

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Scheme & Syllabus of III & IV Semesters (2021 Scheme) (AS PER NEP-2020 GUIDELINES)

BACHELOR OF ENGINEERING (B.E) IN ELECTRONICS AND TELECOMMUNICATION ENGINEERING

(ACADEMIC YEAR 2022-2023)

Go, change the world

Approved by AICTE, Institution Affiliated New Delhi to Visvesvarava

Technological University, Belagavi

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art 1. infrastructure.
- To create a conducive environment for interdisciplinary research and innovation. 2.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and 3. social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship. 4.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society. 5.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Department Vision

Imparting quality education in Electronics and Telecommunication Engineering through focus on fundamentals, research and innovation for sustainable development

Department Mission

- Provide comprehensive education that prepares students to contribute effectively to the profession and society in the field of Telecommunication.
- Create state-of-the-art infrastructure to integrate a culture of research with a focus on Telecommunication Engineering Education
- Encourage students to be innovators to meet local and global needs with ethical practice
- Create an environment for faculty to carry out research and contribute in their field of specialization, leading to Centre of Excellence with focus on affordable innovation.
- Establish a strong and wide base linkage with industries, R&D organization and academic Institutions.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO	Description
PEO1	Acquire appropriate knowledge of the fundamentals of basic sciences, mathematics, engineering sciences,
	Electronics & Telecommunication engineering so as to adapt to rapidly changing technology
PEO2	Think critically to analyze, evaluate, design and solve complex technical and managerial problems through
	research and innovation.
PEO3	Function and communicate effectively demonstrating team spirit, ethics, respectful and professional
	behavior.
PEO4	To face challenges through lifelong learning for global acceptance.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Analyze, design and implement emerging Telecommunications systems using devices, sub-systems, propagation models, networking of Wireless and Wire line communication systems.
PSO2	Exhibit Technical skills necessary to choose careers in the design, installation, testing, management and operation of Telecommunication systems.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	PY	Physics
9.	CY	Chemistry
10.	MA	Mathematics
11.	AS	Aerospace Engineering
12.	AI & ML	Artificial Intelligence & Machine Learning
13.	BT	Biotechnology
14.	CH	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	CV	Civil Engineering
17.	EC	Electronics & Communication Engineering
18.	EE	Electrical & Electronics Engineering
19.	EI	Electronics & Instrumentation Engineering
20.	ET	Electronics & Telecommunication Engineering
21.	IM	Industrial Engineering & Management
22.	IS	Information Science & Engineering
23.	ME	Mechanical Engineering

Γ

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

INDEX

Sl. No.	Course Code	SECOND YEAR COURSES Name of the Course	Page No.
	-	III Semester	
1.	21MA31B*	Linear algebra, Integral transforms and Fourier series	
2.	21BT32A	Environmental Technology	
3.	21EE33	Linear Integrated Circuits (common with EE/ET/EI)	
4.	21EC34	Analysis and Design of Digital Circuits (Common with EC/EE/EI/ET)	
5.	21ET35	Signal Processing - I	
6.	21ET36	Circuit Analysis	
7.	21DMA37	Bridge Course: Mathematics	
0	21HS38A /	Kannada Course:	
8.	21HS38V	AADALITHA KANNADA / VYAVAHARIKA KANNADA	
0	21HSAE39	Ability Enhancement course	
9.	A/B/C/D/E **		
10.	21ETI310	Summer Internship- I	
	-	IV Semester	
11.	21MA41*	Statistics and Probability for Data Science	
12.	21EC42**	Materials for Electronics Engineering (Common with EC/EE/EI/ET)	
13.	21EI43	Microcontroller & Programming (Common with EC/EE/ EI/ET)	
14.	21ET44	Communication Engineering-I	
15.	21ET45	Principles of Electromagnetics (Common to ET/EE)	
16.	21ET4AX	Professional Core Elective – Group A	
17	21ET46	Design Thinking Lab	
17.	21DCS47	Bridge Course: C Programming	
18.	21HSU48	Universal Human Values and Professional Ethics	

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE, New Delhi

Technological University, Belagavi Bachelor of Engineering in ELECTRONICS AND TELECOMMUNICATION ENGINEERING

	III SEMESTER													
S1. No.	Course Code	e Course Title		Credit Allocation				Category	CIE Duration	Max Marks CIE		SEE Duration	Max Marks SEE	
			L	Т	Р	Total			(H)	Theory	Lab	(H)	Theory	Lab
1	21MA31B*	Linear algebra, Integral transforms and Fourier series	3	1	0	4	MA	Theory	1.5	100	****	3	100	****
2	21BT32A	Environmental Technology	2	0	0	2	BT	Theory	1	50	****	2	50	****
3	21EE33	Linear Integrated Circuits (common with EE / ET/ EI)	3	0	1	4	EE	Theory +Lab	1.5	100	50	3	100	50
4	21EC34	Analysis and Design of Digital Circuits (Common with EC/EE/EI/ET)	3	0	1	4	EC	Theory +Lab	1.5	100	50	3	100	50
5	21ET35	Signal Processing - I	3	1	0	4	ET	Theory	1.5	100	****	3	100	****
6	21ET36	Circuit Analysis	2	0	0	2	ET	Theory	1	50	****	2	50	****
7	21DMA37	Bridge Course: Mathematics	2(A)	0	0	AUDIT	MA	Theory	1.5	50	****	****	****	****
8	21HS38A / 21HS38V	Kannada Course: AADALITHA KANNADA / VYAVAHARIKA KANNADA	1	0	0	1	HSS	Theory	1	50	****	2	50	****
9	21HSAE39 A/B/C/D/E **	Ability Enhancement course	0	0	1	1	HSS	Lab	1	****	50	2	****	50
10	21ETI310	Summer Internship- I	0	0	1	1	ET	Internship	1	****	50	2	****	50

* Summer Internship-1 will be done after the II semester for 03 Weeks. (Will have CIE & SEE)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	ENGINEERING MATHEMATICS - III							
Sl. No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Linear algebra, Integral transforms and Number	21MA31A	CS & IS					
	Theory							
2	Linear algebra, Integral transforms and Fourier	21MA31B	AS, EC,EE,EI & ET					
	series	21101A31D						
3	Integral transforms and Advanced Numerical 21MA31		BT,CH,CV,IM & ME					
	Methods	ZIMASIC						
4	Mathematical Fundamentals	21MA31D	AI & ML					
	**							
	*** Bridge Course: Audit course for lat	eral entry diploma st	tudents					
Sl. No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Bridge Course Mathematics	21DMA37	AS,BT,CH,CV,EC,EE,EI,					
			IM,ME & ET					
2	Bridge Course C Programming	21DCS37	CS,IS & AI & ML					

Ability Enhancement Courses						
Sl.No	COURSE TITLE	COURSE CODE				
1	National Service Scheme (NSS)	21HSAE39A				
2	National Cadet Corps (NCC)	21HSAE39B				
3	Physical Education	21HSAE39C				
4	Music / Dance / Theatre	21HSAE39D				
5	Art work / Painting / Photography & Film making	21HSAE39E				

Autonomous	
nstitution Affiliated	
to Visvesvaraya	
Technological	
University, Belagavi	

Approved by AICTE, New Delhi Go, change the world

Bachelor of Engineering in ELECTRONICS AND TELECOMMUNICATION ENGINEERING

	IV SEMESTER													
S1. No.	Course Code	Course Title		Credit Alloca			BoS	Category	CIE Duration	Max Marks CIE		SEE Duration	Max Marks SEE	
			L	Т	Р	Total			(H)	Theory	Lab	(H)	Theory	Lab
1	21MA41*	Statistics and Probability for Data Science	2	1	0	3	MA	Theory	1.5	100	****	3	100	****
2	21EC42**	Materials for Electronics Engineering (Common with EC/EE/ EI/ET)	2	0	0	2	EC	Theory	1	50	****	2	50	****
3	21EI43	Microcontroller & Programming (Common with EC/EE/ EI/ET)	3	0	1	4	EI	Theory+Lab	1.5	100	50	3	100	50
4	21ET44	Communication Engineering-I	3	0	1	4	ET	Theory+Lab	1.5	100	50	3	100	50
5	21ET45	Principles of Electromagnetics (Common to ET/EE)	3	1	0	4	ET	Theory	1.5	100	****	3	100	****
6	21ET4AX	Professional Core Elective – Group A	2	0	0	2	ET	MOOC	1.5	50	****	2	50	****
	21ET46	Design Thinking Lab	0	0	2	2	ET	Lab	1	****	50	2	****	50
7	21DCS47	Bridge Course: C Programming	2 (A)	1	0	AUDIT	CS	Theory	1.5	50	****	****	****	****
8	21HSU48	Universal Human Values and Professional Ethics	2	0	0	2	HSS	Theory	1	50	****	2	50	****
						23								

* Summer Internship-II will be done after the IV Semester for 04 Weeks

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	* ENGINEERING MATHEMATICS - IV							
Sl. No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Statistics and Probability for Data Science	21MA41	AS, AI & ML, CH, CV, CS,					
1			EC, EE, ET, EI, IS, ME					
2	Biostatistics	21MA41	BT					
3	Statistics for Data Analytics	21MA41	IM					
4	Statistics and Probability for Data Science	21MA41	AS, AI & ML, CH, CV, CS,					
4			EC, EE, ET, EI, IS, ME					
	** Mandato	ry Courses						
Sl. No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Materials for Electronics Engineering	21EC42	EC,EE,EI,ET					
2	Bio-Inspired Engineering	21BT42	AI&ML, CS, IS & BT					
3	Civil Engineering Materials	21CV42	CV					
4	Engineering Materials	21ME42	AS, CH, IM & ME					
	*** Bridge Course: Audit course f	or lateral entry dip	loma students					
Sl. No	COURSE TITLE	COURSE CODE	BRANCHES					
1	Bridge Course Mathematics	21DMA48	CS,IS & AI&ML					
2	Bridge Course C Programming	21DCS48	AS,BT,CH,CV,EC,EE,EI,IM,					
			ME & ET					

	# GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)								
Sl.	Course Code	Course Title	Duration						
No.									
1.	21ET4A1	Programming, Data Structures And Algorithms Using	8 Weeks						
		Python							
2.	21ET4A2	Design and analysis of algorithms	8 Weeks						
3.	21ET4A3	Advanced Computer Architecture	8 Weeks						
4.	21ET4A4	Data Base Management System	8 Weeks						
5.	21ET4A5	Data Science for Engineers	8 Weeks						

RV RV RV RV

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi Go, change the world

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III LINEAR ALGEBRA, INTEGRAL TRANSFORMS AND FOURIER SERIES (Theory) (Common to AS, EC, EE, EI, ET) **Course Code** 21MA31B 100 Marks : CIE : 100 Marks Credits: L:T:P 3:1:0 : SEE : 45L+15T **Total Hours** : **SEE Duration** 3.00 Hours : Unit - I **09 Hrs** Linear Algebra - I: Vector spaces, subspaces, linear dependence and independence, basis and dimension, four fundamental subspaces. Rank and nullity theorem (without proof). Linear transformations - matrix representation, kernel and image of a linear transformation, dilation, reflection, projection and rotation matrices. Unit - II 09 Hrs Linear Algebra - II: Inner Products, orthogonal matrices, orthogonal and orthonormal bases, Gram-Schmidt process, ORfactorization. Eigen values and Eigen vectors, diagonalization of a matrix (symmetric matrices) and singular value decomposition. Unit - III **09 Hrs** Laplace Transform: Existence and uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties - linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain. LT of special functions - Periodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside unit step function, unit impulse function. Unit - IV 09 Hrs **Inverse Laplace Transform:** Definition, properties, evaluation using different methods. Convolution theorem (without proof) problems. Application to solve ordinary linear differential equations. Unit - V **09 Hrs Fourier series and Fourier Transforms:** Periodic function, even and odd functions. Dirichlet's conditions, Euler's formulae for Fourier series, problems on time periodic signals (square wave, half wave rectifier, saw-tooth wave and triangular wave), Fourier sine series, Fourier cosine series. Fourier integral theorem, complex Fourier and inverse Fourier transform, Fourier sine transform, Fourier cosine transform, properties - linearity, scaling, time-shift and modulation - problems.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Illustrate the fundamental concepts of linear algebra, Laplace and inverse Laplace transforms,
	Fourier series and Fourier transforms.
CO2:	Apply the acquired knowledge of linear algebra, Laplace and inverse Laplace transforms,
	Fourier series and Fourier transforms to solve the problems of engineering applications.
CO3:	Analyze the solution of the problems using appropriate techniques of linear algebra, integral
	transforms and Fourier series to the real world problems arising in many practical situations.
CO4:	Interpret the overall knowledge of linear algebra, integral transforms and Fourier series
	gained to engage in life-long learning.

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refer	ence Books
1	Linear Algebra and its Applications, Gilbert Strang, 4 th Edition, 2014, Cengage Learning
	India Edition, ISBN: 9788131501726, 8131501728.
2	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010,
	Lakshmi Publications, ISBN: 978-81-7008-992-6.
3	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers,
5	ISBN: 978- 81-933284-9-1.
4	Linear Algebra and its Applications, David C. Lay, 4 th Edition, 2012, Pearson Education
4	India, ISBN-13: 970321385178, ISBN-10: 0321385171.

ASSESSMENT AND EVALUATION PATTERN					
	CIE	SEE			
WEIGHTAGE	50%	50%			
QUIZZES	-				
Quiz-I	Each quiz is evaluated for 10				
Quiz-II	marks adding up to 20 MARKS				
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Un Evaluating, and Creating)	derstanding, Applying, Analyzing,				
Test – I	Each test will be conducted for				
Test – II	50 Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS				
EXPERIENTIAL LEARNING	40				
MATLAB	20				
Model presentation/ case study/ video preparation	20				
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS			

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	2
CO2	3	2	2	1	1	-	-	-	1	1	-	2
CO3	3	3	2	2	1	-	-	-	1	2	-	2
CO4	3	3	3	2	-	-	-	-	1	1	-	3

High-3: Medium-2: Low-1

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester III							
	ENVIRONMENTAL TECHNOLOGY							
Course Code : 21BT32A/21BT42A CIE : 50 Mar						50 Marks		
Credits: L:T:P			2:0:0:0	SEE	:	50 Marks		
To	tal Hours	:	26 L	SEE Duration	:	90 min		
Co	urse Learning O	bje	ectives: The students will	be able to				
1	Explain the vari	ous	components of environme	ent and the significance of the sustain	nabil	ity of healthy		
	environment.		-	-				
2	Identify the imp	lica	tions of different types of	the wastes produced by natural and	anthr	opogenic		
	activity.							
3	Develop critical	thi	nking for shaping strategie	es (scientific, social, economic and leg	gal) f	or		
	environmental protection and conservation od biodiversity, social equity and sustainable							
	development.							
4	Design the models that help mitigate or prevent the negative impact of proposed activity on the							
	environment in line with Sustainable Developmental Goals.							

