

R.V. COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

MECHANICAL ENGINEERING

Department Vision

Quality Education in Design, Materials, Thermal and Manufacturing with emphasis on Research, Sustainable technologies and Entrepreneurship for Societal Symbiosis.

Department Mission

- 1. Imparting knowledge in basic and applied areas of Mechanical Engineering
- 2. Providing state-of-art laboratories and infrastructure for academics and research
- 3. Facilitating faculty development through continuous improvement programs
- 4. Promoting research, education and training in frontier areas of nanotechnology, advanced composites, surface technologies, MEMS and sustainable technology
- 5. Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy
- 6. Imbibing social and ethical values in students, staff and faculty through personality development programs

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- PEO1: Successful professional careers with sound fundamental knowledge in Mathematics, Physical Sciences and Mechanical Engineering leading to leadership, entrepreneurship or pursuing higher education.
- PEO2: Expertise in specialized areas of Mechanical Engineering such as Materials, Design, Manufacturing and Thermal Engineering with a focus on research and innovation.
- PEO3: Ability of problem solving by adopting analytical, numerical and experimental skills with awareness of societal impact.
- PEO4: Sound communication skills, team working ability, professional ethics and zeal for life-long learning.

PSO	Description										
PSO1	Demonstrate basic knowledge in Mathematics, basic science, Materials Science and										
	Engineering to formulate and solve mechanical engineering problems										
PSO2	Design mechanical and thermal systems by adopting numerical, analytical and										
	experimental techniques and analyse the results.										
PSO3	Function in multidisciplinary teams with sound communication skills.										
PSO4	Self-learn to acquire and apply allied knowledge and update the same by engaging in life-										
	long learning, practice profession with ethics and promote entrepreneurship										

PROGRAM SPECIFIC OUTCOMES (PSOs)

Lead Society: American Society of Mechanical Engineers - ASME

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

R.V. COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

MECHANICAL ENGINEERING

Abbreviations

Sl. No.	Abbreviation	Meaning				
1.	VTU	Visvesvaraya Technological University				
2.	BS	Basic Sciences				
3.	CIE	Continuous Internal Evaluation				
4.	CS	Computer Science and Engineering				
5.	CV	Civil Engineering				
6.	СНҮ	Chemistry				
7.	EC	Electronics and Communication Engineering				
8.	EE	Electrical and Electronics Engineering				
9.	ES	Engineering Science				
10.	HSS	Humanities and Social Sciences				
11.	ME	Mechanical Engineering				
12.	РНҮ	Engineering Physics				
13.	SEE	Semester End Examination				
14.	MAT	Engineering Mathematics				
15.	РСЕ	Professional Core Elective				
16.	GE	Global Elective				

INDEX

V Semester							
Sl.	Course	Code	Name of the Course	Page			
No.				No.			
1.	16HEM51		Foundations of Management and Economics	1			
2.	16ME52/1	6IM52	Design of Machine Elements – I	3			
3.	16ME	53	Heat and Mass Transfer	6			
4.	16ME	54	CAD/CAM	9			
5.	16ME	55	Dynamics of Machines	12			
		G	ROUP A: PROFESSIONAL CORE ELECTIVES				
1.	16ME5	A1	Mechanics of Composite Materials	14			
2.	16ME5	A2	Industrial Robotics	16			
3.	16ME5	A3	Refrigeration and Air conditioning	18			
4.	4. 16ME5A4		Advanced Solid Mechanics	20			
			GROUP B: GLOBAL ELECTIVES				
Sl.	Course	Host	Course Title	Page			
No.	Code	Dept		No.			
1.	16G5B01	BT	Bioinformatics	22			
2.	16G5B02	CH	Fuel Cell Technology	24			
3.	16G5B03	CV	Geoinformatics	26			
4.	16G5B04	CSE	Graph Theory	28			
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	30			
6.	16G5B06	EEE	Hybrid Electric Vehicles	32			
7.	16G5B07	IEM	Optimization Techniques	34			
8.	16G5B08	E&I	Sensors & Applications	36			
9.	16G5B09	ISE	Introduction To Management Information Systems	38			
10.	10G5B10	ME	Industrial Automation	40			
11.	16G5B11	TCE	Telecommunication Systems	43			
12.	16G5B12	MAT	Computational advanced numerical methods	45			
13.	16G5B13	AE	Basics of Aerospace Engineering	47			

	VI Semester							
Sl. No	Course Co	ode	Name of the Course	Page No				
1.	16HSI61	HSI61 IPR & Entrepreneurship						
2.	16ME62		Design of Machine Elements II	52				
3	16ME63		Turbo machinery	55				
<u>л</u>	16ME6/		Finite Element Methods	58				
т.	101/12.04		POLID C. DROFESSIONAL CODE ELECTIVES	50				
1	16ME6C1	0	Hydraulics and Pneumatics	61				
2	16ME6C2		Computational Fluid Dynamics	63				
2.	10WE0C2		Energy Conversion Engineering	65				
3.	TOMEOC3		Energy Conversion Engineering	00				
4.	16ME6C4		Advanced Machine Design	67				
5.	16ME6C5		Product Design and Development	69				
		G	ROUP D: PROFESSIONAL CORE ELECTIVES					
1.	16ME6D1		Gas dynamics and Combustion	71				
2.	16ME6D2		Non Traditional Processes	73				
3.	16ME6D3		Theory of Plates and Shells	75				
4.	16ME6D4		Cutting Tool Design	77				
5.	5. 16ME6D5		Quality Assurance	79				
			GROUP E: GLOBAL ELECTIVES					
SI.	Course	Host	Course Title	Page				
No.	Code	Dept		No.				
1.	16G6E01	BT	Bio-inspired Engineering	81				
2.	16G6E02	CH	Green Technology	83				
3.	16G6E03	CV	Solid Waste Management	85				
4.	16G6E04	CSE	Introduction to Web Programming	87				
5.	16G6E05	ECE	Automotive Electronics	89				
6.	16G6E06	EEE	Industrial Electronics	91				
7.	16G6E07	IEM	Project Management	93				
8.	16G6E08 E&I		Virtual Instrumentation	97				
9.	16G6E09	ISE	Introduction to Mobile Application Development	99				
10.	16G6E10	ME	Automotive Engineering	101				
11.	16G6E11	TCE	Mobile Network System and Standards	103				
12.	16G6E12	MAT	Applied Partial Differential Equations	105				
13.	16G6E13	AE	Aircraft Systems	100				

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF MECHANICAL ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME									
SI.			DOG	Cre	edit A	lloca	tion	Total		
No	Course Code	Course Title	BOS	L	Т	Р	S	Credits		
1	16HEM51	Foundations of Management and Economics	2	0	0	0	2			
2	16ME52/16IM52	Design of Machine Elements – I	ME	3	0	1	0	4		
3	16ME53	Heat and Mass Transfer	ME	3	0	1	1	5		
4	16ME54	CAD/CAM	ME	3	1	1	0	5		
5	16ME55	Dynamics of Machines	ME	3	0	0	1	4		
6	16ME5AX	Elective A (PE)	ME	3	0	0	1	4		
7	16G5BXX	Elective B (OE)*	Respective BOS	4	0	0	0	4		
	Total Number of Credits							28		
	Tota	21	1	6	12**	40				

	SIXTH SEMESTER CREDIT SCHEME									
Sl. Cour	Course		DOG	Cr	Total					
No.	Code	Course Title	BOS	L	Т	Р	S	Credits		
1	16HSI61	IPR & Entrepreneurship	HSS	3	0	0	0	3		
2	16ME62	Design of Machine Elements II	ME	3	0	1	0	4		
3	16ME63	Turbo machinery	ME	3	0	1	0	4		
4	16ME64	Finite Element Methods	ME	3	0	1	1	5		
5	16ME6CX	Elective C (PE)	ME	3	0	0	1	4		
6	16ME6DX	Elective D (PE)	ME	4	0	0	0	4		
7	16G6EXX	Elective E (OE)*	Respective BOS	3	0	0	0	3		
8	16HS68	Professional Practice-III (Employability Skills and Professional Development of Engineers)	HSS	1	0	0	0	1		
		Total Number of Credits						28		
	Т	Cotal Number of Hours / Week	22	2	4	12**	28			

*Students should take other department Global Elective courses **Non-contact hours

V Semester										
	GROUP A: PROFESSIONAL CORE ELECTIVES									
Sl. No.	Course (Code	Course Title							
1.	16ME5	16ME5A1 Mechanics of Composite Materials								
2.	16ME5	A2 Industr	ial Robotics							
3.	16ME5	A3 Refrige	ration and Air conditioning							
4.	16ME5	A4 Advan	ed Solid Mechanics							
	GROUP B: GLOBAL ELECTIVES									
Sl. No.	HostDept	Course Code	Course Title	Credits						
1.	BT	16G5B01	Bioinformatics	4						
2.	СН	16G5B02	Fuel Cell Technology	4						
3.	CV	16G5B03	Geoinformatics	4						
4.	CSE	16G5B04	Graph Theory	4						
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning	4						
6.	EEE	16G5B06	Hybrid Electric Vehicles	4						
7.	IEM	16G5B07	Optimization Techniques	4						
8.	E&I	16G5B08	Sensors & Applications	4						
9.	ISE	16G5B09	Introduction To Management Information Systems	4						
10.	ME	16G5B10	310 Industrial Automation							
11.	TCE	16G5B11	1 Telecommunication Systems							
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4						
13.	AE	16G5B13	Basics of Aerospace Engineering	4						

	VI Semester							
	GROUP C: PROFESSIONAL CORE ELECTIVES							
Sl. No.	Course Code	Course Title						
1.	16ME6C1	Hydraulics and Pneumatics						
2.	16ME6C2	Computational Fluid Dynamics						
3.	16ME6C3	Energy Conversion Engineering						
4.	16ME6C4	16ME6C4Advanced Machine Design						
5.	16ME6C5	Product Design and Development						
	GRO	UP D: PROFESSIONAL CORE ELECTIVES						
1.	16ME6D1	Gas dynamics and Combustion						
2.	16ME6D2	Non Traditional Processes						
3.	16ME6D3	Theory of Plates and Shells						
4.	16ME6D4	Cutting Tool Design						
5.	16ME6D5	Quality Assurance						

GROUP E: GLOBAL ELECTIVES									
Sl. No.	Host Dept	Course Code	Course Title	Credits					
1.	BT	16G6E01	Bioinspired Engineering	3					
2.	СН	16G6E02	Green Technology	3					
3.	CV	16G6E03	Solid Waste Management	3					
4.	CSE	16G6E04	Introduction to Web Programming	3					
5.	ECE	16G6E05	Automotive Electronics	3					
6.	EEE	16G6E06	Industrial Electronics	3					
7.	IEM	16G6E07	Project Management	3					
8.	E&I	16G6E08	Virtual Instrumentation	3					
9.	ISE	16G6E09	Introduction to Mobile Application Development	3					
10.	ME	16G6E10	Automotive Engineering	3					
11.	TCE	16G6E11	Mobile Network System and Standards	3					
12.	MAT	16G6E12	Applied Partial Differential Equations	3					
13.	AE	16G6E13	Aircraft Systems	3					

	V SEMESTER							
	FOUNDATIONS OF MA	ANAGEMENT AND ECONOMICS						
(Theory)								
(Common to BT, CHE, CV, E&I, IEM, ME)								
Cour	rse Code: 16HEM51/61	CIE Marks: 50						
Cred	lits: L:T:P:S: 2:0:0:0	SEE Marks: 50						
Hou	rs: 23L	SEE Duration: 02 Hrs						
Cour	rse Learning Objectives: The students	will be able to						
1	Understand the evolution of manageme	nt thought.						
2	Acquire knowledge of the functions of	Management.						
3	Gain basic knowledge of essentials of N	Alcro economics and Macroeconomics.						
4	Understand the concepts of macroecond	omics relevant to different organizational context	lS.					
		TINITAL T						
T 4		UNIT-I	04.11					
Intr(duction to Management: Manageme	Management & Administrative Theorem	04 Hrs					
Histo	bry – Classical Approach: Scientific	Dehoviourol Approach. How themes Studies						
Qual	amporary Approach: Systems & Conting	i, behavioural Approach. Hawmorne Studies,						
Cont	emporary Approach. Systems & Conting							
Four	adations of Planning: Types of Goals &	Plans Approaches to Setting Goals & Plans	02 Hrs					
Strat	egic Management Process Corporate & (Competitive Strategies	02 1115					
Orga	anizational Structure & Design: Over	rview of Designing Organizational Structure:	03 Hrs					
Worl	k Specialization. Departmentalization.	Chain of Command. Span of Control.	05 1115					
Cent	ralization & Decentralization. Formalizat	tion. Mechanistic & Organic Structures.						
00110		UNIT-III						
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs 03 Hrs								
Theo	Theory McGregor's Theory X & Theory Y Herzberg's Two Factor Theory Contemporary							
Theo	ries of Motivation: Adam's Equity & Vr	oom's Expectancy Theory.						
Man	agers as Leaders: Behavioural Theo	ries: Ohio State & University of Michigan	03 Hrs					
Studi	ies, Blake & Mouton's Managerial Grid	, Contingency Theories of Leadership: Hersey						
& B1	anchard's Situational Leadership, Conten	mporary Views of Leadership: Transactional &						
Tran	sformational Leadership.							
		UNIT-IV						
Intro	oduction to Economics: Concept of Ec	onomy and its working, basic problems of an	04 Hrs					
Econ	omy, Market mechanism to solve econor	mic problems, Government and the economy,						
Esse	ntials of Micro Economics: Concept an	nd scope, tools of Microeconomics, themes of						
micro	beconomics, Decisions: some central the	emes, Markets: Some central themes, Uses of						
Mıcr	oeconomics.							
E		UNIT-V	04 II					
Esse	ntials of Macroeconomics: Prices an	d inflation, Exchange rate, Gross domestic	04 Hrs					
prod	uci(GDP), components of GDP, the La	b theory. The close is and banks, interest rate,						
mode	I IS I M model. The AS AD model	The complete Keynesian model. The nee						
House, IS-LIVI-model, The AS-AD-model, The complete Keynesian model, The neo-								
Course Outcomes: After completing the course, the students will be able to								
CO1	: Explain the principles of manage	ement theory & recognize the characteristi	cs of an					
	organization.		c 5 01 an					
CO2	: Demonstrate the importance of key	performance areas in strategic management a	nd design					
	appropriate organizational structures	and possess an ability to conceive various orga	nizational					
	dynamics.							
CO3	Select & Implement the right leader	ship practices in organizations that would enable	e systems					
	orientation.		•					
CO4	: Understand the basic concepts and p	rinciples of Micro economics and Macroeconom	ics					

Refe	erence Books
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5th Edition, 2009, TMH Pub. Co.
	Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, (www.bookboon.com), Peter Jochumzen, 1st Edition. 2010, e-
	book, ISBN:978-87-7681-558-5.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 10 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

	Semester: V				
	DESIGN OF MACHINE ELEMENTS - I				
	(Theo	ory & Practice)			
Cou	rse Code: 16ME52/16IM52	CIE Marks: 100 + 50			
Crea	lits: L:T:P:S: 3:0:2:0	SEE Marks: 100 + 50			
Hours: 36L + 24T SEE Duration: 3 + 3 J		SEE Duration: 3 + 3 Hrs			
Cou	Course Learning Objectives: The students will be able to				
1	Describe functions of mechanical element	nts in a machine			
2	Explain relationship among properties an	nd dimensions of components			
2	Analyze and quantify forces, stresses and related parameters for the design of shafts, springs,				
3	drive systems, clutches and joints				

4 Demonstrate ability to develop design of mechanical components

PART A	
UNIT-I	
Design for Static Strength:	06 Hrs
Codes and Standards, Principal Stress, Principal Planes, Stress Tensor, 2D and 3D	
stresses, Static Load, Factor of Safety, Stress Concentration, Stress Concentration	
Factor, Theory of Failures: Failure of Brittle and Ductile Materials	
UNIT-II	
Design for Fatigue:	10 Hrs
Introduction, Definitions, S-N Curve, Low & High Cycle Fatigue, Endurance Limit,	
Modifying factors for Endurance Strength, Size Effects, Load & surface Effects; Stress	
Concentration Effects, Fluctuating Loads, Derivation of Goodman and Soderberg	
Relationship; Impact loads, stresses due to axial and bending	
Design of Shafts:	
Design for Strength and Rigidity with Steady Loading, Torsion of Shafts, Design of	
Transmission Shafts, Shafts under fluctuating loads	
UNIT-III	
Design of Keys & Couplings	09 Hrs
Key Design - rectangular & square keys, Types of Couplings, Design of Rigid and	
Flexible Couplings flanged coupling, bush and pin type of couplings	
Design of Cotter and Knuckle Joints	
Introduction, Applications, Design of Cotter and Knuckle joints	
UNIT-IV	
Design of Springs	06 Hrs
Types of spring, stresses in helical springs, deflection in helical springs - circular,	
Tension and compression springs, springs subjected to fluctuating and impact loads;	
Design leaf springs	
UNIT-V	
Design of Riveted, Welded Joints	05 Hrs
Types of riveted joints, failure of riveted joints, design of boiler joints; Types of welded	
igents strength of butt fillet welds accentric loaded welds	

PART – B–LA	ABORATORY			
COMPUTER AIDED MACHINE DRAWING				
SECTION – I	10 Hrs			
Introduction to Machine Drawing; Sections of Sol	ids – cubes, pyramids, cones, cylinders;			
1. Orthographic Projections – Conversion of pi	ctorial views into orthographic views			
2. Threaded Forms-Internal, External, Square,	Acme, Bolts, Nuts and Washers			
3. Riveted Joints – Single, Double, Triple, Lap	and Butt Joints			
SECTION – II	14 Hrs			
Assembly Drawings: Screw Jack, Connecting Roo	l, Tail Stock of Lathe, Plummer Block, Machine			
Vice, Tool head of shaper				

Course Outcomes: After completing the course, the students will be able to				
1	Explain the design procedure for mechanical elements and sub-systems			
2	Design mechanical elements for specifications			
3	Analyze types of forces and their influence on component design			
4	Design Assembly based on component design			

Reference Books

1.	Mechanical Engineering Design, Shigley J.E, Mischke C.R., 6th Edition, McGraw Hill
	International, ISBN: 0070494620
2.	Design of Machine Elements, Spotts. M.F, Shoup T.E, Hornberger. L.E, Jayram.S.R.,
	Venkatesh .C.V., 8th Edition, Pearson Education, ISBN9788177584219
3.	Design of Machine Elements, Bhandari. V.B., 2nd Edition, Tata McGraw Hill Publishing
	Company Ltd., ISBN: 9780070611412
4.	Machine Drawing, K.R. Goplakrishna, 2005, 19th Edition, Subhas Stores,
5.	Design Data Hand Book, K. Mahadevan, Balaveera Reddy, Volume I and II, CBS publishers

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	1		1					
CO2			1		2	1						
CO3	1	3		2			2					
CO4	2	2	2	3	1	2						

Semester: V					
HEAT AND MASS TRASFER					
(Theory & Practice)					
Cou	rse Code: 16ME53	CIE Marks: 100 + 50			
Crea	lits: L:T:P:S: 3:0:2:4	SEE Marks: 100 + 50			
Hours: 36L + 24T		SEE Duration: 3 + 3 Hrs			
Cou	Course Learning Objectives: The students should be able to				
1	Understand conduction, convection and radiation	ns mode heat transfer			
2	Compute heat transfer by conduction, convection	and radiation			
3	Develop heat transfer models for simple systems				
4	Estimate performance of heat exchangers				
5	Describe the process of boiling and condensation				
6	Explain the principles of mass diffusion				

PART A	
UNIT-I	
Basic Concepts:	07 Hrs
Modes of heat transfer: Basic laws governing conduction, convection and radiation heat	
transfer, Thermal conductivity; Convective heat transfer co-efficient; Boundary	
conditions - I, II and III kind, General 3 - dimensional heat conduction equation in	
Cartesian co-ordinates	
Steady state heat conduction:	
Steady state heat conduction in plane wall and multilayer walls, Thermal contact	
resistance, discussion on 3-D conduction in cylindrical and spherical coordinate systems	
(No derivation), plane and multilayer Cylinders, plane and multilayer Spheres, Overall	
heat transfer coefficient, Critical radius of insulation	
UNIT-II	
Heat transfer from finned surfaces:	08 Hrs
Governing equations, solutions for different boundary conditions, fin efficiency and	
effectiveness, Selection of fins. Numerical problems	
Transient Heat Conduction:	
Lumped system analysis, transient heat conduction in large plane walls, long cylinders,	
use of charts for Transient heat conduction in semi and infinite solids. Numerical	
problems	
UN11-111	
UN11-III Fundamentals of Convection:	09 Hrs
Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity	09 Hrs
Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal	09 Hrs
Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat	09 Hrs
Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient	09 Hrs
Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection:	09 Hrs
Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection:	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres; Internal forced convection: Laminar and turbulent flow in	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres; Internal forced convection: Laminar and turbulent flow in tubes with entry length concepts. Problems	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres; Internal forced convection: Laminar and turbulent flow in tubes with entry length concepts. Problems UNIT-IV	09 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres; Internal forced convection: Laminar and turbulent flow in tubes with entry length concepts. Problems UNIT-IV Radiation Heat Transfer:	09 Hrs 06 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres; Internal forced convection: Laminar and turbulent flow in tubes with entry length concepts. Problems UNIT-IV Radiation Heat Transfer: Thermal radiation, Black body radiation, Radiation intensity, View factor and its	09 Hrs 06 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres; Internal forced convection: Laminar and turbulent flow in tubes with entry length concepts. Problems UNIT-IV Radiation Heat Transfer: Thermal radiation, Black body radiation, Radiation intensity, View factor and its relations, Black Surfaces and grey surfaces, Radiation shields and the radiation effect.	09 Hrs 06 Hrs
UNIT-III Fundamentals of Convection: Physical mechanism of convection, classification of fluid flow, concepts of velocity boundary layer; General expressions for drag coefficient and drag force; thermal boundary layer, general expression for local heat transfer coefficient, Average heat transfer coefficient Natural Convection: Physical mechanism of natural convection, dimensional analysis, natural convection over surfaces - Vertical plates, cylinders, horizontal and inclined plates. Numerical problems Forced Convection: Dimensional analysis, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. External forced convection: Dimensional analysis, flow over flat plates, and flow across cylinders, Spheres; Internal forced convection: Laminar and turbulent flow in tubes with entry length concepts. Problems UNIT-IV Radiation Heat Transfer: Thermal radiation, Black body radiation, Radiation intensity, View factor and its relations, Black Surfaces and grey surfaces, Radiation shields and the radiation effect. Problems	09 Hrs 06 Hrs

Boiling and Condensation:	
Boiling heat transfer, pool boiling, Nusselt's theory for laminar condensation on a	
vertical flat surface, Use of correlations for condensation on horizontal tube, film	
condensation, drop wise condensation, Problems	
UNIT-V	
Heat Exchangers:	06 Hrs
Types of heat exchangers, overall heat transfer co-efficient, Log Mean Temperature	
Difference; Analysis of heat exchangers, fouling and fouling factor, effectiveness, NTU	
method, Problems	
Mass Transfer:	
Definition, Mass diffusion, analogy between heat and mass transfer, terms used in mass	
transfer analysis; Fick's First law of diffusion (no Numericals)	
Experiential learning component:	4
Modelling (Prototyping) of thermodynamic systems, Industry based case studies,	Hrs/Week
Internship, Survey of Areas pertaining to thermal systems, innovative projects related to	
energy, state-of-the-art in emerging areas related to thermal engineering	

