

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

INNER FRONT COVER PAGE

College Vision & Mission (To be included from our side)

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech)
in
COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OFCOMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering

Vision: To achieve leadership in the field of Computer Science and Engineering by strengthening fundamentals and facilitating interdisciplinary sustainable research to meet the ever growing needs of the society.

Mission:

- To evolve continually as a center of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

PROGRAM OUTCOMES (PO)

Program Outcomes (PO)

The graduates of M. Tech. in Computer Science and Engineering (CSE) Program will be able to:

- PO1 Independently carry out research and development work to solve practical problems related to Computer Science and Engineering domain.
- PO2 Write and present a substantial technical report/document.
- PO3 Demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- PO4 Acquire knowledge to evaluate, analyze complex problems by applying principles of Mathematics, Computer Science and Engineering with a global perspective.
- PO5 Explore, select, learn and model applications through use of state-of-art tools.
- PO6 Recognize opportunities and contribute synergistically towards solving engineering problems effectively, individually and in teams, to accomplish a common goal and exhibit professional ethics, competence and to engage in lifelong learning.

Program Specific Criteria for M.Tech in Computer Science and

Engineering

Professional Bodies: IEEE-CS, ACM

The M.Tech in Computer Science and Engineering curriculum is designed to enable the

students to (a) analyze the problem by applying design concepts, implement the solution,

interpret and visualize the results using modern tools (b) acquire breadth and depth wise

knowledge in computer science domain (c) be proficient in Mathematics and Statistics,

Humanities, Ethics and Professional Practice, Computer Architecture, Analysis of

Algorithms, Advances in Operating Systems, Computer Networks and Computer Security

courses along with elective courses (d) critically think and solve problems, communicate with

focus on team work.

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PHY	Physics
21.	CHY	Chemistry
22.	MAT	Mathematics

INDEX

	I Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	18MAT11B	Probability Theory and Linear Algebra	1				
2.	18MCE12	Advances in Algorithms and Applications	3				
3.	18MCE13	Data Science	6				
4.	18HSS14	Professional Skills Development	8				
		GROUP A: CORE ELECTIVES					
1.	18MCE1A1	Computer Network Technologies	10				
2.	18MCE1A2	Data Preparation and Analysis	10				
3. 18MCE1A3		Applied Cryptography	12				
		GROUP B: CORE ELECTIVES					
1.	18MCN 1B1	Cloud Computing Technology	14				
2.	18MCE1B2	Intelligent Systems	16				
3.	18MCN1B3	Wireless Network Security	18				

		II Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18MCE21	Big Data Analytics	20
2.	18MCE22	Parallel Computer Architecture	24
3.	18IM23	Research Methodology	26
4.	18MCE24	Minor Project	28
		GROUP C: CORE ELECTIVES	.
1.	18MCE2C1	Wireless and Mobile Networks	29
2.	18MCE2C2	Natural Language Processing	31
3.	18MCN2C3	Cloud Security	33
		GROUP D: CORE ELECTIVES	
1.	18MCN2D1	Internet of Things and Applications	35
2.	18MCE2D2	Deep Learning	37
3.	18MCE2D3	Security Engineering	39
		GROUP G: GLOBAL ELECTIVES	
1.	18CS2G01	Business Analytics	41
2.	18CV2G02	Industrial & Occupational Health and Safety	43
3.	18IM2G03	Modeling using Linear Programming	45
4.	18IM2G04	Project Management	47
5.	18CH2G05	Energy Management	49
6.	18ME2G06	Industry 4.0	51
7.	18ME2G07	Advanced Materials	53
8.	18CHY2G08	Composite Materials Science and Engineering	55
9.	18PHY2G09	Physics of Materials	57
10.	18MAT2G10	Advanced Statistical Methods	59

RV COLLEGE OF ENGINEERING®, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

M.Tech in COMPUTER SCIENCE AND ENGINEERING

	FIRST SEMESTER CREDIT SCHEME							
Sl.				Credit Allocation				
No.	Course Code	Course Title	BoS	L	Т	P	Total Credits	
1	18 MAT 11B	Probability Theory and Linear Algebra	MT	4	0	0	4	
2	18 MCE 12	3		3	1	1	5	
3	18 MCE 13	Data Science	CS	3	1	1	5	
4	18 HSS 14	Professional Skills Development	HSS	0	0	0	0	
5	18 MCE 1AX	Elective Group-A	CS	4	0	0	4	
6	18 MCE 1BX	Elective Group-B	CS	4	0	0	4	
	Total number of Credits				2	2	22	
		Total Number of Hou	rs / Week	18	4	4	26	

	SECOND SEMESTER CREDIT SCHEME							
Sl.	Course Code	Course Title		Credit Allocation				
No.			BoS	L	T	P	Total Credits	
1	18 MCE 21	Big Data Analytics	CS	3	1	1	5	
2	2 18 MCE 22 Parallel Computer Architecture		CS	3	1	0	4	
3	18 IM 23	Research Methodology	IEM	3	0	0	3	
4	18 MCE 24	Minor Project	CS	0	0	2	2	
5	18 MCE 2CX	Elective Group-C	CS	4	0	0	4	
6	18 MCE 2DX	Elective Group-D	CS	4	0	0	4	
7	18 XX 2GXX	Global Elective Group-G	R.BoS	3	0	0	3	
	Total number of Credits				2	3	25	
	Total Number of Hours / Week				4	6	30	

	I Semester						
		GROUP A: CORE ELECTIVES					
Sl. No.	Sl. No. Course Code Course Title						
1.	18 MCE 1A1	Computer Network Technologies					
2.	18 MCE 1A2	Data Preparation and Analysis					
3.	18 MCE 1A3	Applied Cryptography					
		GROUP B: CORE ELECTIVES					
1.	18 MCN 1B1	Cloud Computing Technology					
2.	18 MCE 1B2	Intelligent Systems					
3.	18 MCN 1B3	Wireless Network Security					
		II Semester					
		GROUP C: CORE ELECTIVES					
1.	18 MCE 2C1	Wireless and Mobile Networks					
2.	18 MCE 2C2	Natural Language Processing					
3.	18 MCN 2C3	Cloud Security					
	GROUP D: CORE ELECTIVES						
1.	18 MCN 2D1	Internet of Things and Applications					
2.	18 MCE 2D2	Deep Learning					
3.	18 MCE 2D3	Security Engineering					

	GROUP E: GLOBAL ELECTIVES						
Sl. No.	Host Dept	Course Code	Course Title	Credits			
1.	CS	18CS2G01	Business Analytics	03			
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	03			
3.	IM	18IM2G03	Modelling using Linear Programming	03			
4.	IM	18IM2G04	Project Management	03			
5.	СН	18CH2G05	Energy Management	03			
6.	ME	18ME2G06	Industry 4.0	03			
7.	ME	18ME2G07	Advanced Materials	03			
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	03			
9.	PHY	18PHY2G09	Physics of Materials	03			
10.	MAT	18MAT2G10	Advanced Statistical Methods	03			

I Semester							
PROBABILIT	PROBABILITY THEORY AND LINEAR ALGEBRA						
(Common to MC	N, MCS, MDC, MCE, MI	RM, MIT, MSE)					
Course Code: 18MAT11B		CIE Marks	:	100			
Credits: L:T:P: 4:0:0		SEE Marks	:	100			
Hours: 47		SEE Duration	:	3 Hrs			

Course Learning Objectives (CLO):

The students will be able to:

- 1. Understand the basics of Probability theory and Linear Algebra.
- 2. Develop probability models for solving real world problems in engineering applications.
- 3. Apply standard probability distributions to fit practical situations.
- 4. Compute the characteristic polynomial, Eigen values and Eigen vectors and use them in applications.
- 5. Diagonalize and orthogonally diagonalize symmetric matrices.

Unit – I	
Matrices and Vector spaces :	09 Hrs
Geometry of system of linear equations, vector spaces and subspaces, linear	
independence, basis and dimension, four fundamental subspaces, Rank-Nullity	
theorem(without proof), linear transformations.	
Unit – II	
Orthogonality and Projections of vectors:	09 Hrs
Orthogonal Vectors and subspaces, projections and least squares, orthogonal bases	0, 222
and Gram- Schmidt orthogonalization, Computation of Eigen values and Eigen	
vectors, diagonalization of a matrix, Singular Value Decomposition.	
Unit – III	
Random Variables:	10 Hrs
Definition of random variables, continuous and discrete random variables,	
Cumulative distribution Function, probability density and mass functions,	
properties, Expectation, Moments, Central moments, Characteristic functions.	
Unit – IV	
Discrete and Continuous Distributions:	10 Hrs
Binomial, Poisson, Exponential, Gaussian distributions.	
Multiple Random variables:	
Joint PMFs and PDFs, Marginal density function, Statistical Independence,	
Correlation and Covariance functions, Transformation of random variables, Central	
limit theorem (statement only).	
Unit – V	
Random Processes:	09 Hrs
Introduction, Classification of Random Processes, Stationary and Independence,	"
Auto correlation function and properties, Cross correlation, Cross covariance	
functions. Markov processes, Calculating transition and state probability in Markov	
chain.	

Cours	Course Outcomes: After going through this course the student will be able to:						
CO1	Demonstrate the understanding of fundamentals of matrix theory, probability theory and						
	random process.						
CO ₂	Analyze and solve problems on matrix analysis, probability distributions and joint						
	distributions.						
CO3	Apply the properties of auto correlation function, rank, diagonalization of matrix, verify						
	Rank - Nullity theorem and moments.						
CO4	Estimate Orthogonality of vector spaces, Cumulative distribution function and characteristic						
	function. Recognize problems which involve these concepts in Engineering applications.						

Ref	ference Books:							
1	Probability, Statistics and Random Processes, T. Veerarajan, 3 rd Edition, 2008, Tata							
1	McGraw Hill Education Private Limited, ISBN:978-0-07-066925-3.							
	Probability and Random Processes With Applications to Signal Processing and							
2	Communications, Scott. L. Miller and Donald. G. Childers, 2 nd Edition, 2012, Elsevier							
	Academic Press, ISBN 9780121726515.							
3	Linear Algebra and its Applications, Gilbert Strang, 4 th Edition, 2006, Cengage							
	Learning, ISBN 97809802327.							
4	Schaum's Outline of Linear Algebra, Seymour Lipschutz and Marc Lipson, 5 th Edition,							
4	2012, McGraw Hill Education, ISBN-9780071794565.							

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Scheme of Semester End Examination (SEE) for 100 marks:

Total CIE is 20+50+30=100 Marks.

Semester: I									
	ADVANCES IN ALGORITHMS AND APPLICATIONS								
		((Theory and Practice)						
Course Code	:	18MCE12	CIE Marks		:	100			
Credits L: T: P	:	3:1:1	SEE Marks		:	100			
Hours	:	36L+24T+24P	SEE Durati	on	:	3 hrs			

Unit – I	
Analysis techniques: Growth of functions: Asymptotic notation, Standard notations and common functions, Substitution method for solving recurrences, Recursion tree method for solving recurrences, Master theorem. Sorting in Linear Time Lower bounds for sorting, Counting sort, Radix sort, Bucket sort	07 Hrs
Unit – II	
Advanced Design and Analysis Technique Matrix-chain multiplication, Longest common subsequence. An activity-selection problem, Elements of the greedy strategy Amortized Analysis Aggregate analysis, The accounting method, The potential method	08 Hrs
Unit – III	
Graph Algorithms Bellman-Ford Algorithm, Shortest paths in a DAG, Johnson's Algorithm for sparse graphs. Maximum Flow: Flow networks, Ford Fulkerson method and Maximum Bipartite Matching	07 Hrs
Unit – IV	
Advanced Data structures Structure of Fibonacci heaps, Mergeable-heap operations, Decreasing a key and deleting a node, Disjoint-set operations, Linked-list representation of disjoint sets, Disjoint-set forests. String Matching Algorithms: Naïve algorithm, Rabin-Karp algorithm, String matching with finite automata, Knuth-Morris-Pratt algorithm	07 Hrs
Unit – V	
Multithreaded Algorithms The basics of dynamic multithreading, Multithreaded matrix multiplication, Multithreaded merge sort	07 Hrs
Unit – VI (Lab Component)	
Solve case studies by applying relevant algorithms and calculate complexity. For example:	2 Hrs/ Week
Applied example of graph Algorithm Real world and lightly and Data Structure	
2. Real world applications of Advanced Data Structures3. Real applications of Maximum Flow	
4. String matching algorithms	
Sample Experiment:	
Write code for an appropriate algorithm to find maximal matching.	

Six reporters Asif (A), Becky (B), Chris (C), David (D), Emma (E) and Fred (F), are to be assigned to six news stories Business (1), Crime (2), Financial (3), Foreign(4), Local (5) and Sport (6). The table shows possible allocations of reporters to news stories. For example, Chris can be assigned to any one of stories 1, 2 or 4.

	1	2	3	4	5	6
A					✓	
В	✓			✓		
С	✓	✓		✓		
D					✓	
Е			√		✓	✓
F				✓		

2. The table shows the tasks involved in a project with their durations and immediate predecessors.

<u>* </u>		
Task	Duration (Days)	Immediate predecessors
A	2	
В	4	
С	5	A,B
D	3	В
Е	6	С
F	3	С
G	8	D
Н	2	D,F
	•	•

Find minimum duration of this project.

Course	Course Outcomes: After going through this course the student will be able to:				
CO1	Explore the fundamentals in the area of algorithms by analysing various types of algorithms.				
CO2	Analyze algorithms for time and space complexity for various applications				
CO3	Apply appropriate mathematical techniques to construct robust algorithms.				
CO4	Demonstrate the ability to critically analyze and apply suitable algorithm for any given				
	problem.				