Unit I	08 hrs
Introduction: Climate action – Paris convention, Sustainable Developmental Goals in	
relation to environment, Components of environment, Ecosystem. Environmental	
education, Environmental acts & regulations, role of non-governmental organizations	
(NGOs), EMS: ISO 14000, Environmental Impact Assessment. Environmental	
auditing.	
Unit II	09 hrs
Pollution and its remedies: Air pollution - point and non-point sources of air	
pollution and their controlling measures (particulate and gaseous contaminants). Noise	
pollution, Land pollution (sources, impacts and remedial measures),	
Water management: Advanced water treatment techniques, water conservation	
methods.	
Waste management: Solid waste, e-waste & biomedical waste - sources,	
characteristics & disposal methods. Concepts of Reduce, Reuse and Recycling of the	
wastes.	
Waste to Energy: Different types of Energy, Conventional sources & Non-	
conventional sources of energy: Solar, Hydro Electric, Wind, Nuclear, Biomass & Biogas Fossil Fuels and Hydrogen.	
Unit III	09 hrs
Environmental design: Green buildings, green materials, Leadership in Energy and	
Environmental Design (LEED), Hydroponics, Organic Farming, Biofuels, IC engine to	
E mobility transition and its impacts, Carbon Credits, Carbon Foot Prints,	
Opportunities for Green Technology Markets, Carbon Sequestration.	
Resource recovery system: Processing techniques, Materials recovery systems,	
Biological conversion (composting and anaerobic digestion). Thermal conversion	
products (Combustion, Incineration, Gasification, Pyrolysis, use of Refuse Derived	
Fuels). Case studies.	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Refer	rence Books
1	Shashi Chawla, A Textbook of Environmental Studies, McGraw Hill Education, 2017, ISBN: 1259006387,
2	Richard A Schneider and Jerry A Nathanson, Basic Environmental Technology, Pearson, 6th Edition, 2022. ISBN: 9789332575134,
3	G. Tyler Miller (Author), Scott Spoolman (Author), (2020) Environmental Science – 15th edition, Publisher: Brooks Cole, ISBN-13: 978-1305090446 ISBN-10: 130509044
4	Howard S. Peavy, Donald R. Rowe and George Tchobanoglous. 2000. Environmental Engineering, McGraw Hill Education, First edition (1 July 2017). ISBN-10: 9351340260, ISBN- 13: 978-9351340263
Cours	se Outcomes: After completing the course, the students will be able to

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Identify the components of environment and exemplify the detrimental impact of						
	anthropogenic activities on the environment.						
CO2:	Differentiate the various types of wastes and suggest appropriate safe technological methods						
	to manage the waste.						
CO3:	Apply different renewable energy resources and can analyse the nature of waste and propose						
	methods to extract clean energy.						
CO4:	Adopt the appropriate recovering methods to recover the essential resources from the wastes						
	for reuse or recycling.						

	Experiential learning topics				
	Assessment of the environment of certain big campuses/areas/industries etc, a case study				
1	Development of data sheet				
2	Survey and its record				
3	Identifying the problems associated				
4	4 Provide a solution for the identified problem				

	Experiments to be performed				
1	Data development				
2	Working model (in silico or demo model)				
3	Preparing a report				
4	Brainstorming of the work carried out.				

ASSESSMENT AND EVALUATION PATTERN					
	CIE	SEE			
WEIGHTAGE	50%	50%			
QUIZZES	-				
Quiz-I	Each quiz is evaluated for 5 marks				
Quiz-II	adding up to 10 MARKS.				
THEORY COURSE					
(Bloom's Taxonomy Levels: Remembering, Understanding, Applying,					
Analyzing, Evaluating, and Creating)					

Г

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Test – I	Each test will be conducted for 25	
Test – II	 Marks adding upto 50 marks. Final test marks will be reduced to 20 MARKS 	
EXPERIENTIAL LEARNING	20	
Case Study-based Teaching-Learning	10	
Experiments performed	10	
MAXIMUM MARKS FOR THE THEORY	50 MARKS	50 MARKS
TOTAL MARKS FOR THE COURSE	50	100

Experiential learning evaluation will be evaluated based on the experiments and the preparation, presentation of the topics, equal weightage is given for experiments and theory.

CO PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	-	-	-	3	-	2	-	-	1
CO2	1	-	3	-	1	1	2	-	-	-	1	1
CO3	2	-	1	-	-	1	2	1	-	1	-	1
CO4	1	2	1	-	1	1	2	1	1	-	1	1

High-3: Medium-2: Low-1

to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

			Semester: II	[
		LINEA	R INTEGRATED				
(Theory and Practice)							
	<u> </u>	, i i i i i i i i i i i i i i i i i i i	<u>Common with EE/</u>	· · · ·	<u> </u>		
Course Code	:	21EE33		CIE	:		0 Marks
Credits: L:T:P	:	3:0:1		SEE	:		0 Marks
Total Hours	:	42L+0+30P		SEE Duration	:	3 H	ours + 3Hours
			Unit-I				08 Hrs
Operational Am	pli		tics: Operational	Amplifier characte	erist	ics.	
-	-		rmance characteris	-			-
			rations, Closed-lo				
			acturer's Specificat				
Amp, Power supp		_	1				1
	-		nit – II				08Hrs
Applications of ()pe	rational Amplific	ers: Sign Changer,	Scale Changer, Pha	ase	Shif	t Circuits, Voltage
Follower, Voltage	-Co	ontrolled Voltage	Source, Current So	ources, Inverting cu	ırre	nt A	mplifier, Current-
Controlled Curre	nt	Source, Voltage	to current conver	ter, Current to Vo	olta	ge (Converter, Adder,
Subtractor, Adder	-Su	btractor, Instrume	ntation Amplifier, A	AC amplifier, Integ	rate	or, D	ifferentiator.
Waveform Gene	rate	or: Sine-wave Ge	nerators, Multivibra	ators, Triangular W	ave	Gei	nerators, Sawtooth
Waveform Generator: Sine-wave Generators, Multivibrators, Triangular Wave Generators, Sawtooth Wave Generators, Timer IC 555.							
wave Ocherators,		liel IC 335.					
		U	nit –III				09 Hrs
Voltage Regulate	ors	U Basics of Volta	nge Regulator, Line				sing Op-amps, IC
Voltage Regulate Voltage Regulate	ors,	U Basics of Volta three terminal	age Regulator, Line Adjustable Voltag	e Regulator, Gen			sing Op-amps, IC
Voltage Regulate Voltage Regulate Switched Mode Pe	ors;	U Basics of Volta three terminal er Supplies, Voltag	age Regulator, Lind Adjustable Voltag ge Controlled Oscil	ge Regulator, Gen lators.	era	l Pi	sing Op-amps, IC urpose Regulator,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am	ors ors, owe	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp	e Regulator, Gen lators. O Comparators, Sc	era	l Pi	sing Op-amps, IC urpose Regulator,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am	ors ors, owe	U Basics of Volta three terminal er Supplies, Voltag fier-Non-linear (itches, Peak Detec	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H	e Regulator, Gen lators. O Comparators, Sc	era	l Pi	sing Op-amps, IC urpose Regulator, Frigger, Precision
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog	ors, ors, owe pli Sw	U Basics of Volta three terminal er Supplies, Voltag fier-Non-linear itches, Peak Detect U	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV	ge Regulator, Gen lators. O Comparators, Sc fold circuits.	era hm	l Pu	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In	ors, ors, owe pli Sw	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear itches, Peak Detect U oduction, Compar	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H init –IV ison Between Pass	e Regulator, Gen lators. O Comparators, Sc old circuits.	hm hm	l Pu itt 7	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs , Active Network
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap	ors, ors, owe pli Swi ntro	U Basics of Volta three terminal er Supplies, Voltag fier-Non-linear itches, Peak Detec U oduction, Compar oximations, Gener	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV	e Regulator, Gen lators. O Comparators, Sc old circuits.	hm hm	l Pu itt 7	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs , Active Network
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa	ors ors, owe pli Sw ntro opro	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear itches, Peak Detect U oduction, Compar oximations, Gener Filters.	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order	e Regulator, Gen lators. O Comparators, Sc fold circuits. Sive and Active No Filter with Unity (era hm etw Gai	l Pu itt 7 orks n ar	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass	ors ors, owe pli Sw ntro opro ss I Fi	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear (itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H int –IV ison Between Pass ral Second Order	e Regulator, Gen lators. Comparators, Sc old circuits. sive and Active Ne Filter with Unity (era hm etw Gai ers,	l Pu itt 7 orks n ar Sta	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv	ors, ors, over pli Swa ntro opro ss 1 Fi	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear (itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order	e Regulator, Gen lators. Comparators, Sc old circuits. sive and Active Ne Filter with Unity (era hm etw Gai ers,	l Pu itt 7 orks n ar Sta	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass	ors, ors, over pli Swa ntro opro ss 1 Fi	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear (itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi er, Impedance	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche	e Regulator, Gen lators. Comparators, Sc old circuits. sive and Active Ne Filter with Unity (era hm etw Gai ers,	l Pu itt 7 orks n ar Sta	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters, hebyshev Filters,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv Butterworth Filter	ors ors, owe pli Sw ontro pro opro ss I Fi Fi vert s.	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear (itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi er, Impedance	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche	e Regulator, Gen lators. Comparators, Sc old circuits. Sive and Active Ne Filter with Unity (Filters, All-pass Filter ad Capacitor Filter	era hm etw Gai ers, ers,	l Pu itt 7 orks n ar Sta Cl	sing Op-amps, IC arpose Regulator, Frigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters, hebyshev Filters, 08Hrs
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv Butterworth Filter D/A and A/D Co	ors; ors; opli Sw opro pro pro ss 1 Fi zert s.	U Basics of Volta three terminal er Supplies, Voltag fier-Non-linear itches, Peak Detec U oduction, Compar oximations, Gener Filters. tters, Bandpass Fi er, Impedance U erters: Analog ar	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche Unit –V nd Digital Data Co	e Regulator, Gen lators. o Comparators, Sc fold circuits. sive and Active No Filter with Unity (ilters, All-pass Filter cd Capacitor Filter nversions, Specific	era hm etw Gai ers, ers, atic	1 Pu itt 7 orks n ar Sta Cl	sing Op-amps, IC arpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters, hebyshev Filters, 08Hrs of D/A Converter,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv Butterworth Filter D/A and A/D Co Basic D/A Conv	ors ors, over pli Sw opro ss 1 Fi S Fi S onv ers	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear itches, Peak Detec U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi er, Impedance U erters: Analog ar ion Techniques,	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche Unit –V nd Digital Data Co Switches for D/A	ge Regulator, Gen lators. • Comparators, Sc fold circuits. • Sive and Active No Filter with Unity (ilters, All-pass Filter • Capacitor Filter • Norsions, Specific Converters, Mult	era hm etw Gai ers, ers, atic	l Pu itt 7 orks n ar Cl ons c	sing Op-amps, IC urpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters, hebyshev Filters, bebyshev Filters, D/A Converter, D/A Converters,
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv Butterworth Filter D/A and A/D Co Basic D/A Conv Monolithic D/A C	ors, ors, over pli Sw ntro pro pro pro pro pro pro pro ss 1 Fi yert s.	U Basics of Volta three terminal or Supplies, Voltas fier-Non-linear (itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi er, Impedance U erters: Analog ar ion Techniques, verter, Microproce	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche Unit –V nd Digital Data Co Switches for D/A essor Compatible D	ge Regulator, Gen lators. O Comparators, Sc fold circuits. Sive and Active Ne Filter with Unity O Filters, All-pass Filter Capacitor Filter nversions, Specific Converters, Mult /A Converter, Samp	era hm etw Gai ers, ers, atic iply	l Pu itt orks n ar Sta Cl ons c ving g Pr	sing Op-amps, IC arpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters, hebyshev Filters, 08Hrs of D/A Converter, D/A Converters, ocess, High Speed
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv Butterworth Filter D/A and A/D Co Basic D/A Conv Monolithic D/A C	ors: ors, owe pli Swy Swy Swy Swy Swy Swy Swy Sark Fi Swy Fi Fi Swy Swy Swy Swy Swy Swy Swy Swy Swy Swy	U Basics of Volta three terminal er Supplies, Voltag fier-Non-linear itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi er, Impedance U erters: Analog ar ion Techniques, verter, Microproce rcuit, A/D Conver	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche Unit –V nd Digital Data Co Switches for D/A essor Compatible D erters, Specification	ge Regulator, Gen lators. O Comparators, Sc fold circuits. Sive and Active Ne Filter with Unity O Filters, All-pass Filter Capacitor Filter nversions, Specific Converters, Mult /A Converter, Samp	era hm etw Gai ers, ers, atic iply	l Pu itt orks n ar Sta Cl ons c ving g Pr	sing Op-amps, IC arpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters, hebyshev Filters, 08Hrs of D/A Converter, D/A Converters, ocess, High Speed
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv Butterworth Filter D/A and A/D Co Basic D/A Conv Monolithic D/A Co Sample and Hold Converter, Over-S	ors: ors, owe pli Sw opro opro opro opro ss I Fi vert s. onv ers: conv	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear (itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi er, Impedance U erters: Analog an ion Techniques, verter, Microproce rcuit, A/D Conver	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche Unit –V nd Digital Data Co Switches for D/A essor Compatible D erters, Specification rters.	ge Regulator, Gen lators. • Comparators, Sc fold circuits. • Sive and Active No Filter with Unity (ilters, All-pass Filter converters, Mult /A Converter, Samp ns of A/D Convert	era hm etw Gai ers, ers, atic iply plin er,	l Pu itt orks n ar Cl ons c ving g Pr Clas	sing Op-amps, IC arpose Regulator, Trigger, Precision 09Hrs , Active Network ad Variable Gain, te-variable Filters, hebyshev Filters, 08Hrs of D/A Converter, D/A Converters, ocess, High Speed ssification of A/D
Voltage Regulate Voltage Regulate Switched Mode Pe Operational Am Rectifier, Analog Active Filters: In Design, Filter Ap Design of Low-pa Types: High-pass Impedance Conv Butterworth Filter D/A and A/D Co Basic D/A Conv Monolithic D/A C Sample and Hold Converter, Over-S Special Function	ors: ors, pwe pli Sw onv opro	U Basics of Volta three terminal or Supplies, Voltag fier-Non-linear (itches, Peak Detect U oduction, Compar oximations, Gener Filters. Iters, Bandpass Fi er, Impedance U erters: Analog ar ion Techniques, verter, Microproce rcuit, A/D Conver pling A/D Conver itegrated Circuit	age Regulator, Lind Adjustable Voltag ge Controlled Oscil Circuits: Op-Amp ctors, Sample and H nit –IV ison Between Pass ral Second Order ilters, Band-reject f Gyration, Switche Unit –V nd Digital Data Co Switches for D/A essor Compatible D erters, Specification	ge Regulator, Gen lators. • Comparators, Sc fold circuits. • Sive and Active Ne Filter with Unity (ilters, All-pass Filter • Capacitor Filter • Nersions, Specific Converters, Mult /A Converter, Samp ns of A/D Convert	era hm etw Gai ers, ers, atic iply plin er,	l Pu itt T orks n ar Sta Cl ons c ving g Pr Clas	sing Op-amps, IC arpose Regulator, Frigger, Precision 09Hrs , Active Network and Variable Gain, te-variable Filters, hebyshev Filters, 08Hrs of D/A Converter, D/A Converters, ocess, High Speed ssification of A/D oltage Converters,

Circuit Tuned Amplifier, Audio Power Amplifier,

Autonomous Approved by AICTE, Institution Affiliated New Delhi to Visvesvaraya

Technological University, Belagavi

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO 1	Understand the basics of operational amplifiers				
CO 2	Analyze the performance of OPAMP and build simple circuits using OPAMP				
CO 3	Apply the concepts to design various applications of OPAMP				
CO 4	Design a system using various ICs for a specific application.				