PART – B- LABORATORY

	SECTION – I	10 Hrs
1.	Determination of thermal conductivity of met	al rod
2.	Determination of thermal conductivity of insu	lating powder
3.	Determination of Stefan Boltzmann constant	
4.	Determination of emissivity of a surface	
	SECTION – II	14 Hrs
1.	Determination of heat transfer co-efficient in	free convection for vertical cylinder
2.	Determination of heat transfer co-efficient in	forced convection flow through a circular pipe
3.	Determination of heat transfer co-efficient in	forced and free convection for pin -fin equipment.
4.	Determination of overall heat transfer co-efficient	cient and effectiveness in parallel flow and counter
	flow heat exchanger	
5.	Performance test on a Vapor Compression Ai	r-Conditioner
6.	Experiments on Boiling of liquid and Conder	sation of Vapor
Сог	urse Outcomes: After completing the course	the students will be able to

1	Explain the process of conductive, convective and radiation heat transfer. (L1 & L2)
2	Formulate and solve conduction problems. (L3 & L4)
3	Identify and analyze flow regime and use correlation for solving heat transfer. (L5)
4	Design and analyze performance of heat exchangers. (L6)

Reference Books

Itert	
1.	Fundamentals of Heat and Mass Transfer, M Thirumaleshwar, 2nd Edition, 2009,
	ISBN :9788177585193
2.	Heat and Mass Transfer, Yunus A Cengel, 4th Edition, 2011, Tata McGraw Hill,
	ISBN : 978007107786
3.	Heat Transfer, J P Holman, 10th Edition, 2011, Tata McGraw Hill, ISBN: 9780071069670
4.	Heat Transfer, PK Nag, 2002, Tata McGraw Hill, ISBN: 0070473374

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All

quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		1	2							
CO2	3	2		1	2							
CO3	3	1		2	1							
CO4	3	2		2	1							

	Semester: V				
		CAD/CAM			
	(The	ory and Practice)			
Cou	rse Code: 16ME54		CIE Marks: 100 + 50		
Credits: L:T:P:S: 3:1:2:0 SEE Marks: 100 +		SEE Marks: 100 + 50			
Hours: 36L + 24T SEI		SEE Duration: 3 + 3 Hrs			
Cou	Course Learning Objectives: The students should be able to:				
1	1 Understand Product Life Cycle and Applications of CAD/CAM		AM		
2	2 Explain software components of CAD/CAM				
3	3 Understand Numerical control, CNC machine structure, control drives and DNC				
4	4 Evaluate transformation for simple geometric entities				
5	5 Develop part programs using APT and CNC codes				
6	Study basic types of robots and applica	tions in industry			

UNIT-I	
Fundamentals of CAD/CAM 06 Hrs	rs
Definition, Product life cycle, Types of production, Plant layout and automation,	
Creating manufacturing database, Production concepts and Mathematical models	
and Numerical problems	
Graphics Software and Geometric Modelling	
Operating system, Graphics software, Application software, Evaluation criteria,	
geometric, Construction methods, Wireframe and solid modelling basics,	
Numerical problems	
UNIT-II	
Geometric Transformation 07 Hrs	rs
Formulation, Two dimensional translation, Scaling, Rotation, Reflection.	
Concatenation, Derivation for rotation about arbitrary point. Three dimensional	
transformations, Rotation of 3D object about arbitrary axis, Reflection about	
arbitrary line, Mathematics of projections, Numerical problems using	
homogeneous coordinates.	
UNIT-III	
NC,CNC and DNC 06 Hrs	rs
Introduction, NC coordinate system, control modes, CNC elements, Types of CNC,	
DNC components, drive systems, Classification and features of turning and	
machining centres, ISO coding for turning tool, Automatic tool changer.	
Industrial Robots	
Basic structure of Robots – fixed and mobile robots, Types of motions of robotic	
arm, end effectors, sensors, Cartesian, Cylindrical and Spherical Co-ordinate	
Systems, Resolution, Accuracy and Repeatability; work cell layouts and functions,	
Robot Programming, Simple exercises using VAL, Applications	
UNIT-IV	
Computer Aided part programming 08 Hrs	rs
Programming languages, APT structure, Rules, geometry statements for point, line,	
plane, circle and pattern, point to point and continuous control motion statements,	
postprocessor statement, auxiliary statements, macro statements. Programming	
exercises on APT with milling and drilling operations.	
UNIT-V	
Manual part programming 06 Hrs	rs
Fundamentals, NC words, Canned cycles (G70 to G76 for turning) and (G80-G86	
for drilling operations), tool length compensation (Use of G43), cutter radius	

compensation, sub-programming. Typical programming exercises using canned cycles for turning centres and Machining centres.

Macro Programming

Application of Macros, Variables, Arithmetic expressions, Flow control statements, Unconditional and Conditional branching, Programming exercises.

PART – B–LABORATORY				
CAJ	D/CAM			
SECTION – I	10 Hrs			
Simulation of part programming for turning opera	ations using canned cycles			
(Facing, Plane turning, Grooving, Thread cutting,	Peck drilling, Boring and combination)			
SECTION – II	14 Hrs			
Simulation of part programming for milling and drilling operations				
(Profile milling with and without sub program	n, Slab milling, Circular pocket, Rectangular			
pocket, Scaling, Mirroring, Rotation, Peck drillin	g, Deep hole drilling on bolt circle, datum shift			
and combination)				
(Demonstration only)				
One model with all operations combined on CNC	lathe.			
One model with milling and drilling on CNC mac	chining centres			

Cou	irse Outcomes: After completing the course, the students will be able to
1	Explain the fundamental concepts of CAD / CAM / Robotics
2	Apply the knowledge of representation and transformation techniques to create programming
	codes that generate and transform geometric entities
3	Design parts in a modern parametric CAD system for manufacturing machine and/or a CNC
	machining system
4	Develop Manual part programs and APT programs for 2D complex profiles and test the
	programs by simulation

Reference I	Books
--------------------	-------

KUI	
1.	CAD/CAM, PN Rao, 3rd Edition, 2010, Tata McGraw Hill Publication,
	ISBN: 978-0-07-068193-4
2.	CAD/CAM, Mikell P Groover, Emory W. Zimmers Jr, 2nd Edition, 2003, Pearson Education
	Inc., ISBN:81-7758-416-2
3.	CNC fundamentals and programming, PM Agarwal, VJ Patel, 1st Edition, 2009, Charotar
	Publishing, ISBN:978-81-85594-98-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		1			1			2		
CO2	2	3		2	2			1	1		2	1
CO3	2		2	2	3	1	2	1	2			
CO4				1	2	2		2	3	3	1	2

		Semester: V			
	DYNAM	ICS OF MACHINES			
Com	ma Cadas 10ME55	(Theory)			
Crediter LeTePoSe 2:0:0:1					
Hou	Creatts: L:1:P:S: 3:0:0:1 SEE Marks: 100				
Cou	rsa Laarning Objectives: The students	should be able to:			
1	Describe the need for performing static	and dynamic analysis on a system			
2	Calculate ratio of belt tensions in flat a	nd V belt			
	Explain the working of flywheel, cam	and the importance of balancing in machines v	vith rotating		
3	members	1 C	U		
4	Analyse forces with friction and without	ut friction. Speed of Governor. Sensitiveness,	stability,		
4	isochronism, hunting, controlling force	curves for governor			
5	Study Gyroscopic couple, effect of gyr	oscopic couple on plane disc, aeroplane and sl	nip		
Stat!		UNIT-1	06 IIng		
Stati	c Analysis	three force members members with two	UO HIS		
force	e equinorium, equinorium of two and	force analysis of four har mechanism and			
slide	r crank mechanism without friction	Toree analysis of four bar meenamism and			
Dyn	amic Analysis: Dynamic force analysi	is of four bar mechanism and slider crank			
mech	nanism, dynamically equivalent system				
		UNIT-II			
Belt	& Rope Drives		08 Hrs		
Types of belt drives – flat and V belt – Open belt and Cross belt. Velocity ratio, slip and					
creep and its effects on velocity ratio. Ratio of belt tensions. Initial tension, centrifugal					
tensi	tension. Power transmitted by belt drive. Condition for maximum power transmission				
Rop	Rope drive: Ratio of tensions, Initial tension and centrifugal tension. Power transmitted.				
Cond	Condition for maximum power transmission				
Flyw	/heels:				
Types of flywheel, Energy stored, Determination of size of flywheel for engine,					
Mac	Machines performing intermittent operation in a punching press				
Cov	arnors		AQ Hrs		
Type	es of governors. Centrifugal and Ine	rtia types Porter Governor and Hartnell	09 1115		
Gove	ernor. Force analysis with friction a	nd without friction. Speed of Governor.			
Sens	itiveness, stability, Isochronism, Hunting	g. Controlling force curves for governor			
Bala	ncing of Reciprocating Masses	5,			
Inert	ia effect of crank and connecting rod of	f single cylinder engine, partial balancing of			
mult	i-cylinder engine (Primary and Second	dary forces and couples), Balancing of V			
engi	ne, Direct and Reverse crank method				
		UNIT-IV			
Bala	ncing of Rotating Masses		06 Hrs		
Stati	c and Dynamic balancing, Balancing of	of single rotating mass, Balancing in same			
plane	e and in different plane, Balancing of	several rotating masses rotating at different			
spee	18				
C	22000	UINI I - V	06 11		
Vect	orial representation of angular motion	Basic definitions, Gyroscopic couple, Effect	VU HIS		
of gyroscopic couple on plane disc. Aeroplane. Ship					
Effect of gyroscopic couple on stability of a two wheeler and a four wheeler					

Self-Learning Component:	4
It is the process of learning through experience, and is more specifically defined as	Hrs/Week
"learning through reflection on doing". Working model of Open belt and cross belt, Rope	
drive, Gyroscope, Synthesis of linkages	

Cou	Course Outcomes: After completing the course, the students will be able to				
1	Define the basics of force analysis, flywheel, balancing and vibration				
2	Analyze flywheels, rotating and reciprocating mechanism, damping and external excitation				
3	Evaluate kinematics and kinetics for various mechanisms				
4	Design and synthesise industrial mechanisms				

Refe	erence Books
1.	Theory of Machines, Thomas Bevan, 3rd Edition, 1984, CBS Publishers, ISBN:
	9788131729666
2.	Theory of Machines, Rattan S.S., 3rd Edition, 2008, TMH Publishing, ISBN:9780070144774
3.	Theory of Machines, Sadhu Singh, Pearson Education, 2 nd Edition, 2007,
	ISBN:9788177581270
4.	Theory of Vibration with Applications, Thomson W.T., 5th Edition, 2003, Pearson Education
	Inc., ISBN: 0044450699
5.	Mechanical Vibrations, Rao. S.S., 2007, 5th Edition, Prentice Hall, 2007, ISBN:0201526867

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1								
CO2	3	2	2	1								
CO3	2	2		2								
CO4	2	2		2						1		1

	Semester: V					
	MECHANICS OF COMPOSITE MATERIALS					
	(Group A: Professional Core Elective)					
Cou	rse Code: 16ME5A1		CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:1			SEE Marks: 100			
Hours: 34L SEE Duration: 3 Hrs			SEE Duration: 3 Hrs			
Cou	Course Learning Objectives: The students will be able to					
1	Understand composite materials and their properties for appropriate application					
2	Compute composite properties of lamina based on properties of matrix and reinforcements					
3	Evaluate the properties of laminates based on properties of laminae and stacking sequence					
4	Develop stress strain relationship using	g macro-mechanical an	alysis of laminate			
_						

5 Understand failure theories related to polymer composites

UNIT-I	
Introduction to composite materials: Classification, Polymer Matrix composites, Metal	05 Hrs
Matrix composites, Ceramic Matrix composites, Carbon-Carbon composites, Matrix and	
Reinforcements, Mechanics terminology	
UNIT-II	
Macro-mechanical analysis of a lamina: Hooke's law for different types of materials –	09 Hrs
Anisotropic, Monoclinic, Orthotropic, Transversely isotropic and Isotropic materials,	
Hooke's law for a two dimensional Unidirectional lamina - Plane stress assumption,	
Reduction of Hooke's law in 3D to 2D, Relationship of compliance and stiffness matrix	
to engineering elastic constants of a lamina	
Hooke's law for a two dimensional Angle lamina, Engineering constants of an Angle	
lamina, Invariant form of stiffness and compliance matrices for an angle lamina. Strength	
failure theories of angle lamina	
UNIT-III	
Micromechanical analysis of a lamina: Volume fraction, Mass fraction, Density and	10 Hrs
void content, Evaluation of four elastic Moduli using Strength of materials approach,	
Semi empirical approach, Elasticity approach, Elastic moduli of lamina with transversely	
isotropic fibres, Ultimate strength of Unidirectional lamina, Co-efficient of thermal	
expansion	
UNIT-IV	
Macro-mechanical analysis of a laminate: Laminate code, Stress – Strain relation for a	05 Hrs
laminate, In-plane and flexural modulus of a laminate.	
UNIT-V	
Failure, Analysis and design of laminates	05 Hrs
Special cases of laminates; Symmetric laminates, Cross-ply laminates, Angle-ply	
laminates, Antisymmetric laminates, Balanced laminates, Quasic-Isotropic laminates,	
Failure criterion for a laminate, Design of a laminated composite.	
Experiential Learning	4
Development of application oriented polymer composites. Design and analysis of	Hrs/Week
composite parts. Evaluation of service life of composite components.	
Course Outcomes: After completing the course, the students will be able to	

1 Explain types of composite materials, their properties and advantages.

- 2 Compute properties of lamina and laminate.
- 3 Derive stress strain relationship of polymer composites.
- 4 Apply failure criterion and design of laminated composite for specific applications.

Reference Books

- 1.Mechanics of Composite Materials , Autar Kaw, Taylor & Francis, 2006, ISBN:
9780849313431
- 2. Mechanics of Composite Materials, R. M. Jones, Taylor & Francis, 2nd Edition, 2015,

	ISBN-13: 978-1560327127
3.	Composite Materials, Science & Engg., Krishan K. Chawla, 3 rd Edition, Springer publication,
	ISBN : 978-0-387-74364-6
4.	Composite Materials and Processing, M. Balasubramanian, CRC Press, ISBN 9781439879351
5.	Engineering Mechanics of Composite Materials, Isaac M Daniel, Oxford University Press,
	ISBN 9780195150971

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2				2		2		1		1
CO2	3	3	3	1	1				1			1
CO3	3	3	3	2	1							
CO4	3		3	3						2		

Low-1 Medium-2 High-3

	Semester: V						
	INDUSTRIAL ROBOTICS						
	(Group A: Professional Core Elective)						
Cou	rse Code: 16ME5A2	CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:1		SEE Marks: 100					
Hours: 35L		SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The students	s should be able to:					
1	1 Understand the theory of transformation.						
2	2 Explain the concept of direct kinematics.						
3	3 Explain the concept of inverse kinematics.						
4	4 Understand the workspace analysis and trajectory planning						
5	Describe the methometical model behind the manipular dynamics						

Describe the mathematical model behind the manipular dynamics

UNIT-I INTRODUCTION: 05 Hrs Introduction, position and orientation of objects, objects coordinate frame Rotation matrix, Euler angles Roll, pitch and yaw angles coordinate Transformations, Joint variables and position of end effector, Dot and cross products, coordinate frames, Rotations, Homogeneous coordinates UNIT-II **DIRECT KINEMATICS: 08 Hrs** Link coordinates D-H Representation, The ARM equation. Direct kinematic analysis for Four axis, SCARA Robot and three, five and six axis Articulated Robots UNIT-III **INVERSE KINEMATICS:** 07 Hrs The inverse kinematics problem, General properties of solutions. Tool configuration, Inverse kinematics of four axis SCARA robot and three and five axis, Articulated robot **UNIT-IV** WORKSPACE ANALYSIS AND TRACJECTORY PLANNING: 07 Hrs Workspace Analysis, work envelope of a Four axis SCARA robot and five axis articulated robot workspace fixtures, the pick and place operations, Joint space technique - continuous path motion, Interpolated motion, straight line motion and Cartesian space technique in trajectory planning **UNIT-V** MANIPULATOR DYNAMICS: 08 Hrs Introduction, Lagrange's equation kinetic and potential energy. Link inertia Tensor, link Jacobian Manipulator inertia tensor. Gravity, Generalized forces, Lagrange-Euler Dynamic model, Dynamic model of a Two-axis planar robot, Newton Euler formulation, Lagrange - Euler formulation, problems. **Experiential Learning component:** 4 **Open ended Laboratory Experiments using ADAMS for specific applications:** Hrs/week Kinematic analysis (position, orientation, velocity and acceleration) of Manipulators, Dynamic Analysis of Robotic arms, Trajectory planning of robotic arms, Design of Robotic Arm for Workspace Calculation

Cou	Course Outcomes: After completing the course, the students will be able to:				
1	Explain the transformation involved in positioning and orienting the manipulator.				
2	Apply the related mathematical model to analysis the kinematics of industrial robot.				
3	Analyze the workspace and trajectory planning required for the manipulator.				
4	Solve problems related to forward, inverse and dynamic conditions.				

Refe	erence Books
1.	A Robot Engineering Textbook, Mohsen Shahinpoor, Harper & Row Publishers, 3rd Edition,
	New York, ISBN:006045931X
2.	Robotics, control vision and intelligence, Fu, Lee and Gonzalez, 5th Edition, McGraw Hill
	International, ISBN:0070226253
3.	Introduction to Robotics, John J. Craig, 5th Edition, Addison Wesley Publishing,
	ISBN:0201543613
4.	Autonomous mobile robots, Roland Illah R, Siegwart Nourbakhsh, 6th Edition, 2004, The
	MIT Press Cambridge, Massachusetts London, England, ISBN:0262015358

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1	3			1		1			
CO2	2	2	3		2							1
CO3	1	3		3	2							
CO4	2		2		1		1		1		1	

Low-1 Medium-2 High-3

Semester: V

	REFRIGERATION	N AND AIR-CONDITIONING			
~	(Group A: Pr	ofessional Core Elective)			
Cou	rse Code: 16ME5A3	CIE Marks: 100			
Cree	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100			
Hours: 34L SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The students	will be able to			
1	Describe the basic refrigeration and air	-conditioning systems.			
2	Analyze simple vapour compression sy	/stem.			
3	Practice use of psychrometric charts an	nd estimation of cooling loads.			
4	Explain applications of refrigeration ar	nd air-conditions.			
		UNIT-I			
Vap	or Compression Refrigeration System		06 Hrs		
Revi	ew of thermodynamic principles of re	efrigeration, Different types of refrigerants,			
Boot	stage systems; Performance of simpl	e vapour compression system, single and			
mult	i-load system, COP				
		UNIT-II			
Abso	orption Refrigeration System		08 Hrs		
Basi	c absorption system, COP, Refrigerate	or, Advantage and limitation over vapour			
com	pression system, Binary mixtures, I	emperature concentration diagram, Aqua			
amm	ionia system and energy balance				
Defe			00 11		
Kerrigeration Equipment and Control					
com	tion Evanorator Evanasion devices	high and low pressure sensors defrecting			
typo	of defrosting devices, capacity control.	devices			
types	s of demosting devices, capacity control	UNIT-IV			
Deve	hromatric Charts and Cooling Loads		06 Hrs		
Psyc	hometric processes Use of Charts Su	mmer and winter air-conditioning: Comfort	001115		
air-c	onditioning sensible heat loads latent	t heat loads sensible heat factors cooling			
coils	de-humidifiers	near roads, sensicie near ractors, cooring			
• • • mb	,	UNIT-V			
Type	es of Air-Conditioning Systems		06 Hrs		
Cent	ral. unitary, split air-conditioner, layout	of sub-systems, selection of air-conditioner	001110		
for a	room;	,			
App	lications of Refrigeration and Air-Con	nditioning			
Princ	ciples of ice production, food preserv	ation, transport air conditioning and milk			
chilli	ing plant				
Self-	Learning component:		4		
Appl	ication of RAC & HVAC. Heat load cal	culation.	Hrs/week		
Design of RAC components to meet techno-commercial aspects with positive impact on					
envii	conment.				
Desi	gn changes to make more energy efficient	nt systems.			
Cou	rse Outcomes: After completing the co	ourse, the students will be able to			

Cot	irse Outcomes: After completing the course, the students will be able to
1	Describe vapour compression/absorption refrigeration and air-conditioning systems.
2	Analyze effect of different parameters on simple and advanced vapour compressors.
3	Categorise design of various elements of VC and AC
4	Evaluate performance of VCs and AC systems

Refe	erence Books
1.	Refrigeration and Air conditioning, Stoecker. W.F., Jones. J.W, 2 nd Edition, 1982,
	Tata McGraw Hill , ISBN: 0070616191
2.	Refrigeration and Air-conditioning, Arora. C.P., 3rd Edition, 2009, Tata McGraw Hill,
	ISBN: 978007008390-5
3.	Principles of Refrigeration, Dossat. R.J. Horan. T.J., 5th Edition, 2006, Prentice Hall,
	ISBN: 013027270
4.	A Text Book of Refrigeration and Air-Conditioning, Rajput. R.K., 2009,
	S.K. Katraia, New Delhi, ISBN: 098869007-1

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		1	2							
CO2	3	2		1	2							
CO3	3	1		2	1							
CO4	3	2		2	1							

Low-1 Medium-2 High-3

	Semester: V								
	ADVANCED SOLID MECHANICS								
(Group A: Professional Core Elective)									
Cou	Course Code: 16ME5A4 CIE Marks: 100								
Crea	lits: L:T:P:S: 3:0:0:1	Marks: 100							
Hours: 36L SEE Duration: 3 Hr									
Cou	rse Learning Objectives: The students	should be able to:							
1	Understand concepts of stress, strain and constitutive relations								
2	Evaluate the stress conditions for failure based on yield criteria								
3	Apply energy methods in theory of Solid Mechanics								
4	Evaluate stress and deformation due to	bending, torsion and therma	al conditions						

