Go, change the world

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU, Belagaví) Approved by AICTE, New Dehi, Accredited By NBA, New Delhi RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru--560 059.

Bachelor of Engineering (B.E)

MECHANICAL ENGINEERING (2018 Scheme)

V COLLEGE OF ENGINEERING®

®

sikshana s

TITUT

III & IV Semester

ACADEMIC YEAR 2020-2021

Name : Raghavendra Rank : 739

Total Faculty with Number of Ph.D. Faculty Qualification

RVCE - Greaves Cotton Ltd Centre of excellence in e-mobility

RV Mercedes Benz Centre for Automotive Mechatronics

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT VISION

Quality Education in Design, Materials, Thermal and Manufacturing with emphasis on Research, Sustainable technologies and Entrepreneurship for Societal Symbiosis

DEPARTMENT MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering
- Providing state-of-art laboratories and infrastructure for academics and research
- Facilitating faculty development through continuous improvement programs
- Promoting research, education and training in frontier areas of nanotechnology, advanced composites, surface technologies, MEMS and sustainable technology
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy
- Imbibing social and ethical values in students, staff and faculty through personality development programs

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Successful professional careers with sound fundamental knowledge in Mathematics, Physical Sciences and Mechanical Engineering leading to leadership, entrepreneurship or pursuing higher education.
- **PEO2.** Expertise in specialized areas of Mechanical Engineering such as Materials, Design, Manufacturing and Thermal Engineering with a focus on research and innovation.
- **PEO3.** Ability of problem solving by adopting analytical, numerical and experimental skills with awareness of societal impact.
- **PEO4.** Sound communication skills, team working ability, professional ethics and zeal for life-long learning.

PSO	Description				
PSO1	Demonstrate basic knowledge in Mathematics, basic science, Materials Science and Engineering to formulate and solve mechanical engineering problems				
PSO2	Design mechanical and thermal systems by adopting numerical, analytical and experimental techniques and analyse the results.				
PSO3	Function in multidisciplinary teams with sound communication skills.				
PSO4	Self-learn to acquire and apply allied knowledge and update the same by engaging in life-long learning, practice profession with ethics and promote entrepreneurship.				

PROGRAM SPECIFIC OUTCOMES (PSOS)

Lead Society: American Society of Mechanical Engineers – ASME

Sl. No.	Abbreviation	Meaning			
1.	VTU	Visvesvaraya Technological University			
2.	BS	Basic Sciences			
3.	CIE	Continuous Internal Evaluation			
4.	SEE	Semester End Examination			
5.	CE	Professional Core Elective			
6.	GE	Global Elective			
7.	HSS	Humanities and Social Sciences			
8.	CV	Civil Engineering			
9.	ME	Mechanical Engineering			
10.	EE	Electrical & Electronics Engineering			
11.	EC	Electronics & Communication Engineering			
12.	IM	Industrial Engineering & Management			
13.	EI	Electronics & Instrumentation Engineering			
14.	СН	Chemical Engineering			
15.	CS	Computer Science & Engineering			
16.	TE	Telecommunication Engineering			
17.	IS	Information Science & Engineering			
18.	BT	Biotechnology			
19.	AS	Aerospace Engineering			
20.	PY	Physics			
21.	CY	Chemistry			
22.	MA	Mathematics			

ABBREVIATIONS

INDEX

III Semester						
Sl. No.	Course Code	Course Title	Page No.			
1.	18MA31C	Engineering Mathematics-III	1			
2.	18ME32	Engineering Materials	3			
3.	18ME33	33 Mechanics of Materials				
4.	18ME34	Concept of Metrology& Machine Drawing	8			
5.	18ME35	Thermal Engineering-I	11			
6.	18ME36	Kinematics of Machines	13			
7.	18DMA37	Bridge Course Mathematics	15			
8.	18HS38 #	Kannada course	K1-K4			
		IVSemester				
Sl. No.	Course Code	Course Title	Page No.			
1.	18MA41C	Engineering Mathematics-IV	17			
2.	18BT42A	Environmental Technology	19			
3.	18ME43	Manufacturing Process	21			
4.	18ME44	Thermal Engineering-II	24			
5						
5.	18ME45	Dynamics of Machines	27			
6.	18ME45 18ME46	Dynamics of Machines Fluid Mechanics	27 29			
6. 7.	18ME45 18ME46 18DCS48	Dynamics of Machines Fluid Mechanics Bridge Course C Programming	27 29 32			

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) MECHANICAL ENGINEERING

THIRD SEMESTER CREDIT SCHEME								
Sl.	Course		ЪС	Cre	edit Allo	cation	Total	
No.	Code	Course Title	B02	L	Т	Р	Credits	
1	18MA31C* Engineering Mathematics-III		MA	4	1	0	5	
2 18ME32** Engineering Materials		ME	2	0	0	2		
3	18ME33	Mechanics of Materials	ME	3	1	1	5	
4	18ME34	Concept of Metrology& Machine Drawing	ME	3	0	1	4	
5	18ME35	Thermal Engineering-I	ME	3	0	0	3	
6	18ME36	Kinematics of Machines	ME	3	1	0	4	
7	18DMA37***	Bridge Course Mathematics	MA	0	0	0	0	
8	18HS38A / 18HS38V	Kannada Course: AADALITHA KANNADA (18HS38A) / VYAVAHARIKA KANNADA (18HS38V)	HSS	0	0	0	1	
	Total No. of Credits			18	3	2	24	
	Total n	umber of Hours/Week		18+4*	6	4		

*Engineering Mathematics - III

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Linear Algebra, Laplace Transform and	18MA31A	CS & IS
	Combinatorics		
2.	Discrete and Integral Transforms	18MA31B	EC, EE, EI & TE
3.	Engineering Mathematics -III	18MA31C	AS, BT, CH, CV, IM & ME

**

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Environmental Technology	18BT32A	EE, EC, EI, CS, TE & IS
2.	Biology for Engineers	18BT32B	BT & AS
3.	Engineering Materials	18ME32	ME, CH & IM

*** Bridge Course: Audit course for lateral entry diploma students

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMS
1	Bridge Course Mathematics	18DMA37	AS, BT,CH, CV, EC, EE, EI, IM, ME & TE
2	Bridge Course C Programming	18DCS37	CS & IS

Mandatory audit course for all students

There are two text books prescribed by VTU for the kannada Course:

1. Samskruthika Kannada (AADALITHA KANNADA-18HS38A);

2. Balake Kannada (VYAVAHARIKA KANNADA-18HS38V);

The first text book is prescribed for the students who know kannada to speak, read and write (**KARNATAKA STUDENTS**). The second text book is prescribed for the students who do not understand the kannada language(**NON KARNATAKA Students**)

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) MECHANICAL ENGINEERING

FOURTH SEMESTERCREDIT SCHEME								
Sl.	Course Code	Course Title	DoS	CreditAllocation			Total Credita	
No.	Course Code	Course Thie		L	Т	P	Total Credits	
1	18MA41C*	C* Engineering Mathematics-IV		4	1	0	5	
2 18BT42A** Environmental Technology		BT	2	0	0	2		
3	3 18ME43 Manufacturing Process		ME	3	0	1	4	
4	18ME44	E44 Thermal Engineering-II		3	0	1	4	
5	18ME45	Dynamics of Machines	ME	3	1	0	4	
6	18ME46	Fluid Mechanics	ME	2	1	1	4	
7	18ME47	Design thinking lab	ME	0	0	2	2	
8	18DCS48***	Bridge Course C Programming	CS	0	0	0	0	
9 18HS49 Professional Practice-I Communication Skills			HSS	0	0	1	1	
	Total No. of Credits				3	6	26	
	Total n	umber of Hours/Week		17+2*	6	12+2*		

* ENGINEERING MATHEMATICS – IV

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Graph Theory, Statistics and Probability Theory	18MA41A	CS & IS
2.	Linear Algebra, Statistics and Probability Theory	18MA41B	EC, EE, EI & TE
3.	Engineering Mathematics -IV	18MA41C	AS, CH, CV & ME

**

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Engineering Materials	18EC42	EC, EE, EI & TE
2.	Biology for Engineers	18BT42B	CS & IS
3.	Environmental Technology	18BT42A	CV, ME, IM, CH, BT & AS

*** Bridge Course: Audit course for lateral entry diploma students

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1	Bridge Course Mathematics	18DMA48	CS & IS
2	Bridge Course C Programming	18DCS48	AS, BT, CH,CV,EC, EE,EI,IM,ME & TE

Note: Internship to be taken up during the vacation period after the 4th semester Bridge Course C programming will have 1 hour theory in lab.

				Semester: III						
-	ENGINEERING MATHEMATICS – III									
				(Theory)						
		1	(Common to A	S, BT, CH, CV, IN	A & ME)		10			
Cours	e Code	:	18MA31C		CIE	:	10) Marks		
Credi	ts: L:T:P	:	4:1:0		SEE	:	10) Marks		
Total	Hours	:	52L+13T		SEE Duration	:	3.0	0 Hours		
Cours	Course Learning Objectives: The students will be able to									
1	I Understand variation and extremal of functionals. 2 Analysis the sense of a scientistic distribution and extremal of functionals.									
2	2 Analyze the concept of periodic phenomena and develop Fourier series.									
3	Solve initial	van	ie problems using I	Laplace transform.	1 (1 1 (1 1'	<u></u>	. 1		
4	Determine th	e aj	oproximate solution	is of algebraic/trans	cendental and parti	al di	ffere	ential		
5	Use mathem	ng	al IT tools to analyze	ya and visualiza tha	above concents					
5	Use mathema	anc		te and visualize the	above concepts.					
			T	nit_I				10 Hrs		
Calan	luc of Voriatic	nce		IIIt-1				10 1115		
Introd	uction to variat	ion	of functionals extr	emal of a functiona	1 Fuler's equation	_sne	cial	cases		
nroble	ms Geodesics	H	inging cable and Bra	chistochrone proble	ems Exploring geo	desic	s or	anhically		
using	MATLAB.	, 110	anging cubic and Die	ternstoeni one proor	enis. Exploring geo	10510	55	upincuny		
			Un	it – II				11 Hrs		
Fouri	er Series:									
Introd	uction, periodi	c ft	nction, even and o	dd functions. Dirich	nlet's conditions, E	uler'	s fo	rmula for		
Fourie	r series, comp	lex	Fourier series, prol	plems on time perio	odic signals (square	wa	ve, ł	nalf wave		
rectifie	er, saw-tooth w	ave	e and triangular way	ve), Fourier sine ser	ies, Fourier cosine	serie	s. E	xploring		
Fourie	er series using N	MА	TLAB.					r		
			Uni	it –III				11 Hrs		
Lapla	ce and Inverse	e La	aplace Transform:							
Existe	nce and unique	enes	ss of Laplace Trans	form (LT), transfor	m of elementary fu	nctio	ons,	region of		
conver	rgence. Proper	ties	- Linearity, scalin	g, s – domain shif	t, differentiation ir	the	s -	domain,		
divisio	on by t, differe	entia	ation and integratio	on in the time doma	an. Transform of p	er10	dıc	functions		
(squar	e wave, saw-to	oth	wave, triangular w	ave, full and half w	ave rectifier).			(1		
Invers	e Laplace tran	SIO	rm – properties, ev	aluation using differential action	erent methods. Con	ivolu	ttion	theorem		
(without Explore	ring Lanlace ar	nen i	is. Solution of ordin overse Lanlace tran	sform using MATI	AB commands					
LAPIO	ing Laplace a	IU I	Iverse Laplace train	it _IV	AD commands.			10 Hrs		
Nume	rical Methods	_ 1						10 1115		
Roots	of algebraic an	nd ti	• anscendental equat	ions Fixed point ite	eration method Nev	wton	- R2	nhson		
metho	method for multiple roots									
Solution to system of linear equations – LU decomposition method partition method Sparse linear										
system	ns – Thomas al	gor	ithm for tridiagonal	matrices. Computi	ng numerical soluti	ons	usin	g		
MATI	LAB.	C	U	1	C					
			Un	it –V				10 Hrs		
Nume	rical Methods	-]	I:							
Nume	Numerical solutions to partial differential equations - Finite difference approximation to derivatives,									

solution of Laplace equation in two dimension, heat and wave equations in one dimension (explicit methods). Exploring solution of PDE using MATLAB.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the fundamental concepts of variation of functionals, periodic phenomena,
	Laplace and inverse Laplace transforms and numerical techniques.
CO2:	Solve the problems on extremal of functional, Fourier series, Laplace and inverse Laplace
	transforms and basics of numerical methods.
CO3:	Apply the acquired knowledge to solve variational problems, half range series, differential
	equations using Laplace transform, system of linear equations and PDEs using finite
	difference technique.
CO4:	Analyze and interpret applications of functionals, complex Fourier series, IVP and BVP
	using LT, sparse linear systems and PDEs occurring in Engineering problems.

Refere	ence Books
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 81-7409-195-5.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X.
3	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley & Sons, ISBN: 978-81-265-3135-6.
4	Numerical methods for scientific and engineering computation, M.K. Jain, S.R.K. Iyenger and R.K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3 : Medium-2 : Low-1

	Semester: III						
			ENGINE	ERING MATERI	ALS		
	(Theory)						
			(Comm	on to ME, CH & I	M)		
Cou	rse Code	:	18ME32		CIE	:	50 Marks
Cree	dits: L:T:P	:	2:0:0		SEE	:	50 Marks
Tota	al Hours	:	26L		SEE Duration	:	2.00 Hours
Cou	rse Learning	Obj	ectives: The studen	ts will be able to			
1	Understand t	he b	behavior of material	s for different loadin	g conditions		
2	Analyze diff	eren	t phase diagrams, re	elated composition a	nd microstructure		
3	Understand h	neat	treatment methods	of steel and their pro	perties		
4	Understand s	solic	lification process in	casting and materia	degradation		
5	Discuss Non	Des	structive methods of	t testing materials			
			T	Init_I			04 Hrs
Mec	hanical hehav	vior	of Materials · Plast	ic deformation of me	etals Mechanism of	nlac	
defo	rmation role of	of di	slocation in plastic	deformation and Wo	rk Hardening Fracti	ire-	mechanism
of D	uctile and britt	le fr	acture. Ductile to b	rittle transition. Fati	pue- Types of loadin	g. S	-N curve
		10 11	Ul	nit – II	Suc Types of fouring	5, 2	07 Hrs
Pha	se Diagram ai	nd F	Fe-C equilibrium d	liagram: Phase, Gib	bs phase rule. Solid	sol	utions. Hume
Roth	ery Rules, Isc	omo	rphous alloy syster	n, (Problems to find	d chemical composi	tion	and relative
amo	unt of phases p	ores	ent), Binary eutection	c and Eutectoid syste	em. Iron-Iron carbid	e pł	ase diagram-
Inva	riant reactions,	De	velopment of micro	structure in iron carl	bon alloys (Slow coo	ling	g of steels).
Stee	l & Cast Iron-	com	position, properties	and applications.	-		
			U	nit -III			07 Hrs
Pha	se transforma	tior	in steel : Heat trea	atment of steel, Ann	ealing-Full annealin	ıg, s	pheroidizing,
proc	ess annealing	, N	ormalizing, Harder	ning, TTT diagram	of eutectoid stee	1 aı	nd its phase
trans	formation. Ter	mpe	ring, austempering,	martempering, Hard	lenability, Jominy E	nd q	uench test.
Surf	ace Heat treatn	nent	methods- Carburiz	ing, Nitriding and F	lame hardening.		05 11
-				nit –IV	1. 5 1. 1		05 Hrs
Fou	ndry Metallur	gy:	Casting and Solidif	fication process, Nuc	clei, Dendrite and gr	aın,	Nucleation:
Hon	logeneous and	He	terogeneous Nuclea	tion, Dendritic grow	th and Cast structur	:e. S	shrinkage of
Envi	us and metals.		dation of Matanial	a Different forme o	f any incompantal dage	no do	tion forms of
	columnia De	egra	ntargrapular pittin	s: Different forms o	region Corregion a	raua	ol Materiala
corrosion- Garvanic, intergranular, pitting, stress related corrosion. Corrosion control- Materials							
SCIC	lion, protectiv		aung.	nit _V			03 Hrs
NO	N DESTRUCT	гīv	E TESTING Non	Destructive Testing	basic principles Adv	vant	ages and
testing methods like Liquid penetrant inspections. Magnetic particle inspection. Illtrasonic testing							
and	Eddy current.		Are beneficiant mob	ettono, mugnette pu			ente testing,
Cou	rse Outcomes	: Af	ter completing the	course, the student	ts will be able to		
~ ~ ~			- U				

CO1:	Understand behavior of various materials such as metals, composites and special materials
CO2:	Analyze materials, composition and their phase transformation
CO3:	Investigate solidification process during casting and materials degradation
CO4:	Recognize different types of Nondestructive testing methods to find subsurface defects in
	the materials.