Re	ference Books
1	Linear integrated circuits, S Shalivahanan, V S Kanchana Bhaskaran, Mc.Grawhill Publications, 2018, ISBN: 10:0-07-064818-2
1.	
2	Electronic Devices and Circuit Theory, Robert L.Boylestad, Louis Nashelsky, 8 th Edition, 2010,
۷.	Pantice-Hall India, ISBN:81-203-2064-6
3.	Microelectronics circuits Analysis and Design, M.H Rashid, 2 nd Edition, 2011, Thomson
э.	Publication, ISBN:0-534-95174-0
4	Microelectronics circuits, Sedra & Smith, 5th edition, Oxford Publication, ISBN-13: 978-
4.	0195338836
5.	Microelectronics, Millman & Grabel, TMH 2nd Edition, And ISBN13:9780074637364.

Laboratory Component

Hardware design and simulation of the following to be carried out

- 1. Frequency response of CE amplifier.
 - 2. Design of inverting amplifier, non-inverting amplifier, integrator and Differentiator using IC 741.
- 3. Half wave and full wave Precision Rectifiers using operational amplifier IC741.
- 4. Design and implementation of peak detector, Sample and Hold circuit.
- 5. Design and implement a Schmitt trigger circuit for given UTP & LTP using op-amp.
 - **6.** Design and simulation of First order High pass filter, Low pass filter, wide Band Pass filter and wide Band reject filter for the given pass band gain and cut-off frequency and plot the frequency response.
 - **7.** Realization of 4 bit DAC using R-2R ladder network and asynchronous decade Counter IC 7490.
- **8.** Realization of ADC
- 9. Waveform generation circuit.

PART B

Innovative Experiments (IE)

- A. Design and implementation square and ramp wave generators for given frequency using operational amplifier IC 741.
- B. a. Design and implement Astable multivibrator for a given frequency and duty cycle using NE555 Timer.

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological

University, Belagavi

- b. Design of Monostable multivibrator for a given frequency using NE 555 timer.
- C. Design of Voltage Regulator using IC 7900.
- D. Generation of ramp wave for a given frequency using NE555 timer.

ASSESSMENT AND EVA	LUATION PATTERN				
	CIE				
WEIGHTAGE	50%	50%			
QUIZZES					
Quiz-I	Each quiz is evaluated for 10				
Quiz-II	marks adding up to 20 MARKS.				
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understan Evaluating, and Creating)	nding, Applying, Analyzing,				
Test – I	Each test will be conducted for 50 Marks adding upto 100 marks.				
Test – II	Final test marks will be reduced to 40 MARKS				
EXPERIENTIAL LEARNING	40				
Case Study-based Teaching-Learning	10				
Applications of Linear Integrated Circuits	20				
Video based seminar (4-5 minutes per student)	10				
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS			
PRACTICALS	50	50			
TOTAL MARKS FOR THE COURSE	150	150			

					CO-F	O Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	-	-	-	-	-	1	1	-	1
CO2	2	2	2	1	-	-	-	-	2	-	-	2
CO3	3	3	2	2	2	-	-	-	1	1	-	2
CO4	3	3	2	3	2	1	-	1	2	2	1	2

High-3: Medium-2 : Low-1

to Visvesvaraya Technological Approved by AICTE, New Delhi

Unive	rsity, Belagavi								
				Semester	: III				
		A	NALYSIS A	ND DESIGN C	F DIGITAL CI	RCUITS			
				(Theory & l	Practice)				
			(C	ommon to EC,	EE, EI & ET)				
Course C	ode	:	21EC34		CIE		:	100+50 Marks	
Credits: 1	L:T:P	:	3:0:1		SEE		:	100+50 Marks	
Total Ho	irs	:	42 L+30P		SEE I	Duration	:	3Hours + 3 Hou	rs
				TT •4 T				00 1	
Name	Sustana D	:	al Dinamy	Unit-I		1		08 H	
	-				mal, 1's and 2's	complem	ient	s, Codes – Bin	ary,
	cess 3, Gray				Marstanen Vanaar	~h	1:	inization (IIa	4 . 1
-					Maxterm, Karnau	gn map r	viin	imization. (Up	10 4
			•	of minimization)		1.1 D	
• /	• /		• •	• *	ies: TTL family, I	ropagati	on c	ielay, Power	
Dissipati	on, noise ma	rgin	,fan-out, and					0.0 1	T
0.11	(*	D		Unit – II				08 H	irs
	tional Logi		0		·	1	Б		
U			,		tors using Univer	0	,	~	
		-			der, Multiplier, M	0		•	
Multipley	ker, Demulti	plex	er, Decoder,		y Encoder, Parity	Bit Gene	erat		
T / T				Unit –III			•	09 H	
			-		of Flip Flops, Ch			Equation Flip F	lop
					delay, setup and	hold time			
	nous Sequer								1
			•	· · ·	of Clocked Sequ				
		0	m, Design	of synchronous	s Counter (mod-	n counte	er),	Integrated Cir	cuit
Synchron	ous Counter	•		T T 1 / T T 7					
	9			Unit –IV				09 H	lrs
•	onous Seque			0		6 D		11 ' D'	
-		-			ounter), Effects o	of Propag	;atio	on delay in Rip	ple
	Integrated C	ircu	it Ripple Co	unter.					
Registers		•			D				
0				•	, Ring counters,				of
Sequence	Detector an	id Se	equence Gen		Serial Adder/Sub	tractor D	esig		
ATTI	•			Unit –V				08 H	irs
ALU des	0		- · · · ·	·.1 .• TT ·.		. D		C A 1/1 /	1
	0		U		Design of Logic		<u> </u>		
Logic uni	it, Status Reg	giste	r, Design of	Snifter, The Co	mplete Processor	unit and o	op-o	code generation.	
Course O	utcomee. A fi	ter e	omnleting th	e course the stur	lents will be able t	0			
COULSE O					of digital circu		rea	delay and no	Wer
	constraint	ts.	-		_				
CO2:	Compreh	end	the knowled	lge of digital ci	rcuits to construc	t combin	atio	onal and sequer	ıtial

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Practical's:

- 1. Realization of arithmetic circuits using basic gates and IC's
- 2. Realization of combinational circuits using IC's
- 3. Realization of sequential circuits using IC's
- 4. Realization of Memory elements using IC's
- 5. To study the working of arithmetic logic unit using IC 74181

ASSESSMENT AND EVA	LUATION PATTERN			
	CIE	SEE		
WEIGHTAGE	50%	50%		
QUIZZES				
Quiz-I	Each quiz is evaluated for 10			
Quiz-II	marks adding up to 20 MARKS.			
THEORY COURSE				
(Bloom's Taxonomy Levels: Remembering, Understa	nding, Applying, Analyzing,			
Evaluating, and Creating)				
Test – I	Each test will be conducted for			
	50 Marks adding upto 100			
Test – II	marks. Final test marks will be			
	reduced to 40 MARKS			
EXPERIENTIAL LEARNING	40			
Simulation Exercises using Logisim/Vivado	20			
Self-paced learning & assessment using videos	10			
Class room group activity	10			
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS		
PRACTICALS	50	50		
TOTAL MARKS FOR THE COURSE	150	150		

				CO	-PO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	2	-	1
CO2	2	2	2	1	-	-	-	-	-	2	-	1
CO3	1	3	2	2	3	-	-	-	-	-	-	1
CO4	2	3	3	3	3	-	-	-	-	2	-	1

High-3: Medium-2 : Low-1

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

		Semester: III			
	S	Signal Processing -	·I		
Course Code :	: 21ET35		CIE	:	100 Marks
Credits: L:T:P :	: 3:1:0		SEE	:	100 Marks
Total Hours :	: 45L + 15T		SEE Duration	:	03 Hours
		Unit-I			09 Hrs
Introduction to Sig	ignals and Syster	ms: Definition of	Signals and Syst	em	s, Classification of
Signals, Basic Op	perations on Sign	nals: Operations	Performed on	the	Independent and
Dependent Variab	ble, Precedence	Rule, Elemen	tary Signals,	Sy	stem Viewed as
Interconnection of (Operations, Prope	erties of Systems.			
	Unit –	II			09 Hrs
Time-Domain Rep	presentation of D	iscrete-Time Sys	stems:		
Convolution Sum,	Convolution Sum	evaluation procee	lure, Interconnect	ion	s of LTI Systems,
Properties of the Imp	pulse Response Rep	presentations for DT	-LTI Systems,		•
Fourier Analysis of				d it	s Inverse.
	Unit –I	II			09 Hrs
Frequency Respons	se and Impulse R	esponse of the sy	stem using DTF	Г, З	Sampling concept,
Sampling theorem.	-	1 0	C	,	1011
Discrete Fourier 7		putation of DFT	and IDFT. DFT	and	d Inverse DFT as a
Linear Transformat					
	Unit –I				09 Hrs
Discrete Fourier '	Transform: Use	of DFT in Line	ar Filtering, Fil	teri	ing of Long Data
Sequences.			U,		0 0
FFT Algorithms:	Direct Computati	on of the DFT C	omparison with	FF'	T Implementation
of Radix-2 FFT Alg	-		1		r, implementation
				fЛ	Two Pool Sequences
Applications of FFT Algorithms: Efficient Computation of the DFT of Two Real Sequences, Efficient computation of DFT of a 2N – Point Real Sequence.					
	<u>Unit –</u>				09 Hrs
Z-Transforms. 7-Tr		•	ansforms Poles ar	nd s	zeros, Inversion of the
Z-Transform.	ransionii, Koc, 110	perices of the Z-11	ansionnis, i oies al	iu 1	
	sfer Function Causa	ality and Stability I	nverse Systems an	dS	vstem Identification
LTI Systems: Transfer Function, Causality and Stability, Inverse Systems and System Identification. Unilateral Z-Transform and Solution of Difference Equations.					
			wattons.		

Cour	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain the fundamental concepts of the signals and systems in time domain.						
CO2	Analyze discrete time signals in time, frequency, and Z-domain.						
CO3	Apply efficient methods for the computation of frequency domain representation and vice-versa.						
CO4	Evaluate the LTI systems in time, frequency, and Z-domain.						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books

1	Signals and Systems, Simon Haykin and Barry Van Veen, John Wiley & Sons, 2 nd Edition, 2014. ISBN: 978-81-265-1265-2
	Digital Signal Processing, John G. Proakis and Dimitris G. Manolakis, Pearson Education, 4 th Edition, 2014. ISBN: 81-317-1000-9
	Signals and Systems, Alan V. Oppenheim, Alan S. Willsky and S. Hamid Nawab, Prentice Hall, 2 nd Edition, 2006. ISBN 0-13-814757-4

4 Signals and Systems, Hwei P. Hsu, Schaum's Outlines, McGraw-Hill, 2nd Edition, 2011. ISBN 0-07-030641-9

ASSESSMENT AND EVA	ASSESSMENT AND EVALUATION PATTERN							
	CIE	SEE						
WEIGHTAGE	50%	50%						
QUIZZES	-							
Quiz-I	Each quiz is evaluated for 10							
Quiz-II	marks adding up to 20 MARKS.							
THEORY COURSE								
(Bloom's Taxonomy Levels: Remembering, Und	lerstanding, Applying,							
Analyzing, Evaluating, and Creating)								
Test – I	Each test will be conducted							
Test – II	for 50 Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS							
EXPERIENTIAL LEARNING	40							
Case Study-based Teaching-Learning	10							
Applications of Signal and systems	20							
Video based seminar (4-5 minutes per student)	10							
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS						
TOTAL MARKS FOR THE COURSE	100	100						

		Ma	npping	ŗ	CO-P	0						
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO1	3	2	1	1	2	-	-	-	-	-	-	1
CO2	3	2	2	1	2	-	-	-	-	-	-	1
CO3	3	3	2	2	3	-	-	-	-	-	-	1
CO4	3	3	2	2	3	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

RV Educational Institutions ® **RV College of Engineering**®

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: III	-		
			Circuit Analysis	5		
Course Code	:	21ET36		CIE	:	050 Marks
Credits: L:T:P	:	2:0:0		SEE	:	050Marks
Total Hours	:	30L		SEE Duration	:	02 Hours

Unit-I	10 Hrs
Introduction:	
Practical sources, source transformation, source shifting, Loop and Node analysis	with linear
dependent and independent sources for DC and AC networks. Principle of duality.	
Network Theorems:	
Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power transfer and Millman'	
Unit – II	10 Hrs
Two port networks:	
Z, Y, ABCD and Hybrid parameters, their inter-relationship, and numerical probler	ns.
Resonance in Networks:	
Series and parallel resonance, Q-factor, Bandwidth, and response by	varying
R, L, C.	
Unit –III	10 Hrs
Transient Behaviour and Initial Conditions:	
Behavior of circuit elements under switching conditions and their representation.	Evaluation
of initial and final conditions in R-L, R-C, and R-L-C for DC and AC excitations.	
Course Outcomest After completing the course, the students will be able to	
Course Outcomes: After completing the course, the students will be able to	4 1
CO1 Understand the basic concepts of circuits, theorems, 2 port network param	neters, and
the applications of resonance circuits.	
CO2 Apply the basic concepts and solve circuits with DC or AC excitation using	g theorems
and transformations.	
CO3 Apply the concepts of two-port theory in forming the basis for the analysis	is of linear
electronic systems.	
CO4 Compare the steady state and transient response of a circuit through app	lication of
Laplace transforms.	

Refere	nce Books
1	Engineering Circuit Analysis - William H. Hayt, Jack E. Kemmerly, Jamie D.
-	Phillips, Steven M. Durbin. McGraw Hill, 9 th Edition (November 2020), ISBN-10
	: 9390185130, ISBN-13: 978-9390185139.
2	Electric circuits - Joseph Edminister and Mahmood Nahvi, McGraw Hill, 7 th
4	Edition,2017, ISBN-10 : 1260011968, ISBN-13 : 978-1260011968
3	Schaum's Outline of Electric Circuits - Nahvi, Mahmood, and Joseph A.
	Edminister, 7th ed. 2018, McGraw-Hill Education, ISBN: 9781260011968

to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

4 Network Analysis and Synthesis - Singh Ravish, R, McGraw-Hill; Second edition (1 May 2019), ISBN-10 : 9353166721, ISBN-13 : 978-9353166724

ASSESSMENT AND EVALUATION PATTERN							
	CIE	SEE					
WEIGHTAGE	50%	50%					
QUIZZES							
Quiz-I	Each quiz is evaluated for 10						
Quiz-II	marks to 10 MARKS.						
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understand Evaluating, and Creating) scale down	ding, Applying, Analyzing,						
Test – I							
Test – II	Fest – II Marks adding up to 80 marks. Final test marks will be reduced to 20 MARKS						
EXPERIENTIAL LEARNING	20						
Case Study-based Teaching-Learning	5						
Applications of Network and Circuit analysis	10						
Video based seminar (4-5 minutes per student)05							
MAXIMUM MARKS FOR THE THEORY	50 MARKS	50 MARKS					
TOTAL MARKS FOR THE COURSE	50	50					

					CO-PC)						
		Ma	apping	T D								
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	-	-	-	1	-	-	-
CO2	2	2	2	2	1	-	-	-	1	-	-	-
CO3	2	2	2	2	1	-	-	-	1	-	-	-
CO4	1	1	1	1	1	-	-	-	1	-	-	-

High-3: Medium-2: Low-1

05 Hrs

05 Hrs

06 Hrs

05 Hrs

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III							
Bridge Course: MATHEMATICS							
	(AS, BT, CH, CV, EC, EE, EI, IM, ME, TE)						
Course Code	:	21DMA37		CIE	:	50 Marks	
Credits: L:T:P	:	2:0:0					
	Audit Course						

Differential Calculus: Partial derivatives – Introduction, simple problems. Total derivative, composite functions. Jacobians – simple problems.