Analysis of Stress: Body Force, Surface Force and Stress Vector, The State of Stress at a Point, Normal and Shear Stress Components, Rectangular Stress Components, Stress Components on an Arbitrary Plane, Principal Stresses, Stress Invariants, Mohr's Circles for the Three-Dimensional State of Stress, Octahedral Stresses, The State of Pure Shear , Decomposition into Hydrostatic and Deviatoric, Differential Equations of Equilibrium, Boundary Conditions, Equations of Equilibrium in Cylindrical Coordinates 09 Hrs Analysis of Strain: Deformation in the Neighbourhood of a Point, Change in Length of a Linear Element, Change in Length of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants 09 Hrs Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress-Strain Relations of Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Tesca and Von Mises, Stress-Strain Relations (Plastic Flow), Prandtl-Reuss Equations, Saint Venant–Von Mises Equations 09 Hrs Yield Criteria's: Theories of Failure, Use of Factor of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Virtual Work, Kirchhoff 's Theorem, Second Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work, Kirchhoff 's Theorem, Second Theorem of Castigliano, and its Generalisation, Maxwell–Mohr Integrals 06 Hrs UNIT-II Vield Criteria's: Theories of Failure, Use of Factor of Supe
Anarysis of Stress: Body Force, Surface Force and Stress Vector, The State of Stress at a 00 Hrs Point, Normal and Shear Stress Components, Rectangular Stress Components, Stress Components on an Arbitrary Plane, Principal Stresses, Stress Invariants, Mohr's Circles for the Three-Dimensional State of Stress, Octahedral Stresses, The State of Pure Shear , Decomposition into Hydrostatic and Deviatoric, Differential Equations of Equilibrium, Boundary Conditions, Equations of Equilibrium in Cylindrical Coordinates 09 Hrs UNIT-II Analysis of Strain: Deformations, Deformation in the Neighbourhood of a Point, 09 Hrs Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress-Strain Relations of Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, 09 Hrs Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress-Strain Relations (Plastic France, Second Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacem
Form, Normal and Shear Stess Components, Rectangular Stress Components, stress Stress Components, Stress Components on an Arbitrary Plane, Principal Stresses, Stress Invariants, Mohr's Circles for the Three-Dimensional State of Stress, Octahedral Stresses, Stress Invariants, Mohr's Circles for the Three-Dimensional State of Stress, Octahedral Stresses, Stress Invariants, Mohr's Circles for the Three-Dimensional State of Stress, Octahedral Stresses, Stress Invariants, Mohr's Circles Boundary Conditions, Equations of Equilibrium in Cylindrical Coordinates UNIT-II Analysis of Strain: Deformations, Deformation in the Neighbourhood of a Point, Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Op Hrs Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress–Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress–Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium 09 Hrs Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises Equations 09 Hrs Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, Firs
Components on an Arbitrary Prate, Principlar Suesses, Suess invariants, Monr's Chriess for the Three-Dimensional State of Stress, Octahedral Stresses, The State of Pure Shear , Decomposition into Hydrostatic and Deviatoric, Differential Equations of Equilibrium, Boundary Conditions, Equations of Equilibrium in Cylindrical Coordinates UNIT-II Analysis of Strain: Deformations, Deformation in the Neighbourhood of a Point, Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress–Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress–Strain Relations of Equilibrium Voung's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by </td
Inter-Index-Dimensional state of Stress, Octahedral Stresses, The State of Pure Shear , Decomposition into Hydrostatic and Deviatoric, Differential Equations of Equilibrium, Boundary Conditions, Equations of Equilibrium in Cylindrical Coordinates UNIT-II Analysis of Strain: Deformations, Deformation in the Neighbourhood of a Point, Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress-Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Yield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory 09 Hrs of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress-Strain Relations (Plastic Flow), Prandtl-Reuss Equations, Saint Venant-Von Mises Equation, 09 Hrs Forces and Elastic Strain Energy, Statically Indeterminate Structures, Theorem of Castigliano, E
Decomposition into Hydrostatic and Deviatoric, Differential Equations of Equilibrium, Boundary Conditions, Equations of Equilibrium in Cylindrical Coordinates 09 Hrs Analysis of Strain: Deformations, Deformation in the Neighbourhood of a Point, Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants 09 Hrs Stress—Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress—Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium 09 Hrs Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress—Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations 09 Hrs Faregy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Virtual Work, Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Moh Integrals 06 Hrs Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few O
Boundary Conditions, Equations of Equilibrium in Cylindrical Coordinates UNIT-II Analysis of Strain: Deformations, Deformation in the Neighbourhood of a Point, Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress-Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium 09 Hrs VINIT-III Yield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations 09 Hrs Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Virtual Work, Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals 06 Hrs Energin of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Cent
UNIT-II OPIT-II VITT-II VITT-III VITT-II VITT-II VITT-III VITT-II VIT
Analysis of Strain: Deformations, Deformation in the Neighbourhood of a Point, 09 Hrs Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress-Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Yield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress-Strain Relations (Plastic Flow), Prandtl-Reuss Equations, Saint Venant–Von Mises Equations 09 Hrs Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work, Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals 06 Hrs Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler–Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections
Change in Length of a Linear Element, Change in Length of a Linear Element—Linear Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress–Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress–Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Pranttl–Reuss Equations, Saint Venant–Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV <t< td=""></t<>
Components, Rectangular Strain Components, The State of Strain at a Point, Change in Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress–Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress–Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations Denergy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Work, Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– 06 Hrs Bernoulli Hypothesis, Shear Centre or Centre of
Direction of a Linear Element, Cubical Dilatation, Principal Strains, Plane Strains in Polar Coordinates, Compatibility Conditions, Strain Invariants Stress–Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress–Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Yield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars
Polar Coordinates, Compatibility Conditions, Strain Invariants Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress-Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Vied Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress-Strain Relations (Plastic Flow), Prandtl-Reuss Equations, Saint Venant-Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell-Betti-Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell-Mohr Integrals Of Hrs Of Hrs Date of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler- Bernding of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler- <t< td=""></t<>
Stress-Strain Relations for Linearly Elastic Solids: Generalized Statement of Hooke's Law, Stress-Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress-Strain Relations (Plastic Flow), Prandtl-Reuss Equations, Saint Venant-Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell-Betti-Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell-Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler- Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams
Law, Stress–Strain Relations for Isotropic Materials, Modulus of Rigidity, Bulk Modulus Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations 09 Hrs Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals 06 Hrs UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler–Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars 06 Hrs
Young's Modulus and Poisson's Ratio, Relations between the Elastic Constants, Displacement Equations of Equilibrium UNIT-III Vield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations 09 Hrs Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals 06 Hrs UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler–Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars 06 Hrs
Displacement Equations of Equilibrium UNIT-III Yield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations 09 Hrs Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals 06 Hrs Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler–Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars 06 Hrs
UNIT-IIIYield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations09 HrsEnergy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals06 HrsBending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Leurved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars06 Hrs
Yield Criteria's: Theories of Failure, Use of Factor of Safety in Design, Mohr's Theory of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals06 HrsBending of Beams: Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars06 Hrs
of Failure, Ideally Plastic Solid, Stress Space and Strain Space, General Nature of the Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars
Yield Locus, Yield Surfaces of Tresca and Von Mises, Stress–Strain Relations (Plastic Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars
Flow), Prandtl–Reuss Equations, Saint Venant–Von Mises Equations Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars Terming Topics of Coursel Driventic Days Selid Sections
Energy Methods: Hooke's Law and the Principle of Superposition, Work Done by Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars
Forces and Elastic Strain Energy Stored, Maxwell–Betti–Rayleigh Reciprocal Theorem, Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars
Generalised Forces and Displacements, Beggs deformeter, First Theorem of Castigliano, Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars Terminger Terminger of Coursel Displacement Provide Rest
Expressions for Strain Energy, Statically Indeterminate Structures, Theorem of Virtual Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars
Work , Kirchhoff 's Theorem, Second Theorem of Castigliano and its Generalisation, Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars Terminer Terminer of Coursel Dispersive Page Solid Sections
Maxwell–Mohr Integrals UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– 06 Hrs Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled 06 Hrs Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of 06 Hrs Curved Beams , (Winkler-Bach Formula), Deflections of Thick Curved Bars Terming To curved Bars
UNIT-IV Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams, (Winkler-Bach Formula), Deflections of Thick Curved Bars Termine Termine of Coursel Disputsion Page Solid Sections Termine of Law with
Bending of Beams: Straight Beams and Asymmetrical Bending, Regarding Euler– Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams, (Winkler-Bach Formula), Deflections of Thick Curved Bars
Bernoulli Hypothesis, Shear Centre or Centre of Flexure, Shear Stresses in Thin-Walled Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams, (Winkler-Bach Formula), Deflections of Thick Curved Bars
Open Sections: Shear Centre, Shear Centres for a Few Other Sections, Bending of Curved Beams, (Winkler-Bach Formula), Deflections of Thick Curved Bars
Curved Beams, (Winkler-Bach Formula), Deflections of Thick Curved Bars
Territory Territory of Conserl Driver (in Deer Collin Continue Territory of Laws with
IOFSION: IOFSION OF General Prismatic Bars–Solid Sections, Iorsion of bars with
different cross sections, Membrane Analogy, Torsion of Thin-Walled Tubes, Torsion of
Thin-Walled Multiple-Cell Closed Sections, Torsion of Bars with Thin Rectangular
Sections, Torsion of Rolled Sections, Multiply Connected Sections. Centre of Twist and
Flexural Centre
UNIT-V
Axisymmetric Problems: Thick-Walled Cylinder Subjected to Internal and External 06 Hrs
Pressures-Lame's Problem, Stresses in Composite Tubes-Shrink Fits, Sphere with

Purely Radial Displacements, Stresses Due to Gravitation, Rotating Disks of Uniform

Thickness, Disks of Variable Thickness, Rotating Shafts and Cylinders, Summary of Results for use in Problems.

Thermal Stresses: Thermo elastic Stress–Strain Relations, Equations of Equilibrium, Strain–Displacement Relations, Thin Circular Disk: Temperature Symmetrical about Centre, Long Circular Cylinder, The Problem of a Sphere, Normal Stresses in Straight Beams due to Thermal Loading, Stresses in Curved Beams due to Thermal Loading.

Cou	Course Outcomes: After completing the course, the students will be able to:									
1	Analyze solid mechanics problems using classical methods and energy methods									
2	Solve torsion and bending problems in beams and thin walled members									
3	Solve stress and deflection for unsymmetrical loading and locate shear centre for thin walled									
	beams									
4	Apply various yield criteria for obtaining yield stresses and deformations									

Refe	Reference Books							
1.	Advanced Mechanics of Solids, L.S. Srinath, 3rd Edition, 2009, McGraw Hill,							
	ISBN:978007139886,							
2.	Solid Mechanics, S.M.A. Kazimi, 2 nd Revised edition, 2001, McGraw Hill,							
	ISBN: 978-0074517154,							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1			1		1	3	3	2
CO2				2		1	3	2		2	1	3
CO3	3	1	1				1	2				3
CO4	1	2		3	3	1	1	1		2	2	3

Low-1 Mealum-2 High-	Low-1	Medium-2	High-3
----------------------	-------	----------	--------

	Semester	: V						
	BIOINFORM	IATICS						
	(Group B: Globa	al Elective)						
Course Code: 16G5B01		CIE Marks: 100						
Credits :L:T:P:S: 4:0:0:0		SEE Marks: 100						
Hours: 45L		SEE Duration: 3 Hrs						
Course Learning Objective	s:							
1 Understand the underly	ying technologies of Bioin	nformatics and Programming						
2 Explore the various alg	Explore the various algorithms behind the computational genomics and proteomic structural							
bioinformatics, modeling and simulation of molecular systems.								
3 Apply the tools and teo	Apply the tools and techniques that are exclusively designed as data analytics to investigate the							
significant meaning hi	significant meaning hidden behind the high throughput biological data.							
4 Analyze and evaluate t	he outcome of tools and t	echniques employed in the processes of						
biological data preproc	essing and data mining.							
Unit-I								
Biomolecules: Introduction	to Biomolecules. Str	ructure, Types and Functions of 09 Hrs						
Carbohadaataa Linida Nua	lain Anida and Ductains	Constinuedo Codon desenses						

Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Linida, Nucleia, Acida and Protains, Canatia and Codon degeneracy.	09 Hrs					
Carbonydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy, Ganas and Ganomas Bioinformatics & Biological Databases: Introduction to						
Bioinformatics Goals Scope Applications in biological science and medicine Biological						
databases Sequence structure Special Databases and applications. Genome Microarray						
Metabolic pathway motif and domain databases Mapping databases – genome wide						
mans Chromosome specific human mans						
Inaps. Chromosome specific numan maps.	L					
Cont – II Seguence Alignments Interduction Truce of seguence alignments Deignics and Multiple	00 II					
Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and Multiple	U9 Hrs					
Brogradius alabel alignment) Detabase Similarity Searching Searing metrices						
Progressive global alignment). Database Similarity Searching- Scoring matrices –						
BLOSSUM and PAM, Basic Local Angninent Search 1001 (BLAST), and FASTA. Next						
Generation Sequencing – Alignment and Assembly. Molecular Phylogenetics:						
Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction						
Methods - Distance-Based & Character-Based Methods and Phylogenetic Tree evaluation.	L					
Unit -III						
Predictive methods: Predicting secondary structure of RNA, Protein and Genes –	09 Hrs					
algorithms to predict secondary structure of RNA, Protein and Gene. Prediction of Tertiary						
structure of Protein, Protein identity and Physical properties of protein. Molecular						
Modeling and Drug Designing: Introduction to Molecular Modeling. Methods of						
Molecular Modeling and Force Fields used in Molecular Modeling. Drug designing process						
- deriving Pharmacophore, Receptor Mapping, Estimating Receptor-Ligand interactions						
and Molecular Docking.						
Unit –IV						
Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and	09 Hrs					
Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions						
(REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.						
Subroutines – types of functions, defining and calling functions in Perl, calling function -						
call by value and call by reference. Object Oriented Programming in Perl-Class and object,						
Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package.						
Perl Module – writing and calling module.						
Unit –V						
BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl - Sequence	09 Hrs					
retrieval from Database and submission of sequence to online Database, Indexing and						
accessing local databases, Transforming formats of database record, Sequence alignments						
BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Restriction						
mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and						

other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the Architecture and Schema of online databases including structure of
	records in these databases.
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in
	Biology, Chemical Engineering, and Medicine.
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to
	process simulation and process engineering in Biological system.
CO4:	Use Bioinformatics tools and Next Generation Technologies to model and simulate
	biological phenomenon.

Refere	nce Books
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text processing and scripting, O'Reilly Media, Inc., 4 th Edition, 2012, ISBN-13: 978-0596004927
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach, new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624
3	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and MySQL, Oxford University Press, 1st edition, 2009, ISBN
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

High-3 : Medium-2 : Low-1

Semester: V										
	FUEL CELL TECHNOLOGY									
	(Group B: Global Elective)									
Cou	Course Code: 16G5B02 CIE Marks: 100									
Crea	lits: L:T:P:S:: 4:0:0:0	SEE Marks: 100								
Hou	Hours: 45L SEE Duration: 3 Hrs									
Cou	rse Learning Objectives: The students	will be able to								
1	Recall the concept of fuel cells									
2	Distinguish various types of fuel cells and their functionalities									
3	3 Know the applications of fuel cells in various domains									

4 Understand the characterization of fuel cells

UNIT-I

Introduction: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties. UNIT-II

Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel09 Hrscell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantagesand disadvantages of each .

UNIT-III

Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum
efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and
Tafel equation.09 Hrs

UNIT-IV

Fuel Cell Characterization: current - voltage curve, in-situ characterization, current -								
voltage	measurement,	current	interrupt	measurement,	cyclic	voltammetry,		
electrochemical impedance spectroscopy and ex-situ characterization techniques.								

UNIT-V

Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen **09 Hrs** production, storage, handling and safety issues.

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Understand the fundamentals and characteristics of fuel cells							
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems							
3	Analyze the performance of fuel cells using different characterization techniques							
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems							

Reference Books

1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439

4. Recent Trends in Fuel Cell Science and Technology, Basu. S, 1st Edition, 2007, Springer, ISBN – 978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping												
	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12											
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

High-3 : Medium-2 : Low-1

	Semester: V									
	GEOINFORMATICS									
	(Group B: Global Elective)									
Cou	rse Code:16G5B03	CIE Marks: 100								
Hrs/	Week: L:T:P:S: 4:0:0:0	SEE Marks: 100								
Hou	Hours: 48 L SEE Duration: 3 Hrs									
Cou	rse Learning Objectives: The students	will be able to								
1	To understand concept of using photogram	raphic data to determine relative positions of points								
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative land									
4	information									
3	3 To analyze the data gathered from various sensors and interpret for various applications									
4	To understand the various applications of RS, GIS and GPS									

UNIT-I Remote Sensing- Definition, types of remote sensing, components of remote sensing, 10 Hrs Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition elements. Fundamentals of image rectification. Digital Image classification - supervised and unsupervised UNIT-II **Photogrammetry:** Introduction types of Photogrammetry, Advantages of 10 Hrs Photogrammetry, Introduction to digital Photogrammetry. Locating points from two phases determination of focal length. Aerial Photogrammetry: Advantages over ground survey methods - geometry of vertical phographs, scales of vertical photograph. Ground coordination- relief displacement, scale ground coordinates - flight planning UNIT-III Geographic Information System- Introduction, Functions and advantages, sources of 10 Hrs data for GIS. Database - Types, advantages and disadvantages. Data Management -Transformation, Projection and Coordinate systems. Data input methods, Data Analysis.overlay operations, network analysis, spatial analysis. Outputs and map generation. . Introduction to GPS- components and working principles **UNIT-IV** Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources **09 Hrs** engineering and management (prioritization of river basins, water perspective zones and its mapping), Case studies on applications of GIS and RS in highway alignment, Optimization of routes, accident analysis, Environmental related studies. Case studies on applications of GIS and RS in Disaster Management (Case studies on post disaster management - Earthquake and tsunami and pre disaster management - Landslides and floods) Urban Planning & Management - mapping of zones, layouts and infrastructures. UNIT-V Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping. **09 Hrs** Case studies on infrastructure planning and management- Case studies on urban sprawl.

Change detection studies – case studies on forests and urban area. Case studies on agriculture. Applications of geo-informatics in natural resources management: Geo Technical case Studies, site suitability analysis for various applications.

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Understand the principle of Remote Sensing (RS) and Geographical Information Systems (GIS)							
	data acquisition and its applications.							
2	Apply RS and GIS technologies in various fields of engineering and social needs.							
3	Analyze and evaluate the information obtained by applying RS and GIS technologies.							
4	Create a feasible solution in the different fields of application of RS and GIS.							

Reference Books

1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3 rd Edition, Wiley India								
	Pvt. Ltd. New Delhi, 2009.								
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5th Edition, John								
	Wiley Publishers, New Delhi, 2007.								
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008								
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi,								
	2009								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1
S	Semester: V											
---------------------------	----------------------	-----------------------										
GRA	APH THEORY											
(Group I	B : Global Elective)											
Course Code:16G5B04		CIE Marks: 100										
Credits: L:T:P:S: 4:0:0:0		SEE Marks: 100										
Hours: 45L		SEE Duration: 3 Hrs										

Cou	rse Learning Objectives: The students will be able to
1	Understand the basics of graph theory and their various properties.
2	Model problems using graphs and to solve these problems algorithmically.
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.
4	Optimize the solutions to real problems like transport problems etc.

UNIT-I

Introduction to graph theory	09 Hrs
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees	
and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	
in digraphs.	
UNIT-II	
Graph representations. Trees. Forests	09 Hrs
Adjacency matrix of a graph. Incidence matrix of a graph. Adjacency lists. Trees and	
properties of trees. Characterization of trees. Centers of trees. Rooted trees. Binary threes.	
Spanning trees and forests. Spanning trees of complete graphs. An application to	
electrical networks. Minimum cost spanning trees.	
UNIT-III	
Fundamental properties of graphs and digraphs	09 Hrs
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted	
graphs, Eulerian digraphs.	
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	
theorem, Dual of a planar graphs	
UNIT-IV	
Matchings and Factors	09 Hrs
Min-Max theorem. Independent sets and covers. Dominating sets, maximum bipartite	
matching.	
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynomial	
of a graph. Basic properties of chromatic polynomial, chordal graphs, powers of graphs.	
Edge colouring of graphs	
UNIT-V	
Graph algorithms	09Hrs
Graph connectivity algorithms, Breadth first search and Depth first search. Shortest path	
algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms.	
Algorithm of Kruskal's and Prim's.	

Cours	e Outcomes: After completing the course, the students will be able to
CO1.	Understand and explore the basics of graph theory.
CO2.	Analyse the significance of graph theory in different engineering disciplines
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.
CO4.	Evaluate or synthesize any real world applications using graph theory.
Refere	ence Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010,PHI, ISBN:9780262033848

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

		Semester: V		
ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING				
		(Group B: Global Elective)		
Cou	rse Code: 16G5B05		CIE Marks: 100	
Cree	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100	
Hou	rs: 46L		SEE Duration: 3Hrs	
Cou	rse Learning Objectives: '	The students will be able to		
1	Define what is Neural N	etwork and model a Neuron and E	xpress both Artificial Intelligence	
1	and Neural Network			
2	Analyze ANN learning, l	Error correction learning, Memory-	based learning, Hebbian learning,	
4	Competitive learning and	Boltzmann learning		
	Implement Simple perce	ption, Perception learning algorith	m, Modified Perception learning	
3	algorithm, and Adaptive	e linear combiner, Continuous pe	rception, learning in continuous	
	perception.			
	Analyze the limitation o	f Single layer Perceptron and Dev	velop MLP with 2 hidden layers,	
4 Develop Delta learning rule of the output layer and Multilayer feed forward neural netw			ayer feed forward neural network	
	with continuous perception	ons,		

UNIT-I

Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,	08 Hrs
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,	l
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical	1
notes.	I

UNIT-II

Learning Processes: Introduction, Error correction learning, Memory-based learning,	10 Hrs
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,	
learning with and without teacher, learning tasks, Memory and Adaptation.	

UNIT-III	
Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple	10 Hrs
perception, Perception learning algorithm, Modified Perception learning algorithm,	
Adaptive linear combiner, Continuous perception, Learning in continuous perception.	
Limitation of Perception.	

UNIT-IV

Multi-Layer Perceptron Networks:Introduction, MLP with 2 hidden layers, Simple layer10 Hrsof a MLP, Delta learning rule of the output layer, Multilayer feed forward neural networkwith continuous perceptions, Generalized delta learning rule, Back propagation algorithm10 Hrs

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the
DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks,
Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted
Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and
examples (Google, image/speech recognition)08 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.
CO2:	Perform Pattern Recognition, Linear classification.
CO3:	Develop different single layer/multiple layer Perception learning algorithms
CO4:	Design of another class of layered networks using deep learning principles.

Refe	erence Books						
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson						
	Prentice Hall, ISBN-13: 978-0-13-147139-9						
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing						
	Company, ISBN: 9780534954604						
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-						
	262-11255-8						
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,						
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

Semester: V							
	HYBRID ELECTRIC VEHICLES						
Com	(Group	B: Global Elective)					
Cou	rse Code: 10G5B00	SEE Marks: 100					
Hou	nts. L. 1.1 .5. 4.0.0.0 rs. 151	SEE Marks, 100 SEE Duration: 3 Hrs					
Cou	rsa Laarning Abjectives: The students	will be able to					
Cou	Evaluation the basics of electric and hybrid electric values, their architecture technologies and						
1	fundamentals.	and electric venicies, then areintecture, technol					
2	Explain plug – in hybrid electric vehicle electronics devices used in hybrid electric	e architecture, design and component sizing and ric vehicles.	the power				
3	Analyze various electric drives suitable technologies used for hybrid electric ve	e for hybrid electric vehicles and Different energy hicles and their control.	gy storage				
4	Demonstrate different configurations configuration by different techniques, management.	of electric vehicles and its components, hybri sizing of components and design optimization a	id vehicle nd energy				
		∐nit-I					
Intro	duction: Sustainable Transportation. A	Brief History of HEVs. Why EVs Emerged	07 Hrs				
and	Failed, Architectures of HEVs, Interdisc	ciplinary Nature of HEVs, State of the Art of	07 1115				
HEV	s, Challenges and Key Technology of Hl	EVs.					
Hyb	ridization of the Automobile: Vehicle	Basics, Basics of the EV, Basics of the HEV,					
Basi	cs of Plug-In Hybrid Electric Vehicle (PH	HEV), Basics of Fuel Cell Vehicles (FCVs).					
		Unit-II					
HEV	Fundamentals: Introduction, Vehicle	Model, Vehicle Performance, EV Powertrain	10 Hrs				
Com	ponent Sizing, Series Hybrid Vehicle, Pa	rallel Hybrid Vehicle, Wheel Slip Dynamics.					
Plug	-in Hybrid Electric Vehicles: Intro	oduction to PHEVs, PHEV Architectures,					
Equi	valent Electric Range of Blended F	PHEVs, Fuel Economy of PHEVs, Power					
Man	agement of PHEVs, Component Sizing	g of EREVs, Component Sizing of Blended					
PHE	Vs, Vehicle-to-Grid Technology.						
D			10.11				
Pow	er Electronics in HEVs: Power elect	ronics including switching, AC-DC, DC-AC	10 Hrs				
conv	ersion, electronic devices and circuits	used for control and distribution of electric					
powe	er, Thermal Management of HEV Power	Electronics.					
Bau	Detterni Characterization Comparison	Controls: Introduction, Different batteries for					
EV,	Battery Characterization, Comparison (Management of Storage Devices Eleveloal					
ПЕ V	s, Battery Charging Control, Charge	Management of Storage Devices, Flywheel					
Ener	gy Storage System, Hydraulic Ellergy St	orage System, ruer Cens and Hybrid ruer Cen					
Energy Storage System and Battery Management System.							
UMI-IV Electric Machines and Drives in HEVer Introduction DLDC materia Induction Materia 10 Here							
Driv	es Permanent Magnet Motor Drives	Switched Reluctance Motors, Doubly Salient	10 1115				
Perm	anent Magnet Machines Design and Siz	ring of Traction Motors Thermal Analysis and					
Mod	Modelling of Traction Motors (only functional treatment to be given)						
Init-V							
Inte	Unit-V Integration of Subsystems: Matching the electric machine and the internal combustion 09 Um						
engi	engine (ICE). Sizing the propulsion motor, sizing the power electronics, selecting the						
ener	energy storage technology Communications supporting subsystems						
	5, 2.5. age termorogy, communications,						
Ener	gy Management Strategies: Introduct	ion to energy management strategies used in					
hybr	id and electric vehicle, classification	of different energy management strategies.					
com	parison of different energy managemen	t strategies, implementation issues of energy					
strate	egies.						