Refere	ence Books
1	Material Science and Engineering, William D Callister, 6th Edition, 1997, John Wiley and
-	Sons, ISBN 9812-53-052-5
2	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company,
	ISBN 0-07-Y85018-6
2	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book
3	Company, , ISBN0-07-066717-9

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks which will be reduced to 15marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for assignment is 05.

The total marks of CIE is 15(Q) + 30(T) + 05(EL) = 50 marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3 : Medium-2 : Low-1

	Semester: III							
	MECHANICS OF MATERIALS							
			(Theory and Practic	ce)			
Cou	rse Code	:	18ME33		CIE	:	100+50 Marks	
Cred	lits: L:T:P	:	4:0:1		SEE	:	100+50 Marks	
Tota	l Hours	:	52 L+26P		SEE Duration	:	03+03 Hours	
Cou	rse Learning (Obj	ectives: The stud	dents will be able to				
1	Understand n	necl	hanics ofdeformation	ablebodies and apply	them in analysis a	ndd	esign	
	problems							
2	Analyzebodie	es s	ubjectedto two d	imensional stress sys	stems.			
3	Understand b	eha	viourof structura	almembers in flexure	2.			
4	Evaluate slop	be a	nd deflection in l	beams subjectedto lo	oading.			
5	Understand s	tabi	ilityofcolumns ar	nd struts.				
6	6 Predict thestress distribution in beams, pressurevesselsand shafts							
				Unit-I			09 Hrs	
.	A .							

 Review of stress, strain & Elastic Constants: Stress, Strain, relationship among elastic constants,

 Volumetric strain. (No questions to beset on these topics) Thermal stresses and strains (compound bars not included). Numericals

 Unit – II

 14 Hrs

Two-Dimensional Stress System: Introduction, Stress components on inclined planes, Principal Stresses, Principal planes, Mohr's circle of stress, Numericals

Bending moment and shear force in beams: Introduction, Types of beams, Loads and Reactions, Shear forces and bending moments, Rate of loading, Sign conventions, Relationship between shear force and bending moments, Shear force and bending moment diagrams subjected to concentrated loads, uniform distributed load (UDL) for different types of beams. (UVL not included)

Unit	-III	

14 Hrs

Bending stresses in beams: Introduction, Assumptions in simple bending theory, Derivation of Bernoulli'sequation, Modulus of rupture, Section modulus, Flexural rigidity, Bending stress distribution in beams of various sections, Beam of uniform strength (No numerical on beam of uniform strength).

Shear stresses in beams: Expression for horizontal shear stress in beam, Shear stress diagram for simple rectangular and I section and T sections only. Numericals.

Deflection of determinate Beams: Introduction, Definitions of slope, Deflection, Elastic curve, Derivation of differential equation of flexure, Sign convention, Double integration method, Slope and deflection using Macaulay's method for prismatic beams and over-hanging beams subjected to point loads, UDL and couples. Numerical problems.

Unit –IV	09 Hrs			
Thick and thin cylinders: Stresses in thin cylinders, Changes in dimensions of cylinder (diameter,				
length and volume), Thick cylinders subjected to internal and external pressures (Lame's e	equation),			
(Compound cylinders not included).				
Unit –V	10 Hrs			
Analysis of columns and struts: Introduction, Euler'stheory on columns, Effectiv	e length,			
Slenderness ratio, Short and long columns, Radius of gyration, Buckling load, Assu	umptions,			
Derivation of Euler's Buckling load for different end conditions, Limitations of Euler'sthe	ory,			
Rankine's formula. Numerical problems.				

Practice					
MECHANICS OF MATERIALS LABORATORY					
Section I	18 Hrs				
1. Hardness Tests (Brinell, Rockwell, Vicker)					
2. Tension test on Mild steel and HYSD(High YieldStrength Deformed) bars					
3. Compression test of Mild Steel, HYSD, Cast iron.					
4. Torsion test on Mild Steel circularsections.					
5.BendingTest on Wood Undertwo point loading.					
6.ShearTest on Mild steel.					
7.Impact test on Mild Steel (Charpy&Izod)					
8.WearTest usingPin on discTribometer					
Section– II (Non-destructive testing)	08 Hrs				
1. MagneticParticleTest					
2. UltrasonicTest					
3.Dye Penetrant Test					
4. Eddycurrent inspection for metals					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Identify the different engineering materials, describe their properties and predict their						
	Behaviour under different types ofloading						
CO2:	Compute the stresses, strains, moments, deflections, etc. and derive the expressions						
	used from the fundamentals.						
CO3:	Select materials, sizes and sections for various applications such as beams, shafts,						
	Pressure vessels, columns, etc. and justify the selection						
CO4:	Determine mechanical properties by destructive and non-destructive methods						

Reference Books

1	Strength of Materials, S.S.Bhavikatti, 2012, Vikas Publications House Pvt. L td. New Delhi, ISBN 9788125927914
2	Elements of Strength of Materials, TimoshenkoandYoung, 1976, Affiliated East-West Press, ISBN-10: 0442085478, ISBN-13: 978-0442085476.
3	Mechanics of Materials, F.P. Beer and R. Johnston, 2006, McGraw-Hill Publishers, ISBN 9780073529387
4	Strength of Materials, S.Ramamrutham, R.Narayanan, 2012, Dhanapath Rai Publishing Company, New Delhi, ISBN: 818743354X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to

implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 40 (AM) + 10 (T) = 50 Marks. Total CIE is 30 (AM) + 10 (T) + 10 (IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

High-3 : Medium-2 : Low-1

	Semester: III							
	CONCEPT OF METROLOGY AND MACHINE DRAWING							
			(Th	eory and Prac	tice)			
Co	ourse Code	:	18ME34		CIE	:	100+50 Marks	
Cı	redits: L:T:P	:	3:0:1		SEE	:	100+50 Marks	
Το	otal Hours	:	42L +26P		SEE Duration	:	03+03 Hours	
Co	ourse Learning (Obj	ectives: The studer	nts will be able	to			
1	Understand the	WO	rking of linear, ang	ular and optical	measuring instrum	ents		
2	Familiarize wit	h th	e working of variou	is advanced me	asuring devices and	l ma	chine tool	
	metrology.							
3	Understand and	l fur	ndamentals of limits	s, fits and GD&	T			
4	4 Apply the principle of measurement of force, torque, strain and stress and temperature for various							
	devices							
5	5 Model the machine component in CAD software by applying the basic knowledge of machine							
	drawing.							

Concept of measurements

07 Hrs

General concept – Generalised measurement system-Units and standards-measuring instrumentssensitivity, readability, range of accuracy, precision-static and dynamic response-repeatabilitysystematic and random errors-correction, calibration.

Unit-I

Transducers: Characteristics transfer efficiency, primary and secondary transducers, Electrical, mechanical transducers. Signal transmission and processing: Devices and systems. Signal Display & Recording Devices

Unit – II11 HrsComparators: Mechanical, pneumatic and electrical types, applications. Angular measurements:-
Sine bar, optical bevel protractor. Slip gauges and classification, interferometry, optical flats. Limits,
fits and tolerances: Definition of tolerance, Principle of interchangeability and selective assembly,
Indian standards, concept of limits of size and tolerances, definition of fits, types of fits, hole basis
system, shaft basis system, classification of gauges, brief concept of design of gauges (Taylor's
principles), Wear allowance on gauges.

Advances in Metrology

Precision instruments based on laser-Principles- laser interferometer-application in linear, angular measurements and machine tool metrology. Coordinate measuring machine (CMM)- Constructional features – types, applications.

Measurement of Torque, Force & Temperature related properties

Force, torque: -mechanical, pneumatic, hydraulic and electrical type. Temperature: bimetallic strip, pressure thermometers, thermocouples, electrical resistance thermistor.

Unit –IV	07 Hrs
Drowing Fundamentals I	

Machine Drawing Fundamentals-I

Need of Graphical Language, Importance Machine Drawing, Tools (from Instruments to Current Software's). Projections: Designation, Relative position of views. Principles of Drawings: Scales as per ISO standards, Importance of Title Block and Part list, Lines convention. Conventional Representations, Materials and Interrupted views, Surface finishing & Machining symbols. Classification of nuts, terminology used in the drawing of nuts and bolts. Drawing of orthographic projections of a bolt, empirical relations of dimensions of nut and bolt with respect to bolt head diameter.

Unit –V	06 Hrs
Machine Drawing Fundamentals-II	
Screw Thread Form: Screw thread terminology, Basic profiles, Standard forms of V	-threads
(Whitworth thread, seller thread, ISO thread), Standard Square threads, Modified forms o	f square
threads, Numericals. Types of Welded Joints, Representation of Welds, Symbols and its	
conventions. Rivet and Riveting, applications, terminology. Classifications (Lap and Butt j	oints).

	Practice	
	CONCEPT OF METROLOGY AND MACHINE DRAWING	
		26 Hrs
1	Orthographic views: Conversion of pictorial views into orthographic views of s machine parts with and without section (full, half, off, aligned and partial or local Hidden line conventions, Precedence of lines. – 8 Hrs	imple l sections)
2	Joints: Cotter joint (socket and spigot), Knuckle joint (pin joint)- 8 Hrs	
3	Couplings: Flange Coupling, Sleeve coupling, Pin (bush) type flexible coupling,	Split muff
	coupling and Universal coupling. – 10 Hrs	

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Understand the principle of linear and angular measuring instruments and apply the acquired
	knowledge for the accurate and precise measurement of a given quantity.
CO2	Apply the principle of limits, fits and GD&T to assemblies in machine drawing.
CO3	Illustrate the principle of CMM and various devices for measuring torque, force,
	temperature.
CO4	Create 3D model of machine components and indicate the drawing conventions.

Refer	ence Books
1.	Engineering Metrology and Measurements, NV Raghavendra, L Krishna murthy, Oxford publishers. ISBN-13: 978-0198085492
2.	Mechanical Measurements, Beckwith, Marangoni, Lienhard, Pearson Education. ISBN-13: 978-9332518520
3.	Mechanical Measurements and Instrumentation, R K Rajput, S.K. Kataria & Sons publication, ISBN-13: 978-9350142851
4.	Engineering Metrology by R K Jain, Khanna Publication, ISBN-13: 978-8174091536
5.	Fundamentals of Machine Drawing by Sadhu singh, Prentice Hall India Learning publications. ISBN-13: 978-8120346796

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Total CIE is 40(AM) +10 (T) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 50 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	3	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	1	3	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

	Semester: III							
	THERMAL ENGINEERING I							
				(Theory)				
Cou	rse Code	:	18ME35		CIE	:	100 Marks	
Crec	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours	
Cou	rse Learning (Dbj	ectives: The studen	ts will be able to	·			
1	Familiarizew	ith	variousdefinitions i	nvolved in thermody	namics including w	ork	and heat	
2	Applyfirst an	d se	econd law ofthermo	dynamics to various	processes.			
3	Demonstrate	thes	kills to explain core	ollaries ofsecondLav	v ofthermodynamics			
4	4 Explain the concept of Entropy, available and un-available energy							
5	5 Understand thebehaviorofpuresubstances with the help of property diagrams							
6	Differentiate	bet	ween real and ideal	gases				