Unit-I

Unit – II

Unit –III

Vector Differentiation:

Introduction, simple problems in terms of velocity and acceleration. Concepts of gradient, divergence – solenoidal vector function, curl – irrotational vector function and Laplacian, simple problems.

Differential Equations:

Higher order linear differential equations with constant coefficients, solution of homogeneous equations-Complementary functions. Non-homogeneous equations –Inverse differential operator method of finding particular integral based on input function (force function).

Unit –IV	05 Hrs
Numerical Methods:	
Solution of algebraic and transcendental equations – Intermediate value property, Newton-	-Raphson
method Solution of first order ordinary differential equations – Taylor series and 4^{th} order	er Runge-

method. Solution of first order ordinary differential equations – Taylor series and 4^{ul} order Runge-Kutta methods. Numerical integration – Simpson's $1/3^{rd}$, $3/8^{th}$ and Weddle's rules. (All methods without proof).

Unit –V

Multiple Integrals:

Evaluation of double integrals, change of order of integration. Evaluation of triple integrals. Applications – Area, volume and mass – simple problems.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Illustrate the fundamental concepts of partial differentiation, double integrals, vector
	differentiation, solutions of higher order linear differential equations and numerical
	methods.
CO2:	Derive the solution by applying the acquired knowledge of total derivatives of implicit
	functions, Jacobians, homogeneous linear differential equations, velocity and acceleration
	vectors to the problems of engineering applications.

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological

Univ	versity, Belagavi
CO3:	Evaluate the solution of the problems using appropriate techniques of differential and
	integral calculus, vector differentiation, differential equations and numerical methods to
	the real-world problems arising in many practical situations.
CO4:	Compile the overall knowledge of differential and integral calculus, vector differentiation,
	differential equations and numerical methods gained to engage in life - long learning.

Refere	nce Books
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44 th Edition, 2015,
L	ISBN: 978-81-933284-9-1.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill,
2	ISBN: 978-0-07-063419-0.
3	N.P. Bali & Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.
3	Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John
4	Wiley & Sons, ISBN: 978-0470458365.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q) and tests (T). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30. Total CIE is 20(Q) + 30(T) = 50 Marks.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III											
	Course Title: National Service Scheme										
		(Practical)									
Course Code	:	21HSAE39A/21HSAE46A	CIE	:	50 Marks						
Credits: L:T:P	Credits: L:T:P : 0:0:1 SEE : 50 Mark										
Total Hours	:	L + T + 13 P	SEE Duration	:	2 Hours						

Prerequisites: nts should have service-oriented mindset and social concern.

- 2. Students should have dedication to work at any remote place, any time with available resources and proper timemanagement for the other works.
- 3. Students should be ready to sacrifice some of the timely will and wishes to achieve serviceoriented targets ontime.

Students must take up any one activity on below mentioned topics and has to p	repare contents
for awareness and technical contents for implementation of the projects and	has to present
strategies for implementation of the same. Compulsorily must attend one camp.	

CIE will be evaluated based on their presentation, approach, and implementation strategies. (Any one of the below mentioned activity)

- **1.** Helping local schools to achieve good result and enhance their enrolment in Higher/technical/ vocational education.
- **2.** Preparing an actionable business proposal for enhancing the village/ farmer income and approach for implementation.
- **3.** Developing Sustainable Water management system for rural/ urban areas and implementation approaches.
- **4.** Setting of the information imparting club for women leading to contribution in social and economic issues.
- **5.** Spreading public awareness/ government schemes under rural outreach program. (Minimum 5 programs)
- **6.** Contribution to any national level initiative of Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc..
- 7. Social connect and responsibilities
- 8. Plantation and adoption of plants. Know your plants
- 9. Organic farming, Indian Agriculture (Past, Present and Future) Connectivity for marketing
- 10. Waste management Public, Private and Govt organization, 5 R's
- $\label{eq:conservation} \textbf{11.} Water \ conservation \ techniques Role \ of \ different \ stakeholders \ \ Implementation$
- 12. Govt. School Rejuvenation and assistance to achieve good infrastructure.
- 13. Organize National integration and social harmony events/ workshops / seminars. (Minimum 2

Autonomous Institution Affiliated to Visvesvaraya

filiated Approved by AICTE, New Delhi

programs)al University, Belagavi

AND ONE NSS-CAMP

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Understand the importance of his/her responsibilities towards society.										
CO2:	Analyze the environmental and societal problems/ issues and will be able to design solutions for thesame.										
CO3:	Evaluate the existing system and to propose practical solutions for the same for sustainable development.										
CO4:	Implement government or self-driven projects effectively in the field.										

ASSESSMENT AND EVALUATION PATTERN									
WEIGHTAGE 50% 50%									
	CIE	SEE							
Presentation 1- Selection of topic- (phase 1)									
Justification for Importance, need of the	10	****							
hour withsurveyed data.									

RV Educational Institutions ® **RV College of Engineering**®

to Visvesvaraya

Approved by AICTE, New Delhi Autonomous Institution Affiliated Technological University, Belagavi

EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****
Case Study-based Teaching-Learning	10	Implementation
Sector wise study & consolidation	10	strategies of the
Video based seminar (4-5 minutes per student)	10	project with report
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	3	2	1	1	-	-	2
CO2	2	3	3	2	-	1	2	-	3	2	1	2
CO3	-	-	2	2	-	2	1	2	2	1	2	2
CO4	2	-	2	-	-	2	2	1	3	3	2	2

High-3: Medium-2: Low-1

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III										
Course Title: National Cade Corps										
	(NCC)									
			(Practical)							
Course Code	:	21HSAE39B/	CIE	:	50 Marks					
		21HSAE46B								
Credits: L: T:P	Credits: L: T:P : 0:0:1 SEE : 50 Marks									
Total Hours	:	15 P	SEE	Duration :	2 Hrs					

Unit 1	7 Hrs
Drill (Contact Hrs. 12). Foot Drill- Drill ki Aam Hidayaten, Word ki Command, Sa	vdhan,
Vishram, Aram Se, Murdna, Kadvar Sizing, Teen Line Banana, Khuli Line, Nika	t Line,
Khade Khade Salute Karna	
Unit 2	3 Hrs
Weapon Training (WT): Introduction & Characteristics of 7.62 Self Loading	rifle,
Identification of rifle parts	
Unit 3	3 Hrs
Adventure activities: Trekking and obstacle course	
Unit 4	2 Hrs
Social Service and Community Development (SSCD): Students will participate in v	various
activities throughout the semester e.g., Blood donation Camp, Swachhata Al	ohiyan,
Constitution Day, All National Festival	

Cours	e Outcomes: Cadets will be able to: -
CO1	Understand that drill as the foundation for discipline and to command a group for
	commongoal.
CO2	Understand the importance of a weapon its detailed safety precautions necessary
	for prevention of accidents and identifying the parts of weapon
CO3	Understand that trekking will connect human with nature and cross the obstacles to
	experience army way of life.
CO4	Understand the various social issues and their impact on social life, Develop the
	sense of self-less social service for better social & community life.

Refer	Reference Books								
	NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R-1991, ISBN: 978-93-87918-57-3, HSN Code: 49011010								
2	nccindia.ac.in								

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ASSESSMENT AND EV	ALUATION PATTERN	
WEIGHTAGE	50%	50%
	CIE	SEE
Drill Skill Test	20	****
Weapon Training	10	****
Adventure activities	10	Report on adventure and
Social service activities	10	social service
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	1	1			2
CO2	2	3	3	2		1	2		3	2	1	2
CO3			2	2		2	1	2	2	1	2	2
CO4	2		2			2	2	1	3	3	2	2

High-3: Medium-2: Low-1

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III **PHYSICAL EDUCATION (SPORTS & ATHLETICS)** (Practical) Course Code :21HSAE39A/21HSAE46A CIE 50 Marks : **Credits:** 0:0:1 • 50 Marks SEE L:T:P **Total Hours** L + T + 13 PSEE 2 Hours • **Duration**

	Introduction of Physica	l Education a	nd Sports			
General & Spe	cific warm up					
exercisesCondi	itioning					
exercises						
Any 2 Major						
Games						
Intramural						
Competitions						
Ch	oose any one according to seri	ial no				
1. Kho-Kho	Giving Kho, Single chain,	6. Kabaddi	Hand touch, Chain hold,			
	Poledive, Pole turning, 3-6 Up		Anklehold, Thigh hold,			
			Getting bonus			
2. Throwball	Service, Receive, Spin	7. Volleyball	Attack, Block, Service, Upper			
	pass,		hand pass, Lower hand pass			
	Simple pass, Jump throw					
3. Netball	Step with ball,	8. Handball	Step with ball, Shooting,			
	Shooting, Passing,		Passing,Blocking, Dribbling			
	Blocking					
4. Softball	Catching, Pitching,	9. Football	Dribbling, Chest Drop, Ball			
	Slugging, Base		Control, Thigh Drop, Shooting			
	Running, Stealing					
5. Ball	Service, Fore hand receive,	10. Table	Service, Fore hand receive,			
badminton	Backhand receive, Spin	Tennis	Backhand receive, Smash,			
	smash, Rally		Rally			

Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the basic principles and practices of Physical Education and Sports.				
CO2	Instruct the Physical Activities and Sports practices for Healthy Living				
CO3	To develop professionalism among students to conduct, organize & Officiate Physical Education and Sports events at schools and community level				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Topics for Viva:

- 1. On rules and regulations pertaining to the games / sports
- 2. On dimensions of the court, size / weight of the ball and standards pertaining to that sports / game
- 3. Popular players and legends at state level / National level/ International level
- 4. Recent events happened and winner / runners in that particular sport / game
- 5. General awareness about sport / game, sports happenings in the college campus

Reference Books Muller, J. P. (2000). Health, Exercise and Fitness. Delhi: Sports. Vanaik.A (2005) Play Field Manual, Friends Publication New Delhi IAAF Manual M.J Vishwanath, (2002) Track and Field Marking and Athletics Officiating Manual, SilverStar Publication, Shimoga Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinestics. Note: Skills of Sports and Games (Game Specific books) may be referred

ASSESSMENT AND EVALUATION PATTERN CIE-50 MARKS

Activity book- 10 marks		
QUIZZES		
Quiz-I	Each quiz is evaluated for 10	
Quiz-II	marksadding up to 20 MARKS.	
Test – I	Demonstration of skills is evaluated	
Test — II	for10 marks adding up to 20 MARKS.	
ASSESSMENT A	ND EVALUATION PATTERN	
SI	EE-50 MARKS	
Practical	30 marks	
Viva voce	20 marks	
Total	50 marks	

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Rubric for CIE (2022 Scheme)				
Sl. No.	Content	Marks		
1	Attendance	10		
2	Performing Skills	20		
	(Any Two)			
3	Court measurement	20		
	(Markings)			
	Total:	50		

Rubric for SEE (2022 Scheme)				
Sl. No.	Content	Marks		
1	Performing Skills (Any Two)	30		
2	Viva	20		
	Total:	50		

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	-

High-3: Medium-2: Low-1

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III							
		Course Title	: Music				
	(P	ractical)					
Course Code		21HSAE39D1/ 21HSAE46D1	CIE	:	50 Marks		
Credits: L:T:P		0:0:1	SEE	:	50 Marks		
Total Hours	:	13P	SEE Duration	:	2 Hours		

Prerequisites:

- 1. Students should know basics of music.
- 2. Students should have dedication to learn and improve on their musical skills.
- 3. Students should have participated in musical events and have basic knowledge on how to present their music.
 - Content

13 Hours

- 1. Introduction to different genres of music
- 2. Evolution of genres in India: Inspiration from the world
- 3. Ragas, time and their moods in Indian Classical Music
- 4. Identification of ragas and application into contemporary songs
- 5. Adding your touch to a composition
- 6. Maths and Music: A demonstration
- 7. Harmonies in music
- 8. Chords: Basics and application into any song
- 9. Music Production-I
- 10. Music Production-II

Students have to form groups of 2-4 and present a musical performance/ a musical task which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to				
CO1	Understand basics of Music and improve their skills			
CO2	Appreciate the impacts on health and well being			

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological

University	, Belagavi
CO3	Perform and present music in a presentable manner
CO4	Develop skills like team building and collaboration

Refe	leference Books						
1.	Music Cognition: The Basics by Henkjan Honing						
2.	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory						
	Answer Book by Glory StGermain						
3.	Elements Of Hindustani Classical Music by Shruti Jauhari						
4.	Music in North India: Experiencing Music, Expressing Culture (Global Music Series)						
	by George E. Ruckert						

ASSESSMENT AND EVALUATIO	ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%					
	CIE	SEE					
Presentation 1- Selection of topic- (phase 1)	10	****					
EXPERIENTIAL LEARNING Presentation 2 (phase 2)	10	****					
Case Study-based Teaching-Learning	10	Implementation					
Sector wise study & consolidation	10	strategies of the project with report					
Video based seminar (4-5 minutes per student)	10						
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS					

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	3	2	1	1	-	-	2
CO2	2	3	3	2	-	1	2	-	3	2	1	2
CO3	-	-	2	2	-	2	1	2	2	1	2	2
CO4	2	-	2	-	-	2	2	1	3	3	2	2

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

		S	emester: III		
		Cou	irse Title: Dance		
			(Practical)		
Course Code	:	21HSAE39D2/	CIE	:	50 Marks
		21HSAE46D3			
Credits: L:T:P		0:0:1	SEE	:	50 Marks
Total Hours	:	13P	SEE Duratio	n :	2 Hours

Prerequisites:

- 1. Students should have the will and interest to learn dancing.
- 2. Students should have a positive mindset.
- 3. Students should be willing to interact and cooperate in group activities.

Content	13 Hours
1 Introduction to Dance	

- 1. Introduction to Dance
- 2. Preparing the body for dancing by learning different ways to warm up.
- 3. Basics of different dance forms i.e. classical, eastern, and western.
- 4. Assessing the interest of students and dividing them into different styles based on interaction.
- 5. Advancing more into the styles of interest.
- 6. Understanding of music i.e. beats, rhythm, and other components.
- 7. Expert sessions in the respective dance forms.
- 8. Activities such as cypher, showcase to gauge learning.
- 9. Components of performance through demonstration.
- 10. Introduction to choreographies and routines.
- 11. Learning to choreograph.
- 12. Choreograph and perform either solo or in groups.