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and						
	fundamentals.						
2	Evaluate the performance of electrical machines and power electronics converters in HEVs.						
3	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies						
	and control and select appropriate technology						
4	Design and evaluate the sizing of subsystem components and Energy Management strategies in						
	HEVs.						

Reference Books:

1.	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris,						
	Masrur A.and Gao D.W. Wiley Publisher, 1st Edition, 2011, ISBN: 0-824-77653-5						
2.	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E.						
	Gay Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.						
3.	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press,						
	2001, ISBN 0 19 850416 0.						
4.	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao,						
	Giorgio Rizzoni, ISBN: 978-1-4471-6779-2.						

Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3 : Medium-2 : Low-1

V Semester						
OPT	IMIZATION TECHNIQU	ES				
(Theory)						
(Group B: Global Elective)					
Course Code: 16G5B07		CIE Marks : 100				
Credits: L: T: P: S: 4:0:0:0		SEE Marks: 100				
Hours: 44L		SEE Duration : 03 Hrs				
Course Learning Objectives: The students will be able to						
1. To understand the concepts behind optimization techniques.						
2. To explain the modeling framework	ks for solving problems using	g optimization techniques.				
3. To design and develop optimization	n models for real life situatio	ns.				
4. To analyze solutions obtained using	g optimization methods.					
5. To compare models developed usin	ng various techniques for opti	imization.				
	UNIT – I					
Introduction: OR Methodology, Def	inition of OR, Application o	f OR to Engineering and	09 Hrs			
Managerial problems, Features of OR	models, Limitations of OR.					
Linear Programming: Definition, N	Mathematical Formulation, S	Standard Form, Solution				
Space, Types of solution – Feasib	ole, Basic Feasible, Degen	erate, Solution through				
Graphical Method. Problems on Proc	luct Mix, Blending, Marketi	ng, Finance, Agriculture				
and Personnel.						
Simplex methods: Variants of Simple	ex Algorithm – Use of Artific	cial Variables.				
UNIT – II						
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity						
analysis - changes in RHS, Changes	in objectives, Primal-Dual	relationships, Economic				
interpretation of duality, Post opti	mal analysis - changes a	ffecting feasibility and				
optimality, Revised simplex method						
	UNIT – III					
Transportation Problem: Formulation	on of Transportation Model,	Basic Feasible Solution	08 Hrs			
using North-West corner, Least Cost,	Vogel's Approximation Meth	od, Optimality Methods,				
Unbalanced Transportation Problem,	Degeneracy in Transportatio	on Problems, Variants in				
A grigger and Broblems	of the Assistment muchle	m ashtian mathed of				
Assignment problem: Formulation	of the Assignment proble	ant problem Travelling				
assignment problem (TSP)						
UNIT – IV						
UNII – IV Queuing Theory: Queuing system and their characteristics. The M/M/I Queuing system						
Steady state performance analyzing of $M/M/1$ queuing models. Introduction to $M/M/C$ and						
M/Ek/1 queuing models						
Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without						
saddle point - Arithmetic method, Graphical Method, The rules of dominance						
UNIT – V						
Markov chains: Definition, Absolute	e and n-step transition proba	bilities, Classification of				
the states, Steady state probabilities and	nd mean return times of ergo	odic chains, First passage				
times, Absorbing states. Applications	in weather prediction and inv	entory management.				
Over view of OR software's used in pr	ractice.					

Cours	Course Outcomes: After going through this course the student will be able to					
CO1	Understand the various optimization models and their areas of application.					
CO2	Explain the process of formulating and solving problems using optimization methods.					
CO3	Develop models for real life problems using optimization techniques.					
CO4	Analyze solutions obtained through optimization techniques.					
CO5	Create designs for engineering systems using optimization approaches.					

Reference Books:

1.	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw
	Hill, ISBN 13: 978-0-07-133346-7
4.	Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education
	Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

Low-1	Medium-2	High-3
-------	----------	--------

	V Semester							
	SENSORS & APPLICATIONS							
	(Group B: Global Elective)							
Course Code:16G5B08 CIE Marks: 100								
Credits/Week: L:T:P:S:4:0:0:0 SEE Marks: 100								
Hours:44L SEE Duration: 3 Hrs								
Cour	Course Learning Objectives: The students will be able to							
1	Impart the principles and working modes of	of various types of Resistive, Inductive, Capacitive,						
	Piezoelectric and Special transducers.							
2	2 Give an idea about the applications of various transducers and selection criteria of a transducer							
	for a particular application.							
3	3 Give an insight into the static and dynamic characteristics of different orders of instruments.							
4	4 Describe different data conversion techniques and their applications.							

UNIT-I					
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs				
Advantages of Electrical transducers.					
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.					
Strain gauge: Theory, Types, applications and problems.					
Thermistor, RTD: Theory, Applications and Problems.					
UNIT-II					
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs				
compensation, advantages and disadvantages of thermocouple.					
LVDT: Characteristics, Practical applications and problems.					
Capacitive Transducers: Capacitive transducers using change in area of plates, distance					
between plates and change of dielectric constants, Applications of Capacitive Transducers					
and problems.					
UNIT-III					
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs				
electric materials, equivalent circuit, loading effect, and Problems.					
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:					
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic					
of the design of sensor, applications.					
UNIT-IV					
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs				
potential sensor.					
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled					
device.					
Tactile sensors: Construction and operation, types.					
UNIT-V					
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary	07 Hrs				
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and					
Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain					
Amplifier.					

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Remember and understand the basic principles of transducers and smart sensors.					
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation					
	systems.					
CO3:	Analyze and evaluate the performance of different sensors for various applications.					
CO4 :	Design and create a system using appropriate sensors for a particular application					

Referer	nce Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3 rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

	Semester: V						
	INTRODUCTION TO MANAGEMENT INFORMATION SYSTEMS						
	(Group B: G	lobal Elective)					
Co	urse Code: 16G5B09	CIE Marks: 100					
Cr	edits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hours: 45L SEE Duration: 3 Hrs							
Co	urse Learning Objectives: The students will be	able to					
1	1 To understand the basic principles and working of information technology.						
2	2 Describe the role of information technology and information systems in business.						
3	3 To contrast and compare how internet and other information technologies support business						
	processes.						
4	To give an overall perspective of the imp	ortance of application of internet technologies in					
	business administration.						

UNIT I

Information Systems in Global Business Today: The role of information systems in	09 Hrs				
business today, Perspectives on information systems, Contemporary approaches to					
information systems, Hands-on MIS projects. Global E-Business and Collaboration :					
Business process and information systems, Types of business information systems,					
Systems for collaboration and team work, The information systems function in business.					
A Case study on E business.					
UNIT II					
Information Systems, Organizations and Strategy: Organizations and information systems,	09 Hrs				
How information systems impact organization and business firms, Using information					
systems to gain competitive advantage, management issues, Ethical and Social issues in					
Information Systems: Understanding ethical and Social issues related to Information					
Systems, Ethics in an information society, The moral dimensions of information society.					
A Case study on business planning.					
UNIT III					
IT Infrastructure and Emerging Technologies: IT infrastructure, Infrastructure	09 Hrs				
components, Contemporary hardware platform trends, Contemporary software platform					
trends, Management issues. Securing Information Systems: System vulnerability and					
abuse, Business value of security and control, Establishing framework for security and					
control, Technology and tools for protecting information resources. A case study on					
cybercrime.					
UNIT IV					
Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply	09 Hrs				
Chain Management (SCM) systems, Customer relationship management (CRM) systems,					
Enterprise application. E-commerce: Digital Markets Digital Goods: E-commerce and the					
internet, E-commerce-business and technology, The mobile digital platform and mobile					
E-commerce, Building and E-commerce web site. A Case study on ERP.					
UNIT V					
Managing Knowledge: The knowledge management landscape, Enterprise-wide	09 Hrs				
knowledge management system, Knowledge work systems, Intelligent techniques.					
Enhancing Decision Making: Decision making and information systems, Business					
intelligence in the enterprise. Business intelligence constituencies. Building Information					
Systems: Systems as planned organizational change, Overview of systems development.					

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand and apply the fundamental concepts of information systems.
CO2:	Develop the knowledge about management of information systems.
CO3:	Interpret and recommend the use information technology to solve business problems.
CO4:	Apply a framework and process for aligning organization's IT objectives with business
	strategy.

ſ

Referen	nce Books						
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane						
	P. Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007						
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10 th Edition,						
	2011, Global McGraw Hill, ISBN: 978-0072823110						
3	Information Systems The Foundation of E-Business, Steven Alter, 4th Edition, 2002, Pearson						
	Education, ISBN:978-0130617736						
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:						
	9780070616349						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

	Semester: V						
	INDUSTRIAL AUTOMATION						
	(Theory)						
Cou	rse Code: 16GB510	CIE Marks: 100					
Cred	lits: L:T:P:S : 4:0:0:0	SEE Marks: 100					
Hou	rs: 44L	SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The students should be able to:						
1	1 Identify types of actuators, sensors and switching devices for industrial automation						
2	Explain operation and controls of Hydraulic and Pneumatic systems						
3	Understand fundamentals of CNC, PLC and Industrial robots						
4	Define switching elements and sensors which are interfaced in an automation system						
5	5 Describe functions of Industrial switching elements and Inspection technologies for automation						
6	6 Select sensors to automatically detect motion of actuators						
7	7 Develop manual part programs for CNC and Ladder logic for PLC						
8	Develop suitable industrial automation systems using all the	e above concepts					

UNIT-I				
Automation in Production Systems:	08 Hrs			
Manufacturing support systems, Automation principles and strategies, Levels of Automation,				
Production Concepts and Mathematical models, Numericals				
Automated Production Lines:				
Fundamentals, Applications, Analysis with no storage, Analysis with storage buffer, Numericals				
UNIT-II				
Switching theory and Industrial switching elements	08 Hrs			
Binary elements, binary variables, Basic logic gates, Theorems of switching algebra, Algebraic				
simplification of binary function, Karnough maps, Logic circuit design, problems.				
Electromechanical relays, Moving part logic elements, Fluidic elements, Timers, Comparisons				
between switching elements, Numericals				
Industrial Detection Sensors and Actuators:				
Introduction, Limit switches, Reed switches, Photoelectric sensors- methods of detection, Hall				
effect sensors, Inductive proximity sensors, Capacitive proximity sensors, Pneumatic back				
pressure sensors, Absolute encoder, Incremental encoder, Pressure switches and temperature				
switches; their working principles and applications, Brushless DC motors, Stepper motors and				
Servo motors				
UNIT-III				
Hydraulic Control circuits	10 Hrs			
Components, Symbolic representations, Control of Single and Double Acting Cylinder,				
Regenerative Circuit application, Pump unloading circuit, Double Pump Hydraulic System, speed				
control circuits, accumulator circuits				
Pneumatic Control circuits				
Components, Symbolic representations as per ISO 5599, Indirect control of double acting				
cylinders, memory control circuit, cascading design, automatic return motion, quick exhaust valve				
circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits.				
UNIT-IV				
Introduction to CNC	08 Hrs			
Numerical control, components of CNC, classification, coordinate systems, motion control				
strategies, interpolation, programming concepts				

Industrial Robotics	
Components of Robots, base types, classification of robots, end of arm tooling, robot precision of	
movement, programming, justifying the use of a robot, simple numericals	
UNIT-V	
Programmable logic control systems	10 Hrs
Difference between relay and PLC circuits, PLC construction, principles of operation, latching,	
ladder diagrams, programming instructions, types of timers, forms of counters, writing simple	
ladder diagrams from narrative description and Boolean logic.	
Programming exercises on PLC with Allen Bradley controller	
Programming exercises on motor control in two directions, traffic control, annunciator flasher,	
cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential	
process, and continuous filling operation on a conveyor.	

Cou	Course Outcomes: After completing the course, the students will be able to								
1	Illustrate applications of sensors actuators, switching elements and inspection technologies in industrial								
	automation								
2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its application								
	areas								
3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres								
	interfaced with Robots								
4	Develop suitable industrial automated system integrating all of the above advanced automation concepts								

Refe	erence Books
1.	Industrial automation - Circuit design and components , David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls , Joji P, 1st Edition, Wiley India, ISBN - 978-81-265-1542-4
3.	Fluid Power with Applications, Anthony Esposito, 7th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing , Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: V									
	TELECOMMUNICATION SYSTEMS									
	(Group B: Global Elective)									
Cou	Course Code: 16G5B11 CIE Marks: 100									
Cree	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100									
Hou	Hours: 46 L SEE Duration: 03 Hrs									
Cou	rse Learning Objectives: The students wil	l be able to								
1	Represent schematic of communication sys	stem and identify its components.								
2	Classify satellite orbits and sub-systems fo	r communication.								
3	Analyze different telecommunication services, systems and principles.									
4	Explain the role of optical communication	system and its components.								
5	Describe the features of wireless technolog	ies and standards.								

UNIT-I								
Introduction to Electronic Communication: The Significance of Human	09 Hrs							
Communication, Communication Systems, Types of Electronic Communication,								
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of								
Communication Applications.								
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.								
UNIT-II								
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	10 Hrs							
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.								
Wideband Modulation: Spread spectrum, FHSS, DSSS.								
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time								
division multiplexing								
Multiple Access: FDMA, TDMA, CDMA, Duplexing.								
UNIT-III								
Satellite Communication:	09 Hrs							
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,								
Satellite Applications, Global Positioning System.								
UNIT-IV								
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-	09 Hrs							
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division								
Multiplexing, Passive Optical Networks.								
UNIT-V								
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.	09 Hrs							
Advanced Mobile Phone System (AMPS)								
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell								
Phones.								
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless								
Networks, WiMAX and Wireless Metropolitan-Area Networks.								

Course	Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the basics of communication systems.									
CO2	Analyze the importance of modulation and multiple access schemes for communication									
	systems.									
CO3	Compare different telecommunication generations, wired and wireless communication.									
CO4	Justify the use of different components and sub-system in advanced communication systems.									

Reference Books

1. Principles of Electronic Communication Systems, Louis E. Frenzel, 3rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.

2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill
	ISBN: 0-02-800592-9.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

	Semester: V									
COMPUTATIONAL ADVANCED NUMERICAL METHODS										
		(Group B: Global Elective)								
Cou	rse Code: 16G5B12	CIE Marks: 100								
Crea	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100								
Hou	rs: 44 L	SEE Duration: 3 Hrs								
Cou	rse Learning Objectives:									
Adequate exposure to learn alternative methods and analyze mathematical proble determine the suitable numerical techniques.										
2	2 Use the concepts of interpolation, eigen value problem techniques for mathematical problems									
	arising in various fields.									
3	Solve initial value and bound	lary value problems which have great significance in en	gineering							
	practice using ordinary differ	ential equations.								
4	Demonstrate elementary pro programs to solve mathemati	gramming language, implementation of algorithms and cal problems.	computer							
		L								
		Unit-I								
Alge	braic and Transcendental eq	uations:	08 Hrs							
Root	s of equations in engineering p	ractice, Polynomials and roots of equations, Fixed point								
itera	tive method, Aitken's process,	Muller's method, Chebychev method.								
	-	Unit – II								
Interpolation:										
Intro	duction to finite differences, l	Finite differences of a polynomial, Divided differences								
and	Newton's divided difference	interpolation formula, Hermite interpolation, Spline								
inter	polation-linear, quadratic and	cubic spline interpolation.								
		Unit -III								
Ord	inary Differential Equations:		09 Hrs							
Solu	tion of second order initial v	alue problems-Runge-Kutta method, Milne's method,								
Bour	ndary value problems (BVP's)	-Shooting method, Finite difference method for linear								
and 1	nonlinear problems, Rayleigh-H	Ritz method.								
		Unit –IV	1							
Eige	n value problems:		09 Hrs							
Eige	n values and Eigen vectors, Po	ower method, Inverse Power method, Bounds on Eigen								
value	es, Greschgorin circle theorem,	Jacobi method for symmetric matrices, Givens method.								
~		Unit –V	10							
Com	putational Techniques:		10 Hrs							
Algorithms and Matlab programs for Fixed point iterative method, Aitken's-process,										
Muller's method, Chebychev method, Newton's divided difference method, Hermite										
interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta										
method, Milne's method, Shooting method, Rayleigh-Ritz method, Jacobi method and										
Give	ns method.		<u> </u>							
C										
Cou	rse Outcomes: After completi	ng the course, the students will be able to								
CO1	: Identity and interpret the fu	indamental concepts of polynomial equations, Interpolati	on, Eigen							

CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen										
	value problems, Differential equations and corresponding computational techniques.										
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and										
	transcendental equations, Ordinary differential equations and eigen value problems.										
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,										
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems										
	numerically using computational techniques.										
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the										
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value										
	problems arising in engineering practice.										

Refere	ence Books
	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar
1	and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-
	2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9th Edition,
2	2012, ISBN-13: 978-81-315-1654-6.
2	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
3	Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

Semester: V								
BASICS OF AEROSPACE ENGINEERING								
	(Group B: Global Elective)							
Course Code: 16GE5B13		CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0		SEE Marks: 100						
Hours: 44 L		SEE Duration: 3 Hrs						

Course Learning Objectives:

To enable the students to:

- 1 Understand the history and basic principles of aviation
- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I				
Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions, Introduction to Unconventional and Autonomous Air vehicles.	08 Hrs			
Unit – II				
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.	08 Hrs			
Unit -III				
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines, Introduction to ramjets and scramjets, Comparative merits and demerits of different types Engines.	07 Hrs			
Introduction to Space Flight : History of space flight, Evolution of Indian Space Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories. Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets, Types of rockets	08 Hrs			
Unit -V				
Aerospace Structures and Materials : Introduction, General types of construction,				
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage structure; Metallic and non-metallic materials for aircraft application. Use of aluminum alloy, titanium, stainless steel and composite materials, Low temperature and high temperature materials.	07 Hrs			

Cou	rse Outcomes: At the end of this course the student will be able to :
1	Appreciate and apply the basic principles of aviation
2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and aircraft materials during the development of an aircraft
3	Comprehend the complexities involved during development of flight vehicles.
4	Evaluate and criticize the design strategy involved in the development of airplanes

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7th Edition, 2011, McGraw-Hill Education, ISBN
	9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8th Edition, 2011, John Wiley, New York,
2	ISBN:1118174208, 9781118174203.
2	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International,
5	ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN:
	978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

High-3 : Medium-2 : Low-1

VI SEMESTER						
INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP						
(Theory) (Common 4: A.E. ORE FOR FIRE IOF (PP)						
Course Code: 16HSI51/61	minon to AE, V	LSE, ECE, EEE, I	SE, IE) CIE Morke: 100			
Credits: L :T:P:S: 3:0:0:0			SEE Marks: 100			
Hours: 261			SEE Marks. 100			
Course Learning Objectives	The students v	vill be able to	SEE Duration. 05 1115			
To build awaranass on	the various form	of IDD and to buil	d the perspectives on the	concents		
1 and to develop the linka	ges in technolog	y innovation and IPR		concepts		
To equip students on	the need to prot	tect their own intell	ectual works and develo	p ethical		
² standards governing eth	ical works.			•		
3 To motivate towards of	ntrepreneurial c	careers and build stu	rong foundations skills t	to enable		
starting, building and gr	owing a viable a	s well as sustainable	venture.	.1.1		
4 Develop an entreprenet	irial outlook and	a mind set along wit	h critical skills and know	vledge to		
manage risks associated	with entreprene	UIS.				
Introduction: Types of Intell	atual Duamantes V	UNII-I WIDO WTO TDIDG		07 II.ma		
Detents: Introduction Score	and coliont footu	wipO, wiO, ikipS.	able and non notantable	0/ Hrs		
inventions. Patent Procedure	Overview Tree	utes of patent, patent	Biotochnology potents			
protection of traditional know	odgo Infringom	ont of potonts and ron	, Diotechnology patents,			
Trade Secrets: Definition Si	mificance Tools	s to protect Trade sect	rets in India			
Trade Secrets. Definition, Sig	sinneance, 10018	INIT_II	ets in mula.			
Trade Marks: Concept fu	nction and diff	ferent kinds and fo	orms of Trade marks	04 Hrs		
Registrable and non registra	he marks Regis	stration of trade mar	k: Deceptive similarity:	04 1115		
Assignment and transmissi	on: ECO Laba	A Passing off: O	ffences and penalties			
Infringement of trade mark wi	th Case studies	i, rassing oir, O	fiences and penalues.			
Infiningement of trade mark wi						
Industrial Design: Introdu	ction Protection	n of Industrial De	signs Protection and	00 Urg		
Paquiraments for Industria	Design Pro	adura for obtainin	a Design Protection	09 1115		
Revocation Infringement and	Remedies Case	studies	ig Design Flotection,			
Conv Right: Introduction N	ature and scope	Rights conferred by	copy right Copy right			
protection transfer of copy i	ights right of k	road casting organiz	vations and performer's			
rights Case Studies	ights, fight of t	foad casting organiz	Lations and performer s			
Intellectual property and c	vhersnace• Fm	ergence of cyber-cri	me Grant in software			
natent and Copyright in software	are: Software pir:	acy: Data protection i	in cyberspace			
patent and copyright in soltwa		INIT-IV	in cyberspace			
Introduction to Entreprene	rshin _ Learn h	ow entrepreneurship	has changed the world	08 Hrs		
Identify six entrepreneurial m	the and uncover	the true facts. Explor	F_{-cells} on Campus	00 1115		
Liston to Some Success St	ories: - Global	legende Understand	how ordinary people			
become successful global entr	enreneurs their	iourneys their chall	anges and their success			
stories. Understand how ordin	ary people from	their own countries	have become successful			
entrepreneurs	ary people nom	then own countries	nave become successful			
Characteristics of a Success	ul Entronronou	r Understand the entr	capronaurial journay and			
learn the concent of differen	antrepreneuriol	etvles Identify you	r own entrepreneurshin			
style based on your persona	lity traits strend	oths and weaknesse	s Learn about the 5M			
Model each of the five entrepreneurial styles in the model and how they differ from each						
other Communicate Fffect	velv. Learn ho	in the model, and no	tions and limiting our			
oninions about people can r	egatively impac	et our communication	n Identify the barriers			
which cause communication h	reakdown such	as miscommunication	and noor listening and			
learn how to overcome them	icanuowii, suella	as miscommunication	i and poor instenning, and			
Communication Rest Practic	og Understand t	the importance of list	ening in communication			
and learn to listen actively	Learn a few bo	dy language cues si	ich as eve contact and			
handshakes to strengthen com	munication. (Pra	ctical Application)	aon as eye contact and			

UNIT-V	
Design Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs
solving process. Describe the principles of Design Thinking. Describe the Design Thinking	
process.	
Sales Skills to Become an Effective Entrepreneur: - Understand what is customer focus	
and how all selling effort should be customer-centric. Use the skills/techniques of personal	
selling, Show and Tell, and Elevator Pitch to sell effectively.	
Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits.	
Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical	
Application) Appreciate the role of failure on the road to success, and understand when to	
give up. Learn about some entrepreneurs/risk-takers. (Practical Application).	
Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real	
picture of the benefits and challenges of being an entrepreneur. Identify the reasons why	
people want to become entrepreneurs. Help participants identify why they would want to	

become entrepreneurs.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the
	purview of engineering domain.
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to
	Intellectual Property Rights with the utility in engineering perspectives.
CO3:	Enable the students to have a direct experience of venture creation through a facilitated
	learning environment.
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that
	entrepreneurs use to succeed in real life.