Fundamental Concepts and Definitions: System, control volume, properties, state, process, exact and inexact differentials–Quasi-static process, Definition of Thermodynamic work and Heat, Thermodynamic equilibrium– adiabatic and diathermic walls Temperature: Equality of temperature–Zeroth law of thermodynamics - thermometry-Temperature scales-Numericals 09 Hrs Image: I	Unit-I	05 Hrs
exact and inexact differentials–Quasi-static process, Definition of Thermodynamic work and Heat, Thermodynamic equilibrium– adiabatic and diathermic walls Temperature: Equality of temperature–Zeroth law of thermodynamics - thermometry- Temperature scales-Numericals Unit – II 09 Hrs Heat and Work: work done in a quasi-equilibrium process – <i>pdv</i> work in various quasi-static processes - other types of work transfer, Pure substances and two property rule, Numericals First Law of Thermodynamics: First law of thermodynamics for a c l o s e d system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermal reservoirs–Heat engines, Refrigerator and Heat pump–Statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Machine of kindII, Numericals Carnotcycle –Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Carnotcycle –Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Carnotcycle –Corollaries of Second law (T-ds equations), T h e r m od y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Vunit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and ME	Fundamental Concepts and Definitions: System, control volume, properties, state,	process,
Heat, Thermodynamic equilibrium– adiabatic and diathermic walls Temperature: Equality of temperature–Zeroth law of thermodynamics - thermometry- Temperature scales-Numericals Init – II 09 Hrs Heat and Work: work done in a quasi-equilibrium process – pdv work in various quasi-static processes - other types of work transfer, Pure substances and two property rule, Numericals 09 Hrs First Law of Thermodynamics: First law of thermodynamics for a closed system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermal reservoirs–Heat engines, Refrigerator and Heat pump–Statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements – Perpetual Motion 08 Hrs Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), Th er m od y n a m i c r el a t i o n s, Change of entropy for different processes. 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state – Real gases – Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals 08 Hrs	exact and inexact differentials-Quasi-static process, Definition of Thermodynamic w	ork and
Temperature: Equality of temperature-Zeroth law of thermodynamics - thermometry-Temperature scales-Numericals Unit – II 09 Hrs Heat and Work: work done in a quasi-equilibrium process – pdv work in various quasi-static processes - other types of work transfer, Pure substances and two property rule, Numericals First Law of Thermodynamics: First law of thermodynamics for a c 1 o s e d system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermodynamics: Colspan="2">Colspan=2 Thermodynamics: Device and Process – Perpetual Motion Mathermodynamics: Second law of thermodynamics of second law of thermodynamics– Thermodynamics: Device and Heat pump–Statements of second law of thermodynamics and second law of thermodynamics, Absolute thermodynamic Theromodynamics Device and Numericals	Heat, Thermodynamic equilibrium- adiabatic and diathermic walls	
Temperature scales-Numericals 09 Hrs Ideat and Work: work done in a quasi-equilibrium process – pdv work in various quasi-static processes - other types of work transfer, Pure substances and two property rule, Numericals First Law of Thermodynamics: First law of thermodynamics for a c l o s e d system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals 09 Hrs Second Law of Thermodynamics: Imitations of first law of thermodynamics. 09 Hrs Second Law of Thermodynamics: Imitations of first law of thermodynamics. 09 Hrs Second Law of Thermodynamics: Imitations of first law of thermodynamics. 09 Hrs Second Law of Thermodynamics: Imitations of first law of thermodynamics. 09 Hrs Second Law of Thermodynamics: Imitations of first law of thermodynamics. 09 Hrs Second Law of Thermodynamics: Imitations of first law of thermodynamics. 09 Hrs Second Law of Thermodynamics: Imitations of first law of thermodynamics. 09 Hrs Second Law of Thermodynamics: Carno	Temperature: Equality of temperature–Zeroth law of thermodynamics - thermometry-	
Unit – II 09 Hrs Heat and Work: work done in a quasi-equilibrium process – pdv work in various quasi-static processes - other types of work transfer, Pure substances and two property rule, Numericals First Law of Thermodynamics: First law of thermodynamics for a c l o s e d system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics – Equivalence of Kelvin Planck and Clausius statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements – Perpetual Motion Machine of kindII, Numericals 09 Hrs Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state – Real gases – Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals 08 Hrs Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals. 08 Hrs	Temperature scales-Numericals	
Heat and Work: work done in a quasi-equilibrium process – pdv work in various quasi-static processes - other types of work transfer, Pure substances and two property rule, Numericals First Law of Thermodynamics: First law of thermodynamics for a c l o s e d system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals Unit -III 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics– Equivalence of Kelvin Planck and Clausius statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Machine of kindII, Numericals Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m od y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals 08 Hrs	Unit – II	09 Hrs
processes - other types of work transfer, Pure substances and two property rule, Numericals First Law of Thermodynamics: First law of thermodynamics for a c l o s e d system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals Unit -III 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermal reservoirs–Heat engines, Refrigerator and Heat pump–Statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Machine of kindII, Numericals Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), Th e r m od y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. I Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Heat and Work: work done in a quasi-equilibrium process $-pdv$ work in various quas	i-static
First Law of Thermodynamics: First law of thermodynamics for a c l o s e d system under going thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals Unit -III 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermal reservoirs–Heat engines, Refrigerator and Heat pump–Statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Mathematication of first law of thermodynamic to second law of thermodynamics. Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Mathematication of first law of thermodynamics Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Vanit – V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander	processes - other types of work transfer, Pure substances and two property rule, Numerical	s
thermodynamic cycle and process – Perpetual Motion Machine of kind I–Internal energy – property of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals Unit -III 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermal reservoirs–Heat engines, Refrigerator and Heat pump–Statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Machine of kindII, Numericals Carnotcycle –Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	First Law of Thermodynamics: First law of thermodynamics for a c l o s e d system un	der going
of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to steady flow processes, Steady flow energy equation applied to open steady system and Numericals Unit -III 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermal reservoirs–Heat engines, Refrigerator and Heat pump–Statements of second law of thermodynamics– Thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Machine of kindII, Numericals Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	thermodynamic cycle and process - Perpetual Motion Machine of kind I-Internal energy	- property
processes, Steady flow energy equation applied to open steady system and Numericals Unit -III 09 Hrs Second Law of Thermodynamics: Limitations of first law of thermodynamics— Thermal reservoirs—Heat engines, Refrigerator and Heat pump—Statements of second law of thermodynamics—Equivalence of Kelvin Planck and Clausius statements— Perpetual Motion Machine of kindII, Numericals Carnotcycle—Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals 08 Hrs Intit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. OB Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state— Real gases— Vander Waal's equation of state — compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	of the system – Enthalpy – Specific heats, Application of first law of thermodynamics to st	eady flow
Unit -III09 HrsSecond Law of Thermodynamics: Limitations of first law of thermodynamics Fuermal reservoirsHeat engines, Refrigerator and Heat pump-Statements of second law of thermodynamicsEquivalence of Kelvin Planck and Clausius statements Perpetual NumericalsCarnotcycle-Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, NumericalsCarnotrycle-Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, NumericalsCarnotrycle-Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, NumericalsCarnotrycle-Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, NumericalsCarnotrycle-Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, NumericalsCarnotry Clausius Inequality, Entropy – property of a system, Principle of increase of of entropy for different processes of Ideal gas.Available and Unavailable energy: Introduction, Availability function for a non-flow press, availability function of a flow processes.Introduction of state – compressibility factor, Use of compressibility charts, Simple NumericalsIntroduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	processes, Steady flow energy equation applied to open steady system and Numericals	
Second Law of Thermodynamics: Limitations of first law of thermodynamics– Thermal reservoirs–Heat engines, Refrigerator and Heat pump–Statements of second law of thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Machine of kindII, Numericals Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of =ntropy – The combined first and second law (T-ds equations), Thermodynamic relations, Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Unit -III	09 Hrs
Thermal reservoirs-Heat engines, Refrigerator and Heat pump-Statements of second law of thermodynamics-Equivalence of Kelvin Planck and Clausius statements- Perpetual Motion Machine of kindII, Numericals Carnotcycle-Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Unit -IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), Th e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow processe, availability function of a flow processes. Unit -V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state- Real gases- Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Second Law of Thermodynamics: Limitations of first law of thermodyn	amics–
thermodynamics–Equivalence of Kelvin Planck and Clausius statements– Perpetual Motion Machine of kindII, Numericals Carnotcycle –Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. 1deal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Thermal reservoirs-Heat engines, Refrigerator and Heat pump-Statements of second	law of
Machine of kindII, Numericals Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), Th e r m od y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow processe, availability function of a flow processes. 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	thermodynamics-Equivalence of Kelvin Planck and Clausius statements- Perpetual	Motion
Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic temperature scale, International temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Simple Simple Numericals.	Machine of kindII, Numericals	
temperature scale, International temperature scale, Numericals Unit –IV 08 Hrs Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), Th e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Simple MEP Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals. Meet of the standard cycles: Air standard assumptions, efficiency, work done and MEP	Carnotcycle–Corollaries of Second law of thermodynamics, Absolute thermodynamic	
Unit -IV08 HrsEntropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas.Available and unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes.Unit -V08 HrsIdeal gases and Real gases: Deviation of Ideal gas, equation of state- Real gases- Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple NumericalsSimpleIntroduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.Mereicals	temperature scale, International temperature scale, Numericals	
Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of entropy – The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s , Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Unit –IV	08 Hrs
The combined first and second law (T-ds equations), Thermodynamic relations, Change of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Entropy: Clausius Inequality, Entropy – property of a system, Principle of increase of e	ntropy –
of entropy for different processes of Ideal gas. Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	The combined first and second law (T-ds equations), T h e r m o d y n a m i c r e l a t i o n s,	Change
Available and Unavailable energy: Introduction, Availability function for a non-flow process, availability function of a flow processes. Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	of entropy for different processes of Ideal gas.	
availability function of a flow processes. Unit –V 08 Hrs Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals. MEP	Available and Unavailable energy: Introduction, Availability function for a non-flow pro-	ocess,
Unit -V08 HrsIdeal gases and Real gases: Deviation of Ideal gas, equation of state- Real gases- VanderWaal's equation of state - compressibility factor, Use of compressibility charts, SimpleNumericalsIntroduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEPof Otto and diesel cycle, simple Numericals.	availability function of a flow processes.	
 Ideal gases and Real gases: Deviation of Ideal gas, equation of state– Real gases– Vander Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals. 	Unit –V	08 Hrs
 Waal's equation of state – compressibility factor, Use of compressibility charts, Simple Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals. 	Ideal gases and Real gases: Deviation of Ideal gas, equation of state- Real gases-	Vander
Numericals Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Waal's equation of state - compressibility factor, Use of compressibility charts,	Simple
Introduction to Air standard cycles: Air standard assumptions, efficiency, work done and MEP of Otto and diesel cycle, simple Numericals.	Numericals	
of Otto and diesel cycle, simple Numericals.	Introduction to Air standard cycles: Air standard assumptions, efficiency, work done ar	nd MEP
	of Otto and diesel cycle, simple Numericals.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Define and Explain basic concepts, properties of substances and Laws of
	thermodynamics
CO2:	Analyse thermodynamic processes for heat and work transfer
CO3:	Apply the Laws of Thermodynamics for analyzing thermodynamic processes/cycles
CO4:	Adapt knowledge of thermodynamics to suggest solutions for thermodynamic problems

Reference Books

1	Engineering Thermodynamics, Nag P.K, 4 th Edition, 2011 ,Tata McGraw Hill, ISBN-13:978-0-07-026062-7:ISBN-10:0-07-026062-1
2	Thermodynamics, YunusACengelandBolesM.A,7 th Edition, 2009, TataMcGrawHill, ISBN-13:978-0-07-107254-0;ISBN-10:0-07-107254-3
3	Fundamentals of Thermodynamics, R.E Sonntag, C.BorgnakkeandG.J.VanWylen, 2003, JohnWiley, ISBN:0-471-15232-3
4	EngineeringThermodynamics, RajputR.K, 3 rd Edition, 2007, Laxmi Publications Pvt.Ltd, ISBN: 978-0-7637-8272-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3 : Medium-2 : Low-1

				Semester: III								
KINEMATICS OF MACHINES												
(Theory)												
Cou	rse Code	:	18ME36			:	100 Marks					
Credits: L:1:P : 3:0:0 SEE : 100 M												
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning	Jbj	ectives: The studen	ts will be able to								
1	1 Explain types of relative motion											
2	2 Differentiate between Machine, Mechanism, and Structure											
3	Draw veloci	tya	and acceleration d	lagrams of linkage	2S							
4	Design Can	ı pr	ofile for the desire	d follower motion			•					
5	Determine g	gear	parameters and d	etermine train valu	ie & fixing torque	n g	gear trains					
6	Explain type	es c	of relative motion									
				T •/ T								
			l	J mit-I			06 Hrs					
Defin : con 4 bar criter	nition of link, p strained, uncor chain, single s cion for mobili	air, nstr lide tv o	kinematic chain, me ained and successful er crank chain and do f mechanisms.	echanism, machine, i lly constrained motion buble slider crank cha	inversion, structure – ons, Grashof's criteri ain – Degrees of freed	Ty on, lon	pes of motion Inversions of n – Gruebler's					
		5	U	nit — II			10 Hrs					
and and a and a Velo Dete meth Kenn mech	Geneva wheel Ackermann– H city and Acce rmination of vo od (graphical) nedy's theorem nanisms by inst	– P lool lera eloc – C n –	antograph, Condition (ce's joint (ation: (city and acceleration) (Coriolis component of (Coriolis component of (Coriolis component of (Coriolis control of (Coriolis)) (Coriolis control of (Coriolis)) (Coriolis	n for perfect steerin of a point/link in si of acceleration. Insta ear velocity and a od	ng, Steering gear med mple mechanisms by antaneous centre – Ce angular velocity of	har rel entr lin	hisms, Davis lative velocity rodes – ks of simple					
	U U		Uı	nit -III			10 Hrs					
Unit -III IO Hrs Klein's Construction for velocity and acceleration of slider crank mechanism. Complex algebra method: Analysis of velocity and acceleration of single slider crank chain and four bar chain by complex algebra method Toothed Gearing: Classification of toothed wheels – Gear terminology –Law of gearing –Velocity of sliding – Length of path of contact, Arc of contact – Contact ratio – Interference in involute gears, Methods of avoiding interference – Minimum number of teeth to avoid interference on pinion meshing with gear and on pinion meshing with rack. Characteristics of involutes action, Comparison of involute and cycloidal teeth profiles. Numerical problems.												
Con	Unit –1 V U6 Hrs											
& Epicyclic gear trains. Algebraic/Tabular method of finding Train value of Epicyclic gear trains, Bevel gear Differential of an automobile												
	Unit –V 07 Hrs											
Cam and a profi oscil	Cams: Types of cams, Types of followers and types of follower motion – Displacement, velocity and acceleration curves for SHM, Uniform velocity, UARM and cycloidal motion – To draw cam profile for disc cam with reciprocating follower (knife edge, roller and flat faced) and disc cam with oscillating roller follower – To find maximum velocity and acceleration in each case											
			·									
Cou	rse Outcomes	A	fter completing the	course, the studen	ts will be able to		_					

CO1:	Define the b	asic mecl	hanisms f	for d	level	loping	a machi	ne.

CO2: Construct velocity and acceleration diagram for mechanism.

Mechanical Engineering

CO3:	Design and synthesize mechanisms for specific type of relative motion
CO4:	Estimate kinematic parameters for industrial mechanisms

Refere	ence Books
1	Theory of Machines, Thomas Bevan, 3 rd Edition, 1984, CBS Publishers, ISBN: 9788131729666
2	Theory of Machines, Shigley, , 3 rd Edition, 2003, Tata McGraw Hill, ISBN:9780071137478
3	Theory of Machines, Sadhu Singh, 2 nd Edition, 2007, Pearson Education Publications, ISBN: 9788177581270
4	Theory of Machines, Rattan S.S., 3 rd Edition,2008, Tata McGraw Hill Publications, ISBN: 9780070144774

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3 : Medium-2 : Low-1

			5	Semester: III/IV							
MATHEMATICS											
Bridge Course											
(Common to all branches)											
Cou	rse Code	:	18DMA37/48		CIE	:	50 M	arks			
Cree	Credits: L:T:P : 2:0:0 SEE : 50 Marks										
	Audit Course SEE Duration : 2.00 Hours										
Cou	rse Learning O	bje	ectives: The studer	nts will be able to							
1	1 Understand the concept of functions of several variables, types of derivatives involved with										
	these functions	s ai	nd its applications,	approximate a fu	nction of single var	iable	in term	ns of			
_	infinite series.			1 (* 11	1 1:00 (1 1 1 1		. ,	<u> </u>			
2	Acquire conce	pts	of vector function	s, scalar fields and	d differential calcul	us of	vector	functions			
	in Cartesian co	or	dinates.								
3	Explore the po	ssi	bility of finding ap	proximate solutio	ons using numerical	metl	nods in	the			
	absence of ana	lyt	ical solutions of va	arious systems of	equations.						
4	Recognize line	ear	differential equation	ons, apply analytic	cal techniques to co	mpu	te solut	ions.			
5	Gain knowledg	ge	of multiple integra	ls and their applic	ations.						
6 Use mathematical IT tools to analyze and visualize the above concepts.											
6											
6											
6				Unit-I				05 Hrs			
6 Diffe	erential Calcult	ıs:	1	U nit-I				05 Hrs			
6 Diffe Tayl	erential Calculu or and Maclauri	is: n s	eries for function of	U nit-I of single variable.	Partial derivatives	– Inti	roductio	05 Hrs			
6 Diffe Tayl prob	e rential Calculu or and Maclauri lems. Total deriv	is: n s vat	eries for function of ive, composite fun	U nit-I of single variable. ctions. Jacobians	Partial derivatives - – simple problems.	– Inti	roductio	05 Hrs			
6 Diffe Tayl prob	erential Calculu or and Maclauri lems. Total deriv	is: n s vat	eries for function of ive, composite fun U	Unit-I of single variable. ctions. Jacobians nit – II	Partial derivatives – – simple problems.	– Inti	roductio	05 Hrs on, simple 05 Hrs			
6 Diffe Tayl prob	erential Calculu or and Maclauri lems. Total deriv	is: n s vat	eries for function of ive, composite fun U	Unit-I of single variable. ctions. Jacobians nit – II	Partial derivatives - - simple problems.	– Inti	roductio	05 Hrs			
6 Diffe Tayl prob Vect Intro	erential Calculu or and Maclauri lems. Total deriv tor Differentiation polycetion, simple	n s vat	eries for function o ive, composite fun U : bblems in terms of v ction_curl = irrotat	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele	Partial derivatives – – simple problems. eration. Concepts of	- Intr	roductio	05 Hrs on, simple 05 Hrs vergence			
6 Diffe Tayl prob Vect Intro – sol	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector f	n s vat	eries for function of ive, composite fun U U bblems in terms of v ction, curl – irrotat	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector functi nit –III	Partial derivatives – – simple problems. eration. Concepts of ion and Laplacian, s	– Intr grad	roductio lient, di le probl	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs			
6 Diffe Tayl prob Vect Intro – sol	erential Calculu or and Maclauri lems. Total deriv tor Differentiati duction, simple enoidal vector f	is: n s vat	eries for function o ive, composite fun U u: oblems in terms of v ction, curl – irrotat	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector functi nit –III	Partial derivatives - – simple problems. eration. Concepts of ion and Laplacian, s	– Intr grad	roductio lient, di le probl	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs			
6 Diffe Tayl prob Vect Intro – sol Diffe High	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation per order linear d	n s vat ion pro und	eries for function o ive, composite fun U bolems in terms of v ction, curl – irrotat U s: erential equations	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector functi nit –III with constant coel	Partial derivatives – – simple problems. eration. Concepts of ion and Laplacian, s	– Intr grad simp	roductio lient, di le probl	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation her order linear di tions - Complen	ion pround biff her	eries for function o ive, composite fun U bblems in terms of v ction, curl – irrotat U s: erential equations htary functions. No	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector functi nit –III with constant coef n homogeneous e	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution or quations –Inverse d	– Intr grad simp f hon	roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa meth	erential Calculu or and Maclauri lems. Total deriv tor Differentiati duction, simple lenoidal vector fi erential Equation her order linear d tions - Complen hod of finding pa	ion pround biff her	eries for function o ive, composite fun U u bblems in terms of v ction, curl – irrotat U erential equations tary functions. No cular integral based	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coef n homogeneous en d on input function	Partial derivatives – – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function).	– Intr grad simp f hon liffer	roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa meth	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation her order linear d tions - Complen hod of finding pa	n s vat ion pro und Dns liff ner rti	eries for function o ive, composite fun U bblems in terms of v ction, curl – irrotat U s: erential equations htary functions. No cular integral based U	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coef n homogeneous ed d on input function nit –IV	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function).	– Intr grad simp f hon	roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa meth	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation her order linear d tions - Complem nod of finding par	ion pround liff ner vrti	eries for function of ive, composite fun U bblems in terms of v ction, curl – irrotat U erential equations tary functions. No cular integral based U	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coef n homogeneous en d on input function nit –IV	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function).	– Intr grad simpl f hon	roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa meth Num Solu	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation ner order linear d tions - Complen nod of finding par herical Methods tion of algebraic	ion pround pround ion pround inff ner urti ;; ar	eries for function o ive, composite fun U u bblems in terms of v ction, curl – irrotat U erential equations tary functions. No cular integral based U nd transcendental e	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coefficient n homogeneous end d on input function nit –IV quations – Interm	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function). ediate value proper	– Intr grad simpl f hon liffer ty, N	roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs Raphson			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa meth Nun Solu meth	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation her order linear d tions - Complem nod of finding par herical Methods tion of algebraic nod. Solution of	n s vat ion pro und ons liff ner urti ;: ar firs	eries for function of ive, composite fun U bblems in terms of v ction, curl – irrotat U erential equations intary functions. No cular integral based U nd transcendental e st order ordinary di	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coef n homogeneous e d on input function nit –IV quations – Interm fferential equation	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function). ediate value proper ns – Taylor series a	– Intr grad simpl f hon liffer ty, N nd 4 ^t	roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs Raphson Runge-			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa meth Nun Solu meth Kutt	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation ner order linear di tions - Complem nod of finding pa nerical Methods tion of algebraic nod. Solution of a methods. Num	n s vat ion pro und Dns liff ner urti s: ar firs eri	eries for function of ive, composite fun U u bblems in terms of v ction, curl – irrotat U serential equations tary functions. No cular integral based U nd transcendental e st order ordinary di cal integration – S	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coeff n homogeneous end d on input function nit –IV quations – Interm fferential equation impson's 1/3 rd , 3/2	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function). ediate value proper ns – Taylor series a 8 th and Weddle's ru	– Intr grad simp f hon liffer ty, N nd 4 ^t iles. (roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs Raphson Runge- thods			
6 Diffe Tayl prob Vect Intro – sol High equa meth Num Solu meth Kutt with	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation ner order linear d tions - Complen nod of finding pa herical Methods tion of algebraic nod. Solution of a methods. Num out proof).	n s vat jon pround pround ion pround infi ner urti s ar firs eri	eries for function of ive, composite fun U u bblems in terms of v ction, curl – irrotat U erential equations tary functions. No cular integral based U nd transcendental e st order ordinary di cal integration – S	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coef n homogeneous end d on input function nit –IV quations – Interm fferential equation impson's 1/3 rd , 3/3	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution or quations –Inverse d n (force function). ediate value proper ns – Taylor series a 8 th and Weddle's ru	– Intr grad simp f hon liffer ty, N nd 4 ^t iles. (roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs Raphson Runge- thods			
6 Diffe Tayl prob Vect Intro – sol Diffe equa meth Solu meth Kutt with	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation ner order linear d tions - Complem nod of finding particular herical Methods tion of algebraic nod. Solution of a methods. Num out proof).	n s vat ion pro und ons liff ner urti s ar firs	eries for function of ive, composite fun U u oblems in terms of v ction, curl – irrotat U erential equations - intary functions. No cular integral based U nd transcendental e st order ordinary di cal integration – S	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coeff n homogeneous end d on input function nit –IV quations – Interm fferential equation impson's 1/3 rd , 3/4	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function). ediate value proper ns – Taylor series a 8 th and Weddle's ru	– Intr ² grad simpl f hon liffer ty, N nd 4 ^t lles. (roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs Raphson Runge- thods 05 Hrs			
6 Diffe Tayl prob Vect Intro – sol Diffe High equa meth Solu meth Kutt with	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation her order linear do tions - Complem nod of finding particular herical Methods tion of algebraic nod. Solution of a methods. Num out proof).	Is: n s vat ion pro und Dns liff ner urti s: ar firs eri	eries for function of ive, composite fun U u oblems in terms of v ction, curl – irrotat U erential equations ntary functions. No cular integral based U nd transcendental e st order ordinary di cal integration – S	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coefficient on input function nit –IV quations – Interm fferential equation impson's 1/3 rd , 3/3 Vinit –V	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function). ediate value proper ns – Taylor series a 8 th and Weddle's ru	- Intr grad simpl f hon liffer ty, N nd 4 ^t iles. (roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs Raphson Runge- thods 05 Hrs			
6 Diffe Tayl prob Vect Intro – sol Diffe equa meth Solu meth Kutt with Mul Eval	erential Calculu or and Maclauri lems. Total deriv tor Differentiati oduction, simple lenoidal vector fi erential Equation ner order linear d tions - Complen nod of finding pa nerical Methods tion of algebraic nod. Solution of a methods. Num out proof). tiple Integrals: uation of doubl	n s vat ion pround pround pround ion star ieri eri	eries for function of ive, composite fun U u bblems in terms of v ction, curl – irrotat U erential equations v intary functions. No cular integral based U nd transcendental e st order ordinary di cal integration – S U	Unit-I of single variable. ctions. Jacobians nit – II velocity and accele ional vector function nit –III with constant coefficient n homogeneous end d on input function nit –IV quations – Interm fferential equation impson's 1/3 rd , 3/3 Unit –V of order of integra	Partial derivatives – simple problems. eration. Concepts of ion and Laplacian, s fficients, solution of quations –Inverse d n (force function). ediate value proper ns – Taylor series a 8 th and Weddle's ru	– Intr ² grad simpl f hon liffer ty, N nd 4 ^t lles. (roductio	05 Hrs on, simple 05 Hrs vergence ems. 06 Hrs ous perator 05 Hrs Raphson Runge- thods 05 Hrs ntegrals.			

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the concept of partial differentiation, double integrals, vector differentiation,									
	solutions of higher order linear differential equations and requirement of numerical methods.									
CO2:	Solve problems on total derivatives of implicit functions, Jacobians, homogeneous linear									
	differential equations, velocity and acceleration vectors.									
CO3:	Apply acquired knowledge to find infinite series expansion of functions, solution of non-									
	homogeneous linear differential equations and numerical solution of equations.									

CO4: Evaluate triple integrals, area, volume and mass, different operations using del operator on scalar and vector point functions, numerical solution of differential equations and numerical integration.

Refere	ence Books
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44 th Edition, 2015, ISBN: 978-81-933284-9-1.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.
3	N.P. Bali & Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.
4	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10 th Edition, 2016, ISBN: 978-0470458365.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q) and tests (T). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30.

Total CIE is 20(Q) +30(T)=50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

				Semester: III								
VYAVAHARIKA KANNADA												
(Common to all branches)												
Course Code : 18HS38V CIE : 50 Marks												
Cre	Credits: L:T:P : 1:0:0 SEE : 50 Marks											
	Citcuits: L.1.1 · 1.0.0 SEE · 50 Marks Total Hours · 16Hrs CIE Duration · 00 Minutes											
10	I otal Hours : 16Hrs CIE Duration : 90 Minutes											
Co	urse Learning O	hie	ctives of Vyayahar	ika Kannada: The s	tudents will be able i	to						
1	Motivate stud	ent	s to learn Kannada l	anguage with active i	nvolvement	.0						
2	Learn basic co	omr	nunication skills in	Kannada language (V	Vyavaharika Kannad	a)						
3	Importance of	f lea	rning local languag	e Kannada		u).						
	Importance of				AL AKE Kanna	da)						
	_		to those studen	ts who does not	ALAKE Kailla know Kannada)	ua)						
			to mose studen		Kilow Kalillaua)		411					
D	·	4.)-	Unit-1			4Hrs					
Pai Net	Control (Control and Control 	cuo 1 10	n): cal language Tins t	o learn the language y	vith easy methods. F	lint	s for correct and					
nol	ite conversation	His	torv of kannada lan	o learn the language v	with easy methods, I	m	s for correct and					
por		115		Unit – II			4Hrs					
Ka	nnada alphabtet	s ai	nd Pronunciation:									
Kar	nnada aksharma	le,	Kannada stress	letters (vattakshara)), Kannada Khagu	ınit	ha, Pronunciation,					
me	norisation and us	age	of the Kannada let	ters.	-							
			t	J nit – III			4Hrs					
Ka	nnada vocabulai	ry f	or communication	:								
Sin	gular and Plural	nou	ns, Genders, Interro	ogative words, Anton	yms, Inappropriate	proi	nunciation, Number					
sys	tem, List of veget	abl	es, Fractions, Menu	of food items, Name	es of the food items,	wo	rds relating to time,					
WO	ds relating to a	irec	ctions, words relation	ng to numan s teeling	gs and emotion, Par	ts o	of the numan body,					
wo	us relating to rela	ano	пыпр. І	Init _IV			4Hrs					
Ka	nnada Gramma	r in	Conversations				••••					
No	ins. Pronouns. I	Jse	of pronouns in K	annada sentences. A	diectives and its u	sag	e. Verbs. Adverbs.					
Cor	ijunctions, Prepor	sitio	ons, Questions cons	tructing words, Simpl	le communicative se	ntei	nces in kannada.					
Act	ivities in Kannad	a, \	ocabulory, Conver	sation.								
			•									
Co	urse Outcomes	: A	fter completing t	he course, the stud	lents will be able t	to						
1	Usage of local la	ang	uage in day today a	ffairs.								
2	Construction of	sim	ple sentences accor	ding to the situation.								
3	Usage of honori	fic	words with elderly	people.								
4	4 Easy communication with everyone.											
Rei	Reference Books:											
1	Vyavaharika	Kar	inada patyapustha	ka, L. Thimmesh,	and V. Keshav	vam	urthy, Prasaranga					
	Kannada Kali	VIII V	N Subramanya	S Narahari H G	Srinivasa Presed	P	amamurthy and S					
2	Sathvanaravana	1. 5 ^t	^h Edition. 2019 RV	College of Engineeri	ing Bengaluru	, K	amamuruny allu S.					
3	Spoken Kannad	., <u>.</u> la. I	Kannada Sahithya P	arishat, Bengaluru.								
۲–	1	.,-		,								

ವ್ಯಾವಹಾರಿಕ ಕನ್ನಡ (Kannada Version)							
ಅಧ್ಯಾಯ – I	4Hrs						
ಸ್ಥಳೀಯ ಅಥವಾ ಪ್ರಾದೇಶಿಕ ಭಾಷಾ ಕಲಿಕೆಯ ಅವಶ್ಯಕತೆ, ಭಾಷಾ ಕಲಿಕೆಯ ಸುಲಭ ವಿಧಾನಗಳು, ಸಂಭಾಷಣೆಗಾಗಿ ಸು	ಲಭ ಸೂಚ್ಯಗಳು						
ಕನ್ನಡ ಭಾಷೆಯ ಇತಿಹಾಸ.							
ಅಧ್ಯಾಯ – II	4Hrs						
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ ಹಾಗೂ ಉಚ್ಛಾರಣೆ:							
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ, ಒತ್ತಕ್ಷರ, ಕಾಗುಣಿತ, ಉಚ್ಚಾರಣೆ, ಸ್ವರಗಳು ಉಚ್ಚಾರಣೆ, ವ್ಯಂಜನಗಳ ಉಚ್ಚಾರಣೆ.							
ಅಧ್ಯಾಯ – III	4Hrs						
ಸಂಭಾಷಣೆಗಾಗಿ ಕನ್ನಡ ಪದಗಳು:	•						
ಏಕವಚನ, ಬಹುವಚನ, ಲಿಂಗಗಳು (ಸ್ತ್ರೀಲಿಂಗ, ಪುಲ್ಲಿಂಗ) ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿರುದ್ಧಾರ್ಥಕ ಪದಗಳು, ಅಸಮ	ಂಜಸ ಉಚ್ಚಾರಣೆ,						
ಸಂಖ್ಯಾ ವ್ಯವಸ್ಥೆ, ಗಣಿತದ ಚಿಹ್ನೆಗಳು, ಭಿನ್ನಾಂಶಗಳು.							
ತರಕಾರಿಗಳ ಹೆಸರುಗಳು, ತಿಂಡಿಗಳ ಹೆಸರುಗಳು, ಆಹಾರಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಕಾಲ/ಸಮಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪ	ಪದಗಳು, ದಿಕ್ಕುಗಳ						
ಹೆಸರುಗಳು, ಭಾವನೆಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಮಾನವ ಶರೀರದ ಭಾಗಗಳು, ಸಂಬಂಧದ ಪದಗಳು, ಸಾಮಾನ್ಯ	ಸಂಭಾಷಣೆಯಲ್ಲಿ						
ಬಳಸುವಂತಹ ಪದಗಳು.							
ಅಧ್ಯಾಯ – IV	4Hrs						
ಸಂಭಾಷಣೆಯಲ್ಲಿ ಕನ್ನಡ ಬಳಕೆ:	•						
ನಾಮಪದಗಳು, ಸರ್ವನಾಮಗಳು, ನಾಮವಿಶೇಷಣಗಳು, ಕ್ರಿಯಾಪದಗಳು, ಕ್ರಿಯಾವಿಶೇಷಣಗಳು, ಕನ್ನಡದಲ್ಲಿ	ಸಂಯೋಜನೆಗಳು,						
ಉಪಸರ್ಗಗಳು, ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿಚಾರಣೆಯ / ವಿಚಾರಿಸುವ / ಬೇಡಿಕೆಯ ವಾಕ್ಯಗಳು. ಕನ್ನಡದಲ್ಲಿ ಚಟುವಟಿಕೆಗ	ಗಳು,						
ಶಬ್ಧಕೋಶ, ಸಂಭಾಷಣೆ.							
ವ್ಯವಹಾರಿಕ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು :							
CO1: ನಿತ್ಯ ಜೀವನದಲ್ಲಿ ಆಡುಭಾಷೆಯ ಬಳಕೆ.							
CO2: ಸಂದರ್ಭ, ಸನ್ನಿವೇಶಕ್ಕನುಗುಣವಾಗಿ ಸರಳ ಕನ್ನಡ ವಾಕ್ಯಗಳ ಬಳಕೆ.							
CO3: ಗೌರವ ಸಂಬೋಧನೆಯ ಬಳಕೆ.							
CO4: ಇತರರೊಡನೆ ಸುಲಭ ಸಂವಹನ.							
word distant.							

ಆಧಾರ ನ	ಪುಸ್ತಕಗಳು :
1	ವ್ಯವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿದ್ಯಾಲಯ, ಬೆಳಗಾಂ.
2	ಕನ್ನಡ ಕಲಿ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸ 'ಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.
3	ಮಾತನಾಡುವ ಕನ್ನಡ, ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks.

Semester: III												
AADALITHA KANNADA												
(Common to all branches)												
Cou	rse Code	:	18HS38A	СІЕ	:	50 Marks						
Cred	dits: L:T:P	:	1:0:0	SEE	:	50 Marks						
Tota	Total Hours : 16Hrs CIE Duration : 90 Minutes											
				ಆಡಳಿತ ಕನ್ನಡ (ಕನ್ನಡಿಗರಿಗಾಗಿ)								
ಆಡಳಿತ ಭಾಷಾ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು: ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ												
1	ಆಡಳಿತ ಕನ್ನಡದ	ನ ಪ	ರಿಚಯ ಮಾಡಿಕೆ	ೂಡುವುದು.								
2	ಕನ್ನಡ ಭಾಷೆಯ	ವ್ಚಾ	್ಯಕರಣದ ಬಗ್ಗೆ ಆ	ಶಿವು ಮೂಡಿಸುವುದು.								
3	ಕನ್ನಡ ಭಾಷಾ ಪರಿಚಯಿಸುವುದ	ಬ ರಿ.	ರಹದಲ್ಲಿ ಕಂಡ	ಬಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅವುಗಳ ನಿವಾರಣೆ ಮತ	್ತು ಲೇ	ಖನ ಚಿಹ್ನೆಗಳನ್ನು						
4	ಸಾಮಾನ್ಯ ಅರ್ಜಿ	ಗಳು	, ಸರ್ಕಾರಿ ಮತ	ಶ್ತಿಅರೆಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.								
5	ಭಾಷಾಂತರ, ಪ್ರ	ಬಂರ	ಿರಚನೆ, ಕನ್ನಡ	ಭಾಷಾಭ್ಯಾಸ ಮತ್ತುಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯ ಮಾಡಿ	ಕೊಡುಾ	ಶ್ರದು.						
				ಅಧ್ಯಾಯ –I		4Hrs						
ಕನ್ನಡ	ಭಾಷೆ – ಸಂಕ್ಷಿಪ್ತ	ವಿವ	ರಣೆ:	-		I						
ಪ್ರಸ್ತಾತ	ವನೆ—ಕನ್ನಡ ಭಾಷೆ,	ಶ್ರಾತ	ವಣ (ಕವನ)– ಸ	ದ.ರಾ.ಬೇಂದ್ರೆ (ಕವಿ), ಬೆಲ್ಜಿಯ ಹಾಡು (ಕವನ) –ಸಿದ್ದಲಿಂಗಯ್ಯ (ಕವಿ)							
ಆಡಳಿ	ತ ಭಾಷೆಕನ್ನಡ, ಆ	ಡಳಿ	ತ ಭಾಷೆಯ ಲಕ್ಷ	ಣಗಳು, ಆಡಳಿತ ಭಾಷೆಯ ಪ್ರಯೋಜನಗಳು.								
				ಅಧ್ಯಾಯ –II		4 Hrs						
ಭಾಷಾ	ತ್ರಯೋಗದಲ್ಲಾಗು	ುವ ಅ	ಲೋಪದೋಷಗಳ	ಸಿ ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ:		·						
ಪ್ರಸ್ತಾತ ಮಹಾ ಗೌರವ	ವನೆ– ಕಾಗುಣಿತದ ುಪ್ರಾಣಗಳ ಬಳಕೆಂ ನ ಸೂಚಕಗಳ ಬಳ	ಪ್ರಸ್ತಾವನೆ– ಕಾಗುಣಿತದ ತಪ್ಪು ಬಳಕೆಯಿಂದಾಗುವ ಲೋಪದೋಷಗಳು ಅಥವಾ ಸಾಧುರೂಪಗಳ ಬಳಕೆ, ಅಲ್ಪ ಪ್ರಾಣ ಮತ್ತು ಮಹಾಪ್ರಾಣಗಳ ಬಳಕೆಯಲ್ಲಿನ ವ್ಯತ್ಯಾಸದಿಂದಾಗುವ ಲೋಪದೋಷಗಳು, ಲೇಖನ ಚಿಹ್ನೆಗಳು, ಕನ್ನಡ ಭಾಷೆಯಲ್ಲಿನ ಲೋಪದೋಷಗಳು ಗೌರವ ಸೂಚಕಗಳ ಬಳಕೆ, ಭಾಷಾ ಬರಹದಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನಿತರಕ್ರಮ, ಲೇಖನ ಚಿಹ್ನೆಗಳು ಮತ್ತು ಅವುಗಳ ಉಪಯೋಗ.										
ಅದಾಯ –III AHrs												
				ಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೇಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅನ ಅಧ್ಯಾಯ –III	ರುಗಳ ಲ	vಪಯೋಗ. 4Hrs						
ಪತ್ರ ವ	ನ್ಯವಹಾರ:			ಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೀಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅಂ ಅಧ್ಯಾಯ −Ⅲ	ಶ್ರೆಗಳ ಲ	vಪಯೋಗ. 4Hrs						
ಪತ್ರ ಪ ಪ್ರಸ್ತಾತ	<mark>ನ್ಯವಹಾರ:</mark> ವನೆ– ಖಾಸಗಿ ಪತ್ರ	, ವ್ಯ	ವಹಾರ, ಆಡಳಿತ	ಲ್ಲ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೀಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅನ ಅಧ್ಯಾಯ −III ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು.	ರ್ುಳ ಲ	vಪಯೋಗ. 4Hrs						
ಪತ್ರ ಇ ಪ್ರಸ್ತಾತ	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ	್ರವ್ಯ	ವಹಾರ, ಆಡಳಿತ	ಲ್ಲ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೀಶನ ಜಹ್ನಗಳು ಮತ್ತು ಅನ ಅಧ್ಯಾಯ −III ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು. ಅಧ್ಯಾಯ −IV	ರುಗಳ ೮	vಪಯೋಗ. 4Hrs 4Hrs						
ಪತ್ರ ಷ ಪ್ರಸ್ತಾತ ಪ್ರಬಂಗ	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ ಧ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ	್ರ ವ್ಯ ನರಚ	ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ	ಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನಅರಕ್ರಮ, ರೀಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅನ ಅಧ್ಯಾಯ −III ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು. ಅಧ್ಯಾಯ −IV ಂತರ:	้ จักร ย 	Vಪಯೋಗ. 4Hrs 4Hrs						
ಪತ್ರ ಪ ಪ್ರಸ್ತಾತ ಪ್ರಬಂದ ಕನ್ನಡ	<mark>ನ್ಯವಹಾರ:</mark> ವನೆ– ಖಾಸಗಿ ಪತ್ರ ಧ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ಶಬ್ಧಸಂಗ್ರಹ, ಜೆ	್ರ ವ್ಯ: ನರಚ ೋಡಿ	ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ ತಿನುಡಿಗಳು, ಅನ	ಲ್ಲ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೀಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅಂ ಅಧ್ಯಾಯ −III ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು. ಅಧ್ಯಾಯ −IV ಂತರ: ಬಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು,	ಶ್ರೆಗಳ e	ಉಪಯೋಗ. 4Hrs 4Hrs ಶದಗಳು, ತತ್ಸಮ–						
ಪತ್ರ ಇ ಪ್ರಸ್ತಾತ ಪ್ರಬಂದ ಕನ್ನಡ ತದ್ಭವ ಆಡಲ	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ ಧ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ಶಬ್ಧಸಂಗ್ರಹ, ಜೆ ಗಳು, ದ್ವಿರುಕ್ತಿಗಳು, ತ ಕನಡದ ಕಲಿಕಾ	್ರ ವ್ಯ ನರಚ ೧೯೯ ನುಗ	ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ ತಿನುಡಿಗಳು, ಅನ ತಿಗಟ್ಟುಗಳು, ಶಬ್ಧ ತಾಂಶಗಳು:	ಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೀಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅಂ ಅಧ್ಯಾಯ −III ಅಧ್ಯಾಯ −IV ಂತರ: ಬಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ್ಧಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪರ	ಶ್ರೆಗಳ e	ಉಪಯೋಗ. 4Hrs 4Hrs ಸದಗಳು, ತತ್ಸಮ–						
ಪತ್ರ ತ ಪ್ರಸ್ತಾತ ಕನ್ನಡ ತದ್ಭವ ಆಡಳಿ	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ ಧ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ಶಬ್ಧಸಂಗ್ರಹ, ಜೆ ಗಳು, ದ್ವಿರುಕ್ತಿಗಳು, ತ ಕನ್ನಡದ ಕಲಿಕಾ . ಕನ್ನಡ ಬರಹ	<u>ರ ವ್ಯ</u> ನರಚ ೂಡ ಹಲಿ ದಲಿ	ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ ತಿನುಡಿಗಳು, ಅನ ತಿಗಟ್ಟುಗಳು, ಶಬ್ಧ ತಾಂಶಗಳು: ವಾಕರಣದ ಬಳಿ	ಲ್ಲ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೀಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅಂ ಅಧ್ಯಾಯ −III ಅಧ್ಯಾಯ −IV ಂತರ: ಶಿಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ್ಧಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪರ	ವುಗಳ e ವಿರುದ್ಧಃ ನಗಳು.	ುಪಯೋಗ. 4Hrs 4Hrs ಸದಗಳು, ತತ್ಸಮ–						
ಪತ್ರ ಪ್ರಸ್ತಾತ ಪ್ರಸ್ತಾತ ಕನ್ನಡ ತದ್ಭವ ಆಡಳಿ CO1	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ ರಬ್ಧ ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ಶಬ್ಧ ಸಂಗ್ರಹ, ಜೆ ಗಳು, ದ್ವಿರುಕ್ತಿಗಳು, ತ ಕನ್ನಡದ ಕಲಿಕಾ I: ಕನ್ನಡ ಬರಹ 2. ಕನ್ನಡದಲ್ಲಿ ಪ	್ರ ವ್ಯ ನರಚ ನಾಂಡ ಫಲ್ಲಿ ಬ	ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ ತಿನುಡಿಗಳು, ಅನ ತಿಗಟ್ಟುಗಳು, ಶಬ್ ತಾಂಶಗಳು: ವ್ಯಾಕರಣದ ಬಳಿ ರರೆಯುವಿಕೆ.	ಲಧ್ಯಾಯ –III ಶಕ್ರಾಯ –III ಶಕ್ರಾಯ –IV ಅಧ್ಯಾಯ –IV ಂತರ: ಬಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ನ್ನಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪರ	ವುಗಳ e ವಿರುದ್ಧಕ ನಗಳು.	Nಪಯೋಗ. 4Hrs 4Hrs ಶದಗಳು, ತತ್ಸಮ–						
ಪತ್ರ ಪ್ರಸ್ತಾತ ತ್ರಬಂದ ಕನ್ನಡ ತದ್ಭವ CO1 CO2 CO3	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ ರ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ಶಬ್ಧಸಂಗ್ರಹ, ಜೆ ಗಳು, ದ್ವಿರುಕ್ತಿಗಳು, ತ ಕನ್ನಡದ ಕಲಿಕಾ I: ಕನ್ನಡ ಬರಹ 2: ಕನ್ನಡದಲ್ಲಿ ಪ್ 3: ಕನ್ನಡ ಸಾಹಿತ	್ರ ವ್ಯ ನರಚ ನಾಂಡ ಫಲಿ ವ್ರ ಸ	ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ ತಿನುಡಿಗಳು, ಅನ ಡಿಗಟ್ಟುಗಳು, ಶಬ್ಧ ತಾಂಶಗಳು: ವ್ಯಾಕರಣದ ಬಳ ಾರೊಯುವಿಕೆ.	ಲಧ್ಯಾಯ –III ಅಧ್ಯಾಯ –III ಶತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು. ಅಧ್ಯಾಯ –IV ಂತರ: ಹಿಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪರ ಕೆಕೆ.	ವಿರುದ್ಧ ವಿರುದ್ಧ ನಗಳು.	ಉಪಯೋಗ. 4Hrs 4Hrs ಶದಗಳು, ತತ್ಸಮ–						
ಪತ್ರ 2 ಪ್ರಸ್ತಾಂ ಪ್ರಬಂಗ ಕನ್ನಡ ತದ್ಭವ ಆಡಳಿ CO1 CO2 CO3	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ ಧ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ಶಬ್ಧಸಂಗ್ರಹ, ಜೆ ಗಳು, ದ್ವಿರುಕ್ತಿಗಳು, ತ ಕನ್ನಡದ ಕಲಿಕಾ L: ಕನ್ನಡ ಬರಹ 2: ಕನ್ನಡದಲ್ಲಿ ಪ 3: ಕನ್ನಡ ಸಾಹಿತ 3: ಕನ್ನಡ ಸಾಹಿತ	್ರ ವ್ಯ ನರಚ ನಾಡಿ ನರ ಪ್ರ ಹ ದ ಲ್ಲಿ ಸ್ಥ ಹ	ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ ನಿನಡಿಗಳು, ಅನ ಡಿಗಟ್ಟುಗಳು, ಶಬ್ಧ ತಾಂಶಗಳು: ವ್ಯಾಕರಣದ ಬಳ ನೆಯುವಿಕೆ.	2 ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನತರಕ್ರಮ, ರೀಖನ ಜಹ್ನಗಳು ಮತ್ತು ಅಂ ಅಧ್ಯಾಯ –III ಶಧ್ಯಾಯ –IV ಂತರ: ಹಿಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪರ ಕೆಕೆ.	ವಿರುದ್ಧ ವಿರುದ್ಧ ನಗಳು.	Nಪಯೋಗ. 4Hrs 4Hrs ಶದಗಳು, ತತ್ಸಮ–						
ಪತ್ರ ಪ್ರಸ್ತಾತ ತ್ರಭ್ರವ ಕನ್ನಡ ತದ್ಭವ CO1 CO2 CO3 ಆಧಾರ 1	ನ್ಯವಹಾರ: ವನೆ– ಖಾಸಗಿ ಪತ್ರ ರ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ಶಬ್ಧಸಂಗ್ರಹ, ಜೆ ಗಳು, ದ್ವಿರುಕ್ತಿಗಳು, ತ ಕನ್ನಡದ ಕಲಿಕಾ I: ಕನ್ನಡ ಬರಹ 2: ಕನ್ನಡ ದಲ್ಲಿ ಪ 3: ಕನ್ನಡ ಸಾಹಿತ 5 ಪುಸ್ತಕಗಳು : ಆಡಳಿತ ಕನ್ನ ಬೆಳಗಾಂ.	್ರ ವ್ಯ ನರಜ ನಾಂಡ ಫಲ್ಲಿ ಸ ದಲ್ಲಿ ಸ ಹ	ವಹಾರ, ಆಡಳಿತ ವಹಾರ, ಆಡಳಿತ ನೆ ಮತ್ತು ಭಾಷಾ ತಿನುಡಿಗಳು, ಅನ ಡಿಗಟ್ಟುಗಳು, ಶಬ್ ತಾಂಶಗಳು: ವ್ಯಾಕರಣದ ಬಳ ರರೆಯುವಿಕೆ. ನಗೂ ಸಂಸ್ಕೃತಿಂ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ	ಲಧ್ಯಾಯ –III ಶಧ್ಯಾಯ –III ಶಧ್ಯಾಯ –IV ಅಧ್ಯಾಯ –IV ಂತರ: ಬಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪರ ತಕೆ.	ವಿರುದ್ಧ ವಿರುದ್ಧ ನಗಳು.	Nಪಯೋಗ. 4Hrs 4Hrs ಶದಗಳು, ತತ್ಸಮ–						

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B is for 40 marks. It consists of simple grammar and essay type questions.

Semester: IV											
ENGINEERING MATHEMATICS – IV											
(Theory)											
Course Code : 18MA41C CIF : 100 Morks											
Crea	lits: L:T:P	•	4:1:0		SEE	•	100 Marks				
Total Hours : 52L+13T SEE Duration : 3.00 Hours											
Cou	Course Learning Objectives: The students will be able to										
1	Understand p	rac	tical situations in va	rious areas of engin	neering and science	to	formulate linear				
	programming	, pro	oblems to get optim	um solution.							
2	Apply the kn	owl	edge of differential	and integral calcul	us to functions of c	omj	plex variables.				
3	Analyze the s	set o	of data and fit suitab	le approximating c	urves.						
4	Interpret cond	cept	of probability to sol	ve random physical	l phenomena and in	ple	ement the proper				
	distribution n	nod	el.		-						
5	Use mathema	tica	al IT tools to analyz	e and visualize the	above concepts.						
					^						
			τ	J nit-I			10 Hrs				
Line	ar Programm	ing	:								
Math	nematical form	ulat	ion of Linear Progra	amming Problem (I	LPP). Solving LPP	usi	ng Graphical,				
Sim	olex and Big M	me	thods. Exploring op	ptimization technique	ues using MATLA	В.					
~			U	nit — II			11 Hrs				
Con	plex Analysis	:		~ .							
Anal	lytic function –	- Ca	uchy-Riemann equ	ations in Cartesian	and polar forms, h	arn	nonic functions.				
Cons	struction of an	aly	tic functions by M	Cauchy's theorem	Toylor's and Laur	tent	and a series				
sing	illarities, poles.	res	idues, residue theor	em, problems (all t	heorems without pr	oof).				
~8	, F,		UI	nit –III	r-		11 Hrs				
Stati	istics:										
Cent	ral moments, n	near	n, variance, coeffici	ents of skewness ar	nd kurtosis in terms	of	moments. Curve				
fittin	ig by method of	f lea	ast squares, fitting o	f curves – polynom	ial, exponential and	d po	ower functions.				
Correlation and linear regression analysis, application problems. Simulation using MATLAB.											
	Unit –IV 10 Hrs										
Prot	oability and Di	istr	ibutions:								
Rand	dom variables -	- dis	screte and continuou	us. Probability distr	ibution function, cu	ımu	ılative				
distr	ibution function	n. B	Sinomial, Poisson, E	Exponential and Nor	rmal distributions.	Sim	ulation using				
MA'	ILAB.										

Unit –V

10 Hrs

Joint Probability Distribution and Markov Chain:

Joint distribution of random variables – Expectation, covariance and correlation. Markov chain – Stochastic matrices, higher transition probabilities, regular stochastic matrices, probability vector.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the concept of linear programming problems (LPP), analytic functions,							
	statistical measures, curve fitting and random variables.							
CO2:	Solve problems on LPP graphically, analytic functions, correlation between two variables							
	and probability distribution functions.							
CO3:	Apply gained knowledge for curve fitting, solution of LPP using simplex method, Taylor's							
	and Laurent's series and different distributions.							
CO4:	Estimate optimal solution of LPP using Big M method, regression lines, residues and regular							
	stochastic matrices.							

Refere	Reference Books							
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 81-7409-195-5.							
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X.							
3	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley & Sons, ISBN: 978-81-265-3135-6.							
4	Probability, Statistics and Random Processes, T. Veerarajan, 3 rd Edition, 2008, Tata McGraw-Hill, ISBN: 978-0-07-066925-3.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3 : Medium-2 : Low-1

Semester: IV												
ENVIRONMENTAL TECHNOLOGY												
(Theory) (Common to Non Circuit Branches)												
Cou	rse Code	:	18BT42A			:	50 Marks					
Cree	dits: L:T:P	:	2:0:0		SEE	:	50 Marks					
Total Hours : 26L SEE Duration : 02 Hours												
Cou	Course learning objectives: The student will be able to											
1	Understand t of healthy en	he v viro	various components of e	nvironment and	the significance of	the	sustainability					
2	Recognize the anthropogen	ie ir ic ad	nplications of different ctivity.	types of the wast	tes produced by nat	ural	and					
3	Learn the str	ateg	gies to recover the energ	y from the waste	2.							
4	Design the n	node	els that help mitigate or	prevent the nega	tive impact of prop	ose	activity on					
	the environm	lent										
				_								
.			Unit	- <u>I</u>			05 Hrs					
Intr	oduction: Env	iroi	iment - Components of	environment, Ec	cosystem. Impact of	ant	hropogenic					
Envi	ronmental acts	, <i>R</i> 7	regulations role of non	and transportation	on), Environmental	eut	SMS· ISO					
1400	0 Environme	ntal	Impact Assessment Er	vironmental aud	liting	э), г						
1100		iiiiiii	Unit -	- II			06 Hrs					
Env	ironmental p	ollu	tion: Air pollution – p	point and non po	oint sources of air	poll	ution and their					
cont	rolling measu	res	(particulate and gased	ous contaminant	s). Noise pollution	n, I	Land pollution					
(sou	rces, impacts a	nd	remedial measures).									
Wat	er manageme	nt:	Water conservation tech	niques, water bo	rne diseases & wate	r in	duced diseases,					
arsei	nic & fluoride j		olems in drinking water a	ind ground water	contamination, adv	vanc	ed waste water					
ticat	ment teeninqu		Unit .	III			06 Hrs					
Was	te managem	ent.	Solid waste manage	ement, e waste	management &	bio	medical waste					
man	agement – sc	urc	es, characteristics & d	lisposal method	s. Concepts of R	edu	ce, Reuse and					
Recy	cling of the w	aste	es.	1	1		, ,					
Ene	rgy – Differen	t typ	pes of energy, convention	onal sources & n	on conventional sou	irce	s of energy,					
solar	energy, hydro	o el	ectric energy, wind ene	rgy, Nuclear ene	ergy, Biomass & B	ioga	is Fossil Fuels,					
Hyd	rogen as an alt	erna	tive energy.	TX 7			05 11					
F	·····	•	Unit -	-1V			US Hrs					
Log	lorship in Eper	sig	n: Principles of Environ	mental design, (Jreen buildings, gre	en 1 dror	naterials,					
farm	ing use of bio	gy d fuel	ls carbon credits carbo	n foot prints On	nortunities for gree	n te	chnology					
mark	tets. carbon se	aue	stration.	i toot prints, op	portunities for gree		ennology					
		1	Unit	-V			04 Hrs					
Reso	ource recove	ry	system: Processing t	echniques, mat	erials recovery sy	/ste	ms, biological					
conv	version (comp	osti	ng and anaerobic dig	estion). Therma	l conversion prod	ucts	(combustion,					
incir	neration, gasifi	cati	on, pyrolysis, use of Re	fuse Derived Fue	els). Case studies of	Bio	omass					
conv	conversion, e waste.											
C												
Cou	rse Outcomes		tter completing the cou	irse, the studen	ts will be able to	-	at of					
	anthronoo	eni	activities on the environm	ent and exemplif	ly the detrimental in	пра						
CO	2: Differenti	ate	the various types of was	tes and suggest	appropriate safe tec	hno	logical					
	methods t	o m	anage the waste.	und buggest	-ppi opilate sale tee		<u>B u</u>					

CO4:	Adopt the appropriate recovering methods to recover the essential resources from the
	wastes for reuse or recycling.

Text B	Text Books							
1	Introduction to environmental engineering and science, Gilbert, M.M., 3 rd Edition, 2015, Pearson Education. India: ISBN: 9332549761, ISBN-13: 978-9332549760.							
2	Environmental Engineering, Howard S. Peavy, Donald R. Rowe and George Tchobanoglous. 1 st Edition (1 July 2017), 2000, McGraw Hill Education, ISBN-10: 9351340260, ISBN-13: 978-9351340263							

Refere	Reference Books							
1	Environmental Science, G. Tyler Miller, Scott Spoolman, 15 th Edition, 2012, Brooks Cole, ISBN-13: 978-1305090446 ISBN-10: 130509044							
2	Environment Management. Vijay Kulkarni and T. V. Ramachandra , 2009. TERI Press; ISBN: 8179931846, 9788179931844							
3	Environmental Engineering and Management. Suresh K. Dhameja, 2010, S.K. Kataria and sons ISBN-10: 8185749450, ISBN-13: 978-8185749457.							
4	Environmental Systems Engineering, Linvil Gene Rich 2003, McGraw-Hill; ISBN: 9780070522503							

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning(EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks which will be reduced to 15marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for assignment is 05.

The total CIE for theory is 15(Q) + 30(T) + 05(EL) = 50 marks

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	.CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

	Semester: IV													
	MANUFACTURING PROCESSES													
			(Theor	ry and Pract	tice)									
Cou	se Code	:	18ME43		CIE	:	100 +50 Marks							
Cred	lits: L:T:P	:	3:0:1		SEE	:	100 +50 Marks							
Tota	l Hours	:	39L+26P		SEE Duration	:	03+03 Hours							
Cour	rse Learning	Ob	jectives: The students	will be able t	0									
1	Classify mar	nufa	cturing processes, desi	gn, analyze g	gating systems for ca	stin	g and explain							
	different spe	cial	casting processes.											
2	Understand a	and	apply principles conce	rned with me	etal forming processe	es, s	sheet metal dies to							
	solve real tin	ne f	forming problems.											
3	Understand,	ana	lyse the concepts used	in metal cutt	ing to minimise the 1	mac	hining cost and							
	improve production rate.													
4	Classify and	exp	plain the working princ	iple of differ	ent NTM processes,	wel	ding processes and							
	defects.			_	i i i i i i i i i i i i i i i i i i i		defects.							

Unit-I	
Classification of Manufacturing Processes	

06 Hrs

Patterns – Types, allowances. **Moulding sand** – Properties, types of moulds, **Moulding Machines**: Jolting, Squeezing, Jolt & Squeezing and Sand Slinging, **Cores** – types, function.

Special Casting Processes: CO₂ Moulding, Shell Moulding, Investment Casting, Hot and Cold Chamber die casting Processes; Centrifugal casting; Continuous Casting. **Gating and Riser Design for Casting:** Elements of Gating System, Types of Gates and gating systems. **Pouring time calculations** – Top Gating, Bottom Gating and Relation (condition) to Avoid Aspiration Effect (Derivations and Numericals), Risers, **Solidification Time of Casting** – Chvorinov's Rule and Caine's method (Numericals). **Casting Defects** – Types, Causes and Remedies.

Unit – II	09 Hrs
Bulk deformation processes - Forging: Processes and operations, Lubrication in Meta	al Forming
Operations. Analysis of Pressure distribution in Rectangular Block forging under Sliding	Condition.
(Derivation & Numericals) Extrusion: Types, Defects in Extruded Products. Draw	ving: Wire
drawing, Rod and Tube Drawing. Rolling Mills: Types, Defects in Rolling. Fla	at Rolling
Terminology – Draft (Reduction), Forward and Backward Slip, Roll strip contact length,	Bite angle,

Ragging, Neutral Plane and Angle of Nip (Numericals).

Sheet Metal Forming: Press tool operations; Punch and Die Clearances, **Sheet Metal Drawing** – Drawing, Cupping and Deep drawing. **Draw Die Design** –Factors considered for designing a Draw Die (Numericals). Defects in drawing. **Sheet Metal Dies** – Progressive, Compound and Combination Dies. Bending and Bending Allowance, Rubber Forming.

Unit -III

11 Hrs

Metal Cutting: Mechanics of Chip Formation, Types of chips, Orthogonal and Oblique cutting. **Merchant's thin shear plane model** – Assumptions, Force Calculations, Shear Angle, Chip thickness ratio, Velocity relationships, Strain rate, Work done in shear, Friction and total work done (Numericals). Cutting Tool Geometry, Significance of various tool angles. Cutting Tool Materials.

Tool Wear, Taylor's Tool Life equation (Numericals), Machinability, Machinability Index. **Surface finish** – Ideal surface finish in turning (Numericals). Thermal Aspects in metal cutting, Tool work Thermocouple Method for measuring chip-tool interface temperature. **Cutting Fluids** – Functions & Types **Economics of Machining** –Minimisation of the Machining Cost, Maximising the Production Rate (Numericals).

Unit –IV	06 Hrs
Milling: Plain Milling cutter nomenclature, Milling Time Estimation – Slab milling and Fa	ce milling
- (Numericals). Indexing - Direct or Rapid Indexing, Simple indexing, Compound	indexing,
Differential indexing and angular indexing (Numericals). Drilling – Twist drill geometry	y, Drilling
Time, Torque and Thrust (Numericals).	
Grinding: Types of abrasives, bonding processes, Creep feed grinding, Designation and	l Selection
of grinding wheel, Wheel Balancing, Dressing and Truing of grinding wheel, Surface	Finishing
Processes – Lapping, Honing, Super finishing, Polishing and Buffing.	
Unit –V	07 Hrs
Unconventional machining - Need and classification. EDM, Wire EDM, ECM – Materia	l Removal
Rate (MRR) and Gap resistance (Numericals), CHM – Chemical Milling and Chemical	Blanking,
USM, LBM.	
Electric Arc Welding: Characteristic curves of constant-current and constant voltage, and	rc welding
transformer (Numericals); Arc Welding Processes – Shielded metal arc welding (SMAW)	, Inert Gas
Arc Welding - Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) arc	e welding,
Submerged arc welding (SAW), Principal zones in the weld joint and typical grain structure	e, Welding
defects. Resistance welding – Principle and types of resistance welding.	

Practice	
SECTION – I (MACHINE SHOP)	14 Hrs

Lathe operations: 1. Step, Taper Turning and Knurling 2. External Thread Cutting 3. Internal Thread Cutting 4. Eccentric Turnig

Milling Operations: 1. Cutting of spur gear teeth using Horizontal Milling Machine.

2. Making rectangular slot using Vertical MillingMachine.

SECTION– II (Foundary lab)	12 Hrs
1. Preparation of sand mould without pattern.	

- 2. Preparation of sand mould with pattern.
- 3. Compression, Shear and Permeability test on the moulding sand specimen.
- 4. Clay and Moisture content test on moulding sand.
- 5. Grain fineness test (Sieve analysis).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the terminology related to metal casting, forming, welding and metal cutting.
CO2:	Analyse and apply principles of casting, forming, welding, and metal cutting to specific
	applications.
CO3:	Assess, compare and select appropriate manufacturing Processes.
CO4:	Adapt the principles of Casting, forming, welding, and metal cutting to develop the
	mechanical components.

Reference Books

1	Manufacturing Technology, Vol. 1 – Foundry, Forming, and Welding, P N Rao, 5 th Edition, 2019, McGraw Hill Education (India) Private Limited, ISBN-13: 978-93-5316-050-0.
2	Manufacturing Technology, Vol. 2 Metal Cutting and Machine Tools, P N Rao, 4 th Edition,2019, McGraw Hill Education(India) Pvt. Limited,ISBN-13: 978-93-5316-052-4.
3	Manufacturing Science", Amitabha Ghosh and Ashok Kumar Mallik, 2 nd Edition, 2010, East-West Press Limited, ISBN: 978-81-7671-063-3.
4	A Text Book on Production Engineering, Swadesh Kumar Singh, 3 rd Edition, 2016, Made Easy Publication, ISBN–978-93-5147-217-9.
5	Manufacturing Science – I, Forming, Casting and Welding", G.S Sawhney, 2015, I.K. International Publishing House Pvt. Ltd. ISBN: 978-93-82332-53-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	-	-	-	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	2
CO3	1	2	2	2	-	-	-	-	-	-	-	2
CO4	-	1	1	3	2	-	-	-	-	-	-	2

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

High-3: Medium-2: Low-1

			Se	emester: IV			
	THERMAL ENGINEERING II						
			(Theor	ry and Practice)		
Cou	rse Code	:	18ME44		CIE	:	100 +50 Marks
Cred	lits: L:T:P	:	3:1:1		SEE	:	100 +50 Marks
Tota	l Hours	:	39L+17T +26P		SEE Duration	:	03+03 Hours
Cou	rse Learning	Ob	jectives: The students	will be able to			
1	1 Analysis of thermal efficiency of gas power and vapor power cycles						
2	Evaluate per	for	mance of IC engines				
3	Explainwork	ting	principleof reciprocation	ng aircompresso	randanalyseitsper	for	mance
4	4 Understand working principle of Refrigeration and Air-conditioning systems and evaluate the			and evaluate the			
	performance						
5	5 Explain basic modes and fundamental laws of heat transfer						
6	6 Analysis of thermal efficiency of gas power and vapor power cycles						

Unit-I	08 Hrs
Gas power Cycles: Efficiency of air-standard cycles – Carnot cycle, Otto, Diesel and Dua	l cycles
- Derivation of air standard efficiency, MEP (no derivation) of the cycles, comparison of c	ycles,
Numericals	
Unit – II	14 Hrs
Gas Turbines: Open cycle constant pressure gas turbines, theoretical and actual cycles, Adv	/antages
and disadvantages of closed cycle compared to open cycle, Multi stage expansion with re	heating,
multistage compression with intercooling, Numericals.	
Jet and Rocket propulsion: Principles and working of turbojet, turbofan, turboprop, Ram	jet and
pulse jet, simple turbojet cycle, Thrust power, propulsive power, thermal efficiency, pro-	opulsive
efficiency and over all efficiency, Rocket propulsion (No Numericals)	
Unit -III	14 Hrs
Performance testing of IC Engines: Testing of two stroke and four stroke C.I and S.I eng	gines,
Calculations of BP, IP, thermal efficiency, SFC, MEP and heat balance sheet, methods to f	ind IP,
Numericals	
Vapor Power Cycles: Carnot vapour power cycle – Simple Rankine cycle, comparison of	
Rankine and Carnot vapour cycle, Analysis and performance of Rankine cycle, Ideal and p	ractical
regenerative Rankine cycle, Reheat and regenerative cycle, Numericals	
Unit –IV	10 Hrs
Refrigeration: Air Cycle Refrigeration, Reversed Carnot Cycle, Reversed Brayton Cycle,	Vapour
Compression Refrigeration system - Refrigerating effect, power required, COP, Vapour Ab	sorption
Refrigeration, Properties of refrigerants, Numericals	
Pyschrometrics: Atmospheric air and Psychrometric properties, dry bulb temperature and y	wet bulb
temperature, Dew point temperature, partial pressures, specific humidity and relative humidity humidity and relative humidity humidi	umidity,
Degree of saturation, Adiabatic saturation temperature, Use of Psychrometric charts. (Simp	ple
numericals)	
Unit –V	10 Hrs
Reciprocating Air Compressors: Classification, Work input with and without classification, Work input with and without classification, Work input with and without classification, where the second se	earance,
volumetric efficiency, Adiabatic, isothermal and mechanical efficiency, work input in	multi-
stage compression with intercooling, Intermediate pressure forminimum work input, Nu	mericals
Combustion Thermodynamics: Stoichiometric air/fuel ratio for combustion of fuels	s-excess
air, exhaust gas analysis, (conversion of mass analysis to volumetric analysis and vice	versa).
Calorific value, Combustion efficiency. Combustion Reactions, Enthalpy of formation, Ent	tropy of
formation, Internal energy of combustion. Adiabatic flame temperature, Simple Numerical	s

	Practice							
	SECTION-I 12Hrs							
1	Determination of flash point and firepointoflubricatingoil byusing AbelPenskyor Clevapparatus. (Opencup)	veland						
2	Determination of flash point and firepoint ofhigh speed diesel (HSD) byusing Pensky apparatus. (Closed cup)	Martins						
3	Determination of calorific value of solid or liquid fuel using BombCalorimeter.							
4	4 Determination of viscosity of various grades of lubricatingoils using Redwood, Sayboltand Torsion Viscometers.							
5	Valvetimingdiagram ofa4 strokeI.C. Engine.							
6	6 Performancetest on aVaporCompression Refrigerator.							
	SECTION-I	16Hrs						
1. Perfo	ormancetests onI.C.Engines							
► F	ourstrokewatercooled single cylinder diesel engine							
	Four stroke, four cylinder petrol engine (Including Morse test)							
▶ F	Four stroke, four cylinder diesel engine (Including Morse test)							
▶ C	omputerised single cylinder diesel engine (Including combustion characteristics)							
2. Perfo	2. Performancetest ontwostagereciprocatingaircompressor.							
3. Perfo	ormance test on air blower							

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain basic thermodynamic cycles to evaluate work and efficiency/ performance.
CO2:	Analyse modifications of basic thermodynamic cycles for optimising work and
	Increasing efficiency/ performance.
CO3:	Determine properties of fuels, and analyse performance parameters of IC engines and
	compressor
CO4 :	Adapt knowledge of thermodynamic cycles to suggest solutions for real time thermodynamic
	problems

Refere	ence Books									
1	Basic and Applied Thermodynamics, P.K.Nag, 2010, TataMcGraw Hill Publication ISBN:9780070151314									
2	Engineering Thermodynamics, Yunus Cengel, Michael Boles, 7 th Edition, 2011, Tata McGrawHill Company, ISBN:9780071072540									
3	Fundamentals of Engineering Thermodynamics, Moron M.J, ShapiroH.N, BoettnerD.D.and Bailey M.B, 7 th Edition, ISBN: 978-1-1183-7965-3									
4	Fundamentals of Thermodynamics, R.E.Sonntag, C.Borgnakke and G.J.VanWylen, 2003, John Wiley, ISBN:0-471-15232-3									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	1	
CO2	3	2	-	-	-	-	-	-	-	-	-	1	
CO3	1	2	2	-	-	-	-	-	-	-	-	1	
CO4	-	1	1	3	-	-	-	-	-	-	-	1	

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

High-3 : Medium-2 : Low-1

Semester: IV										
DYNAMICS OF MACHINES										
(Theory)										
Course Code : 18ME45 CLE : 100 M	Marks									
Credits: L:T:P : 3:1:0 SEE : 100 M	Marks									
Total Hours : 39L+131 SEE Duration : 3.00	Hours									
Course Learning Objectives: The students will be able to										
 Describe the need for performing static and dynamic analysis on a system Calculate ratio of belt tensions in flat and V belt 										
 Calculate ratio of bell tensions in flat and y bell Explain the working of flywheel, care and the importance of balancing in machines with 										
• Explain the working of flywheel, cam and the importance of balancing in machines with										
Intermediate Analyse forces with friction and without friction. Speed of Covernor. Sensitiveness, etchility.										
- Analyse forces with methon and without methol. Speed of Governor. Sensitiveness, stability, isochronism hunting controlling force curves for governor										
 Study Gyroscopic couple, effect of gyroscopic couple on plane disc, aeroplane and shin 	p									
6 Describe the need for performing static and dynamic analysis on a system	r									
Unit-I	07 Hrs									
Static Force Analysis: Static equilibrium, equilibrium of two and three force members; mem	nbers									
with two forces and torque, free body diagram, static force analysis of four bar mechanism	n and									
slider crank mechanism without friction										
Dynamic Force Analysis: Dynamic force analysis of four bar mechanism and slider	r crank									
mechanism, dynamically equivalent system	11.11									
	II Hrs									
Flywheels: Types of flywheel, Energy stored, Determination of size of flywheel for the second structure intermittent expension in a supplying press.	engine,									
Balt & Rong Drives : Types of belt drives flat and V belt Open belt and Cross belt Velocit	ty ratio									
slip and creep and its effects on velocity ratio Ratio of belt tensions. Initial tension cent	ty fatio, trifugal									
tension. Power transmitted by belt drive. Condition for maximum power transmission. Rone	e drive:									
Ratio of tensions, Initial tension and centrifugal tension. Power transmitted. Condition for max	ximum									
power transmission										
Unit -III	11 Hrs									
Balancing of Rotating Masses: Static and Dynamic balancing, Balancing of single rotating	g mass,									
Balancing in same plane and in different plane, Balancing of several rotating masses rota	ating at									
different planes										
Balancing of Reciprocating Masses: Inertia effect of crank and connecting rod of single cy	linder									
engine, partial balancing of multi-cylinder engine (Primary and Secondary forces and coupled Relancing of V angine, Direct and Paverse graph method	es),									
Unit _IV	06 Hrs									
Covernors: Types of governors, Centrifugal and Inertia types, Porter Governor and Hartnell	00 1115									
Governor, Force analysis with friction and without friction. Speed of Governor, Sensitiveness	C C									
stability Jacobranism Hunting Controlling force surves for governor.										
stability, isocilionishi, Hunting, Controlling force curves for governor	07 II									
Unit – V	o/ Hrs									
Cyroscope: vectorial representation of angular motion. Basic definitions. Gyroscopic couple	с.									
Effect of gyroscopic couple on plane disc, Aeroplane, Snip. Effect of gyroscopic couple on										
stability of a two wheeler and a four wheeler										
Course Outcomes: After completing the course, the students will be able to	1 1									

CO1:	Define the terms associated with metal cutting tools, cutting fluids, in both Conventional and
	Un-conventional Machining Processes and explain the various Manufacturing Processes.
CO2:	Analyze Belt/rope drives, flywheels, rotating and reciprocating mechanism
CO3:	Evaluate kinematics and kinetics for various mechanisms.
CO4:	Design and synthesize industrial mechanisms.

Refere	ence Books
1	Theory of Machines, Thomas Bevan, 3 rd Edition, 1984 CBS Publishers, , ISBN: 9788131729666
2	Theory of Machines, Rattan S.S., 3 rd Edition, 2008, Tata McGraw Hill Publications, , ISBN: 9780070144774
3	Theory of Machines, Sadhu Singh, 2 nd Edition, 2007, Pearson Education Publications, ISBN: 9788177581270
4	Theory of Machines, Thomas Bevan, 3 rd Edition, 1984, CBS Publishers, ISBN: 9788131729666

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning(EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10.

The total CIE is 30(Q) +60(T) +10(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	1	
CO2	3	2	-	-	-	-	-	-	-	-	-	1	
CO3	1	2	2	-	-	-	-	-	-	-	-	1	
CO4	-	1	1	3	-	-	-	-	-	-	-	1	

High-3 : Medium-2 : Low-1

			Se	emester: IV						
FLUID MECHANICS										
(Theory and Practice)										
Cou	rse Code	:	18ME46		CIE	:	100+50 Marks			
Cree	lits: L:T:P	:	2:1:1		SEE	••	100 +50 Marks			
Total Hours : 26L+14T+14P SEE Duration : 03+03 Hours										
Course Learning Objectives: The students will be able to										
1	Understandi	ng f	undamental fluid mech	nanics.						
2	Measuremer	nt of	pressure and determin	ation of hydrosta	atic forces and flo	w tl	nrough pipes.			
3	Apply laws	of c	onservation of moment	tum, mass and en	ergy to fluid flow	y sy	stems and explain			
	the measure	mer	t of fluid flow paramet	ers.						
4	Investigate t	he c	haracteristics of flow t	hough pipes.	1					
)	Apply dimo	npr	essibility of gases in ter	rms of Mach nun	nder.	ta				
U	Apply unler	1810		They laws for con-	ducting model tes	is.				
			Uni	it-I			07 Hrs			
Basi	c Concepts a	nd	Fluid Properties: Def	inition of a fluid	Classification of	flu	ud flows: No slip			
cond	ition: System	an	d control volume. Co	ntinuum Densit	y Specific gravit	v	Vapour pressure			
Visc	osity Surface	Ti	ension: Coefficient of	compression F	of Cavitat	ion	and Capillarity			
Num	ericals	, 1 ,	Juston, coefficient of	compression, L		1011	und Cuphianty,			
Flui	d Statics: Hvo	lros	tatic forces on submers	ged horizontal, vo	ertical, inclined ar	nd c	urved surfaces.			
deter	mination of c	entr	e of pressure and total	pressure, Numer	icals					
			Unit	– II			10 Hrs			
Pres	sure Measure	eme	nt: Pressure at a point;	Pressure variation	on with depth; Ma	no	meter and other			
press	sure measuring	g de	vices; Barometer and a	atmospheric press	sures; Numericals					
Buo	yancy and Sta	abil	ity: Stability of floating	g bodies, Meta ce	entre and Meta ce	ntri	c height;			
expe	rimental and a	nal	ytical determination of	meta centric hei	ght; stability of su	ıbm	erged bodies,			
Numericals										
INUIL	Unit -III 10 Hrs									
INUIL			Unit	-III			10 Hrs			
Flui	d Kinematics	: L	Unit agrangian and Euleria	-III an descriptions;	Fundamentals of	f fl	10 Hrs ow visualization;			
Fluie	1 Kinematics am line, Strear	: L n tu	Unit agrangian and Euleria be, Path line and Strea	-III an descriptions; k line; Stream fu	Fundamentals of nction, Velocity p	f floote	10 Hrs ow visualization; ntial, Circulation,			
Fluid Strea Vort	d Kinematics im line, Strear icity and Rota	n tu	Unit agrangian and Euleria be, Path line and Strea ality, Numericals	-III an descriptions; k line; Stream fu	Fundamentals of nction, Velocity p	floote	10 Hrs ow visualization; ntial, Circulation,			
Fluid Strea Vort Fluid	d Kinematics and line, Strear icity and Rota d Dynamics:	n tu tion G	Unit agrangian and Euleria be, Path line and Strea ality, Numericals eneral continuity equ	-III an descriptions; k line; Stream fu	Fundamentals of nction, Velocity p	f floote Eu	10 Hrs ow visualization; ntial, Circulation, aler's equation;			
Fluid Strea Vort Fluid Bern	d Kinematics im line, Strear icity and Rota d Dynamics: oulli's equation	n tu tion G	Unit agrangian and Euleria be, Path line and Strea ality, Numericals eneral continuity equ Limitations of Bernou	-III an descriptions; k line; Stream function in Cartes aution in Cartes alli's equation, A	Fundamentals of nction, Velocity p sian coordinates;	f floote Eu	10 Hrs ow visualization; ntial, Circulation, uler's equation; pulli's equation;			

pressures, Notches - V notch, Rectangular notch, introduction to Reynolds transport theorem, Numericals

 Unit –IV
 07 Hrs

 Introduction to Boundary Layer Theory: Flow over a flat plate: Boundary layer thickness,

Displacement, Momentum and Energy thickness, Flow separation concept, Simple Numericals Dimensional Analysis and Modeling: Similitude; Geometric, Kinematic and Dynamic similarities; Buckingham pi theorem and its application to fluid mechanics problems; different forces acting in moving fluid, Dimensionless numbers; Model studies, Numericals Unit –V 06 Hrs

Flow through Pipes: Darcy-Weisbach equation; Chezy's formula; Laminar flow through pipes; Hagen-Poiseulle equation; Friction factor, Minor losses. Numericals **Turbulent Flow through Pipes:** Characteristics of turbulent flow; Turbulent velocity profile;

Turbulent shear stress; Moody's chart, (no numerical)

Practice	
SECTION-I & II	14Hrs
Calibration of Venturimrter	
Calibration of Orifice meter	
Calibration of V-Notch	
Determination of co-efficient of friction due to flow of fluids in pipes	
Determination of co-efficient of minor losses due to flow of fluids through pipes.	
Impact of jet on vanes	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe various properties of fluids for analysing fluid flow applications.								
CO2:	Analyze the effect of fluid properties on static and dynamics of fluid flow.								
CO3:	Analyze hydrostatic and dynamic solutions for fluid flow applications.								
CO4 :	Derive appropriate formulae for specific industrial fluid problems.								

Reference Books

1	Fluid Mechanics, Yunus A. Cengel and John M. Cimbala, 2006, Tata Mc-Graw Hill ISBN:9780071284219
2	Fluid Mechanics and Hydraulic Machines, Modi and Seth, 2007, Standard Book House ISBN -81-7867-023-2
3	Theory and Application of Fluid Mechanics, K. Subramanya, 1993, TMH Outline Series, ISBN-13: 978-0-07-460369-7, ISBN: 0-07-460369-8
4	Fluid Mechanics, F. M. White, McGraw Hill Education India Private Limited; ISBN- 13:978-9385965494

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	1	
CO2	3	2	-	-	-	-	-	-	-	-	-	1	
CO3	1	2	2	-	-	-	-	-	-	-	-	1	
CO4	-	1	1	3	-	-	-	-	-	-	-	1	

High-3 : Medium-2 : Low-1

	Semester: IV										
	Design Thinking Lab										
Cou	Course Code:18ME47CIE:50 Marks										
Cred	lits: L:T:P	:	0:0:2		SEE	:	50 Marks				
Hou	rs	:	26P		SEE Duration	:	02 Hours				
Cou	rse Learning O	bje	ctives: To ena	ble the students to:							
	Knowledge	4pp	olication: Ac	quire the ability to make	e links across o	dif	ferent areas of				
1	knowledge a	nd	to generate, o	develop and evaluate idea	is and informati	on	so as to apply				
	these skills to) pi	ovide solution	ns of societal concern							
2	Communicat	tior	a: Acquire the	skills to communicate eff	fectively and to	pre	esent ideas				
2	clearly and c	ohe	erently to a sp	ecific audience in both the	written and ora	l fo	orms.				
3	Collaboratio	n:	Acquire colla	borative skills through wo	rking in a team	to	achieve				
3	common goa	ls.									
1	Independent	Le	arning: Lear	n on their own, reflect on t	their learning an	d t	ake				
4	annronriate a	ctic	on to improve	it							

Guidelines for Design Thinking Lab:

- 1. The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the by the department
- 4. Each group should follow the stages of Empathy, Design, Ideate, prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The Design Thinking lab tasks would involve:

- 1. Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.
- 2. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 3. Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- 4. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 5. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.
- 6. Demonstrate the functioning of the prototype along with presentations of the same.
- 7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 8. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.

The students are required to submit the Poster and the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Interpreting and implementing the empathy, ideate and design should be implemented by									
	applying the concepts learnt.									
CO 2:	The course will facilitate effective participation by the student in team work and									
	development of communication and presentation skills essential for being part of any of									
	the domains in his / her future career.									
CO 3:	Appling project life cycle effectively to develop an efficient prototype.									
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area									
	or carry out research work in an industrial environment.									

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Empathy, Ideate evaluation	10M
II	Design evaluation	15M
III	Prototype evaluation, Digital Poster presentation and report submission	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component						
1.	Written presentation of synopsis: Write up	5M					
2.	Presentation/Demonstration of the project	15M					
3.	Demonstration of the project	20M					
4.	Viva	05M					
5.	Report	05M					
	Total	50M					

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	H	H	H	H	Μ	Μ	L	Μ	Μ	Μ	Μ	М
CO2	H	Н	Н	Н	Μ	Μ	L	Μ	M	М	М	М
CO3	H	Н	Н	Н	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ
CO4	L	L	L	L	L	L	L	Μ	L	Μ	L	L

	Semester: III/IV											
	C PROGRAMMING											
	Bridge Course											
			(Comn	ion to all branche	es)							
Cours	se Code	:	18DCS37/48		CIE Marks	:	50 Marks					
Credits: L:T:P : 2:0:0					SEE Marks	:	50 Marks					
	Audit CourseSEE Duration:2.00 Hours											
Cours	se Learning (Obje	ctives: The student	s will be able to								
1.	Develop ar	ithme	etic reasoning and a	nalytical skills to a	apply knowledge of b	oasi	c concepts of					
	program	nming	g in C.									
2.	Learn basic	prin	ciples of problem so	olving through pro	gramming.							
3.	3. Write C programs using appropriate programming constructs adopted in programming.											
4.	Solve comp	olex p	problems using C pr	ogramming.								

Unit – I	4 Hrs
Introduction to Reasoning, Algorithms and Flowcharts:	.I
Skill development – Examples related to Arithmetical Reasoning and Analytical Reason	ing.
Fundamentals of algorithms and flowcharts	-
Introduction to C programming:	
Basic structure of C program, Features of C language, Character set, C tokens, Keywords	s and
Identifiers, Constants, Variables, Data types.	
Unit – II	4 Hrs
Handling Input and Output Operations	
Formatted input/output functions, Unformatted input/output functions with programming	g examples
using different input/output functions.	
Operators and Expressions	
Arithmetic operators, Relational operators, Logical Operators, Assignment operators, Inc	crement and
decrement operators, Conditional operators, Bit-wise operators, Arithmetic expressions.	Evaluation
of expressions, Precedence of arithmetic operators, Type conversion in expressions, Ope	rator
precedence and associativity.	1
Unit – III	6 Hrs
Programming Constructs	
Decision Making and Branching	
Decision making with 'if' statement, Simple 'if' statement, the 'ifelse' statement,	nesting of
'ifelse' statements, The 'else if' ladder, The 'switch' statement, The '?:' operator,	The 'goto'
statement.	
Decision making and looping The while statement, The do while statement, The 'for'	statement,
Jumps in loops.	
Unit – IV	6 Hrs
Arrays	
One dimensional arrays, Declaration of one dimensional arrays. Initialization of one dim	ensional
arrays, Two dimensional arrays, Initializing two dimensional arrays.	
Character Arrays and Strings	

Declaring and Initializing String Variables, Reading Strings from Terminal, Writing strings to screen, String handling functions.

	Unit – V	8 Hrs
User-defined functions		

Need for User Defined Functions, Definition of functions, Return values and their types, Function calls, Function declaration. Examples.

Introduction to Pointers: Introduction, Declaration and initialization of pointers. Examples **Structures and Unions:** Introduction, Structure and union definition, Declaring structure and union variables, Accessing structure members. Example programs.

	PRACTICE PROGRAMS
1.	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C- code.(Example programs having the delimeters, format specifiers in printf and scanf)
2.	Debug the errors and understand the working of input statements in a program by compiling the C-code.
3.	Implement C Program to demonstrate the working of operators and analyze the output.
4.	 Simple computational problems using arithmetic expressions and use of each operator (+,-,/,%) leading to implementation of a Commercial calculator with appropriate message: a)Read the values from the keyboard b) Perform all the arithmetic operations. c) Handle the errors and print appropriate message.
5.	Write a C program to find and output all the roots if a given quadratic equation, for non-zero coefficients. (Using if <i>else</i> statement).
6a.	Write a C program to print out a multiplication table for a given NxN and also to print the sum table using skip count 'n' values for a given upper bound.
бb.	Write a C program to generate the patterns using for loops. Example: (to print * if it is even number) 1 ** 333 **** 55555
7a.	Write a C program to find the Greatest common divisor(GCD)and Least common multiplier(LCM)
7b. o	Write a C program to input a number and check whether the number is palindrome or not.
0.	numbers and arrange them in ascending or descending order using bubble sort technique.
9.	 Develop and demonstrate a C program for Matrix multiplication: a) Read the sizes of two matrices and check the compatibility for multiplication. b) Print the appropriate message if the condition is not satisfied and ask user to re-enter the size of matrix. c) Read the input matrix d) Perform matrix multiplication and print the result along with the input matrix.
10.	Using functions develop a C program to perform the following tasks by parameter passing concept: a) To read a string from the user Print appropriate message for palindrome or not palindrome

11a.1	Write a C program to find the length of the string without using library function.									
1b.	Vrite a program to enter a sentence and print total number of vowels.									
12.	Design a structure 'Complex' and write a C program to perform the following operations:									
	i. Reading a complex number.									
	ii. Addition of two complex numbers.									
	iii. Print the result									
13.	Create a structure called student with the following members student name, rollno, and a									
	structure with marks details in three tests. Write a C program to create N records and									
	a) Search on roll no and display all the records.									
	b) Average marks in each test.									
	c) Highest marks in each test									
	c) Highest marks in each test									

Course	Course Outcomes: After Completing the course, the students will be able to								
CO 1:	Understand and explore the fundamental computer concepts and basic programming principles like data types, input/output functions, operators, programming constructs and user defined functions.								
CO 2:	Analyze and Develop algorithmic solutions to problems.								
CO 3:	Implement and Demonstrate capabilities of writing 'C' programs in optimized, robust and reusable code.								
CO 4:	Apply appropriate concepts of data structures like arrays, structures implement programs for various applications								

Reference Books

-	
1.	Programming in C, P. Dey, M. Ghosh, First Edition, 2007, Oxford University press, ISBN
	(13): 9780195687910.
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, Second Edition,
	2005, Prentice Hall, ISBN (13): 9780131101630.
3.	Turbo C: The Complete Reference, H. Schildt, 4 th Edition, 2000,Mcgraw Hill Education,
	ISBN-13: 9780070411838.
4.	Understanding Pointers in C, Yashavant P. Kanetkar, 4th Edition, 2003, BPB publications,
	ISBN-13: 978-8176563581
5.	C IN DEPTH, S.K Srivastava, Deepali Srivastava, 3rd Edition, 2013, BPB publication,
	ISBN9788183330480

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and lab practice (P). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks the sum of the marks scored from quizzes would be reduced to 10 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30. The programs practiced would be assessed for 10 marks (Execution and Documentation).

Total CIE is 10(Q) + 30(T) + 10(P) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	1	-	-	-	1	-	-	1
CO2	3	3	3	2	2	-	-	-	1	-	-	1
CO3	3	3	3	-	-	-	-	-	2	2	1	2
CO4	3	3	3	-	-	-	1	-	2	2	1	2

High-3: Medium-2 : Low-1

Semester: III and IV							
DEDOFESSIONAL DEACTICE I							
	COMMUNICATION SKILLS						
			(Comm	on to all Programm	les)		
Сош	rse Code	:	18HS49			:	50 Marks
Cred	lits: L:T:P	:	0:0:1		SEE	:	50 Marks
Total Hours		:	18P		SEE Duration	:	2.00 Hours
Cou	rse Learning (Dbj	ectives: The studer	ts will be able to			
1	1 Understand their own communication style, the essentials of good communication and develop						
	their confidence to communicate effectively.						
2	Manage stress by applying stress management skills.						
3	Ability to giv	e co	ontribution to the pl	anning and coordina	ate Team work.		
4	Ability to ma	ke j	problem solving de	cisions related to eth	ics.		
				~			
~				Semester			6 Hrs
Com	munication Sl	kill	s: Basics, Method,	Means, Process and	Purpose, Basics of E	Busi	ness
Com	munication, W	ritte	en & Oral Commur	incation, Listening.	1 1 4 14		1.1
Com	munication w	ith	confidence & Cla	rity - Interaction wit	h people, the need the	ie u	ses and the
meth	ods, Getting pr	ion	etically correct, usi	ng politically correct	l language, Debate &	εex	6 Hrs
Λεερ	rtive Commu	nies	ation - Concept of A	ssertive communica	tion Importance and	lan	plicability of
	rtive communi	nua cati	on Assertive Word	ls being assertive	ttion, importance and	ı ap	pheability of
Pres	entation Skills	s- D	biscussing the basic	concepts of present	ation skills Articulat	ion	Skills IO &
GK.	How to make e	effe	ctive presentations.	body language & D	ress code in presenta	tion	n. media of
prese	entation.		r ,	8.8	I		,
							6 Hrs
Tean	n Work- Team	Wo	ork and its importan	t elements Clarifyin	g the advantages and	l ch	allenges of
team	work Understa	and	ing bargains in tear	n building Defining	behaviour to sync w	ith t	eam work
Stag	es of Team Bui	ldiı	ng Features of succ	essful teams.			
IV S	emester						6 Hrs
Body	y Language &	Pr	oxemics - Rapport	Building - Gestures,	postures, facial exp	ess	ion and body
move	ements in differ	rent	t situations, Importa	ance of Proxemics, F	Right personal space	to n	naintain with
diffe	rent people.						(IIma
Mat	votion and 64	noar	Monogomant. C.	If motivation anou-	motivation landard		bilition Stroom
	valion and strong b	ress	s Management: Se	and do stross: Under	standing stross Co	np a	admines, Stress
body and mind Dealing with anyiety tension and relevation techniques. Individual Counceling &							
Guidance Career Orientation Balancing Personal & Professional Life							
Guid		1101	intation: Datationg I				6 Hrs
Professional Practice - Professional Dress Code Time Sense Respecting People & their Space							
Relevant Behaviour at different Hierarchical Levels. Positive Attitude, Self Analysis and Self-							
Management.							
Professional Ethics - values to be practiced, standards and codes to be adopted as professional							
engii	engineers in the society for various projects. Balancing Personal & Professional Life						
Сош	rse Outcomes·	Δf	ter completing the	course the studen	ts will be able to		

Course Outcomes: After completing the course, the students will be able to				
CO1:	Inculcate skills for life, such as problem solving, decision making, stress management			
CO2:	Develop leadership and interpersonal working skills and professional ethics.			
CO3:	Apply verbal communication skills with appropriate body language.			
CO4:	Develop their potential and become self-confident to acquire a high degree of self			

Refe	Reference Books			
1.	The 7 Habits of Highly Effective People, Stephen R Covey, Free Press, 2004 Edition, ISBN:			
	0743272455			
2.	How to win friends and influence people, Dale Carnegie, General Press, 1 st Edition, 2016, ISBN:			
	9789380914787			
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,			
	Ron Mcmillan, McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204			
4.	Aptimithra: Best Aptitude Book, Ethnus, Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738			

Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 3 rd semester and evaluated for 50	50%
III Sem	marks. The test will have two components. The Quiz is evaluated for 15	
	marks and second component consisting of questions requiring	
	descriptive answers is evaluated for 35 marks. The test & quiz will	
	assess the skills acquired through the training module.	
	SEE is based on the test conducted at the end of the 3 rd semester The	
	test will have two components a Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks.	
Phase II	During the 4 th semester a test will be conducted and evaluated for 50	50%
IV Sem	marks. The test will have two components a Short Quiz and Questions	
	requiring descriptive answers. The test & quiz will assess the skills	
	acquired through the training module.	
	SEE is based on the test conducted at the end of the 4 th semester The test	
	will have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks	
Phase III	At the end of the IV Sem Marks of CIE (3 rd Sem and 4 th Sem) is consolidated for 50	
At the end of	marks (Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
IV Sem	At the end of the IV Sem Marks of SEE (3 rd Sem and 4 th Sem) is consolidated for 50	
	marks (Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

RV College of Engineering® – Bengaluru - 59

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Innovative Clubs of RVCE

1	Ashwa Racing	Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.
2	Astra Robites	Team involved in the design, fabrication and building application specific robots.
3	Coding Club	To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
4	Entrepreneurship Development Cell	E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.
5	Frequency Club	Team aims at contributing in both software and hardware domains mainly focusing on Artificial Intelligence, Machine Learning and it's advances.
6	Garuda	Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products.
7	Jatayu	Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation, Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a package of optimum weight.
8	Solar Car	Build a roadworthy solar electric vehicle in order to build a green and sustainable environment.
9	Team Antariksh	Team Antariksh is a Space Technology Student Club whose goal is to understand, disseminate and apply the engineering skills for innovation in the field of Space technology. designing Nano-Satellite payload for ISRO PS4 Orbital platform, RVSAT-1 along with developing experimental rockets of various altitude.
10	Team Chimera	Building a Formula Electric Car through Research and Development in E-Mobility. Electrifying Formula Racing.
11	Helios Racing	Team involved in design, manufacturing and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
12	Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.
13	Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.
14	Team vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.
15	Team Dhruva	Organizing activities like quizzes based on astronomy.Stargazing and telescope handling sessions.Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.
16	Ham club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.

"Not me but you" " Education through Community Service & Community Service through education"

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

Leadership in Technical Education, Interdisciplinary Research & Innovation, with a Focus on sustainable and Inclusive Technologies.

To create a conducive environment for interdisciplinary research and innovation.

To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.

To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.

To focus on technologies that are sustainable and inclusive, benefitting all sections of the society.

RV COLLEGE OF ENGINEERING

RV Vidyar iketan Post, 8th Mile, M) suru Road, Bengaluru--568 059 www.rvce.edu.in