD/CAM, 2nd Edition, 2003, Pearson Education
	Inc., ISBN:81-7758-416-2.

Continuous Internal Evaluation (CIE);

Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average marks (AM) over a number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab is rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM)+10(T)+1(IE_ = 50 Marks

Semester End Evaluation (SEE);

Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

Scheme of the semester, End examination (SEE);

Practice Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks: Total SEE for the laboratory is 50 marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	-	2	-	1	-	1	-	-	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-
CO3	-	2	3	2	-	-	-	1	-	-	-	-
CO4	1	-	2	-	3	-	-	-	2	-	-	-

Semester End Evaluation (SEE) Theory (100 Marks) + Practical (50 Marks) Total: 150 Marks

	Semester · V									
			HEA	T TRASFER						
	(Theory & Practice)									
Cou	se Code	:	18ME53	CIE		:	100 + 5	0 Marks		
Cred	lits: L:T:P	:	3:1:1	SEE		:	100 + 50	0 Marks		
Tota	l Hours	:	39L + 26T + 32.5P	SEE Durati	on	:	03 + 03	Hours		
Cour	se Learning	Obj	ectives: The students wi	ll be able to			•			
1	Understand c	cond	luction, convection and r	adiations mode heat tran	sfer					
2	2 Compute heat transfer by conduction, convection and radiation									
3	Develop heat	t tra	nsfer models for simple	systems						
4	Estimate per	forn	nance of heat exchangers	5						
5	Describe the	pro	cess of boiling and cond	ensation						
6	Explain the p	orino	ciples of mass diffusion							
			Unit-I					07 Hrs		
Stea	dy state heat o	cond	luction							
Mod	es of heat trai	nsfe	r: Basic laws governing	ng conduction, convecti	on a	and	radiation	heat transfer,		
Ther	mal conductiv	ity;	Convective heat transfe	r co-efficient; Boundary	v con	ndit	ions - I, I	II and III kind,		
Gene	ral 3 – dimens	iona	I heat conduction equation	on in Cartesian co-ordina	tes S	Stea	ady state h	neat conduction		
in pl	ane wall and	mu	ltilayer walls, Thermal	contact resistance, dis	cuss	ion	on 3-D	conduction in		
cylin	drical and sph	erica	al coordinate systems (N	o derivation), plane and	mul	tila	yer Cylin	ders, plane and		
multi	layer Spheres,	Ov	erall heat transfer coeffic	cient, Critical radius of in	nsula	atio	n	•		
			Unit-II					10 Hrs		
Gove Gove	ctransfer from erning equation etion of fins. pr	n m ns, roble	solutions for different	boundary conditions, fi	n ef	fici	ency and	effectiveness,		
Tran	sient Heat Ĉo	ondu	iction:							
Lum	ped system and	alysi	is, transient heat conduct	ion in large plane walls,	long	g cy	linders, u	se of charts		
for T	ransient heat c	ond	uction in semi and infini	te solids. Numerical pro	blem	ıs				
			Unit-II	I				10 Hrs		
Natu	ral Convectio	on:								
Phys Gene	ical mechanisi ral expression	m o s fo	f convection, classification for the second structure of the second structure	ion of fluid flow, conce ag force; thermal bounda	pts o ary la	of v aye	velocity b r, general	oundary layer; expression for		
local	heat transfer	co	efficient, Average heat	t transfer coefficient P	hysi	cal	mechani	sm of natural		
conv	ection, dimens	iona	l analysis, natural conve	ction over surfaces - Ver	tical	pla	tes, cylin	ders, horizontal		
and i	nclined plates.	Nu	merical problems							
Forc	ed Convection	n:			_					
Dime	ensional analys	sis, I	Physical significance of F	Reynolds, Prandtl, Nusse	lt and	d St	tanton nui	nbers. <u>External</u>		
forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres;										
Inter	nal forced con	vect	ion: Laminar and turbule	ent flow in tubes with en	try le	eng	th concep	ots. Problems		
			Unit-IV	1				06 Hrs		
Radi	ation Heat Tr	ans	fer:							
Thermal radiation, Laws of radiation, Black body radiation, Radiation intensity, View factor and its										
relations, Black Surfaces and grey surfaces, Radiation shields and the radiation effect, Problems										
	UNIT-V 06 Hrs									
Heat	Exchangers:		.							
Туре	s of heat excha	inge	rs, overall heat transfer c	o-efficient, Log Mean To	empe	erat	ure Diffe	rence; Analysis		
of he	at exchangers	(par	allel, counter, cross and	shell and tube), fouling a	nd f	oul	ing factor	, effectiveness,		
NTU	NTU method, Problems									

PART – B- LABORATORY

HEAT TRANSFER LABORATORY

SECTION - I

15 Hrs

- 1. Determination of thermal conductivity of metal rod
- 2. Determination of thermal conductivity of insulating powder
- 3. Determination of Stefan Boltzmann constant
- 4. Determination of emissivity of a surface

SECTION – II

17.5 Hrs

- 1. Determination of heat transfer co-efficient in free convection for vertical cylinder
- 2. Determination of heat transfer co-efficient in forced convection flow through a circular pipe
- 3. Determination of heat transfer co-efficient in forced and free convection for pin –fin equipment.
- 4. Determination of overall heat transfer co-efficient and effectiveness in parallel flow and counter flow heat exchanger
- 5. Performance test on a Vapor Compression Air-Conditioner

Course	Outcomes: After completing the course, the students will be able to
CO1:	Explain the process of conductive, convective and radiation heat transfer. (L1 &L2)
CO2:	Formulate and solve conduction problems. (L3&L4)
CO3:	Identify and analyze flow regime and use correlation for solving heat transfer. (L5)
CO4:	Design and analyze performance of heat exchangers. (L6)

Reference Books

ALC: U	chee Doons
1.	Fundamentals of Heat and Mass Transfer, M Thirumaleshwar, 2 nd Edition, 2009,
	ISBN: 9788177585193
2.	Heat and Mass Transfer, Yunus A Cengel, 4th Edition, 2011, Tata McGraw Hill, ISBN:
	978007107786
3.	Heat Transfer, J P Holman, 10th Edition, 2011, Tata McGraw Hill, ISBN: 9780071069670
4.	Heat Transfer, P K Nag, 2002, Tata McGraw Hill, ISBN: 0070473374

Continuous Internal Evaluation (CIE);

Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average marks (AM) over a number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab is rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30 (AM) + 10(T) + 1(IE) = 50 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks

covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

Scheme of the semester, End examination (SEE);

Practice Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks: Total SEE for the laboratory is 50 marks

Semester End Evaluation (S	SEE) Theory (100 Marks) + Practica	al (50 Marks); Total 150 Marks
----------------------------	------------------------------------	--------------------------------

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	2	-	-	-	-	-	-	-
CO2	3	2	-	1	2	-	-	-	-	-	-	-
CO3	3	1	-	2	1	-	-	-	-	-	-	-
CO4	3	2	-	2	1	-	-	-	-	-	-	-

	Semester: V							
	DESIGN OF MACHINE ELEMENTS – I							
	(Theory & Practice)							
Cou	urse Code	:	18ME54	CIE	:	100 + 50 Marks		
Credits: L:T:P : 3:1:1 SEE : 100 + 50 Marks				100 + 50 Marks				
Total Hours : 39L + 26T + 32.5P SEE Duration : 03 + 03 Hours				03 + 03 Hours				
Cou	urse Learning	g Ob	jectives: The students will	l be able to				
1	Describe the	fun	ctions of various mechanic	al elements in a machine.				
2	Explain the r	elat	ion between properties and	l dimensions of component	S			
3	Analyse and	qua	ntify the forces, stresses a	nd related parameters whi	ch a	re necessary to design		
	shafts, couplings, keys & joints,							
4	Demonstrate	abi	lity to develop designs for	various mechanical compo	nent	S		

Unit-I	07 Hrs
Fundamentals of Mechanical Engineering Design	
Mechanical engineering design, Types of design, Standards and Codes, Factor of safety, M	aterial
selection. Static Stresses: Static loads. Normal, Bending, Shear and Combined stresses. The	neories
of failure. Stress concentration and determination of stress concentration factor.	
Unit-II	10 Hrs
Design for Impact and Fatigue Loads	
Impact stress due to Axial, Bending and Torsional loads. Fatigue failure: Endurance lim	it, S-N
Diagram, Low cycle fatigue, High cycle fatigue, modifying factors: size effect, surface effect	. Stress
concentration effects,	
Notch sensitivity, fluctuating stresses, Goodman and Soderberg relationship, stresses due to	
combined loading, cumulative fatigue damage.	
Unit-III	10 Hrs
Design of Shafts Joints and Counlings and Keys	IUIII
Torsion of shafts design for strength and rigidity with steady loading ASME codes for	r nower
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting shafts under combined loads	r power
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads.	r power
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush	r power and Pin
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush type coupling. Design of keys - rectangular/square sections	r power and Pin
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush type coupling. Design of keys - rectangular/square sections	r power and Pin
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush type coupling. Design of keys - rectangular/square sections Unit-IV	r power and Pin 06 Hrs
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush type coupling. Design of keys - rectangular/square sections Unit-IV Riveted Joints and Welded Joints Direct device the follower of circut divisors being Effective and Design State Provide State	r power and Pin 06 Hrs
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush type coupling. Design of keys - rectangular/square sections Unit-IV Riveted Joints and Welded Joints Rivet types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints Types of ioints.	r power and Pin 06 Hrs f welded
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush type coupling. Design of keys - rectangular/square sections Unit-IV Riveted Joints and Welded Joints Rivet types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints Types of joints, Strength of butt and fillet welds, welded brackets with transverse and parallel fillet we	r power and Pin 06 Hrs f welded eld.
Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for transmission shafting, shafts under combined loads. Design of Cotter and Knuckle joints, Rigid and flexible couplings, Flange coupling, Bush type coupling. Design of keys - rectangular/square sections Unit-IV Riveted Joints and Welded Joints Rivet types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints Types of joints, Strength of butt and fillet welds, welded brackets with transverse and parallel fillet we Unit-V	r power and Pin 06 Hrs f welded eld. 06 Hrs

Stresses in threaded fasteners, Effect of initial tension, Design of threaded fasteners under static loads. Types of power screws, Torque required to raise/lower the loads, efficiency and self-locking, Design of power screws for C-clamps, Machine vice, sluice gates, etc.

PART-B	
COMPUTER AIDED MACHINE DRAWING LABORATORY	32.5
Assembly Drawings	
1. Crane Hook	
2. Radial Engine	
3. Swivel Bearing	
4. Rotary Gear Pump	
5. V-Belt Drive	
6. Feed Check valve	

Course	e Outcomes: After completing the course, the students will be able to							
CO1:	Demonstrate the ability to apply the fundamentals of stress analysis, theories of failure and							
	material science in the design of machine component (L1, L2)							
CO2:	Design specific mechanical elements based on required specifications (L3)							
CO3:	Analyse different types of forces and its influence on the component design (L4, L5)							
CO4:	Examine and relate importance of component design to complete system. (L6)							

Reference Books

Shigley J.E, Mischke.C.R., 'Mechanical Engineering Design', McGraw Hill International, 6th
Edition, ISBN: 0070494620
Spotts.M.F, Shoup.T.E, Hornberger.L.E, Jayram.S.R., Venkatesh C.V., 'Design of Machine
Elements', Pearson Education, 8th Edition; ISBN9788177584219
K L Narayana, P Kannaiah, K Venkata Reddy, "Machine Drawing" New Age International,
3 rd Edition. ISBN-13: 978-81-224-2518-5
Bhatt N D, "Machine Drawing", Charotar Publishing House Pvt. Ltd Anand; 50th Edition
(2014), ISBN-13: 978-9385039232

Design Data Hand Book: Design Data Handbook for Mechanical Engineers by K.Mahadevan and K. Balaveera Reddy, CBS Publishers & Distributors Pvt Ltd., Fourth Edition, ISBN: 978–81–239–2315–4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average marks (AM) over a number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab is rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30 (AM) + 10(T) + 1(IE) = 50 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

Scheme of the semester, End examination (SEE); Practice Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks: Total SEE for the laboratory is 50 marks

Semester End Evaluation (SEE) Theory (100 Marks) + Practical (50 Marks) Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	3	2	1	-	-	-	-	-
CO2	-	-	1	-	2	1	2	-	-	-	-	-
CO3	1	3	-	2	-	-	-	-	-	-	-	-
CO4	2	2	2	3	1	2	1	-	-	-	-	-

High – 3: Medium – 2: Low - 1

	Semester: V							
	FINANCIAL ACCOUNTING							
	(E	lec	tive-A: PROFE	SSIONAL ELECTIV	VES, MOOC COUR	RSI	E)	
Cou	rse Code	:	18ME5A1		CIE Marks	:	100	
Cred	lits: L:T:P	:	3:0:0		SEE Marks	:	100	
Tota	l Hours	:	39 L		SEE Duration	:	Online Exam	
Cou	rse Learning	Obj	ectives: The stu	dents will be able to				
1.	Learn basics	of	financial accoun	ting, statements, types	of companies, liabil	itie	es and assets	
2.	Evaluate acc	oun	ting equation, de	ouble entry system, me	oney measurement a	nd	ledger posting.	
3.	Analyse acco	ount	ing cycles, valic	lation of balance sheet	s and income statem	ent	ts.	
4.	Validate fina	nci	al statements and	d learn more about liqu	uidity position and ca	ash	flows.	
5.	Evaluate cash	h fl	ow statements, C	CVP analysis and inver	ntory control.			
Unit – I 8 Hrs								
Intro	duction to Fi	nan	cial Accounting	, Preparation of financ	cial statements: Acco	unt	ting cycle, Decision	
makiı	making using financial statements, Environment of financial reporting, Company form of business,							
Type	s of companies	s, A	ccounting as an	information system, E	Business and informa	tio	n requirement, Key	

accounting terms: Assets, Liabilities, Income, Expenses, Sources of funds, Use of funds, Assets, Liabilities, Incomes and Expenditures
Unit – II
8 Hrs
Accounting equation, GAAP Principle and Fundamentals of double entry system: Accounting

equation, Walkthrough of Balance Sheet, Generally Accepted Accounting Principles, Concepts -Business Entity, Money Measurement, Going Concern, Accounting Period, Conservatism, Accrual, Matching, Full Disclosure, Materiality. Types of accounts.

Fundamentals of double entry system and Accounting Cycle: Journal Entries: Debit and Credit, Claims of business, Rules of debit and credit, Entering transactions in Journal, Key trends in journalizing, Assets Purchased/Sold, Expenses paid or due and Incomes received or accrued, Journalizing complex transactions

Accounting cycle: Ledger Posting: Introduction to Ledger, Process of Ledger posting, Balancing the accounts, Debit and Credit Balances. Tutorials

Onit - III	8 Hrs
Accounting cycle: Trial Balance and Final Accounts: Introduction to Trial Balance, Form	nat of Trial
Balance, Preparation of Trial Balance, Errors in Trial Balance, Introduction to Final Account	nts, Format
of Final Accounts, Balance Sheet, Preparation of Final Accounts, Profit and Loss account.	
Output of Accounting angles Final Accounts: A direction anter in Final Accounts Transce	tions to be

Output of Accounting cycle: Final Accounts: Adjustments in Final Accounts, Transactions to be adjusted in Final Accounts, Validating the learning - Balance Sheet, Income Statement.

Analysis of Financial Statements: Introduction to Financial Statement Analysis, Types of Ratios, Solvency Ratios, Profitability Ratios and Efficiency Ratios. Tutorials.

Unit – IV	8 Hrs	
Analysis of Financial Statements: Validating the learning - Walkthrough of RIL's Annu	ual Report,	
Online Resources for Financial Analysis, Practice Problem: Liquidity Position, Solvenc	y Position,	
Interpretation of Ratios		

Cash Flow Statement: Types of Cash Flows, Inflows and Outflows, Walkthrough of Cash Flow Statement of RIL, Profit and Loss Appropriation Account, Cash flows from Operating Activities, Tutorials.

Unit – V7 HrsCash Flow Statement: Cash flows from Investing Activities, Financing Activities, Preparing Cash FlowStatement, Identifying hidden information, Provision of tax, Purchase or sale of fixed assets, Provisionof dividend, Tutorials.

CVP Analysis & Inventory Control: Need of Break-Even Analysis, Application of BEA, Cost Volume Profit Analysis, Understanding the nature of costs, Contribution Margin, Break Even Point, Level, Sales

and Capacity, Calculator, Theoretical foundation for economic order quantity, ABC analysis, Stock accounting: LIFO, FIFO, Tutorials, Case studies.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the basics of financial accounting, financial statements and cash flow.							
CO2:	Demonstrate the use of accounting principles, financial entries and cash flow							
	statements							
CO3:	Analyse accounting equations, trial balance, financial statements, cash flow and							
	perform CVP analysis.							
CO4:	Develop a model to calculate and evaluate financial outcomes of an organisations							
	utilising the various tools and techniques.							

Refere	nce Books:
1.	R. Narayanaswamy, Financial Accounting – A Managerial Perspective, PHI, Latest
	Edition
2.	P. C. Tulsian, Financial Accounting, Tata McGraw Hill, Latest Edition

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	1	-	-	-	-	-	2	-	3	-
CO2	-	-	1	-	-	-	-	-	2	-	3	-
CO3	-	-	1	-	-	-	-	-	2	-	3	-
CO4	-	-	1	-	-	-	-	-	2	-	3	-

Semester: V									
	DECISION SUPPORT SYSTEM FOR MANAGERS								
	(E	lec	tive-A: PROFE	SSIONAL ELECTI	VES, MOOC COUH	RSI	E)		
Cou	rse Code	:	18IM5A2		CIE Marks	:	100		
Credits: L: T:P			3:0:0		SEE Marks	:	100		
Tota	l Hours	:	39 L		SEE Duration	:	Online Exam		
Cou	rse Learning	Ob	jectives: The stu	dents will be able to					
1.	Use simple to	ech	niques for impro	ving intuitive judgme	nt and decision maki	ng	under uncertainty.		
2.	Structure a d	ecis	sion problem so	that it is amenable to i	modelling.				
3.	3. Understand the process of decision making for demand forecasting								
4.	Understand the process of determination of product mix								
5.	Analyse prob	oler	ns related to veh	icle scheduling and hu	uman resource function	on			

Unit – I	8 Hrs						
Introduction to Decision Support Systems (DSS) – Different types of Managerial Decision Problems							
and the Role of a DSS in solving them. Management Information System versus DSS, Range of							
Capabilities of a DSS, Components of a DSS, Examples of DSS, Basics of DSS Design Cycl	e.						
Unit – II	8 Hrs						
Models in Decision Support Systems - What is a Model? Classification of Models, Purpose of	Modeling						
in DSS, Solution Techniques: Optimization, Heuristics, and Simulation, Traditional ap	proach to						
modeling and its weaknesses, Desirable features for Models in DSS, Models and Mana	gers: The						
Concept of a Decision Calculus'							
Decision Support System for Evaluation of Investment Proposals, Decision Support S	ystem for						
Materials Managers, Decision Support System for Forecasting Demand for Independent Iten	ns – single						
and multi-period forecasting, forecasting for products with intermittent demand							
Unit – III	8 Hrs						
Decision Support System for Determination of Product Mix - product choice and bundling	decisions,						
product mix decisions, Decision Support System for Production Distribution Problem fo	r a Multi-						
Product and a Multi-Unit Organization							
Unit – IV	8 Hrs						
Decision Support System for Vehicle Scheduling, Decision Support System for Customer Cer	Decision Support System for Vehicle Scheduling, Decision Support System for Customer Centric Value						
Driven Decisions – designing the service system							
Driven Decisions designing the service system							
Unit – V	7 Hrs						
Unit – V Decision Support System for Human Resources Function, Decision Support System for D	7 Hrs istribution						
Unit – V Decision Support System for Human Resources Function, Decision Support System for D Network Design in a Supply Network, Decision Support System for Pricing Decision	7 Hrs istribution						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Solve semi-structured decision problems faced by managers in manufacturing and service							
	organizations							
CO2:	Employ decision analytic methods in intelligent information processing systems and decision							
	support systems.							
CO3:	Draw conclusions about the given data and how it can be used in decision process in various							
	aspects of management							
CO4:	Solve problems related to product distribution, pricing and supply chain.							

Referen	Reference Books:							
1.	Peter G.W. Keen and Michael S. Scott Morton, 'Decision Support Systems: An							
	Organizational Perspective' Addison-Wisely Publishing Company							

RV College of Engineering – Bengaluru – 59

2.	Mc Cosh, Andrew M, and Michael S. Scott Morton., "Management Decision Support
	Systems', The Mac Millan Press Limited, 1978.
3.	Sprague, Ralf H., Carlson, Eric D., "Building Effective Decision Support Systems". Prentice
	Hall Inc., 1982.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	3	2	2	-	-	-	-	1	-
CO2	2	3	-	2	-	2	-	-	-	-	-	-
CO3	-	-	3	3	-	-	-	-	2	-	1	-
CO4	-	3	2	2	-	-	-	1	-	-	-	-

	Semester: V								
	MANAGERIAL ECONOMICS								
	(I	Elec	tive-A: PROFE	SSIONAL ELECTI	VES, MOOC COU	JRSI	E)		
Cou	rse Code	:	18ME5A3		CIE Marks	:	100		
Cree	lits: L:T:P	:	3:0:0		SEE Marks	:	100		
Total Hours		:	39 L		SEE Duration	:	Online Exam		
Cou	rse Learning	Ob	jectives: The stu	dents will be able to	•	•			
1.	Develop a m	nacr	peconomic appro	oach to business decis	ions.				
2.	Basic unders	stan	ding of consume	r behaviour theory th	at can be used in ma	anag	erial decision		
	making								
3.	Analyze the	Cos	st calculation for	machined componen	ts, welding, casting	and	forged		
	components								
4.	Evaluate the	ste	ps involved in M	larket theory and Olig	gopoly				
5.	Optimize the	e diı	ect, indirect mat	erial cost and overhea	ad cost				

Unit – I							
Introduction to Managerial Economics, Theory of demand.							
Unit – II							
Theory of Consumer Behaviour, Elasticity and Demand Forecasting							
Unit – III							
Production Analysis and Cost Analysis							
Unit – IV	8 Hrs						
Theory of Market – Perfect Competition and Monopolistic Competition, Oligopoly and Game							
theory							
Unit – V	7 Hrs						

Product Pricing and Course Summary

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	To understand different concepts, theories, tools in Economics							
CO2:	To apply the managerial decision in business and research							
CO3:	To develop the sustainable policy to the managers.							
CO4:	To evaluate the socio-economic assessment of climate change in community sector							

Refe	rence Books:
1.	Michael R. Baye. Managerial Economics and Business Strategy. McGraw-Hill/Irwin, New York,
	USA, International edition, 5th Edition, 2006.
2.	W. Bruce Allen, Neil A. Doherty, Keith Weigelt and Edwin Masfield. Managerial Economics:
	Theory, Applications, and Cases. W.W. Norton & Company, Ltd., London, United Kingdom, 6th
	edition, 2005

					CO	-PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	3	-	-	-	-	-	-	-
CO2	-	3	2	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	3	1	-	-	-	-
CO4	-	-	-	-	-	3	2	-	-	-	-	1

	Semester: V							
	RAPID MANUFACTURING							
	(E	lec	tive-A: PROFE	SSIONAL ELECTIV	VES, MOOC COUI	RSI	E)	
Cou	rse Code	:	18ME5A4		CIE Marks	:	100	
Cred	lits: L:T:P	:	3:0:0		SEE Marks	:	100	
Tota	l Hours	:	39 L		SEE Duration	:	Online Exam	
Cou	rse Learning	Ob	jectives: The stu	idents will be able to				
1.	Understand v	vari	ous types of rapi	d manufacturing meth	ods with video labor	atc	bry demonstrations.	
2.	2. Apply the reverse engineering, 3D measurement, and design for modularity techniques to the real- life applications.							
3.	3. Analyse various processes parameters in Rapid Manufacturing.							
4.	4. Select the appropriate Rapid Manufacturing techniques to the real time applications.							
5.	Create soluti	ons	for the complex	manufacturing proble	ems.			

Unit – I7 HrsIntroduction to Rapid Manufacturing (RM) – Additive Manufacturing, Rapid Prototyping,
Functional Prototyping, Rapid Manufacturing, Rapid Tooling, Indirect and Direct Manufacturing.
Product Development Process – Product and its Characteristics, Evolution of Product Development,
Sequential Product Development, Stages in Generic Product Development Process, Design
Specifications in the Process, Conceptual and Detailed Design.

Unit – II	9 Hrs
Reverse Engineering - Importance, Applications and Process. 3D Scanning Process, RE Ha	ardware –
Contact, Non-contact and Destructive. 3D measurement - Coordinate measuring Machine	e (CMM),
Universal CMM Controller (UCC) Laboratory Demonstration on Using CMM. 3D	scanners.
Photopolymerization - Photopolymerization materials, Reaction Rates, Stereolithogra	phy (SL)
Overview, SL Machines, SL Scan Patterns, Vector Scan Micro-stereolithography, Mask	Projection
Photo-polymerization, Two-Photon SL.	
Design for Modularity (Manufacturing) Design Paviay Design for Manufacturing (Juidalinas

Design for Modularity (Manufacturing) – Design Review, Design for Manufacturing Guidelines. **Design for Modularity (Assembly)** – Design Guidelines for Different modes of Assembly. **Design for Modularity** – Feature based design, Exploring Design Freedoms. Subtractive versus Rapid Manufacturing.

Unit – III8 HrsPowder based RM processes – Selective Laser Sintering (SLS), SLS Process Description, Solid State
Sintering, Chemically-induced Sintering, Approaches to Metallic and Ceramic Part Creation, Liquid
Phased Sintering, Distinct Binder and Structural Materials – Separate Particles, Composite Particles,
Coated Particles, Full Melting and Sheet stacking RM processes.8 Hrs

Extrusion Based RM Processes – Basic Principles, Plotting and Path Control, Materials, Limitations of Fused Deposition Modelling (FDM), Bio-extrusion and Other Systems. **Sheet Stacking Processes** – Gluing or Adhesive Bonding, Thermal Bonding, Processes based on Sheet Metal Clamping, Ultrasonic Consolidation (UC), UC Process Parameters and Process Optimization, Properties of UC Parts.

Unit – IV8 Hrs3D printing RM processes and laboratory demonstration – 3D printing Technology, Advantages
and Technical Challenges, Droplet Formation Technologies – Continuous Mode, Drop-on-Demand
Mode and Other Droplet Formation Methods. Printing Process Modelling, Material Modification,
Binder Printing, Fused Deposition Modelling (FDM).Benericitien DM
Benericitien DM
Section Methods.

Beam Deposition RM processes– Material Delivery, Wire Feeding, Beam Deposition Systems, Process Parameters, Processing-Structure-Properties Relationships, Beam Deposition Benefits and Drawbacks. **Materials in RM** – Enabling Features of Materials-Viscus Flow, Photopolymerization, Sintering, Infilteration. Properties of Materials, Functionally Graded Materials. **Post-processing** – Need, Defects in RM Parts, Post **Processing Concerns** – Texture Improvements, Accuracy, Support Material Removal, Surface and Aesthetic Improvements, Preparation for Use as a Pattern, Property Enhancement Using Thermal and Non-Thermal Techniques.

Unit – V	7 Hrs
Product costing in RM - Cost and Price Structure, Design and Manufacturing Cost	sts, Rapid
Manufacturing Costs, Cost Estimation, Life-Cycle Costing. Rapid Product Dev	elopment
(CAD/CAE/CIM) - Geometric Modelling, Bezier Curves, B-Splines, Constraint Based M	Aodelling,
Wire Frame Modelling, Types of Solid Modelling, Constructive Solid Geometry, Feature Re	cognition
and Design - Feature based Design, Feature Interactions. Simulating Reality 3D Print v	with FEA,
Factory for RPD. Rapid Product Development (Software demonstration), and case studi	es on RM
- Product Life Cycle Management (PLM), Plant Simulation 10 Software. Rapid Manufactu	ring Case
Studies – Medical, Automobile and Aerospace Applications.	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand rapid prototyping techniques like additive manufacturing, rapid prototyping, functional prototyping, rapid manufacturing, rapid tooling, indirect and direct manufacturing.
CO2:	Explain powder based, Liquid based and extrusion based rapid manufacturing processes.
CO3 :	Apply and analyse reverse engineering and design for modularity principles and Product costing in RM.
CO4:	Evaluate and select various process parameters for the rapid manufacturing of complex engineering components.

Referen	ce Books:
1.	https://onlinecourses.nptel.ac.in/noc20_me50/preview https://nptel.ac.in/courses/112/104/112104265/
2.	Kamrani, A.K. and Nasr, E.A., 2010. Engineering design and rapid prototyping. Springer Science & Business Media.
3.	Gebhardt, A., 2011. Understanding additive manufacturing.
4.	Gibson, I., Rosen, D.W. and Stucker, B., 2014. Additive manufacturing technologies (Vol. 17). New York: Springer.
5.	Hopkinson, N., Hague, R. and Dickens, P. eds., 2006. Rapid manufacturing: an industrial revolution for the digital age. John Wiley & Sons.
6.	Pham, D. and Dimov, S.S., 2012. Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling. Springer Science & Business Media.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	2	-	-	2
CO2	2	3	-	-	-	-	-	-	2	-	-	2
CO3	2	3	-	-	2	-	-	2	3	-	2	3
CO4	1	2	3	3	2	-	-	2	3	-	-	3

	Semester: V							
	THE JOY OF COMPUTING USING PYTHON							
	(E	lec	tive-A: PROFE	SSIONAL ELECTI	VES, MOOC COU	RSI	E)	
Cou	Course Code : 18CS5A5 CIE Marks : 100							
Cred	lits: L:T:P	:	3:0:0		SEE Marks	:	100	
Tota	Total Hours:39 LSEE Duration:Online Exam							
Cou	rse Learning	Ob	jectives: The stu	idents will be able to				
1.	1. Understand why Python is a useful scripting language for developers.							
2.	Learn how to use lists, tuples, and dictionaries in Python programs.							
3. Define the structure and components of a Python program.								
4.	Develop cos	t-ef	fective robust ap	plications using the la	atest Python trends a	ind t	echnologies	

Unit – I	8 Hrs				
Motivation for Computing, Welcome to Programming!!, Variables and Expressions: Design	your own				
calculator, Loops and Conditionals: Hopscotch once again. Lists, Tuples and Conditionals: L	Let's go on				
a trip, Abstraction Everywhere: Apps in your phone.					
Unit – II	8 Hrs				
Counting Candies: Crowd to the rescue, Birthday Paradox: Find your twin, Google Translate	: Speak in				
any Language, Currency Converter: Count your foreign trip expenses.					
Unit – III	8 Hrs				
Monte Hall: 3 doors and a twist, Sorting: Arrange the books, Searching: Find in seconds, Substitution					
Cipher: What's the secret !!, Sentiment Analysis: Analyse your Facebook data Permutations: Jumbled					
Words, Spot the similarities: Dobble game					
Unit – IV	8 Hrs				
Count the words: Hundreds, Thousands or Millions, Rock, Paper and Scissor: Cheating not a	allowed !!,				
Lie detector: No lies, only TRUTH, Calculation of the Area: Don't measure, Six degrees of s	eparation,				
Image Processing: Fun with images					
Unit – V	7 Hrs				
Tic tac toe: Let's play, Snakes and Ladders: Down the memory lane, Recursion: Tower of Ha	anoi, Page				
Rank: How Google Works !!	-				

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Explore and apply the concept of python to solve real world problems.							
CO 2:	Design Classes and establish relationships among Classes for various applications from problem definition.							
CO 3:	Develop applications using google translator and gaming application.							
CO 4:	Implement real time application such as browser automation, NLP, Image processing etc using python							

Refe	rence Books:
1.	Head First Python, Paul Barry, 10th Edition, 2016, O'Reilly, ISBN 978-9352134823.
2.	Python Cookbook: Recipes for Mastering Python 3,David Beazley, Brian K. Jones, 9th Edition, 2017, O'Reilly, ISBN 978-1449340377.
3.	Python: The Complete Reference, Martin C Brown,7 th Edition, 2018, McGraw Hill Education, ISBN 978-9387572942.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	1	-	-	1	-	-	-	2
CO2	3	3	2	1	1	-	-	1	-	-	-	2
CO3	3	3	3	2	1	-	-	2	-	-	-	2
CO4	3	3	3	2	1	-	-	2	-	-	-	2

	Semester: V									
	FUNDAMENTALS OF AEROSPACE ENGINEERING									
	(GROUP B: GLOBAL ELECTIVE)									
				(Theory)						
Course Code		:	18G5B01		CIE	:	100 Marks			
Cred	lits: L:T:P	••	3:0:0		SEE	:	100 Marks			
Hou	rs	••	39L		SEE Duration	:	3.00 Hours			
Cou	rse Learning	g O	bjectives: To enable	the students to:						
1	Understand	l th	e history and basic pri	inciples of aviation						
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion									
3	3 Comprehend the importance of all the systems and subsystems incorporated on an air vehicle									
4	Appraise th	ne s	ignificance of all the	subsystems in achieving a s	uccessful flight					

Unit-I	08 Hrs
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosphere	ere and its
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anato	omy of an
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard
Atmospheric Properties.	
Unit – II	08 Hrs
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Types	s of drag,
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclat	ure, Basic
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	g.
Unit -III	07 Hrs
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Bray	ton Cycle,
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	engines,
Comparative merits and demerits of different types Engines.	
Unit -IV	09 Hrs
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics	, Kepler's
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.	
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rock	ets: Solid,
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific	Impulse,
Exhaust Velocity, Simple Problems on rocket performance.	_
Unit -V	07 Hrs
Aerospace Structures and Materials: Introduction, General types of construction, Monococ	lue, Semi-
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	on.
Comme Ordenseen Addition of the second of the standard and milling shift of	

Course	e Outcomes: At the end of this course the student will be able to:
CO1:	Appreciate and apply the basic principles of aviation
COL	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and
CO2:	aircraft materials during the development of an aircraft
CO3:	Comprehend the complexities involved during development of flight vehicles.
CO4:	Evaluate and criticize the design strategy involved in the development of airplanes

Ref	erence Books
1	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN
I	9780071086059.
	Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:
2	1118174208, 9781118174203.

3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
4	978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

	Semester: V							
	NANOTECHNOLOGY							
			(GROUP B	: GLOBAL ELEC	CTIVE)			
				(Theory)				
Cou	Course Code:18G5B02CIE:100 Marks							
Credits: L:T:P		:	3:0:0		SEE		100 Marks	
Tota	Total Hours		39L		SEE Duration	••	3.00 Hours	
Cour	rse Learning (Dbj	ectives: The studen	ts will be able to				
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	nthesize and	
	characterize t	he	nanoparticles.					
2	Learn about	Na	ano sensors and th	heir applications in	n mechanical, elect	rica	l, electronic,	
	magnetic, che	emi	cal fields.					
3	3 Apply the concept of nanotechnology in sensing, transducing and actuating mechanism.							
4	4 Design the nanoscale products used in multidisciplinary fields.							
	Unit-I 08 Hrs							

	00 1115
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicolo	gy health
effects caused by nanoparticles.	
Unit II	
Omt – H	09 Hrs
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottor	n up and
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottor Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica	n up and Vapour
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottor Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft lithography techniques (Hard &	n up and Vapour ography).

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III	08 Hrs
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors	and their
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,	Magnetic
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Bi	osensors:
Biosensors in modern medicine.	
	1

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ HIS
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanica	al cutting
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.	

Course (Course Outcomes: After completing the course, the students will be able to										
CO1:	Understand the structures of nano materials and their properties.										
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization										
	results.										
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its										
	knowledge in various fields.										
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.										

Refere	ence Books
	B.S. Murty., P. Shankar., B.Raj, BB. Rath, and J. Murday, Textbook of Nanosciences and
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.
•	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1 st Edition,
2	2013, ISBN 9781439827123 (Unit III).
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.
4	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,
	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

FUEL CELL TECHNOLOGY (GROUP B: GLOBAL ELECTIVE) (GROUP B: GLOBAL ELECTIVE) (GROUP B: GLOBAL ELECTIVE)Course Code:1865B03CIE:100 MarksCredits: L:T:P:3:0:0SEE:100 MarksTotal Hours:39LSEE Duration:3:00 HoursCourse Learning Objectives: The students will be able to:3:00 Hours1Recall the concept of fuel cells and their functionalities::3:00 Hours3Know the applications of fuel cells and their functionalities::::4Understand the characterization of fuel cells:::					Semester: V							
(GROUP B: GLOBAL ELECTIVE) (Theory) Course Code : 100 Marks Credits: LT:P : 300 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 300 Hours Course Learning Objectives: The students will be able to 1 Recall the concept of fuel cells and their functionalities 3 Know the applications of fuel cells in various domains 4 Unit-I 07 Hrs Introduction - I: Vulit - II 07 Hrs Types of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Vulit - II 07 Hrs Types of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit - II O7 Hrs Types of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fue	FUEL CELL TECHNOLOGY											
Course Code i 18G5B03 CIE i 100 Marks Credits: L.T:P i 390 SEE i 100 Marks Total Hours i 391 SEE Duration i 3.00 Hours Course Learning Objectives: The students will be able to I Recall the concept of fuel cells Image: Course Learning Objectives: The students will be able to 1 Recall the concept of fuel cells in various domains Image: Course Learning Objectives: The students will be able to Image: Course Course Learning Objectives: The students will be able to Image: Course Course Course Learning Objectives: The students will be able to Image: Course Course: After completing the course, the students will be able to Image: Course Course Course Course: After completing the course, the students will be able to	(GKOUP B: GLOBAL ELECTIVE) (Theory)											
Credits: L:T:P i: 30:0 SEE i: 100 Marks Total Hours i: 39L SEE Duration i: 3.00 Hours Course Learning Objectives: The students will be able to I Recall the concept of fuel cells i: 3.00 Hours 2 Distinguish various types of fuel cells and their functionalities i: 3.00 Hours 3 Know the applications of fuel cells in various domains i: 07 Hrs Introduction – I: Fuel Cell Reactions, fuels for cells and their properties 07 Hrs Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties 07 Hrs Types of fuel cells – II: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each 07 Hrs Efficiencies, losses and kinetics– III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction limedance spectroscopy 08 Hrs Fuel Cell Characterization: I/V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance s	Cours	se Code	:	18G5B03	(Theory)	CIE	:	100 Marks				
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to I Recall the concept of fuel cells I Image: Set	Credi	its: L:T:P	:	3:0:0		SEE	:	100 Marks				
Course Learning Objectives: The students will be able to 1 Recall the concept of fuel cells 2 Distinguish various types of fuel cells and their functionalities 3 Know the applications of fuel cells in various domains 4 Understand the characterization of fuel cells Introduction – I: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Unit – II Of fuel cells – II: Classification of fuel cell, solid oxide fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit – III Of the cells – II: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit – III Of the cells – II: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs <td co<="" th=""><th>Total</th><th>Hours</th><th>:</th><th>39L</th><th></th><th>SEE Duration</th><th>:</th><th>3.00 Hours</th></td>	<th>Total</th> <th>Hours</th> <th>:</th> <th>39L</th> <th></th> <th>SEE Duration</th> <th>:</th> <th>3.00 Hours</th>	Total	Hours	:	39L		SEE Duration	:	3.00 Hours			
1 Recall the concept of fuel cells 2 Distinguish various types of fuel cells and their functionalities 3 Know the applications of fuel cells in various domains 4 Understand the characterization of fuel cells Unit-I O7 Hrs Introduction – I: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Unit – II O7 Hrs Types of fuel cells – II: Classification of fuel cell, solid oxide fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –III O7 Hrs Efficiencies, losses and kinetics- III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impeda	Cours	se Learning O	bje	ectives: The student	s will be able to							
2 Distinguish various types of fuel cells and their functionalities 3 Know the applications of fuel cells in various domains 4 Understand the characterization of fuel cells Unit-I Of Throduction – I: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Unit – II Of fuel cells – II: Classification of fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –II Of Her cells – II: Classification of fuel cells, alkaline fuel cell, advantages and disadvantages of each Unit –III Of Her cells – II: Classificancies, losses and kinetics–III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV O8 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, c	1	Recall the co	nce	ept of fuel cells								
3 Know the applications of fuel cells in various domains 4 Understand the characterization of fuel cells Unit-I Introduction – I: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Unit – II O7 Hrs Types of fuel cells – II: Classification of fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –III O7 Hrs Efficiencies, losses and kinetics – III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical ativity ettric Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochem	2 Distinguish various types of fuel cells and their functionalities											
4 Understand the characterization of fuel cells Unit-I O7 Hrs Introduction – I: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Unit – II O7 Hrs Types of fuel cells – II: Classification of fuel cell, salkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –III Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy 10 Hrs Applications of fuel cells - N: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Cources: After completing the course, the students will be able	3	Know the app	plic	cations of fuel cells	n various domains							
Unit-I 07 Hrs Introduction – I: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties 07 Hrs Types of fuel cells – II: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each 07 Hrs Efficiencies, losses and kinetics– III: 07 Hrs 07 Hrs Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics 08 Hrs Fuel Cell Characteristics – IV: Insitu characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Unit –V 08 Hrs Applications of fuel cells - V: Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen issues. Fuel Cell Character string the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells from conventional energy systems	4	Understand the	he	characterization of f	uel cells							
Introduction – I: Introduction – I: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties 07 Hrs Types of fuel cells – II: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each 07 Hrs Efficiencies, losses and kinetics– III: Init –III 07 Hrs Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Lin –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen CO21: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems Apply chemical engineering principle				1	Unit-I			07 Hrs				
Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Unit – II Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –III OT Hrs Efficiencies, losses and kinetics– III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Course Outcomes: After completing the course, the students will be able to CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Intro	duction – I:										
EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties Unit – II Of fuel cells – II: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –III Of Hers Efficiencies, losses and kinetics–III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Lonit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells – V: Applications of fuel cells – V: Applications of fuel cells – V: 10 Hrs Applications of fuel cells – V: Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrog	Fuel o	cell definition,	his	storical developmen	ts, working principle of f	uel cell, compoi	nent	ts of fuel cell,				
Unit – II07 HrsTypes of fuel cells – II:Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of eachUnit –IIIO7 HrsEfficiencies, losses and kinetics– III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics08 HrsFuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity10 HrsApplications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen10 HrsCourse Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	EMF	of the cell, Fue	el C	Cell Reactions, fuels	for cells and their propert	ies						
Types of fuel cells – II: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –III Morit –III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical activity Unit –V 10 Hrs Applications of fuel cells – V: Applications of fu				U	nit — II			07 Hrs				
Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each Unit –III O7 Hrs Efficiencies, losses and kinetics– III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Luit –V 10 Hrs Applications of fuel cells - V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Types	s of fuel cells –	- II	•								
India value of the cell, advantages and disadvantages of each Unit –III O7 Hrs Efficiencies, losses and kinetics– III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity electrochemical surface area and electrochemical activity 10 Hrs Applications of fuel cells – V: Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: C01: Understand the fundamentals and characteristics of fuel cells from conventional energy systems	Classi	ification of fue	l c	ells, alkaline fuel ce	ell, polymer electrolyte fu	el cell, phospho	ric	acid fuel cell,				
Unit –III 07 Hrs Efficiencies, losses and kinetics– III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics 08 Hrs Fuel Cell Characteristics – IV: 08 Hrs In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy 8 Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity 10 Hrs Applications of fuel cells – V: Nunit –IV 10 Hrs Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems Interset	molte	n carbonate fue	el c	ell, solid oxide fuel	cell, advantages and disac	lvantages of eac	h					
Efficiencies, losses and kinetics-III: Intrinsic maximum efficiency, voltaic efficiency, faradaic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit -IV 08 Hrs Fuel Cell Characteristics - IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit -V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Inderstand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	T 001 1				nit –III			07 Hrs				
Intrinsic maximum efficiency, voltaic efficiency, faradatic efficiency, overall efficiency, activation losses, fuel crossover and internal current, ohmic losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Effici	encies, losses a	anc	i kinetics– III:								
Inder crossover and internar current, online losses, mass transport/concentration losses, and activation/electrode/reaction kinetics Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems		sic maximum	en	and internal sympon	t chimic losses moss tr	cy, overall ellic	nen	cy, activation				
Unit –IV 08 Hrs Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	losses	s, fuel crossov	er roo	and internal curren	t, omme losses, mass tra	ansport/concentr	ano	on losses, and				
Out -IV Fuel Cell Characteristics – IV: In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit –V Applications of fuel cells – V: Applications of fuel cells – V: Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	activa		lea		nit IV			08 Hrs				
In-situ characterization: I-V curve, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Fuel	Cell Character	rist	$\frac{0}{1}$				001115				
cyclic voltammetry, electrochemical impedance spectroscopy Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	In-situ	u characterizat	ion	: I-V curve. curren	t – voltage measurement	. current interru	ınt	measurement.				
Ex-situ characterization techniques: Proton conductivity, flexural strength, electrical conductivity, electrochemical surface area and electrochemical activity Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Image: Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	cvclic	voltammetry.	ele	ctrochemical imped	ance spectroscopy	,	- r -	,				
electrochemical surface area and electrochemical activity Init –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Ex-sit	tu characteriza	tio	n techniques: Proto	n conductivity, flexural	strength, electri	cal	conductivity,				
Unit –V 10 Hrs Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	electr	ochemical surf	ace	area and electroche	mical activity	U /						
Applications of fuel cells – V: Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems				U	nit –V			10 Hrs				
Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues. Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Appli	ications of fuel	l ce	ells – V:								
Production and storage of hydrogen Course Outcomes: After completing the course, the students will be able to CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Appli	cations of fuel	cel	ls in air, road and ra	il transport, hydrogen stor	rage, handling a	nd s	afety issues.				
Course Outcomes: After completing the course, the students will be able toCO1:Understand the fundamentals and characteristics of fuel cellsCO2:Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Produ	ction and stora	ge	of hydrogen								
CO1: Understand the fundamentals and characteristics of fuel cells CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	Cour	se Outcomes:	Af	ter completing the	course, the students will	be able to						
CO2: Apply chemical engineering principles to distinguish fuel cells from conventional energy systems	CO1:	Understand	the	e fundamentals and	characteristics of fuel cells	8						
systems	CO2:	Apply chem	nic	al engineering prin	ciples to distinguish fuel	cells from con	ver	tional energy				
		systems			. 0			0,				
CO3: Analyze the performance of fuel cells using different characterization techniques	CO3:	Analyze the	e pe	erformance of fuel c	ells using different charac	terization techni	que	s				
CO4: Evaluate the possibility of integrating fuel cell systems with conventional energy systems	CO4:	Evaluate the	e po	ossibility of integrat	ing fuel cell systems with	conventional en	erg	y systems				

Refere	nce Books
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition,
	2009, Universities Press, ISBN – 13: 978 1420 060287
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John
	Wiley & Sons, ISBN – 978 0470 848579

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

Semester: V												
INTELLIGENT SYSTEMS												
(GROUP B: GLOBAL ELECTIVE)												
		1		(Theory)		1						
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks					
Crea	lits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks					
Total Hours : 39L SEE Duration : 3.00 Hours												
Cou	Course Learning Objectives: The students will be able to											
1.	1.Understand fundamental AI concepts and current issues.											
2.	Understand	and	apply a range of	AI techniques including sear	ch, logic-based re	easc	oning, neural					
	networks an	nd re	asoning with une	certain information.								
3.	Recognize	comp	putational proble	ms suited to an intelligent sys	stem solution.							
4.	Identify and	d list	the basic issues	of knowledge representation,	blind and heurist	ic s	earch.					
				Unit – I			07 Hrs					
Intro	oduction: Th	ne Fo	oundations of Ar	tificial Intelligence, History of	of Artificial Intell	ige	nce, The State					
of th	e Art, Intelli	igent	Agent: Introdu	ction, How Agents Should A	ct, Structure of I	ntel	ligent Agents,					
Prot	olem-solving	: So	lving Problems	by Searching Search Strate	egies, Avoiding	Rej	peated States,					
Avoi	ding Repeate	ed St	ates				1					
				Unit – II			08 Hrs					
Info	rmed Searc	h M	lethods: Best-F	irst Search, Heuristic Func	tions, Memory	Bou	inded Search,					
Itera	tive Improve	ment	Algorithms			_	~					
Gan	e Playing: 1	Intro	duction: Games	as Search Problems, Perfect	Decisions in Tw	'o-ŀ	Person, Games					
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an E	lement of Chance	e	0.0 77					
				Unit – III			08 Hrs					
Kno	wledge Infer	ence										
Knov	wledge repre	sent	ation -Productio	n based system, Frame base	ed system. Infer	ence	e - Backward					
chan	ning, Forward	d cha	aining, Rule val	ue approach, Fuzzy reasonin	g - Certainty fac	tors	s, Bayes Rule,					
Unce	ertainty Princ	ples	, Bayesian Theo	ry-Bayesian Network-Demps	ter - Shafer theor	y.	0.0 77					
				Unit – IV			08 Hrs					
Lear	rning from (Jbse	rvations: A Gen	neral Model of Learning Age	ents, Inductive Le	earr	ing, Learning					
Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why Learning												
Works: Computational Learning Theory												
Reinforcement Learning: Passive Learning in a Known Environment, Passive Learning in an												
Unknown Environment, Active Learning in an Unknown Environment												
-		<u> </u>		$\frac{\text{Unit} - \text{V}}{1 + \frac{1}{2}}$			08 Hrs					
Expe	ert Systems,	Com	ponents, Produc	ction rules, Statistical reason	ing, certainty fac	ctor	s, measure of					
belie	t and disbeli	iet, I	vieta level know	vledge, Introspection. Expert	systems - Arch	itec	ture of expert					
syste	ems, Roles o	f exp	pert systems - I	Knowledge Acquisition –Me	ta knowledge, H	eur	istics. Typical					
expe	rt systems - N	MYC	CIN, DART, XOO	ON, Expert systems shells.								

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.									
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.									
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.									
CO 4:	Assess their applicability by comparing different Intelligent System techniques									

Reference Books:

1.	AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
	ISBN-13: 978-0-13-604259-4
2.	Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
	Hill, ISBN: 9780070087705
3.	Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3 rd Edition, 2007, ISBN-
	13: 978-0134771007
4.	Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
	13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2
	Semester: V											
----------------	---	----------	---------------------	----------------------------	-----------------------	--------	------------	--	--	--	--	
	REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM (GROUP B: GLOBAL ELECTIVE)											
				(Theory)								
Co	urse Code	:	18G5B05		CIE	:	100 Marks					
Credits: L:T:P			3:0:0		SEE	:	100 Marks					
Tot	al Hours	s : 39 L			SEE Duration	:	3.00 Hours					
Co	urse Learning	Ob	jectives: The st	udents will be able to								
1	Understand c	onc	ept of using pho	tographic data to determi	ne relative positions	s of j	points.					
2	Study the me	tho	ls of collection of	of land data using Terrest	rial and Aerial came	era.						
3	Analyze the o	lata	gathered from v	various sensors and interp	ret for various appli	catio	ons.					
4	4 Apply the principles of RS, GIS and GPS in various scopes of Civil Engineering.											
	•											
				I Init-I			07 Hrs					

Unit-1	0/Hrs						
Remote Sensing- Definition, types of remote sensing, components of remote sensing, elect	tromagnetic						
spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. Spectral							
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other							
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key elements.							
Unit – II	08 Hrs						
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry, I	ntroduction						
to digital Photogrammetry.							
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,						
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –						
flight planning.							
Unit –III	08 Hrs						
Geographic Information System- Introduction, Functions and advantages, sources of data for GIS.							
Database - Types, advantages and disadvantages. Data Analysisoverlay operations, network analysis,							
spatial analysis. Outputs and map generation.							
GPS- components and working principles.							
Unit –IV	08 Hrs						
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and n	nanagement						
(prioritization of river basing water perspective zones and its mapping). Highway and tra	-						
(prioritization of fiver basins, water perspective zones and its mapping), finghway and ta	insportation						
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee	insportation ering (Geo-						
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall).	unsportation ering (Geo-						
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall). Unit –V	ering (Geo-						
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall). Unit –V Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, urb	ering (Geo- 08 Hrs Dan sprawl,						
(highway alignment, Optimization of routes, accident analysis), Environmental Engineer statistical analysis of water quality, rainfall). Unit –V Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, url Change detection studies, forests and urban area, agriculture, Disaster Management. Lay	onsportation ering (Geo- 08 Hrs oan sprawl, 'outs: Dead						
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall). Unit –V Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, url Change detection studies, forests and urban area, agriculture, Disaster Management. Lay end, Radial, Grid iron, Circular system.	08 Hrs Dan sprawl, 70uts: Dead						

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand and remember the principle of Remote Sensing (RS) and Geographical Information									
	Systems (GIS) data acquisition and its applications.									
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs									

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	rence Books
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3rd Edition, Wiley
1	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,
Z	John Wiley Publishers, New Delhi, ISBN – 8126532238.
•	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,
3	ISBN: 8122438121
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.
_	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,
3	ISBN - 0198072392

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V										
	AUTOMOTIVE ELECTRONICS										
	(GROUP B: GLOBAL ELECTIVE)										
				(Theory)							
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks					
Cı	edits: L:T:P	:	3:0:0	SEE Marks	:	100 Marks					
Hours			39L	SEE Duration	:	3.00 Hours					
Co	ourse Learning (Ob	jectives: The st	udents will be able to							
1	Acquire the know	OW	ledge of automo	otive domain fundamentals, need of Electronics ar	d co	ommunication					
I	interfaces in Au	ito	motive systems.								
2	Apply various t	yp	es of sensors, ac	ctuators and Motion Control techniques in Automo	otive	systems					
Understand dig			Understand digital engine control systems and Embedded Software's and ECU's used in automotive								
3	systems.										
4	Analyse the con	nce	pts of Diagnosti	ics, safety and advances in Automotive electronic	Syst	ems.					

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and								
	communication interfaces in Automotive systems.								
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive								
	systems								
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in								
	automotive systems.								
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.								

Referen	ice Books
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-
	0471288357
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3 rd Edition, Elsevier Butterworth-
	Heinemann. ISBN 0-7506-62190.
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-
	Heinemann. ISBN 0-75-066991-8.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

	Semester: V										
	e- MOBILITY										
			(GROUP I	B: GLOBAL ELE	CTIVE)						
				(Theory)							
Co	ourse Code	:	18G5B07		CIE	:	100 Marks				
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks				
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours				
Co	ourse Learning	g O	bjectives: The stud	lents will be able to							
1	Understand th	ne b	asics of electric and	hybrid electric vehic	cles, their architectur	e an	nd modelling.				
2	Explain differ	rent	energy storage tecl	nnologies used for el	ectric vehicles and th	neir	management				
	system.										
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for				
	electric vehicles.										
4	Design EV S	im	ulator through perfe	ormance evaluation	and system optimiz	atio	n techniques				
	and need for	the	charging infrastruct	and need for the charging infrastructure.							

Unit-I	06 Hrs
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, B	EV Fuel
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Pow	ertrains,
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Cor	nparison
of Automotive and Other Transportation Technologies.	
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle
Comparisons	
Unit – II	09 Hrs
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery
Charging, Protection, and Management Systems, Battery Models, Determining the C	Cell/Pack
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.	
Battery Charging: Basic Requirements for Charging System, Charger Architectur	es, Grid
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772,	Wireless
Charging, The Boost Converter for Power Factor Correction.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	Batteries,
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Func	tionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pr	otection,
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commu	nication:
Dedicated analog and digital wires.	
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	s used in
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric
machines, electric machine and power electronics integration Constraints.	
Unit –V	07 Hrs
EV Simulation: system level simulation, EV simulator, simulator modules, perf	ormance
evaluation, system optimization.	
EV Infrastructure: Domestic charging infrastructure, Public charging infras	tructure,
Standardization and regulations, Impacts on power system.	

Course	e Outcomes: After completing the course, the students will be able to									
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies									
	and modelling.									
CO2:	Discuss and implement different energy storage technologies used for electric vehicles									
	and their management system.									
CO3:	Analyze various electric drives and its integration techniques with Power electronic									
	circuits suitable for electric vehicles.									
CO4:	Design EV Simulator for performance evaluation and system optimization and									
	understand the requirement for suitable EV infrastructure.									

Refe	rence Books
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, <i>ISBN</i>
	9781119063667.
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,
4	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions
5	Technip, Paris, ISBN 978-2-7108-0994-4.
4	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford
-	university press, ISBN 0 19 850416 0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

	Semester: V									
	SMART SENSORS & INSTRUMENTATION									
			(GR	OUP B: GLOBAL ELECTIVE)						
				(Theory)						
Cou	rse Code	:	18G5B08	CIE	:	100 Marks				
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks				
Tota	l Hours	:	39L	SEE Duratio	a :	3.00 Hours				
Cou	rse Learnin	g O	bjectives: The	students will be able to						
1	Understand	l th	e fundamentals	of transducers and sensors.						
2	Demonstrate the working principles of different transducers and sensors.									
3	Apply the principles of different type of sensors and transducers on state of art problems.									
4	Create a sy	ste	m using approp	riate transducers and sensors for a particular ap	plicat	ion.				

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, Ac	lvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and probler	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers: I	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potentia	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	Sensors,
Gas flame detectors	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the basic principles of different transducers and sensors.								
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation								
	systems.								
CO3:	Analyze and evaluate the performance of different transducers and sensors for various								
	applications.								
CO4:	Create a system using appropriate transducers and sensors for a particular application.								

Refere	nce Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
Ŧ	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
4	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
4	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
4	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

Semester: V									
			0	PERATIONS RESEARC	H				
(GROUP B: GLOBAL ELECTIVE)									
Cou	rsa Cada		18C5B00	(Ineory)	CIF		100 Marks		
Cree	lits: L:T:P	•	3:0:0		SEE	•	100 Marks		
Total Hours : 39 L SEE Duration : 3.00 Hours									
Cou	rse Learning (Dbje	ectives: The st	udents will be able to					
1	Develop the	skil	lls in the app	lication of operations res	earch models for	con	nplex decision-		
	making situat	ions	5.	1			1		
2	Implement th	e m	ethodology and	tools of operations resear	ch to assist decisio	n-m	naking.		
	*			*			Ū.		
				UNIT-I			07 Hrs		
Intr	oduction: OR 1	netl	nodology, Defi	nition of OR, Application	of OR to Engineer	ng	and Managerial		
prob	lems, Features	of C	OR models, Lir	nitations of OR.					
Line	ar Programm	ing	Definition, Ma	athematical Formulation, S	Standard Form, Sol	utic	on Space, Types		
of so	olution - Basic l	Feas	sible, Degenera	te, Solution through Graph	hical Method. Usag	ge o	f software tools		
to de	monstrate LPP	(de	monstrations a	nd assignments only)					
<i></i>			• • • • •	UNIT-II			<u>10Hrs</u>		
Sim	plex Method 8	e Se	ensitivity Ana	lysis: Simplex methods, A	rtificial Stating So	luti	on - M Method		
& T	wo phase met	hod	, Sensitivity A	Analysis - Graphical sens	itivity analysis, A	lget	braic sensitivity		
anal	ysis. Interpretat	ion	of graphical ou	itput from software packag	ges such as MS Exc	el			
T	D			UNIT-III	11 D ' C ''	1	10 Hrs		
1 rai	isportation P	rob	lem:Formulati	on of transportation mo	del, Basic feasit	ole .	solution using		
diffe	rent methods,	10	ptimality Me	thods, Unbalanced trans	portation problem	1, .	Degeneracy in		
trans	portation prob	lem	is, Variants	in Transportation Proble	ems, Applications	01	Transportation		
prob	lems.			C 1 A 1 11	0.1.1	1	C		
ASSI	gnment Probl	em:	Formulation	of the Assignment probl	em, Solution met	nod	of assignment		
prob	lem-Hungarian	Me	thod, Solution	method of assignment pro	oblem-Hungarian N	/leti	nod, Variants in		
assig	inment problem	1, 11	aveling Salesn	nan Problem.	. 11				
Usag	ge of software t	ools	to demonstrat	e Transportation and Assig	gnment problems		06 11		
Pro	act Managam	nt 1	Using Notwor	UNII-IV k Analysis-Network const	ruction Determine	tior	U6 Hrs		
and	duration floats		Osing Network	of crashing Usaga of sof	twore tools to dom	one	troto N/W flow		
nroh	lome	, ci	INI - Liements	of clashing, Usage of sol		UIIS	strate IN/ W HOW		
Gan	e Theory: Intr	odu	ction. Two per	son Zero Sum game Pure	strategies – Game	s wi	th saddle point		
Graphical Method The rules of dominance solution method of games without saddle point									
Arithmetic method									
	incure incurou.								
Cou	Course Outcomes: After completing the course, the students will be able to								
CO	Understand	l th	e basic conc	epts of different models	s of operations r	ese	arch and their		
	application	s.		-					

CO2:	Build and	solve Trans	portation M	odels and Assignm	ent Models.
000					

Reference Books

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	2	2	-	-	-	1	-	-	1
CO2	-	2	-	-	-	-	-	-	-	1	-	1
CO3	2	-	-	2	2	-	-	1	-	-	-	-
CO4												

				Semester: V				
			MANAGEM	ENT INFORMATION SYSTEMS				
			(GROUP	B: GLOBAL ELECTIVE)				
~	~ .	1		(Theory)				
Cou	rse Code	:	18G5B10	CIE		:	100 Marks	
Cree	dits: L:T:P	:	3:0:0	SEE		:	100 Marks	
Tota	al Hours	:	39L	SEE I	Juration	:	3.00 Hours	
Cou	rse Learning C)bje	ectives: The student	s will be able to				
1	To understand	1 th	e basic principles an	d working of information technology				
2	Describe the 1	ole	of information tech	nology and information systems in bu	siness.			
3	To contrast ar	nd c	ompare how interne	t and other information technologies	support bu	sine	ess processes.	
4	To give an ov	vera	all perspective of the	e importance of application of intern	et technol	ogie	es in business	
	administration	1.						
T 0		•		Unit-I			08 Hrs	
Inform	nation systems	in 	Global Business To	oday:	,		C (
The r	ole of informa	tior	n systems in busin	ess today, Perspectives on informat	ion system	ms,	Contemporary	
approa	aches to inform	atio	on systems, Hands-o	n MIS projects. Global E-Business a	ind Colla	oor	ation: Busines	
proces	s and information	ion	systems, Types of t	business information systems, System	is for colla	1DO1	ation and team	
work,	The informatio	n sy	stems function in b	isiness. A Case study on E business.				
T C				Unit – 11			08 Hrs	
Infori	ination Systems	s, U 1	organizations and S	trategy:	ni-stien e		1	
Organ Usina	information and	IOF	mation systems, Ho	w information systems impact orga	nization a	na Je	business firms	
Using Inform	information sy		Ins to gain competition	live advantage, management issues, I	Lunical an	la z	ocial issues in or	
inform	nation system	s. (Tha	moral dimonsions of	f information society. A Case study of	n husinoss		is, Eulies III al	
mom	lation society, 1	ne		Unit III		pia		
IT Inf	frastructure an	d F	merging Technolo	णात –111 जंहरः			00 1115	
IT infi	rastructure Infr	asti	licture components	Contemporary hardware platform tre	ends Cont	em	oorary software	
nlatfor	rm trends Ma	nao	ement issues Sec	ring Information Systems: Syste	mus, com m vulner	ahil	ity and abuse	
Busin	ess value of sec	mag	wand control Estab	lishing framework for security and c	ontrol Te	chn	ology and tools	
for pro	otecting inform:	atio	n resources A case	study on cybercrime	011101, 10	UIIII	stogy and took	
Unit IV 08 Hrs								
Achie	ving Operation	nal	Excellence and Cus	stomer Intimacy:				
Enterr	orise systems. S	Sup	ply chain managem	ent (SCM) systems, Customer relation	ionship m	ana	gement (CRM	
systen	ns, Enterprise a	ppli	cation. E-commerc	e: Digital Markets Digital Goods: H	E-commer	ce a	and the internet	
E-com	merce-business	s an	d technology. The	nobile digital platform and mobile E	-commerc	e. I	Building and E	
comm	erce web site. A	A Ca	ase study on ERP.			., -		
			J	Unit –V			07 Hrs	
Mana	ging Knowleds	ge:		•				
The k	knowledge man	age	ment landscape, Er	terprise-wide knowledge manageme	nt system	, Kı	nowledge worl	
systen	ns, Intelligent t	ech	iniques. Enhancing	Decision Making: Decision making	ng and inf	forn	nation systems	
Busine	ess intelligence	in	the enterprise. Busi	ness intelligence constituencies. Bui	ding Info	rm	ation Systems	

Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand and apply the fundamental concepts of information systems.								
CO2:	Develop the knowledge about management of information systems.								
CO3:	Interpret and recommend the use information technology to solve business problems.								
CO4:	Apply a framework and process for aligning organization's IT objectives with business strategy.								

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital										
	Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.										
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill,										
2	10 th Edition, 2011, ISBN: 978-0072823110.										
2	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4th Edition,										
3	2002, ISBN:978-0130617736.										
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN:										
4	9780070616349										

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	3	-	-	-	-	-	-	-	1	-	1	
CO3	3	3	1	-	2	-	-	-	-	1	-	1	
CO4	3	3	2	1	2	-	-	-	-	1	-	1	

	V Semester										
	AUTOMOTIVE MECHATRONICS										
	(GROUP B: GLOBAL ELECTIVE)										
			•	(Theory)							
Cour	rse Code	:	18G5B11		CIE	••	100 Marks				
Credits: L:T:P :		:	3:0:0		SEE	:	100 Marks				
Tota	l Hours	:	39 L		SEE Duration	••	3.00 Hours				
Cour	rse Learning ()bje	ctives: The students w	vill be able to							
1	Identify varie	ous N	Aechatronics systems	of a modern automobile							
2	Describe how	the	proper quantity/grade	of fuel affects engine perf	formance.						
3	Understand E	Bhar	at-VI / EURO-VI emis	ssion norms							
4	Apply the kn	owle	edge of engineering an	d science to analyse the pe	erformance of Me	cha	tronics				
	system										
5	Analyse vehi	cle s	ub-systems comprisin	g of sensors and actuators							

Unit-I	06 Hrs						
Automobile Engines							
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation						
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and						
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,						
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.						
Unit-II	10 Hrs						
Engine Auxiliary Systems:							
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,						
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.							
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Return line,							
Quantity control valve, Injectors – solenoid and piezo injectors.							
Unit-III	10 Hrs						
Vehicular Auxiliary Systems:							
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -						
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,						
Caster and Camber angle. Classification of tyres, Radial, Tubeless.							
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator a	and air						
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.							
Unit-IV	07 Hrs						
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	ol units and						
On-Board Diagnostic kit.							
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling						
system- Components, working principle, Properties, Viscosity.							
Unit-V	06 Hrs						
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	nsor,						
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.							

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe the functions of Mechatronic systems in a modern automobile								
CO2:	Evaluate the performance of an engine by its parameters								
CO3:	Analyse the automotive exhaust pollutants as per emission norms								
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit								

Refere	nce Books										
1.	Automotive Technology - A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage										
	Learning, ISBN-13: 978-1428311497										
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,										
	SAE International, ISBN: 0768009871										
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527										
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-										
	Heinemann, ISBN 0-7506-7008-8										

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	1	2	1	-	-	1	2	3	-	-
CO2	2	1	2	1	3	-	-	2	2	3	-	-
CO3	1	2	2	1	2	-	-	2	2	3	-	-
CO4	1	2	2	1	2	-	-	2	2	1	-	1

	Semester: V						
			TELECOM	MUNICATION SYS	STEMS		
			(GROUP E	B: GLOBAL ELECT	ΓΙVΕ)		
				(Theory)		-	
Cou	rse Code	:	18G5B12		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning C	bjo	ectives: The students	s will be able to			
1	1 Represent schematic of communication system and identify its components.						
2	2 Classify satellite orbits and sub-systems for communication.						
3	3 Analyze different telecommunication services, systems and principles.						
4	4 Explain the role of optical communication system and its components.						
5	5 Describe the features of wireless technologies and standards						

UNIT-I	06 Hrs				
Introduction to Electronic Communication: The Significance of Human Commu	nication,				
Communication Systems, Types of Electronic Communication, Modulation and Mult	iplexing,				
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.					
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.					
Radio Receivers: Super heterodyne receiver.					
UNIT-II	10 Hrs				
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.					
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.					
Wideband Modulation: Spread spectrum, FHSS, DSSS.					
Multiple Access: FDMA, TDMA, CDMA.					
UNIT-III	09 Hrs				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Subsystems,					
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System.	osystems,				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV	osystems, 07 Hrs				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical Communication	osystems, 07 Hrs c Cables,				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network	osystems, 07 Hrs c Cables, vorks.				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Netw UNIT-V	osystems, 07 Hrs c Cables, vorks. 07 Hrs				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network UNIT-V Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	07 Hrs c Cables, vorks. 07 Hrs Internet				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network UNIT-IV Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network UNIT-V Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Telephony, The Advanced Mobile Phone System [AMPS].	osystems, 07 Hrs c Cables, vorks. 07 Hrs Internet				
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Netw UNIT-V Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Telephony, The Advanced Mobile Phone System [AMPS]. Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless Network	osystems, 07 Hrs c Cables, vorks. 07 Hrs Internet tworks.				

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basics of communication systems.						
CO2	Analyze the importance of modulation and multiple access schemes for communication						
	systems.						
CO3	Analyze the operational concept of cell phone and other wireless technologies.						
CO4	Justify the use of different components and sub-system in advanced communication systems.						

Refe	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

				Semester: V					
	Q) UA	ANTUM MECHAN	NICS OF HETERO	NANO STRUCT	URES	S		
(GROUP B: GLOBAL ELECTIVE)									
(Incory)									
Cree	lite Coue	•	3.0.0		SFF	•	100 Ma	urks orks	
Tota	al Hours	•	<u>391</u>		SEE Duration	•	3.00 H	ours	
Cou	rse Learning C) bie	ectives: The student	s will be able to	SEE Duration	•	0.00 11	Jul 5	
1	Understand th	e ro	ble of Quantum mec	hanics in physical pro-	ocesses as we redu	ce dir	nensions		
2	Explain the de	sio	n and performance	of low dimensional se	emiconductors and	their	modellir	σ	
3	Understand th	e di	ifferences observed	in transport propertie	enneonauctors and	nal me	aterials	5.	
1	Apply the role		hotorostructuros in	devices	s of low difficitsion	141 111	aterrars.		
-	Apply the lot		leterosu decides in	devices	as and sansars that		on the a	ontum	
3	Acquire the ki	now	ledge to design and	develop smart devic	es and sensors that	runs	on the qu	lantum	
	technology.								
				Tinit T				00 IIma	
Revi	iow of Augntur	n N	lechanics and Solid	UIIII-I 1 state Physics:					
Way	e particle dualit	u w	Jeisenberg's Uncert	ainty Principle group	n velocity. Time in	dener	ident and	denendent	
Sohr	odingor Equation	y, 1 on 1	and its application	Parturbation theory	Eermi's Golden	Dula	Eroo ol	actron and	
Earm	ouniger Equation	f a	alida Danaity of at	retuination theory,	, Fermi s Golden	Nuic	Dloob	theorem in	
Fern	ni gas model o		onds, Density of si	ates and its depende	ence on dimension	nanty	, Bloch	ineorem in	
perio	Daic structures,	D	ynamics of electro	ns and notes in ba	ands, Effective m	ass, (distinct	regimes of	
cond	luction and the i	mp	ortant parameters cr	haracterising it.				00 XX	
D .	· · · · ·		11 11	<u>Unit – II</u> ·				08 Hrs	
Basi	cs of semicond	ucu	ors and lower dime			•1•.	F	D:00 :	
Intri	nsic and extrir	ISIC	semiconductors, e	electron and note c	oncentration. Mot	ility,	Energy	Diffusion,	
Con	tinuity equation	ns.	Carrier life-times	and Diffusion len	gth. Degenerate	semic	conductor	s. Optical	
proc	esses of semi-	con	ductors, inter-band	and intra-band proc	cess. Quantum we	ells of	f nanost	ructures of	
diffe	erent geometries	s-Sc	juare, Parabolic, T	riangular and their s	solutions, Quantur	n Do	ts, wires	and wells	
(Fro	m 0-Dim to 3 D)im)). Strained Layers a	nd its effect on bands	s. Band structure/e	energy	y levels i	n Quantum	
Wel	ls and Excitonic	eff	ects in them.						
				Unit –III				08 Hrs	
Qua	ntum Nano str	uct	ures and Quantum	Transport:					
Arch	nitecture and w	ork	ing of n-channel N	MOSFET, metal – s	emiconductor con	tact(ii	nterface)	in details,	
Hom	no-junction, He	tero	-junction, Hetero-s	tructures. Modulation	n and strain doped	l Qua	antum W	ells. Super	
Latti	ice: Kronig Per	nney	/ Model of a super	r-lattice, Tight Bindi	ing Approximation	n of a	a super l	attice. The	
gene	esis of Quantum	genesis of Quantum Transport: Parallel transport : scattering mechanism, experimental data(focus will be							
on C	GaAs), hot electi		on GaAs), hot electrons. Perpendicular transport: Resonant tunneling. Electric field effect in super lattices:						
Stark effect.							ect in suj	per lattices:	
Starl	k effect.	rons	. Terpenaleuna un	nsport. Resonant tun	neling. Electric fie	ld eff	ect in suj	ber lattices:	
Starl	k effect.	rons		Unit –IV	neling. Electric fie	ld eff	ect in suj	08 Hrs	
Starl	k effect. nsport in Nano	rons -str	uctures in electric	Unit –IV and magnetic fields	neling. Electric fie	ld eff		08 Hrs	
Starl Trai Quar	k effect. nsport in Nano ntized conducta	rons -str	uctures in electric : Landauer Buttike	Unit –IV and magnetic fields r transmission forma	neling. Electric fie	ld effe	ormalism	08 Hrs to explain	
Starl Tran Quan quan	k effect. nsport in Nano ntized conducta ntized conducta	-str	uctures in electric : Landauer Buttike of devices like qua	Unit –IV and magnetic fields r transmission forma antum point contacts	neling. Electric fie : alism, Application . Aharonov-Bohm	ld effe	ormalism	oer lattices: 08 Hrs to explain l rings and	
Starl Tran Quan quan othe	k effect. nsport in Nano ntized conducta ntized conductar r systems. Viola	-str ince atio	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cir	Unit –IV and magnetic fields r transmission forma antum point contacts rcuit laws for quantu	neling. Electric fie : alism, Application . Aharonov-Bohm m conductors. Con	ld effe	ormalism or in gold or Blockad	oer lattices: 08 Hrs to explain l rings and le. Density	
Starl Tran Quan quan other of S	k effect. nsport in Nano ntized conductantized	-str -str ince atio	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cinter tern in a magnetic	Unit –IV and magnetic fields r transmission forma antum point contacts cuit laws for quantu field. Landau qua	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electr	of for effectulomb	ormalism ormalism ormalism ormalism ormalism	to explain l rings and le. Density netic field.	
Starl Tran Quan quan other of S Shul	k effect. nsport in Nano ntized conducta ntized conductant r systems. Viola tates of a 2D onikov-de Haas	-str -str ince atio syst	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cin tem in a magnetic ect. Quantum Hall F	Unit –IV and magnetic fields r transmission forma antum point contacts cuit laws for quantu field. Landau qua cffect-integer and qua	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electruntum.	of for effect alomb	ormalism t in gold Blockad n a mag	08 Hrs to explain l rings and le. Density netic field.	
Starl Tran Quan quan othe of S Shut	k effect. nsport in Nano ntized conductant r systems. Viola tates of a 2D ponikov-de Haas	-str nce nce atio system	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cin tem in a magnetic ect. Quantum Hall E	Unit –IV and magnetic fields r transmission forma antum point contacts reuit laws for quantu field. Landau quan Effect-integer and quan Unit –V	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electr ntum.	of fo effeculomb	ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism	oer lattices: 08 Hrs to explain l rings and de. Density netic field. 07 Hrs	
Starl Tran Quan othe: of S Shut	k effect. nsport in Nano ntized conductant trized conductant r systems. Viola tates of a 2D ponikov-de Haas lications in Op	-str ince atio syst effe	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cin tem in a magnetic ect. Quantum Hall E electronics and Spi	Unit –IV and magnetic fields r transmission forma antum point contacts reuit laws for quantu field. Landau qua Effect-integer and qua Unit –V ntronics:	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electron ntum.	ld effe of fo effec ulomb	ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism	oer lattices: 08 Hrs to explain l rings and le. Density netic field. 07 Hrs	

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	After successful completion of the course the student will be able to identify the different domains							
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and							
	Photonics.							
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at							
	the core of nano and meso technology.							
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)							
CO4:	The student can apply the concepts in an interdisciplinary manner and can create new ideas and							
	products related to appliances and sensors, that use the said concepts.							

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
	Cambridge University Press, ISBN: 978-1107189638
2	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
5	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
6	Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
0	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	3	2	2	-	-	-	1
CO2	3	3	3	2	1	2	1	1	-	-	-	1
CO3	3	3	3	2	1	1	1	1	-	-	-	1
CO4	1	2	1	2	1	2	2	1	2	2	-	1

				Semester: V			
			THIN FIL	MS AND NANOTEO	CHNOLOGY		
			(GRO)	UP B: GLOBAL ELI	ECTIVE)		
		1	Γ	(Theory)	I	-	1
Cou	rse Code	:	18G5B14		CIE	:	100 Marks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
Iotal Hours : 39L SEE Duration : 3.00 Hours							
<u>1</u>	Understand th	e h	asics of thin films	structure and property			
2	Acquire the k		vledge of thin film	preparation by variou	s techniques and thei	r ch	aracterization
4	methods	100	ledge of thin film		s teeninques and the		aracterization
3	Apply the kno	wle	edge to select the r	nost potential methods	s to produce thin film	ns fo	or wanted
J	applications	, ,, , ,	suge to select the r	nost potential method.		15 10	4 wanted
4	Asses typical	thir	film applications				
	Tisses typical			•			
				Unit-I			08 Hrs
Nan	ostructures and	d N	anomaterials:				
Туре	es of nanostru	ctu	res and propertie	es of nanomaterials:	Introduction, Th	ree	dimensional, Two
dime	ensional, One d	ime	ensional, Zero-din	nensional nano-structu	red materials. Carbo	on l	Nano Tubes (CNT)
Qua	ntum Dots, shel	1 st	ructures, Multilay	er thin films and supe	er lattice clusters. Sy	nthe	esis through Sol ge
and	Spray Pyroly	sis.	Mechanical-phy	sical-chemical proper	rties. Current trend	ds	and challenges o
nanc	science and nar	ote	chnology.				
				Unit – II			08 Hrs
Thi	n Film Prepara	tio	n Methods:				
Vac	uum technolog	y- 1	Basics of Vacuum	pumps and vacuum n	neasurements, Physi	cal	Vapour Deposition
(PV	D) Techniques	: E	Evaporation - The	rmal evaporation, Ele	ectron beam evapor	atio	n, and Cathode are
depo	osition. Sputter	ing	: DC sputtering, R	RF Sputtering, Magnet	ron sputtering, and Id	on b	eam sputtering.
0				Unit –III			08 Hrs
Suri	ace Preparatio	n a	nd Growth of Th	un Films:		c	
Nuc	leation – theore	1ca	and experimental	l aspects. Surface prep	aration & Engineerin	ng fo	or Thin film growth
Clea	ning, Modificat	10n	, Masking & Patte	erning, Base Coats and	Top Coats. Thin Fi	lm g	rowth: Sequence of
thin	film growth, D	ete	cts and impurities	s, Effect of Deposition	n Parameters on film	n gr	owth. Properties of
Thir	Films: Adhesio	on, '	Thickness, Surface	e, Physical, Chemical a	and Mechanical.		0.0 11
Che	nantonization	e T	hin Film Duonauti	Unit –IV			08 Hrs
	racterization o		um rum Properti	ies:	ton and Ctalas De-	£1.	methoda Court
Film	hology and t	asu	rement: Quartz c	AEM Eilm comment	tion by V more Distant		r methods. Surface
mor]	phology and to	pog	ion by Uall affect	Arivi. riiin composit	non by A-ray Photo	beled	Luon Spectroscopy
Elec	uncal character	izat	ion by Hall effec	n measurement, Four	probe analyzer. Op		- characterization -
H II11	Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.						

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Unit –V

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basic mechanism of surface modification and thin film growth.						
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization						
	methods.						
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted						
	applications.						
CO4:	Detailed knowledge of thin film selection for various applications.						