Ref	erence Books									
1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co.									
	LtdDelhi, ISBN: 9789350350300									
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition,									
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.									
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN:									
	8180380025, 9788180380020.									
4.	Entrepreneurship, Rajeev Roy, 1 st Edition, 2012, Oxford University Press, New Delhi, ISBN:									
	9780198072638.									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

	Semester: VI							
	Course Title: DESIGN OF MACHINE ELEMENTS – II							
	(Theo	ory and Practice)						
Cou	Course Code: 16ME62 CIE Marks: 100 + 50							
Crea	lits: L:T:P:S: 3:0:2:0	SEE Marks: 100 + 50						
Hou	Hours: 34L + 20P SEE Duration: 3 + 3 Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	Describe different types of power screws and their applications.							
2	Examine the forces & stresses developed in thin and thick cylinders.							
3	3 Distinguish between straight beams and curved beams and analyze the stresses.							
4	4 Analyze and quantify the forces, stresses in clutches and brakes.							
5	Design bevel and worm gear based on a	static, dynamic and wear strength.						
6	Select suitable bearings based on rated	life & operation conditions.						

PART A	
UNIT-I	
Design of Curved Beams:	06 Hrs
Difference between straight beam and curved beams, stresses in straight beam and	
curved beam, derivation of bending stress equation for curved beam, problems on crane	
hook, punching presses, clamps (symmetric and unsymmetric sections), closed rings.	
UNIT-II	
Design of Clutches and Brakes:	08 Hrs
Clutches: Torque transmitting capacity, Types, uniform wear and pressure theory,	
friction, bearing pressure, single and multi-plate clutches.	
Brakes: Energy absorbed by brake, materials of brake, pivoted block or shoe brake,	
simple and differential band brake.	
Design of Power Screws	
Stresses in power screws, efficiency of power screw and self-locking screws	
UNIT-III	1
Design of Spur & Helical Gears:	08 Hrs
Spur Gears:	
Definition, Stresses in Gear Tooth, Lewis Equation, Form Factor, Design for Strength,	
Dynamic Load and wear load, material selection for different velocity ratios, types of	
tooth systems	
Helical Gears:	
Number of teeth, design based on strength, dynamics and wear loads, normal and	
transverse pitch, module, Herringbone gears, different forces on helical gear teeth	
UNIT-IV	•
Design of Bevel & Worm Gears:	06 Hrs
Bevel Gear: Definition, Formative Number of Teeth, Design based on Strength,	
Dynamics and Wear Loads, Cone Pitch Angle, Back Cone Radius, Acute, Obtuse and	
right angle bevel gears	
Worm Gears: Definition, Design based on strength, dynamic wear load and efficiency	
of gear drives, self-locking of worm gear drives.	
UNIT-V	•
Lubrication & Bearings:	06 Hrs
Basic modes of lubrication, viscosity, properties of lubricant, Petroff's equation, bearing	
materials, Sommerfield number, bearing modulus, Coefficient of friction, Minimum oil	
film thickness, Heat generated and dissipated.	
Anti-friction Bearings - Materials, types, ball and roller bearings, static and dynamic	
capacity, equivalent load, selection based on rated life and application.	

PART – B- LABORATORY				
DESIGN LA	BORATORY			
SECTION – I	10 Hrs			
1. Determination of Principal Stresses & Strain	s using strain rosette analysis.			
2. Determination of Fringe Constant – Circular	and Rectangular Specimens			
3. Determination of Stress Concentration Factor	r.			
SECTION – II	10 Hrs			
1. Determination of Natural Frequency, Dam	ping Ratio, Damping co-efficient for single			
degree freedom systems.				
2. Balancing of rotating masses using force and	coupling polygons.			
3. Determination of critical speed of rotating sha	ıft.			
4. Determination of Equilibrium speed of govern	nors.			
5 Experiments with avroscope				

Experiments with gyroscop

Course Outcomes: After completing the course, the students will be able to

1	Understand basic procedure to design a system component, or process to meet desired needs
	within realistic constraints. (L1 & L2)

Select suitable material and size for design of components in machines. (L3 & L4)

Identify, explain, formulate, and solve design engineering problems. (L5) 3

4 Analyze forces and stresses within a mechanical system. (L6)

Reference Books Mechanical Engineering Design, Shigley J.E, Mischke.C.R., 6th Edition, McGraw Hill 1 International, ISBN: 0070494620 Design of Machine Elements, Spotts .2.F, Shoup .T.E, Hornberger .L.E, Jayaram .S.R., 2. Venkatesh C.V., 8th Edition, Pearson Ed., ISBN: 9788177584219

Design of Machine Elements, Bhandari .V.B, 2nd Edition, Tata McGraw Hill Publishing 3. Company Ltd, ISBN: 9780070611412

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	3								
CO2		2		1	1	2						
CO3	3		1				2					
CO4		1		2	2	1						

Low-1 Medium-2 High-3

	Se	emester: VI			
	Course Title: TURBOMACHINERY				
	(Theor	ry and Practice)			
Cou	rse Code: 16ME63	CIE Marks: 100 + 50			
Cred	Credits: L:T:P:S: 3:0:2:0 SEE Marks: 100 + 50				
Hou	Hours: 34L + 20P SEE Duration: 3 + 3 Hrs				
Cou	Course Learning Objectives: The students will be able to				
1	Classify and analyze different types of tu	urbo machines			
2	2 Evaluate energy transfer in turbo machines.				
3	3 Perform basic design calculation for power absorbing and generating turbo machines.				

4 Perform experiments on hydraulic turbines and pumps to evaluate the performance.

PART A	
UNIT-I	
Introduction to Turbo Machinery:	06 Hrs
Introduction to fluid machines, Classification, Comparison with positive displacement	
machines, Dimensional analysis, Dimensionless parameters and their physical	
significance; Specific speed; One dimensional analysis and model studies, Numericals	
Energy Transfer in Turbo Machines	
Basic Euler turbine equation and its alternate forms, Components of energy transfer,	
General expression of degree of reaction, Construction of velocity triangles for different	
values of degree of reaction, Relation between degree of reaction and utilization factor,	
Numericals	
UNIT-II	
Compression Process:	08 Hrs
Overall isentropic efficiency of compression, Stage efficiency, Comparison and relation	
between overall efficiency and stage efficiency; Polytropic efficiency and pre-heat	
factor, Numericals	
Expansion Process	
Overall isentropic efficiency for a turbine, Stage efficiency for a turbine, Comparison	
and relation between stage efficiency and overall efficiency for expansion process;	
Polytropic efficiency for expansion process and reheat factor for expansion process.	
Numericals	
UNIT-III	
Centrifugal Pumps:	08 Hrs
Definition of terms used in the design of centrifugal pumps like manometric head.	
suction head, delivery head, manometric efficiency, hydraulic efficiency, volumetric	
efficiency, overall efficiency, multi-stage centrifugal numps.	
Centrifugal Compressors	
Expression for overall pressure ratio. Width and blade angle at impeller inlet and outlet	
Slip factor and power input factor. Surging and its control	
UNIT-IV	
Axial Flow Compressor:	07 Hrs
Classification expression for stage pressure ratio work done factor radial equilibrium	07 1115
conditions determination of air angle distribution with respect to blade height using free	
vortex flow theory	
Steam Turbines	
Impulse and reaction turbines velocity and pressure compounding condition for	
maximum utilization factor for multi stage turbine with equiangular blades effect of	
hade and nozzle losses	
INIT_V	I
Hydraulic Turbines:	05 Hrs
Pelton wheel velocity triangle bucket dimensions turbine efficiency: Francis and	0.5 111.5
Kaplan Turbines, Velocity triangles, Effect of rotational speed on blade shape. Draft	

tubes and their function, Types of draft tube.

PART – B- LABORATORY

TURBOMACHINES LABORATORY

10 Hrs

10 Hrs

1. Determination of co-efficient of friction due to flow of fluids in pipes

2. Determination of forces developed due to impact of jets on vanes

3. Calibration of flow measuring devices: Orifice, Venturi and V-Notch

4. Determination of co-efficient of minor losses due to flow of fluids through pipes.

SECTION – II

SECTION – I

1. Performance Testing of Turbines: Pelton, Francis and Kaplan Turbines

2. **Performance Testing of Pumps:** Single and Multistage Centrifugal pump, Reciprocating Pump and Gear pump

Cou	rse Outcomes: After completing the course, the students will be able to
1	Evaluin working principles of turbings and compressors

- 1 Explain working principles of turbines and compressors.
- 2 Analyze the characteristics of power absorbing and generating turbo machines.
- 3 Evaluate performance of turbo machines.
- 4 Discuss selection of turbo machine for industrial application.

Reference Books

IUU	creater books
1.	Principles of Turbo Machinery, Shephered.D.G, 10th Edition, 2009, McMillan Company,
	ISBN: 078623241-2
2.	Turbine Compressors and Fans, Yahya. S.M., 2nd Edition, 2002, Tata McGraw Hill,
	ISBN: 99862228-0
3.	Introduction to Energy Conversion, Kadambi and Manohar Prasad, 7th Edition, 2003,
	Wiley Eastern, ISBN: 765329176-x
4.	A Treatise on Turbo Machines, Gopalakrishna G and Prithviraj D, 3rd Edition, 2002, SciTech
	Publications, ISBN: 8793452172-1

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		2	1							
CO2	3	3		2	1							
CO3	3	3		2	1							
CO4	3	3		2	1							

	Semester: VI				
	Course Title: FINI	FE ELEMENTS METHODS			
	(Theorem	ry and Practice)			
Cou	rse Code: 16ME64	CIE Marks: 100 + 50			
Credits: L:T:P:S: 3:0:2:1 SEE Marks: 100 + 50		SEE Marks: 100 + 50			
Hou	Hours: 34L + 20P SEE Duration: 3 + 3 Hrs				
Cou	Course Learning Objectives: The students will be able to				
1	Introduce students to the concept of finit	e element methods in engineering design.			
2	2 Selection elements and boundary conditions for analysis.				
3	3 Discuss 1D & 2D solutions for simple components such as bars, trusses and beams.				
4	Apply FEM for heat transfer problems.				

5 Analyse simple components using ANSYS or Equivalent Software

PART A	
UNIT-I	
Introduction to Finite Element Methods:	08 Hrs
General description of FEM, Steps involved in FEM, Engineering applications of FEM,	
Advantages of FEM, Rayleigh Ritz Method, Galerkin's Method, Gauss-Elimination	
Method; Basic Equations of Elasticity: Stress-strain relationship, differential equations	
of equilibrium, plane stress and strain conditions, Strain displacement relations	
UNIT-II	
One Dimensional Finite Elements- Bar and Truss elements	08 Hrs
Linear element, principles of minimum potential energy, admissible displacement	
function, stiffness matrix, strain matrix, static analysis using elimination method, penalty	
method, boundary conditions and assemblage load vector, Convergence and	
Compatibility conditions, Shape functions for 1D linear, quadratic and Truss elements	
UNIT-III	
Two Dimensional CST Elements : Iso, super and sub-parametric representation, Shape	06 Hrs
functions, element stiffness and load vectors	
UNIT-IV	
Analysis of Beam Elements: Hermitian shape functions, formulations of element	06 Hrs
stiffness matrices, load vectors, Analysis bending moment and shear force	
Dynamic Analysis 1-D bar element: Equations of motion, mass and stiffness matrices,	
distributed and consistent mass matrices, Eigen values and Eigen vectors.	
UNIT-V	
Analysis of Heat Transfer 1-D element: Steady State Heat Transfer, Galerkin's	06 Hrs
Formulation of Element Equations for Heat Conduction, Heat flux boundary condition,	
Analysis of composite slabs	
Analysis of thin Fin: Formulation of element equation for Heat conduction, Heat flux	
boundary condition, Analysis of heat transfer through fins	
Experiential Learning component:	4
Model and simulate 1D, 2D and 3D real-time models as per industrial applications using ANSYS	Hrs/Week

PART – B- LABORATORY

ANSYS LABORATORY SECTION – I 10 Hrs Introduction to ANSYS, pre-processor, solver, post-processor, element library, applicability for engineering analysis. • • One dimensional FEM and Analysis of Bars, Trussess, Beams and Shafts • • Static Analysis of 2D plates – subject to plane load and bending load •

• Shells with internal pressure

SECTION – II	10 Hrs
Dynamic and Thermal Analysis –	
• Normal mode analysis: modal analysis of	beam, bars and truss elements; Harmonic

analysis of beam structures
Elements used for Thermal analysis; conductive, convective and radioactive heat transfer in coupled field analysis

Course Outcomes: After completing the course, the students will be able to

- 1 Define the fundamentals of finite element methods. (L1 & L2)
- 2 Develop the knowledge to analyse structures in static and dynamic conditions (L3 & L4).
- 3 Assess numerical techniques for solving engineering problems. (L5)
- 4 Formulate finite element model to implement industrial projects. (L6)

Reference Books

1.	Fundamentals of FEM , Hutton, 4 th Edition , 2005 , Tata McGraw Hill Education Pvt. Ltd., ISBN: 0070601224

- 2. First Course in Finite Element Methods , Daryl L Logon, Thomson Brooks, 5th Edition, 2011, ISBN-10: 0495668257
- 3. Finite Element Analysis , George R Buchanan, 5th Edition , 2004 , Tata McGraw Hill, ISBN: 0070087148
- 4. Introduction to FE in Engineering , T.R. Chandrapatla, A D Belegundu, , 3rd Edition, 2004 , Prentice hall Publications, ISBN: 0065472876

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			2	1		2			3	2	3
CO2	2	2	3	1	2	2	1	2		3	2	2
CO3	1	3	3	1	3	3		3	3	2	1	3
CO4	1	3	3	1	3	3	1	3	3	2	2	3

Low-1 Medium-2 High-3

	Semester: VI						
	Course Title: HYDRAULICS AND PNEUMATICS						
	(Group C: Pr	ofessional Core Elective)					
Cou	Course Code: 16ME6C1 CIE Marks: 100						
Crec	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100						
Hou	Hours: 34 L SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The students	will be able to					
1	Explain the fundamental concepts used in hydraulic and pneumatic applications.						
2	Solve numerical problems on sizing and selection of hydraulic valves.						
3	3 Draw the symbolic representation of hydraulic and pneumatic components.						
4	4 Design simple circuit diagrams for manufacturing applications using fluid power.						
	LINIT I						

UNII-I	
Introduction to hydraulic power	06 Hrs
Pascal's law and its application, Structure of hydraulic power pack, Applications,	
pumping theory, Working of gear, vane and piston pumps, Accumulators, Numerical	
problems on pump performance.	
Hydraulic actuators and motors	
Classification and working of hydraulic cylinders, Working of gear, vane and piston	
motors, Numerical problems on cylinder and motor performance.	
UNIT-II	
Control Components of hydraulic system	08 Hrs
Symbolic representation and constructional features of Directional control valves (spool	
type) valves, Check valve, Pressure relief valve (direct and pilot), Pressure reducing	
valve, Unloading valve counterbalance valve, Pressure sequence valves, Throttle valves	
and flow control valves. Numerical problems on hydraulic valves.	
Maintenance of Hydraulic systems	
Hydraulic oils (properties and types), Reservoir construction, Sealing devices, Filters and	
strainers, Problem caused by gases in hydraulic fluids, Troubleshooting, numerical	
problems on filter rating.	
UNIT-III	
Design of hydraulic circuits I	08 Hrs
Control of Single and Double Acting Cylinder, Regenerative Circuit application, Pump	
unloading circuit, Double Pump Hydraulic System. Counter Balance Valve Application,	
problems	
Design of hydraulic circuits II	
Hydraulic Cylinder Sequencing Circuit, Locked Cylinder using Pilot Check Valve,	
Cylinder Synchronizing circuits, Speed control circuits, Accumulator Circuits, problems.	
UNIT-IV	
Introduction to Pneumatic Power	06 Hrs
Structure of Pneumatic control system, End position cushioning, Production of	
compressed air – compressors, Preparation of compressed air- driers, Filters, Regulators,	
Lubricators, Distribution of compressed air.ISO 5599 symbolic representation.	
Design of pneumatic circuits I	
Direct and indirect actuation pneumatic cylinders, Use of memory valve, Speed control of	
cylinders supply air throttling and exhaust air throttling, Application of quick exhaust	
valve, Practical examples involving the use of AND and OR gates.	
UNIT-V	
Design of pneumatic circuits II	06 Hrs
Practical applications of pressure dependent controls and time dependent controls,	
Cascading principle, Coordinated motion control, Signal elimination using reversing	
valves (two cylinders)	
Electro pneumatics:	
Electrical switching devices, symbolic representation, direct and indirect control of single	

acting and double acting cylinders, relay control circuit, latching circuit, auto return using					
limit switch, control of double acting cylinder using timer, cyclic operation of double					
acting cylinder, circuit for stamping device.					
Experiential Learning Component:					
Simulation of hydraulic and pneumatic circuits using automation studio. Working on	Hrs/Week				
hydraulic and pneumatic power packs					

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Explain the basic components of hydraulic and pneumatic power pack and structure of circuits.							
2	Identify the hydraulic and pneumatic power symbolic representations and troubleshoot the							
	problems.							
3	Determine the performance parameters of hydraulic pumps, actuators, filters and valves.							
4	Design an efficient hydraulic and pneumatic circuit diagrams for industrial applications.							

Reference Books

-	
1.	Introduction to Hydraulics and Pneumatics, S. Ilango, V. Soundararajan, 2 nd Edition, 2011,
	PHI learning, ISBN – 978–81–203–4406–8
2.	Hydraulics and Pneumatics, Andrew Parr, Elsevier, 3rd Edition, 2011,
	ISBN - 978-0- 08-096674-8
3.	Fluid Power with Applications, Anthony Esposito, 7th Edition, 2013,
	ISBN: 13 978-9332518544
4.	Hydraulic and Pneumatic controls, R. Srinivasan, 2 nd Edition, 2010, McGraw Hill Education,
	ISBN: 978-81-8209-138-2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1						1		1		1
CO2	1	2	2				1				1	
CO3	2	2	2	1			1			1	3	
CO4			1	2	1	1		2	2	2		1

	Semester: VI						
Course Title: COMPUTATIONAL FLUID DYNAMICS							
	(Group C: Professional Core Elective)						
Course Code: 16ME6C2 CIE Marks: 100							
Crea	dits: L:T:P:S: 3:0:0:1 SEE Marks: 100						
Hou	rs: 36L SEE Duration: 3 H	Irs					
Cou	rse Learning Objectives: The students will be able to						
1	Introduce the importance of computational fluid dynamics in solving fluid flow m	oblems					
2	 Introduce the importance of computational fluid dynamics in solving fluid flow problems. Differentiate between finite volume and finite difference method in CED. 						
3	Discuss application of CED methods to compressible and in-compressible fluids						
4	Explain use of numerical methods in CED analysis						
5	Analysis of simple sub-systems using CFD techniques						
Dror	aquisites: Thermodynamics Eluid Dynamics Heat Transfer, Differential Calculus	and Integral					
Calc	sulus Vector Calculus Differential Equations Tensor Algebra Linear Algebra	and integral					
Calc	ulus, vector Calculus, Differentiai Equations, Tensor Algeora, Ellicar Algeora						
	τινιτά τ						
Intr	oduction to CED:	05 Hmg					
The	need for computer simulations of fluid flows: Brief history of CED: A few example	05 118					
of	need for computer simulations of fluid flows, blief history of CFD, A few example	28					
	arning aquations of fluid flows:						
Novi	erning equations of nulu nows:						
Con	contract of convection and diffusion	8,					
Con							
A m a	UNIT-II Unic of the concerning equations of fluid flower	10 Шта					
Ana Novi	is Stokes to Burgers equation. Convertion diffusion equation. Linear convertion	IU HIS					
Navier-Stokes to Burgers equation, Convection-diffusion equation, Linear convection							
Anthomatical classification of Doutical Differential Equations (DDEs):							
Filiptic Parabolic and Hyperbolic equations: Drysical significance of the equation							
Method of Characteristics: diffusion Burgers and linear convection equations							
wieu							
Finit	to difference method (1D): Introduction to Finite Difference Method (EDM) and	to 10 Uno					
annli	ication to unsteady heat conduction and steady heat conduction equations: Explicit	it IVIIIS					
appi	implicit methods: EDM for linear convection equation and upwind differenci	n					
method							
Properties of numerical methods: Consistency Stability Convergence Order of							
accuracy Modified equations Artificial viscosity or Numerical diffusion Numerical							
dispersion							
UNIT_IV							
Finit	te volume method: Introduction application to unsteady and steady heat conduction	on 06 Hrs					
equa	tions Linear convection equation: Central discretization and unwind discretization						
Grid	Grid generation:						
Basi	Basics of grid generation . 2-D cartesian, quadrilateral and triangular grids						
UNIT-V							
Numerical methods for incompressible flows: 05 Hrs							
Basic problem of the pressure updating: stream function and vorticity formulation							
Pres	Pressure correction methods, SIMPLE algorithm, Artificial compressibility formulation.						
Solution of algebraic equations: Gauss-Seidel iteration method, Tri-diagonal matrix							
(Tho	(Thomas) algorithm, Alternating Direction Implicit (ADI) method.						
Self-Learning Component:							
To generate appropriate grids.							
Project on understanding flow physics							
Comparative study of various models.							

Demonstrate the near wall turbulence.
R.V. College of Engineering – Bengaluru-59

Cou	irse Outcomes: After completing the course, the students will be able to
1	Understand importance of applying CFD to solving engineering design problems. (L1 & L2)
2	Apply and analyse the basic rules to develop CFD Models with appropriate boundary conditions.
	(L3 & L4)
3	Divide CFD domain into discretization for getting numerical solutions and compute the errors.
	(L5)
4	Develop novel CFD models for Industrial problems. (L6)

Reference Books

1.	Computational Fluid Dynamics - The Basics with Applications, John D Anderson,
	6th Edition, 1995, McGraw-Hill, ISBN: 0070016852
2.	Computational Fluid Dynamics: A Practical Approach , J. Tu, G. Yeoh, C. Liu , 2 nd Edition ,
	2013, Elsevier ISBN-13: 9780750685634
3.	Computational Methods for Fluid Dynamics, Joel Ferziger and Peric, 2 nd Edition, 1999,
	Springer, ISBN :3540653732
4.	Numerical Fluid flow and Heat Transfer, SV Patankar, 1980, Hemisphere Publishing
	Corporation, ISBN: 0891165223
5.	Numerical Computation of Internal and External Flows, The Fundamentals of Computational
	Fluid Dynamics, Charles Hirsch Elsevier, ISBN-13: 978-9381269428

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		1	2							
CO2	3	2		1	2							
CO3	3	1		2	1							
CO4	3	2		2	1							

	S	Semester: VI					
	Course Title: ENERGY CONVERSION ENGINEERING						
	(Group C: Pr	ofessional Core Elective)					
Cou	rse Code: 16ME6C3	CIE Marks: 100					
Cree	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hou	rs: 35L	SEE Duration: 3 Hrs					
Course Learning Objectives: The students will be able to							
1	To understand the working of energy c	onversion process.					
2	To analyze the energy conversion proc	esses with respect to thermal, potential, chemic	cal, and				
2	nuclear energy systems.						
3	To describe the working of various sys	tems and subsystems of energy conversion pro	cesses.				
4	To evaluate the factors affecting the en	ergy conversion processes.					
5	To quantify the power generation from	different sources.					
6	To develop hybrid and conceptual mod	els for high efficiency power generation.					
		UNIT-I					
The	rmal Power Plant:		06 Hrs				
Gene	General layout of thermal power plant; Types of coal, Pulverizing coal, Equipment for						
burn	burning coal, Types of stokers, Oil burners, Unit and bin system of burning coal, Cyclone						
separator, Coal and ash handling, Steam Generators & its Accessories: Benson, Velox and							
Schmidt Steam generators, Operating principles, Super-heaters, Pre-heater, Re-heaters,							
Ecor	Economizers;						
Cool	Cooling Towers & Chimney Design: Natural, Forced, Induced and Balanced draft,						
Calc	Calculation of chimney height, Cooling towers and ponds.						