R	eference Books:
1	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms; Columbia University, 3 rd Edition, 2009, ISBN: 978-0262033848
2	Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Addison-Wesley, 3 rd Edition, 2007, ISBN: 978-0132847377
3	Kozen DC, The design and analysis of algorithms, Springer Science & Business Media, 2012, ISBN: 978-0387976877
4	Kenneth A. Berman, Jerome L. Paul, Algorithms, Cengage Learning, 2002. ISBN: 978-8131505212

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

			Semester: I			
			DATA SCIENCE			
			(Theory and Practice)			
Course Code	:	18MCE13		CIE Marks	:	100+50
Credits L: T: P	:	3:1:1		SEE Marks	:	100+50
Hours	:	36L+24T+24P		SEE Duration	:	3 hrs

Unit – I					
Introduction to Data mining and machine learning: Describing structural patterns,	07 Hrs				
Machine learning, Data mining, Simple examples, Fielded applications, Machine learning					
and statistics, Generalization as search, Enumerating the concept space, Bias.					
Unit – II					
The Data Science process: The roles in a Data Science project, Project roles, Stages of a data science project, Defining the goal, Data collection and management, Modelling, Model evaluation and critique, Presentation and documentation, Model deployment and maintenance, setting expectations, Determining lower and upper bounds on model performance, Choosing and evaluating models. Mapping problems to machine learning tasks, Solving classification problems, Solving scoring, Working without known targets, Problem-to-method mapping, Evaluating models, Evaluating classification models, Evaluating scoring, Evaluating probability models, Evaluating ranking models, Evaluating clustering models, Validating models.	08 Hrs				
Unit – III					
Output knowledge representation: Decision trees, association rule mining: Association rule mining, Apriori Algorithm, Statistical modeling, Divide-and-conquer: Constructing decision trees.	07 Hrs				
Unit – IV					
Linear Models: Linear regression, logistic regression, Extending linear models, Instance-based learning, Bayesian Networks, Combining multiple models.	07 Hrs				
Unit –V					
K-Nearest Neighbors, Support Vector Machines Maximal Margin Classifier, Support Vector Classifiers, Classification with Non-linear Decision Boundaries, Unsupervised Learning: Principal Components Analysis, clustering methods: k means, hierarchical clustering.	07 Hrs				
UNIT-VI (Lab Component)					
 Using Open source tools(R/Python) design and execute for a given large dataset: Principal Components Analysis Decision Trees: Fitting Classification and Regression Trees, Bagging and Random Forests, Boosting. Logistic Regression, Linear Discriminant Analysis, Quadratic Discriminant Analysis, and K-Nearest Neighbors. Support Vector Machines: Support Vector Classifier, ROC Curves, SVM with Multiple Classes 	2 Hrs/ week				
5. Clustering: K-Means and Hierarchical Clustering					

Course	e Outcomes: After going through this course the student will be able to:
CO1	Explore and apply Machine Learning Techniques to real world problems.
CO2	Evaluate different mathematical models to construct algorithms.
CO3	Analyze and infer the strength and weakness of different machine learning models
CO4	Implement suitable supervised and unsupervised machine learning algorithms for various applications.

References:

- 1. Ian H. Witten & Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd edition, Elsevier Morgan Kaufmann Publishers, 2005, ISBN: 0-12-088407-0
- 2. Nina Zumel and John Mount, Practical data science with R, Manning Publications, March 2014, ISBN 9781617291562
- 3. Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical Learning with Applications in R, ISSN 1431-875X,ISBN 978-1-4614-7137-0 ISBN 978-1-4614-7138-7 (eBook), DOI 10.1007/978-1-4614-7138-7,2015,Springer Publication.
- 4. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques, Third Edition, Morgan Kaufmann, 2006, ISBN 1-55860-901-6

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: I	
-------------	--

PROFESSIONAL SKILL DEVELOPMENT					
	(Common to all Programs)				
Course Code	:	18HSS14	CIE Marks	:	50
Credits: L: T: P	:	3:0:0	SEE Marks	:	Audit Course
Hours	:	18L			

Unit – I 03 Hrs

Communication Skills: Basics of Communication, Personal Skills & Presentation Skills – Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis. **Resume Writing:** Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts. Theory and Applications.

Unit - II 08 Hrs

Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Simple equations – Linear equations, Elimination Method, Substitution Method, Inequalities.

Reasoning – a. **Verbal** - Blood Relation, Sense of Direction, Arithmetic & Alphabet.

b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification.

Analytical Reasoning - Single & Multiple comparisons, Linear Sequencing.

Logical Aptitude - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.

Verbal Analogies/Aptitude – introduction to different question types – analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving

Unit - III 03 Hrs

Interview Skills: Questions asked & how to handle them, Body language in interview, and Etiquette – Conversational and Professional, Dress code in interview, Professional attire and Grooming, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on Stress Interviews, Technical Interviews, and General HR interviews

Unit - IV 02 Hrs

Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender sensitivity; capability and maturity model, decision making ability and analysis for brain storming; Group discussion(Assertiveness) and presentation skills

Unit - V 07 Hrs

Motivation: Self-motivation, group motivation, Behavioral Management, Inspirational and motivational speech with conclusion. (Examples to be cited).

Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Develop professional skill to suit the industry requirement.				
CO2	Analyze problems using quantitative and reasoning skills				
CO3	Develop leadership and interpersonal working skills.				
CO4	Demonstrate verbal communication skills with appropriate body language.				

Refe	rence Books:
1.	The 7 Habits of Highly Effective People, Stephen R Covey, 2004 Edition, Free Press,ISBN: 0743272455
2.	How to win friends and influence people, Dale Carnegie, 1 st Edition, 2016, General Press, ISBN: 9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book, 2014 Edition, Tata McGraw Hill ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity				
	After 9 hours of training program, students are required to undergo a test set for a total of 50				
T	marks. The structure of the test will have two parts. Part A will be quiz based evaluated for 15				
1	marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The				
	total marks for this phase will be $50 (15 + 35)$.				
	Similarly students will have to take up another test after the completion 18 hours of training.				
l II	The structure of the test will have two parts. Part A will be quiz based evaluated for 15 marks				
11	and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total				
	marks for this phase will be $50 (15 + 35)$.				
	FINAL CIE COMPUTATION				

Continuous Internal Evaluation for this course will be based on the average of the score attained through the two tests. The CIE score in this course, which is a mandatory requirement for the award of degree, must be greater than 50%. Needless to say the attendance requirement will be the same as in any other course.

Semester: I							
	COMPUTER NETWORK TECHNOLOGIES (Group A: Core Elective)						
Course Code	Course Code : 18MCE1A1 CIE Marks : 100						
Credits L: T: P	Credits L: T: P : 4:0:0						
Hours	:	46L		SEE Duration	:	3 hrs	

Unit – I	
Foundations and Internetworking	08 Hrs
Network Architecture- layering & Protocols, Internet Architecture, Implementing	
Network Software- Application Programming Interface (sockets), High Speed Networks,	
Ethernet and multiple access networks (802.3), Wireless-802.11/Wi-Fi,	
Bluetooth(802.15.1), Cell Phone Technologies.Switching and Bridging, Datagrams,	
Virtual Circuit Switching, Source Routing, Bridges and LAN Switches.	
Unit – II	
Internetworking	09 Hrs
Internetworking, Service Model, Global Addresses, Special IP addresses, Datagram	
Forwarding in IP, Subnetting and classless addressing-Classless Inter-domain	
Routing(CIDR), Address Translation(ARP), Host Configuration(DHCP), Error	
Reporting(ICMP), Routing, Routing Information Protocol(RIP), Routing for mobile hosts,	
Open Shortest Path First(OSPF), Switch Basics-Ports, Fabrics, Routing Networks through	
Banyan Network.	
Unit – III	
Advanced Internetworking	10 Hrs
Router Implementation, Network Address Translation(NAT), The Global Internet-Routing	
Areas, Interdomain Routing(BGP), IP Version 6(IPv6), extension headers, Multiprotocol	
Label Switching(MPLS)-Destination Based forwarding, Explicit Routing, Virtual Private	
Networks and Tunnels, Routing among Mobile Devices- Challenges for Mobile	
Networking, Routing to Mobile Hosts(MobileIP), Mobility in IPv6.	
Unit – IV	00 TT
End-to-End Protocols	09 Hrs
Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-to-End Issues, Segment	
Format, Connecting Establishment and Termination, Sliding Window Revisited,	
Triggering Transmission-Silly Window Syndrome, Nagle's Algorithm, Adaptive	
Retransmission-Karn/Partridge Algorithm, Jacobson Karels Algorithm, Record	
Boundaries, TCP Extensions, Real-time Protocols	
Unit –V Congestion Control/Avoidance and Applications	10 Hrs
	10 mrs
Queuing Disciplines-FIFO, Fair Queuing, TCP Congestion Control-Additive Increase/	
Multiplicative Decrease, Slow Start, Fast Retransmit and Fast Recovery, Congestion-	
Avoidance Mechanisms, DEC bit, Random Early Detection (RED), Source-Based	
Congestion Avoidance. Network Management: Network Management System; Simple	
Network Management Protocol (SNMP) - concept, management components, SMI, MIB,	
SNMP messages, <i>features of SNMPv3</i> . What Next: Internet of Things, Cloud Computing,	
The Future Internet, Deployment of IPv6	

Cours	Course Outcomes: After going through this course the student will be able to:									
CO1	Gain knowledge on networking research by studying a combination of functionalities and services of networking.									
CO2	Analyze different protocols used in each layer and emerging themes in networking research.									
CO3	Design various protocols and algorithms in different layers that facilitate effective communication mechanisms.									
CO4	Apply emerging networking topics and solve the challenges in interfacing various protocols in real world.									

Refe	erence Books:						
1.	Larry Peterson and Bruce S Davis, Computer Networks: A System Approach, 5th edition,						
	Elsevier, 2014, ISBN-13:978-0123850591, ISBN-10:0123850592.						
2.	. Behrouz A. Forouzan, Data Communications and Networking, 5th Edition, Tata McGraw Hil						
	2013,ISBN: 9781259064753						
3.	S.Keshava, An Engineering Approach to Computer Networking, 1st edition, Pearson Education,						
	ISBN-13: 978-0-201-63442-6						
4.	Andrew S Tanenbaum, Computer Networks, 5th edition, Pearson, 2011, ISBN-9788-177-58-						
	1652.						

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
	Data Preparation and Analysis						
		(G	roup A: Core Elective)				
Course Code	:	18MCE1A2		CIE Marks	:	100	
Credits L: T: P	:	4:0:0		SEE Marks	:	100	
Hours	:	46L		SEE Duration	:	3 hrs	

	Unit – I	
Data (Objects and Attribute Types: Attributes, Nominal Attributes, Binary Attributes,	09 Hrs
	Attributes, Numeric Attributes, Discrete versus Continuous Attributes. Basic	07 1118
Statist	ical Descriptions of Data:	
Measu	uring the Central Tendency: Mean, Median, and Mode, Measuring the Dispersion	
of Da	ta: Range, Quartiles, Variance, Standard Deviation, and Inter quartile Range,	
Graphi	c Displays of Basic Statistical Descriptions of Data	
	Unit – II	
	ring Data Similarity and Dissimilarity: Data Matrix versus Dissimilarity Matrix,	09 Hrs
	nity Measures for Nominal Attributes, Proximity Measures for Binary Attributes,	
	ilarity of Numeric Data: Minkowski Distance, Proximity Measures for Ordinal	
Attribu	ites, Dissimilarity for Attributes of Mixed Types, Cosine Similarity.	
	Unit – III	
	Preprocessing: An Overview, Data Quality: Need of Preprocessing the Data,	09 Hrs
	Tasks in Data Preprocessing. Data Cleaning: Missing Values, Noisy Data, Data	
	ng as a Process. Data Integration: Entity Identification Problem, Redundancy and	
	ation Analysis, Tuple Duplication, Data Value Conflict Detection and Resolution.	
	Reduction: Overview of Data Reduction Strategies, Wavelet Transforms, Principal	
•	onents Analysis, Attribute Subset Selection, Regression and Log-Linear Models:	
Parame	etric, Data Reduction, Histograms, Clustering, Sampling, Data Cube Aggregation.	
	Y7 1/4 YY7	
D 4	Unit – IV	00 TT
	Transformation and Data Discretization: Data Transformation Strategies	09 Hrs
	ew, Data Transformation by Normalization, Discretization by Binning,	
	tization by Histogram Analysis, Discretization by Cluster, Decision Tree, and	
	ation Analyses, Concept Hierarchy Generation for Nominal Data. Data	
	ization: Pixel-Oriented Visualization Techniques, Geometric Projection	
	ization Techniques, Icon-Based Visualization Techniques, Hierarchical	
visuai	ization Techniques, Visualizing Complex Data and Relations. Unit –V	
Minin	g Complex Data Types: Mining Sequence Data: Time-Series, Symbolic	10 Hrs
	nces, and Biological Sequences, Mining Graphs and Networks, Mining Other Kinds	10 1118
of Data		
	Methodologies of Data Mining: Statistical Data Mining, Views on Data Mining	
	ations, Visual and Audio Data Mining. Data Mining Applications: Data Mining	
	nancial Data Analysis, Data Mining for Retail and Telecommunication Industries,	
	Mining in Science and Engineering, Data Mining for Intrusion Detection and	
	tion, Data Mining and Recommender Systems, Data Mining and Society:	
	tous and Invisible Data Mining, Privacy, Security, and Social Impacts of Data	
Mining		
141111111		
Cours	e Outcomes: After going through this course the student will be able to:	
CO1	Explore the data of various domains, for preprocessing	
CO2	Analyze the various techniques of data cleaning performing data analysis.	
CO3	Apply various techniques for data extraction from dataset	
CO4	Visualize the data using different tools for getting better insight.	
	visuanze the data using unrerent tools for getting better misight.	