Course Outcomes: After completing the course, the students will be able to

CO1: Understand the fundamentals of dancing.

CO2: Adapt to impromptu dancing.

- **CO3:** Ability to pick choreography and understand musicality.
- **CO4:** To be able to do choreographies and perform in front of a live audience.

Reference Books

1	Dance Composition: A practical guide to creative success in dance making by
	Jacqueline M. Smith-Autard

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

ASSESSMENT AND EVALU		- 1
WEIGHTAGE	50%	50%
	CIE	SEE
Presentation 1- Selection of topic- (phase 1)	10	****
EXPERIENTIAL LEARNING	10	****
Presentation 2 (phase 2)		
Case Study-based Teaching-Learning	10	Implementation
Sector wise study & consolidation	10	strategies of the project with
Video based seminar (4-5 minutes per student)	10	report
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	3	2	1	1	-	-	2
CO2	2	3	3	2	-	1	2	-	3	2	1	2
CO3	-	-	2	2	-	2	1	2	2	1	2	2
CO4	2	-	2	-	-	2	2	1	3	3	2	2

13 Hours

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Semester: III						
	Course Title: Lights Camera Drama						
(Practical)							
Course Code	: 21HSAE39D3/ 21HSAE46D3	CIE	•	50 Marks			
Credits: L:T:P	: 0:0:1	SEE	:	50 Marks			
Total Hours	: 13P	SEE Duration	ı :	2 Hours			

Prerequisites:

- 1. Students should have creative oriented mindset and social concern.
- 2. Students should have dedication to work with their classmates for long hours until a collective goal is reached.
- 3. Students should be ready to sacrifice some of the timely will and wishes to achieve targets on time.

Content

- 1. Break the ICE
- **2. Introduction to freedom** Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over social anxiety, Shyness and Nervousness.
- 3. Ura
- **4. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing** Voice projection is the strength of speaking or <u>singing</u> whereby the <u>voice</u> is used powerfully and <u>clearly</u>. It is a technique employed to command respectand attention, as when a <u>teacher</u> talks to a class, or simply to be heard clearly, as used by an actor in a <u>theatre</u>.
- 5. It's Leviosa, Not Leviosaaa!
- 6. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The artof dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from the dramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue delivery skills:
- 7. Elementary, My dear Watson.
- 8. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.
- 9. Show time
- 10.Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Monoacting: different types of characters

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Develop a range of Theatrical Skills and apply them to create a performance.						
CO2:	Work collaboratively to generate, develop and communicate ideas.						
CO3:	Develop as creative, effective, independent and reflective students who are able to						
	make inform edchoices in process and performance.						
CO4:	Develop an awareness and understanding of the roles and processes						
	undertaken in contemporary professional theatre practice.						

CIE's will be evaluated through mono-acting or dialogue. The students need to use whatever they've learnt through the course of the drama class. Judges/Teachers can award the marks accordingly. Certificates won outside of college, can be submitted for evaluation as well. For SEE's. Students need to form groups of 4-6. They need to pick a genre and enact a play of at least 20 mislong. The venue will be IEM auditorium. No mics should be used. They will be given 2 weeks to prepare.

Reference Books

1 The Empty Space by Peter Brook

2 The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina Landau

ASSESSMENT	ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%					
	CIE	SEE					
Presentation 1- Selection of Script (phase 1)	10	****					
EXPERIENTIAL LEARNING Presentation 2 (phase 2)	10	****					
Case Study-based Teaching-Learning	10						
Interpretation of Script	10	Implementationstrategies of theproject					
Performance based seminar (20 mins long)	10	with report					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	-	-	-	-	3	2	1	1	-	-	2			
CO2	2	3	3	2	-	1	2	-	3	2	1	2			
CO3	-	-	2	2	-	2	1	2	2	1	2	2			
CO4	2	-	2	-	-	2	2	1	3	3	2	2			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: III			
			Course Title:			
		Art				
			(Practical)			
Course Code	:	21HSAE39D4/ 21HSAE46D4		CIE	•	50 Marks
Credits: L:T:P		0:0:1		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	2 Hours

Prerequisites:

Although there are no prerequisite qualifications for this subject, students must have a basic understanding of and interest in the fields of art and design in order to enroll in it.

Content	13 Hours

1. Use points, line and curves to create various shapes and forms

2. Use of shapes and forms to create various objects and structures

3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions of perspective

4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.

5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization tocreate a composition.

6. Learn how to use which materials and for what types of art and textures.

7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie and dye.

8. Real world application of the above concepts in the form of book cover design and illustration, cartoon, poster, advertisements, magazine, computer graphics and animation

9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorily take part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presented art style.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books										
1.	Catching the Big Fish: Meditation, Consciousness, and Creativity by David Lynch									
2.	Art & Fear: Observations on the Perils (and Rewards) of Artmaking by David Bayles									

& Ted Orland

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	To use lines, shapes, and colors to depict the various sentiments and moods of life and									
	nature.									
CO2:	To use one's creativity to develop forms and color schemes, as well as the ability to portray									
	them effectively indrawing and painting on paper.									
CO3:	To develop the ability to properly use drawing and painting materials (surfaces, tools and									
	equipment, and so on).									
CO4:	To improve their observation abilities by studying everyday items as well as numerous									
	geometrical and non-geometrical (i.e. organic) shapes found in life and nature and to hone									
	their drawing and painting talents in response to these insights.									

ASSESSMENT AND EVALUATION PATTERN											
WEIGHTAGE	50%	50%									
	CIE	SEE									
Presentation 1- Selection of topic- (phase 1)	10	****									
EXPERIENTIAL LEARNING	10	****									
Presentation 2 (phase 2)											
Case Study-based Teaching-Learning	10	Implementation									
Sector wise study & consolidation	10	strategies of the project with report									
Video based seminar (4-5 minutes per student)	10										
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS									

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	-	-	-	-	3	2	1	1	-	-	2			
CO2	2	3	3	2	-	1	2	-	3	2	1	2			
CO3	-	-	2	2	-	2	1	2	2	1	2	2			
CO4	2	-	2	-	-	2	2	1	3	3	2	2			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: III			
		Course	Title: Photography			
			(Practical)			
Course Code	:	21HSAE39D5/		CIE	:	50 Marks
		21HSAE46D5				
Credits: L:T:P		0:0:1		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	2 Hours

Prerequisites:

1. Students should know basics of photography and cinematography.

2. Students should have dedication to learn and improve on their photography and film making skills.

- 3. Students should have participated in photography events.
- 4. Students should have a DSLR camera.

	Content	13 hours
1.	Introduction to photography.	
2.	Understanding the terminologies of DSLR.	
3.	Elements of photography.	
4.	Introduction to script writing, storyboarding.	
5.	Understanding the visualization and designing a set.	
6.	Basics of film acting	
7.	Video editing using software	
8.	Introduction to cinematography.	
9.	Understanding about lighting and camera angles.	
10.	Shooting a short film.	

experts. The experts shalljudge the groups and award marks for the same. CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand basics of photography and videography and improve their skills									
CO2:	Appreciate the skills acquired from photography									
CO3:	Perform and present photos and films in a presentable manner									
CO4:	Develop skills like team building and collaboration									

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books

1. Read This If You Want to Take Great Photographs – Henry Carroll

2. The Digital Photography Book: Part 1 – Scott Kelby

ASSESSMENT AND EVALUATION PATTERN										
WEIGHTAGE	50%	50%								
	CIE	SEE								
Presentation 1- Selection of topic- (phase 1)	10	****								
EXPERIENTIAL LEARNING	10	****								
Presentation 2 (phase 2)										
Case Study-based Teaching-Learning	10	Implementationstrategies of								
Sector wise study & consolidation	10	theproject with report								
Video based seminar (4-5 minutes per student)	10									
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS								

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	-	-	-	-	3	2	1	1	-	-	2			
CO2	2	3	3	2	-	1	2	-	3	2	1	2			
CO3	-	-	2	2	-	2	1	2	2	1	2	2			
CO4	2	-	2	-	-	2	2	1	3	3	2	2			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester III								
Course Title: SUMMER INTERNSHIP-I (Practice)								
Course Code	:	21ETI310	CIE Mar	KS	:	50 Marks		
Credits: L:T:P	:	0:0:2	SEE Mar	KS	:	50 Marks		
Total Hours	:	3 Weeks	SEE Durati	n	:	1 Hours		

Guidelines	3 Weeks

1. A minimum of 1 credit of internship after I year may be counted towards B.E. degree program.

During II semester to III semester transition, Three weeks of internship is mandatory.
 Internship report and certificate need to be submitted at the end of the internship to the concerned department for the evaluation.

- 4. Internship evaluation will be done during III semester for 1 credit in two phases.
- 5. Students can opt the internship with the below options:

A. Within the respective department at RVCE (Inhouse) Departments may offer internship opportunities to the students through the available tools so that the students come out with the solutions to the relevant societal problems that could be completed within THREE WEEKS.

B.

At RVCE Center of Excellence/Competence

RVCE hosts around 16 CENTER OP EIXCELLENCE in various domains and around 05 CENTER OP COMPETENCE. The details of these could be obtained by visiting the website https://rvce.edu.in / rvce-center-excellence. Each center would be providing the students relevant training/internship that could be completed in three weeks.

C. At Intern Shala

Intern Shala is India's no.1 internship and training platform with 40000+ paid internships in Engineering. Students can opt any internship for the duration of three weeks by enrolling on to the platform through https://internshala.com

D. At Engineering Colleges nearby their hometown

Students who are residing out of Bangalore, should take permission from the nearing Engineering College of their hometown to do the internship. The nearby college should agree to give the certificate and the letter/email stating the name of the student along with the title of the internship held with the duration of the internship in their official letter head.

E. At Industry or Research Organizations

Students can opt for interning at the industry or research organizations like BEL, DRDO, ISRO, BHEL, etc.. through personal contacts. However, the institute/industry should provide the letter of acceptance through hard copy/email with clear mention of the title of the work assigned along with the duration and the name of the student.

Procedures for the Internship:

1. Request letter/Email from the office of respective departments should go to

University, Belagavi

Approved by AICTE, New Delhi

Places where internships are intended to be carried out with a clear mention of the duration of Three Weeks. Colleges/Industry/ CoEs/CoCs will confirm the training slots and the number of seats allotted for the internship via confirmation letter/ Email.

2. Students should submit a synopsis of the proposed work to be done during internship program. Internship synopsis should be assessed or evaluated by the concerned Colleges/Industry/CoEs/CoC. Students on joining internship at the concerned Colleges/Industry/ CoEs/CoCs submit the Daily log of student's dairy from the joining date.

3. Students will submit the digital poster of the training module/project after completion of internship.

4. Training certificate to be obtained from industry.

Course Outcomes: After completing the course, the students will be able to						
CO1:	Develop communication, interpersonal, critical skills, work habits and attitudes necessary for					
	employment.					
CO2:	Assess interests, abilities in their field of study, integrate theory and practice and explore career					
	opportunities prior to graduation.					
CO3:	Explore and use state of art modern engineering tools to solve societal problems with affinity					
	towards the environment and involve in professional ethical practice.					
CO4:	Compile, document and communicate effectively on the internship activities with the engineering					
	community.					

ASSESSMENT AND EVALUATION PATTERN						
	CIE	SEE				
Phase – I	20					
Phase- II	30	50				
TOTAL MARKS FOR THE COURSE	50					

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	1	•	2	1	-	-	-	-	-
CO2	2	2	2	-	3	1	1	-	3	3	1	1
CO3	2	2	3	1	3	•	1	2	3	3	1	1
CO4	-	-	3	-	-	1	2	2	3	2	3	1

06 Hrs

06 Hrs

06 Hrs

06 Hrs

06 Hrs

RV Educational Institutions RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Semester: IV								
STATISTICS AND PROBABILITY FOR DATA SCIENCE								
(Theory)								
(Common to ALL Programs)								
Course Code	:	21MA41	CIE	:	100 Marks			
Credits: L:T:P	:	2:1:0	SEE	:	100 Marks			
Total Hours	:	30L+15T	SEE Duration	:	3.00 Hours			
	•	5021101		•				

Statistics:

Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Correlation analysis, rank correlation, linear and multivariate regression analysis – problems. Unit – II

Unit-I

Random Variables:

Random variables-discrete and continuous, probability mass function, probability density function, cumulative density function, mean and variance. Two or more random variables - Joint probability mass function, joint probability density function, conditional distribution and independence, Covariance and Correlation. Unit –III

Probability Distributions:

Discrete distributions - Binomial, Poisson. Continuous distributions - Exponential, Normal and Weibul.

Unit –IV

Sampling and Estimation:

Population and sample, Simple random sampling (with replacement and without replacement). Sampling distributions of means (σ known), Sampling distributions of mean (σ unknown): t distribution, Sampling distributions of variance (o unknown): Chi - squared distribution. Estimation -Maximum Likelihood Estimation (MLE). Unit –V

Inferential Statistics:

Principles of Statistical Inference, Test of hypothesis - Null and alternative hypothesis, Procedure for statistical testing, Type I and Type II errors, level of significance, Tests involving the normal distribution, one - tailed and two - tailed tests, P - value, Special tests of significance for large and small samples (F, Chi – square, Z, t – test).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Illustrate the fundamental concepts of statistics, random variables, distributions, sampling,
	estimation and statistical hypothesis.
CO2:	Apply the acquired knowledge of statistics, random variables, distributions, sampling,
	estimation and statistical hypothesis to solve the problems of engineering applications.
CO3:	Analyze the solution of the problems using appropriate statistical and probability techniques
	to the real world problems arising in many practical situations.
CO4:	Interpret the overall knowledge of statistics, probability distributions and sampling theory
	gained to engage in life-long learning.

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	erence Books
1	Theory and Problems of Probability, Seymour Lipschutz & Marc Lars Lipson, 2 nd Edition,
1	Schaum's Outline Series, McGraw – Hill,2000, ISBN: 9780071386517.
2	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C.
2	Runger, 7 th Edition, John Wiley & Sons, 2019, ISBN: 9781119570615.
3	Probability & Statistics for Engineers & Scientists, Ronald E. Walpole & Raymond H. Myers,
5	9 th edition, 2016, Pearson Education, ISBN-13: 9780134115856.
	The Elements of Statistical Learning - Data Mining, Inference, and Prediction, Trevor Hastie
4	Robert Tibshirani Jerome Friedman, 2 nd Edition, 2009 (Reprint 2017), Springer, ISBN-10:
	0387848576, ISBN-13: 9780387848570.