TTATES T	
UNII-II	È.

UN11-11	
Hydroelectric Power Plant Design:	08 Hrs
General layout of hydroelectric power plants, Run off, Hydrographs and flow duration	
curves, Mass curve, Unit hydrographs, Selection of site for hydroelectric power plant,	
Classification of hydro power plants: Storage plants, Runoff river plants pumped storage	
plants. Penstock, Water hammer, Surge tanks, Gates and valves. Types of underground	
power stations, Prime movers, Specific speed of turbines, Types of draft tubes,	
Cavitation, Methods to avoid cavitation, Factors affecting the selection of turbine.	
UNIT-III	
Nuclear Power Plant:	08 Hrs
General layout of Nuclear Power Plant; Principles of release of nuclear energy, Fission	
and Fusion reactions; Nuclear fuels used in reactors, Multiplication and thermal	
utilization factors, Elements of nuclear reactors, Moderator, Control rod, Fuel rods,	
Coolants, Pressurized water reactor, Boiling water reactor, Fast breeder reactor, Radiation	
hazards, Shielding and waste disposal	
UNIT-IV	
Diesel Power Plants:	06 Hrs
Operating principle, Basic types of IC engines, Advantages and Disadvantages of diesel	
power plant, Application of diesel power plant, General layout of diesel power plants,	
Fuel system, Lubrication system, Air intake and admission system, Supercharging	
system, Exhaust system, Cooling system, Diesel plant operation, Efficiency of diesel	
power plant, Heat balance sheet, Engine capacity calculations	
UNIT-V	
Solar and Wind Power Plants:	07 Hrs
Solar thermal power plant layout, Solar towers, Solar dishes. Solar photovoltaic	
technology, Different types of solar cells, Modules, Arrays. Stand-alone PV systems,	
Grid- connected systems. V-I characteristics, Design of solar arrays for domestic	
purpose.	
Wind resources, Wind speed variation with height, Weibull statistics and rotational	
anemometers. Classification of wind turbine: HAWT and HAWT, Wind turbine	

anatomy: Rotors, Yawing, Drive train, Types of generators, Towers. Power output from	
an ideal turbine and practical turbine, Wind farms, Environmental effects of wind power	
Experiential Learning Component:	4
Simulation of thermal power plants, optimum design of cooling towers, Advancements in	Hrs/Week
Hydro and Nuclear power plant (Case study). A small prototype model of PV for	
different application and wind power plant. Simulation models of Solar and wind energy.	
A small instrument to measure some energy in IC engines.	

Course Outcomes: After completing the course, the students will be able to

- 1 Evaluate the performance of different energy conversion processes.
- 2 Interpret the differences in the physics of different energy conversion processes.
- 3 Calculate the performance parameters of various energy conversion processes.
- 4 Calculate power, efficiency, and heat balance sheet for various energy conversion processes.

Reference Books

1.	Principles of Energy Conversion, Culp A. W., 2 nd Edition, 1991, McGraw Hill,
	ISBN: 9780070149021
2.	Power Plant Engineering, Nag P. K., 4th Edition, 2014, Tata McGraw Hill,
	ISBN-13: 9789339204051
3.	Power Systems Engineering, Rajput R. K., 3rd Edition, 2016, Laxmi Publications,
	ISBN: 9788131808795

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		1	2							
CO2	3	2		1	2							
CO3	3	1		2	1							
CO4	3	2		2	1							

	S	Semester: VI				
	Course Title: ADV	ANCED MACHINE DESIGN				
	(Group C: Pr	ofessional Core Elective)				
Cou	rse Code: 16ME6C4	CIE Marks: 100				
Crea	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	rs: 34L	SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students	will be able to				
1	Understand modes of failure and its pro-	ediction				
2	Conceptualize fatigue failure and comp	oute fatigue life based on experiments				
3	Understand both stress based and strain	1 based approaches				
4	Understand the concepts of LEFM					
		UNIT-I				
Intro	oduction: Role of failure prevention	analysis in mechanical design, Modes of	06 Hrs			
mech	nanical failure, Review of failure theori	es for ductile and brittle materials including				
Moh	r's theory and modified Mohr's theory. I	Numerical examples.				
Fatig	gue of Materials: Introductory concepts	s, High cycle and low cycle fatigue, Fatigue				
desig	n models, Fatigue design methods, Fa	atigue design criteria, Fatigue testing, Test				
meth	ods and standard test specimens, Fatigu	e fracture surfaces and macroscopic features,				
Fatig	ue mechanisms and microscopic feature	S.				
~		UNIT-II				
Stre	ss-Life (S-N) Approach: S-N curves, S	tatistical nature of fatigue test data, General	08 Hrs			
S-N	behavior, Mean stress effects, Differe	nt factors influencing S-N behaviour, S-N				
curve	e representation and approximations, Co	onstant life diagrams, Fatigue life estimation				
using	g S- N approach.					
Stra	in-Life (ε-N) approach: Monotonic s	tress-strain behavior, Strain controlled test				
meth	ods, Cyclic stress-strain behavior, S	train based approach to life estimation,				
Dete	rmination of strain life fatigue proper	ties, Mean stress effects, Effect of surface				
finis	n, Life estimation by E-N approach.					
TEE	M Annuagh, I EEM agreents, Creak	UNII-III	00 11			
	M Approach: LEFM concepts, Crack	up plastic zone, Fracture toughness, Fatigue	U8 Hrs			
Note	bag and their affects: Concentration	a and gradiants in strass and strain S N				
note	and their effects. Concentration	s and gradients in suess and strain, S-N				
appro	Jach for notched memoranes, Mean Su	tess effects and Haigh diagrams, Numerical				
exan	ipies.					
Fati	wa from Variable Amelituda Laadir	UNIT-IV	06 IIma			
raug	gue from variable Amplitude Loading	of damage fraction and accumulation				
Cum	age quantification and the concepts	tion and sequence effects. Cycle counting				
moth	ods Life estimation using stress life apr	roach Numerical examples				
Note	h strain analysis: Strain – life approac	h Neuber's rule Glinka's rule applications				
of fr	acture mechanics to crack growth at not	thes Numerical examples				
01 110	acture meenames to crack growin at note	UNIT_V				
Surf	ace Failure. Introduction Surface ge	matry Mating surface Eriction Adhesive	06 Hrs			
wear	Abrasive wear Corrosion wear	Sincery, Maring surface, Therion, Adhesive	00 1115			
Surface fatigue: Spherical contact. Cylindrical contact General contact Dynamic						
contact stresses Surface fatigue strength Surface fatigue failure modes. Design to avoid						
Surf	ace failures	nuce nutrate nature modes, Design to avolu				
Evn	vriential Learning Component.		4			
	loning models in software and to val	idate the results obtained theoretically and	Hrs/Week			
lising	the software models	the results obtained theoretically allu				
Deve	top LEFM's for a notch and analyze pra	ctically				
Appl	y the concepts of design in household ar	opliances and to understand them practically.				

Cou	irse Outcomes: After completing the course, the students will be able to
1	Predict failure based on failure theories.
2	Estimate the fatigue life band on high cycle and low cycle fatigue.
3	Compute crack growth and estimate failure.
4	Estimate contact stresses and resulting failure.
Ref	erence Books
1.	Metal Fatigue in engineering, Ralph I. Stephens, Ali Fatemi, Robert, Henry o. Fuchs, 2 nd Edition
1	

	, 2001, John Wiley, New York, ISBN: 9870827312
2.	Failure of Materials in Mechanical Design, Jack. A. Collins, 3 rd Edition, 1992, John Wiley,
	New York, ISBN: 768290378349
3.	Machine Design, Robert L. Norton, 3 rd Edition, 2000, Pearson Education India,
	ISBN: 987901782-1
4.	Fatigue of Materials, Suresh, 3 rd Edition, 1998, Cambridge University Press,
5.	Fundamentals of Metal Fatigue Analysis, Julie. A. Benantine, Prentice Hall, I4th Edition,
	1990, SBN: 8972178481-x
6.	Fatigue and Fracture, ASM Hand Book, Volume 19, 2002

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2								
CO2	3	3	2	2								
CO3	2	3	3	1								
CO4	2	3	2	1								

Low-1	Medium-2	High-3
-------	----------	--------

	S	Semester: VI					
	Course Title: Product Design and Development						
	(Group C: Pr	ofessional Core Elective)					
Cou	rse Code: 16ME6C5	CIE Marks: 100					
Crea	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hours: 36L SEE Duration: 3 Hrs		SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The students	will be able to					
1.	To understand the structured product de	evelopment processes					
n	To understand the contributions and role of multiple organizational functions for creating a new						
۷.	product						
2	To apply engineering knowledge for the development of innovative and market acceptable						
5.	products						
4	To expose the tenets of design and development of a manufacturing process that builds the						
4.	product at the scales and quality as demanded by the customer and the market						
5	To develop an ability to coordinate mu	ltiple, interdisciplinary tasks in order to achieve the					
5.	mission and goals of the product development organizations						

UNIT-I	
Introduction: Characteristics of successful product development, Design and	06 Hrs
development of products, The Morphology of Design (The seven phases), who Designs	
and develops products, Duration and cost of product development, Challenges of product	
development.	
Development Processes and Organizations: A generic development process, Concept	
development: Front-end process, Adapting the generic product development process,	
The AMF development process, Product development organizations, The AMF	
organization.	
UNIT-II	
Product Planning: Product planning process, Identify opportunities, Product strategies,	09 Hrs
Analysis of a product, Three S's, Evaluate and prioritize projects, Allocate resources and	
plan timing, Complete pre project planning, Reflect all the results and the process.	
Identifying Customer Needs: Gather raw data from customers, Interpret raw data in	
terms of customer needs. Organize the needs into a hierarchy, Establish the relative	
importance of the needs and reflect on the results and the process. Quality function	
deployment.	
Product Specifications: Specifications, Basic design considerations and constraints,	
Various types of specification. Establishing specifications. Establishing target	
specifications, Setting the final specifications.	
UNIT-III	
Concept Generation: The activity of concept generation, Clarify the problem, Search	09 Hrs
externally, Search internally, Benchmarking, Explore systematically, Reflect on the	
results and the process.	
Concept Selection: Overview of methodology, Concept screening, Concept scoring.	
Concept Testing: Define the purpose of concept test. Choose a survey population.	
Choose a survey format. Communicate the concept. Measure customer response.	
Interpret the result. Reflect on the results and the process.	
Product Architecture: What is product architecture. Implications of the architecture.	
Establishing the architecture. Variety and supply chain considerations. Platform	
planning. Related system level design issues.	
UNIT-IV	
Industrial Design: Assessing the need for industrial design, Impact of industrial design,	06 Hrs
Industrial design process, Managing the industrial design process, Assessing the quality	
of industrial design. Problems faced by Industrial design Engineer.	
Design for Manufacturing: Definition, Approach to design, Production Requirements.	
Estimation of manufacturing cost, Reducing the cost of components, Assembly,	

Supporting production, VCP, Overview of Design for production - Metal parts,		
Designing with plastics, Rubber, ceramics and wood, Impact of DFM & DFX on other		
factors. Concurrent engineering, reasons for adopting concurrent engineering, factors		
preventing the adoption of Concurrent engineering.		
UNIT-V		
Prototyping: Prototyping basics, Principles of prototyping, Technologies, Planning for	06 Hrs	
prototypes.		
Product Development Economics: Elements of economic analysis, Base case financial		
mode. Sensitive analysis, Project trade-offs, Influence of qualitative factors on project		
success, Qualitative analysis.		
Managing Projects: Understanding and representing task, Baseline project planning,		
Accelerating projects, Project execution, Post-mortem project evaluation.		

Cou	rse Outcomes: After completing the course, the students will be able to
1	Explain the structured approaches to Product design and development of projects.
2	Understand the challenges faced by product designers and appreciate the need for adapting a
	development mind set.
3	Develop the capability to work in teams and apply the structured product design and
	development methodologies for solving problems.
4	Analyze the need for integrated product design and process development frameworks.

Reference Books 1. Product Design and Development, Karl. T. Ulrich , Steven D Eppinger, 5th Edition , 2009 , Tata McGraw Hill Publications , ISBN – 0-07058513-X 2. Product Design and Manufacturing , A C Chitale and R C Gupta, 4th Edition , 2007, HI , ISBN: 9788120333178. 3. New Product Development, Tim Jones, Butterworth Heinemann, 1997, Oxford. UCI, ISBN – 0750624273. 4. Product Design for Manufacture and Assembly , Geoffrey Boothroyd, Peter Dewhurst and Winston A Knight, M. Dekker, 3rd Edition, 1994, ISBN: 0824791762

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3									
CO2	1	2	3									
CO3		2	3	2								
CO4		2	3	2								

	Semester: VI				
	Course Title: GAS DYNAMICS AND COMBUSTION				
	(Group D: Pr	ofessional Core Electiv	ve)		
Cou	Course Code: 16ME6D1 CIE Marks: 100		CIE Marks: 100		
Credits: L:T:P:S: 4:0:0:0			SEE Marks: 100		
Hours: 46L			SEE Duration: 3 Hrs		
Cou	Course Learning Objectives: The students will be able to				
1	1 Differentiate between compressible and incompressible flows.				
2	2 Explain the influence of parametric changes on gas flows.				
3	3 Evaluate gas flows at subsonic and supersonic conditions.				
4	4 Compare different fuels and discuss the process of combustion.				
Dues	Promognizitan Themes demonstrates Eluid Demonstrate Colorlas				

Prerequisites: Thermodynamics, Fluid Dynamics, Calculus

UNIT-I	
Introduction to Gas Dynamics:	08 Hrs
Compressible Flows, Isentropic flow, Stagnation, Static and Dynamic Pressure, Pressure	
Co-efficient; Acoustic speed, Mach Number, Governing Equations for Compressible	
Flows.	
UNIT-II	
Shock Waves:	14 Hrs
Normal Shock Waves, Rankine-Hugoniot Equation, Rayleigh Flow, Fanno Flow.	
Oblique Shock Waves, supersonic flow over wedges and cones, reflection and interaction	
of shock waves; Prandtl Meyer Flow.	
UNIT-III	
Nozzles:	08 Hrs
Isentropic flow through variable area ducts, Convergent and divergent nozzles, Over	
expanded and under expanded nozzles; Subsonic wind tunnels, Shock tunnels and super-	
sonic wind tunnels.	
UNIT-IV	
Combustion:	08 Hrs
Types of fuels and modes of combustion; Stoichiometry, Chemical Equilibrium,	
Thermo-Chemistry, Basic reactor kinetics, Elementary Reactions, Chain Reactions,	
Multi-Step Reaction.	
UNIT-V	
Physics of Combustion:	08 Hrs
Laws of transport mechanism, Premixed flames, Ignition and flame stabilization and	
extinction; Combustion and Emission, Atmosphere, Chemical Emission from	
Combustion, Quantification and Control of Emission.	

Cou	rse Outcomes: After completing the course, the students will be able to
1	Understand and develop ability to explain gas dynamics relations. (L1 & L2)
2	Apply engineering concepts to arrive at solutions. (L3)
3	Analyze and evaluate a given situation for find optimal solutions. (L4 & L5)
4	Develop an ability to predict performance of a system. (L6)

Ref	erence Books
1.	Fundamentals of Gas Dynamics, Robert D Zucker, Oscar Biblarz, 4th Edition, 2010,
	John Wiley & Sons, New York, ISBN-13:978-8126529124
2.	Fundamentals of Combustion Processes, Sara McAllister, Jyh-Yuan Chen, Carlos Fernandez,
	5 th Edition, 2013, Springer, New York, ISBN-13: 978-1461428657
3.	Combustion, Irvin Glassmann, Richard Yetter, 3 rd Edition, 2009, Elsevier Publication,
	ISBN-13: 978-8131220290
4.	Compressible Fluid Dynamics, P. Balachandarn, 2 nd Edition, 2006, Prentice Hall of India,
	ISBN-13: 978-8120328570

5. Babu. V, 'Fundamentals of Gas Dynamics', Athena Academic Ltd, 4th Edition, 2014, ISBN-13: 978-1910390009

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		1	2							
CO2	3	2		1	2							
CO3	3	1		2	1							
CO4	3	2		2	1							

	Semester: VI							
	Course Title: NON TRADITIONAL PROCESSES							
	(Group D: Professional Core Elective)							
Cou	rse Code: 16ME6D2	CIE Marks: 100						
Cred	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 44L		SEE Duration: 3 Hrs						
Cou	Course Learning Objectives: The students will be able to							
1	Apply the working principles of ultra-precision machining and non-traditional machinir							
1	¹ producing precision components.							
2	Demonstrate the need for development of non-traditional machining processes.							
2	Identify different energy sources like fluid motion, electric current, high speed electrons and							
3	high energy radiation.							
Analyze the concept, mechanism, parameters associated with non-traditional n								
4	processes.							
5	5 Demonstrate the operational principles of various non-traditional machining processes.							
6	Apply the basic principles of rapid pro-	ototyping (RP) and reverse engineering (RE) technologies						
U	for product development.							

UNIT-I

UNII-I							
Introduction: Need for non-traditional machining processes. Processes selection	08 Hrs						
classification on – comparative study of different processes.							
Mechanical Process: Ultrasonic Machining-Definition-Mechanism of metal elements of							
the process- Tool feed mechanism. Theories of mechanics of causing effect of parameter							
applications.							
Abrasive Jet Machining: Principles - parameters of the process applications-advantages							
and advantages.							
UNIT-II							
Thermal Metal Removal Process: Electric discharge machining Principle of operation –							
mechanism of meta removal basic EDM circuitry-spark erosion get Analysis of							
relaxation type of circuit material removal rate in relaxation circuits- critical resistance							
parameters in Ro Circuit-Die electric fluids-Electrodes for sparl surface finish.							
Applications.							
Electro chemical and chemical processes: Electro chemical machining (ECM)							
Classification ECM process – Principle of ECM Chemistry of the ECM parameters of the							
processes- Determination of the metal removal rate - Dynamics of ECM process-							
Hydrodynamics of ECM process – PolarizationTool Design -Advantages and							
Disadvantages - Applications. Electro Chemical Grinding-Electro Chemical holding.							
Electrochemical deburring							
UNIT-III							
Chemical Machining: Introduction- Fundamental principle types of chemical machining							
Maskants – Etchenes- Advantages and disadvantages- Applications.							
Plasma arc Machining: Introduction – Plasma-Generation of Plasma and equipment							
Mechanism of metals removal, PAN parameters- Process characteristics - Type of torches							
applications.							
Electron Beam Machining (EBM): Introduction-Equipment for production of Electron							
beam - Theory of electron beam machining Thermal and Non thermal types							
characteristics - Applications.							
UNIT-IV							
Laser Beam Machining (LBM): Introduction- Principle of generation of lasers							
Equipment and Machining procedure-Types of Lasers-Process characteristics-advantages							
and limitations- Applications							
Ion Beam Machining: Introduction-Mechanism of metal removal and associated							
equipment- Process characteristics - Applications							
High Velocity forming process: Introduction - Development of specific process							

High Velocity forming process: Introduction - Development of specific process

Γ

٦

selection- Comparison of conventional and high velocity forming methods - Types of			
high velocity forming methods - Explosion forming process, Electro-hydraulics forming,			
Magnetic pulse forming.			
UNIT-V			
Additive Manufacturing:	08 Hrs		
Basics and definitions: Principle of layer-based technology, Advantages, Classification.			
Rapid Prototyping Process Chain: 3D Modeling, Data Conversion and Transmission,			
Checking and Preparing, Model building, Post processing.			
Rapid prototyping techniques: Stereolithography, Solid Ground Curing (SGC), Fused			
Deposition Modeling (FDM), Selective Laser Sintering (SLS), Three-dimensional			
printing, Laminated Object Modeling (LOM).			

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Classify the various Non-Traditional Machining process to machine new novel materials.						
2	Choose an appropriate Non Traditional Machining technique to machine the given material.						
3	Identify the Process parameters affecting the functioning of various Non-Traditional Machines.						

4 Describe various types of rapid prototyping systems for product development.

Reference Books

1.	Production Technology - HMT, R K Jain and S C Gupta, Tata Mc Graw Hill, 16th Edition,
	2004, ISBN-10; 0070964432
2.	Modern Machining Process, P.C Pandy & H.S. Shan, 5th Edition, 2008, Tata McGraw Hill,
	ISBN: 0070965536
3.	Modern Manufacturing Methods, Adithan, 3 rd Edition, 2007, New Age International
	Pvt. Limited, , ISBN: 8122408176
4.	Modern Machining Processes, P.K. Mishra, 3 rd Edition, 1997, Narosa Publishing House,
	New Delhi, ISBN: 8221948176

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

Semester: VI								
	Course Title: THEORY OF PLATES AND SHELLS							
(Group D: Professional Core Elective)								
Cou	rse Code: 16ME6D3	CIE Marks: 100						
Crea	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hou	rs: 44L	SEE Duration: 3 Hrs						
Cou	Course Learning Objectives: The students will be able to							
1	To understand the classical structural n	nechanics approximations of membrane, plate	and shell					
	theories.							
2	To apply energy formulations to demon	nstrate the consistent derivation of approximat	e boundary					
	conditions and edge effects.							
3	To identify the deformation of Shells w	without Bending for different surfaces and load	ings.					
4	To evaluate the deformation of cylindri	ical tanks and pressure vessels.						
		UNIT-I	00 TT					
Bend	ling of plates:		08 Hrs					
Intro	duction- Slope and curvature of slight	ly bent plates – relations between bending						
mom	ients and curvature in pure bending of	t plates – strain energy in pure bending –						
Diffe	erential equation for cylindrical bend	ing of plates – Differential equation for						
symi	netrical bending of laterally loaded circl	liar plates – uniformity loaded circular plates						
with	and without central cut outs, with t	wo different boundary conditions (Simply						
supp	orted and clamped). Centrally loaded	clamped circular plate - Circular plate on						
elast								
SIM	Differential equation of the deflection surface boundary conditions. Simply supported							
Dille	rential equation of the deflection surface	ding Newigr's solution for simply supported						
recta	ngular plates subjected to narmonic load	ling. Navier's solution for simply supported						
plate	subjected to UDL, patch UDL, point	load and hydrostatic pressure –Bending of						
oppo	site adgas	ed to a distributed moments at a pair of						
oppo	she euges.							
Doot	angular plates with different Edge ear	UNII-III Aditional	10 Ung					
Ren	ling of rectangular plates subjected to U		10 1115					
G) tu	and supported address supported and it	DL the other two odges clamped (ii) three odges						
simn	ly supported and one edge built in and (iii) all adges built in Banding of rectangular						
nlate	s subjected to uniformly varying lateral	load (i) all edges built-in and (ii) three edges						
simn	simply supported and one adge built in							
INIT IV								
Defe	UIVII-IV Deformation of Shalls without Panding:							
Defi	nitions and notation Shells in the form	of a surface of revolution Displacements	vo ms					
Unsy	Unsymmetrical loading and spherical shell supported at isolated points. Membrane							
theor	theory of cylindrical shells. Use of stress function in calculating membrane forces of							
shells.								
UNIT-V								
Gen	General Theory of Cylindrical Shells: 08 Hrs							
A ci	rcular cylindrical shell loaded symmetr	ically with respect to its axis. Symmetrical						
defor	mation. Pressure vessels. Cylindrica	tanks. Thermal stresses in extensional						
defor	mation. General case of deformation	. Cylindrical shells with supported edges						
App	oximate investigation of the bending of	cylindrical shells, Use of a strain and stress						
funct	function, Stress analysis of cylindrical roof shells.							