Re	References:						
1	Jiawei Han and Micheline Kamber: Data Mining – Concepts and Techniques, 3 rd Edition, Morgan Kaufmann, 2006, ISBN 1-55860-901-6						
2	Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Pearson Education, 2007, ISBN 9788131714720						
3	Insight into Data Mining, Theory & Practice by K. P. Soman, Shyam Diwakar, V. Ajay, PHI – 2006, ISBN: 978-81-203-2897-6						
4	Ian H Witten & Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2 nd edition, Elsevier Morgan Kaufmann Publishers, 2005, ISBN: 0-12-088407-0						

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
	APPLIED CRYPTOGRAPHY						
			(Group A: Core Ele	ective)			
			(Common to CSE and	d CNE)			
Course Code	Course Code : 18MCE1A3 CIE Marks : 100						
Credits L: T: P : 4:0:0 SEE Marks : 100							
Hours	:	46L		SEE Duration	:	3 hrs	

	Unit – I			
Ove	rview of Cryptography: Introduction, Information security and cryptography:	09 Hrs		
	ground on functions: Functions (1-1, one-way, trapdoor one-way), Permutations, and	071113		
	lutions. Basic terminology and concepts, Symmetric-key encryption: Overview of			
	k ciphers and stream ciphers, Substitution ciphers and transposition ciphers,			
	position of ciphers, Stream ciphers, The key space. Classes of attacks and security			
	els: Attacks on encryption schemes, Attacks on protocols, Models for evaluating			
secu	rity, Perspective for computational security. Unit – II			
Mat	hematical Background: Probability: Basic definitions, Conditional probability,	09 Hrs		
	dom variables, Binomial distribution, Birthday attacks and Random mappings.	071115		
	mation theory: Entropy, Mutual information. Number theory: The integers,			
	* ***			
_	orithms in Z, The integers modulo n, Algorithms in Zn, Legendre and Jacobi symbols,			
Blur	n integers. Abstract Algebra: Groups, Rings, Fields, Polynomial rings, Vector spaces.			
04	Unit – III	00.44		
	am Ciphers: Introduction: Classification, Feedback shift registers: Linear feedback	09 Hrs		
	registers, Linear complexity, Berlekamp-Massey algorithm, Nonlinear feedback shift			
_	sters. Stream ciphers based on LFSRs: Nonlinear combination generators, Nonlinear			
filte	generators, Clock-controlled generators. Other stream ciphers: SEAL.			
	Unit – IV			
	k Ciphers: Introduction and overview, Background and general concepts:	09 Hrs		
Intro	duction to block ciphers, Modes of operation, Exhaustive key search and multiple			
encr	yption. Classical ciphers and historical development: Transposition ciphers			
(bac	kground), Substitution ciphers (background), Polyalphabetic substitutions and			
Vige	enere ciphers (historical). Polyalphabetic cipher machines and rotors (historical),			
_	otanalysis of classical ciphers (historical).			
	Unit –V			
Iden	tification and Entity Authentication: Introduction, Passwords (weak	10 Hrs		
	entication), Challenge-response identification (strong authentication), Customized and			
	knowledge identification protocols: Overview of zero-knowledge concepts, Feige-			
	Shamir identification protocol, GQ identification protocol, Schnorr identification			
	ocol, Comparison: Fiat-Shamir, GQ, and Schnorr, Attacks on identification protocols.			
	rse Outcomes: After going through this course the student will be able to:			
CO		schemes.		
CO2				
CO3				
CO ₄	1 1			
	erence Books:			
1	Alfred I Manager Doul C von Oorgebet Coatt A Vanstone Handbook of Analied C			
1	Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of Applied Cryptography CRC Press, Taylor and Francis Group, ISBN-13: 978-0-84-938523-0.			
2				
	ISBN:0-471-22357-3.			
3	William Stallings, Cryptography and Network Security, 6th Edition, ISBN-13: 978-0-13			
4	Niels Ferguson, Bruce Schneier, Tadayoshi Kohno, Cryptography Engineering, Desig and Practical Applications, 2010, Wiley. ISBN: 978-0-470-47424-2.	n Principles		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
	CLOUD COMPUTING TECHNOLOGY						
			(Group B: Core Elective)				
		(Co	mmon to PG-CSE and PG-CNE)				
Course Code							
Credits L: T: P	Credits L: T: P : 4:0:0 SEE Marks : 100						
Hours	:	46L	SEE Duration	:	3 hrs		

Unit – I	
Introduction, Cloud Infrastructure	09 Hrs
Cloud computing, Cloud computing delivery models and services, Ethical issues, Cloud	07 1115
vulnerabilities, Major challenges faced by cloud computing; Cloud Infrastructure: Cloud	
computing at Amazon, Cloud computing the Google perspective, Microsoft Windows	
Azure and online services, Open-source software platforms for private clouds, Cloud	
storage diversity and vendor lock-in, Service- and compliance-level agreements, User	
experience and software licensing. Exercises and problems	
Unit – II	
Cloud Computing: Application Paradigms	09 Hrs
Challenges of cloud computing, Existing Cloud Applications and New Application	07 1113
Opportunities, Workflows: coordination of multiple activities, Coordination based on a	
state machine model: The ZooKeeper, The MapReduce Programming model, A case	
state machine model. The Zookeeper, The Mapkeduce Trogramming model, A case study: The Grep TheWeb application, HPC on cloud, Biology research	
Unit – III	
Cloud Resource Virtualization.	09 Hrs
Virtualization, Layering and virtualization, Virtual machine monitors, Virtual Machines,	07 1118
Performance and Security Isolation, Full virtualization and para virtualization, Hardware	
support for virtualization, Case Study: Xen a VMM based para virtualization,	
Optimization of network virtualization, The darker side of virtualization, Exercises and	
problems.	
Unit – IV	10 11
	10 Hrs
Cloud Resource Management and Scheduling	
Policies and mechanisms for resource management, Application of control theory to task	
scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback	
control based on dynamic thresholds, Coordination of specialized autonomic performance	
managers; Scheduling algorithms for computing clouds, Fair queuing, Start-time fair	
queuing, Borrowed virtual time, Exercises and problems.	
Unit –V	
Cloud Security, Cloud Application Development	09 Hrs
Cloud security risks, Security: The top concern for cloud users, Privacy and privacy	
impact assessment, Trust, Operating system security, Virtual machine Security, Security	
of virtualization, Security risks posed by shared images, Security risks posed by a	
management OS, A trusted virtual machine monitor, Amazon web services: EC2	
instances, Connecting clients to cloud instances through firewalls, Security rules for	
application and transport layer protocols in EC2, How to launch an EC2 Linux instance	
and connect to it, How to use S3 in java, Cloud-based simulation of a distributed trust	
algorithm, A trust management service, A cloud service for adaptive data streaming,	
Cloud based optimal FPGA synthesis. Exercises and problems. Amazon Simple	
Notification services.	
Latest topics:	
Google messaging, Android Cloud to Device messaging, Isolation mechanisms for data	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
privacy in cloud, Capability-oriented methodology to build private clouds.	

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain industry relevance of cloud computing and its intricacies, in terms of various challenges, vulnerabilities, SLAs, virtualization, resource management and scheduling, etc.				
CO2	Examine some of the application paradigms, and Illustrate security aspects for building cloud-based applications.				
CO3	Conduct a research study pertaining to various issues of cloud computing.				
CO4	Demonstrate the working of VM and VMM on any cloud platforms(public/private), and run a software service on that.				

Ref	erence Books:
1.	Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier (MK), 1 st edition, 2013, ISBN: 9780124046276.
2.	Kai Hwang, Geoffery C.Fox, Jack J Dongarra: Distributed Computing and Cloud Computing, from parallel processing to internet of things. Elsevier(MK), 1 st edition, 2012, ISBN: 978-0-12-385880-1
3.	Rajkumar Buyya, James Broberg, Andrzej Goscinski: Cloud Computing Principles and Paradigms, Willey, 1st Edition, 2014, ISBN: 978-0-470-88799-8.
4.	John W Rittinghouse, James F Ransome: Cloud Computing Implementation, Management and Security, CRC Press, 1st Edition, 2013, ISBN: 978-1-4398-0680-7.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester I								
	INTELLIGENT SYSTEMS							
		(6	Froup B: Core Elective					
		(Coı	nmon to CSE, MD, CII	M)				
Course Code	:	18MCE1B2		CIE Marks	:	100		
Credits L: T: P	:	4:0:0		SEE Marks	:	100		
Hours	:	46L		SEE Duration	:	3 hrs		

Unit – I				
Overview of Artificial Intelligence: Artificial Intelligence and its Application areas;	09 Hrs			
Knowledge Representation and Search: The Predicate Calculus: The Propositional				
Calculus, The Predicate Calculus, Using Inference Rules to Produce Predicate Calculus				
Expressions, Application: A Logic-Based Financial Advisor;				
Structures and strategies for state space search: Introduction, Structures for state space				
search ,Strategies for State Space Search, Using the State Space to Represent Reasoning				
with the Predicate Calculus; And/Or Graphs.				
Unit – II				
Heuristic Search: Introduction, Hill Climbing and Dynamic Programming, The Best-	09 Hrs			
First Search Algorithm, Admissibility, Monotonicity and Informedness, Using Heuristics				
in Games, Complexity Issues.				
Control and Implementation of State Space Search: Introduction, Recursion-Based				
Search, Production Systems, The Blackboard Architecture for Problem Solving.				
Unit – III				
Other Knowledge Representation Techniques: Semantic Networks, Conceptual	09 Hrs			
Dependencies, Scripts and Frames, Conceptual Graphs.				
Knowledge Intensive Problem Solving : Overview of Expert System Technology, Rule-				
Based Expert Systems, Model-Based, Case Based, and Hybrid Systems				
Planning: Introduction to Planning, Algorithms as State-Space Search, Planning graphs.				
Unit – IV				
Automated Reasoning: Introduction to Weak Methods in Theorem Proving, The General	09 Hrs			
Problem Solver and Difference Tables, Resolution Theorem Proving;				
Uncertain Knowledge and Reasoning:				
Introduction to Uncertainty, Inference using Full-Joint Distribution, Independence, Bayes'				
Rule and its use.				
Representing Knowledge in Uncertain Domain:				
Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions,				
Exact Inference in Bayesian Network, Approximate Inference in Bayesian Network				
Unit –V				
Introduction to Learning: Forms of Learning: Supervised learning, Unsupervised	10 Hrs			
Learning, Semi-Supervised and Reinforcement Learning; Parametric Models & Non-				
Parametric Models, Classification and Regression problems				
Artificial Neural Networks: ANN Structures, Single Layer feed-forward neural				
networks, Multi-Layer feed-forward neural networks, Learning in multilayer networks,				
networks.				
Artificial Intelligence Current Trends: The Science of Intelligent Systems, AI: Current				
Challenges and Future Directions;				

Course	Course Outcomes: After going through this course the student will be able to:					
CO1	Explore various Artificial Intelligence problem solving techniques.					
CO2	Identify and describe the different AI approaches such as Knowledge representation, Search strategies, learning techniques to solve uncertain imprecise, stochastic and nondeterministic nature in AI problems.					
CO3	Apply the AI techniques to solve various AI problems.					
CO4	Analyze and compare the relative challenges pertaining to design of Intelligent Systems.					

R	efer	ence	Bo	oks

- 1. George F Luger, Artificial Intelligence Structures and Strategies for Complex problem Solving, 6th Edition, Pearson Publication, 2009, ISBN-10: 0-321-54589-3, ISBN-13: 978-0-321-54589-3
- 2. Stuart Russel, Peter Norvig, Artificial Intelligence A Modern Approach, 3rd Edition, Pearson Publication, 2015, ISBN-13: 978-93-325-4351-5
- 3. Elaine Rich, Kevin Knight, Artificial Intelligence, 3rd Edition, Tata McGraw Hill, 2009, ISBN-10: 0070087709, ISBN-13: 978-0070087705
- 4. Grosan, Crina, Abraham, Ajith, Intelligent Systems-A Modern Approach, Springer-Verlag Berlin Heidelberg 2011, ISBN 9783642269394, 2011.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I								
	WIRELESS NETWORKS SECURITY							
			(Group B: Core Elec	tive)				
	(Common to PG-CSE and PG-CNE)							
Course Code	:	18MCN1B3		CIE Marks	:	100		
Credits L: T: P	:	4:0:0		SEE Marks	:	100		
Hours	:	46L		SEE Duration	:	3 hrs		

Course Learning Objectives:

Graduates shall be able to

- 1. Explore the principles of wireless networks security technology
- 2. Illustrate the secure design of wireless network with various protocols
- 3. Analyze and choose the suitable wireless security technology based on requirements.
- 4. Investigate the upcoming security trends and threats in the wireless applications

Unit – I	
Overview of wireless network security technology: Wireless network security	09 Hrs
fundamentals, Types of wireless network security Technology, Elements of wireless	
security, Available solutions and policies for wireless security, Perspectives- prevalence	
and issues for wireless security, Inverted security model	
Unit – II	
Designing wireless network security: Wireless network security design issues, Cost	09 Hrs
justification and consideration -hitting where it hurts, assess your vulnerable point,	
security as Insurance, consequences of breach, Standard design issues- switches, flexible	
IP address assignment, router filtering, bandwidth management, firewalls and NAT,	
VLAN, VPN, Remote access security, third party solutions	
Unit – III	
Installing and deploying wireless network security: Testing techniques- Phase I to IV,	09 Hrs
Internetworking Wireless Security - Operation modes of Performance Enhancing Proxy	
(PEP), Adaptive usage of PEPs over a Radio Access Network (RAN), Problems of PEP	
with IPSec, Problems of Interworking between PEP and IPSec, Solutions, Installation and	
Deployment	
Unit – IV	
Security in Wireless Networks and Devices: Introduction, Cellular Wireless	10 Hrs
Communication Network Infrastructure , Development of Cellular Technology, Limited	
and Fixed Wireless Communication Networks , Wireless LAN (WLAN) or Wireless	
Fidelity (Wi-Fi), WLAN (Wi-Fi) Technology, Mobile IP and Wireless Application	
Protocol, Standards for Wireless Networks , The IEEE 802.11, Bluetooth, Security in	
Wireless Networks, WLANs Security Concerns,	
*Best Practices for Wi-Fi Security	
Unit –V	
Security in Sensor Networks: Introduction, The Growth of Sensor Networks, Design	09 Hrs
Factors in Sensor Networks, Routing, Power Consumption, Fault Tolerance, Scalability,	
Product Costs, Nature of Hardware Deployed, Topology of Sensor Networks,	
Transmission Media, Security in Sensor Networks, Security Challenges, Sensor Network	
Vulnerabilities and Attacks, Securing Sensor Networks	
*Security Mechanisms and Best Practices for Sensor Networks, Trends in Sensor Network	
Security Research	