ASSESSMENT AND EVALUATION PATTERN							
	CIE	SEE					
WEIGHTAGE	50%	50%					
QUIZZES	-						
Quiz-I	Each quiz is evaluated for 10						
Quiz-II	marks adding up to 20 MARKS						
THEORY COURSE (Bloom's Taxonomy Levels: Remember: Analysing, Evaluating, and Creating)							
Test – I	Each test will be conducted for						
Test – II	50 Marks adding up to 100 marks. Final test marks will be reduced to 40 MARKS						
EXPERIENTIAL LEARNING	40						
MATLAB	20						
Model presentation/ case study/ video preparation	20						
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS					

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	2
CO2	3	2	2	1	1	-	-	-	1	1	-	2
CO3	3	3	2	2	1	-	-	-	1	2	-	2
CO4	3	3	3	2	-	-	-	-	1	1	-	3

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV								
ENGINEERING MATERIALS								
	(Theory)							
		(Co	mmon to EC, E	E, EI &				
			ET)					
Course Code	:	21EC42		CIE	:	50 Marks		
Credits: L:T:P	:	2:0:0		SEE	:	50 Marks		
Total Hours	:	28L		SEE Duration	:	02 Hours		

Unit-	10 Hrs			
Introduction: Classification and Properties of Materials, Materials Used in Electrical and				
Electronic Industries, Requirements and Future Developments of Electronic Materi	als,			
Characterization Techniques for Electronic Materials				
Classical Theory of Electrical Conduction and Conducting Materials: Res	istivity,			
TCR(Temperature Coefficient of Resistivity) and Matthiessen's Rule, Traditional				
Classification of Metals,				
Insulators and Semiconductors, Drude's Free Electron Theory, Hall Effect, Wied	lemann–			
Franz Law, Resistivity of Alloys, Nordheim's Rule, Resistivity of Alloys and Mult	iphase			
Solids	-			
Unit	09 Hrs			
- II				
Thin Film Electronic Materials: Techniques for Preparation of Thin Films, Thi	in Film			
Conducting				
Materials, Thin Film Resistors, Transparent and Conductive Thin Films, Thin Fi	lm			
Magnetic Materials.				
Organic Electronic Materials: Conducting Polymers, Charge carriers, Semicond	ucting			
Organic Materials, Organic Light Emitting Diode, Organic FET	-			
Unit	09 Hrs			
–III				
Semiconductor devices: Intrinsic & Extrinsic Semiconductors, temperature dependence of				
conductivity, direct and indirect recombination minority carrier life time Nanomaterials for				
Electronic Device Applications: Micro-/Nano-devices Using Nanostructured Materials:				
CNT transistor, Single electron transistor				

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Explain electronics material classification, different physical properties and to the
	extenddevice applications.
CO2:	Define the transport mechanism (in solid state & organic), working principle of
	electronic
	material and assess material parameters for practical requirement.
CO3:	Summarize various fabrication, characterization and synthesis techniques for the
	electronic nanomaterials and thin film growth.
CO4:	Identify and calculate material parameters including electrical conductivity,
	resistivity,
	magnetic and optical properties for real-time electronic applications.

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	rence Books
1	Introduction to Electronic Materials for Engineers, Wei Gao & Zhengwei Li, Nigel Sammes,2 nd Edition, World Scientific Publishing Co. Pvt. Ltd, ISBN:9789814293693
2	Principles of Electronic Materials and Devices, S O Kasap, 4 th Edition, 2018, McGraw HillEducation, ISBN-13: 978-0-07-802818-2
3	Electronic Properties of Materials, Rolf E. Hummel, 4 th Edition, 2011, Springer, ISBN-13:978-1489998415

ASSESSMENT AND EVALUATION PATTERN					
	CIE	SEE			
WEIGHTAGE	50%	50%			
QUIZZES	·				
Quiz-I	Each quiz is evaluated for 10				
Quiz-II	marks adding up to 10 MARKS.				
THEORY COURSE					
(Bloom's Taxonomy Levels: Remembering, Und Analyzing, Evaluating, and Creating)	lerstanding, Applying,				
Test – I	Each test will be conducted				
Test – II	 for 30 Marks adding upto 60 marks. Final test marks will be reduced to 20 MARKS 				
EXPERIENTIAL LEARNING	20				
Case Study-based Teaching-Learning	10				
Paper Review	05				
Video based seminar (4-5 minutes per student)	05				
MAXIMUM MARKS FOR THE THEORY	50 MARKS	50 MARKS			
TOTAL MARKS FOR THE COURSE	50	50			

CO-PO	Mapp	ing										
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	1	2	1	-	1	2	-	-	-	-	2
CO2	3	2	2	1	2	1	-	-	-	-	-	2
CO3	3	1	3	1	-	1	3	-	-	-	-	2
CO4	3	3	2	2	2	2	-	-	-	-	-	2

Low-1 Medium-2 High-3

Autonomous

to Visvesvaraya

Technological University, Belagavi

Approved by AICTE, Institution Affiliated New Delhi

Self-Study/Experience Learning:

Research Paper/ Poster Presentation on following

- 1. Case studies: Advanced electronics materials and applications
- 2. Simulation of electrical, optical, magnetic, thermal, mechanical properties for advanced functional materials devices
- 3. Thin film devices, circuits and system (a field-effect transistor-based CNT, Nanowire FET, Graphene, a laser diode, a quantum cascade laser)
- 4. Advanced manufacturing process for emerging materials and applications
- 5. Quantum nanostructured Semiconductor Devices and applications

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV							
	Microcontroller & Programming						
		(common to EI/ET/E	,			
	_		(Theory and Pract	tice)			
Course Code	:	21EI43		CIE	:	150 Marks	
Credits: L:T:P	Credits: L:T:P : 3:0:1 SEE : 150 Marks						
Total Hours	:	45L+30P		SEE Duration	:	3Hours + 3Hours	

Unit-I	9 Hrs
Introduction to Processing units	
Computer System, Processor, Block diagram, Processor logic unit, Control unit, Instructio	n format, Assembly
language, High level language, Embedded computing applications, Microcontroller, Instruct	ion set architecture
(CISC, RISC), Harvard and Von Neumann, Floating and fixed point,	
Introduction of controller families: 8-bit, 16-bit, 32 bit, 64 bit	
ARM Processor families, Cortex A, Cortex R and Cortex M, Thumb 2 instruction set	
Unit – II	9 Hrs
Cortex M Architecture	71115
Advantages of Cortex M CPUs, Programmer's model: Operation modes & states, Registers	Special Registers
APSR, Memory System, Low power modes, Instruction Set: Memory access instructions, A	
Shift, Program flow control instructions, Programming examples, IDEs, ST-Link debugger.	Antimicue, Logical
Shirt, Program now control instructions, Programming examples, IDEs, 51-Enik debugger.	
Unit –III Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin	
Digital and Analog IO	g: interfacing LED
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC	g: interfacing LED
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming	g: interfacing LED; , Programming and
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV	g: interfacing LED; , Programming and 9 Hrs
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV Serial Port	g: interfacing LED; , Programming and 9 Hrs Baud rate
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV Serial Port USART: Basics of serial communication(Synchronous, asynchronous), Framing, Sampling, I	g: interfacing LED; , Programming and 9 Hrs Baud rate
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV Serial Port USART: Basics of serial communication(Synchronous, asynchronous), Framing, Sampling, I generation, Programming USART for character transmission, Serial Peripheral Interface, Pro data transfer	g: interfacing LED; , Programming and 9 Hrs Baud rate gramming SPI for
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV Serial Port USART: Basics of serial communication(Synchronous, asynchronous), Framing, Sampling, I generation, Programming USART for character transmission, Serial Peripheral Interface, Pro data transfer Unit –V	g: interfacing LED; , Programming and 9 Hrs Baud rate
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV Serial Port USART: Basics of serial communication(Synchronous, asynchronous), Framing, Sampling, I generation, Programming USART for character transmission, Serial Peripheral Interface, Pro data transfer Unit –V Interrupts:	g: interfacing LED , Programming and 9 Hrs Baud rate gramming SPI for 9 Hrs
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV Serial Port USART: Basics of serial communication(Synchronous, asynchronous), Framing, Sampling, I generation, Programming USART for character transmission, Serial Peripheral Interface, Pro data transfer Unit –V Interrupts: Types of interrupts, Nested vector interrupt controller (NVIC) in Cortex-M cores, Interrupt	g: interfacing LED , Programming and 9 Hrs Baud rate gramming SPI for 9 Hrs t vectors, Priorities
Digital and Analog IO ARM Cortex M4 MCUs, Memory organization, Reset & Clock Control, GPIO, Programmin and Push buttons, Analog to digital converters (ADC), Successive Approximation ADC interfacing an analog sensor, Digital to Analog Converter(DAC), Programming Unit –IV Serial Port USART: Basics of serial communication(Synchronous, asynchronous), Framing, Sampling, I generation, Programming USART for character transmission, Serial Peripheral Interface, Pro data transfer Unit –V Interrupts:	g: interfacing LED , Programming and 9 Hrs Baud rate gramming SPI for 9 Hrs t vectors, Priorities

Course	Course Outcomes: After completing the course, the students will be able to:-					
CO1:	Comprehend the architecture of processing units used to build computers and embedded systems.					
CO2:	Identify and explain key features of Arm architectures, processors, and more specifically the					
	Arm Cortex-M4.					
CO3:	Apply the knowledge of microcontroller for programming peripherals using registers and APIs					
	generated using auto code generators.					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

CO4: Engage in assignment to understand, formulate, design and analyse problems to be realized on embedded processors.

Re	ference Books
1.	The Definitive Guide to the ARM Cortex-M3& M4 Processors, Joseph Yiu, 3 rd Edition, Newnes
	(Elsevier), 2014, ISBN:978-93-5107-175-4
2.	STM32 Arm Programming for Embedded Systems, Shujen Chen, Eshragh Ghaemi, Muhammad
	Ali Mazidi, Microdigitaled, ISBN: 978-0997925944
3.	Reference manuals: STM32F411, STMcubeMX, SPI
4.	White Paper: Cortex-M for Beginners - An overview of the Arm Cortex-M processor family and
	comparison

Laboratory Component

Practical: Programming in ARM Assembly using Keil

- 1. Data Transfer Programs: Block Moves & Exchange (With & Without Overlap) with &without String Instructions.
- 2. Arithmetic Operations: Addition, Multiplication & Division on 32-Bit Data.
- 3. Search for a Key in an Array of Elements using Linear Search, Binary Search.

Programming in Keil using embedded C in STMCubeMX

- 1. Program digital IOs control LEDs, seven segment interface, push buttons.
- 2. Program digital IOs to control stepper and motor drivers for given specifications.
- 3. Program ADC and show analog to digital conversion. Display digital value on suitable interface.
- 4. Program ADC and show interfacing of analog sensor for given specifications.
- 5. Program USART and serial data transfer.
- 6. Program SPI and show the configuration and data transfer between SPI slave device and master
- 7. Program to configure NVIC and writing interrupt service routines.

Innovative Experiments (IE)

PART B

- 1. Program SPI and show the configuration and data transfer between SPI slave device and master.
- 2. Program ADC and show interfacing of analog sensor for given specifications.
- 3. Data transfer in polling, interrupt and DMA based modes.
- 4. Real time Audio applications: Flanging effect

ASSESSMENT AND EVALUATION PATTERN

Electronics & Telecommunication Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	CIE	SEE
WEIGHTAGE	50%	50%
QUIZZES		
Quiz-I	Each quiz is evaluated for 10	
Quiz-II	marks adding up to 20 MARKS.	
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understand Evaluating, and Creating)	ng, Applying, Analyzing,	
Test – I	Each test will be conducted for 50	
Test – II	Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS	
EXPERIENTIAL LEARNING	40	
Application development using STMCubeMx	20	
Model based design	10	
Survey on advanced CPUs/ Supercomputers/ Multicores/ SoC/ NoC	10	
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS
PRACTICALS	50	50
TOTAL MARKS FOR THE COURSE	150	150

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	1	1	-	-	-	-	-	1
CO2	3	3	2	-	2	1	-	-	2	-	-	1
CO3	3	3	2	-	2	1	-	-	1	1	-	1
CO4	3	3	3	-	2	1	-	1	3	2	-	3

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Communication Engineering - I (Theory and Practice) Course Code I 21ET44 CIE 100+50 Marks Course Code : 21ET44 CIE : 100+50 Marks Total Hours : 200+50 Marks Total Hours : 100+50 Marks Total Hours : 0 OBT Introduction: Elements of a Communication System, Communication channels and their characteristics. Analysis and drasmission Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low-Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNIT-II OPD #Fr Amplitude mod	Semester: IV						
Course Code : 21ET44 CIE : 100+50 Marks Credits: L.T:P : 3:0:1 SEE : 100+50 Marks Total Hours : 45L+30P SEE Duration : 09Hrs Introduction: Elements of a Communication System, Communication channels and their characteristics. Analysis and transmission of signals: Signal transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low-Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNT1-II 09 Hrs Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. 09 Hrs Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De-Emphasis in FM, FM radio broadcasting, Stereo multiplexing. 09 Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. 09 Hrs Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adapive Delta modulation. 09 Hrs <th></th> <th></th> <th>_</th> <th>_</th> <th></th> <th></th>			_	_			
Credits: L:T:P : 3:0:1 SEE : 100+50Marks Total Hours : 45L+30P SEE Duration : 03Hrs + 03 Hrs Introduction: Elements of a Communication System, Communication channels and their characteristics. Analysis and transmission, Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low-Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. 09 Hrs Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. 09 Hrs 09 Hrs Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. 09 Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. 09 Hrs Noise in Analog modulation: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation: 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. 109 Hrs Bandpa						1	
Total Hours : 45L+30P SEE Duration : 03Hrs + 03 Hrs Introduction: Elements of a Communication System, Communication channels and their characteristics. 09Hrs 09Hrs Analysis and transmission of signals: Signal transmission through a linear system: Signal distortion during transmission, Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low-Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. 09 Hrs Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. 09Hrs Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation. Amplitude Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection							
UNIT-I 09Hrs Introduction: Elements of a Communication System, Communication channels and their characteristics. Analysis and transmission of signals: Signal transmission through a linear system: Signal distortion during transmission, Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low-Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNT-II 09 Hrs Amalysis and transmission, Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low-Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNT-II 09 Hrs Amalysis and transmission of signals, Signals, Phase delay and Group delay. 09 Hrs Amalysis and pass systems, Phase delay and Group delay. 09 Hrs Amalysis and pass signals, Band pass systems, Phase delay and Group delay. 09 Hrs Amalysis and pass signals, Band pass systems, Phase delay and Group delay. 09 Hrs Amalysis and band-pass signals, Band pass systems, Phase delay and Group delay. 09 Hrs Amalysis and band-pass signals, Band pass systems, Phase delay and Covariance functions, Power Spectral Density, Properties of PSD. 09 Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. 09 Hrs Noise in Analog modulation: None-uni		:			:		
Introduction: Elements of a Communication System, Communication channels and their characteristics. Analysis and transmission of signals: Signal transmission through a linear system: Signal distortion during transmission, Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low-Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. Multiplication: Provide the modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. UNT-III 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antaliasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification	Total Hours	:		SEE Duration	:	L	
characteristics. Analysis and transmission of signals: Signal transmission through a linear system: Signal distortion during transmission, Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low- Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNT-II 09 Hrs Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. UNT-III 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNTI-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation: UNTI-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on Analog modulation techniques. 2. Experiments on Analog modulation techniques. 3. Experiments on Analog modulation tech							
distortion during transmission, Distortion less transmission, Linear distortion, Distortion caused by channel nonlinearities and multipath effects and fading channels, Filters, Low- Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNIT-II 09 Hrs Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De-Emphasis in FM, FM radio broadcasting, Stereo multiplexing. UNIT-III 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiments on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on Analog modulation techniques.				-,			
caused by channel nonlinearities and multipath effects and fading channels, Filters, Low- Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNIT-II 09 Hrs Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De-Emphasis in FM, FM radio broadcasting, Stereo multiplexing. Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. 09 Hrs Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiments on Sampling Theorem and verification 3. Experiments on Analog modulation techniques. 3. Experiments: 1. Experiments on basic Digital Modulation techniques. 3. Experiments:	Analysis and tran	sn	nission of signals: Signal transm	ission through a	lin	ear system: Signal	
Pass and Band-pass signals, Band pass systems, Phase delay and Group delay. UNT-II 09 Hrs Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. 09Hrs WITT-III 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments 1. Experiments 2. Experiments on basic Digital Modulation techniques. Simulation experiments: <	-						
UNIT-II 09 Hrs Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. UNIT-III 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Lunt under experiments: 1. Experiments on Analog Modulation techniques. 2. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments: 1. Experiments	•		-	-			
Amplitude modulation: Hilbert Transform, Basic concepts of AM, DSBSC, SSBSC, VSB modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. UNIT-III Ø9Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on Analog modulation techniques. 3. Experiments:	Pass and Band-pas	S S:	* * *	delay and Group	de		
modulation techniques. Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De- Emphasis in FM, FM radio broadcasting, Stereo multiplexing. WIT-III 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. 09Hrs Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. 1 Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2 2. Experiments on basic Digital Modulation techniques. 3 Experiments: 1. Experiments on Analog modulation techniques. 1 1 3. Experiments on Analog modulation techniques. 3 3. Experiments: 1 1 4. Experiments on Analog modulation techniques. 3	Amplitude modul	ati		ncepts of AM D	SP		
Angle modulation: Relationship between FM and PM, FM: Narrowband FM, Wide band FM, Bandwidth of FM, Generation of FM signals, Pre-Emphasis and De-Emphasis in FM, FM radio broadcasting, Stereo multiplexing. 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. 09Hrs Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiments on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. 1. Experiments on Analog modulation techniques. 1. Experiments: 1. Experiments: 1. Experiments on Analog modulation techniques. 1. Experiments 1. Experiments:	-						
FM radio broadcasting, Stereo multiplexing. 09Hrs WINT-III Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments: 1. Experiments: 1. Experiments: 1. Experiments on Analog modulation techniques and their frequency domain analys	-			M, FM: Narrowb	an	d FM, Wide band	
UNIT-III 09Hrs Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on Analog Modulation techniques.	FM, Bandwidth of	F	M, Generation of FM signals, Pro	e-Emphasis and I	De	- Emphasis in FM,	
Random Processes: Random processes, Mean, Correlation and Covariance functions, Power Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Image: Colspan="2">Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiments on basic Digital Modulation techniques. 3. Experiments on basic Digital Modulation techniques. 3. Experiments: 1. Experiments: 1. Experiments: 1. Experiments: 1. Experiments: 1. Experiments on basic Digital Modulation techniques. 3. 2. Experiments: 1. Experiments:	FM radio broadcas	tin					
Spectral Density, Properties of PSD. Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. 1. Experiments on Analog modulation techniques. 1. Experiments on Analog Modulation techniques.				. 10 :			
Noise in Analog modulation: Noise: Shot noise, Thermal noise, White noise, Noise in AM and FM receivers. UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: Hardware experiments 1. Experiments on Analog Modulation techniques. 2. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on basic Digital Modulation techniques. 3. Experiments 1. Experiments on basic Digital Modulation techniques. 3. Experiments 3. Experiments 1. Experiments on basic Digital Modulation techniques. 3. Experiments 3. Experiments 1. Experiments on basic Digital Modulation techniques. 3. Experiments 3. Experiments 1. Experiments on basic Digital Modulation techniques. 3. Experiments: 3. Experiments: 1. Experiments on Analog modulation techniques and their frequency domain analysis. 3. Experiments:				ation and Covaria	nc	e functions, Power	
UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. 3. Experiments on Analog modulation techniques. 1. Experiments 1. Experiments on Analog modulation techniques. 1. Experiments 2. Experiments on Analog Modulation techniques. 1. Experiments on basic Digital Modulation techniques.	-		L	rmal noise White	n י	oise Noise in AM	
UNIT-IV 09 Hrs Pulse Modulation: Sampling: Sampling Theorem, signal reconstruction from uniform samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. 1. Experiments on basic Digital Modulation techniques. 1. Experiments on basic Digital Modulation techniques.	0	100		iniai noise, wind	- 11		
samples, Practical signal reconstruction, Practical issues in signal sampling and reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: Hardware experiments 1. Experiments on Analog Modulation techniques. 2. Experiments on basic Digital Modulation techniques. 3. Experiments on basic Digital Modulation techniques. 5. Simulation experiments: 1. Experiments on Analog modulation techniques.			UNIT-IV			09 Hrs	
reconstruction, Antialiasing Filter, PCM system: Quantization: Non-uniform quantization, PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: Hardware experiments 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on Analog modulation techniques.				-			
PCM Encoder, Delta Modulation, Adaptive Delta modulation. UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: Hardware experiments 1. Experiment on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on basic Digital Modulation techniques.	1				~	1 0	
UNIT-V 09 Hrs Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: Hardware experiments 1. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on basic Digital Modulation techniques.					ini	form quantization,	
 Bandpass transmission of digital signals: Basic binary carrier modulation: Amplitude Shift Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: Hardware experiments 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on basic Digital Modulation techniques. 		ιa	-			09 Hrs	
 Keying, Frequency Shift Keying, Phase Shift Keying, Differential PSK, Coherent detection of ASK, FSK, PSK, Quadrature Amplitude Modulation and Demodulation. Laboratory Experiments: Hardware experiments 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: 1. Experiments on Analog modulation techniques. 	Bandpass transmi	SS		ry carrier modula	tio		
 Laboratory Experiments: Hardware experiments 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: Experiments on Analog modulation techniques and their frequency domain analysis. 	_			•		-	
 Hardware experiments 1. Experiments on Analog Modulation techniques. 2. Experiment on Sampling Theorem and verification 3. Experiments on basic Digital Modulation techniques. Simulation experiments: Experiments on Analog modulation techniques and their frequency domain analysis. 		<i>,</i>		n and Demodulati	on		
 Experiments on Analog Modulation techniques. Experiment on Sampling Theorem and verification Experiments on basic Digital Modulation techniques. Simulation experiments: Experiments on Analog modulation techniques and their frequency domain analysis. 	Laboratory Expe	riı	nents:				
 Experiment on Sampling Theorem and verification Experiments on basic Digital Modulation techniques. Simulation experiments: Experiments on Analog modulation techniques and their frequency domain analysis. 	Hardware experin	ne	nts				
 3. Experiments on basic Digital Modulation techniques. Simulation experiments: Experiments on Analog modulation techniques and their frequency domain analysis. 	1. Experiment	1. Experiments on Analog Modulation techniques.					
Simulation experiments: 1. Experiments on Analog modulation techniques and their frequency domain analysis.	2. Experiment	2. Experiment on Sampling Theorem and verification					
1. Experiments on Analog modulation techniques and their frequency domain analysis.	3. Experiment	s c	on basic Digital Modulation techn	iques.			
	Simulation experi	me	ents:				
2. Experiment on basic Digital Modulation techniques.	1. Experiment	s c	on Analog modulation techniques	and their frequen	су	domain analysis.	
1	2. Experiment	01	n basic Digital Modulation technic	ques.			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

3. Sampling Theorem and verification

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Understand the basic concepts of a Communication System, Types of Distortions
	caused during transmission.
CO2	Describe characteristics of a random process.
CO3	Compare & analyze various analog modulation techniques in terms of bandwidth and
	power usage.
CO4	Evaluate the noise performance of various analog modulation techniques.
Refere	ence Books
1	Modern Digital and Analog Communication Systems, Lathi, B. P. & Zhi Ding, 2010,
	International fourth edition, Oxford University Press, ISBN: 978-0-19-538493-2.
2	Communication Systems ,Simon Haykin, Michael Moher,2010 , 5th Edition. John
	Wiley & Sons, ISBN: 978-81-265-2151-7.
3	Communication System Engineering, G. Proakis and M. Salehi, 2005, 2nd Edition.
	Prentice Hall, ISBN: 978-01-306-1793-4.

ASSESSMENT AND EVA	LUATION PATTERN	
	CIE	SEE
WEIGHTAGE	50%	50%
QUIZZES		
Quiz-I	Each quiz is evaluated for 10	
Quiz-II	marks adding up to 20 MARKS.	
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Und Analyzing, Evaluating, and Creating)	erstanding, Applying,	
Test – I	Each test will be conducted	
Test – II	for 50 Marks adding up to 100 marks. Final test marks will be reduced to 40 MARKS	
EXPERIENTIAL LEARNING	40	
Case Study-based Teaching-Learning	10	
Applications of Communication Engineering	20	
Video based seminar (4-5 minutes per student)	10	
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PRACTICALS	50	50
TOTAL MARKS FOR THE COURSE	150	150

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1		1			1	1	2		1
CO2	2	1	1		1			1	1	2		1
CO3	2	1	2		2			1	1	2		1
CO4	1	1	2		2			1	1	2		1

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV										
Principles of Electromagnetics										
	(Common with ET, EE)									
Course Code	:	21ET45		CIE	:	100 Marks				
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks				
Total Hours	:	45L+15T		SEE Duration	:	3 Hours				

Unit-I	09 Hrs
Electrostatics 1:	
Coulomb's law, illustrative examples, Electric Field Intensity, Applications (fiel	d due to Line
charge distribution, Surface charge distribution- sheet, Circular ring, disk	
examples.), musuative
Flux, flux density Gauss' Law, Divergence Theorem (qualitative treatment), A	nnlication of
Gauss's Law (Field due to Continuous Volume Charge, Line Charge, Sheet (
sphere, spherical shell) Illustrative examples.	inaige, intera
Unit – II	09 Hrs
Electrostatics 2:	
Work done to move a point charge, Electric potential, Relation between E and V.	Applications
(field and potential due to Line charge distribution, Surface charge distribution	
Circular ring), Energy Density in an Electric Field, Illustrative examples.	
Boundary Conditions (dielectric-dielectric, dielectric-conductor), Poisson's a	nd Laplace's
Equations, Applications Laplace's and Poisson's Equations (different capacit	ors, Coaxial
conductors), Illustrative examples.	
Unit –III	09 Hrs
Biot -Savart Law, Ampere's Circuital Law, Applications of Ampere's Law Equation, Magnetic Flux Density, Maxwell's Equations for Static EM Fields. Magnetic Forces and Materials : Forces due to Magnetic Fields, Magn Materials, Classification of Magnetic Materials.	
Unit –IV	09 Hrs
Magnetostatic Fields 2:	I
Magnetic Boundary Conditions, Inductors, and Inductances, Solanoid, Toroid Ind	luctors
Maxwell's Equations: Introduction, Faraday's Law, Transformer and Mo	
Displacement Current, Maxwell's Equations in Final Forms, Time-Varying Pote	
Displacement Current, Maxwell's Equations in Final Forms, Time-Varying Pol	
Harmonic Fields, Illustrative examples.	

	utcomes: After									
CO1	Understand	the	basic	concepts	of	electric	fields,	magnetic	fields	and

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Oniversity, Dea	
	electromagnetic waves.
CO2	Apply the basic concepts to solve complex problems in electric fields, magnetic fields and electromagnetic waves
CO3	Analyze different charge and current configurations to derive the electromagnetic field equations
CO4	Design simple solutions for applications in electric and electronic circuits, electrical machines and communication systems.

	erence Books
1	Principles of Electromagnetics, Matthew N O Sadiku , 4 th edition, 2007, Oxford University Press ,ISBN: 9780198062295, 019806229X
2	Electromagnetic Field Theory, S Salivahanan 2 nd Edition, 2018, Mc Graw Hill India, ISBN:978-9353162573
	Field and Wave Electromagnetics, David K. Cheng, 2 nd Edition, 1989, Pearson Education Asia, Indian Reprint 2001, ISBN: 9789332535022/9788177585766, 8177585762
4	Engineering Electromagnetics, William H. Hayt Jr. and John A. Buck, 6th Edition, 2001, Tata McGraw Hill, ISBN-13: 978-0071202299

ASSESSMENT AND EV	VALUATION PATTERN	
	CIE	SEE
WEIGHTAGE	50%	50%
QUIZZES		
Quiz-I	Each quiz is evaluated for 10	
Quiz-II	marks adding up to 20 MARKS .	
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understa	anding, Applying, Analyzing,	
Evaluating, and Creating)	Each test will be conducted for 50	
Test – I	Marks adding up to 100 marks.	
Test – II	Final test marks will be reduced to 40 MARKS	
EXPERIENTIAL LEARNING	40	
Case Study-based Teaching-Learning	10	
Applications of Electromagnetics	20	
Video based seminar (4-5 minutes per student)	10	
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS
TOTAL MARKS FOR THE COURSE	100	100

Go, change the world

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			С	O-PO N	Mappin	g						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	1	-	-	-	1	1	-	-
CO2	2	2	2	1	1	-	-	-	1	1	-	-
CO3	1	2	2	2	1	-	-	-	1	1	-	-
CO4	2	2	3	3	1	-	-	-	1	1	-	-

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	IV Semester									
	21ET4AX: PROFESSIONAL ELECTIVES (GROUP A)									
Sl. No.	Course Code	Course Title	Duration							
1	21ET4A1	Programming, Data Structures And Algorithms Using	8 Weeks							
		Python	0 WEEKS							
2	21ET4A2	Design and analysis of algorithms	8 Weeks							
3	21ET4A3	System Design Through VERILOG	8 Weeks							
4	21ET4A4	Data Base Management System	8 Weeks							
5	21ET4A5	Data Science for Engineers	8 Weeks							

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester	IV			
		Cour	rse Title: DESIGN '	THINKING I	LAB		
			(Practic	e)			
Course Code	rse Code : 21ET46 CIE Marks :						50 Marks
Credits: L:T:P	:	0:0:2			SEE Marks	:	50 Marks
Total Hours	:	39 Hrs			SEE Duration	:	3 Hours
			Unit - I				10 Hrs
Understanding D)esig	n thinking:					
Design Thinking	Met	hodology: The	e 5 Stages of the I	Design Thinki	ing Process-Emp	athi	ise, Define (the
problem), Ideate,	Prote	otype, and Test	. Shared model in t	eam-based des	sign – Theory and	d pr	actice in Design
thinking - Explo	re pi	resentation sign	ners across globe –	Multivarible	product or Prot	otyp	ping, Real-Time
design interaction	cap	ture and analy	sis – Enabling effic	cient collabora	tion in digital sp	vace	- Empathy for
design – Collabor	ation	in distributed	Design				
			Unit - II				15 Hrs
DT For strategic	inno	ovations Grow	th:				
Story telling repr	esen	ation – Strate	gic Foresight - Cha	nge – Sense l	Making - Mainte	enan	ice Relevance –
Value redefinition	1 - E2	treme Compe	tition – experience d	lesign - Standa	rdization – Hum	aniz	zation - Creative
Culture – Rapid p	rotot	yping, Strategy	and Organization -	- Business Mo	del design.		
			Unit - III				14 Hrs
Design Thinking	Wo	rkshop:					
The Design Chall	enge	: Define the D	Design Challenge, Pr	rototyping & I	teration- Feasibi	lity	Study, Testing-
Documentation ar	nd th	e Pitching: 10	hours design thinkin	ig workshop fi	om the expect an	ıd tł	hen presentation
by the students on	the	learning from t	he workshop,				

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understanding various design process procedure				
CO2:	Explore reverse engineering to understand products				
CO3:	Develop technical drawing/prototype for design ideas				
CO4:	Officient Officient Create design ideas through different techniques				

Refe	References Books:					
1	Kilion Langenfeld, Design Thinking for Beginners, Personal Growth Hackers, ISBN: 13-					
	9783967160628					
2	Andrew Pressman, Design Thinking: A Guide to Creative Problem Solving for Everyone, Routeldge					
	Taylor & Francis Grovel, 1 st Edition, 2018, ISBN: 13-978-1-315-56193-6					
3	Walter Brenner, Falk Uebernickel, Design Thinking for Innovation Research and Practice, Springer,					
	1 st Edition, 2016, ISBN: 13-9783319260983					

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological

University, Belagavi

4 Emrah Yayici, Design Thinking Methodology Book, ArtBiz Tech Publishers, 1st Edition, 2016, ISBN:10- 6058603757, 13-9786058603752

ASSESSMENT AND EVALUATION PATTERN					
	CIE	SEE			
WEIGHTAGE	50%	50%			
PRACTICALS	50	50			
TOTAL MARKS FOR THE COURSE	50	50			

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	•	-	1	-	2	1	-	-	-	-	-
CO2	2	2	2	-	3	1	1	-	3	3	1	1
CO3	2	2	3	1	3	-	1	2	3	3	1	1
CO4	-	-	3	-	-	1	2	2	3	2	3	1

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Semester: III					
		Bridge Cou	rse:C Programming		
			(Theory)		
		(Commo	n to all Branches)		
Course Code	:	21DCS47	CIE	:	50 Marks
Credits:	:	2:0:0	SEE	:	
L:T:P					
Total Hours	:	30L	SEE	:	2 Hours
			Duration		

08 Hrs

Introduction-Perspectives

Business Domains: Programming.

Applications: Design games, GUI, DBMS, Embedded Systems, Compilers and Operating Systems.

Unit-I

Introduction to Computer Concepts: Introduction to Computer Hardware, Software and its Types. Introduction to C programming: Programming paradigms, Basic structure of C program, Process of compiling and running a C program, Features of C language, Character set, C tokens, Keywords and Identifiers, Constants, Variables, Data types, Pre-processor directives. Handling Input and Output operations and operators: Formatted input/output functions, Unformatted input/output functions with programming examples using all functions.

Unit – II	10 Hrs			
Operators: Introduction to operator set, Arithmetic operators, Relational operators, Logical				
Operators, Assignment operators, Increment and Decrement operators, Conditional operators,				
Bit-wise operators, Special operators. Expressions: Arithmetic expressions, evaluation of				
expressions, Precedence of arithmetic operators, Type conversion in expressions, Operator				
precedence and associativity.	-			

Decision Making and Branching: Decision making with 'if' statement, Simple 'if' statement, the 'if...else' statement, nesting of 'if...else' statements, The 'else if' ladder, The 'switch' statement, The '?: ' operator, The 'goto' statement.

Unit –III **12 Hrs** Programming Constructs: Decision making and looping: The 'for', 'while', 'do-while' statements with examples, Jumps in loops. Arrays: Introduction to Arrays, Types of arrays, Declaration arrays, Initializing dimensional arrays (One Dimensional and Multidimensional

Array) with examples.

String Operations: Introduction, Declaration and Initializing String Variables using arrays, String operations and functions with examples. Functions: Need for Functions, Types of functions (User Defined and Built -In), working with functions, Definition, declaration and its scope. **Pointers:** Introduction, Benefits of using pointers, Declaration and Initialization of pointers, Obtaining a value of a variable.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course	Course Outcomes: After completing the course, the students will be able to:-					
CO 1	Apply logical skills to solve the engineering problems using C programming constructs.					
CO 2	Evaluate the appropriate method/data structure required in C programming to develop solutions by investigating the problem.					
CO 3	Design a sustainable solution using C programming with societal and environmental concern by engaging in lifelong learning for emerging technology					
CO 4	Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by exhibiting team work through oral presentation and written reports.					

Ref	erence Books			
1.	Programming in C, P. Dey, M. Ghosh, 2011, 2 nd Edition, Oxford University press, ISBN (13): 9780198065289.			
2.	Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5			
3.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall, ISBN (13): 9780131103627.			
4.	Turbo C: The Complete Reference, H. Schildt, 2000, 4th Edition, Mcgraw Hill Education, ISBN-13: 9780070411838.			
5.	Rasberry pi: https://www.raspberrypi.org/documentation/			
6.	Nvidia: https://www.nvidia.com/en-us/			
7.	Ardunio: https://www.arduino.cc/en/Tutorial/BuiltInExamples			
8	Scratch software: https://scratch.mit.edu/			

8. Scratch software: https://scratch.mit.edu/

PRACTICE PROGRAMS

Implement the following programs using cc/gcc compiler

1. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.

2. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.

3. Develop a C program for Matrix multiplication.

4. Develop a C program to search an element using Binary search and linear search techniques.

5. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.

6. Develop a C program to compute average marks of 'n' students (Name, Roll_No, Test Marks) and search a particular record based on 'Roll_No'.

7. Develop a C program using pointers to function to find given two strings are equal or not.

8. Develop a C program using recursion, to determine GCD, LCM of two numbers and to perform binary to decimal conversion.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ASSESSMENT AND EVALUATION PATTERN						
	CIE					
WEIGHTAGE	100%					
QUIZZES	•					
Quiz-I	Each quiz is evaluated for 10					
Quiz-II marks adding up to 10 MARKS.						
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Und Analyzing, Evaluating, and Creating)	erstanding, Applying,					
Test – I	Each test will be conducted for 50 Marks adding upto 100					
Test – IIIn So Warks adding upto 100marks. Final test marks will be reduced to 30 MARKS						
EXPERIENTIAL LEARNING 10						
TOTAL MARKS FOR THE COURSE	50					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV							
Universal Human Values and Professional Ethics							
	(Theory & Practical)						
Course Code	:	21HSU48	CIE	:	50 Marks		
Credits: L:T:P	:	2:0:0	SEE	:	50 Marks		
Total Hours	:	28L+0T+14P	SEE Duration	:	2.00 Hours		

Unit-I	05 Hrs			
Course Introduction - Need, Basic Guidelines, Content and Process for Value Education:				
Purpose and motivation for the course, recapitulation from Universal Human Valu	ies-I, Self-			
Exploration-what is it? - Its content and process; 'Natural Acceptance' and Experiential	Validation-			
as the process for self-exploration, Continuous Happiness and Prosperity- A look at ba	sic Human			
Aspirations, Right understanding, Relationship and Physical Facility- the basic requir	ements for			
fulfilment of aspirations of every human being with their correct priority, Understanding	Happiness			
and Prosperity correctly- A critical appraisal of the current scenario, Method to fulfil	the above			
human aspirations: understanding and living in harmony at various levels.				
Include practice sessions to discuss natural acceptance in human being as the innate acce	eptance for			
living with responsibility (living in relationship, harmony and co-existence) rather	er than as			
arbitrariness in choice based on liking-disliking.				
Unit – II	06 Hrs			
Understanding Harmony in the Human Being - Harmony in Myself!: Understanding human				
being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self				
('I') and 'Body' - happiness and physical facility, Understanding the Body as an instrume	ent of 'I' (I			
being the doer, seer and enjoyer), Understanding the characteristics and activities of 'I' and	nd harmony			
in 'I', Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of				
Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Health.				
Include practice sessions to discuss the role others have played in making material goods a	available to			
me. Identifying from one's own life. Differentiate between prosperity and accumulation	on. Discuss			
program for ensuring health vs dealing with disease				
Unit –III 06 Hrs				
Understanding Harmony in the Family and Society- Harmony in Human Human Relationship:				
Understanding values in human-human relationship; meaning of Justice (nine universal values in				
relationships) and program for its fulfilment to ensure mutual happiness; Trust and Res	-			
foundational values of relationship, Understanding the meaning of Trust; Difference	e between			
intention and compatence. Understanding the magning of Begnest Difference between	intention and commetence. Understanding the magning of Despect Difference between respect and			

intention and competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship, Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence

Electronics & Telecommunication Engineering

to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Unit –IV05 HrsUnderstanding Harmony in the Nature and Existence - Whole existence as Coexistence:Understanding the harmony in the Nature, Interconnectedness and mutual fulfilment among the four
orders of nature recyclability and self-regulation in nature, Understanding Existence as Co-existence of
mutually interacting units in all pervasive space, Holistic perception of harmony at all levels of
existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Unit -V06 HrsImplications of the above Holistic Understanding of Harmony on Professional Ethics, Natural
acceptance of human values, Definitiveness of Ethical Human Conduct, Basis for Humanistic
Education, Humanistic Constitution and Humanistic Universal Order, Competence in professional
ethics: a. Ability to utilize the professional competence for augmenting universal human order b.
Ability to identify the scope and characteristics of people friendly and eco-friendly production systems,
c. Ability to identify and develop appropriate technologies and management patterns for above
production systems, Case studies of typical holistic technologies, management models and production
systems, Strategy for transition from the present state to Universal Human Order: a. At the level of
individual: as socially and ecologically responsible engineers, technologists and managers b. At the
level of society: as mutually enriching institutions and organizations, Sum up.06 Hrs

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

Course	e Outcomes: After completion of the course the students will be able to				
CO1	By the end of the course, students are expected to become more aware of themselves, and their				
	surroundings (family, society, nature); they would become more responsible in life, and in				
	handling problems with sustainable solutions,				
CO2	While keeping human relationships and human nature in mind. They would have better critical				
	ability.				
CO3	They would also become sensitive to their commitment towards what they have understood				
	(human values, human relationship and human society).				
CO4	It is hoped that they would be able to apply what they have learnt to their own self in different				
	day-to-day settings in real life, at least a beginning would be made in this direction				

Technological University, Belagavi

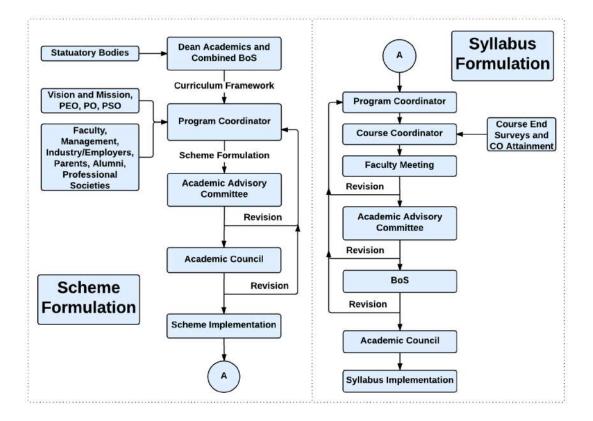
Approved by AICTE, Institution Affiliated New Delhi to Visvesvaraya

Reference Books									
1	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.								
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004								
3	The Story of Stuff (Book).								
4	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi								
5	Small is Beautiful - E. F Schumacher.								
6	Slow is Beautiful - Cecile Andrews.								

ASSESSMENT AND EVALUATION PATTERN

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation. Example: Assessment by faculty mentor: 10 marks Self-assessment: 10 marks Assessment by peers: 10 marks Socially relevant project/Group Activities/Assignments: 20 marks Semester End Examination: 50 marks. The overall pass percentage is 40%. In case the student fails, he/she must repeat the course

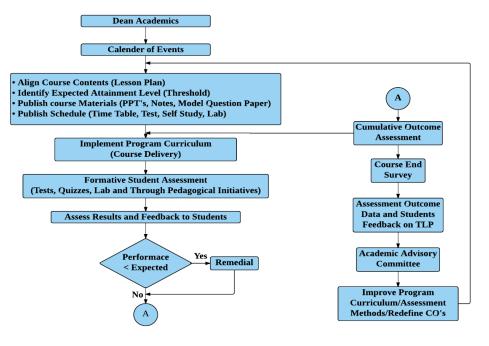
CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	-	-	-	-	3	1	3	3	-	-	3		
CO2	-	-	-	-	-	2	1	3	3	-	-	3		
CO3	-	-	-	-	-	2	1	3	3	-	-	3		
CO4	-	-	-	-	-	3	1	3	3	-	-	3		


Go, change the world

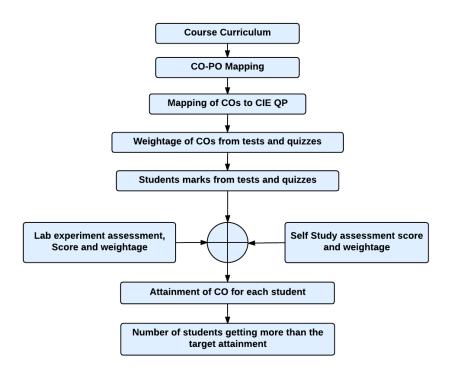
RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Curriculum Design Process

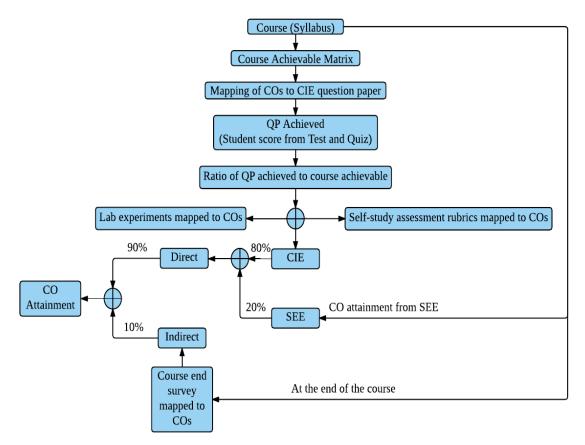

Autonomous

to Visvesvaraya Technological University, Belagavi


Institution Affiliated

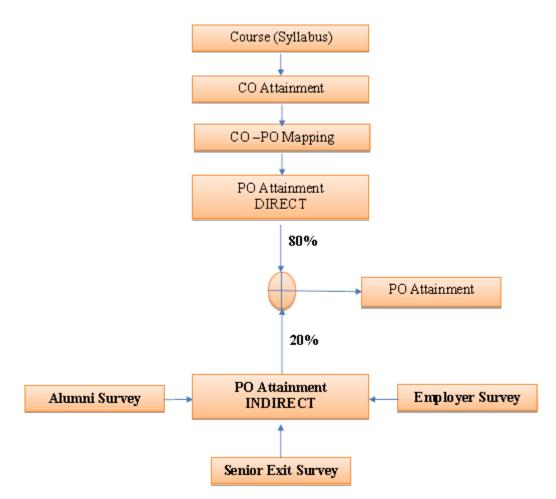
Approved by AICTE, New Delhi

Academic Planning and Implementation


Process for Course Outcome Attainment

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Final CO Attainment Process



RV College of Engineering® Approved by AICTE, New Delhi Autonomous Institution Affiliated

to Visvesvaraya Technological University, Belagavi

Program Outcome Attainment Process

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.