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Apply the structural mechanics approximations of membrane, plates and shells.						
2	Develop simple modifications to the membrane plate and shell theories.						
3	Describe the static and dynamic conditions of membrane, plates and shell structures.						
4	Analyze cylindrical tanks, pressure vessels for different boundary conditions and stresses.						

Reference Books

1.	Theory of Plates and Shells, S.P Timoshenko and S.W Krieger, 2 nd Edition, 1989,
	McGraw Hill, ISBN: 0070647798
2.	Theory of Plates and Shells, S.S. Bhavikatti, 3 rd Edition, 2017, New Age International,
	ISBN: 978-93-86070-81-4
3.	Theory of Plates, Chandrasekhar. K.L, 4th Edition, 2001, University press, ISBN:
	9788173712531

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1			3	1	1		1	1
CO2				2		1		2	2	1		3
CO3	3	1	1		3		2	2	1			
CO4	1	2		3	3	1			2	2	3	3

Semester: VI						
Course Title: CUTTING TOOL DESIGN						
(Group D: Professional Core Elective)						
Course Code: 16ME6D4 CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hours: 48L	SEE Duration: 3 Hrs					
Course Learning Objectives: The students	will be able to					
1. Understand the mechanism of material	1. Understand the mechanism of material removal using different cutting tools					
2. Measure cutting forces for different machining process						
3. Understand design features of various cutting tool inserts and tool holders						
4. Design of various cutting tools for indu	stry applications.					

5. Compute the economics of cutting tools and machining process

UNIT-I			
Introduction: Mechanism of chip formation, Mechanism of yielding, Concept of	08 Hrs		
shearing strain, Fracture, Overview of chip formation, Mechanism of Metal Cutting.			
Force system during turning: Velocity relationships – Force analysis in turning,			
milling, drilling.			
UNIT-II			
Tool dynamometers: Design requirements of tool force dynamometer, Turning tool	10 Hrs		
dynamometer, Milling tool dynamometer, Grinding tool dynamometer.			
Cutting tool Inserts: Design features of inserts, Indexable inserts, Chip breakers, ISO			
and ANSI classification of inserts and tool holders.			
UNIT-III			
Turning Tool: Design of shank cross section, Classification of form tools, Design	10 Hrs		
characteristics, Graphical and analytical method for profile calculation, chip breakers			
purpose and types			
Milling Tool: Nomenclature, Design principles of plain milling cutter, Life and wear.			
UNIT-IV			
Drilling Tool: Drills with Indexable insert, Deep hole drill, Carbide tipped drill, Core	08 Hrs		
drill, Counter pores, and Counter sinks.			
Broaching Tool: Elements, Types of broach, Broach design aspects, Broach strength.			
UNIT-V			
Boring: Types of boring tool, Boring heads, Cartridges.	08 Hrs		
Reamer: Types of reamers, Geometry of flutes.			
Economics of machining: Elements of machining cost, Tool cost, Cutting speed for			
minimum cost, Cutting speed for maximum productivity.			

Cou	irse Outcomes: After completing the course, the students will be able to
1	Understand mechanism of chip formation, measurement of cutting forces.
2	Analyze the different types of machining operations.
3	Design cutting tools based on analytical and graphical method for industrial requirements.
4	Apply engineering knowledge for development of cutting tools for various operations.
Dof	aranga Baaks

Kere	erence Books
1	Metal Cutting and Tool Design, Dr. B. J. Ranganath, 2 nd Revised Edition, 2009. Vikas
	Publishing House Pvt. Ltd., New Delhi , ISBN: 0706975103, 9780706975109
2	Tool Design, Herman W. Pollack, 2 nd Edition, 1988, Prentice Hall PTR, ISBN: 0139251812
3	Cutting tools for productive machining, T A Sadasivan, D Sarathy, 1st Edition, 1999,
	Widia (India) Limited, ISBN: 82937319-1
4	Metal Cutting Theory and Cutting Tool Design, Arshinov, MIR Publication

Continuous Internal Evaluation (CIE); Theory (100 Marks)

R.V. College of Engineering – Bengaluru-59

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1			2			1	1		
CO2	3	3	1	2								
CO3	3	2	3	2	1		1					
CO4	1			2	1							

	Sem	ester: VI				
	Course Title: Quality Assurance					
	(Group D: Profe	ssional Core Elective)				
Cou	rse Code: 16ME6D5	CIE Marks: 100				
Crea	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100				
Hou	rs: 44L	SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students wi	ll be able to				
1	Explain basics of quality control and quali	ty improvement.				
2	Construct control charts for variables and attributes to monitor processes, and interpret the					
4	charts.					
2	Perform process homogenization & proce	ss harmonization, & to estimate capability of various				
³ processes.						
1	Perform Reliability evaluation of Mechan	ical, Electrical, Electronics and Software Technology				
-	Systems.					
5	Develop strategies for conducting design of	of experiments in process improvements				

UNIT-I				
Introduction: Dimensions of Quality, Statistical Methods for Quality, Quality costs.	08 Hrs			
Quality assurance, ISO 9000, 14000 standards.				
Statistical Process Control: Chance and assignable causes of variation. Statistical basis				
of control charts, Basic principles of control charts, choice of control limits, sample size				
and sampling frequency, rational sub groups, statistical basis of control charts. Analysis				
of patterns of control charts				
UNIT-II				
Control Charts for Variable and Attribute Data: Controls charts for Mean, Range	10 Hrs			
and Standard deviation σ . Brief discussion on – Pre control, Control charts for individual				
measurements, Moving-range charts, Sloping control charts, Group control charts.				
Controls chart for fraction non- conforming (p, np, 100p charts), Control chart for non-				
conformities (c and u charts). $\mathbf{P}_{\text{resource}} = \mathbf{P}_{\text{resource}} + \mathbf{P}_{\text{resource}}$				
Process capability – Methods of estimating process capability, Process capability				
indices- c_p and c_{pk}				
	10.11			
Acceptance Sampling: Concept of acceptance sampling, economics of inspection,	10 Hrs			
Acceptance sampling plans – Single, Double and Multiple Sampling. Operating				
Characteristic curves – construction and use. Determination of Average Outgoing Quality				
(AOQ), Average Outgoing Quality Level, Average Total Inspection, Production Risk and				
Consumer Risk, Published Sampling Plans				
	00 11			
Experimental Design for Process Improvement: General model of a process,	08 Hrs			
Examples of designed experiments in process improvement, Principles of				
experimentation, Guidelines for designing experiments, Completely randomized designs				
(CRD), Randomized block designs (RBD), Factorial experiments – 2 ² design				
UNIT-V				
Reliability And Life Testing : Failure models of components, definition of reliability,	08 Hrs			
MTBF, Failure rate, common failure rate curve, types of failure, reliability evaluation in				
simple cases of exponential failures in series, parallel and series-parallel device				
configurations				

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Explain the DMAIC process and fundamentals of quality control and improvement.				
CO2	Apply modern statistical methods for process quality control and improvement.				
CO3	Examine the data and draw inference about the process.				
CO4	Evaluate and select statistical tools and techniques for quality control and improvement.				

Refe	erence Books
1	Statistical Quality Control - A Modern Introduction, D C Montgomery, 6th Edition, 2009, John
	Wiley and Sons, ISBN 978-81-265-2506-5.
2	Statistical Quality Control - Grant and Leavenworth, 7 th Edition, 2008, McGraw Hill,
	ISBN - 0-07-043555-3.
3	An Introduction to Reliability and Maintainability Engineering, Charles E. Ebeling, 1997,
	McGraw-Hill International Editions, ISBN0070188521
4	Quality Planning & Analysis, T J M Juran, Frank M Gryna, 4th Edition, Tata McGraw Hill,
	ISBN – 0070393680.

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	2	1				1	
CO2		2	1	1								
CO3												
CO4		2	2	3								

		Semester: VI			
	BIOINSPIRED ENGINEERING				
G	(Group E: Global Elective)				
Cou	rse Code: 16G6E01		CIE Marks: 100		
Crec	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Hou	rs: 36L		SEE Duration: 3 Hrs		
Cou	rse Learning Objectives:				
1	To familiarize engineering	students with basic biological	concepts		
2	Utilize the similarities not	ted in nature for a particular j	problem to bring inspi	ration to	
	the designer.				
3	Explain applications such	n as smart structures, self-he	ealing materials, and	robotics	
	relative to their bio logical	analogs			
4	To gain an understanding	that the design principles from	m nature can be transl	ated into	
	novel devices and structur	res and an appreciation for h	now biological systems	s can be	
	engineered by human desig	<u>gn</u>			
		Unit-I			
Intro	oduction to Biology: Biomole	cules-Proteins, carbohydrates, lij	pids and Nucleic acids.	06 Hrs	
Cell	types- Microbial, plant, anim	hal. Organ system- Circulatory,	digestive, respiratory,		
excr	etory and nervous system. Se	ense organs. Plant process- Ph	notosynthesis.		
		Unit – II			
Introduction to Biomimetics: Wealth of invention in nature as inspiration for human 08 Hrs				08 Hrs	
inno	innovation: Mimicking and inspiration of nature- synthetic life. Nature as a model for				
struc	ture and tools: Biological c	lock, honey comb as strong l	light weight structure.		
Mate	rials and processes in biology	- Spider web, honey bee as a m	nulti-material producer,		
fluor	fluorescent materials in fire flies. Bird and insect as source of inspiring flight. Robotics as				
bene	ficiary for biomimetic technolo	ogies.			
		Unit -III			
Biol	ogical materials in Engin	eering mechanisms: Introduc	ction, Comparison of	08 Hrs	
biolo	gical and synthetic materials:	Silk processing and assembly l	by insects and spiders-		
High	performance fibers from natu	re, Seashells- High performance	e organic and inorganic		
comp	posites from nature. Shark sk	in- Biological approaches to e	fficient swimming via		
contr	ol of fluid dynamics, Muscl	es- Efficient biological convers	sion from chemical to		
mech	nanical engineering.				
	Unit –IV				
Biol	ogical inspired process and p	roducts: Artificial neural networ	rks, genetic algorithms,	08 Hrs	
medi	cal devices. Biosensors. Plan	t as Bio-inspirations: Energy e	efficiency, Biomimetic		
supe	super hydrophobic surfaces- lotus leaf effect. Bionic leaf and Photovoltaic cells.				
	Unit –V				
Imp	ants in Practice: Artificial S	upport and replacement of huma	an organs-Introduction,	07 Hrs	
Artif	icial kidney, liver, blood, lun	g, heart, skin and pancreas. To	tal joint replacements-		
Visu	al prosthesis -artificial eye. Ser	nse and sensors: Artificial tongue	e and nose, Biomimetic		
echo	lation. Limitations of organ reg	placement systems.			

R.V. College of Engineering – Bengaluru-59

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Remember and explain the fundamentals of Biology				
CO2:	Describe the basic principles of design in biological systems.				
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual				
	design problems				
CO4:	Create engineered solutions to customer needs utilizing a variety of bio-inspiration				
	techniques.				

Refer	ence Books
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN:
1	97816066502259
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10:
	<u>8123928726</u> / ISBN 13: <u>9788123928722</u>
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC
	press, ISBN: 9780849331633
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student
	Version. Wiley John and Sons, 2012. ISBN: 1118092449.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3 : Medium-2 : Low-1

	Semester: VI									
	GREEN TECHNOLOGY									
	(Group E: Global Elective)									
Cou	Course Code: 16G6E02 CIE Marks: 100									
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3 Hrs									
Cou	rse Learning Objectives:									
1	Learn the tools of green technology									
2	Know various forms of renewable energy									
3	Study the environmental consequences of energy conversation									
4	4 Understand energy audits and residential energy audit									
5	Understand the application of green technology in vari	ous industries								

Unit-I

emt i					
Current Practices and Future Sustainability: Need for green technology, fundamentals	07 Hrs				
of energy and its impact on society and the environment, the mechanics, advantages and					
disadvantages of renewable energy sources, energy conservation and audits, zero waste					
technology, life cycle assessment, extended product responsibility, concept of atom					
economy, tools of Green technology					
Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner					
production, cleaner production technologies.					
Unit – II					
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's	08 Hrs				
surface, solar radiation geometry, solar radiation measurements					
Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar					
heating of buildings), space cooling (or solar cooling of building), solar thermal electric					
conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar					
cooking					
Geothermal Energy: Resource identification and development, geothermal power					
generation systems, geothermal power plants case studies and environmental impact					
assessment.					
Unit -III					
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet	07 Hrs				
Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas					
plants (KVIC model & Janata model), selection of site for biogas plant					
Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal					
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification					
process, applications of the gasifiers.					
Unit –IV					
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion	07 Hrs				
system), classification of WEC systems, types of wind machines (Wind Energy Collectors),					
horizontal-axial machines and vertical axis machines.					
Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC),					
methods of ocean thermal electric power generation, open cycle OTEC system, the closed					
or Anderson, OTEC cycle, Hybrid cycle					
Energy from Tides: Basic principles of tidal power, components of tidal power plants,					
operation methods of utilization of tidal energy advantages and limitations of tidal power					
operation methods of utilization of itear energy, advantages and initiations of itear power					

Г

Unit –V					
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles	07 Hrs				
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for					
motor vehicle, safety and management, hydrogen technology development in India					
Application of Green Technology: Electronic waste management, bioprocesses, green					
composite materials, green construction technology					
Sustainability of industrial waste management: Case studies on cement industry, iron					
and steel industry, petroleum sectors, marble and granite industry, sugar industry					

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Recall the fundamentals of various forms of energy								
CO2:	Explain the principles of various forms of renewable energy								
CO3:	Apply the concept of zero waste, atom economy for waste management								
CO4:	Create a waste management plan incorporating tools of green technology in various industries								
-									

Refere	nce Books
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN:
	81/4090/38
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition,
4	2012, Oxford University Press, ISBN: 9780199545339
2	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob
3	Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3rd Edition, 2015, Routledge
4	publishers, ISBN:0415584388

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: VI										
	SOLID WASTE MANAGEMENT										
	(Group E: Global Elective)										
Cou	rse Code:16G6E03	CIE Marks: 100									
Cree	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100									
Hou	rs: 36L	SEE Duration: 3 Hrs									
Cou	Course Learning Objectives: The students will be able to										
1	Impart the knowledge of present methods of solid waste management system and to analyze the										
1	drawbacks.										
2	Understand various waste management statutory rules.										
2	Analyze different elements of solid waste management, design and develop recycling optio										
3	⁵ for biodegradable waste by composting.										
1	Identify hazardous waste, e-waste, plas	stic waste and bio medical waste and their management									
-	systems.										

UNIT-I	
Introduction: Land Pollution. Scope and importance of solid waste management. Present	08 Hrs
solid waste disposal methods. Merits and demerits of open dumping, feeding to hogs,	
incineration, pyrolysis, composting, sanitary landfill. Definition and functional elements of	
solid waste management.	
Sources: Sources of Solid waste, types of solid waste, composition of municipal solid	
waste, generation rate, Numerical Problems.	
Collection and transportation of municipal solid waste: Collection of solid waste-	
services and systems, Municipal Solid waste (Management and Handling) 2000 rules with	
2016 amendments. Site visit to collection system.	
UNIT-II	
Composting Aerobic and anaerobic composting - process description, process	08 Hrs
microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.	
Sanitary land filling: Definition, advantages and disadvantages, site selection, methods,	
reaction occurring in fandilli- Gas and Leachate movement, Control of gas and leachate	
INIT-III	
Hazardous waste management: Definitions. Identification of hazardous waste	06 Hrs
Classification of hazardous waste, onsite storage, collection, transfer and transport,	00 1115
processing, disposal, hazardous waste (Management and handling) rules 2008 with	
amendments. Site visit to hazardous landfill site	
UNIT-IV	
Bio medical waste management: Classification of bio medical waste, collection,	06 Hrs
transportation, disposal of bio medical waste, Bio medical waste (Management and	
Handling) rules 1998 with amendments. Site visit to hospital to see the collection and	
transportation system and visit to biomedical waste incineration plant.	
E-waste management : Definition Components Materials used in manufacturing	06 Hrs
electronic goods Recycling and recovery integrated approach E- waste (management and	00 1115
handling) rules 2011. Site visit to e- waste processing facility. Plastic waste management:	
Manufacturing of plastic with norms. Plastic waste management. Plastic manufacture, sale	
& usage rules 2009 with amendments.	

R.V. College of Engineering – Bengaluru-59

Cou	Course Outcomes: After completing the course, the students will be able to								
1	Understand the existing solid waste management system and to identify their drawbacks.								
2	Analyze drawbacks in the present system and provide recycling and disposal options for each								
	type of waste.								
3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management								
	system.								
4	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal								
	waste management as per the rules laid by Ministry of Environment & Forest.								

Re	ference Books
1.	Integrated Solid Waste Management : Engineering principles and management issues George
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous,
	Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.
3.	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC
	Publication, 2009, ISBN 9780854041121
4.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
5.	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

Se	emester :VI		
INTRODUCTION TO WEB PROGRAMMING			
(Group H	E : Global Elective)		
Course Code:16G6E04	CIE Marks: 100		
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100		
Hours: 36L	SEE Duration: 3 Hrs		

Cou	rse Learning Objectives: The students will be able to
1	Understand the basic concepts used in web programming.
2	Learn the definitions and syntax of different web technologies.
3	Utilize the concepts of JavaScripts, XML and PHP.
4	Design and develop web pages which are quick, easy and well-presented using different
4	techniques such as CSS,XML and JavaScripts.

UNIT-I

Introduction to Web Concepts	07 Hrs
Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and	
breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules,	
block-level elements, text-level elements. XHTML – 1: Internet, WWW, Web Browsers	
and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox.	
XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.	
XHTML (continued): Lists, Tables, Forms, Frames.	
UNIT-II	
Cascading Style Sheets (CSS):	09 Hrs
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property	
value forms, Font properties, List properties, Color, Alignment of text, The box model,	
Background images, The and <div> tags, Conflict resolution.</div>	
The Basics of JavaScript:	
Overview of JavaScript; Object orientation and JavaScript; General syntactic	
characteristics; Primitives, operations, and expressions; Screen output and keyboard	
input; Control statements	
UNIT-III	
JavaScript (continued):	09 Hrs
Object creation and modification; Arrays; Functions; Constructor; Pattern matching using	
regular expressions; Errors in scripts.	
JavaScript and HTML Documents:	
The JavaScript execution environment; The Document Object Model; Element access in	
JavaScript; Events and event handling; Handling events from the Body elements, Button	
elements, Text box and Password elements; The DOM 2 event model; The navigator	
object; DOM tree traversal and modification.	
UNIT-IV	
Dynamic Documents with JavaScript:	06 Hrs
Introduction to dynamic documents; Positioning elements; Moving elements; Element	
visibility: Changing colors and fonts; Dynamic content; Stacking elements; Locating the	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements.	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements. Introduction to PHP:	
 mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements. Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, 	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements. Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern	

UNIT-V	
XML: Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT Style sheets; XML processors; Web services.	05 Hrs

Cours	e Outcomes: After completing the course, the students will be able to
CO1.	Understand and explore internet related concepts that are vital for web development.
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.
CO4.	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.

Reference Books

	ISBN-13:978-0132665810
1.	Programming the World Wide Web - Robert W. Sebesta, 7th Edition, 2013, Pearson Education,

- 2. Web Programming Building Internet Applications , Chris Bates, 3rd Edition, , 2006, Wiley India, ISBN : 978-81-265-1290-4
- 3. Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg, 3rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
- 4. Thomas A Powell, The Complete Reference to HTML and XHTML, 4th Edition, 2003, Tata McGraw Hill publisher. ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

Low-1 Medium-2 High-	Low-1	Medium-2	High-3
----------------------	-------	----------	--------

Semester: VI					
AUTOMOTIVE ELECTRONICS					
	(Group E: Global Elective)				
Cou	rse Code: 16G6E05		CIE Marks: 100		
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100		SEE Marks: 100			
Hou	Hours: 36L SEE Duration: 3Hrs		SEE Duration: 3Hrs		
Course Learning Objectives: The students will be able to					
1	Understand the application of principle	s of sensing technolog	y in automotive field		
2	Apply control systems in the automotiv	ve domain			
3	Understand automotive specific commu	unication protocols / te	chniques		
4	Analyze fault tolerant real time embedd	led systems			

UNIT-I	
Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol, diesel and gas engines, electric motors and control systems. Basic Automotive System, System Components, Evolution of Electronics in Automotive. Alternators and charging, battery technology, Ignition systems. Working principles of various electronic components and accessories used in Automotive. Developments in existing engine forms and alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic Transmission systems.	08 Hrs
UNIT-II	
Sensor Technologies in Automotive: In-vehicle sensors: Working principles, Characteristics, limitations and use within the automotive context of the following: Temperature sensing e.g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate. Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel injection. Interfacing principles: Operation, topologies and limitations of all sensors covered in the above to in-vehicle processing or communications nodes. Use of Actuators: Types, working principle, Characteristics, limitations and use within the automotive context	07 Hrs
UNIT-III	L
Automotive Control Systems: Control system approach in Automotive: Analog and Digital control methods, stability augmentation, control augmentation. Transmission control, System components and functions. Cruise control, traction control, actuator limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle braking fundamentals, Antilock systems. Variable assist steering and steering control. Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Anti-theft System, Emission Course-system control. Control techniques used in hybrid system. Electronic Engine control: Motion equations, modeling of linear and non-linear systems, numerical methods, system responses Objective of Electronic Engine control. Spark Ignition and Compression Ignition Engines and their electronic controls. Engine management testing: Engine management system strategies and implementation. Simulation and implementation methods. Methods of improving engine performance and efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and Architecture.	07 Hrs
UNIT-IV	
Automotive Communication Systems: Communication interface with ECU's: Interfacing techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS),	07 Hrs

for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Acquire the knowledge of automotive domain fundamentals and need of electronics in
	Automotive systems
CO2:	Apply various sensors and actuators for Automotive applications
CO3:	Analyze different control systems and communication interfaces used in automotive systems.
CO4:	Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6 th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial
	Information Technology Series, CRC press.
4.	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,
	Springer, 2 nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

		SEMESTER – VI				
		INDUSTRIAL ELECTRONIC	CS			
		(Group E: Global Elective)				
Cours	se Code: 16G6E06		CIE Marks: 100			
Credi	ts: L:T:P:S: 3:0:0:0		SEE Marks: 100			
Hours	s: 36L		SEE Duration: 3 Hrs			
Cours	se Learning Objectives: '	The students will be able to				
1	Explain the working of	the devices used in power electron	ic circuits in industrial ap	plications		
2	Analysing and designing	power electronic circuits which han	dle the electrical energy e	efficiently		
	and economically and Id	entify the typical practical problems	with industrial exposure	acquired		
3	Use basic concepts of de	sign and working of electronic circu	its for conversion and cor	ntrol of		
	electrical energy.	a month of the man an invited	lissinlinger enginets and	to diaman		
4	Apply the knowledge to	regard to application of Power Elect	tropics	to discuss		
	industrial problems with	regard to application of Power Elect	nomes.			
		Unit-I				
Powe	r semi-conductor Device	s and static characteristics:		08 Hrs		
Cons	struction working & char	acteristics of MOSFET SCR IGBT	Comparison of Power	00 1115		
BIT	MOSFET SCR IGBT	Turn on methods of Power BIT	MOSFET and IGBT			
Desi	gn of R R-C and UIT (n)	ulse train) Gate triggering methods of	f SCR			
Unit-	I	ise train) Gute triggering methods o	i belt.			
The stor Dynamic characteristics Specifications and Protection: 07				07 Hrs		
Gate characteristics of SCR. Dynamic characteristics of SCR. Design of Snubber circuit				0. 110		
for S	for SCR. Line Commutation and Forced Commutation circuits with design. Gate					
protec	tion & overvoltage protec	tion of SCR.				
		Unit-III				
Conv	erters:			06 Hrs		
Single	e Phase Controlled Conve	rtor- Full wave Half and Fully cont	rolled line commutated			
bridge	e converters, Derivation of	average load voltage and current. T	Three phase converters –			
Six p	ulse converters- with R	load- Active inputs to the conver	rtors with and without			
Freew	heeling diode, Derivation	of average load voltage and current.				
Conv	Converter applications:					
Indust	rial Applications of Half a	and Fully controlled converters to D	C drives (Control of DC			
drives	drives)					
Chan	nong Stan dawyn Stan y	Unit-IV	Time notic control and	07 11		
Chop	pers – Step down, Step u	Derivation of load voltage and curr	onto with P D of Stop	U/ Hrs		
down	Current limit control strategies – Derivation of load voltage and currents with R, RL of Step					
Application of choppers to subway cars. Industrial drives - bottory operated vehicles						
Application of choppers to subway cars, industrial drives, battery operated vehicles.						
Class	ification of Channess and	Applications:		08 Uma		
Type	Δ Type B Type C Type	\mathbf{D} D Type E choppers and their indu	strial Applications AC	00 1115		
Chopper – phase control type D, Type E choppers and men industrial Applications, AC						
Inver	Chopper – phase control type. Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter					
bridge	e inverter (single phase)	– Voltage control techniques for	inverters Pulse width			
modu	lation techniques. – UPS-c	online, offline (Principle of operation	only			
	1		J			

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the comprehensive working of different devices and their applications.				
CO2:	Analyze the application of skills in controlling and conversion of electrical energy.				
CO3:	Evaluate and distinguish the performance of converters and inverters.				
CO4:	Ability to implement their knowledge and skills in design of applications.				