Course	Course Outcomes: After going through this course the student will be able to:						
CO1	CO1 Explore the existing threats in wireless networks and security issues						
CO2	Design suitable security in wireless networks depending on context						
CO3	Analyze the wireless installation and deployment techniques in real-world networks						
CO4	Improve the security and energy management issues for the wireless devices						

Ref	erence Books:
1.	John R. Vacca, Guide to Wireless Network security, 1st edition, 2006, Springer Publishers, ISBN
	978-0-387-29845-0
2.	Joseph Migga Kizza, A Guide to Computer Network Security, Springer, 2009, ISBN: 978-1-
	84800-916-5
3.	William Stallings, Cryptography and Network Security,4th edition, November 16, 2005, ISBN
	13: 9780131873162
4*	Technical Journal papers and manuals.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II								
	BIG DATA ANALYTICS							
			(Theory and Practice)					
Course Code	:	18MCE21		CIE Marks	:	100+50		
Credits L: T: P	:	3:1:1		SEE Marks	:	100+50		
Hours	:	36L+24T+24P		SEE Duration	:	3 hrs		

Unit – I					
INTRODUCTION TO NoSQL and BIG DATA	08 Hrs				
Classification of Digital Data: Structured, Semi-Structured and Unstructured data.					
NoSQL : Where is it used?, What is it?, Types of NoSQL Databases, Why NoSQL?,					
Advantages of NoSQL, SQL versus NoSQL, NewSQL, Comparison of SQL, NoSQL and					
NewSQL,					
Elasticsearch: Talking to Elastic Search: Document Oriented, Finding your feet, Life					
inside Cluster: Scale Horizontally, Coping with Failure, Data-in Data-out: Document					
Metadata, Indexing a document, Retrieving a document.					
Introduction to Big Data: Distributed file system – Big Data and its importance, Four					
Vs, Drivers for Big data, Big data analytics, Big data applications.					
Unit – II	1				
HADOOP ARCHITECTURE	07 Hrs				
Hadoop Architecture, Hadoop Storage: HDFS, Common Hadoop Shell commands,					
Anatomy of File Write and Read, NameNode, Secondary NameNode, and DataNode,					
Hadoop MapReduce paradigm, Map and Reduce tasks, Job, Task trackers - Cluster Setup					
– SSH & Hadoop Configuration – HDFS Administering – Monitoring & Maintenance.					
Unit – III HADOOP ECOSYSTEM AND YARN	07 Hrs				
Hadoop ecosystem components - SPARK, FLUME, Hadoop 2.0 New Features-	U/ HIS				
NameNode High Availability, HDFS Federation, MRv2, YARN					
Unit – IV					
Real-Time Applications in the Real World	07 Hrs				
Using HBase for Implementing Real-Time Applications- Using HBase as a Picture	0. 222				
Management System Using Specialized Real-Time Hadoop Query Systems Apache Drill,					
Using Hadoop-Based Event-Processing Systems HFlame, Storm					
Unit –V					
HIVE AND HIVEQL, HBASE	07 Hrs				
Hive Architecture and Installation, Comparison with Traditional Database, HiveQL -					
Querying Data - Sorting And Aggregating. HBase concepts- Advanced Usage, Schema					
Design, Advance Indexing - PIG, Zookeeper - how it helps in monitoring a cluster, HBase					
uses Zookeeper and how to Build Applications with Zookeeper					
UNIT-VI (Lab Component) Exercise 1 Elastic Search	2 Hrs/				
Build a platform to manage published journal papers:	Week				
Each journal document can have various attributes like,	vveek				
1. Name					
2. List of Author					
3. Abstract					
4. Content					
5. Name of conference where the paper is published					
6. Name of the journal where paper is published					
7. Date of publication					
8. List of references					
9. Subject					
An Author can have various attributes like					
1. Name					

- 2. Contact
- 3. University
- 4. Department
- 5. Designation

There are two types of users in the system

- 1. Author
- 2. Normal User

Authors are those who have published one or more papers. Author needs to register into the platform and upload his or her paper with the description fields as above. The system will store these details about the paper and also the paper document. It will parse the document to extract the "Abstract", "Reference" and other keywords from the documents and store it.

"Normal Users" will also have to register to the platform. Once they login they can do the following

- 1. They can list all the papers based on various attributes
- 2. They can search the papers based on keywords in abstract, contents, tags etc

Exercise 2 --- HDFS

Start by reviewing HDFS. You will find that its composition is similar to your local Linux file system. You will use the hadoop fs command when interacting with HDFS.

- 1. Review the commands available for the Hadoop Distributed File System:
- 2. Copy file foo.txt from local disk to the user's directory in HDFS
- 3. Get a directory listing of the user's home directory in HDFS
- 4. Get a directory listing of the HDFS root directory
- 5. Display the contents of the HDFS file user/fred/bar.txt
- 6. Move that file to the local disk, named as baz.txt
- 7. Create a directory called input under the user's home directory
- 8. Delete the directory input old and all its contents
- 9. Verify the copy by listing the directory contents in HDFS:

Exercise 3 --- MapReduce (Programs)

Using movie lens data

- 1. List all the movies and the number of ratings
- 2. List all the users and the number of ratings they have done for a movie
- 3. List all the Movie IDs which have been rated (Movie Id with at least one user rating it)
- 4. List all the Users who have rated the movies (Users who have rated at least one movie)
- 5. List of all the User with the max, min, average ratings they have given against any movie
- 6. List all the Movies with the max, min, average ratings given by any user

Exercise 4 – Extract facts using Hive

Hive allows for the manipulation of data in HDFS using a variant of SQL. This makes it excellent for transforming and consolidating data for load into a relational database. In this exercise you will use HiveQL to filter and aggregate click data to build facts about user's movie preferences. The query results will be saved in a staging table used to populate the Oracle Database. The moveapp_log_json table contains an activity column. Activity states are as follows:

- 1. RATE MOVIE
- 2. COMPLETED MOVIE
- 3. PAUSE_MOVIE
- 4. START_MOVIE
- 5. BROWSE_MOVIE
- 6. LIST MOVIE
- 7. SEARCH MOVIE

8. LOGIN

9. LOGOUT

10. INCOMPLETE_MOVIE

hive> SELECT * FROM movieapp_log_json LIMIT 5;

hive> drop table movieapp_log_json;

hive> CREATE EXTERNAL TABLE movieapp log ison (

custId INT,

movieId INT,

genreId INT,

time STRING,

recommended STRING,

activity INT.

rating INT,

price FLOAT)

ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.JsonSerde'

LOCATION '/user/oracle/moviework/applog/'

hive> SELECT * FROM movieapp_log_json LIMIT 20;

hive> SELECT MIN(time), MAX(time) FROM movieapp_log_json

1. PURCHASE_MOVIE

Hive maps queries into Map Reduce jobs, simplifying the process of querying large datasets in HDFS. HiveQL statements can be mapped to phases of the Map Reduce framework. As illustrated in the following figure, selection and transformation operations occur in map tasks, while aggregation is handled by reducers. Join operations are flexible: they can be performed in the reducer or mappers depending on the size of the leftmost table

- 1. Write a query to select only those clicks which correspond to starting, browsing, completing, or purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers where 'Y' is 1 and 'N' is 0. Also, ensure GENREID is not null. Only include the first 25 rows.
- 2. Write a query to select the customer ID, movie ID, recommended state and most recent rating for each movie.
- 3. Load the results of the previous two queries into a staging table. First, create the staging table:
- 4. Next, load the results of the queries into the staging table.

Exercise 5 - Extract sessions using Pig

While the SQL semantics of HiveQL are useful for aggregation and projection, some analysis is better described as the flow of data through a series of sequential operations. For these situations, Pig Latin provides a convenient way of implementing data flows over data stored in HDFS. Pig Latin statements are translated into a sequence of Map Reduce jobs on the execution of any STORE or DUMP command. Job construction is optimized to exploit as much parallelism as possible, and much like Hive, temporary storage is used to hold intermediate results. As with Hive, aggregation occurs largely in the reduce tasks. Map tasks handle Pig's FOREACH and LOAD, and GENERATE statements. The EXPLAIN command will show the execution plan for any Pig Latin script. As of Pig 0.10, the ILLUSTRATE command will provide sample results for each stage of the execution plan. In this exercise you will learn basic Pig Latin semantics and about the fundamental types in Pig Latin, Data Bags and Tuples.

- 1. Start the Grunt shell and execute the following statements to set up a dataflow with the click stream data. Note: Pig Latin statements are assembled into Map Reduce jobs which are launched at execution of a DUMP or STORE statement.
- 2. Group the log sample by movie and dump the resulting bag.
- 3. Add a GROUP BY statement to the sessionize.pig script to process the click stream data into user sessions.

Course	Course Outcomes: After going through this course the student will be able to:		
CO1	Explore and apply the Big Data analytic techniques for business applications.		
CO2	Apply non-relational databases, the techniques for storing and processing large volumes of structured and unstructured data, as well as streaming data.		
CO3	Analyze methods and algorithms, to compare and evaluate them with respect to time and space requirements, make appropriate design choices when solving problems.		
CO4	Develop and implement efficient big data solutions for various application areas using		
	NoSQL database, Elastic Search and Emerging technologies.		

Re	Reference Books:		
1	Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, Big data for dummies,		
	Wiley Publications, 1 st edition, 2013, ISBN: 978-1-118-50422-2		
2	Clinton Gormley, Zachary Tong, Elasticsearch – The Definitive Guide, O'Reilly Media, Inc. 1st		
	edition, 2015. ISBN: 978-1-449-35854-9.		
3	Tom White, HADOOP: The definitive Guide, 4th edition, O Reilly, 2015, ISBN-13: 978-1-4493-		
	610-7		
4	Chris Eaton, Dirk deroos et al., Understanding Big data: Analytics for Enterprise Class Hadoop		
	and Streaming Data, 1st edition, Tata McGraw Hill, 2015, ISBN 13: 978-9339221270		

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks

Semester: II						
PARALLEL COMPUTER ARCHITECTURE						
Course Code	:	18MCE22	Cl	IE Marks	:	100
Credits L: T: P	:	3:1:0	SI	EE Marks	:	100
Hours	:	36L+24T	SI	EE Duration	:	3 hrs

Unit – I		
Fundamentals of computer design:	07 Hrs	
Introduction; Classes computers; Defining computer architecture; Trends in Technology;		
Trends in power in Integrated Circuits; Trends in cost; Dependability, Measuring,		
reporting and summarizing Performance attributes; Quantitative Principles of computer		
design		
Unit – II		
Introduction to Parallel Programming:	07 Hrs	
Motivation, Scope of Parallel Computing, Principles of Parallel Algorithm design:		
Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions,		
Mapping Techniques for Load Balancing, Methods for containing Interaction Overheads,		
Parallel Algorithms Models using Open MP.		
Unit – III	•	
Programming Using the Using Message Passing Paradigm:	08 Hrs	
Principles of Message Passing Programming, Building Blocks, MPI, Topologies and		
Embedding, Overlapping Communication with computation, Collective Communication		
and computation operations, Groups and Communicators.		
Unit – IV		
Data-Level Parallelism in Vector, SIMD, and GPU Architectures: Introduction,	07 Hrs	
Vector Architecture, SIMD Instruction Set Extensions for Multimedia, Graphics		
Processing Units, Detecting and Enhancing Loop-Level Parallelism, Mobile versus Server		
GPUs and Tesla versus Core i7.		
Unit –V		
*Heterogeneous Computing	07 Hrs	
Heterogeneous Programming using Open ACC: Introduction, Execution Model, Memory		
Model, Features		
Case Study: Vector dot product, Matrix multiplication, Graph algorithms, and molecular dynamics.		

Course Outcomes: After going through this course the student will be able to:		
CO1	Explore the fundamental concepts of parallel computer architecture.	
CO ₂	Analyze the performance of parallel programming	
CO3	Design parallel computing constructs for solving complex problems.	
CO4	Demonstrate parallel computing concepts for suitable applications.	

Reference Books			
1.	John L Hennessy, David A Patterson, Computer Architecture: A Quantitative Approach,		
	Elsevier, 5 th Edition; 2011, ISBN: 9780123838728.		
2.	Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel		
	Computing, 2 nd edition, Pearson Education, 2007		
3.	Rob Farber, Parallel Programming with Open ACC, 1st edition, 2016, ISBN:9780124103979		
4*	http://hpac.rwth-aachen.de/people/springer/openacc_seminar.pdf		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II					
	RESEARCH METHODOLOGY					
			(Common to a	ll programs)		
Course Code	:	18IM23		CIE Marks	:	100
Credits	:	L: T: P	3:0:0	SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hours

Unit – I	
Overview of Research: Research and its types, identifying and defining research problem	07 Hrs
and introduction to different research designs. Essential constituents of Literature Review.	
Basic principles of experimental design, completely randomized, randomized block, Latin	
Square, Factorial.	
Unit – II	
Data and data collection: Overview of probability and data types	08 Hrs
Primary data and Secondary Data, methods of primary data collection, classification of	
secondary data, designing questionnaires and schedules.	
Sampling Methods: Probability sampling and Non-probability sampling	
Unit – III	
Processing and analysis of Data: Statistical measures of location, spread and shape,	07 Hrs
Correlation and regression, Hypothesis Testing and ANOVA. Interpretation of output	
from statistical software tools	
Unit – IV	
Advanced statistical analyses: Non parametric tests, Introduction to multiple regression,	07 Hrs
factor analysis, cluster analysis, principal component analysis. Usage and interpretation of	
output from statistical analysis software tools.	
Unit-V	
Essentials of Report writing and Ethical issues: Significance of Report Writing,	07 Hrs
Different Steps in Writing Report, Layout of the Research Report, Ethical issues related	
to Research, Publishing, Plagiarism	
Case studies: Discussion of case studies specific to the domain area of specialization	

Cours	Course Outcomes: After going through this course the student will be able to				
CO1	Explain the principles and concepts of research types, data types and analysis procedures.				
CO2	Apply appropriate method for data collection and analyze the data using statistical principles.				
CO3	Present research output in a structured report as per the technical and ethical standards.				
CO4	Create research design for a given engineering and management problem situation.				

R	eference Books:
1	Kothari C.R., Research Methodology Methods and techniques by, New Age International
	Publishers, 4th edition, ISBN: 978-93-86649-22-5
2	Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology,
	Pearson Education: New Delhi, 2006. ISBN: 978-81-77585-63-6
3	William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3 rd Edition,
	Atomic Dog Publishing, 2006. ISBN: 978-1592602919
4	Levin, R.I. and Rubin, D.S., Statistics for Management, 7th Edition, Pearson Education: New
	Delhi.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
			MINOR PROJEC	T		
Course Code	:	18MCE24		CIE Marks	:	100
Credits L: T: P	:	0:0:2		SEE Marks	:	100
Hours	:	48L		SEE Duration	:	3 hrs

GUIDELINES

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

ue	department/conege.		
Course Outcomes: After completing the course, the students will be able to			
CO1	Conceptualize, design and implement solutions for specific problems.		
CO2	Communicate the solutions through presentations and technical reports.		
CO3	Apply resource managements skills for projects.		
CO4	Synthesize self-learning, team work and ethics.		

Scheme of Continuous Internal Examination

Evaluation will be carried out in 3 phases. The evaluation committee will comprise of 4 members: Guide, Two Senior Faculty Members and Head of the Department.

Phase	Activity	Weightage
I	Synopsys submission, Preliminary seminar for the approval of selected topic and	20%
	objectives formulation	
II	Mid term seminar to review the progress of the work and documentation	40%
III	Oral presentation, demonstration and submission of project report	40%

^{**} Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

•	Selection of the topic & formulation of objectives	10%
•	Design and simulation/ algorithm development/ experimental setup	25%
•	Conducting experiments/ implementation / testing	25%
•	Demonstration & Presentation	15%
•	Report writing	25%

Scheme of Semester End Examination (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

•	Brief write up about the project	05%
•	Presentation / Demonstration of the Project	20%
•	Methodology and Experimental results & Discussion	25%
•	Report	20%
•	Viva Voce	30%

Semester: II						
	WIRELESS AND MOBILE NETWORKS					
		(G	roup-C: Core Elective			
Course Code	:	18MCE2C1		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	46L		SEE Duration	:	3 hrs

	Unit – I	
Wirele Diversite technic Radio of WL	mentals of Wireless Communication: Advantages, Limitations and Applications, ss Media, Infrared Modulation Techniques, Spread spectrum: DSSS and FHSS, ity techniques, MIMO, Channel specifications- Duplexing, Multiple access que: FDMA, TDMA,CDMA, CSMA,OFDMA fundamentals, Frequency Spectrum, and Infrared Frequency Spectrum, Wireless Local Loop (WLL): User requirements L systems, WLL system architecture, MMDS, LMDS, WLL subscriber terminal, nterface to the PSTN	09 Hrs
	Unit – II	
cell ged Capaci system interfer	mentals of cellular communications: Introduction, Cellular systems, Hexagonal ometry, Channel assignment strategies, Handoff strategies, Interference and System ty [Design problems], Co channel interference ratio, Frequency Reuse, Cellular design in worst case scenario with omnidirectional antenna, Co-channel rence reduction, Directional antennas in seven cell reuse pattern, Cell splitting, ent channel interference (ACI), Segmentation	09 Hrs
	Unit – III	
WLAN	ess Local Area Network (WLAN): Network components, Design requirements, Narchitecture, Standards, WLAN Protocols- Physical Layer and MAC Layer, IEEE p, Security (WPA), Latest developments of IEEE 802.11 standards	09 Hrs
	Unit – IV	
Wirele	ess Personal Area Network (WPAN): Network architecture and components,	09 Hrs
	I technologies and protocols, Application software; ZigBee (802.15.4): Stack	
	cture, Components, Topologies, Applications; Bluetooth (802.15.1): Protocol	
	Link types, security aspects, Network connection establishment, error correction	
	pology; HR –WPAN (UWB) (IEEE 802.15.3), LR-WPAN (IEEE 802.15.4)	
	Unit –V	
resistar IEEE 8 Econor	ty in Wireless Systems: Needs, Privacy definitions, Privacy requirements, Theft nce, Radio System and Physical requirements, Law enforcement requirements, 802.11 Security. Wi-Fi Protected Access (WPA), Economies of Wireless Network, mic Benefits, Economics of Wireless industry. ss data forecast, charging issues*, Tools: Wi-Fi Scanner, Aircrack, Kismet *	10 Hrs
Course	e Outcomes: After going through this course the student will be able to:	
CO1	Explore the existing wireless networks and connectivity issues	
CO2	Analyze the range of signals and path loss models for real world scenarios	
CO3	Evaluate the security and energy management issues for wireless devices	
CO4	Design suitable wireless network for various applications	
CU4	Design suitable wheless network for various applications	

Reference Books

1. Dr. Sunil Kumar S. Manvi & Mahabaleshwar S. Kakkasageri, Wireless and Mobile Network concepts and protocols, John Wiley India Pvt. Ltd, 1st edition, 2010, *ISBN* 13: 9788126520695

2.	Vijay K.Garg, Wireless Communications and Networking, Morgan Kaufmann Publishers, 2009,
	Indian Reprint ISBN: 978-81-312-1889-1
3.	Theodore S Rappaport, Wireless Communications, Principles and Practice, 2nd Edition, Pearson
	Education Asia, 2009, ISBN: 9780133755367
4*	Technical Journals, White papers

Open ended Lab experiments

- 1. Explore the scanning tools such as Wi-Fi Scanner, Aircrack, Kismet
- 2. Using QualNet simulator, design wireless networks such as IEEE 802.11, IEEE 802.15.5, UMTS
- 3. Review the features of LTE simulator and ONE (Opportunistic Network Environment)

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
	NATURAL LANGUAGE PROCESSING						
		(\mathbf{G})	roup-C: Core Elective)				
Course Code	:	18MCE2C2	C	CIE Marks	:	100	
Credits L: T: P	:	4:0:0	S	SEE Marks	:	100	
Hours	:	46L	S	SEE Duration	:	3 hrs	

Course Learning Objectives (CLO):

Students shall be able to

- 1. Demonstrate sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- 2. Train and evaluate empirical NLP systems.
- 3. Manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- 4. Design, implement, and analyse NLP algorithms

Unit – I	
Overview and Language Modeling: Overview: Origins and challenges of NLP-	09 Hrs
Language and Grammar-Processing Indian Languages- NLP Applications -Information	
Retrieval. Language Modeling: Various Grammar- based Language Models - Statistical	
Language Model	
Unit – II	
Word Level and Syntactic Analysis: Word Level Analysis: Regular Expressions-Finite-	09 Hrs
State Automata-Morphological Parsing-Spelling Error Detection and correction-Words	
and Word classes-Part-of Speech Tagging. Syntactic Analysis: Context-free Grammar-	
Constituency- Parsing-Probabilistic Parsing.	
Unit – III	
Hidden Markov and Maximum Entropy Models	09 Hrs
Markov Chains, The Hidden Markov Model, Computing Likelihood: The forward	
algorithm, Decoding: The Viterbi algorithm, Training HMMs: The forward-backward	
algorithm,	
Speech Recognition	
Speech Recognition Architecture, Applying HMM to speech, Feature Extraction: MFCC	
vectors.	
Unit – IV	
Machine Translation	09 Hrs
Introduction, Problems in machine translation, Characteristics of Indian languages,	
machine Translation approaches, Direct machine translation, Rule based machine	
translation, corpus based machine translation	
NLP Applications	
Information extraction, Machine Translation, Natural Language Generation, Discourse	
processing	
Unit –V	
Information Retrieval and Lexical Resources: Information Retrieval: Design features of	10 Hrs
Information Retrieval Systems-Classical, Non classical, Alternative Models of	
Information Retrieval valuation Lexical Resources: WordNet, FrameNet, Stemmers, POS	
Tagger, Research Corpora.	
Case Study: Learning to classify text using NLTK- Supervised classification, Choosing	
the right features, Document classification, parts of speech tagging, Exploiting context,	
Evaluation, Accuracy, Precision and Recall, Confusion matrix, Cross-validation	

Course	Course Outcomes: After going through this course the student will be able to:					
CO1	CO1 Comprehend and compare different natural language processing models					
CO2	Analyse spelling errors and error detection techniques					
CO3	CO3 Extract dependency, semantics and relations from the text.					
CO4	Differentiate various information retrieval models.					

Ref	erence Books
1	Tanveer Siddiqui, U.S. Tiwary, Natural Language Processing and Information Retrieval, OUP
	India, 2008, ISBN: 9780195692327
2	Daniel Jurafsky and James H Martin, Speech and Language Processing, 2 nd edition, Pearson
	Education, 2009
3	Steven Bird, Ewan Klein, Edward Loper, Natural Language Processing with Python, Publisher:
	O'Reilly Media, June 2009, ISBN: 9780596516499
4	Alexander Clark, Chris Fox, Shalom Lappin, The Handbook of computational linguistics and
	Natural Language processing, 2010, Wiley Blackwell.

Open ended experiments / Tutorial Questions

- 1. Forming Sentences-1
- 2. Forming Sentences-2
- 3. Tokens and Types
- 4. Heap's Law
- 5. Dictionary Generation
- 6. Coarse-grained POS Tagging
- 7. Fine-grained POS Tagging
- 8. Chunking
- 9. Context Free Grammar

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
	CLOUD SECURITY						
			(Group-C: Core Elect	tive)			
		(Cor	nmon to PG-CSE and	PG-CNE)			
Course Code	:	18MCN2C3		CIE Marks		100	
Credits L: T: P	Credits L: T: P : 4:0:0						
Hours	:	46L		SEE Duration		3 hrs	

Unit – I			
Introduction to cloud computing and security-understanding cloud computing, cloud	09 Hrs		
scale IT foundation for cloud, the bottom line, roots of cloud computing, a brief primer on			
security, architecture, defense in depth, cloud is driving broad changes. Securing the			
cloud: architecture-requirements, patterns and architectural elements, cloud security			
architecture, key strategies for secure operations			
Unit – II			
Securing the cloud: data security-overview of data security in cloud computing, data	09 Hrs		
encryption: applications and limits, sensitive data categorization, cloud storage, cloud			
lock-in Securing cloud: key strategies and best practises- Overall strategy, security			
controls, limits of security controls, best practices, security monitoring	1		
Unit – III			
Security criteria: Building an internal cloud, Security Criteria-private clouds: selecting an external cloud provide-Selecting CSP,-overview of assurance, over view of risks, security criteria, Evaluating clouds security: An information security framework-evaluation cloud security, checklist for evaluating cloud security	09 Hrs		
Unit – IV			
Identity and access management Trust Boundaries, IAM Challenges, IAM Definitions			
,IAM Architecture and Practice, Getting Ready for the Cloud 80 Relevant IAM Standards	09 Hrs		
and Protocols for Cloud Services, IAM Practices in the Cloud, Cloud Authorization			
Management, Security Management in the Cloud, Security Management Standards,			
Security Management in the Cloud, Availability Management, SaaS Availability			
Management, PaaS Availability Management, IaaS Availability Management			
Unit –V			
Privacy: Privacy, Data Life Cycle, Key Privacy Concerns in the Cloud, Protecting	10 Hrs		
Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud			
Computing, Legal and Regulatory Implications, U.S. Laws and Regulations,			
International Laws and Regulations, Audit and compliance, Internal Policy Compliance,			
Governance, Risk, and Compliance (GRC) Illustrative Control Objectives for Cloud			
Computing , Incremental CSP-Specific Control Objectives Additional Key Management			
Control Objectives, Control Considerations for CSP Users, Regulatory/External			
Compliance, Other Requirements , Cloud Security Alliance, Auditing the Cloud for Compliance			

Course	Course Outcomes: After going through this course the student will be able to:					
CO1	Explore compliance and security issues that arise from cloud computing architectures					
	intended for delivering Cloud based enterprise IT services and business applications.					
CO2	Identify the known threats, risks, vulnerabilities and privacy issues associated with Cloud					
	based IT services.					
CO3	Illustrate the concepts and guiding principles for designing and implementing appropriate					
	safeguards and countermeasures for Cloud based IT services					
CO4	Design security architectures that assure secure isolation of physical and logical					
	infrastructures of network and storage, comprehensive data protection at all layers, end-to-					
	end identity and access management, monitoring and auditing processes and compliance					
	with industry and regulatory mandates.					

Ref	erence Books:
1	Tim Mather, Subra Kumaraswamy, Shahed Latif, Cloud Security and Privacy: An Enterprise
	Perspective on Risks and Compliance, O'Reilly Media; 1st edition, 2009, ISBN: 0596802765
2	Vic (J.R.) Winkler, Securing the Cloud: Cloud Computer Security Techniques and Tactics,
	Imprint: Syngress, 1 st edition, 2011, ISBN: 9781597495929
3	Ronald L. Krutz, Russell Dean Vine, Cloud Security: A Comprehensive Guide to Secure Cloud
	Computing, 1st edition, 2010, ISBN-13: 978-0470589878, 2010, ISBN-10: 0470589876
4	John Rittinghouse, James Ransome, Cloud Computing: Implementation, Management, and
	Security, 1st edition, 2009, ISBN-13: 978-1439806807, ISBN-10: 1439806802

Open ended experiments / Tutorial Questions

- 1. Cloud authentication and authorization techniques
- 2. Cloud identity and access management
- 3. Cloud key management
- 4. Cloud auditing
- 5. Credential management
- 6. Cloud DoS protection
- 7. Cloud traffic hijacking protection
- 8. Identifying malicious insider, malilcious agent, malicious tenant
- 9. Virtualization attacks
- 10. Trust management and assurance
- 11. Resource Access Control schemes
- 12. Cloud data encryption and access
- 13. Cloud data integrity

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II								
	INTERNET OF THINGS AND APPLICATIONS							
		(\mathbf{G})	roup-D: Core Elective)					
		(Comme	on to PG-CSE and PG-	CNE)				
Course Code	:	18MCN2D1		CIE Marks	:	100		
Credits L: T: P : 4:0:0 SEE Marks : 100								
Hours	:	46L		SEE Duration	:	3 hrs		

Unit – I				
FUNDAMENTAL IOT MECHANISM AND KEY TECHNOLOGIES-Identification	09 Hrs			
of IoT Object and Services, Structural Aspects of the IoT, Key IoT Technologies.				
Evolving IoT Standards Overview and Approaches, IETF IPv6 Routing Protocol for RPL				
Roll, Constrained Application Protocol, Representational State Transfer, ETSI				
M2M, Third Generation Partnership Project Service Requirements for Machine-Type				
Communications, CENELEC, IETF IPv6 Over Lowpower WPAN, Zigbee IP(ZIP), IPSO				
Unit – II				
LAYER 1/2 CONNECTIVITY: Wireless Technologies for the IoT-WPAN Technologies	10 Hrs			
for IoT/M2M, Cellular and Mobile Network Technologies for IoT/M2M,Layer 3				
Connectivity: IPv6 Technologies for the IoT: Overview and Motivations. Address				
Capabilities, IPv6 Protocol Overview, IPv6 Tunneling, IPsec in IPv6, Header Compression				
Schemes, Quality of Service in IPv6, Migration Strategies to IPv6.				
Unit – III				
Application Protocols- Common Protocols, Web service protocols, MQ telemetry	09 Hrs			
transport for sensor networks (MQTT-S), ZigBee compact application protocol (CAP) ,				
Service discovery ,Simple Network Management Protocol(SNMP) ,Real-time transport				
and sessions, Industry-specific protocols.				
Unit – IV				
Wireless Embedded Internet- 6LoWPAN, 6LoWPAN history and standardization	09 Hrs			
Relation of 6LoWPAN to other trends, Applications of 6LoWPAN, Example: facility				
management, The 6LoWPAN Architecture, 6LoWPAN Introduction, The protocol stack,				
Link layers for 6LoWPAN, Addressing, Header format, Bootstrapping, Mesh topologies				
, Internet integration				
Unit –V	00.77			
*The evolution of computing models towards edge computing-Shared and central	09 Hrs			
resources versus exclusive and local computation, IoT disrupts the cloud, characteristics				
of the new computing model, Blueprint of edge computing intelligence Trend drivers and				
state of the art for edge intelligence Industry needs, Hardware evolution, Software				
evolution, Architecture				
Course Outcomes: After going through this course the student will be able to:				
CO1 Acquire knowledge of different use cases of IoT in real time scenarios				
CO2 Explain key technologies for connectivity and communications in IoT				
CO3 Examine different application protocols and their roles in IoT				
CO4 Propose IoT-enabled applications for building smart spaces and services with	security			
features, resource management and edge computing.				

Refe	Reference Books:								
1.	Daniel Minoli, Building the Internet of Things with IPv6 and MIPv6:The Evolving World of								
	M2M Communications, student edition, Wiley, 2013. ISBN: 978-1-118-47347-4.								
2.	Zach Shelby Sensinode, Carsten Bormann, 6LoWPAN: The Wireless Embedded Internet, 1st								
	Edition, John Wiley & Sons Ltd, 2009, ISBN 9780470747995								
	ArshdeepBahga, Vijay Madisetti, Internet of Things: A Hands on Approach, 1st Edition,								
3.	Universities Press., 2015, ISBN, : 978-81-7371-954-7								
4*	www.iec.ch/whitepaper/pdf/IEC_WP_Edge_Intelligence.pdf								

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

				Semester: II				
				DEEP LEARNING				
			((Group-D: Core Elective	e)			
				Common to CSE, CS)				
Course	Code	:	18MCE2D2		CIE Marks	:	100	0
Credits	L: T: P	:	4:0:0		SEE Marks	:	100	0
Hours		:	46L		SEE Duration	:	3 h	ırs
		1		Unit – I				
Deep 1	Feedforwa	ard	Networks: Mu	ltilayer Perceptron, I	Example: Learning	XC	OR,	08 Hrs
		Lear	ning, Hidden	Units, Architecture	Design, Back-Propa	igat	ion	Í
Algorith	nm							
~ .				Unit – II			- 1	40.77
				Operation, Motivation				10 Hrs
_			•	or, Variants of the ba				Í
			• •	fficient Convolution tific basis for convolution	•)111	OI	İ
Offsuper	i viscu icai	ures,	, The incuroscien	Unit – III	onai networks			
Sequen	ce Modeli	ng:	Recurrent and I	Recursive Nets: Unfold	ling Computational C	rap	hs.	10 Hrs
				ctional RNNs, Enco				1
				ent Networks, Recursiv	•			Í
State No	etworks, T	he L	ong Short-Term	Memory and Other Gate	ed RNNs			I
				Unit – IV				
Autoen			ndercomplete	_	gularized Autoend			08
_				and Depth, Stochastic		code	ers,	Hrs
Denoisi	ng Autoen	code	ers, Contractive A	Autoencoders, Application	ons of Autoencoders			1
				Unit –V				
				Deep Learning: The				10 Hrs
				model structure: Dire				İ
				tor graphs; Sampling				Í
	•			, learning about dep ng approach to structure			ına	Í
				gh this course the stud		13		
				ral network, its applicat		nino	mod	dels
				urrent, Recursive Nets a				4015
CO3				hitectures, learning task				
CO4				lutions by various Net				r a given
	problem		F					
Referen	ice Books							
1. <u>Ia</u>	n Good Fe	ellow	y, YoshuaBengio	and Aaron Courville, I	Deep Learning (Adap	tive	Coı	mputation
				IT Press (3 January 201				
	•			- A Comprehensive Fou				
			•	to Artificial Neural No	etworks, S.K. Katar	ia 8	s Sc	ons; 2012
			3: 978-93501429		D 1 1 1 1 2			37 11
				of Deep Learning: 1	0 0			
ın	temgence	Aigo	orunms, by O'Re	illy Publications, 2016 I	Eumon, 18BN-13: 97	ŏ-14	+919	Z3014.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II								
SECURITY ENGINEERING								
		(G	roup-D: Core Elective)				
(Common to PG-CSE, PG-CS)								
Course Code								
Credits L: T: P : 4:0:0 SEE Marks : 100								
Hours	:	46L		SEE Duration	:	3 hrs		

Course Learning Objectives (CLO):

Graduates shall be able to:

- 1. Gain knowledge on security Engineering.
- 2. Acquire knowledge of password attacks and phishing counter measures.
- 3. Analyse access control mechanisms.
- 4. Identify network attack and relevant defence mechanism.
- 5. Evaluate exploiting the Edge for security threat.

Unit – I				
What Is Security Engineering: Introduction, A framework, Examples. Usability and	09 Hrs			
Psychology: Introduction, Attacks Based on Psychology: Pretexting, Phishing, Insights				
from Psychology Research, What the Brain Does Better Than Computer.				
Unit – II				
Passwords: Difficulties with Reliable Password Entry, Difficulties with Remembering the	09 Hrs			
Password, Naive Password Choice, User Abilities and Training, Social-Engineering				
Attacks, Trusted Path, Phishing Countermeasures, The Future of Phishing, System Issues,				
Attacks on Password Entry.				
Unit – III				
Access Control: Introduction, Operating System Access Controls, Groups and Roles,	09 Hrs			
Access Control Lists, Unix Operating System Security, Apple's OS/X, Windows — Basic				
Architecture, Capabilities, Windows — Added Features, Middleware, Database Access				
Controls, General Middleware Issues, ORBs and Policy Languages, Sandboxing and				
Proof-Carrying Code, Virtualization, Trusted Computing.				
Unit – IV	09 Hrs			
Network Attack and Defense: Introduction, Vulnerabilities in Network Protocols,				
Attacks on Local Networks, Attacks Using Internet Protocols and Mechanisms. Trojans,				
Viruses, Worms and Rootkits, Defense Against Network Attack, Filtering: Firewalls,				
Spam Filters, Censor ware and Wiretaps, Intrusion Detection.				
Unit –V				
The Bleeding Edge: Introduction, Computer Games, Types of Cheating, Aimbots and	10 Hrs			
Other Unauthorized Software, Virtual Worlds, Virtual Economies, Web Applications e				
Bay, Google. Social Networking Sites, Privacy Technology: Anonymous Email — The				
Dining Cryptographers and Mixes, Anonymous Web Browsing — Tor, Confidential and				
Anonymous Phone Calls, Email Encryption, Steganography and Forensics				
Countermeasures.				
Course Outcomes: After going through this course the student will be able to:				
CO1 Analyze attacks based on psychology, attacks on network and defence mechanisms				
CO2 Identify password attacks and phishing counter measures.				
CO3 Evaluate issues related to access control mechanisms.				
CO4 Analyze exploiting the computing edge and countermeasures.				

Refe	Reference Books:					
1	Rose Anderson, Security Engineering, 2 nd Edition, Wiley 2012, ISBN-10: 1111138214.					
2	William Stallings, Cryptography and Network Security, 6th Edition, ISBN-13: 978-0-13-					
	335469-0.					
3	Joseph MiggaKizza, Computer Network Security, Springer International Edition, 2009, ISBN					
	978-1-84800-916-5.					
4	Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2 nd					
	Edition, ISBN: 0-471-22357-3.					

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	BUSINESS ANALYTICS					
	(Group G: Global Elective)					
Course Code	Course Code : 18CS2G01 CIE Marks : 100					
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Course Learning Objectives:

Graduates shall be able to

- 1. Formulate and solve business problems to support managerial decision making.
- 2. Explore the concepts, processes needed to develop, report, and analyze business data.
- 3. Use data mining techniques concepts to identify specific patterns in the data
- 4. Interpret data appropriately and solve problems from various sectors such as manufacturing, service, retail, software, banking and finance.

Unit – I				
Business analytics: Overview of Business analytics, Scope of Business analytics, Business	07 Hrs			
Analytics Process, Relationship of Business Analytics Process and organization,	ı			
competitive advantages of Business Analytics.	ı			
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of	İ			
probability distribution and data modelling.	ı			
Unit – II				
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple	07 Hrs			
Linear Regression. Important Resources, Business Analytics Personnel, Data and models	İ			
for	ı			
Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics	l			
Technology.	ı			
Unit – III				
Organization Structures of Business analytics, Team management, Management	07 Hrs			
Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring	İ			
contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive	l			
Analytics, Predicative Modelling, Predictive analytics analysis.	l			
Unit – IV				
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical	08 Hrs			
Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models	İ			
for Time Series with a Linear Trend, Forecasting Time Series with Seasonality,	İ			
Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.	l			
Unit –V				
Decision Analysis: Formulating Decision Problems, Decision Strategies with and without	07 Hrs			
Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision	i			
Making.				

Course	Course Outcomes: After going through this course the student will be able to:				
CO1	CO1 Explore the concepts, data and models for Business Analytics.				
CO2	Analyze various techniques for modelling and prediction.				
CO3	Design the clear and actionable insights by translating data.				
CO4	Formulate decision problems to solve business applications				

Refe	erence Books:				
1	Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Business analytics Principles, Concepts, and Applications FT Press Analytics, 1st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402				
2	Evan Stubs , The Value of Business Analytics: Identifying the Path to Profitability, John Wiley & Sons, ISBN:9781118983881 DOI:10.1002/9781118983881,1st edition 2014				
3	James Evans, Business Analytics, Pearsons Education 2 nd edition, ISBN-13: 978-0321997821 ISBN-10: 0321997824				
4	Gary Cokins and Lawrence Maisel, Predictive Business Analytics Forward Looking Capabilities to Improve Business, Wiley; 1 st edition, 2013.				

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II INDUSTRIAL AND OCCUPATIONAI (Group G :Global I	L HEALTH AND SAFETY				
Cou	Course Code: 18CV 2G 02 CIE Marks: 100					
Credits: L: T: P: 3:0:0 SEE Marks: 100						
Hou	Hours: 36L SEE Duration: 3Hrs					
Cou	Course Learning Objectives :					
1 To understand the Industrial and Occupational health and safety and its importance.						
2	To understand the different materials, occupations to which the employee can exposed to.					
3	To know the characteristics of materials and effect on health.					
4	To evaluate the different processes and mainte accidents.	nance required in the industries to avoid				

accidents.					
Unit – I					
Industrial safety: Accident, causes, types, results and control, mechanical and electrical	07 Hrs				
hazards, types, causes and preventive steps/procedure, describe salient points of factories					
act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire,					
guarding, pressure vessels, etc, Safety color codes. Fire prevention and fire fighting,					
equipment and methods.					
Unit – II	•				
Occupational health and safety: Introduction, Health, Occupational health: definition,	07 Hrs				
Interaction between work and health, Health hazards, workplace, economy and sustainable					
development, Work as a factor in health promotion. Health protection and promotion					
Activities in the workplace: National governments, Management, Workers, Workers'					
representatives and unions, Communities, Occupational health professionals. Potential					
health hazards: Air contaminants, Chemical hazards, Biological hazards, Physical hazards,					
Ergonomic hazards, Psychosocial factors, Evaluation of health hazards: Exposure					
measurement techniques, Interpretation of findings recommended exposure limits.					
Controlling hazards: Engineering controls, Work practice controls, Administrative					
controls. Occupational diseases: Definition, Characteristics of occupational diseases,					
Prevention of occupational diseases.					
Unit – III					
Hazardous Materials characteristics and effects on health: Introduction, Chemical	08 Hrs				
Agents, Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and					
Fibers, Alkalies and Oxidizers, General Manufacturing Materials, Chemical Substitutes,					
Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and Teratogens,					
Recommended Chemical Exposure Limits. Physical Agents, Noise and Vibration,					
Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic					
Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain,					
Video Display Terminals.					
Unit – IV					
Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction	08 Hrs				
methods, lubricants-types and applications, Lubrication methods, general sketch, working					
and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication,					
iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring					
lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion,					
corrosion prevention methods.					
Unit –V					
Periodic and preventive maintenance: Periodic inspection-concept and need,	07 Hrs				
degreasing, cleaning and repairing schemes, overhauling of mechanical components,					
over hauling of electrical motor, common troubles and remedies of electric motor, repair					
complexities and its use, definition, need, steps and advantages of preventive					
complexities and its use, definition, need, steps and advantages of preventive					

tools, ii. Pumps,

iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

_	Expected Course Outcomes: After successful completion of this course the student will be able to:				
CO1	CO1 Explain the Industrial and Occupational health and safety and its importance.				
CO2	Demonstrate the exposure of different materials, occupational environment to which the				
	employee can expose in the industries.				
CO3	Characterize the different type materials, with respect to safety and health hazards of it.				
CO4	Analyze the different processes with regards to safety and health and the maintenance required				
	in the industries to avoid accidents.				

Refe	Reference Books:					
5.	Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.					
6.	H. P. Garg, Maintenance Engineering Principles, Practices & Management, 2009,S. Chand and Company, New Delhi, ISBN:9788121926447					
7.	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition, 2008 International Labour Office – Geneva: ILO, ISBN 978-92-2-120454-1					
8.	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.					

Continuous Internal Evaluation (CIE): Total marks: 100 Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
	MODELING USING LINEAR PROGRAMMING						
			(Group G: Global Elective)				
Course Code	:	18IM2G03	CIE Marks	:	100		
Credits L: T: P	:	3:0:0	SEE Marks	:	100		
Hours	:	36L	SEE Duration	:	3 hrs		

Unit – I	
Linear Programming: Introduction to Linear Programming problem	07 Hrs
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables	
Unit – II	1
Advanced Linear Programming : Two Phase simplex techniques, Revised simplex method	07 Hrs
Duality: Primal-Dual relationships, Economic interpretation of duality	
Unit – III	
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis -	07 Hrs
changes in RHS, Changes in objectives, Post optimal analysis - changes affecting	
feasibility and optimality	
Unit – IV	
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation Problems.	08 Hrs
Unit –V	<u> </u>
Assignment Problem: Formulation of the Assignment problem, solution method of assignment problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem (TSP).	07 Hrs

Course Outcomes: After going through this course the student will be able to:				
CO1	CO1 Explain the various Linear Programming models and their areas of application.			
CO2	Formulate and solve problems using Linear Programming methods.			
CO3	Develop models for real life problems using Linear Programming techniques.			
CO4	Analyze solutions obtained through Linear Programming techniques.			

R	Reference Books:			
1	Taha H A, Operation Research An Introduction, PHI, 8th Edition, 2009, ISBN: 0130488089.			
2	Philips, Ravindran and Solberg - Principles of Operations Research – Theory and Practice, John Wiley & Sons (Asia) Pvt Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0			
3	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9 th Edition, 2012, ISBN 13: 978-0-07-133346-7			
4	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4 th Edition, 2009, ISBN 13: 978-0-23-063885-3.			

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	PROJECT MANAGEMENT				
			(Group G: Global Elective)		
Course Code	:	18IM2G04	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Unit – I	
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles,	07 Hrs
Responsibility and Team Work, Project Planning Process, Work Breakdown Structure	
(WBS), Introduction to Agile Methodology.	
Unit – II	
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital	07 Hrs
budgeting, levels of decision making, facets of project analysis, feasibility study - a	
schematic diagram, objectives of capital budgeting	
Unit – III	
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital	08 Hrs
Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement,	
Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit	
Analysis	
Unit – IV	
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for	07Hrs
combined activities, logic diagrams and networks, Project evaluation and review	
Techniques (PERT) Critical Path Method (CPM), Computerized project management	
Unit-V	
Project Management and Certification: An introduction to SEI, CMMI and project	07 Hrs
management institute USA – importance of the same for the industry and practitioners.	
PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing	
Agile.	
Domain Specific Case Studies on Project Management: Case studies covering project	
planning, scheduling, use of tools & techniques, performance measurement.	

Cours	Course Outcomes: After going through this course the student will be able to:		
CO1	Explain project planning activities that accurately forecast project costs, timelines, and quality.		
CO2	Evaluate the budget and cost analysis of project feasibility.		
CO3	Analyze the concepts, tools and techniques for managing projects.		
CO4	Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations).		

Re	ference Books:
1	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review, Tata McGraw Hill Publication, 8th Edition, 2010, ISBN 0-07-007793-2.
2	Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5 th Edition, 2013, ISBN: 978-1-935589-67-9
3	Harold Kerzner, Project Management A System approach to Planning Scheduling & Controlling, John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
4	Rory Burke, Project Management – Planning and Controlling Techniques, John Wiley & Sons, 4 th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	II Semester	
]	ENERGY MANAGEMENT	
	(Group G: Global Elective)	
Course Code: 18CH2G05		CIE Marks: 100
Credits: L:T:P: 3:0:0		SEE Marks: 100
Hours: 36L		SEE Hrs: 3

Course Learning Objectives(CLO):

Students are able to:

- 1. Explain the importance of energy conservation and energy audit.
- 2. Understand basic principles of renewable sources of energy and technologies.
- 3. Outline utilization of renewable energy sources for both domestics and industrial application.
- 4. Analyse the environmental aspects of renewable energy resources.

Unit – I	
Energy conservation:	08 Hrs
Principles of energy conservation, Energy audit and types of energy audit, Energy	
conservation approaches, Cogeneration and types of cogeneration, Heat	
Exchangers and classification.	
Unit – II	
Wet Biomass Gasifiers:	07 Hrs
Introduction, Classification of feedstock for biogas generation, Biomass conversion	
technologies: Wet and dry processes, Photosynthesis, Biogas generation, Factors	
affecting bio-digestion, Classification of biogas plants, Floating drum plant and	
fixed dome plant their advantages and disadvantages.	
Unit – III	
Dry Biomass Gasifiers :	07 Hrs
Biomass energy conversion routes, Thermal gasification of biomass, Classification	
of gasifiers, Fixed bed systems: Construction and operation of up draught and	
down draught gasifiers.	
Unit – IV	
Solar Photovoltaic:	07Hrs
Principle of photovoltaic conversion of solar energy, Types of solar cells and	
fabrication.	
Wind Energy:	
Classification, Factors influencing wind, WECS & classification.	
Unit-V	
Alternative liquid fuels:	07 Hrs
Introduction, Ethanol production: Raw materials, Pre-treatment, Conversion	
processes with detailed flow sheet. Gasification of wood: Detailed process, Gas	
purification and shift conversion, Biofuel from water hyacinth.	

Course outcomes (CO):

On completion of the course, the student should have acquired the ability to

CO1: Understand the use alternate fuels for energy conversion

CO2: Develop a scheme for energy audit

CO3: Evaluate the factors affecting biomass energy conversion

CO4: Design a biogas plant for wet and dry feed

Ref	Reference Books:				
1	Nonconventional energy, Ashok V Desai, 5 th Edition, 2011, New Age International (P)				
	Limited, ISBN 13: 9788122402070.				
2	Biogas Technology - A Practical Hand Book, Khandelwal K C and Mahdi S S, Vol. I &				
	II, 1986, McGraw-Hill Education, ISBN-13: 978-0074517239.				
3	Biomass Conversion and Technology, Charles Y Wereko-Brobby and Essel B Hagan, 1st				
	Edition, 1996, John Wiley & Sons, ISBN-13: 978-0471962465.				
4	Solar Photovoltaics: Fundamental Applications and Technologies, C. S. Solanki, 2 nd				
	Edition, 2009, Prentice Hall of India, ISBN:9788120343863.				

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.

Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II				
	INDUSTRY 4.0				
		(0	Group G: Global Elective)		
Course Code	:	18ME2G06	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hrs

Unit – I	
Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and	07 Hrs
Artificial Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data	İ
Management.	i
Unit – II	
The Concept of the HoT: Modern Communication Protocols, Wireless Communication	07 Hrs
Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical	i
Perspective, Middleware Architecture.	i
Unit – III	
Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing,	08 Hrs
Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems	i
with Komatsu, Quality Prediction in Steel Manufacturing.	i
Internet of Things and New Value Proposition, Introduction, Internet of Things Examples,	i
IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.	i
Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological	i
Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of	i
Robotic Things, Cloud Robotics.	
Unit – IV	
Additive Manufacturing Technologies and Applications: Introduction, Additive	07 Hrs
Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling,	i
Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net	i
Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive	í
Manufacturing.	i
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual	i
Factory Software , Limitations of the Commercial Software	
Unit –V	07 II
Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0,	07 Hrs
Introduction, AR Hardware and Software Technology, Industrial Applications of AR,	i
Maintenance, Assembly, Collaborative Operations, Training.	1
Smart Factories: Introduction, Smart factories in action, Importance, Real world smart	İ
factories, The way forward. A Roadmap: Digital Transformation, Transforming Operational Processes, Business	İ
Models, Increase Operational Efficiency, Develop New Business Models.	İ
Models, increase Operational Efficiency, Develop New Business Models.	

Cours	Course Outcomes: After going through this course the student will be able to:		
CO1	Understand the opportunities, challenges brought about by Industry 4.0 for benefits of organizations and individuals		
CO2	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services		
CO3	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits		
CO4	Evaluate the effectiveness of Cloud Computing in a networked economy		

Reference Books:

- 1 Alasdair Gilchrist, INDUSTRY 4.0 THE INDUSTRIAL INTERNET OF THINGS, Apress Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
- 2 Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018 ISBN 978-3-319-57869-9.
- Ovidiu Vermesan and Peer Friess, Designing the industry Internet of things connecting the physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
- 4 Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	ADVANCED MATERIALS					
	(Group G: Global Elective)					
Course Code	Course Code : 18ME2G07 CIE Marks : 100					
Credits L: T: P	Credits L: T: P : 3:0:0 SEE Marks : 100					
Hours : 36L SEE Duration : 3 hrs						

Unit – I	
Classification and Selection of Materials: Classification of materials. Properties required in Engineering materials, Criteria of selection of materials. Requirements / needs of advance materials.	07 Hrs
Unit – II	
Non Metallic Materials: Classification of n on metallic materials, Rubber: Properties, processing and applications. Plastics: Thermosetting and Thermoplastics, Applications and properties. Ceramics: Properties and applications. Adhesives: Properties and applications. Optical fibers: Properties and applications. Composites: Properties and applications.	07 Hrs
Unit – III	
High Strength Materials : Methods of strengthening of alloys, Materials available for high strength applications, Properties required for high strength materials, Applications of high strength materials	08 Hrs
Unit – IV	
Low & High Temperature Materials Properties required for low temperature applications, Materials available for low temperature applications, Requirements of materials for high temperature applications, Materials available for high temperature applications, Applications of low and high temperature materials.	07 Hrs
Unit –V	1
Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and nanocomposites, Physical and mechanical properties, Applications of nanomaterials	07 Hrs

Cours	Course Outcomes: After going through this course the student will be able to:		
CO1	Describe metallic and non metallic materials		
CO2	Explain preparation of high strength Materials		
CO3	CO3 Integrate knowledge of different types of advanced engineering Materials		
CO4	Analyse problem and find appropriate solution for use of materials.		

R	reference Books:
1	Donald R. Askeland, and Pradeep P. Fulay, The Science & Engineering of Materials, 5th Edition,
	Thomson, 2006, ISBN-13-978-0534553968
2	Gregory L. Timp, Nanotechnologym 1999th Editionmm Springer, 1999 ISBN-13: 978-
	0387983349
	Dr. VD Kodgire and Dr. S V Kodgire, Material Science and Metallurgym 42nd Edition 2018,
3	Everest Publishing House ISBN NO: 81 86314 00 8
4	N Bhatnagar, T S Srivatsan, Processing and Fabrication of Advanced Materials, 2008, IK
	International, ISBN: 978819077702

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II			
	COMPOSITE MATERIALS SCIENCE AND ENGINEERING			
	(Com	non to AS, BT, CH, CV, IM	I, ME)	
Cou	Course Code: 18CHY2G08 CIE Marks: 100			
Cre	dits: L:T:P :: 3:0:0		SEE Marks: 100	
Hours: 36L SEE Duration: 3Hrs		SEE Duration: 3Hrs		
Cou	rse Learning Objectives:			
1	Understand the properties of composite materials.			
2	Apply the basic concepts of Chemistry to develop futuristic composite materials for			
	high-tech applications in the	ne area of Engineering.		
3	3 Impart knowledge in the different fields of material chemistry so as to apply it to the			
	problems in engineering field.			
4	Develop analytical capabil	ities of students so that they	can characterize, transform and	
	use materials in engineering	g and apply knowledge gaine	ed in solving related engineering	
	problems.			

problems.	
Unit-I	
Introduction to composite materials	07 Hrs
Fundamentals of composites – need for composites – Enhancement of properties	
- Classification based on matrix- Polymer matrix composites (PMC), Metal	
matrix composites (MMC), Ceramic matrix composites (CMC) – Constituents of	
composites, Interfaces and Interphases, Distribution of constituents, Types of	
Reinforcements, Particle reinforced composites, Fibre reinforced composites.	
Fiber production techniques for glass, carbon and ceramic fibers Applications of	
various types of composites.	
Unit – II	
Polymer matrix composites (PMC)	08 Hrs
Polymer resins – Thermosetting resins, Thermoplastic resins & Elastomers,	
Reinforcement fibres-Types, Rovings, Woven fabrics. PMC processes – Hand	
Layup Processes, Spray up processes – Compression Moulding – Injection	
Moulding – Resin Transfer Moulding – Pultrusion – Filament winding –	
Injection moulding. Glass fibre and carbon fibre reinforced composites (GFRP &	

Reinforcement fibres-Types, Rovings, Woven fabrics. PMC processes – Hand Layup Processes, Spray up processes – Compression Moulding – Injection Moulding – Resin Transfer Moulding – Pultrusion – Filament winding – Injection moulding. Glass fibre and carbon fibre reinforced composites (GFRP & CFRP). Laminates- Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Mechanical Testing of PMC- Tensile Strength, Flexural Strength, ILSS, Impact Strength- As per ASTM Standard. Applications of PMC in aerospace, automotive industries.

Unit-III

Ceramic matrix composites and special composites

Engineering ceramic materials – properties – advantages – limitations – monolithic ceramics – need for CMC – ceramic matrix – various types of ceramic matrix composites- oxide ceramics – non oxide ceramics – Aluminium oxide – silicon nitride – reinforcements – particles- fibres- whiskers. Sintering – Hot pressing – Cold Isostatic Pressing (CIPing) – Hot isostatic pressing (HIPing). Applications of CMC in aerospace, automotive industries- Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel technique- Processing of Ceramic Matrix composites.

07 Hrs

Unit –IV 07 Hrs **Metal matrix composites** Characteristics of MMC, various types of metal matrix composites alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interfacemeasurement of interface properties- applications of MMC in aerospace, automotive industries. Unit -V 07 Hrs Polymer nano composites Introduction and Significance of polymer Nano composites. Intercalated And Classification of Nano fillers- nanolayers, Exfoliated Nanocomposites. nanotubes, nanoparticles. Preparation of Polymer Nano composites by Solution, In-situ Polymerization and melt mixing techniques. Characterization Of polymer nanocomposites- XRD, TEM, SEM and AFM. Mechanical and Rheological Polymer Nano composites. Gas barrier, Chemical-Resistance, properties of Thermal and Flame retardant properties of polymer nanocomposites. Optical

Course	Course Outcomes: After completing the course, the students will be able to			
CO1:	Understand the purpose and the ways to develop new materials upon proper			
	combination of known materials.			
CO2:	Identify the basic constituents of a composite materials and list the choice of			
	materials available			
CO3:	Will be capable of comparing/evaluating the relative merits of using alternatives for			
	important engineering and other applications.			
CO4:	Get insight to the possibility of replacing the existing macro materials with nano-			
	materials.			

studies of Polymer

nanocomposites,

Refer	Reference Books				
1	Composite Materials Science and Engineering, Krishan K Chawla, 3 rd Edition				
	Springer-verlag Gmbh, , ISBN: 9780387743646, 0387743642				
2	The Science and Engineering of Materials, K Balani, Donald R Askeland, 6 th				
2	Edition- Cengage, Publishers, ISBN: 9788131516416				
-	Polymer Science and Technology, Joel R Fried, 2 nd Edition, Prentice Hall, ISBN:				
3	9780137039555				
4	Nanomaterials and nanocomposites, Rajendra Kumar Goyal, 2 nd Edition, CRC				
4	Press-Taylor & Francis, ISBN: 9781498761666, 1498761666				

properties

and

Applications of polymer nano-composites.

Biodegradability

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester : II			
P	PHYSICS OF MATERIALS		
	(Group G: Global Elective)		
Course Code: 18PHY2G09		CIE Marks: 100	
Credits: L:T:P:: 3:0:0 SEE Marks: 100			
Hours: 36L		SEE Duration: 3Hrs	

Course Learning Objectives (CLO):

Student are able to

- 1. Classify the crystals based on lattice parameters.
- 2. Explain the behavior of Dielectrics with change in frequency.
- 3. Classify the magnetic materials based on Quantum theory as well understand superconductors.
- 4.Explain direct and indirect bandgap semiconductors, polymer semiconductors and Photoconductive polymers.
- 5.Describe the behavior of Smart materials and its phases and apply to Engineering applications.

Unit-I	
Crystal Structure :	07 Hrs
Symmetry elements-seven crystals systems-Reciprocal lattice-Packing fraction,	
Lattice Vibration-Brillouin zones, Analysis of Crystal structure using XRD,	
Thermal properties.	
Unit – II	
Dielectric Materials:	07 Hrs
Basic concepts-Langevin's Theory of Polarisation-Clausius-Mossotti Relation-	
Ferro electricity-Piezoelectricity-Properties of Dielectric in alternating fields-The	
complex Dielectric Constant and Dielectric Loss, Polarizability as a function of	
frequency-Complex dielectric constant of non-polar solids-Dipolar relaxation,	
Applications.	
Unit -III	<u> </u>
Magnetic Materials :	07 Hrs
Dia and Paramagnetic materials-Quantum theory of paramagnetic materials-	
Paramagnetic susceptibility of conduction electrons-Ferro-anti ferromagnetic	
materials-Superconductors and Applications	
Unit -IV	
Semiconducting Materials	07 Hrs
Semiconductor-Direct and Indirect bonding characteristics-Importance of	
Quantum confinement-quantum wires and dots-Ferro electric semiconductors-	
applications-Polymer semiconductors-Photo conductive polymers, Applications.	
Unit -V	
Novel Materials	08 Hrs
Smart materials-shape memory alloys-shape memory effects-Martensitia	
Transformation functional properties-processing-texture and its nature.	

Course Outcomes: After completing the course, the students will be able to			
CO1:	CO1: Analyse crystals using XRD technique.		
CO2:	CO2: Explain Dielectric and magnetic materials.		
CO3:	CO3: Integrate knowledge of various types of advanced engineering Materials.		
CO4:	Use materials for novel applications.		

Reference Books:				
1.	Solid State Physics, S O Pillai, 6 th Edition, New Age International Publishers, ISBN 10-			
	8122436978.			
2.	Introduction to Solid State Physics, C.Kittel, 7th Edition, 2003, John Wiley & Sons,			
	ISBN 9971-51-180.			
3.	Material Science, Rajendran V and Marikani, 1st Edition, Tata McGraw Hill, ISBN 10-			
	0071328971.			
4.	The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, 6th			
	Edition, Cengage Learning, ISBN-13:978-0-495-66802-2.			

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.

Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:

II Semester				
ADVANCED STATISTICAL METHODS				
(Global Elective)				
Course Code: 18MAT2G10		CIE Marks: 100		
Credits: L:T:P:: 3:0:0		SEE Marks: 100		
Hours: 36L		SEE Duration: 3Hrs		

Course Learning Objectives (CLO):

Students are able to:

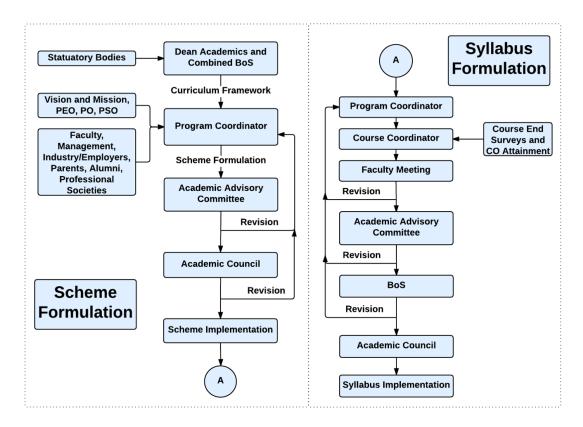
- 1. Adequate exposure to learn sampling techniques, random phenomena for analyzing data for solving real world problems.
- 2. To learn fundamentals of estimation and problems used in various fields of engineering and science.
- 3. Explore the fundamental principles of statistical inference and tests of hypothesis.
- 4. Apply the concepts of regression and statistical models to solve the problems of engineering applications.

Unit-I				
Sampling Techniques:				
Random numbers, Concepts of random sampling from finite and infinite				
populations, Simple random sampling (with replacement and without				
replacement). Expectation and standard error of sample mean and proportion.				
Unit – II				
Estimation:	07 Hrs			
Point estimation, Estimator and estimate, Criteria for good estimates -				
unbiasedness, consistency, efficiency and sufficiency, Method of moment's				
estimation and maximum likelihood estimation, Properties of maximum				
likelihood estimator (no proofs), Confidence intervals-population mean (large				
sample), population proportion.				
Unit -III				
Tests of Hypothesis:	07 Hrs			
Principles of Statistical Inference, Formulation of the problems with examples,				
Simple and composite hypothesis, Null and alternative hypothesis, Tests - type I				
and type II error, Testing of mean and variance of normal population (one				
sample and two samples), Chi squared test for goodness of fit.				
Unit -IV	•			
Linear Statistical Models:	07 Hrs			
Definition of linear model and types, One way ANOVA and two way ANOVA				
models-one observation per cell, multiple but equal number of observation per				
cell.				
Unit -V				
Linear Regression:	08 Hrs			
Simple linear regression, Estimation of parameters, Properties of least square				
estimators, Estimation of error variance, Multivariate data, Multiple linear				
regressions, Multiple and partial correlation, Autocorrelation-introduction and				

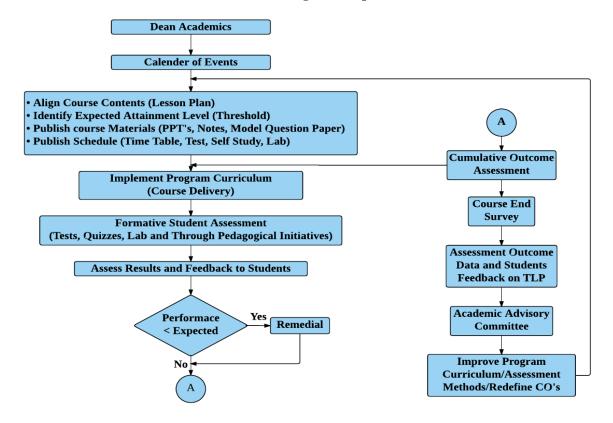
plausibility of serial dependence, sources of autocorrelation, Durbin-Watson test for auto correlated variables.

Ref	Reference Books:			
1	Fundamentals of Statistics (Vol. I and Vol. II), A. M. Goon, M. K. Gupta and B.			
	Dasgupta, 3 rd Edition, 1968, World Press Private Limited, ISBN-13: 978-8187567806.			
2	Applied Statistics and Probability for Engineers, John Wiley & Sons, Inc., 3 rd Edition,			
	2003, ISBN 0-471-20454-4.			
3	S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistic, D. C. Montgomery			
	and G. C. Runger, 10 th Edition, 2000, A Modern Approach, S Chand Publications,			
	ISBN 81-7014-791-3.			
4	Regression Analysis: Concepts and Applications , F. A. Graybill and H. K. Iyer,			
	Belmont, Calif, 1994, Duxbury Press, ISBN-13: 978-0534198695.			

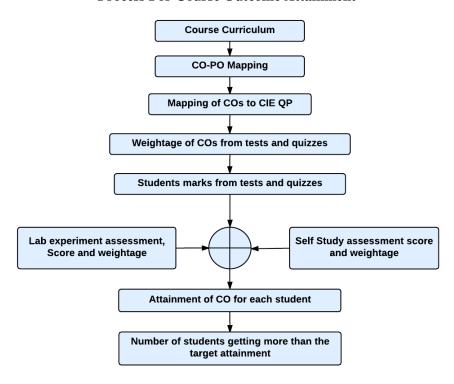
Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Identify and interpret the fundamental concepts of sampling techniques, estimates				
	and types, hypothesis, linear statistical models and linear regression arising in				
	various fields engineering				
CO2:	2: Apply the knowledge and skills of simple random sampling, estimation, null ar				
	alternative hypotheses, errors, one way ANOVA, linear and multiple linear				
	regressions.				
CO3:	Analyze the physical problem to establish statistical/mathematical model and us				
	appropriate statistical methods to solve and optimize the solution.				
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate the problems				
	of sampling techniques, estimation, tests of hypothesis, regression and				
	statistical model arising in many practical situations.				

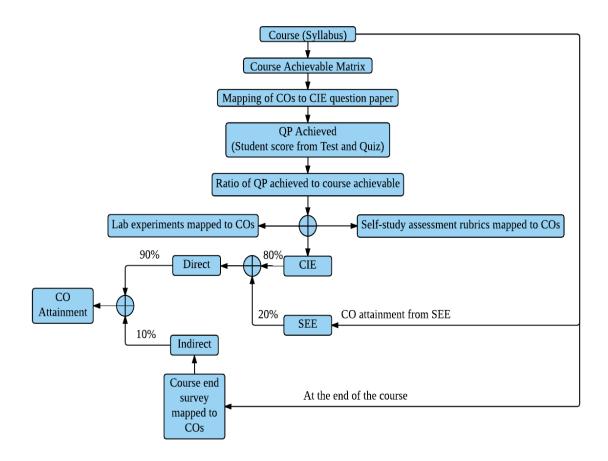

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.


Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:


Curriculum Design Process


Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