Refere	nce Books
1	Thin Film Phenomenon, K.L.Chopra, 1st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
- 3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
-+	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

				Semester: V				
	1	AD	VANCES IN COR	RROSION SCIENCE	AND TECHNOL	OGY	ł	
			(GROU	UP B: GLOBAL ELF	ECTIVE)			
Con	ma Cada		1905015	(Theory)	CIE		100 Ma	nlza
	lits. L.T.P	•	3.0.0		SFE	•	100 Mai 100 Mai	rks rks
Tota	Total Hours : 39L SEE : 100 Marks							
Cou	rse Learning (Dbje	ectives: The studen	ts will be able to		1.		10
1	Understand th	ne fi	indamental & socio	o, economic aspects of	f corrosion.			
2	Identify pract	ices	for the prevention	and remediation of co	prrosion.			
3	Analyzing me	etho	dologies for predic	ting corrosion tendend	cies.			
4	Evaluate vari	ous	corrosion situation	s and implement suita	ble corrosion contro	l me	easures.	
				1				
				Unit-I				08 Hrs
Intr	oduction to co	rros	sion and its effect					
Intro	duction: The	dire	ct and indirect eff	fects of corrosion, ec	onomic losses, Ind	irect	losses -S	Shutdown,
cont	amination, los	s of	f product, loss of	f efficiency, environ	mental damage, Ir	npoi	tance of	corrosion
prev	ention in variou	ıs in	dustries, corrosion	auditing in industries	, corrosion map of I	ndia		
Corr	osion issues in	n sj	pecific industries-p	power generation, ch	emical processing	indı	stries, oil	l and gas
Indu	stries, pulp and	pap	per plants, corrosio	n effect in electronic i	ndustry.			
				Unit – II				08 Hrs
Тур	es of Electroch	emi	ical corrosion					
Intro	duction: Galva	nic	series, Pilling-Bed	worth ratio, Types: G	alvanic corrosion, c	revi	ce corrosi	on, pitting
corre	osion, intergra	nula	ar corrosion, eros	sion corrosion, stres	ss corrosion, seaso	on (cracking,	hydrogen
emb	rittlement, high	ten	perature corrosion	, bacterial corrosion, o	corrosion in polyme	r (pl	astic) mate	erials.
Crev	vice corrosion-r	necl	hanism of differen	tial aeration corrosion	n, mixed potential t	heor	y for und	erstanding
com	mon corrosion	of n	netals and alloys.					
				Unit –III				07 Hrs
Cor	rosion in diffe	ren	t engineering mat	erials				
Cone	crete structures.	, duj	plex, super duplex	stainless steels, ceram	ics, composites.			
Cor	rosion in Speci	ific]	Materials: Corrosi	ion of Iron, Nickel, Al	uminium, Titanium	and	Super allo	oys.
The	rmodynamics	of	Corrosion: Pour	baix diagram and it	s importance in n	netal	corrosio	n and its
calcu	ulation for Al, (Cu, 1	Ni and Fe.					
				Unit –IV				07 Hrs
Adv	ances in Corro	osio	n Control					
Prine	ciples of corro	osioi	n prevention, mat	erial selection, desig	n considerations, c	ontr	ol of env	rironment-
decr	ease in veloc	city,	passivity, remo	val oxidizer, Inhibi	tors and passivate	ors,	coatings-	organic,
elect	roplating of Co	oppe	er, Nickel and Chr	comium, physical vap	or deposition-sputte	ring	, Electrole	ess plating
of N	ickel.							
				Unit –V				09 Hrs
Cor	rosion Testing							
Phys	sio-chemical i	met	hods: Specimens,	environment, evalu	ation of corrosion	n da	image, A	ccelerated
labo	ratory tests-salt	s sp	ray, service tests.					
Elec	trochemical n	neth	ods: Electrode po	otential measurement	s, polarization mea	sure	ments. St	ern-Geary
equa	tion, Impedance	ce n	neasurements, Acc	celerated tests. Advar	ntages and limitation	ons o	of corrosi	on testing
meth	methods.							

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the causes and mechanism of various types of corrosion						
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.						
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.						
CO4:	Develop practical solutions for problems related to corrosion.						

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

			Semester: V					
	COMPUTATIONAL ADVANCED NUMERICAL METHODS							
	(GROUP B: GLUBAL ELECTIVE)							
Соц	rse Code	• 18C5B16	(Theory)	CIF	•	100 Marks		
Cree	dits: L:T:P	: 3:0:0		SEE	•	100 Marks		
Tota	al Hours	: 39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning C	Objectives: The studen	ts will be able to					
1	Gain adequate	e exposure to learn alt	ernative methods to s	olve algebraic and t	rans	cendental equations		
	using suitable	e numerical techniques.		-		-		
2	Use the conce	epts of interpolation tec	hniques arising in var	ious fields.				
3	Solve initial	value and boundary	value problems which	ch have great sign	ifica	nce in engineering		
	practice.		-					
4	Apply the con	ncepts of eigen value a	and eigen vector to o	btain the critical va	lues	of various physical		
	phenomena.							
5	Demonstrate	elementary programm	ning language, imp	ementation of alg	orith	ims and computer		
	programs to se	olve mathematical prol	plems.					
			Unit-I			07 Hrs		
Alge	braic and Tra	nscendental Equation	s:					
Root	ts of equations	in engineering practice	e - Fixed point iterativ	ve method, Aitken	proc	ess, Muller method,		
Chel	byshev method.	Simulation using MA	ГLAB.					
.			Unit – II			07 Hrs		
Inte	rpolation:		CC C 1	· 1 D: · 1 1 1.00				
Intro	duction to finit	e differences, Finite di	terences of a polynor	nial, Divided differe	ence	s, Newton's divided		
diffe	rence interpola	tion formula, Hermite	interpolation, Spline	interpolation - line	ear, o	quadratic and cubic		
splin	e interpolation.	Simulation using MA	ILAB.			0.0 11		
Diff	montial Equation	iona I.	Unit –III			08 Hrs		
	erenual Equal	10115 1: ungo Kutto Folkhorg n	athods to solve diffe	rantial aquations P	01110	larry value problems		
	ge-Kutta allu K	Ditz mathad Shootir	a mothod Different	iel transform moth	od t	a solve differential		
	tions Simulatic	-Kitz methou, Shoom	ig method, Different		ou i	o solve unrerenuar		
equa		on using WATLAD.	Unit IV			09 Ung		
Diff	Unit –IV 08 Hrs							
Solu	tion of second of	order initial value prob	lems - Runge-Kutta m	ethod Milne metho	d C	ubic spline method		
Finit	e difference me	ethod for ordinary linea	r Nonlinear different	ial equations Simul	atio	using MATLAB		
		inter or	Unit –V	equations, onnu		09 Hrs		
Eige	en Value Proble	ems:				V M		
Eige	n values and	Eigen vectors, Powe	r method, Inverse F	ower method, Bo	unds	on Eigen values,		
Gers	Gershgorin circle theorem, Jacobi method for symmetric matrices, Given's method. Simulation using							

MATLAB.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and
	corresponding computational techniques.
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application
	problems.
CO3:	Analyze the physical problem and use appropriate method to solve numerically using
	computational techniques.
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems
	arising in engineering practice.

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.
L	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage
2	Learning, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private
5	Ltd., ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata
4	Mcgraw Hill, ISBN-10: 0-07-063416-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	Semester: V							
	MATHEMATICS FOR MACHINE LEARNING							
	(GROUP B: GLOBAL ELECTIVE)							
Соц	rse Code	:	18G5B17	(Theory)	CIE	•	100 Marks	
Cree	lits: L:T:P	•	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning O	bje	ctives: The student	s will be able to				
1	Understand the foundation of	ne ma	basic knowledge o	n the fundamental	concepts of linear	alge	ebra that form the	
2	Acquire pract	ical	knowledge of vector	or calculus and optim	nization to understan	d tł	e machine learning	
_	algorithms or	tecl	niques.	or curculus and optim		u 11	ie maenine rearing	
3	Use the cond	ent	s of probability a	nd distributions to	analyze possible an	plic	cations of machine	
	learning.	-p.	s of proceeding a		analyze possione ap	pni		
4	Apply the con	cen	ts of regression and	estimation to solve r	roblems of machine	lear	mino	
5	Analyze the	ann	ropriate mathemati	cal techniques for c	lassification and or	tim	ization of decision	
· ·	problems	чрр	ropriate mainemati	eur teeninques for e	assilication and op	tiiii	ization of decision	
	problems.							
			I	U nit-I			07 Hrs	
Line	ar Algebra:							
Revi	ew of Vector S	Spac	ces-Linear Independ	lence, Basis, Rank a	nd Linear Mappings	s. A	ffine Spaces, Inner	
Prod	ucts, Lengths a	nd 1	Distances, Angles a	nd Orthogonality, Or	thonormal Basis, Or	tho	gonal Complement,	
Inne	r Product of Fu	ncti	ons, Orthogonal Pro	jections, Rotations, S	ingular Value Decor	npc	osition.	
			U	nit — II	0	-	07 Hrs	
Vect	tor Calculus an	d C	Continuous Optimiz	zation:				
Grad	lients of Vecto	or-V	Valued Functions,	Gradients of Matrie	ces, Identities for	Cor	nputing Gradients,	
Back	propagation an	d A	utomatic Differentia	ation, Linearization a	nd Multivariate Tayl	or S	Series, Optimization	
Usin	g Gradient Dese	cent	t, Constrained Optin	nization and Lagrang	e Multipliers and Co	nve	x Optimization.	
	-		U	nit –III			08 Hrs	
Prol	pability and Dis	stri	butions:				·	
Con	struction of a P	rob	ability Space, Disci	rete and Continuous	Probabilities, Sum F	lule	e, Product Rule and	
Baye	es' Theorem, G	aus	sian Distribution, C	Conjugacy and the E	Exponential Family,	Cha	ange of Variables -	
Inve	rse Transform.							
			U	nit –IV			08 Hrs	
Line	ar Regression:							
Prob	lem Formulation	on,	Parameter Estima	tion, Bayesian Line	ar Regression, Ma	xim	um Likelihood as	
Orth	ogonal Projectio	on.						
Den	sity Estimation	wi	th Gaussian Mixtu	re Models:				
Gau	Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Variable							
Perspective.								
	Unit –V 09 Hrs							
Dim	Dimensionality Reduction with Principal Component Analysis (PCA):							
Prob	lem Setting, M	axi	mum Variance Pers	spective, Projection	Perspective, Eigenve	ecto	r Computation and	
Low	-Rank Approxi	mat	tions, PCA in High	Dimensions, Key S	Steps of PCA in Pra	acti	ce, Latent Variable	
Pers	pective.							
Clas	sification with	Suj	pport Vector Mach	ines:				
Sepa	rating Hyperpl	ane	es, Primal Support	Vector Machine,	Dual Support Vect	or	Machine, Kernels,	
Num	Numerical Solution.							

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.
CO2:	Orient the basic concepts of mathematics towards machine learning approach.
CO3:	Apply the linear algebra and probability concepts to understand the development of different
	machine learning techniques.
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical
	problems.

Refere	ence Books
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,
1	2020, Cambridge University Press.
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge
2	Press, ISBN: 0692196382, 9780692196380.
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-
5	978-81-203-4160-9.
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd
-+	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

				V Semester						
	ENGINEERING ECONOMY									
	(GROUP B: GLOBAL ELECTIVE)									
~		T		(Theory)						
Cours	e Code	:	18G5B18		E	:	100 Marks			
Course Code : 18G5B02 SEE						:	100 Marks			
Total]	Total Hours : 39L SEE Duration : 03 Hours									
Cours	e Learning	g 0	bjectives: Stud	lents are expected to						
1.	To inculc	ate	an understandi	ng of concept of money and its impor	tance in the ev	alu	ation of			
	projects.									
2.	Analyze t	he	present worth c	f an asset.						
3.	Evaluate	the	alternatives bas	sed on the Equivalent Annual Worth.						
4.	Illustrate	con	cept of money	and its importance in evaluating the r	projects.					

	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engine	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Future	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR misco	nceptions,
Problems	
riobenis.	
Unit – IV	06 Hrs
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in	06 Hrs adequacy,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems.	06 Hrs adequacy,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	06 Hrs adequacy,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V	06 Hrs adequacy, 06 Hrs
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges,	06 Hrs adequacy, 06 Hrs Exercises,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – IV Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems.	06 Hrs adequacy, 06 Hrs Exercises,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems. Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	06 Hrs adequacy, 06 Hrs Exercises, s.
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems. Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysi	06 Hrs adequacy, 06 Hrs Exercises, s.
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems. Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysi Course Outcomes: After going through this course the student will be able to	06 Hrs adequacy, 06 Hrs Exercises, s.

	1	e
CO 2:	Compare the alternatives using different comp	bound interest factors, Select a feasible alternative
	based on the analysis.	
CO 3:	Formulate a given problem for decision making	ng

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Referen	Reference Books:							
1.	Engineering Economy, Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5							
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN - 81-							
	203-1743-2.							
3.	Cost Accounting, Khan M Y, 2nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248							
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna							
	Publishers, ISBN 8174091009							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

	Se	emester: VI			
INTELLECTU	JAL PROPERTY	RIGHTS AND I	ENTREPRENEURS	SHI	Р
		(Theory)			
Course Code : 18E	HSI61		CIE	:	100 Marks
Credits: L:T:P : 3:0	:0		SEE	:	100 Marks
Total Hours : 381	· · · · · · · · · · · · · · · · · · ·		SEE Duration	•	03 Hrs
Course Learning Objective	• •• The students w	ill be able to	SLL Durution	•	00 1115
1 To build among on the	tes. The students w	f IDD and to huild	the menomentioned and	410 0	
1 10 build awareness on u		of IPK and to build	the perspectives on	the	concepts and
to develop the linkages i	in technology inno	vation and IPR.			
2 To encourage innovation	n, invention and in	vestment and disc	losure of new Techr	olog	gy and to
recognize and reward in	novativeness				
3 To motivate towards ent	trepreneurial caree	ers and build stron	g foundations skills	to er	nable starting,
building and growing a	viable as well as s	ustainable venture			-
4 Develop an entrepreneur	rial outlook and mi	nd set along with a	ritical skills and kno	wlea	dge to manage
+ Develop an endeprened		nd set along with c	filled skins and kno	WICC	ige to manage
TISKS associated with ent	repreneurs.				
[T T •	4 T			00 11
					08 Hrs
Introduction: Types of Inte.	ellectual Property,	WIPO		1	1
Patents: Introduction, Scope	e and salient leatu	res of patent; pate	intable and non-pate	ntab	ole inventions,
Patent Procedure - Overview	, Transfer of Paten	t Rights; Biotechn	ology patents, protec	tion	l of traditional
Knowledge, Intringement of	patents and remed	ly, Case studies			
Trade Secrets: Definition, S	Significance, 1001	s to protect 1 rade	secrets in India.		00 11
Trada Marka Concert for	Unit	- II + 1-in do ou d formero	of Trodo montro. Do		U8 Hrs
I rade Marks: Concept, Iun	iction and differen	t kinds and forms	of Trade marks, Reg	gistr Grad	able and non-
Label Dessing off Lufringen	101 OI Trade Mar	k; Deceptive simi	larity; Transfer of T	rad	e Mark, ECO
Label, Passing off, Infringement of Trade Mark with Case studies and Remedies.					
Industrial Design. Introduc	UIIIt	-III Designa Fosture	of Industrial Dasi	~	Drogoduro for
abtaining Design Protection	Development Infra	Designs realures	odiog. Casa studiog	gn. 1	
Conv Dight: Introduction	Noture and scope	Dights conformed	by conviriant Conv	z rio	the protection
transfer of conv rights right	of broad casting of	rganizations and r	orformer's rights Ex	/ 11g	tions of Conv
Right Infringement of Copy	v Right with case s	tudios	chonner s rights, E	мер	copy
Intellectual property and	expersion Free	rance of other o	rime: Meaning and	diff	erent types of
cybercrime Overview of Inf	formation Technol	ogy Act 2000 and	IT Amendment Act	2005	2
cybererinie. Overview of hir	Unit	IV		2000) 06 Hrs
Introduction to Entreprene	ourshin _ Learn h	- I v ow entrepreneursk	in has changed the y	vorl	d Identify six
entrepreneurial myths and ur	ncover the true fac	ts Explore E-cells	s on Campus	VOID	d. Identify Six
Listen to Some Success Sto	ries - Global lege	nds Understand h	ow ordinary neonle b	Neco	me successful
global entrepreneurs their	journeys their cl	hallenges and th	eir success stories	Un	derstand how
ordinary people from their or	wn countries have	become successfi	il entrepreneurs	On	derstand now
Characteristics of a Succes	ssful Entrenrener	r Understand the	entrepreneurial jour	mev	and learn the
concept of different entrepr	eneurial styles Id	lentify your own	entrepreneurshin sty	ile h	and learn the
personality traits strengths	s and weakness	es Learn about	the 5M Model e	ach	of the five
entrepreneurial styles in the	model and how t	hev differ from e	ach other Commun	icat	e Effectively:
Learn how incorrect assume	ntions and limiting	y our opinions ab	out people can nega	tive	ly impact our
communication Identify	the barriers w	hich cause cor	nmunication break	dow	n such as
miscommunication and poor	r listening and lear	rn how to overcon	ne them	u0 //	n, such us
Communication Best Pract	tices. Understand	the importance of	listening in commu	nica	tion and learn
to listen actively Learn a fe	ew body language	cues such as eve	contact and handsha	ikes	to strengthen
communication (Practical A	(nonlication)	caes such as eye	contact and nandolit		to strongthen
	Unit	-V			07 Hrs
Design Thinking for Custo	mer Delight: - Un	derstand Design T	hinking as a problen	n-so	lving process.

Design Thinking for Customer Delight: - Understand Design Thinking as a problem-solving process. Describe the principles of Design Thinking. Describe the Design Thinking process.

Sales Skills to Become an Effective Entrepreneur: - Understand what customer focus is and how all selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur? Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Reference Books

- Law Relating to Intellectual Property, Wadehra B L, 5th Edition, 2012, Universal Law Pub Co. Ltd.-Delhi, ISBN: 9789350350300
- Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
- **3.** Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
- **4.** Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the									
	purview of engineering domain.									
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to									
	Intellectual Property Rights with the utility in engineering perspectives.									
CO3:	Enable the students to have a direct experience of venture creation through a facilitated learning									
	environment.									
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that									
	entrepreneurs use to succeed in real life.									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

	Semester: VI									
	TURBOMACHINERY									
	(Theory & Practice)									
Cou	irse Code	:	18ME62		CIE	:	100 + 50	Marks		
Cre	dits: L:T:P	:	3:1:1		SEE	:	100 + 50	Marks		
Tot	al Hours	:	39L + 26T + 32.5P		SEE Duration	:	03 + 03 H	lours		
Cou	irse Learning	Ob	jectives: The students wi	ll be able	to					
1	1 Classify and analyze different types of turbo machines									
2	Evaluate ener	rgy	transfer in turbo machine	es.						
3	Perform basic	c de	esign calculation for powe	er absorbi	ng and generating	turbo	machines.			
4	Perform expe	rim	ents on hydraulic turbine	s and pun	ps to evaluate the	perf	ormance.			
			Unit-	Ι				06 Hrs		
Tur	Turbo Machinery:									
Intro	Introduction to fluid machines, Classification, Comparison with positive displacement machines,									
Dim	nensional analy	vsis,	, Dimensionless paramete	ers and the	eir physical signifi	canc	e; Specific	speed; One		
dim	ensional analy	sis	and model studies, Num	nerical pro	blems. Basic Eule	er tu	rbine equat	ion and its		
alter	alternate forms. Components of energy transfer. General expression of degree of reaction. Construction									

of velocity triangles for different values of degree of reaction, Relation between degree of reaction and utilization factor, Numerical problems
Unit-II
10 Hrs

Compression Process:

Overall isentropic efficiency of compression, Stage efficiency, Comparison and relation between overall efficiency and stage efficiency; Polytropic efficiency and pre-heat factor, Numerical

Expansion Process

Overall isentropic efficiency for a turbine, Stage efficiency for a turbine, Comparison and relation between stage efficiency and overall efficiency for expansion process; Polytropic efficiency for expansion process and reheat factor for expansion process, Numerical

Unit-III10 HrsCentrifugal Pumps:Definition of terms used in the design of centrifugal pumps like manometric head, suction head,
delivery head, manometric efficiency, hydraulic efficiency, volumetric efficiency, overall efficiency,
multi-stage centrifugal pumps.

Centrifugal Compressors

Expression for overall pressure ratio, Width and blade angle at impeller inlet and outlet, Slip factor and power input factor, Surging and its control.

Unit-IV07 HrsAxial Flow Compressor:Classification, expression for stage pressure ratio, work done factor, radial equilibrium conditions,
determination of air angle distribution with respect to blade height using free vortex flow theory. Steam
Turbine: Impulse and reaction turbines, velocity and pressure compounding; condition for maximum
utilization factor for multi stage turbine with equiangular blades, effect of blade and nozzle losses

Hydraulic Turbines:

Pelton wheel, velocity triangle, bucket dimensions, turbine efficiency; Francis and Kaplan Turbines, Velocity triangles, Effect of rotational speed on blade shape, Draft tubes and their function, Types of draft tube.

Unit-V

06 Hrs

PART – B- LABORATORY	
TURBOMACHINES LABORATORY	32.5 Hrs

1. **Performance Testing of Turbines:** Pelton, Francis and Kaplan Turbines

2. **Performance Testing of Pumps:** Single and Multistage Centrifugal pump, Reciprocating Pump, Gear pump, Air blower

Course Outcomes: After completing the course, the students will be able to									
CO1:	Explain working principles of turbines and compressors.								
CO2:	Analyze the characteristics of power absorbing and generating turbo machines.								
CO3:	Evaluate performance of turbo machines.								
CO4:	Discuss selection of turbo machine for industrial application.								

Reference Books

1.	Principles of Turbo Machinery, Shephered.D.G, 10th Edition, 2009, McMillan Company,
	ISBN: 078623241-2
2.	Turbine Compressors and Fans, Yahya. S.M., 2 nd Edition, 2002, Tata McGraw Hill,
	ISBN: 99862228-0
3.	Introduction to Energy Conversion, Kadambi and Manohar Prasad, 7th Edition, 2003,
	Wiley Eastern, ISBN: 765329176-x
4.	A Treatise on Turbo Machines, Gopalakrishna G and Prithviraj D, 3rd Edition, 2002, SciTech
	Publications, ISBN: 8793452172-1

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average marks (AM) over a number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab is rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30 (AM) + 10 (T) + 1 (IE) = 50 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

Scheme of the semester, End examination (SEE); Practice Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks: Total SEE for the laboratory is 50 marks

Semester End Evaluation (SEE) Theory (100 Marks) + Practical (50 Marks) Total 150 Marks

CO-PO Mapping

RV College of Engineering – Bengaluru – 59

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	1	-	-	-	-	-	-	-
CO2	3	3	-	2	1	-	-	-	-	-	-	-
CO3	3	3	-	2	1	-	-	-	-	-	-	-
CO4	3	3	-	2	1	-	-	-	-	-	-	-
Semester: VI												
---------------------------------	----------------	------	-----------------------------	------------------------------	----------------------	-------	------------------	--				
DESIGN OF MACHINE ELEMENTS - II												
			(Theory	\mathbf{x} Practice	ce)							
Cour	se Code	:	18ME63		CIE	:	100 + 50 Marks					
Credits: L:T:P		:	3:1:1		SEE	••	100 + 50 Marks					
Tota	l Hours	:	39L + 26T + 32.5P		SEE Duration	••	03 + 03 Hours					
Cour	rse Learning ()bj	ectives: The students wi	ll be able to)							
1	Describe the	fun	ctions of various mechan	nical eleme	nts in a machine.							
2	Explain the re	elat	ion between properties a	nd dimensi	ions of components	s						
3	Analyse and	qua	antify the forces, stresse	es and relat	ted parameters wh	ich	are necessary to					
	design shafts,	, co	uplings, keys & joints,									
4	Demonstrate	abi	lity to develop designs for	or various r	nechanical compo	nent	8					
5	Select a suita	ble	rolling element or slidin	g contact b	earings for differen	nt ap	plications.					

Unit-I06 HrsDesign of Curved Beams:Difference between straight beam and curved beams, stresses in straight beam and curved beam, derivation of bending stress equation for curved beam, problems on crane hook, punching presses, clamps (symmetric and unsymmetrical Sections), closed rings.10 Hrs

Design of Springs: Types of spring, stresses in helical compression springs subjected to steady loads, deflection in helical springs - Circular,& Non circular sections, Design semi elliptic automobile leaf springs, Equalization of stresses (Nipping) of leaf springs

Design of Clutches and Brakes:

Clutches: Torque transmitting capacity, Types, uniform wear and pressure theory, friction, bearing pressure, single and multi-plate clutches.

Brakes: Energy absorbed by brake, materials of brake, pivoted block or shoe brake, simple and differential band brake

Unit-III10 HrsDesign of Spur & Helical Gears:Spur Gears: Terminology, Stresses in Gear Tooth, Lewis Equation, Form Factor, Design for
Strength, Dynamic Load and wear load, material selection for different velocity ratios, types of tooth
systems

Helical Gears: Virtual number of teeth, design based on strength, dynamics and wear loads, normal and transverse pitch, module, Herringbone gears, different forces on helical gear teeth

Unit-IV						
Design of Bevel & Worm Gears:						
Bevel Gear: Definition, Formative Number of Teeth, Design based on Strength, Dynamics a	nd Wear					
Loads, Cone Pitch Angle, Back Cone Radius, Acute, Obtuse and right angle bevel gears Worn						
Gears: Definition, Specifications of worm gears, efficiency of worm gear drives, self-lo	cking of					
worm gear drives.						
Unit-V	07 Hrs					
Lubrication & Bearings: Basic modes of lubrication, viscosity, properties of lubricant, Petroff's						

Lubrication & Bearings: Basic modes of lubrication, viscosity, properties of lubricant, Petroff's equation, bearing materials, Sommerfeld number, bearing modulus, Coefficient of friction, Minimum oil film thickness, Heat generated and dissipated. **Anti-friction Bearings** - Materials, types, ball and roller bearings, static and dynamic capacity, equivalent load, selection based on rated life and application

PART B – LABORATORY	Y —
DESIGN LABORATOR	Y
SECTION – I	15 Hrs

- 1. Determination of Principal Stresses & Strains using strain rosette analysis.
- 2. Determination of Fringe Constant Circular and Rectangular Specimens
- 3. Determination of Stress Concentration Factor using Photoelasticity.

17.5 Hrs

4. Pressure distribution around journal bearing.

SECTION - II

- 5. Balancing of rotating masses using force and coupling polygons.
- 6 Determination of Equilibrium speed of Porter & Hartnell governors.
- 7 Determination of gyroscopic couple and its effect using Motorized gyroscope

Course Outcomes: After completing the course, the students will be able to

001	within realistic constraints. (L1 & L2)
CO1:	Understand basic procedure to design a system component, or process to meet desired needs

- **CO2:** Select suitable material and size for design of components in machines. (L3 & L4)
- **CO3:** Identify, explain, formulate, and solve design engineering problems. (L5)
- **CO4:** Analyse forces and stresses within a mechanical system. (L6)

Refere	ence Books
1.	Bhandari.V.B. 'Design of Machine Elements', Tata McGraw Hill Publishing Company Ltd.,
	2 nd Edition; ISBN: 9780070611412.
2.	Shigley J.E, Mischke.C.R., 'Mechanical Engineering Design', McGraw Hill International, 6th
	Edition, ISBN: 0070494620
3.	Spotts.M.F, Shoup.T.E, Hornberger.L.E, Jayram.S.R., Venkatesh C.V., 'Design of Machine
	Elements', Pearson Education, 8th Edition; ISBN-9788177584219
4.	James W. Dally "Experimental stress analysis" McGraw-Hill; 2 nd Edition, 1978, ISBN-13:
	978-0070152045
5.	L S Srinath, Mr Raghavan, K Lingaiah, G Gargesha, B Pant, K Ramachandra, "Experimental
	Stress Analysis Tata McGraw Hill Education 1984 ISBN-13-9780074519264

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from the three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average marks (AM) over a number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab is rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30 (AM) + 10 (T) + 1 (IE) = 50 Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

Scheme of the semester, End examination (SEE); Practice Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks: Total SEE for the laboratory is 50 marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	3	1	-	-	-	-	-
CO2	3	3	3	3	2	3	3	-	-	-	-	-
CO3	3	3	3	3	-	-	-	-	-	-	-	-
CO4	3	3	3	3	1	3	1	-	-	-	-	-

Semester End Evaluation (SEE) Theory (100 Marks) + Practical (50 Marks) Total 150 Marks

High – 3: Medium – 2: Low – 1

Semester: VI										
				Minor Project						
Cours	se Code	:	18ME64		CIE : 50 M		50 Marks			
Credi	ts: L:T:P	:	0:0:2	SEE : 50 Ma		50 Marks				
Hours		:	26P		SEE Duration	:	02 Hours			
Cours	e Learning (Obj	ectives: To enabl	e the students to:						
	Knowledge	e Aj	oplication: Acqui	re the ability to make links	s across different ar	eas	of knowledge			
1	and to gene	and to generate, develop and evaluate ideas and information so as to apply these skills to the								
	project task	•								
2	Communic	ati	on: Acquire the s	kills to communicate effe	ectively and to pres	sent	ideas clearly			
2	and coheren	ntly	to a specific audi	ence in both the written a	nd oral forms.					
3	Collaborat	Collaboration: Acquire collaborative skills through working in a team to achieve common								
5	goals.									
1	Independe	nt]	Learning: Learn	on their own, reflect on	their learning and	tak	e appropriate			
4	action to improve it.									

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course O	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Interpreting and implementing the project in the chosen domain by applying the concepts								
	learnt.								
CO 2:	The course will facilitate effective participation by the student in team work and development								
	of communication and presentation skills essential for being part of any of the domains in his								
	/ her future career.								
CO 3:	Appling project life cycle effectively to develop an efficient product.								
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area or								
	carry out research work in an industrial environment.								

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, Problem	10M
	definition, Literature review, formulation of objectives, methodology	
II	Mid-term evaluation to review the progress of implementation, design,	15M
	testing and result analysis along with documentation	
III	Submission of report, Final presentation and demonstration	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl.	Evaluation Component	Marks
No.		
1.	Written presentation of synopsis:	5M
	Write up	
2.	Presentation/Demonstration of the	15M
	project	
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	1	2	2	2	2	2
CO2	3	3	3	3	2	2	1	2	2	2	2	2
CO3	3	3	3	3	2	2	1	2	2	2	2	2
CO4	1	1	1	1	1	1	1	2	1	2	1	1

High – 3: Medium – 2: Low – 1

Semester: VI										
				INTERNET OF THI	INGS					
(Elective C: Professional Elective)										
(Common to All Branches)										
Cou	rse Code	:	18CS6C1		CIE Marks	:	100			
Crea	lits: L:T:P	:	3:0:0		SEE Marks	: 100				
Tota	l Hours	:	39L		SEE Duration	:	3 Hrs			
Cou	rse Learning	g Obj	jectives: The st	udents will be able to						
1.	Understand	desi	gn principles in	Iot, edge, fog comput	ing and its challeng	es				
2.	Identify the	Inte	rnet Connectivi	ty, security issues and	its protocols					
3.	Explore and	d imp	plement Internet	t of Things (IoT) and N	New Computing Par	adig	ms			
4.	Apply and Clouds	anal	yse the Orches	tration and resource r	nanagement in IoT	, 5G	, Fog, Edge, and			
				TT *4 T			00 11			
Inter	mat of Thing	c Str	atagic Rassarch	Unit – I	a Internet of This	as V	U8 Hrs			
Dog	net of Thing	s Sui	ion Directions	International International International International	reat of Things and	gs v Dale	Ision, 101 Sualegic			
Taal	nologios In	iovai fronti	non Directions,	to 1 Applications, inte	n Processes Date	Mor	accompant Socurity			
Driv	mologies, m	Dovi	ice Level Eperg		n, Processes, Data	Mai	lagement, Security,			
FIIV	acy & Trust,	Devi	ice Level Ellerg	y issues			09 Ung			
Inter	met of Thing	s Star	ndardisation	Status Requirements	Initiatives and Orga	nica	tions - Introduction			
M2N	A Service I a	ver (Standardisation	OGC Sensor Web for	· IoT IFFF and IF	IIISA FF I	TL-T Simpler IoT			
Wor	rd(s) of Tom	orrou	v More Interon	erability Challenges to	Cope Today - Phy	11,1 /sica	1 v/s Virtual Solve			
the	Rasic First _	- Th	e Physical Wor	d The Data Interoper	ability. The Semant	ic Ir	teroperability The			
Org	anizational In	teror	perability The F	e, The Data Interoperability	The Importance of	Star	ndardisation — The			
Beg	inning of Eve	ervth	ing.	interoperatinty	, The importance of	bu				
-0	0	<u> </u>	6	Unit – III			08 Hrs			
Inte	rnet of Thin	gs Pi	rivacy, Security	y and Governance – I	ntroduction, Overvi	ew o	f Activity Chain —			
Gov	ernance, Pri	vacy	and Security	Issues, Contribution	from FP7 Project,	Sec	curity and Privacy			
Cha	llenge in Dat	ta Ag	gregation for t	he IoT in Smart Citie	s-Security, Privacy	and	Trust in Iot-Data-			
Plat	forms for Sm	art C	Cities, First Step	s Towards a Secure Pla	atform, Smartie Ap	proa	ch			
			<u>^</u>	Unit – IV		-	08 Hrs			
Inte	rnet of Thin	gs (I	oT) and New (Computing Paradigms	s Fog and Edge Cor	nput	ing Completing the			
Clou	ıd, Advantag	es of	FEC: SCALE,	How FEC Achieves, 7	These Advantages: S	SCA	NC 9, Hierarchy of			
Fog	and Edge Co	mpu	ting, Business N	Models,						
Add	ressing the	Cha	allenges in Fe	derating Edge Reso	ources, The Netwo	orkir	ng Challenge, The			
Management Challenge, Integrating IoT + Fog + Cloud.										
Unit – V 07 Hrs										
Mar	nagement an	nd O	rchestration of	f Network Slices in \pounds	5G, Fog, Edge, an	d C	louds Introduction,			
Background, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network Slicing										
Management in Edge and Fog										
Cou	rse Outcom	es: A	fter completin	g the course, the stud	ents will be able to)				
CO	1: Underst	and	and Explore In	ternet of Things (IoT)	with New Comput	ing	Paradigms like 5G,			
1	Fog, Edge, and Clouds									

	applications
CO 4:	Propose IoT-enabled applications for building smart spaces and services with security
	features, resource management and edge computing

Refere	ence Books:
1.	Internet of Things: Converging Technologies for Smart Environments and Integrated
	Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers, 2013ISBN: 978-87-
	92982-73-5(Print) ISBN: 978-87-92982-96-4(E-Book).
2.	Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya, Satish Narayana
	Srirama, 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, 2017, TMH Publications,
	ISBN:9789352605224.
4.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M
	Communications, Daniel Minoli, 1st Edition, 2013, Willy Publications, ISBN: 978-1-118-
	47347-4

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	2	2	-	-	1	-	2
CO2	2	2	1	1	-	2	2	-	1	1	-	3
CO3	1	2	1	1	-	2	2	-	1	1	-	2
CO4	1	2	2	2	-	3	3	1	2	2	-	3

Semester: VI									
	GAS DYNAMICS & COMBUSTION								
			(Elective-C: PR	OFESSIONA	L ELECTIVES)				
Course C	Code	:	18ME6C2		CIE	:	100 Marks		
Credits:	L:T:P	••	3:0:0		SEE	:	100 Marks		
Total Ho	Total Hours:39LSEE Duration:03 Hours						03 Hours		
Course L	earning Ol	ojeo	tives: The students	s will be able to)				
1	Differenti	ate	between compress	ible and incom	pressible flows				
2	Explain th	ne i	nfluence of parame	etric changes of	n gas flows				
3	Evaluate	gas	flows at subsonic a	and supersonic	conditions				
4	4 Apply the fundamentals laws in analysis of compressible fluid flow								
5	Understar	nd f	undamental physic	s and chemistr	y of combustion pr	oces	S		
1Differentiate between compressible and incompressible flows2Explain the influence of parametric changes on gas flows3Evaluate gas flows at subsonic and supersonic conditions4Apply the fundamentals laws in analysis of compressible fluid flow5Understand fundamental physics and chemistry of combustion process									

Unit-I

FUNDAMENTAL EQUATIONS OF STEADY FLOW:							
Difference between incompressible fluid flow with compressible fluid flow. Continuity and momentum							
equations, the thrust function, the dynamic equation and Euler's Equation. Bernoulli's Equation.							
Steady State Steady flow energy equation.							
Unit-II	10 Hrs						
ISENTROPIC FLOW: Acoustic velocity, Mach number, Mach cone and Mach ang	le. Flow						
parameters, stagnation temperature, pressure, and density.							
VARIABLE AREA FLOW: Velocity variation with isentropic flow, Criteria for acceleration	on and						
deceleration. Effect of pressure ratio on Nozzle operation. Convergent nozzle and convergent	divergent						
nozzle. Effect of back pressure on nozzle flow. Isothermal flow functions. Comparison of flow	w in						
nozzle. Generalized one dimensional flow.							
UNIT-III	10 Hrs						
WAVE PHENOMENA: Classification of wave phenomena, analysis of shock phenomena, 1	Hugoniot						
equation. Weak waves, compression waves, Normal shock waves, oblique shock waves,	Entropy						
considerations, Rayleigh Pilot equations, detonation and deflagration.							
FLOW WITH FRICTION: The fanning equation, Friction factor and friction parameter, Fanno line,							
Fanno equations, Stagnation temperature change. Rayleigh line, Pressure ratio and temperat	ure ratio,						
Entropy considerations, maximum heat transfer.							
UNIT-IV	06 Hrs						

BASICS OF COMBUSTION:

Stoichiometry, Chemical Equilibrium, Thermo-Chemistry, Basic reactor Kinetics, Elementary Reactions, Chain Reactions, Multi-Step Reaction.

UNIT-V

PHYSICS OF COMBUSTION:

Laws of transport mechanism, premixed flames, ignition and flame stabilization and extinction, combustion control, co-ordinate master control, Combustion and Emission, Atmosphere, Chemical Emission from Combustion, Quantification of Combustion, Control of Emission & environment effects.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Understand and develop ability to explain gas dynamics relations							
CO2:	Apply engineering concepts to arrive at solutions.							
CO3:	Analyse and evaluate a given situation for find optimal solutions.							
CO4:	Develop an ability to predict performance of a system							

06 Hrs

07 Hrs

Refe	rence Books
1.	Gas Dynamics, 3 rd Edition, Author: James EA John, Publisher: Pearson, ISBN-13 : 978-0131206687
2.	Elements of Gas Dynamics, Author: HW Leipmann, Publisher: Dover Publications, ISBN-13 : 978-0486419633
3.	Applied Gas Dynamics, 2 nd Edition, Author: E Rathakrishnan, Publisher:Wiley, ISBN : 9781119500452, 9781119500452
4.	An Introduction to Combustion: Concepts & Application, 3 rd Edition, Publisher: Mc Graw Hills, ISBN-13: 978-1259025945

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	-	-	1	-	-	-
CO2	3	3	3	3	2	1	1	-	-	-	1	-
CO3	3	3	3	3	1	1	-	2	-	1	-	-
CO4	3	3	3	3	1	1	-	-	-	-	-	-

	Semester: V								
	FOUNDATIONS OF MECHATRONICS								
			(Elective-C: PF	ROFESSIONA	L ELECTIVES)				
Cour	se Code	:	18ME6C3		CIE	:	100 Marks		
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	l Hours	:	39L		SEE Duration	:	03 Hours		
Cour	rse Learning ()bj	ectives: The student	ts will be able t	0				
1	To understan	d tł	ne components of n	nechatronic sys	tems and working	of s	ensors applicable for		
	mechatronics	•							
2	To explain th	e w	orking of electrical	motors, amplif	iers, plc, and micro	ocon	trollers.		
3	To interface s	sens	sors and actuators w	vith microcontro	ollers				
4	4 To write the ladder logic programs for different practical applications								
5	To evaluate b	oasi	c performance parai	meters for first	and second order s	ystei	ms.		

Unit-I	07 Hrs
Overview of Mechatronic Systems	
Traditional and mechatronic design, automatic washing machine, automatic door, copy machin camera and temperature control. Principle and working of hall sensor, displacement sensor, lin	ne, nit switch
and reed switch, absolute and incremental encoders, photoelectric sensors, inductive and capac proximity sensors- industrial applications.	citive

Electrical Actuation Systems	
------------------------------	--

Brushless DC, AC and servo motors, pulse width modulation by basic transistor circuit, H bridge circuit, Stepper motor: variable reluctance and permanent magnet, stepper motor control circuits, selection of motors

Unit-II

Signal Conditioning

Operational Amplifiers - circuit diagrams and derivation – (Numericals), Instrumentation amplifier, filtering, multiplexers, 4:1 MUX, time division multiplexing -seven segment display, data acquisition, Analog to digital converters (Numericals). Digital signal processing – continuous and discrete time signals, mappings from s plane to z plane, difference equation (Numericals using recursive algorithm).

Unit-III **Digital circuits**

Digital representations, Logic gate operations and representations, Combinational logic circuits, K Map technique, Binary to gray code conversion, timing diagrams, design of logic networks, Sequential logic – flip flops, counters.

Microcontrollers and Programmable logic Controllers

Components of a full featured microcontroller, Architecture of Intel 8051 microcontroller, Pin diagram, simple programming for a microcontroller. – Data transfer, arithmetic functions, logical operations, Jump and branching operation. Components of PLC, principles of operation, concept of latching and ladder diagram, basic program instructions, timers and counters.

Unit-IV 07 Hrs Programming of PLCs for industrial applications using Allen Bradley controller

Examples with ladder logic programs, simple programs using Boolean logic, word level logic instructions. Central heating system, valve sequencing, traffic light control in one direction, drilling process, water level control, overhead garage door, sequential process, continuous filling operation, Fluid pumping with timers, parking garage counter, Can counting in assembly line.

08 Hrs

10 Hrs

	Unit-V	07 Hrs					
Dyna Close secon	Dynamic Responses of Systems Closed loop system, Terminology, first order systems, second order systems, performance measures for second order systems, systems identification - Numerical Problems						
Cour	se Outcomes: After completing the course, the students will be able to						
1	Select appropriate sensors and transducers and devise an instrumentation system for co	ollecting					
	information about processes						

2	Apply the electrical and logic concepts and inspect the functioning of mechatronic systems.
3	Evaluate a control system for effective functioning of Mechatronics systems using digital

electronics.	microprocessors.	microcontrollers	and programmab	le logic	controllers
ciccuonics,	meroprocessors,	merocontroners	and programmad	ic logic	controllers

4 Develop conceptual design for Mechatronics products based on potential customer requirements

Reference Books

Iterer en	Le Doord
CO1:	Nitaigour Premchand, 'Mechatronics-Principles, Concepts & Applications', TMH, 1st
	Edition, 2009, ISBN: 9780070483743
CO2:	Bolton W., 'Mechatronics-Electronic Control System in Mechanical and Electrical
	Engineering', Pearson Education, 4th Edition, 2012; ISBN:9788131732533
CO3:	Tilak Thakur 'Mechatronics', Oxford University Press, 1st Edition, 2016, ISBN 978-0-
	19-945932-9
CO4:	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4 th
	Edition, 2013, ISBN-13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	2	-	-	-	-	-	-	-	2	
CO2	3	3	-	-	-	-	1	-	-	-	1	-	
CO3	3	2	2	-	2	2	1	2	-	2	-	-	
CO4	1	-	3	2	-	3	-	-	3	1	_	_	

	Semester: VI									
	ADVANCED MECHANISMS DESIGN									
			(Elective-C: PR	ROFESSIONAL	L ELECTIVES)					
Cour	Course Code:18ME6C4CIE:100 Marks									
Cred	Credits: L:T:P : 3:0:0 SEE : 100 Marks									
Tota	Total Hours:39LSEE Duration:03 Hours									
Cour	rse Learning ()bj	ectives: The student	ts will be able to)					
1	Understand	for	ce sand links in mec	chanisms and de	sign criteria					
2	2 Analyze mechanisms graphically and analytically									
3	3 Synthesize and design links and mechanisms									
4	Analyse kin	em	atics of spatial mech	nanisms in Robo	tics					

	Unit-I	06 Hrs
Introduction:		

Introduction to kinematics and mechanisms, motion, The Four-Bar Linkages, The Science of Relative Motion, Kinematics diagram, Degrees of freedom, Degree of Freedom, planar, Spherical and Spatial Mechanism, Kinetic inversion, Grashof's Law, Mechanical Advantage. Equivalent mechanism, Analysis Versus Syntheses, Problems

Unit-II	10 Hrs
Synthesis of Mechanisms- Analytical Method: Type, Number and Dimensional Synthesis,	, Function
Generation, path Generation and Body Guidance, Design of a slider-crank mechanism, Four	-bar crack
rocker mechanism, Crank-Rocker mechanism with optimum Transmission Angle,	
Dragistion noints for Eulertian Constantian Structural Error Chabyshay Specing Error	dometain's

Precision points for Function Generation, Structural Error, Chebychev Spacing, Frudenstein's Equation for both four bar and slider-crank mechanism, Bloch's Method of Synthesis Analytic Complex Number Modeling in Kinematic Synthesis, Problems

Unit-III	10 Hrs
Synthesis of Mechanisms-Graphical Method: Dead Centre problems (Slider-crank ar	nd Crack-
Rocker mechanisms), Synthesis of a Quick-Return Mechanisms, Crank-Rocker Mechani	sms with
optimum Transmission Angle, Three-position Synthesis, Four-Position Synthesis (Poin	t-Position
Reduction)	

The Overlay Method, Motion Generation Mechanism coupler as the output (two positions, Three position), Coupler-Curve Synthesis (two position, Four positions, Five position), Rober-Chevschev synthesis, Pole, Relative pole, Synthesis of Four bar and slider crank mechanism (Two position and Three position), Problems

Unit-IV 07 Hrs Synthesis of Spatial Mechanism: Introduction, Exceptions in the Mobility of Mechanisms, The Position-Analysis Problem, The Eulerian Angles, introduction to Robotics, Topology arrangements of robotic arms, Forward Kinematics, Invrse Position Analysis, Inverse Velocity and Acceleration Analyses. Unit_V

	00 1115
Curvature Theory: Introduction, Fixed and Moving Centrodes, Velocities, Accelerations,	Inflection
Points and the Inflection Circle, The Euler-Savary Equation	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explain forces and links in mechanisms using design criteria								
CO2:	Analyze mechanisms graphically and analytically								
CO3:	Synthesize and design links and mechanisms								
CO4:	Analyse kinematics of spatial mechanisms in Robotics								

06 Hrs

Refe	rence Books
1.	George N Sandoor / Arthur G. Erdman, Advanced Mechansim Design Analysis and Synthesis
	(Vol.2), (2010), ISBN 0-13-011437-5
2.	John J Uicker Jr. Gordon R. Pennock, Joseph E. Shigley, Theory of Machines and
	Mechanisms, 3 rd Edition, Oxford University Press. (2003)
3.	Kinematics and Dynamics of Machines, R.L.Nortron, Mc Graw Hill, 2017, Edition,
	ISBN:9789351340201
4.	N.G.Sandorand, G.A.Erdman, Advanced Mechanism Design, Vol.2, Prentice Hall, 1984, 3rd
	Edition,ISBN-13: 978-0130408723ISBN-10: 0130408727
5.	A Ghoshand A K Mallik, Theory of Mechanism and Machines, EWLP, Delhi, 2008, Edition,
	ISBN:9788185938936
6	C E Wilson, Kinematics and Dynamics of Machinery, Pearson Publications, Year, 3 rd Edition,
	ISBN:0201350998

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	2	3	1	-	2
CO2	3	3	3	2	2	1	1	2	3	-	-	2
CO3	2	3	3	3	2	1	1	-	1	2	-	1
CO4	3	2	3	2	2	1	-	-	2	1	-	1

Semester: VI								
	ADVANCED MANUFACTURING PROCESSES							
(Elective-C: PROFESSIONAL ELECTIVES)								
Course Code : 18ME6C5 CIE : 100 Marks							100 Marks	
Credits: L:T:P		••	3:0:0		SEE	:	100 Marks	
Total Hours		••	39L		SEE Duration	:	03 Hours	
Cour	Course Learning Objectives: The students will be able to							
1	Classify and	ana	lyse Hybrid Non-tra	aditional Machin	ning Processes			
2	Understand a	nd	apply principles cor	ncerned with Hy	brid Non-tradition	nal M	lachining processes to	
	machine engi	nee	ring materials.					
3	Understand,	ana	lyse the concepts u	used in High Ei	nergy Rate Formi	ng to	o shape high strength	
	materials.							
4	Classify and	exp	lain the working pri	nciple of Lithog	raphy and apply to	the	real time applications.	
5	Classify and	exp	lain the working pr	inciples of Rapi	d Prototyping and	appl	y to the real time	
	applications.							

Unit-I	06 Hrs						
Brief Introduction to Non-Traditional Machining Processes:							
Hybrid Non-Traditional Machining: Working Principle, Material Removal, Process Characteristics and							
Applications of Hybrid Chemical and Electrochemical Processes - Introduction, Elec	Applications of Hybrid Chemical and Electrochemical Processes – Introduction, Electrochemical						
Grinding (ECG), Electrochemical Honing (ECH), Electrochemical Superfinishing	ng (ECS),						
Electrochemical Buffing (ECB), Ultrasonic-Assisted ECM (USMEC), Laser-Assisted ECI	Electrochemical Buffing (ECB), Ultrasonic-Assisted ECM (USMEC), Laser-Assisted ECM (ECML),						
Electrochemical Discharge Machining or Electrochemical Spark machining (ECDM or ECS	5M).						
Unit-II	10 Hrs						
Working Principle, Material Removal, Process Characteristics and Applications of Hybr	id Thermal						
Processes - Introduction, Electro-erosion Dissolution Machining (EEDM), Electro-discharg	ge Grinding						
(EDG), Abrasive Electro-discharge Grinding (AEDG), Abrasive Electrical Discharge	Machining						
(AEDM), EDM with Ultrasonic Assistance (EDMUS), Electrochemical Discharge Grindin	g (ECDG),						
Brush Erosion-Dissolution Mechanical Machining (BEDMM).							
Working Principles, Material Removal, Process Characteristics and Applications of: Abrasive							
Flow Finishing (AFF), Magnetic Abrasive Finishing (MAF), Electro-stream Drilling (ESD),							
Electrochemical Deburring (ECDe), Shaped-Tube Electrolytic Machining (STEM),							
Magnetorheological Finishing (MRF) Process.							
Unit-III 10 H							
High Energy Rate Forming – Need, Electromagnetic Forming/Magnetic Pulse forming (EMF/MPF)-							
Process, Design Consideration for Coils, Design Consideration for Dies, Processes Parameters and							

Process, Design Consideration for Coils, Design Consideration for Dies, Processes Parameters and Applications, Electrohydraulic Forming (EHF) – Process, Types of Discharges used in EHF, Equipment, Design Considerations for Dies, Processes Parameters and Applications.

Explosive Forming – Process & Types, Types of Explosives, Characteristics of Gas Mixtures and reactions, Processes Parameters and Applications. Micro-bending with Laser - Mechanisms of Laser Forming, Machines for Laser Micro-bending Temperature gradient mechanism, buckling mechanism, Upsetting mechanism.

Unit-IV 06 Hrs
Manufacturing in the Twenty-First Century - I: Micromanufacturing – Overview, Classification,
High Resolution Lithography - Types of Lithography Based Microfabrication Processes, Basic Scheme
of Lithography Based Micromachining - Typical Steps and Basic Process, Silicon as a Material for
Microelectromechanical Devices, Film and Film Deposition Techniques - Evaporation, Sputtering,
Chemical Vapour Deposition (CVD)-Low Pressure and Plasma Enhanced CVD, Oxidation - Dry, Wet
and Selective Oxidation, Lithography – Photoresist Spin Coating, Photoresist Patterning and Exposure
Techniques, Difference between Positive and Negative Photo Resist, Etching - Wet Etching: Isotropic
and Anisotropic Etching, Etching of {100} and {110} Si Wafers, Dry Etching: Plasma and Reactive
Etching, Steps in Plasma Etching Process, Deep Reactive Ion Etching (DRIE), Difference Between Bulk
and Surface Micromachining, Basic LIGA Process – Steps in LIGA Process, LIGA Masks – Steps in X
– Ray Mask Fabrication.

Unit-V07 HrsManufacturing in the Twenty-First Century – II: Generative Manufacturing and Self-Assembly –
Rapid Prototyping (RP): Steps involved and process chain for RP development, Generative
manufacturing processes (GMP) for RP – Basic Principles of GMP, General Features and Classification,
Issues Related to CAD and GMP Software, Two-dimensional Layer-by-Layer Techniques –
Stereolithography (STL) with Photopolymerization, STL with Liquid Thermal Polymerisation, Solid
Foil Polymerization (SFP), Selective Laser Sintering (SLS), Selective Powder Binding, Ballistic Particle
Manufacturing (BPM), Fused Deposition Modelling (FDM), Shape Melting, Laminated Object
Manufacturing (LOM), Solid Ground Curing (SGC), Repetitive Masking and Depositing (MD*); Direct
Three Dimensional Techniques for RP – Beam Interference Solidification (BIS), Ballistic Particle
Manufacturing, Holographic Interference Solidification, Programmable Moulding; Laser based Fused
Deposition Modelling using Metals, Advantages of GMP's, Considerations for Adopting RP
Technology, Basic Principles of Self-Assembly Process.

Course Ou	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the terminology related to Hybrid Non-Traditional Machining Processes.							
CO2:	Analyse and apply principles of Hybrid Non-Traditional Machining Processes, High Energy							
	Rate Forming Methods, Lithography, and Rapid Prototyping to specific applications.							
CO3:	Assess, compare, and select appropriate Advanced Manufacturing Processes							
CO4:	Apply the principles of Hybrid NTM, HER forming, Lithography and Rapid Prototyping to develop the mechanical components.							

Reference Books

1.	Advanced Machining Processes, Hassan El-Hofy, McGraw-Hill, ISBN 978-0-07145334-9.
2.	Manufacturing Science, 2 nd Edition, Amitabha Ghosh and Asok Kumar Mallik, Affiliated
	East-West Press Pvt Ltd, New Delhi, ISBN 978-81-7671-063-3.
3.	Micromanufacturing Processes, V. K. Jain, CRC Press, ISBN 978-14-3985-290-3.
4.	Rapid Prototyping – A Brief Introduction , Amitabha Ghosh, Affiliated East-West Press Pvt
	Ltd, New Delhi, ISBN 81-85938-84-9.
5.	Advanced Machining Processes, Vijay K. Jain, Allied Publishers Private Limited, India,
	ISBN 81-7764-294-4.
6.	Manufacturing Processes for Engineering Materials, 5th Edition, Serope Kalpakjian and
	Steven R. Schmid, Pearson Education India, ISBN 978-81-3170-566-7.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	-	-	-	-	2
CO2	3	3	2	2	-	-	-	-	2	-	-	2
CO3	3	2	2	2	-	-	-	-	2	-	-	3
CO4	2	2	2	3	-	-	-	-	2	-	-	3

	Semester: VI						
	Machine Learning						
(Elective D: Professional Elective)							
(Common to AE, BT, CH, CV, EE, EI, ET, IM, ME)							
Course Code		:	18CS6D1		CIE Marks		100
Credits: L:T:P		:	3:0:0		SEE Marks	:	100
Total Hours		:	39L	L SEE Duration		:	3 Hrs
Cou	Course Learning Objectives: The students will be able to						
1.	Understand th	ne c	oncepts of supervised	and unsupervis	ed learning.		
2.	2. Analyze models such as support vector machines, kernel SVM, naive Bayes, decision tree						
	classifier, random forest classifier, logistic regression, K-means clustering and more in Python						
3.	 Implement and work with state-of-art tools in machine learning 						

Unit – I	08 Hrs
Introduction to Machine Learning: Introduction, What is Human Learning?, Types	of Human
Learning, What is Machine Learning? Types of Machine Learning - Supervised learning, Un	supervised
learning, Reinforcement learning, Comparison - supervised, unsupervised, and reinforcement	nt learning,
Problems Not to Be Solved Using Machine Learning, Applications of Machine Learning, Sta	te-of-The-
Art Languages/Tools In Machine Learning, Issues in Machine Learning.	
Preparing to Model: Introduction, Machine Learning Activities, Basic Types of Data in	n Machine
Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing	
Unit – II	08 Hrs
Modelling and Evaluation: Introduction, Selecting a Model, Training a Model (for S	Supervised
Learning), Model Representation and Interpretability, Evaluating Performance of a Model, S	Supervised
learning - classification, Supervised learning - regression, Unsupervised learning -	clustering,
Improving Performance of a Model.	0.
Basics of Feature Engineering, Introduction, Feature Transformation, Feature construction	,
Feature extraction, Feature Subset Selection, Issues in high-dimensional data, Key drivers	of feature
selection - feature relevance and redundancy, Measures of feature relevance and redundance	cy, Overall
feature selection process, Feature Selection Approaches.	
Unit – III	08 Hrs
Bayesian Concept Learning: Introduction, Why Bayesian Methods are Important?, Bayes ²	Theorem,
Bayes' Theorem and Concept Learning, Brute-force Bayesian algorithm, Concept of consister	nt learners,
Bayes optimal classifier, Naïve Bayes classifier, Applications of Naïve Bayes classifier,	Handling
Continuous Numeric Features in Naïve Bayes Classifier, Bayesian Belief Network, Indeper	ndence and
conditional independence, Use of the Bayesian Belief network in machine learning	
Unit – IV	08 Hrs
Supervised Learning: Classification Introduction, Example of Supervised Learning, Cla	assification
Model, Classification Learning Steps, Common Classification Algorithms, k-Nearest	Neighbour
(KNN), Decision tree, Random forest model, Support vector machines.	-
Super vised Learning: Regression, Introduction, Example of Regression, Common	Regression
Algorithms, Simple linear regression, Multiple linear regression, Assumptions in Regression	n Analysis,
Main Problems in Regression Analysis, Improving Accuracy of the Linear Regression	on Model,
Polynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation.	
Unit – V	07 Hrs
Unsupervised Learning, Introduction, Unsupervised vs Supervised Learning, Appl	ication of
Unsupervised Learning, Clustering, Clustering as a machine learning task, Different types of	clustering
techniques, Partitioning methods, K-Medoids: a representative object-based technique, H	ierarchical
clustering, Density-based methods - DBSCAN, Finding Pattern using Association Rule, De	efinition of
common terms, Association rule, The apriori algorithm for association rule learning, Build	the apriori
principle rules.	

Course Ou	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explore and apply the fundamentals of machine learning techniques.								
CO2:	Understand different techniques of data pre-processing.								
CO3:	Analyze the strength and weakness of different machine learning models to solve real world problems.								
CO4:	Implement and apply different supervised and unsupervised machine learning algorithms.								

Reference Books: Machine Learning, Amit Kumar Das, Saikat Dutt, Subramanian Chandramouli, Pearson Education 1. India, April 2018 ISBN: 9789389588132. Introduction to Machine Learning, Ethem Alpaydin, 2nd Edition, 2010, PHI Publication, ISBN-2. 978-81-203-4160-9. Practical data science with R, Zumel, N., & Mount J, Manning Publications, 2014, ISBN 3. 9781617291562 Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 4 Nikhil Buduma, O'Reilly Publications, 2016 Edition, ISBN-13: 978-1491925614. Pattern Recognition and Machine Learning, Christopher M Bishop, Springer, February 2006, 5. ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2. The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, 6. Springer, 2nd Edition, April 2017, ISBN 978-0-387-84858-7

Continuous Internal Evaluation (CIE);

Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE);

Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	-	-	-	-	-	-	1
CO2	2	2	2	2	1	-	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	-	1
CO4	3	3	3	3	2	2	-	-	-	-	-	2

					Semester: VI							
REFRIGERATION AND AIR-CONDITIONING												
(Elective-D: PROFESSIONAL ELECTIVES)												
Cou	se Code		:	18ME6D2		CIE	:	100 Ma	urks			
Cred	its: L:T	:P	:	3:0:0		SEE	:	100 Marks				
Tota	l Hours	-	:	39L		SEE Duration	: 03 Hours					
Cou	Course Learning Objectives: The students will be able to											
1	1 Describe the basic refrigeration and air-conditioning systems.											
2	Analyz	e simpl	e v	apour compressio	n system.							
3	Practic	e use of	f ps	sychrometric chart	s and estimation of	of cooling loads.						
4	Explain	applic	ati	ons of refrigeratio	n and air-conditio	ons.						
	- Explain approarbins of forthermation and an conditions.											
]	Unit-I				06 Hrs			
Vapo	or Comp	ression	R	efrigeration Syst	em							
Revi	ew of the	nermod	vn	amic principles of	f refrigeration.	Different types	of re	frigerants	s. Vapour			
com	pression s	system,	Ć C(OP and Performance	e of simple vapou	ir compression sy	stem.	multista	ge system,			
Mult	i evapora	tor syst	ten	ns, air cooled refri	geration and Boot	t strap system, Nu	meri	cals				
	1	2		I	 Init_II	1 2			10 Hrs			
Abso	rntion I	Pofrige	rat	tion System	/////				10 1115			
Rasic	absornt	ion syst	aı 60	n Actual system (OP Advantages	and limitations of	ver v	anour con	nnression			
syste	m Nume	ricals	CII	ii, 7 tetuar system, C	201, Advantages	and minitations o	VCI V	upour cor	npression			
Pron	erties of	refrig	rg	nt-absorbent mix	tures							
Ideal	homog	eneous	hi	inary mixtures R	eal mixtures An	alvsis of Aqua-	۱mm	onia Ref	rigeration			
Syste	m Renr	esentati	on	of Absorption sys	tem on Concentr	ation-Enthalov ch	art o	f Ammor	nia -Water			
and e	merov ha	lance	on	of Absorption sys	tem on concentra	atton-Enthalpy en	art					
una c												
Com	nraccare	and C	on	donsors	1111-111	Unit-III 10 Hrs						
Com	pressor_r	Compressors and Condensers							10 Hrs			
Cond	ensers I	rincinl	- 6	of operation spec	Compressor-principle of operation, specifications, Volumetric efficiency, types of compressors,							
Exna	nsion de	rincipl Jeat rei	e d	of operation, spec	ifications, Volun	netric efficiency,	type	es of cor	npressors,			
Expansion devices and Evaporators							type	es of cor	npressors,			
Type	s of expa	orinciple Heat rej evices a unsion c	e (ect i nc	of operation, spection ratio, types of I Evaporators	ifications, Volun condensers, selec	netric efficiency, tion, Evapo	type	es of cor	10 Hrs npressors, transfer			
Type in ev	s of expa	orinciple Heat rej evices a unsion c s defro	e o ect nd lev	of operation, spection ratio, types of l Evaporators vices, expansion va	ifications, Volun condensers, selec lve vs capillary tu ting devices	netric efficiency, ction, Evapo ube, Types of eva	type porat	es of cor ors, heat	10 Hrs npressors, transfer			
Type in ev	s of expa aporators	orinciple Heat rej evices a Insion c s, defro	e o ect ind lev stin	of operation, spection ratio, types of I Evaporators vices, expansion vang, types of defros	ifications, Volum condensers, selec lve vs capillary to ting devices	netric efficiency, ction, Evapo ube, Types of eva	type porat	es of cor ors, heat	10 Hrs npressors, transfer 06 Hrs			
Type in ev	s of expa aporators	rinciple leat rej evices a unsion c s, defro ic Cha	e o ect ind lev stin	of operation, spection ratio, types of I Evaporators rices, expansion vang, types of defros	ifications, Volum condensers, selec lve vs capillary tu ting devices mit-IV ds	netric efficiency, tion, Evapo ube, Types of eva	type porat	es of cor ors, heat	10 Hrs npressors, transfer 06 Hrs			
Type in ev Psyc	s of expa aporators hrometric	rinciple Heat rej evices a unsion c s, defro ic Chan proce	e (ect ind lev stin	of operation, spection ratio, types of l Evaporators rices, expansion vang, types of defros und Cooling Loa	ifications, Volum condensers, selec lve vs capillary tu ting devices mit-IV ds s. Summer and	netric efficiency, ction, Evapo ube, Types of eva winter air-cond	type porat	es of cor ors, heat	10 Hrs npressors, transfer 06 Hrs			
Type in ev Psyc Cond	s of expa aporators hrometr nometric	rinciple Heat rej evices a unsion c s, defro ic Char proce	e (ect inc lev stin rts sse	of operation, spection ratio, types of l Evaporators vices, expansion vang, types of defros and Cooling Loa es, Use of Chart beat loads later	ifications, Volum condensers, selec lve vs capillary tu ting devices init-IV ds s, Summer and t heat loads se	netric efficiency, etion, Evapo ube, Types of eva winter air-cond	type porat	es of cor ors, heat	10 Hrs npressors, transfer 06 Hrs nfort air- coils de-			
Type in ev Psyc cond humi	s of expa aporators hrometric nometric itioning, difiers	rinciple Heat rej evices a unsion c s, defro ic Char proce sensib	e (ect inc lev stin rts sse le cal	of operation, spection ratio, types of l Evaporators rices, expansion vang, types of defros U and Cooling Loa es, Use of Chart heat loads, laten	ifications, Volum condensers, selec lve vs capillary to ting devices init-IV ds s, Summer and t heat loads, se	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto	type porat ition	es of cor ors, heat ing; Cor cooling	10 Hrs npressors, transfer 06 Hrs nfort air- coils, de-			
Type in ev Psyc Psyc cond humi	s of expa aporators hrometric nometric itioning, difiers, N	vinciple Heat rej evices a ansion c s, defro ic Chan proce sensib Jumeric	e (ect inc lev stin rts sse le cal	of operation, spection ratio, types of l Evaporators rices, expansion vang, types of defros und Cooling Loa es, Use of Chart heat loads, latents.	Ifications, Volum condensers, select live vs capillary to ting devices Init-IV ds s, Summer and theat loads, se	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto	type porat ition	es of cor ors, heat ing; Cor cooling	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs			
Type in ev Psyc Cond humi	s of expa aporators hrometric nometric itioning, difiers, N	vinciple Heat rej evices a sinsion c s, defro ic Chai proce sensib Numeric	e (ect inc lev stin rts sse le cali	of operation, spection ratio, types of l Evaporators rices, expansion vang, types of defros u u u u u u u u	Ifications, Volum condensers, select lve vs capillary to ting devices Init-IV ds s, Summer and t heat loads, se Unit-V	netric efficiency, ption, Evapo ube, Types of eva winter air-cond ensible heat facto	type porat ition	es of cor ors, heat ing; Cor cooling	10 Hrs npressors, transfer 06 Hrs nfort air- coils, de- 07 Hrs			
Type in ev Psyci cond humi Type Centri	s of expa aporators hrometric itioning, difiers, N es of Air- cal unita	vinciple Heat rej evices a unsion c s, defro ic Char proce sensib Jumeric Condir	e (ect inc lev stin rts sse le cal	of operation, spection ratio, types of l Evaporators vices, expansion vang, types of defros und Cooling Loa es, Use of Chart heat loads, laten s. uning Systems r-conditioner layo	ifications, Volum condensers, selec live vs capillary tu ting devices Init-IV ds s, Summer and t heat loads, se Jnit-V	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto	type porat ition ors, o	es of cor ors, heat ing; Cor cooling of	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs			
Type in ev Psyci cond humi Type Centu	s of expa aporators hrometric nometric itioning, difiers, N es of Air- ral, unita ications	vinciple Heat rej evices a unsion c s, defro ic Chan proce sensib Numeric Condi ry, split of Refi	e (ect inc lev stin rts sse le call tio	of operation, spection ratio, types of l Evaporators vices, expansion van and, types of defros uter and Cooling Loa es, Use of Chart heat loads, laten s. uning Systems r-conditioner, layor eration and Air-C	ifications, Volum condensers, selec live vs capillary to ting devices init-IV ds s, Summer and it heat loads, se Jnit-V out of sub-systems	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto	type porat ition ors, o cond	es of cor ors, heat ing; Cor cooling itioner fo	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs or a room;			
Type in ev Psycl cond humi Type Centr Appl Princ	s of expa aporators hrometric itioning, difiers, N s of Air- cal, unita ications iples of i	vinciple leat rej evices a ansion c s, defro ic Char proce sensib Jumeric Condir ry, split of Refi	e (ect inc stin stin rts sse le cali tio	of operation, spection ratio, types of l Evaporators rices, expansion vaing, types of defros u u u u u u u u u u	ifications, Volum condensers, select lve vs capillary to ting devices Init-IV ds s, Summer and theat loads, se Unit-V but of sub-systems Conditioning ation, transport ai	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto s, selection of air-	type porat ition ors, o cond	es of cor ors, heat ing; Cor cooling itioner for k chilling	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs or a room; plants			
Type in ev Psycl cond humi Type Centu Appl Princ	s of expa aporators hrometric itioning, difiers, N s of Air- ral, unita ications iples of i	vinciple Heat rej evices a unsion c s, defro ic Chat proce sensib Jumeric Condir ry, split of Refi ce proce	e (ect ind lev stin rts sse le cali tio rig luc	of operation, spection ratio, types of l Evaporators vices, expansion vang, types of defros und Cooling Loa es, Use of Chart heat loads, laten s. uning Systems r-conditioner, layo eration and Air-O ction, food preserva	ifications, Volum condensers, select lve vs capillary to ting devices Init-IV ds s, Summer and t heat loads, se Unit-V put of sub-systems Conditioning ation, transport ai	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto s, selection of air- r conditioning and	type porat ition ors, o cond d mil	es of cor ors, heat ing; Cor cooling itioner for k chilling	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs or a room; g plants.			
Type in ev Psycl cond humi Type Centr Appl Princ	s of expa aporators hrometric itioning, difiers, N es of Air- ral, unita ications iples of i se Outco	vinciple Heat rej evices a unsion cos, defro ic Chai proce sensib Numeric Condir ry, split of Refi ce proc	e (ect ind lev stin rts sse le cali tio rig luc	of operation, spection ratio, types of l Evaporators rices, expansion vang, types of defros u and Cooling Loa es, Use of Chart heat loads, laten s. u ning Systems r-conditioner, layo eration and Air-O etion, food preservation	ifications, Volum condensers, selec lve vs capillary to ting devices Init-IV ds s, Summer and it heat loads, se Jnit-V out of sub-systems Conditioning ation, transport ai	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto s, selection of air- r conditioning and lents will be able	type porat ition ors, o cond d mil to	es of cor ors, heat ing; Cor cooling itioner for k chilling	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs or a room; g plants.			
Type in ev Psycl cond humi Type Centr Appl Princ	s of expa aporators hrometric itioning, difiers, N s of Air- cal, unita ications iples of i se Outco D1:	vinciple leat rej evices a unsion c s, defro ic Chan proce sensib Numeric Condir ry, split of Refi ce proce	e (ect lev stin rts sse le cals tio tio ft be	of operation, spection ratio, types of l Evaporators rices, expansion vang, types of defros u and Cooling Loa es, Use of Chart heat loads, latents. u ning Systems r-conditioner, layor eration and Air-O etion, food preservation er completing the vapour compression	Ive vs capillary to ting devices Init-IV ds s, Summer and theat loads, se Unit-V out of sub-systems Conditioning ation, transport ai course, the stud	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto s, selection of air- r conditioning and lents will be able igeration and air-	type porat ition ors, cond d mil to cond	es of cor ors, heat ing; Cor cooling of itioner for k chilling	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs or a room; g plants.			
Type in ev Psycl cond humi Type Centu Appl Princ Cour	s of expa aporators hrometric itioning, difiers, N s of Air- ral, unita ications iples of i se Outco D1: D2:	vinciple leat rej evices a ansion c s, defro ic Chan proce sensib Jumeric Condir ry, split of Refi ce proc Descrit Analyz	e ce ection levistin rts sse le call tio tio	of operation, spection ratio, types of l Evaporators vices, expansion vaing, types of defros U and Cooling Loa es, Use of Chart heat loads, latents. U ning Systems r-conditioner, layo eration and Air-O etion, food preservation er completing the vapour compression	ifications, Volum condensers, select lve vs capillary tu ting devices init-IV ds s, Summer and it heat loads, se Unit-V but of sub-systems Conditioning ation, transport ai course, the stud on/absorption refr parameters on sim	netric efficiency, etion, Evapo ube, Types of eva winter air-cond ensible heat facto s, selection of air- r conditioning and lents will be able igeration and air-	type porat ition ors, o cond d mil to cond vap	es of cor ors, heat ing; Cor cooling of itioner for k chilling itioning s	10 Hrs npressors, transfer 06 Hrs nfort air-coils, de- 07 Hrs or a room; g plants. systems. oressors.			

CO4: Evaluate performance of VCs and AC systems

Reference Books							
1.	Refrigeration and Air conditioning, Stoecker. W.F., Jones. J.W, 2 nd Edition, 1982,						
	Tata McGraw Hill, ISBN: 0070616191						
2.	Refrigeration and Air-conditioning, Arora. C.P., 3rd Edition, 2009, Tata McGraw Hill,						

	ISBN: 978007008390-5
3.	Principles of Refrigeration, Dossat. R.J. Horan. T.J., 5 th Edition, 2006, Prentice Hall, ISBN: 013027270
4.	A Text Book of Refrigeration and Air-Conditioning, Rajput. R.K., 2009,
	S.K. Katraia, New Delhi, ISBN: 098869007-1

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	-	-	-	-	-	-	-
CO2	3	3	2	2	1	-	-	-	-	-	-	-
CO3	3	1	2	2	1	-	-	-	-	-	-	-
CO4	3	3	2	2	1	-	-	-	-	-	-	-

Semester: VI						
		Course Title: Hydra	aulics and Pneumati	ics		
		(Elective-D: PROFES	SIONAL ELECTIV	VES)		
e Code:	••	18ME6D3		CIE Marks:	100	
Credits: L:T:P : 3:0:0 SEE Marks: 100					100	
5	:	39L		SEE Duration:	3 Hrs	
e Learning ()bj	ectives: The students will	be able to			
Explain the f	uno	damental concepts used in I	hydraulic and pneum	atic applications.		
2 Solve numerical problems on sizing and selection of hydraulic valves.						
3 Draw the symbolic representation of hydraulic and pneumatic components						
4 Design simple circuit diagrams for manufacturing applications using fluid power.						
5 Identify electrical components to control pneumatic actuation systems.						
	e Code: s: L:T:P e Learning (Explain the f Solve numer Draw the syn Design simp Identify elec	e Code: : s: L:T:P : e Learning Obj Explain the func Solve numerical Draw the symbol Design simple c Identify electric	Semes Course Title: Hydra (Elective-D: PROFES e Code: : 18ME6D3 s: L:T:P : 3:0:0 : 39L e Learning Objectives: The students will Explain the fundamental concepts used in Solve numerical problems on sizing and set Draw the symbolic representation of hydra Design simple circuit diagrams for manufa Identify electrical components to control p	Semester: VI Course Title: Hydraulics and Pneumatic (Elective-D: PROFESSIONAL ELECTIVE) e Code: : 18ME6D3 s: L:T:P : 3:0:0 : 39L image: second secon	Semester: VI Course Title: Hydraulics and Pneumatics (Elective-D: PROFESSIONAL ELECTIVES) e Code: : 18ME6D3 CIE Marks: s: L:T:P : 3:0:0 SEE Marks: : 39L SEE Duration: e Learning Objectives: The students will be able to SEE Duration: Explain the fundamental concepts used in hydraulic and pneumatic applications. Solve numerical problems on sizing and selection of hydraulic valves. Draw the symbolic representation of hydraulic and pneumatic components Design simple circuit diagrams for manufacturing applications using fluid power. Identify electrical components to control pneumatic actuation systems.	

UNIT-I

07 hrs

Introduction to fluid power

Pascal's law and its application, components of a fluid power system, applications of fluid power, positive displacement hydraulic pump, construction and working of gear, vane and piston pumps (all types) Classification, parts and working of hydraulic cylinders – single acting, double acting, tandem, telescopic, cushioned. Basic motor principle.

Production of compressed air – compressors, preparation of compressed air- driers, filters, regulators, FRL unit, lubricators, distribution of compressed air.

	-	
UNIT-II		09 Hrs

Control Components of hydraulic system

Symbolic representation and constructional features of Directional control valves (spool type) valves, method of actuation – manual, solenoid, pilot. pressure relief valve (direct and pilot), pressure reducing valve, unloading valve counterbalance valve, pressure sequence valves, Flow control valves-one way and pressure compensated. Simple circuit for Control of Single and Double Acting Cylinder.

Maintenance of Hydraulic systems

Hydraulic fluids (properties and types), reservoir construction, sealing devices, Gages, filters and strainers, problem caused by gases in hydraulic fluids, Accumulators – Weight loaded, spring loaded, and gas charged, troubleshooting hydraulic systems.

UNIT-III

Hydraulic Circuit Diagrams

Regenerative Circuit application, Pump unloading circuit, Double Pump Hydraulic System. Counter Balance Valve Application, Hydraulic Cylinder Sequencing Circuit, locked Cylinder using Pilot Check Valve, Cylinder Synchronizing circuits, Speed control circuits, Basic accumulator Circuits. **Performance of Hydraulic System**

Pump and Motor volumetric displacement, theoretical and actual flow rate, power and efficiency, Hydrostatic Transmission, Cylinder Thrust, Power, capacity, speed, Mechanics of Hydraulic Cylinder loading, Performance rating for filters – Beta ratio, Filter efficiency, Accumulator sizing, analysis of hydraulic system with and without frictional losses – Numerical problems.

UNIT-IV

Design of pneumatic circuits

Unidirectional control of pneumatic motor, use of memory valve, speed control of cylinders supply air throttling and exhaust air throttling, application of quick exhaust valve, Moving Part Logic Control of Circuits, Practical examples involving the use of AND and OR gates. Use of pressure dependent control and time delay valve, cascading principle, timing diagram, coordinated motion control, Signal conflict elimination using reversing valves (two cylinders).

Electro Pneumatics

Electrical switching devices, symbolic representation, direct and indirect control of single acting and double acting cylinders, relay control circuit, latching circuit, auto return using limit switch, control of double acting cylinder using timer, cyclic operation of double acting cylinder, dual cylinder sequence, box sorting system, electrical control of regenerative circuit, circuit for stamping device.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the basic components of hydraulic and pneumatic power pack and structure of							
CO2:	Identify the hydraulic and pneumatic power symbolic representations and troubleshoot the							
	problems.							
CO3:	Determine the performance parameters of hydraulic pumps, actuators, filters and valves.							
CO4:	Design an efficient hydraulic and pneumatic circuit diagrams for industrial applications							

Reference Books

1.	S. Ilango, V. Soundararajan, 'Introduction to Hydraulics and Pneumatics', PHI learning, 2 nd
	Edition, 2011, ISBN – 978–81–203–4406–8.
2.	Andrew Parr, 'Hydraulics and Pneumatics', Elsevier, 3 rd Edition, 2011, ISBN – 978–0–08 –
	096674–8.
3.	Anthony Esposito, 'Fluid Power with Applications', 7th Edition, 2013, ISBN - 13; 978-
	9332518544.
4.	R. Srinivasan, 'Hydraulic and Pneumatic controls', McGraw Hill Education, 2 nd Edition, 2010,
	ISBN - 978-81-8209-138-2.

Continuous Internal Evaluation (CIE);

Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	•	2	-	-	-	-	-	-	-	2
CO2	3	3	-	-	-	-	1	-	-	-	1	-
CO3	3	2	2	-	2	2	1	2	-	2	-	-
CO4	1	-	3	2	-	3	-	-	3	1	-	-

	Semester: VI						
	PRODUCT DESIGN AND DEVELOPMENT						
			(Elective-D: PR	OFESSIONAI	L ELECTIVES)		
Co	ourse Code	:	18ME6D4		CIE Marks	:	100
Cr	edits: L:T:P	:	3:0:0		SEE Marks	••	100
То	tal Hours	:	39 L		SEE Duration	:	03 Hrs
Co	ourse Learning	; O	bjectives: The students	s will be able to			
1.	To understand	1 th	e structured product de	evelopment proc	cesses		
2.	To understand	1 th	e contributions and rol	e of multiple or	ganizational functior	ns f	for creating new
	products						
3.	To apply engi	nee	ering knowledge for the	e development o	of innovative and ma	rke	et acceptable
	products						
4.	To expose the	e tei	nets of design and deve	elopment of a m	anufacturing process	th	at builds
	the product at the scales and quality as demanded by the customer and the market						
5.	To develop an	1 at	vility to coordinate mul	tiple, interdisci	plinary tasks in order	to	achieve
	the mission a	nd g	goals of the product de	velopment orga	nizations		
	-						

Unit – I	7 Hrs				
Introduction: Characteristics of successful product development, Design and development	ent of				
products, The Morphology of Design (The seven phases), Who designs and develops products,					
Duration and cost of product development, Challenges of product development. T	ype of				
organization					
Unit – II	8 Hrs				
Identifying Customer Needs: Gather raw data from customers, interpret raw data in ter	rms of				
customer needs, Organize the needs into a hierarchy, Establish, the relative importance	of the				
needs and reflect on the results and the process. Product planning process.					
Product Specifications: Specifications, Basic design considerations and constraints,					
Various types of specification, establishing specifications, establishing target					
specifications, Setting the final specifications					
Unit – III	8 Hrs				
Concept Generation: The activity of concept generation, Clarify the problem, Search					
externally, Search internally, Benchmarking, explore systematically, Reflect on the result	ts and				
the process.					
Concept Selection: Overview of methodology, Concept screening, Concept Scoring					
Concept Testing: Define the purpose of concept test, choose a survey, population	n,				
Choose a survey format, Communicate the concept, Measure customer response, Inter-	erpret				
the result, Reflect on the results and the process.					
Unit – IV	8 Hrs				
Product Architecture: What is product architecture, Implications of the					
architecture, establishing the architecture, delayed differentiation, platform planning.					
Industrial Design: Assessing the need for industrial design, Impact of industrial design,					
Industrial design process, Managing the industrial design process, Assessing the quality of					
industrial design. Problems faced by Industrial design Engineer					
Design for Manufacturing: Definition, Estimation of manufacturing cost, Reducing the cost of					
components, Assembly, Cost of Supporting Production					
Unit – V	7 Hrs				

Prototyping: Understanding Prototyping, Principles of prototyping, Technologies, Planning for prototypes.

Product Development Economics: Elements of economic analysis, Base case financial Sensitive analysis, Project trade-offs, Influence of qualitative factors on project success. **Managing Projects:** Understanding and representing task, Baseline project planning, Accelerating projects, Project execution, Post-mortem project evaluation

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain the structured approaches to Product design and development of projects.
CO2:	Understand the challenges faced by product designers and appreciate the need for
	adapting a development mind set.
CO3:	Develop the capability to work in teams and apply the structured product design and
	development methodologies for solving problems.
CO4:	Analyse the need for integrated product design and process development frameworks.

Reference Books:

1.	Karl.T. Ulrich, Steven D Eppinger, "Product Design and Development", McGraw
	Hill Publications, 5th Edition 2012, ISBN 978-0-07-340477-6
2.	A C Chitale and R C Gupta, "Product Design and Manufacturing", 2012, PHI, 6th Edition, ISBN
	9788120348738
3.	Geoffery Boothroyd, Peter Dewhurst and Winston A Knight, "Product Design for
	Manufacture and Assembly", M. Dekker, 1994, 3rd Edition, ISBN: 0824791762

Continuous Internal Evaluation (CIE);

Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	3	-	3	-	-	-	-	-	-	-
CO2	1	2	3	-	-	-	-	-	-	-	-	-
CO3	-	2	3	-	-	-	3	1	-	-	-	-
CO4	-	-	-	-	-	3	2	-	-	-	-	-

	Semester: VI										
	VEHICLE DYNAMICS										
	(Elective-D: PROFESSIONAL ELECTIVES)										
Cours	e Code	:	18ME6D5	CIE	:	100 Marks					
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks					
Total Hours		:	39L	SEE Duration	:	03 Hours					
Cours	e Learning Ol	oje	ctives: The students	s will be able to							
1	Understand v	ari	ous vehicle dynami	cs terminology and tyre mechanics and pro	opert	ies.					
2	Understand a	nd	analyse principles	concerned with front wheels alignment	and	performance					
	characteristic	s o	f road vehicles.	-		-					
3	Understand, a	ina	lyse the braking per	formance and handling characteristics of a	road	vehicles.					
4	Understand, a	ina	lyse the steady-state	e handling characteristics of a two axle vel	hicle						
5	Analyse vehi	cle	vibrations and appl	y to the vehicle suspension systems.							

Unit-I	06 Hrs						
Introduction - Vehicle Dynamics terminology, The Driver-Vehicle-Ground System, Veh	icle Fixed						
Coordinate System (SAE) and Earth Fixed Coordinate System. Mechanics Of Pneumatic Tires:							
Functions, Tire construction – Bias-ply Tire and Radial-ply Tire Forces And Moments – Tim	e (Wheel)						
Axis System, Rolling Resistance of Tires, Tractive (Braking) Effort And Longitudinal S	lip (Skid),						
Cornering Properties of Tires - Slip Angle and Cornering Force, Slip Angle and Alignin	g Torque,						
Camber and Camber Thrust, Characterization of Cornering Behaviour of Tires.							
Unit-II	10 Hrs						
Front Wheels Alignment - Need, Centre-Point Steering - Camber, King Pin Inclination or Sw	vivel-Axis						
Inclination, Negative Offset (Negative Scrub Radius), Caster, Front-Wheel Toe-In or Toe-out,	, Toe-Out-						
On-Turns.							
Performance Characteristics of Road Vehicles (two-axle vehicle) – Equation of Motion ar	ıd						
Maximum Tractive Effort – Front & Rear Wheel Drive, Aerodynamic Forces and Moments,	Vehicle						
Power Plant and Transmission Characteristics – Power Plant Characteristics, Transmission							
Characteristics, Prediction of Vehicle Performance – Acceleration Time and Distance, Gradability.							
Unit-III	10 Hrs						
Braking Performance – Energy of motion and Frictional Force, Brake Balance, Stopping	Distance,						
Brake Fade, Work Done in Braking, Braking Efficiency, Braking Characteristics of a Two-Ax	le Vehicle						
- Brakes Applied to the Rear, Front and all the Four Wheels, Braking of a Vehicle Moving in	a Curved						
Path - Numericals, Antilock Brake Systems, Traction Control Systems.							
Handling Characteristics of Road Vehicles – Pitching, Bouncing, Yawing and Rolling, Acl	cermann						
Steering Geometry - Characteristics of Various Types of Steering Linkage, Error Curve of a S	Steering						
Linkage.							
Unit-IV	07 Hrs						
Steady-State Handling Characteristics of A Two Axle Vehicle – Simplified Steady-State	Handling						
Model for a Two-Axle Vehicle. Neutralsteer, Understeer, Oversteer (Numericals), St	eady-State						
Response to Steering Input - Yaw Velocity Response, Lateral Acceleration Response,	Curvature						
Response, Testing of Handling Characteristics - Constant Radius Test, Constant Speed Test	, Constant						
Steer Angle Test, Transient Response Characteristics, Directional Stability - Criteria for I	Directional						
Stability, Vehicle Stability Control – Operating Principles, Comparison of the Handling Beha	aviour of a						
Vehicle with Yaw Rate Control to that with both Yaw Rate and Sideslip Angle Control.							

Unit-V	06 Hrs
Vehicle Vibration - Vehicle Vibration and Human Comfort - Representation of the Car Bod	y by a
Sprung Mass, Human Response to Vibration, Vehicle Vibration with Single Degree of Freedo	om – Free
vibration (Overdamped & Critically Damped), Forced Vibration – Vibration Due to Road Ro	ughness,
Vibration due to Engine Unbalance, Transmissibility of Engine Mounting, Two-Degree-of-Fr	reedom
Vehicle Model for Sprung and Unsprung Mass, Two-Degree-of-Freedom Vehicle Model for	Pitch and
Bounce (Numericals), Concept of - Active and Semi-Active Suspension Systems, Electrorhed	ological
Damper, Magnetorheological Damper.	

Course O	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the terminology related to vehicle dynamics.								
CO2:	Analyse and apply principles of mechanics of pneumatic tyres front wheel alignment to the								
	two axle road vehicles.								
CO3:	Understand and explain the performance characteristics, braking performance and handling								
	characteristics of road vehicles.								
CO4:	Analyse vehicle vibrations and apply to the vehicle suspension systems of the two axle road								

Refe	rence Books
1.	Theory of Ground Vehicles, 3rd Edition, J.Y. Wong, John Willey and Sons, 2005, ISBN 978-
	8126565405.
2.	Automobile Mechanics, 8th Edition, N.K. Giri, Khanna Publishers, 2013, ISBN 81-7409-216-1.
3.	Vehicle Dynamics and Control, 2 nd Edition, Rajesh Rajamani, Springer, 2012, ISBN 978-1-
	4614-1432-2.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	-	-	-	-	3
CO2	3	3	2	2	-	-	-	-	2	-	-	3
CO3	3	2	2	2	-	-	-	-	2	-	-	3
CO4	1	2	2	3	-	-	-	-	2	-	-	3

	Semester: VI										
AIRCRAFT SYSTEMS											
(GROUP E: GLOBAL ELECTIVE)											
				(Theory)							
Cou	rse Code	:	18G6E01		CIE	:	100 Marks				
Credits: L:T:P		: 3:0:0			SEE		100 Marks				
Hours		: 39L			SEE Duration		3.00 Hours				
Cou	rse Learning O	€bje	ctives: To ena	ble the students to:							
1	List the variou	is s	ystems involve	d in the design of an aircraft							
2	Demonstrate t	he t	echnical attrib	utes of all the subsystems of	an aircraft						
3	Explain the signature	gnif	ficance of each	systems and its subsystems	for developing ar	ı ai	rplane				
4	Demonstrate t	he i	ntegration of t	he systems with the airplane							

Unit-I	07Hrs						
Flight Control Systems: Primary and secondary flight controls, Flight control linkage system,							
Conventional Systems, Power assisted and fully powered flight controls.							
Unit – II	10Hrs						
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or						
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	e of bleed						
air, Landing gear and braking, Shock absorbers-Retraction mechanism.							
Unit -III	08Hrs						
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components,							
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.							
Unit -IV	07Hrs						
	0/1115						
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-						
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids.	and anti-						
 Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. 	and anti-						
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V	and anti- a typical 07Hrs						
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	and anti- a typical 07Hrs Vavigation						
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V Aircraft Instruments instruments displays, panels & layouts, Instrumentation grouping, N instruments, Radio instruments, Hydraulic and Engine instruments.	and anti- a typical 07Hrs Javigation						
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V Aircraft Instruments is Instruments displays, panels & layouts, Instrumentation grouping, N instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator	and anti- a typical 07Hrs Javigation r, Vertical						

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane
CO2:	Comprehend the complexities involved during development of flight vehicles.
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
CO4:	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

1	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A., 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

	Semester: VI							
	BIO INSPIRED ENGINEERING							
			(GROUP E:	: GLOBAL ELEC	CTIVE)			
				(Theory)				
Cou	rse Code	:	18G6E02		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours	
Cou	rse Learning ()bj	ectives: The studen	ts will be able to				
1	To familiarize	e er	igineering students v	with basic biologica	l concepts			
2	Utilize the si	mil	arities noted in nat	ure for a particular	problem to bring i	nsp	iration to the	
	designer.							
3	Explain appli	cat	ions such as smart s	structures, self-heali	ing materials, and ro	bot	ics relative to	
	their biological analogs							
4	4 To gain an understanding that the design principles from nature can be translated into novel							
	devices and structures.							

Unit-I	08 Hrs
Introduction to biological systems: General and Special biomolecules, Plant, anim	nal and
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural net	etworks,
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsupervis	sed and
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems wi	ith case
study Harvesting Desert Fog.	
Unit – II	08 Hrs
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and p	ohysical
functions of biological composites of engineering – related case study: Camera from eyes, c	clothing
designs and hooks from Velcro Criteria for future materials design and processing. Comp	putation
Cellular systems: Cellular automata - modelling with cellular systems with cellular sys	stems –
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.	
Unit –III (08 Hrs
Engineering of synthetic organs: Growth, development and principle of artificial skins, 1	hearing
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pace	emaker,
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Applica	ation of
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods	
Unit –IV (07 Hrs
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequiv	valence,
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, Issu	ues on
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar Pr	roducts,
Challenges involved in Biosimilars.	
Unit –V	08 Hrs
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural sy	systems,
learning in behavioural systems – co evolution of body and control. Behaviour in cognitive	science
and artificial intelligence. Biological inspiration for robots, Robots as biological mode	els and
robotics behaviour, Application of sleek scale of shark skin.	

Course (Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and explain the concepts of biological and physiological processes						
CO2:	Elucidate the basic principles for design and development of biological systems.						
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems						

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

1101010	
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
2	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI Global, 2016. ISBN: 1466698128, 9781466698123.
3	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN: 1606502255, 9781606502259.
4	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature - Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	1	3	2	-	1	1	1	-
CO2	3	3	2	3	2	-	1	2	-	1	2	-
CO3	2	2	2	3	3	3	2	2	-	1	2	2
CO4	2	2	3	3	2	-	1	2	1	-	-	-

	Semester: VI									
	SUSTAINABLE TECHNOLOGY									
	(GROUP E: GLOBAL ELECTIVE)									
(Theory)										
Cour	se Code	Code : 18G6E03 CIE : 100 Marks								
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours			
Course Learning Objectives: The students will be able to										
1	Understand th	le fi	indamental concepts	s related to interaction	n of industrial and ec	olog	gical systems.			
2	Understand th	e ba	asic concepts of life	cycle assessment.						
3	Demonstrate l	ife	cycle assessment me	ethodology using app	oropriate case studies	•				
4	Use concepts	of s	ystems-based, trans	-disciplinary approac	h to sustainability.					
				··· • · · ·			0.0 77			
T	1		1 .1.4	Jnit-I			08 Hrs			
Intro	duction to sus	tan	nability:	and Life Cycle /	Analysia Matanial	flor	u and wasta			
mono	duction to St	ista icol	and Health Effects	Character of Enviro	Analysis, Material	110	v and waste			
IIIaiia	igement, Chem	icai		nit = II	onnentai Fioblenis		07 Hrs			
Envi	ronmental Da	ta (Collection and LCA	Methodology:			071113			
Envi	ronmental Dat	a (Collection Issues.	Statistical Analysis	of Environmental	Da	ita. Common			
Analy	vtical Instrume	nts,	Overview of LCA I	Methodology. – Goal	, Definition.	20	, common			
		,	Uı	nit –III	,		08 Hrs			
Life	Cycle Assessm	ent	•							
Life	Cycle Impact A	sse	ssment, Life Cycle	Interpretation, LCA E	Benefits and Drawbac	cks.				
Wet	Biomass Gasif	ier	5:							
Intro	duction, Classi	fica	tion of feedstock	for biogas generation	n, Biomass conversi	ion	technologies:			
Photo	osynthesis, Bio	gas	generation, Factor	s affecting bio-diges	stion, Classification	of	biogas plants,			
Float	ing drum plant	anc	l fixed dome plant the	heir advantages and d	lisadvantages.		00 11			
<u>р</u> .		1 *1	U1	nit –I V			08 Hrs			
Desig	gn for Sustaina n Sustainabla N	abii Aote	ity:	1 Design for Sustains	hility					
Dry	Riomass Casif	iore		u Design for Sustaina	ionity.					
Biom	lass energy cor	iver	•• sion routes Therma	l gasification of bion	nass Classification o	fσ	asifiers Fixed			
bed s	vstems:		sion routes, merme	a guisineation of bion		1 5	usinens, i med			
	J = = = = = = = = = = = = = = = = = = =		U	nit –V			08 Hrs			
Case	Studies:									
Odor	Removal for C	Drga	anics Treatment Pla	nt, Bio-methanation,	Bioethanol production	on.	Bio fuel from			
water	r hyacinth.				_					
Cour	se Outcomes:	Aft	er completing the	course, the students	will be able to					
CO1	CO1: Understand the sustainability challenges facing the current generation, and systems-based									
	approaches required to create sustainable solutions for society.									
CO2	: Identify pro	oble	ms in sustainability	and formulate appr	ropriate solutions ba	sed	on scientific			
	research, ap	plie	ed science, social an	d economic issues.						
CO3	: Apply scien	tifi	c method to a system	ns-based, trans-discip	linary approach to su	ista	inability			
CO4	Formulate appropriate solutions based on scientific research, applied science, social and									

Refere	nce Books									
1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge
1	University P	ress, ISBN - 9	9781108333	726.						

economic issues.

2	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VI									
GRAPH THEORY									
	(GROUP E: GLOBAL ELECTIVE)								
			(Theory)						
Course Code	:	18G6E04		CIE Marks	:	100 Marks			
Credits: L:T:P	:	3:0:0		SEE Marks	••	100 Marks			
Total Hours	:	39L		SEE Duration	:	3.00 Hours			

Cour	se Learning Objectives: The students will be able to
1	

- 1 Understand the basics of graph theory and their various properties.
- 2 Model problems using graphs and to solve these problems algorithmically.
- 3 Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.
- 4 Optimize the solutions to real problems like transport problems etc.,

UNIT-I	07 Hrs							
Introduction to graph theory								
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and regular								
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	0							
Basic concepts in graph theory								
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in o	digraphs.							
UNIT-II	09 Hrs							
Graph representations, Trees, Forests								
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and pro	operties of							
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning	trees and							
forests, Spanning trees of complete graphs, An application to electrical networks, Mini	mum cost							
spanning trees.								
UNIT-III	09 Hrs							
Fundamental properties of graphs and digraphs								
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighte	ed graphs,							
Eulerian digraphs.								
Planar graphs, Connectivity and Flows								
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	s theorem,							
Dual of a planar graphs.								
UNIT-IV 07 Hrs								
Matchings and Factors								
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite match	ing.							
Coloring of graphs								
The chromatic number of a graph, Results for general graphs, The chromatic polynomial of	of a graph,							
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring	of graphs							
UNIT-V 07Hrs								
Graph algorithms	-							
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path a	lgorithms,							
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of	Kruskal's							
and Prim's.								
Course Outcomes: After completing the course, the students will be able to								

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1.	Understand and explore the basics of graph theory.								
CO2.	Analyse the significance of graph theory in different engineering disciplines								
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.								
CO4.	Evaluate or synthesize any real world applications using graph theory.								

Reference	Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

	Semester: VI										
	DISASTER MANAGEMENT										
	(GROUP E: GLOBAL ELECTIVE)										
(Theory)											
Сог	irse Code	:	18G6E05		CIE	:	100 Marks				
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks				
Tot	al Hours	:	39L		SEE Duration	:	3.00 Hours				
Course Learning Objectives: The students will be able to											
1 Study the environmental impact of natural and manmade calamities											
2	2 Learn to analyze and assess risk involved due to disasters.										
3	Understand th	e ro	ole of public partic	ipation.							
4	Learn the man	nage	ement tools and m	itigation techniques.							
							0.0 77				
				Unit-I			08 Hrs				
	ural disasters	and	1 Disaster manag	ement	1. J	1					
Intr	oduction to national	fina	and Industrial H	lazards- floods, landsl	lides, earthquakes, v	volca	noes, avalanche,				
Env	vironmental rist	me z di	, release of entuel	ities Preparation of α	on site and off site	disa	ster management				
nlar	nonmentar fist	r u	actual disaster Po	st disaster plans Reli	ef camp organizatio	n R	ole of voluntary				
org	anization and a	rme	d forces during di	sasters	er camp organizatio	/II. IX	ole of voluntary				
015			a torees during un	Im:4 II			07 II.ma				
Die	analysis and	0.00	assmant	Umi – 11			07 HIS				
Ras	ic concept P	ass	ose of risk anal	vsis Analytical tech	niques and tools	of	rick assessment				
	icology Signit	ica	nce of risk Risk	characterization Risk	communication and	1 Ma	nagement AI in				
eme	ergency respons	ses.			communication un	. 1,10	inagement, i ii iii				
				Unit –III			08 Hrs				
Env	vironmental In	npa	ct Assessment (E	IA)			00 1115				
Def	inition, Basic	con	cepts and princip	oles of EIA. Regulate	ory framework in	India	. Environmental				
inve	entory. Base lin	e st	udies. Over view	of EIA studies.	5						
	-			Unit –IV			08 Hrs				
Ass	essment and N	[et]	hodologies				00 1115				
Phy	sical. Biologic	al.	Natural resources.	Socio economic and	cultural environme	ntal	assessment. EIA				
met	hodologies- Ac	lho	c, Matrix, Checklis	st approaches. Econom	nic evaluation of im	pacts	- cost benefits of				
EIA	. Public partic	ipa	tion in environme	ntal decision making.	Procedures for rev	viewi	ng EIA analysis				
and	statement. Dec	isic	on methods for eva	luation of alternatives	•		0 5				
				Unit _V			08 Hrs				
Die	Disaster Mitigation and Management										
Intr	oduction. types	. m	odes of disaster m	nanagement, tools and	techniques, primary	v and	l secondarv data.				
Natural disasters its causes and remedies-Earthquake hazards-Causes and remedies. Flood and Drought											
assessment, causes and remedies. Landslides-causes and remedies. Fire hazards in buildings. Fire											
haz	hazard management, Traffic management, Cyclones and hurricanes, inter department cooperation.										
Reg	Regional and global disaster mitigation.										
Co	Course Outcomes: After completing the course, the students will be able to										
CO	CO1: Explain the different types of disasters and manage the pre and post disaster situation.										

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	ence Books							
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013,							
1	ISBN: 978-0070512177.							
	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew							
2	Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing							
	House, New Delhi.							
2	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance							
3	Publishing House, New Delhi,							
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6th Edition,							
	2002, John Wiley, ISBN:9780470052457.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-
	Semester: VI											
----------------------------------	--	---	-------	-------------------------------	-------------	---	------------	--				
	WEARABLE ELECTRONICS											
			(GRO	DUP E: GLOBAL ELECTIVI	E)							
				(Theory)								
Course Code:18G6E06CIE:100 Marks				100 Marks								
Credits: L:T:P		:	3:0:0	SE	SEE		100 Marks					
Total Hours			39L	SE	EE Duration	:	3.00 Hours					
Cou	Course Learning Objectives: The students will be able to											
1	1 Explain the types and application of wearable sensor.											
2	2 Describe the working of sensitivity, conductivity and energy generation in wearable devices.											
3	Explain the various facets of wearable application, advantage & challenges.											
4	Understand different testing and calibration in wearable devices.											

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III	07 Hrs		
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of con	nductive fibre,		
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,		
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case studies, Hand			
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &.	Ref 3: Chapter		
6,9]			
Unit –IV	08 Hrs		

Cint IV	00 1115
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradien	it,
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]	

Unit –V	08 Hrs
Wearable antennas for communication systems: Introduction, Background of textile an	tennas, Design
rules for embroidered antennas, Integration of embroidered textile surfaces onto polyr	ner substrates,
Characterizations of embroidered conductive, textiles at radio frequencies, RF pe	erformance of
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna					
CO2:	Analysis measurable quantity and working of wearable electronic devices.					
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges					
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem					
	statement.					

Refer	ence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
1	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
4	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
5	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

	Semester: VI							
	ENERGY AUDITING AND MANAGEMENT							
			(GROUP E	: GLOBAL ELE	CTIVE)			
				(Theory)				
Course Code		:	18G6E07	CIE		:	100 Marks	
Credits: L:T:P		:	3:0:0	3:0:0 SEB		:	100 Marks	
Total Hours		tal Hours : 39L			SEE Duration	:	3.00 Hours	
Co	ourse Learnin	g O	bjectives: The stud	ents will be able to				
1	1 Understand the need for energy audit, energy management and the concepts of both.							
2	2 Explain Processes for energy audit of electrical systems.							
3	3 Design and develop processes for energy audit of mechanical systems.							
4	Prepare the fe	4 Prepare the format for energy audit of buildings and lighting systems.						

Unit-I	06 Hrs			
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of				
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project F	inancing			
Options, Energy Monitoring and Training.				
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement,				
Speed Measurement, Data Logger and Data Acquisition System,				
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of				
Power Plants, Energy Audit of Power Plant.				
Unit – II	10 Hrs			

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III	10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boil	ler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.	
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy	y saving
Measures in Furnaces, Furnace Efficiency	
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam	Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems,	Energy
Conservation Methods	
Unit –IV	07 Hrs
Compressed Air System: Classification of Compressors, Types of Compressors, Com	npressed
Air – System Layout, Energy – Saving Potential in a Compressed – Air System.	
Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air - Cond	litioning
System, Types of Air – Conditioning Systems, Human Comfort Zone and Psychrometry,	, Vapour
- Compression Refrigeration Cycle, Energy Use Indices, Impact of Refrigerants on Envi	ronment

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments					
	needed.					
CO2:	Design and perform the energy audit process for electrical systems.					
CO3:	Design and perform the energy audit process for mechanical systems					
CO4:	Propose energy management scheme for a building					

Reference Books

	i chee boons
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education,
	ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6th Edition, 2015, CRC
2	Press, ISBN: 0-88173-542-6
2	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books,
3	ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press
	ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-1	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

				Semester: VI					
	VIRTUAL INSTRUMENTATION & APPLICATIONS								
	(GROUP E: GLOBAL ELECTIVE)								
-		1		(Theory)		1			
Cou	rse Code	:	18G6E08		CIE	:	100 Marks		
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning	<u>g ()</u>	bjectives: Th	e students will be able to					
	Understand	ling	the difference	e between conventional and graph	iical programmin	g			
2	Differentia	ting	g the real time	and virtual instrument.	ants of data again		ion with		
3	Anaryzing LabVIFW	the	basies of dat	a acquisition and learning the con-	cepts of data acqu	iisii	ion with		
4	Developing	7 8 1	real time appl	ication using myRIO and myDAC) programming co	nce	ents		
-	Developing	5	ieur unie uppi						
				Unit-I			07 Hrs		
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Com	ponents of LabVl	EW	and Labels.,		
Cont	roller, Indic	cato	rs data type	s, wiring tool, debugging tools	s, Creating Sub-	Vis	s, Boolean, -		
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Ty	pe Def, Strict Typ	be D	Def.		
				Unit – II	• • •		09 Hrs		
For l	Loop, While	Lo	op, Shift regi	sters, stack shift register, feedbac	ck node, and tunn	el,	elapsed time,		
wait	function, Ca	ase	structures, for	rmula node, Sequence structures, l	Local and Global	var	iables.		
				Unit –III			09 Hrs		
Arra	ys and cluste	ers,	Visual displa	y types- graphs, charts, XY graph	, Introduction to	Stri	ing Functions,		
Laby	/IEW String	Fu	nctions, Typic	cal examples, File Formats, File I/	O Functions, File	e op	peration		
				Unit –IV			07 Hrs		
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure M	odel, Master-Sla	ve	Model, State		
Mac	hine Model,	Sy	nchronizatio	n using Semaphore, Introduction t	o DAQ System, l	Mea	asurement and		
Auto	mation Exp	olor	er, DAQ A	ssistants, Analysis Assistants,	Instrument Assis	stan	t, Real time		
appli	cation using	my	DAQ Config	ured it as Virtual labs, Counters, I	Low level Lab-VI	EW	Program,		
	Unit –V 07 Hrs								
Sign	Signal Processing Application- Fourier transforms, Power spectrum, Correlation methods, windowing								
& fl	& flittering , Real time application using myRIO. Communication protocol (SPI, I2C, UART) for								
Emb	Embedded Applications, Configure myRIO for speed control of DC Motor using encoder. Kevpad								
appli	cation. LCI). [°]	IR Sensor.	and onboard sensors. Develor	oment of control	l s	vstem. Image		
acou	isition and p	roce	essing				,,		

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.						
CO2:	Apply the theoretical concepts to realize practical systems.						
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.						
CO4:	Create a VI system to solve real time problems using data acquisition.						

Reference Books							
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning	g					
1	Pvt.Ltd , ISBN: 978-8120340305						

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017,
2	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
4	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
4	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	-	-	1	1	-	1
CO2	1	3	2	1	2	-	-	-	1	1	-	1
CO3	2	2	3	3	3	-	-	-	1	1	-	2
CO4	1	2	2	3	3	1	0	2	3	2	1	2

	Semester: VI						
	SYSTEMS ENGINEERING						
			(GROUP E	E: GLOBAL ELE	ECTIVE)		
		1		(Theory)		1	
Cou	rse Code	:	18G6E09		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bje	ectives:				
1.	Understand th	ne L	ife Cycle of System	IS.			
2.	Explain the ro	ole o	of Stake holders and	their needs in org	anizational system	ns.	
3.	3. Develop and Document the knowledge base for effective systems engineering processes.						
4.	4. Apply available tools, methods and technologies to support complex high technology systems.						
5.	Create the fra	me	works for quality pro	ocesses to ensure l	high reliability of	syste	ems.

UNIT-I	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, O	rigins of
System Engineering, Examples of Systems Requiring Systems Engineering, System Eng	ineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	s.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of C	Complex
systems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evol	utionary

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs		
Engineering Design: Implementing the System Building blocks, requirements analysis, Fu	inctional		
analysis and design, Component design, Design validation, Configuration Management, problems.			
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and			
preparation, System integration, Developmental system testing, Operational test and ev	aluation,		
problems.			
TINITE X7	06 IIma		

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the Life Cycle of Systems.						
CO2:	Explain the role of Stake holders and their needs in organizational systems.						
CO3:	Develop and Document the knowledge base for effective systems engineering processes.						
CO4:	Apply available tools, methods and technologies to support complex high technology systems.						
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.						

Reference Books:

1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	-	-	-	-	1	-	-	-	-	-	1		
CO2	-	2	3	-	1	-	-	1	-	-	2	-		
CO3	-	3	-	-	-	2	2	1	-	3	2	-		
CO4	-	-	2	1	-	-	-	-	-	-	-	-		
CO5	1	1	-	2	-	1	2	-	3	-	-	-		

Semester: VI													
INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT													
(GROUP E: GLOBAL ELECTIVE)													
(Theory)													
Course	e Code	:	18G6E10		CIE	:	100 Marks						
Credit	Credits: L:T:P : 3:0:0 SEE : 10												
Total Hours : 39L SEE Duration : 3.00 Hour													
Course Learning Objectives: The students will be able to 1 Comprehend the knowledge on essentials of android application development													
Comprehend the knowledge on essentials of android application development. Demonstrate the basic and advanced features of android technology													
2 Demonstrate the basic and advanced features of android technology.													
3	Develop the	SK1	Is in designing and buildin	g mobile applications	s using android pla	itto	rm.						
4	Create. debu	g ar	nd publish innovative mobi	le applications using	android Platform.								
5	Comprehend	the	knowledge on essentials of	of android application	development.								
			T T 1	· •			00 T						
Tan fan o d			Unit	t- l			08 Hrs						
Introd	iuction:					1 т.							
Smart	phone operation	ng	systems and smart phones	applications. Introd	uction to Androic	i, Ir u d	istalling Android						
Studio	, creating an A	ndr	old app project, deploying	the app to the emulat	for and a device. U	ID	esign: Building a						
layout	with UI eleme	nts,	Layouts, views and Resol	urces, Text and Scrol	ling views.	•,	т <i>и</i> т.:						
Activit	ties and Inten	ts,	The Activity Lifecycle, I	Managing State, Act	ivities and Impli	CIT	Intents, Testing,						
debugg	ging, and using	g si	upport libraries, The And	roid Studio Debugge	er, Testing androi	d aj	pp, The Android						
Suppor	rt Library.						0.0 77						
I.com o			Unit	- 11			08 Hrs						
User e	experience:	. т		Notion Design	I. Winn Dallah	د د 1	·						
User 1	Interaction, Use	er n	nput Controls, Menus, Scre	een Navigation, Recy	cier view, Delign	trui	user experience,						
Drawa	bles, Styles, ar	10 1	nemes, Material Design, I	Providing Resources	for Adaptive Layo	outs	, Testing app UI,						
Testing	g the User Inter	rtac	e	TTT			00 11						
Work	ing in the heal		Unit -	-111			U8 Hrs						
Deale	ing in the back	(gro	vullu: noTaalt and Aavna Taalt I	laadan Connact to t	ha Intamat Duca	daa	t Dessivers and						
Dackg	round Tasks, A	-tsy	heduling and antimizing h	Loader, Connect to t	le Internet, Broad	icas	st Receivers, and						
Service	es. Inggenng,	sc.	neduling and optimizing t	background tasks – 1	Notifications, Sch	eau	ing Alarms, and						
Transi	erring Data En	1016		TX 7			00 11						
Allah	aut data.		Unit -	-1 V			U8 Hrs						
All ab	out uata:		Staming Data Shared Dra	formana Ann Cattin	sa Staring data ya	:	SOLita SOLita						
Prefere	Ences and Sett	ngs	, Storing Data, Shared Pre	terences, App Setting	gs. Storing data us	шg	SQLIE - SQLIE						
Primer, SQLite Database. Sharing data with content providers. Loading data using loaders.													
Using	Selection W10	gets	and Debugging, Displaying	ig and reiching infor	mation, Using Dia	nog	s and Fragments,						
Advan	ceu Android	Pro	ogramming: Internet, En	tertainment, and S	ervices, Impleme	ntir	ig urawing and						
animat	animations. Displaying web pages and maps, communicating with SMS and emails. Creating and consuming												
service	services - Location based services, Sensors.												
Hard	Unit –V 07 Hrs												
Hardy	Hardware Support & devices:												
Permis	ssions and Lib	rarı	es, Performance and Secu	urity. Firebase and A	amob, Publish a	ind	Polish, Multiple						

Form Factors, Using Google Services.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the basic features of android platform and the application development process.
	Acquire familiarity with basic building blocks of Android application and its architecture.
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating
	Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting
	tools.
CO4:	Create innovative applications, understand the economics and features of the app marketplace by
	offering the applications for download.

Refere	ence Books
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,
1	2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
2	Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370
	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1 st Edition,
4	2012, ISBN-13: 9788126525898
-	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1 st Edition, 2011, ISBN-13:
5	978-1-4302-3297-1
6	Android Developer Training - https://developers.google.com/training/android/
	Android Testing Support Library - https://google.github.io/android-testing-support-library/

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	-	-	-	3	-	-	-	-	-	-	2		
CO2	3	-	-	-	3	-	-	-	-	-	1	2		
CO3	-	3	3	-	3	-	1	-	-	2	1	3		
CO4	3	3	3	1	3	2	1	2	2	1	1	3		

Semester: VI											
	INDUSTRIAL AUTOMATION										
(GROUP E: GLOBAL ELECTIVE)											
			(TH	(OERY)							
Cou	Course Code : 18G6E11 CIE : 100 Marks										
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Tota	l Hours	:	39 L	SEE Duration	:	3.00 Hours					
Cou	rse Learning (Dbj	ectives: The students will	be able to							
1	Identify the v	ario	ous types of Actuators, ser	nsors and switching devices u	sed in	n industrial					
	automation.										
2	Understand t	the	fundamentals of CNC, PL	C and Industrial robots.							
3	Describe the	fun	ctions of hardware compo	nents for automation							
4	Prepare simp	le n	nanual part programs for C	CNC and Ladder logic for PL	C.						
5	Demonstrate	the	ability to develop suitable	e industrial automation system	ns usi	ng all the concepts					

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation
continuous and discrete control, basic elements of an automated system, advanced automation	functions
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	sensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic me	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	natic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection									
	technologies in industrial automation.									
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and									
	identify its application areas.									
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning									
	centres interfaced with Robots.									
CO4:	Develop a suitable industrial automated system integrating all of the above advanced									
	automation concepts									

Referen	ce Books								
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC								
	Press, 2018, ISBN - 978-1-4987-0540-0								
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st								
	Edition, 2011, ISBN –13–978–8126529889.								
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.								
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-								
	13: 978-0-07-351088-0								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	2	2	-	3	1	-	-	-	1	-	1		
CO2	2	2	3	2	2	-	-	-	1	2	-	1		
CO3	2	2	3	3	2	-	-	-	-	2	-	-		
CO4	3	3	3	2	2	-	-	-	-	2	-	1		

Semester: VI											
MOBILE NETWORK SYSTEM AND STANDARDS (GROUP E: GLOBAL ELECTIVE) (Theory)											
Cou	rse Code	:	18G6E12	CIE	:	100 Marks					
Credits: L:T:P			3:0:0	SEE	:	100 Marks					
Hrs/	Week	:	40L	SEE Duration	:	3.00 Hrs					
Cou	rse Learning	; Ol	bjectives: The	students will be able to							
1	Understand the perform	the anc	e essential prin e.	nciples of cellular communication and factors the	nat	t might degrade					
2	2 Describe the second-Generation pan-European digital mobile cellular communication standards.										
3 Analyze the 3G cellular technologies including GPRS and UMTS.											
4	Compare th	e ez	kisting and fut	ure trends in Wireless technologies.							

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	Reduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	ar system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	of FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifier	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	ns.
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN	Network

architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the concepts and terminologies for Cellular Communication.									
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.									
CO3	Compare the performance features of 2G and 3G Cellular Technologies.									
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.									

Reference Books

Iterere	
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education
T	Private Limited, ISBN: 978-0-07-068178-1.
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
3	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education,
5	ISBN-13:978-0-19-806066-6.
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
4	Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

	Semester: VI											
	THIN FILM NANO DEVICE FABRICATION TECHNOLOGY											
(GROUP E: GLOBAL ELECTIVE)												
~	(Theory)											
Cou	Course Code:18G6E13CIE:100 Marks											
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Mai	rks				
Tota	l Hours	:	39L		SEE Duration	:	3.00 Ho	urs				
Cou	rse Learning O)bje	ctives: The student	s will be able to								
1	Basic understa	andi	ng of vacuum and r	elated technology								
2	2 Knowledge of growth, optimization and characterization of thin films and nanostructures											
3	Design approp	oria	te growth technique	for desired application	on							
4	Fabricate and	Eva	luate thin film nand	devices for advance	d applications							
				Unit-I				08 Hrs				
Vacu	um Technolog	gy:										
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	and pumping, Q-rate	e ca	lculation,	Basics of				
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo me	olec	ular, and	Cryogenic				
pum	ps, getter pump	os (.	NEG), sublimation	pump (TSP); differe	ential pumping, Mea	asur	ement of	vacuum -				
Cond	cept of Capacita	ince	Manometer, Pirani	and Penning gauges.								
				Unit – II				08 Hrs				
Subs	strate Surfaces	& 1	Thin Film Nucleation	on:								
Aton	nic view of sub	stra	te surfaces, Thermo	odynamic aspects of	nucleation, Kinetic	proc	cesses in 1	nucleation				
and	growth, experim	nent	al studies of nucleat	tion and growth (Brie	f)	-						
Defe	cts in Thin Fil	ms:		e (·							

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Choose the right choice of material for the desired application							
CO2:	Improve the desired nanostructures and their properties							
CO3:	Fabricate appropriate Nanodevices							
CO4:	Optimize the nanodevice fabrication process for repeatability.							

Refere	nce Books
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-
	0030839931
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.
3	Microfabrication for Industrial Applications, Regina Luttge, 1 st Edition, William Andrew, 2011,
	ISBN: 9780815515821.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	-	-	-	-	-	-		-	2	
CO2	3	2	2	2	-	-	-	-	-		-	2	
CO3	2	3	3	2	2	1	1	1	-	1	-	2	
CO4	2	3	3	2	2	2	2	2	2	2	-	2	

Semester: VI												
CHEMISTRY OF ADVANCED ENERGY STORAGE DEVICES FOR E-MOBILITY												
(GROUP E: GLOBAL ELECTIVE)												
C	C. J.		19C/E14	(Theory)	CIE	<u> </u>	100 141					
Cradite: L.T.D : 3:0:0 SEE : 100 Marks								KS ZC				
Tota		•	391		SEE SFE Duration	•	3 00 Hom	ns				
Cou	rse Learning () bie	ctives: The students	s will be able to	SEL Duration	•	5.00 Hou	15				
1 Understand the basic concepts of advanced storage devices.												
2 Apply the basic concepts of storage devices for E-mobility in the area of automotive engineering.												
3	3 Impart knowledge of electrochemistry to analyze the problems associated with electric/hybrid											
	vehicles.		·		•			2				
4	Develop know	vled	ge of battery manag	ement system and re-	cycling of storage de	vic	es.					
	- Develop knowledge of battery management system and recycling of storage devices.											
				Unit-I				07 Hrs				
Intro	oduction of En	erg	y Storage Systems	in Electric vehicles:								
Back	ground of alter	nati	ve energy sources a	and sustainability. Int	roduction of E-mob	lity	: Overview	of land,				
mari	ne and space	veh	icle electrification.	Vehicle performance	ce and fuel econom	ny	and charac	teristics.				
Elect	tric vehicles co	onfi	guration, energy an	nd power requirement	nts for various HE	Vs	and EVs V	Vehicles.				
Fund	lamentals of bar	tery	v technology in hybr	rid vehicles.								
				Unit – II				08 Hrs				
Adv	anced Lithium	ion	Battery Technolog	gy for Electric-vehic	eles:							
Basi	c concepts of li	thiu	im batteries, Advan	ced Lithium batterie	s for E-mobility: Ce	ell c	onstruction	, battery				
com	ponents, princi	ple	of operation, ele	ctrode fabrication,	electrolytes, battery	m	odules and	l packs.				
Cons	struction, worki	ng a	and future application	ons of Li-polymer ba	tteries, Li-S battery,	Li-	Air battery	, Li-iron				
sulfi	de cells and sol	id-s	tate batteries.					0.0 T T				
Futu	no Soono in no	n 1	ithium Dattoniog.	Unit –III				08 Hrs				
rutu Limi	tations of lithi	II- I	battoriog Constru	ation components	vorking and applica	otio	ng of Non	Lithium				
botto	rias: Sodium b	otto	v Magnasium batt	ory Nickel Metal H	working and applied		alle Vanad	ium and				
iron	hesed betterio		ly, Magnesium Dau Ni Uydrogon, battar	rios Advanced bett	orios for transports	a c	ells, vallau	hottory				
horiz	vontal plate Ph-	Δci	d batteries Advanta	ges and applications	of non-lithium batter	inor	11. 191-19111	Dattery,				
110112	iontal plate 1 0-2		d batteries. Advanta	Unit _IV		ics.		08 Hrs				
Che	mistry of Alter	nat	ive Storage Device	S:				00 1115				
Intro	duction to supe	er c	apacitor, material c	haracteristics. Const	uction, working and	l ar	plications of	of Super				
capa	citors and Ultr	a ca	apacitor for E mob	ility: Double laver S	uper capacitors. Ac	uec	ous super ca	apacitor.				
orga	nic based super	car	pacitors, asymmetric	super capacitors and	d Ultra capacitors.	Adv	anced batte	erv-super				
capa	citor hybrids fo	r la	rge vehicles. Battery	v-Fuel cell hybridizat	ion for transportatio	n ar	oplications.	Battery-				
Sola	r Cell (Photovo	Itaic	c) hybridization. and	advanced energy sto	rage devices for bac	k-u	p of solar er	nergy.				
Unit –V 08 Hrs												
Batt	Battery Maintenance and Recycling:											
Batte	Battery Management Systems (BMS), Fundamentals of battery management systems and controls.											
Batte	ery Thermal M	anag	gement: Passive coo	oling – PCM system	s, Active cooling –	Liq	uids & air :	systems.				
Batte	ery Recycling	Fecl	nnologies: Technolo	ogy and economic a	spects of battery red	cycl	ing. Enviro	onmental				
safet	y in battery re	ecyc	cling process. Regu	ulations and safety	aspects of high vo	ltag	e batteries:	battery				
stanc	lards, safe hand	ling	g of lithium batteries	i.		J		-				
								-				

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric									
	vehicles.									
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion									
	devices for vehicle electrification.									
CO3:	Analyses of battery management, safety, global market trends for large format batteries.									
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy									
	consumption, reuse and recycling.									

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	2	-	-	-	-	1	-	1	
CO2	3	3	2	2	2	-	-	-	1	1	-	1	
CO3	2	2	3	3	2	-	-	-	3	1	2	1	
CO4	3	3	2	3	2	-	-	-	2	1	3	1	

Semester: VI								
			ADVANCE	ED STATISTICAL	METHODS			
	(GROUP E: GLOBAL ELECTIVE)							
0	(Theory)							
Cou	rse Code	:	18G6E15		CIE	:	100 Marks	
Cree	lits: L:I:P	:	3:0:0		SEE SEE Duration	:	100 Marks	
	ll HOUIS rea Laarning (:)bid	J9L	s will be able to	SEE Duration	•	5.00 Hours	
1	Adequate exp	0511	re to understand the	basic knowledge on	classification and re	ore	ssion trees that form	
-	the foundation	u fo	r analyzing data	busic knowledge on	clussification and re	610	ssion trees that form	
2	Use the conce	nte	of cluster analysis a	nd conjoint analysis	techniques arising in	1 V91	rious fields	
3	Apply the co	nce	nts of discriminant	analysis and factor	analysis which has		reat significance in	
5	Apply the co	root	jeo	analysis and factor	analysis which hav	le g	reat significance in	
1	Domonstrato d	ha	nee.	of regression and lo	alinaar modele			
4	Demonstrate	ne	practical importance	of regression and rog	gimear models.			
				I Init-I			07 Hrs	
Clas	sification and	Reg	ression Trees:				07 1115	
Intro	duction. the Ba	sic	Tree Model. Catego	rical or Quantitative	Predictors, Regressi	on ′	Frees. Classification	
Tree	s Stopping Rul	es	Pruning and Cross-V	Validation Loss func	tions Geometry			
	s, stopping itu	c 5,	r runnig und eross	Unit – II	dons, deoniedy.		07 Hrs	
Clus	ter Analysis:						07 1115	
Intro	duction. Types	of	Clustering, Correlat	tions and Distances.	Hierarchical Cluster	ing.	Partitioning via K-	
mea	ns. Additive Tre	es.	01400001118, 0011014					
				Unit –III			08 Hrs	
Con	joint Analysis:			<u> </u>				
Intro	duction. Addit	ive	Tables, Multiplicat	tive Tables. Comput	ing Table Margins	bas	sed on an Additive	
Mod	el. Applied Cor	nioi	nt Analysis.	, I	0 0			
	× 11	5	<u>y</u>	Unit –IV			08 Hrs	
Disc	riminant Anal	ysis	and Factor Analys	sis:				
Intro	duction, Linea	r D	iscriminant Model,	Linear discriminant	function, Discrimin	nant	analysis, Principal	
Com	ponent, Factor	Ana	alysis, Principal Con	nponents versus Facto	or Analysis, Applica	tior	is and Caveats.	
-				Unit –V			09 Hrs	
Log	stic Regression	ı ar	nd Loglinear Mode	ls:				
Intro	Introduction, Binary Logit, Multinomial Logit, Conditional Logit, Discrete Choice Logit. Stepwise Logit.							
Fitti	ng a Loglinear I	Mod	lel.	-				
L	-							
Cou	rse Outcomes:	Af	ter completing the	course, the students	will be able to			
COI	: Explore the	fur	damental concepts	of statistical methods	arising in various fi	elds	engineering.	
CO ₂	O2: Apply the knowledge and skills of statistical techniques to understand various types of analysis.							

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge gained to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Reference Books						
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.					
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4th Edition, 2003, Marcel					
	Decker, New York. ISBN: 0-8247-4052-1.					

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey JSBN: 0-471-36091-0

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	Semester: VI								
			MATH	EMATICAL MOD	ELING				
(GROUP E: GLOBAL ELECTIVE)									
(Theory)									
Coul	rse Code	:	18G0E10 2.0.0			· 100 Warks			
Tota	115: L:1:F	•	391		SEE SEE Duration	•	3 00 Hou	15 rs	
Com	Course Learning Objectives: The students will be able to								
1	Adequate exp	osu	re to understand the	basic knowledge of 1	mathematical model	ing.			
2	Use the conce	pts	of discrete process	nodels arising in vari	ous fields.	U			
3	Apply the co	nce	epts of modeling o	f nano liquids which	ch have great sign	ifica	nce in eng	gineering	
	practice.			1	6 6		C		
4	Demonstrate	the	practical importance	e of graph theoretic	models, variationa	l pr	oblem and	dynamic	
	programming		1 1		,	I		5	
	1 0 0								
				Unit-I				07 Hrs	
Elen	nentary Mathe	ma	tical Modeling:						
Basic	c concepts. Rea	al v	world problems, (Sc	eience and Engineeri	ng), Approximation	ı of	the problem	m, Steps	
invol	ved in modelin	ng.	Linear growth and	l decay model, Logi	stic model, Model	of 1	nass-spring	-dashpot	
(pres	ent in shock al	oso	rbed, mechanical en	gineering problems)	, Chemical reaction	, Di	ug absorpti	ion from	
blood	d stream. Motic	n o	f a projectile, Curre	nt flow in electrical c	ircuits (LCR).				
				Unit – II				07 Hrs	
Disc	rete Process	Mo	dels:						
Intro	duction to Dif	fer	ence equations, Int	roduction to discret	e models-simple e	xam	ples, Math	ematical	
mode	eling through	diff	erence equations in	n economics, finance	e, population dyna	mic	s and gene	etics and	
prob	ability theory.								
				Unit –III				08 Hrs	
Mod	eling of Nano	Liq	uids:						
Nano	o liquids-Basic	co	ncepts, Mathematic	al modeling of nan	o liquids-Buongion	no	Model (Tw	o phase	
mode	el): Relative in	npc	rtance of the nano	particle transport me	echanisms. Conserv	vatio	n equation	for two	
phase	e nano liquids:	The	e Continuity equation	n, Momentum equation	on and Energy equa	tion			
				Unit –IV				08 Hrs	
Graj	ph Theoretic M	lod	els:						
Math	ematical mode	elin	g through graphs-M	Iodels in terms of u	undirected graphs,	dire	cted graphs	s, signed	
grapl	ns and weighted	l gr	aphs. Problems with	engineering applicat	tions.			I	
				Unit –V				09 Hrs	
Vari	ational Proble	m a	and Dynamic Progr	amming:					
Opti	mization princ	iple	es and techniques,	Mathematical mode	els of variational	pro	blem and	dynamic	
programming, Problems with engineering applications.									
C			(
Cou	rse Outcomes:	Aľ	ter completing the	course, the students	will be able to	a f	1.4		
	Explore the	rur	idamental concepts (bi inathematical mod	eis arising in variou	s fie	ius enginee	ring.	
	Apply the k	no	wiedge and skills of	aiscrete and continu	ious models to und	ersta	and various	types of	
002	analysis.		• , •				1.	• •	
03	: Analyze the	e ap	propriate mathemat	ical model to solve t	the real-world prob	lem	and to opti-	mize the	

Refere	nce Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
	81-224-0006-X.
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
	Cheltonham, ISBN: 0470271779, 9780470271773.
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
4	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
	Hall/CRC Textbook, ISBN 9781439854518.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	VI Semester								
	FOUNDATIONAL COURSE ON ENTREPRENEURSHIP								
			(GF	ROUP E: GLOBAL ELECTIVE)					
		1		(Theory)					
Co	urse Code	:	18G6E17		CIE Marks	:	100 Marks		
Cr	edits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks		
To	tal Hours	:	39L		SEE Duration	:	3.00 Hours		
Co	urse Learning ()b	jectives:						
1	To make partic	ipa	ints self-discove	er their innate flow, entrepreneurial	style, and identify	y pi	roblems		
	worth solving t	he	reby becoming	entrepreneurs					
2	To handhold pa	arti	cipants on lean	methodology to craft value proposi	tion and get ready	/ W	ith lean		
	canvas		-						
3	To create solut	ion	demo by condu	acting customer interviews and find	ing problem-solu	tio	n fit for		
	building Minin	nur	n Viable Produc	et (MVP)					
4	To make partic	ipa	ints understand	cost structure, pricing, revenue type	es and importance	of	adopting		
	shared leadersh	ip	to build good te	eam					
5	To help partici	par	nts build a stron	g brand and identify various sales c	hannels for their p	oro	ducts and		
	services				_				
6	To take particip	bar	ts through basic	cs of business regulations and other	legal terms along	g-w	ith		
	understanding	of	Intellectual Prop	perty Rights					
	·								
				TT 1/ T			0.0 11		

Unit-I	08 Hrs
Self-Discovery and Opportunity Discovery	
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identifying	ng
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Iden	ntifying
the Entrepreneurial Style.	
Unit – II	08 Hrs
Customer, Solution and Lean Methodology	
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Early	ý
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Model a	and
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.	
Unit – III	07 Hrs
Problem-Solution Fit and Building MVP	
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce-R	laise-
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interviews	;
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.	
Unit – IV	07 Hrs
Financial Planning & Team Building	
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Ident	ifying
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping a	nd
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and	
Responsibilities.	
Unit – V	09 Hrs
Marketing, Sales, Regulations and Intellectual Property	
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business	

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Showcase the ability to discern distinct entrepreneurial traits					
CO2	Know the parameters to assess opportunities and constraints for new business ideas					
CO3	Understand the systematic process to select and screen a business idea					
CO4	Design strategies for successful implementation of ideas					
CO5	Create Business Model and develop Minimum Viable Product					

Refer	Reference Books:						
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.						
2	Entrepreneurship. Roy, R., 2012. Oxford University Press						
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International						
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial						
4	Modern Classics						
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar						
	Publishing Ltd.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

Course Code Credits: L:T:P	Profe	essional Practice – II Professional Develo	oment of Engineers			
Course Code Credits: L:T:P	Employability Skills and 18HSE68	Professional Develog	oment of Engineers			
Course Code Credits: L:T:P	18HSE68					
Credits: L:T:P		18HSE68 CIE Marks: 50				
	0:0:1		SEE Marks: 50			
Hours:	18 Hrs/Semester		CIE Duration: 02 Hour	S		
Course Learning O	bjectives: The students	will be able to				
1 Improve qualitat	ive and quantitative probled	to aposific problems				
2 Apply critical an	lu logical uninking proces	s to specific problems.	Nationshing botwoon conc	ants based on		
3 Additive to verbal verbal reasoning	ily compare and contrast	words and arrive at re	charlonships between conc	epis, based on		
4 Applying good n	nind maps that help in co	mmunicating ideas as	well as in technical docu	nentation		
•		initialiteuting facus us				
		V Semester				
	Uni	it-I		06 Hrs		
Aptitude Test Prepar	ation	-				
Importance of Aptitu	ide tests. Key Componen	ts. Quantitative Aptitu	ıde: Problem Solving, Da	ta Sufficiency.		
Data Analysis	···· ····, ···· · ··· · ··· · ··· ··· ·	, C				
Number Systems, Ma	ath Vocabulary, fraction o	lecimals, digit places of	etc.			
Reasoning and Logi	cal Aptitude: Introductio	on to puzzle and gam	es organizing information	on parts of an		
argument common f	laws arguments and assu	motions Analytical R	easoning Critical Reason	ino		
	II		cusoning, entited reason	06 Hrs		
Verbal Analogies	Unit	- 11		001115		
What are Analogies	s How to Solve Verba	l Analogies & deve	loning Higher Vocabul	ry Grammar		
Comprehension and	Application Written	Ability Non- Verbal	Reasoning Brain Teas	ers Creativity		
Antitude	reprication, written r	tonity. 1001- verbai	Reasoning, Dram reas	cis. Creativity		
Group Discussion: T	heory & Evaluation: Un	derstanding why and	how is the group discuss	ion conducted		
The techniques of gr	oun discussion. Discuss th	be EAOs of group disc	now is the group discuss	ring GD		
The teeninques of give			ussion, body language de			
Resume Writing.	UNIT	-111.A				
Writing Resume how	w to write effective resu	na Understanding the	hasic assentials for a re	suma Pasuma		
writing tine Guidelin	as for bottor presentation	of facts	e basic essentiais for a re	sume, Resume		
writing ups Outdening	es foi beller presentation	VI Somostor				
	UNIT			06 Hrs		
Technical Document	ation.	-111,D		001115		
Introduction to technical writing- Emphasis on language difference between general and technical writing						
Contents in a technical document Report design overview & format Headings list & special notes writing						
processes. Translating technical information. Power revision techniques. Patterns & elements of sentences						
Common grammar usage & punctuation problems						
Unit IV AZ II						
	Unit	-1 V				
Interview Skille						
Interview Skills:	vs h) Group Interviews	c) Mock Interviews	Questions asked & how t	handle them		
Interview Skills: a) Personal Interview Body language in int	vs, b) Group Interviews, o	c) Mock Interviews - (Questions asked & how t	o handle them,		
Verbal Analogies: What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion: Theory & Evaluation: Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD. UNIT-III.A 06 Hrs Resume Writing: Writing Resume, how to write effective resume. Understanding the basic essentials for a resume. Resume						

General HR interviews etc.

UNIT-V	06 Hrs

Interpersonal Relations:

Optimal Co-existence, Cultural Sensitivity, Gender sensitivity

Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.

Course Outcomes: After completing the course, the students will be able to					
CO1:	Inculcate employability skill to suit the industry requirement.				
CO2:	Analyze problems using quantitative and reasoning skills				
CO3:	Exhibit verbal aptitude skills with appropriate comprehension and application.				
CO4:	Focus on Personal Strengths and Competent to face interviews and answer				

Referen	nce Books
1	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:
	0743272455
2	How to win friends and influence people, Dale Carnegie General Press, 1st Edition, 2016, ISBN:
	9789380914787
3	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738

Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I V Sem	CIE will be conducted during the 5 th semester and evaluated for 50 marks. The test will have two components. The Quiz is evaluated for 15 marks and second component consisting of questions requiring descriptive answers is evaluated for 35 marks. The test & quiz will assess the skills acquired through the training module. SEE is based on the test conducted at the end of the 5 th semester The test will have two components a Quiz evaluated for 15 marks and second component consisting of questions requiring descriptive answers is evaluated for 35 marks.	50%
Phase II VI Sem	During the 6 th semester a test will be conducted and evaluated for 50 marks. The test will have two components a Short Quiz and Questions requiring descriptive answers. The test & quiz will assess the skills acquired through the training module. SEE is based on the test conducted at the end of the 6 th semester The test will have two components. The Quiz evaluated for 15 marks and second component consisting of questions requiring descriptive answers is evaluated for 35 marks	50%
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
At the	(Average of Test 1 and Test 2 (CIE $1 + CIE_2)/2$.)	
end of VI	At the end of the VI Sem Marks of SEE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
Sem	(Average of CIE 1 and CIE 2 (CIE $1 + CIE2$)/2.)	

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

RV College of Engineering – Bengaluru – 59

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.