Ref	erence Books
1.	Power Electronics, M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
2.	Power Electronics : Circuits, Devices and Applications, M. H. Rashid, Prentice Hall of India, 2 nd
	Edition, ISBN : 0131228153, 9780131228153, 2004
3.	Power Electronics, P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	Power Electronics P S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th
	Edition.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	2	1	1	2	0	1
CO2	3	2	2	3	3	0	1	0	0	0	2	1
CO3	3	2	2	3	2	2	0	1	0	0	1	2
CO4	3	3	3	3	2	3	2	0	1	0	0	1

High-3: Medium-2: Low-1

	VI Semester		
PI	ROJECT MANAGEMENT		
	Group E: Global Elective)		
Course Code : 16G6E07		CIE Marks : 100	
Credits : L: T: P: S: 3:0:0:0		SEE Marks : 100	
Hours: 33 L		SEE Duration : 03 Hrs	
Course Learning Objectives: The st	udents will be able to		
1. To understand the principles and co	omponents of project manage	ment.	
2. To appreciate the integrated approa	ich to managing projects.		
3. To explain the processes of managi	ing project cost and project p	rocurements.	
	Unit – I		
Introduction: What is project, what is management, program management, management, relationship between organizational strategy, business valu body of knowledge	s project management, relation project management, and project management, operation e, role of the project manage	onships among portfolio organizational project tions management and er, project management	06 Hrs
	UNIT – II		
Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle. Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated change control, close project or phase.			08 Hrs
	UNIT – III		
Project Scope Management: Project scope, create WBS, validate scope, co Project Time Management: Plan activities, estimate activity resource control schedule.	ct scope management, colle ntrol scope. schedule management, defi es, estimate activity duratio	ect requirements define ne activities, sequence ons, develop schedule,	07 Hrs
	UNIT – IV		
Project Cost management: Project of control costs.Project Quality management: Plan control quality.	Cost management, estimate	cost, determine budget, orm quality assurance,	06 Hrs
	UNIT – V		
Project Risk Management: Plan risk analysis, perform quantitative risk ana Project Procurement Management procurements, control procurements, control proc	management, identify risks, lysis, plan risk resources, con nt: Project Procurement close procurement.	perform qualitative risk htrol risk. Management, conduct	06 Hrs

se Outcomes: After going through this course the student will be able to
Understand the concepts, tools and techniques for managing large projects.
Explain various sub processes in the project management frameworks.
Analyze and evaluate risks in large and complex project environments.
Develop project plans for various types of organizations.

Reference Books:

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.

- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

	Semester: VI						
	VIRTUAL INSTRUMENTATION						
	(Group E: Global Elective)						
Cours	se Code:16G6E08	CIE Marks: 100					
Credi	its/Week: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hours	s: 35L	SEE Duration: 3 Hrs					
Cours	Course Learning Objectives: The students will be able to						
1	Understand the difference between con-	ventional and graphical programming, basic data					
	acquisition concepts.						
2	Differentiate the real time and virtual instru	ument.					
3	3 Develop ability for programming in LabVIEW using various data structures and program						
	structures.						
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with						
	LabVIEW.						

UNIT-I	
Graphical Programming Environment:	06 Hrs
Basic of Virtual Instrumentation. Conventional and Graphical Programming. Introduction	
to LabVIEW, Components of LabVIEW and Labels.	
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code	
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch	
actions, String data types, enum, ring, Dynamics.	
UNIT-II	
Fundamentals of Virtual Instrumentation Programming:	09 Hrs
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.	
Timing function : Timing VI, elapsed time, wait function.	
Case structures, formula node, Sequence structures, Arrays and clusters, visual display	
types- graphs, charts, XY graph. Local and Global variables.	
UNIT-III	
Error Handling- error and warning, default error node, error node cluster, automatic and	08 Hrs
manual error handling.	
String Handling: Introduction, String Functions, LabVIEW String Formats.	
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.	
Design patterns: Producer/consumer, event handler, derived design pattern, Queued	
message handler, Producer/consumer (events), Producer/consumer (state machine).	
UNIT-IV	
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal	06 Hrs
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.	
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,	
DAQ Assistants, Analysis Assistants.	
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,	
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.	
UNIT-V	
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process	
Communication, Notifier, Semaphore, Data Sockets.	
Simulation of systems using VI: Development of Control system, Image acquisition and	
processing.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.
CO2:	Apply the theoretical concepts to realize practical systems.
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.
CO4:	Create a VI system to solve real time problems using data acquisition.

Reference Books

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3 rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

Semester: VI						
INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT						
(Group E: Global Elective)						
Course Code: 16G6E09		CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hours: 36L		SEE Duration: 3 Hrs				
Course Learning Objectives: The s	tudents will be able to					
1 Learn Android application develo	opment platform for mo	bile devices and use it.				
2 Understand mobile application and	chitecture and its comp	onents.				
3 Define Android specific program	nming concepts such a	s activities, intents, fragments	, services,			
broadcast receivers and content p	providers.					
4 Describe sensors like motion s	sensors, environmental	sensors, and positional sens	sors; most			
commonly embedded in Android	devices along with their	r application programming inte	erface.			
	UNIT I					
Overview of Software platforms an	nd Development: Mobi	le OS: Android development	07 Hrs			
platform and tools, Programming	g language, Emulator	, SDK and Development				
Environments						
Creating Applications and Activ	ities: Introducing the	Application Manifest File;				
Creating Applications and Activities	; Architecture Patterns	(MVC); Android Application				
Lifecycle.						
	UNIT II		r			
User Interface Design: Fundamental Android UI Design; Introducing Layouts;						
Introducing Fragments.						
Intents and Broadcasts: Introduci	ng Intents; Creating I	ntent Filters and Broadcast				
Receivers.						
	UNIT III					
Database and Content Providers:	Introducing Android Da	ttabases; Introducing SQLite;	07 Hrs			
Content Values and Cursors; Wo	rking with SQLite D	atabases; Creating Content				
Providers; Using Content Providers;	Case Study: Native And	roid Content Providers.				
	UNIT IV		r			
Location Based Services, Telephony and SMS: Using Location-Based Services; Using						
the Emulator with Location-Based Services; Selecting a Location Provider; Using						
Proximity Alerts; Using the Geocoder; Example: Map-based activity; Hardware Support						
for Telephony; Using Telephony; Introducing SMS and MMS.						
UNIT V						
Hardware Support and Devices (A	UDIO, VIDEO, AND	USING THE CAMERA):	07 Hrs			
Using Sensors and the Sensor Manager; Monitoring a Device's Movement and						
Orientation; Introducing the Environmental Sensors; Playing Audio and Video; Using						
Audio Effects; Using the Camera; Recording Video						
Course Outcomes: After completin	Course Outcomes: After completing the course, the students will be able to					

Course	Course Outcomes. After completing the course, the students will be able to						
CO1:	Assess the basic framework and usage of SDK to build GUI and apply advanced						
	technologies in developing Android mobile applications.						
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file						
	systems (internal and external storage), and SQLite database						
CO3:	Articulate the communication programming features and capabilities of Android platforms.						
CO4:	Design and create innovative, sophisticated mobile applications using Android platform.						

Refe	Reference Books							
1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley							
	Publishing, ISBN: 9781118102275							
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake							

	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332								
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3rd Edition,								
	Pragmatic Programmers, LLC.ISBN: 9781934356562								
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace								
	Independent Publishing Platform, ISBN: 9781519722089								

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

	Semester: VI							
	AUTOMOTIVE ENGINEERING							
		(Group E: Global Elective)						
Cou	rse Code:	16G6E10	CIE Marks: 100					
Credits: L:T:P:S		3:0:0:0	SEE Marks: 100					
Hours:		36L	SEE Duration: 3Hrs					
Cou	rse Learning O	bjectives: The students will be able to						
1	Identify the dif	ferent sub-systems in automobiles.						
2	Describe the functions of each of the sub-systems and its effect.							
2	Discuss fuel injection, transmission, braking, steering, suspension, air intake and exhaust							
5	systems.							
4	Explain the i	mportance of selection of suitable sub-s	ystem for a given performance					
-+	requirement.							

UNIT-I	
Automobile EnginesClassifications of Internal Combustion Engines based on no. of cylinders, Arrangementof cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine.Direct and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel,LPG and Natural Gas For automotive applications. Fuel properties- Octane number andCetane number. Pollutants and Emission norms- Regulated pollutants and its effects,Regulations as per emission norms.	06 Hrs
UNIT-II	
Engine Auxiliary Systems:AirIntake and Exhaust System- Working principle of Air filters, Intake manifold,Turbocharger, Intercooler, Exhaust manifold, Catalytic convertor, Exhaust GasRecirculation system, Muffler.Cooling system- Components, working principle, Coolant.Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter.Working of ignition system, Battery, Immobilizer.	08 Hrs
UNIT-III	
Transmission: Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification of tyres, Radial, Tubeless.	08 Hrs
UNIT-IV	
 Vehicular Auxiliary Systems: Suspension- Front and rear suspension working, Types of springs. Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake, Front and rear wheel brakes. Antilock Braking Systems. Steering- components and operation of power steering. Vehicle frame and body classification- Hatchback, Sedan, SUV. Safety systems- Passive safety systems, Active safety systems- Principle of Electronic 	06 Hrs
R.V. College of Engineering – Bengaluru-59

Stability Program, Air bags, Crash testing methods.	
UNIT-V	
Demonstrations of Automobile Systems: Engine performance measurement in terms of	
Brake power, Emission measurement and principle, Drawing Valve Timing Diagram for	06 Hrs
multi-cylinder engine, Production and properties of biodiesel.	

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Describe the different types of automotive systems. (L1- L2)							
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)							
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)							
4	Evaluate the performance of engines by determining Brake Power. (L6)							

Refe	erence Books
1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,
	SAE International, ISBN: 0768009871
2.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527.
3.	Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,
	1 st Edition, 2009, ISBN: 9781856175784.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

Low-1 Medium-2 High-3

	Semester: VI							
	MOBILE NETWORK SYSTEMS AND STANDARDS							
	(GROUP E: GLOBAL ELECTIVE)							
Cou	rse Code: 16G6E11		CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100			SEE Marks: 100					
Hou	rs: 34L		SEE Duration: 03 Hrs					
Cou	rse Learning Objectives: The students	will be able to						
1	Understand land mobile concepts, radio	o link design and cellu	lar network.					
2	2 Compare the standards of WPAN, WLAN and WMAN.							
3	3 Analyze WPAN, WLAN and WMAN standards and their architecture.							
4	4 Design and demonstrate wireless networks for various applications.							

UNIT-I

Cellular Wireless Networks: Principles of cellular Networks, cellular system components and Operations, channel assignment, Attributes of CDMA in cellular 06 Hrs system.

UNIT-II

Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE. 08 Hrs UNIT-III

Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in **06 Hrs** the network.

				UNIT-I	V				
Wireless	Personal	Area	Networks:	Networ	k arcl	hitecture,	components,	08 H	rs
Applications, Zigbee, Bluetooth.									
Wireless 1	Local Area	networl	ks: Network A	chitecture	e, Stand	lards, Appli	cations.		
				UNIT-V	V				
Wireless	Metropoli	tan Are	a Networks:	IEEE 8	302.16	standards,	advantages,		
WMAN Network architecture, Protocols, Applications. 06 Hrs									

Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the architectures and characteristics of different mobile networks. (L1-L2)					
CO2	Apply the Network standards to a suitable application (L3)					
CO3	Analyze the operation of various network technologies and standards (L4)					
CO4	Evaluate the performance of various network technologies (L5)					

Reference Books1Wireless Communication, Upena Dalal, 1st Edition , 2009, Oxford higher Education,
ISBN-13:978-0-19-806066-6.2Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010,
Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.3Wireless Communications Principles and practice, Theodore S Rappaport, 2nd Edition,
Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

Low-1 Medium-2 High-3

Semester: VI						
APPLIED PARTIAL DIFFERENTIA	L EQUATIONS					
(Group E: Global Elective)						
Course Code:16G6E12	CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hours: 35L	SEE Duration: 3Hrs					
Course Learning Objectives:						
1 Adequate exposure to learn basics of partial differentia	al equations and analyze mathematical					
problems to determine the suitable analytical technique.						
2 Use analytical techniques and finite element technique for hyperbolic differential equations	or the solution of elliptic, parabolic and					
3 Solve initial value and boundary value problems which	have great significance in angineering					
practice using partial differential equations	have great significance in engineering					
4 Identify and explain the basics of partial differential equations.	ations and use the same to analyze the					
behavior of the system.						
Unit-I						
Partial Differential Equations of first order:	07 Hrs					
Introduction to formation of partial differential equa	ations, Cauchy problem,					
Orthogonal surfaces, First order non-linear partial diffe	erential equations-Charpit's					
method, Classification and canonical forms of partial difference	rential equations.					
Unit – II						
Elliptic Differential Equations:	07 Hrs					
Derivation of Laplace and Poisson equation, Separation of	variable method, Dirichlet					
problem, Neumann problem, Solution of Laplace equation	in cylindrical and spherical					
coordinates.						
Unit -III						
Parabolic Differential Equations:	07 Hrs					
Formation and solution of Diffusion equation, Dirac-Delta fun	ction, Separation of variable					
method, Solution of Diffusion equation in cylindrical and sphere	rical coordinates.					
Unit –IV						
Hyperbolic Differential Equations:	07 Hrs					
Formation and solution of one dimensional wave equation	on, D'Alembert's solution,					
vibrating string, Forced vibration, Periodic solution of one dimensional wave equation in						
cylindrical and spherical coordinates, Vibration of Circular membrane.						
Unit –V						
Numerical solutions of Partial Differential Equations:	07 Hrs					
Finite difference method for Elliptic, Parabolic and Hyp	perbolic partial differential					
equations, Introduction to the finite element method-simple pro-	blems.					

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,
	hyperbolic and elliptic differential equations using analytical and numerical methods.
CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,
	hyperbolic and elliptic differential equations arising in the field of science and engineering.
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to
	solve and optimize the solution using the appropriate governing equations.
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.

Reference Books

1	Partial Differential	Equations, 1	K.	Sankara	Rao,	Prentice-hall	of	India,	3 rd	Edition,	2012,
1	ISBN: 978-81-203-3	217-1.									

2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978-81-265-5423-2.
3	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005, ISBN 13: 9780072466850.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	Semester: VI							
	AIRCRAFT SYSTEMS							
(Group E: Global Elective)								
Course Code: 16GE6B13	CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100							
Hours: 36L	SEE Duration: 3 Hrs							

Cou	Course Learning Objectives: To enable the students to:							
1	List the various systems involved in the design of an aircraft							
2	Demonstrate the technical attributes of all the subsystems of an aircraft							
3	Explain the significance of each systems and its subsystems for developing an airplane							
4	Demonstrate the integration of the systems with the airplane							

Flight Control Systems: Primary and secondary flight controls, Flight control linkage system, Conventional Systems, Power assisted and fully powered flight controls. 07 Hrs Unit – II Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism. 08 Hrs Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit. 07 Hrs Unit -IV Detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. Unit -V Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Hydraulic and Engine instruments.	Unit-I							
0/7 Hrs over assisted and fully powered flight controls. Unit – II Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism. 08 Hrs Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit. 07 Hrs Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, deicing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. Unit -V Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Flight Control Systems: Primary and secondary flight controls, Flight control linkage	07 11						
Unit – II Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism. 08 Hrs Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit. 07 Hrs Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, deicing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs air a typical lubricating system. Unit -V Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	system, Conventional Systems, Power assisted and fully powered flight controls.	07 Hrs						
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism.08 Hrs Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.07 Hrs Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.07 Hrs Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Unit – II							
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism. 08 Hrs Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit. 07 Hrs Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, deicing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air pata Instruments : Basic air data system and probes, Mach meter, Air speed	Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system,							
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism. 08 Hrs Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel or the control unit. 07 Hrs Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, deicing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Unit -V Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and	00 11						
mechanism. Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel or Hrs 07 Hrs Control unit. 07 Hrs Environmental Control Systems: Air-conditioning system, vapour cycle system, deicing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction	08 Hrs						
Unit -III Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel of7 Hrs 07 Hrs Control unit. Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, deicing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Mircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	mechanism.							
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel ortrol unit.07 HrsUnit -IVEnvironmental Control Systems: Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.07 HrsUnit -VAircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed07	Unit -III							
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.07 HrsUnit -IVEnvironmental Control Systems: Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.07 HrsUnit -VAircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed07 Hrs	Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its							
control unit. Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Mircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel	07 Hrs						
Unit -IV Environmental Control Systems: Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Mircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	control unit.							
Environmental Control Systems: Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Unit -V V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Unit -IV							
icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. 07 Hrs Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Environmental Control Systems: Air-conditioning system, vapour cycle system, de-							
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system. 07 Hrs Unit -V Unit -V Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids.	07 11						
and a typical lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils	07 Hrs						
Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	and a typical lubricating system.							
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Unit -V							
grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation							
Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments.	1						
	Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	07 11						
indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data	indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data	0/Hrs						
alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting	alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting							
system.	system.							

Course Outcomes:								
At th	he end of this course the student will be able to :							
1	Categorise the various systems required for designing a complete airplane							
2	Comprehend the complexities involved during development of flight vehicles.							
3	Explain the role and importance of each systems for designing a safe and efficient flight vehicle							
4	Demonstrate the different integration techniques involved in the design of an air vehicle							

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN
	9780071086059.
2	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems
	Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

R.V. College of Engineering – Bengaluru-59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

High-3 : Medium-2 : Low-1

	V/VI Semester									
	PROFESSIONAL PRACTICE – III									
]	EMPLOYABILITY SKILLS AND PROFESSIONAL DEVELOPMENT OF ENGINEERS									
Co	ourse Code: 16HS68		CIE Marks: 50							
Cr	redits: L:T:P:S: 0:0:1:0		SEE Marks: NA							
He	ours: 18 Hrs		CIE Duration: 02 Hrs							
Co	ourse Learning Objectives: The stude	ents will be able to								
1	Improve qualitative and quantitative prob	lem solving skills.								
2	Apply critical and logical thinking process to specific problems.									
3	Ability to verbally compare and contrast	words and arrive at re-	elationships between concepts, based							
3	on verbal reasoning.									
4	Applying good mind maps that help in communicating ideas as well as in technical documentation									

V/ Comercial and					
v Semester					
UNII-I And the Ja Trad Deservation Lange data of And the Ja data Kan Canada and Constitution					
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative	06 Hrs				
Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math					
Vocabulary, fraction decimals, digit places etc.					
Reasoning and Logical Aptitude , - Introduction to puzzle and games organizing					
information, parts of an argument, common flaws, arguments and assumptions. Analytical					
Reasoning, Critical Reasoning.					
UNIT-II	r.				
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing	06 Hrs				
Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non-					
Verbal Reasoning, Brain Teasers. Creativity Aptitude.					
Group Discussion- Theory & Evaluation : Understanding why and how is the group					
discussion conducted, The techniques of group discussion, Discuss the FAQs of group					
discussion, body language during GD.					
UNIT-III.A					
Resume Writing- Writing Resume, how to write effective resume, Understanding the	06 Hrs				
basic essentials for a resume, Resume writing tips Guidelines for better presentation of					
facts.					
VI Semester					
UNIT-III.B					
Technical Documentation - Introduction to technical writing- Emphasis on language	06 Hrs				
difference between general and technical writing, Contents in a technical document, Report					
design overview & format Headings, list & special notes, Writing processes, Translating					
technical information, Power revision techniques, Patterns & elements of sentences,					
Common grammar, usage & punctuation problems.					
UNIT-IV	•				
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews -	06 Hrs				
Ouestions asked & how to handle them, Body language in interview, Etiquette, Dress code					
in interview. Behavioral and technical interviews. Mock interviews - Mock interviews					
with different Panels. Practice on stress interviews, technical interviews, General HR					
interviews etc.					
UNIT-V	1				
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity. Gender sensitivity	06 Hrs				
Adapting to the Corporate Culture- Capability & Maturity Model. Decision Making					
Analysis, Brain Storm, Adapting to the Corporate Culture.					

R.V. College of Engineering – Bengaluru-59

Cou	rse Outcomes: After completing the course, the students will be able to					
C01	: Inculcate employability skill to suit the industry requirement.					
CO2	: Analyze problems using quantitative and reasoning skills					
CO3	: Exhibit verbal aptitude skills with appropriate comprehension and application.					
CO4	: Focus on Personal Strengths and Competent to face interviews and answer					
Refe	rence Books					
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:					
	0743272455					
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:					
	9789380914787					
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,					
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204					
4.	Aptimithra: Best Aptitude Book ,Ethnus,2014 Edition, Tata McGraw Hill ISBN: 9781259058738					

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage							
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35 Marks								
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18								
	hours of training sessions.								
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35 Marks								
	Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18								
	hours of training sessions.								
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for 50 marks (Average o								
	Test1 and Test 2 (T1+T2/2). The grading is provided by the Coe. The final CIE m								
	scrutinized by the committee comprising of HSS- Chairman, Training	Co-ordinator,							
	respective department Staff Placement co-ordinator before submitting to CoE.								

SEE: NA

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					1		1	1	1	2	1
CO2	1	2	2					1	2	1	2	1
CO3			3			1		2	1	2	1	
CO4						1	3	1	1	1	1	

Low-1 Medium-2 High-3

			Minimum	Assigned	2016 scheme	
Sl. No.	Category	Percentage (%)	No. of credits	No. Of credits 2012	Without Mini Project	With Mini Project
1	Humanities	5-10	10	10	9+2	9+2
2	Basic Science	15-20	30	28	30	30
3	Engineering Science	15-20	30	28	30	30
4	Professional Core Courses (PC)	30-40	60	80	78+3=81 (3 credits core in place of Minor project in 7 th semester)	81-3=78 (3 Credits for minor project in 7 th semester)
5	Professional Elective Courses	10-15	20	20	20	20
6	Other Electives	5-10	10	11	10	10
7	Project Work	10-15	20	23 + 2	16+2 Major project +Tech. Seminar	16+2+3 Major project +Tech. Seminar +Mini Project
]	200	200			

Credits Distribution as per UGC/VTU

SEMESTER WISE CREDIT DISTRIBUTION (SELF STUDY CREDIT INCLUDED EXCEPT FOR VII SEM)												
Ι	Π	III	IV	V	VI	VII	VIII	TOTAL				
25 (P)/25(C)	25/25	25	25	29	28	23	20	200				

Curriculum Design Process

Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment