

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of III & IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in CHEMICAL ENGINEERING

DEPARTMENT OF CHEMICAL ENGINEERING

RV COLLEGE OF ENGINEERNG[®], BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF CHEMICAL ENGINEERING M.Tech in CHEMICAL ENGINEERING

THIRD SEMESTER CREDIT SCHEME									
SI.	Course Code	Course Title	BoS	Credit Allocation					
No.				L	Т	Р	Total Credits		
1	18MCH31	Transport Phenomena	CH	4	1	0	5		
2	18 MCH32X	Elective G	CH	4	0	0	4		
3	18 MCH33	Internship	СН	0	0	5	5		
4	18 MCH34	Dissertation Phase I	0	0	5	5			
	Total 1	number of Credits	8	1	10	19			
	Total Nur	nber of Hours / Week							

	FOURTH SEMESTER CREDIT SCHEME						
SI. Course Credit Allocation							
No.	Code	Course Title	BoS	L	Т	Р	Total Credits
1	18MCH41	Dissertation Phase II	СН	0	0	20	20
2	18MCH42	Technical Seminar	СН	0	0	2	2
	Total n	umber of Credits	0	0	22	22	
	Total Nun	nber of Hours / Week					

	III Sem							
	GROUP E: PROFESSIONAL CORE ELECITVE							
Sl. No.	Course	Course Title						
	code							
1	18MCH321	Computational Fluid Dynamics						
2	18MCH322	Solar Photovoltaic Systems and Technology						
3	18MCH323	Food Process Engineering and Technology						

	TRANSPORT PHENOMENA								
<u>C</u>	<u> </u>	101/01/21	(Theory)	CIE		100 10.1			
Course	:	18MCH31		CIE	:	100 Marks			
Code	-	I.T.D.4.1.		SEE		100 Montra			
Creuits	•	L:1:F:4:1:		SEE	•	100 Marks			
Hours	:	48		SEE Duration	:	3 Hours			
		I	Unit – I	I		10 Hrs			
Velocity prof	file.	Average Velo	ocity. Shear Stress Distri	ibution and Force	es i	n Laminar Flow:			
Development	of	models to desc	ribe laminar flow over fla	t inclined plate. fl	0W	through a circular			
tube, flow thr	oug	gh annulus, flo	w between parallel plate	and through a slit	, fl	ow as wetted wall			
column, annu	lar	flow with inne	er cylinder	0	/				
Velocity Dist	rib	utions in Tur	bulent Flow: Comparison	n of laminar and t	urt	oulent flows, time-			
smoothed equ	uati	ons of change	e, Reynolds rules of ave	raging, Reynolds	st	resses, turbulence			
models movin	ıg.	e				,			
	U		Unit – II			10 Hrs			
Thermal Co	ond	uctivity and	Mechanism of Energ	y Transport: F	ou	rier law of heat			
conduction. E	Effe	ct of Temperat	ture and pressure on there	mal conductivity,	hea	at transfer through			
composite pl	ane	wall, composition	site cylindrical wall, con	mposite spherical	W	all, Over-all heat			
transfer co-ef	fici	ent.							
Temperature	e D	Distribution ir	n Solids and Laminar	Flow: Heat cond	duc	tion problems of			
Chemical En	gin	eering for hea	at conduction with inter	nal generation by	y e	electrical, nuclear,			
viscous sourc	es,	heat transfer	in annular flow, conduct	tion through walls	s o	f varying thermal			
conductivity a	as f	unction of tem	perature.						
			Unit – III			10 Hrs			
Diffusivity a	nd I	Mechanism of	Mass Transport: Fick's	law of diffusion,	Eff	ect of temperature			
and pressure	on (diffusivity of li	quids and gases						
Concentratio	on I	Distributions i	n Solids and in Laminar	Flow: Steady stat	te s	hell mass balance,			
Diffusion thr	oug	sh stagnant gas	and liquid film, Equi-m	olar counter diffu	isic	on, Diffusion with			
homogeneous	s an	d heterogeneo	us reaction, diffusion and	reaction inside a	poi	ous catalyst			
			Unit – IV			10 Hrs			
Equations of	C	hange for Iso	thermal Systems: Equat	ion of continuity,	ec	uation of motion,			
Navier-Stoke	s e	quation in Ca	artesian coordinates, Mo	difications of all	l tł	nese equations to			
spherical and	l cy	lindrical coor	dinates, Application of	these equations to	o s	solve simple flow			
problems, Co	uet	te flow and rot	ating cylinder.						
			Unit – V			8 Hrs			
The equation	ns (of change for	non-isothermal systems	: Energy Equation	n, s	special forms, Use			
of equation t	o s	solve steady st	tate problems. Tangentia	l flow in annulu	s v	with viscous heat,			
Transportation cooling									
Course Outcomes: After completion of the course student will be able to:									
CO1: Recall fundamentals of heat, mass and momentum transfer									
CO2: Explain	ge	ometry, domain	n and flux distribution for	r transfer operation	ns				
CO3: Apply la	aws	of conservation	on to carry out shell balan	ice for transfer ope	era	tions			
CO4: Develop steady state models involving momentum, heat and mass transfer									

Refe	rence Books:
1	Transport Phenomena, Bird R.B., W.E. Stewart and E.N. Lightfoot, 2nd Edition, 2002,
	John Wiley and Sons, ISBN 81-2654-0808-6
2	Fundamental of Momentum, Heat and Mass Transfer, Welty, J.R., C.E. Wicks and R.E.
	Wilson, 5 th Edition, 2008, John Wiley and Sons, ISBN 13 978-0470128688
3	Advanced Transport Phenomena, John C Slattery, Cambridge University Press, 2005,
	ISBN 978-0-521-63565-3
4	Brodkey R.S. and H.C.Hershey, Transport Phenomena, A United Approach, Vol 2,
	McGraw Hill, 1988, ISBN 0-9726635-8-4

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

COMPUTATIONAL FLUID DYNAMICS								
		(Elective grou	up-(G)				
Course Code	:	18 MCH321		CIE	:	100 Marks		
Credits	:	L:T:P:4:0:0		SEE	:	100 Marks		
Hours	:	48		SEE Duration	:	3 Hrs		
		Unit – I				10Hrs		
Introduction to C	FD							
Introduction to CF	D, (CFD Applications, Numeric	al v	s Analytical vs Exp	perim	ental analysis		
Modeling vs Exper	ime	ntation.						
Fundamental princ	iple	s of conservation, Reynolds	tra	nsport theorem, Co	nserv	ation of mass		
Conservation of lin	ear	momentum: Navier-Stokes	equ	ation, Conservation	of E	nergy, Genera		
scalar transport equ	atio					1011		
Differential Equat	ion	Unit – II and Dhysical Dehavior				IUHIS		
Mathematical class	lon	s and Physical Benavior	Ear	ustion Dhusiasla	vomr	log of alliptic		
parabolic and by	arb	olic partial differential ex	Eq.	ions Error Minin	vanip vizoti	on Principles		
Approximate solut	ion	of differential equations the	quai brou	igh variational for	nulat	ion Boundary		
conditions in the y	ion varia	tional form: Primary and s	seco	ndary variables. E	ssenti	ial and natura		
boundary condition	s. P	roperties of variational form	. We	eighted residual app	roach	1: trial function		
and weighting fund	ctior	n, Requirement of trial func	tion	and weighting fur	nction	, Least square		
method, Point Colle	ocat	ion method, Galerkin's method	hod,	Rayleigh-Ritz met	hod	•		
		Unit – III				10Hrs		
Discretization								
Discretization princ	ciple	es: Pre-processing, Solution	, Po	st-processing, Finit	te Ele	ement Method		
Finite difference m	neth	od, Well posed boundary v	alue	e problem, Possible	type	s of boundary		
conditions, Conserv	vativ	veness, Boundedness, Trans	port	iveness, Finite volu	me n	nethod (FVM)		
Illustrative example	es: 1	-D steady state heat conduct	ion	without and with co	onstar	it source term		
Discretization of U	nste	ady State Problems, Discret	1zat	ion of Time Depend	lent I	roblems.		
Discretization of th	еM	omentum Equation: Stream	Fur	oction-Vorticity ann	roact	and Primitiv		
variable approach,	Sta	aggered grid and Collocat	ed	grid, SIMPLE Alg	gorith	m, SIMPLEF		
Algorithm								
		Unit – IV				10Hrs		
Introduction to Tu	ırbı	llence Modeling						
Important features	of tı	urbulent flow, Vorticity trans	spor	t equation, Statistic	al rep	presentation of		
turbulent flows: H	omo	geneous turbulence and 1s	otro	pic turbulence, Ge	neral	Properties of		
turbulent quantities	5, K(eynolds average Navier stol	xes	(RANS) equation, (Closu	ire problem in		
viscosity models	Miv	ing length model. Turbuler	iiiei	notic energy and d	issin	model. Eddy		
model Advantages	viin.	d disadvantages of r_{-s} mod	ii ki 1el	More two-equation	mod	the second seco		
model and κ - ω model	odel	Revnolds stress model (R	SM) Large eddy Simul	lation	(LES) Direct		
numerical simulation (DNS)								
Unit – V 08Hrs								
Numerical grid ge	Numerical grid generation; basic ideas; transformation and mapping.							
About the CFD s	oftv	vares for different application	tion	s and construction	of	geometry and		
Discretions using a	vail	able commercial CFD solver	rs. C	Creating and meshin	g a ba	asic geometry.		
Any 5 Basic probl	lems	s (eg. Basic flow studies	in p	ipe Modeling a m	ixing	elbow (2-D)		
Modeling a three-pipe intersection (3-D).Modeling flow in a tank,Modeling a combustion								

chamber (3-D).	
Course outcomes: After completion of the course student will be able to	
CO1: Understand basic concepts and use of tools of computational fluid dynamics	
CO2:Apply engineering approximation to obtain discretized fluid dynamics equations	
CO3: Explain characteristics of regimes covered by various discretized schemes	
CO4: Develop computer code to solve the discretized equations.	
Reference books:	
1 Computational Fluid Dynamics: The Basics with Application, Anderson, J.D., 2010	
McGraw-Hill Co. Inc., ISBN: 9788131720486, 8131720489	
2 Numerical Heat Transfer and Fluid Flow, Patankar, S.V., 2017, Hemisphere Publishin	ıg
Corporation, ISBN: 9781138564695, 1138564699	
3 Computational Methods for Fluid Dynamics, Ferziger, J.H. and Peric, M., 2014,	
Springer, ISBN 978-3-540-42074-3	
4 An Introduction to Computational Fluid Dynamics: The Finite Volume Method,	
Versteeg, H.K. and Malalasekera, W, Prentice-Hall Inc., ISBN 978-0-13-127498-3	

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

		SOLAR PH	IOTOVOLTAIC SYS	STEMS AND T	EC	HNOL	OGY
Cours		18 MCH322	(Elective grou	ip-G)		10	0 Mortza
e Code	•	10 WIC11522		CIE	•	10	
<u>Credit</u>	:	L:T:P:4:0:0		SEE	:	10	0 Marks
S							
Hours	:	48		SEE	:		3 Hrs
				Duration			
			Unit – I				08Hrs
Introdu	ctio	n					
Types o	f m	aterial- classifi	cation of semiconduct	or-Crystals stru	ictu	res, ator	mic bonding
energy b	oand	1 diagram – dii	ect & indirect band g	ap semiconduc	tors	Dopin	g and carrie
concentr	atic	on - Hall effect	in semiconductors – d	iffusion and dr	ift o	f carrier	rs, continuity
equation	1 — C	ptical absorptio	n – carrier recombinati	on-Effect of ten	nper	ature. P	-N junctions
I-V ch	arac	teristics-Types	of junctions-homo	junction-heter	o i	unction	s-Rectifying
Schottky	/ ba	rriers, MIS, and	its characteristics.	5	5		2 0
		, ,	Unit – II				10Hrs
Photovo	ltai	ic Fundamenta	ls				I
Photovo	ltai	c effect - Choice	e of semiconductor ma	terials for fabric	atio	n of hor	noiunction
solar cel	ls -	equivalent circu	it of a solar cell. Solar	cell output para	ame	ters -Fil	l-factor.
conversi	on	efficiency, quan	tum efficiency. Effect	of series and sh	unt	resistan	ce on the
efficienc	v o	f solar cells. Va	riation of Open-circuit	voltage and sho	ort c	ircuit cu	irrent with
intensity	of	incident light. E	Effect of temperature of	n I-V characteria	stics	s. p-n he	teroiunction
solar cel	ls -	criteria for choo	osing absorber and win	dow layers.		· F	····j-····
			Unit – III				10Hrs
Silicon	Pho	tovoltaics					101115
Single c	rvst	al silicon (c-Si)	ingot growth – Float	Zone and Czocł	nrols	ski meth	ods – silicor
wafer fa	bric	ation - wafer to	cell formation - I-V c	haracteristics ar	id st	bectral r	esponse of c
Si solar	cell	s. Factors limitin	ng the efficiency - Poly	silicon wafer fa	bric	ation me	ethods – EFC
and SRO	Gn	nethods. Amorp	phous Silicon - differ	ences in proper	ties	betwee	en crystalline
silicon a	nd a	amorphous (a-Si) silicon. a-Si depositio	on by glow disch	narg	e metho	d – Electrica
and option		properties of a-S	i. Outline of a-Si solar	module process	ing	steps. H	eterojunctior
Intrinsic	Th	in film solar cel	I –tabrication by PECV	/D - I-V charac	teris	stics	1077
			Unit – IV				10Hrs
Thin Fil	lm S	Solar Cells				~	
Principle	e of	multi-junction	cells– Structure and fal	prication of Gal	nP/0	JaAs/G	e triple
junction	sol	ar cell –Metamo	orphic solar cells. CdT	e/CdS and CuIn	GaS	e/CdS (CIGS) solar
cells - C	ell	configuration –	techniques used for the	e deposition of e	ach	layer- c	ell
characte	risti	cs. Organic sola	ar cells – Configuration	n and principle -	- Ty	pes of c	organic solar
cells, Dy	/e-s	ensitized (DS) s	olar cells – Principle –	Configuration	and	perform	nance, Basic

concept of quantum dot, nano wire (NW), hot carrier and plasmonic solar cel	ls					
Unit – V	10Hrs					
Solar Photovoltaic Systems						
Photovotaic Module Assembly: Description of steps involved in the fabrication	on of Silicon					
Photovoltaic Module - Performance of Photovoltaic Module - Module	Protection -					
Modules in series and in parallel - Use of Bypass and Blocking Diodes, Solar	photovoltaic					
system - components - PV Array, battery, invertor and load. Application	ons of solar					
photovoltaic systems. Stand alone, Hybrid and Grid connected PV systems						
Course outcomes: After completion of the course student will be able to:						
CO1: Understand basic concepts and use of tools of computational fluid dyna	amics.					
CO2: Apply engineering approximation to obtain discretized fluid dynamics	equations					
CO3: Explain characteristics of regimes covered by various discretized scher	nes.					
CO4: Develop computer code to solve the discretized equations						
Reference Books						
1 Introduction to semiconductor materials and devices, M. S. Tyagi, 2008,	John Wiley					
& Sons, ISBN: 978-812-6518-678	-					
2 Fundamentals of solar cells, A.L. Farenbruch, R.H. Bube, 1983, Elsevier,	ISBN					
978032314538						
Solar photovoltaics: Fundamentals, technologies and applications C.S. Solanki, 2015,						
Prentice Hall India, ISBN: 978-812-0343-863						
4 Terrestrial solar photovoltaics, T. Bhattacharya, 1998, Narosa, ISBN 978-	8173192067					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1)solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

FOOD PROCESS ENGINEERING AND TECHNOLOGY (Elective group-6)							
Course:18CIE:100 MarkCodeMCH323						100 Marks	
Credits : L:T:P:4:0:0 SEE : 100 Mat				100 Marks			
Hours		:	48		SEE	:	3 Hrs
					Duration		
Cou	rse Leari	nin	g Objectives: 7	The students will be al	ble to		
1	1 Gain the knowledge about the chemistry and quality attributes of food						
2	Apply Unit operations for food processing						
3	Learn about various food additives, food contamination/adulteration						
4	Know various methods of food processing, packaging and preservation						

Unit-I	9 Hrs				
Formation and chemistry of food: Properties and significance of constituents	of food -				
Carbohydrates, Lipids, Proteins, Vitamins, Minerals and Moisture. Nutritive aspe	cts of food				
constituents.					
Unit-II	9 Hrs				
Quality attributes of food: Appearance factors, Textural factors, Flavor factors. Visual and					
objectively measurable attributes. Additional quality; quality standards, quality control.					
Food laws and standards. Introduction to sensory evaluation of foods.					
Food contamination and adulteration: Types of adulterants and contaminants, Inter					
adulterants, incidental adulterants and its effects					
Unit-III	10 Hrs				

Food preservation: Causes for food deterioration. Aims and objectives of preservation and processing. Unit operations in processing. Different methods of food preservation –low temperature, high temperature, preservatives, food irradiation.

Food Processing: Milk and dairy products, vegetables and fruits, cereals, meat and meat products, fats and oils, beverages.

Unit-IV

10Hrs

Food additives: Introduction and need for food additives. Types of additives – antioxidants, chelating agents, coloring agents, curing agents, emulsions, flavors and flavor enhancers, flavor improvers, humecants and anti-caking agents, leavening agents, nutrient supplements, non - nutritive sweeteners, pH control agents, stabilizers and thickeners, other additives. Additives and food safety

Unit-V

10Hrs

Enzymatic and non-enzymatic reactions during storage: Introduction to enzymes. Nature and function of enzymes. Classification of enzymes. Hydrolases

-Esterase, amylases, pectic enzymes. Proteases. Oxidoreductases -phenolases, glucose oxidase, catalos, peroxidase, lipoxygenase, oxidase. Immobilized enzymes. Uses of enzymes in food processing. Non-enzymatic reactions.

Modern trends in food science: Biotechnology in food, Biofortification, Nutraceuticals, Organic foods, Packaging of foods and nutrition labeling.

Coui	rse Outcomes: After completing the course, the students will be able to
CO	Comprehend the chemistry and the quality attributes of food.
1	
CO	Apply biocompatible additives and packaging for food products
2	
CO	Identify sources of contaminants, adulterants with its prevention for safe and healthy food.
3	
CO	Evaluate different food processing and preservation technologies
4	
CO	Design and develop new technologies involved in food processing
5	

Reference Books

1.	Food Science, Norman N. Potter and Joseph HHotchkin Avi Publishing Co., 5 th Ed., 1995, ISBN: 0-8342-1265-X
2.	Foods, Facts and Principles, N. ShakuntalaManay and M. Sadaksharamurthy, 2 nd Ed, 2005, New Age Publishers, , ISBN: 81-224-1325-0
3.	Food Science, B. Srilakshmi, 6 th Ed., 2015, New Age International, ISBN: 978-81-224-3809-3
4.	Romeo T. Toledo; Fundamentals of Food Process Engineering; 2 nd Ed, 2007, Springer, ISBN:978-0-387-29019-5

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1)solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks

INTERNSHIP							
Course	:	18MCH 33		CIE Marks	:	100	
Code							
Credits	:	L:T:P:0:0:5		SEE Marks	:	100	
Hours/we	:	10Hrs		SEE Duration	:	3 Hrs	
ek		CUIDEL		DNGHID			
Course Les	rn	GUIDELI ing Objectives (CLO):	INES FOR INTE	KNSHIP			
The student	s sł	nall be able to:					
(1) Underst	and	the process of applying	engineering kno	wledge to produce	produ	ict and	
provide	e se	rvices.			L		
(2) Explain	the	e importance of manager	nent and resource	utilization			
(3) Compre	hen	d the importance of team	work, protection	of environment and	susta	ainable	
Solution	ns. Val	use professional athics t	for lifelong learni	na			
(4) 1110100	vai	ues, professional eulies		iig.			
1) The due	rati	on of the internship shall	be for a period o	f 8 weeks on full tir	no ho	sis between II	
1) The du	au ar fi	ingle example and beginning	g of III semester			sis between n	
2) The stu	der	t must submit letters fro	g of fill schester.	early specifying his	/ her	name and the	
2) The stu duration		f the internship on the co	m me muusu y en	d with outhorized si	7 nei anatu		
3) Internsl	n 0. hin	must be related to the fie	ald of specialization	on or the M Tech pr	ograr	n in which the	
student	ha	s enrolled.	end of specialization	fil of the Wi. Feeli pr	ograi		
4) Student	ts u	indergoing internship tra	aining are advise	d to report their pr	ogres	ss and submit	
periodi	c pi	rogress reports to their re	espective guides.				
5) Student	ts 1	have to make a presen	ntation on their	internship activitie	es in	front of the	
departn	nen	tal committee and only	upon approval o	of the presentation	shou	ld the student	
proceed	l to	prepare and submit the l	nard copy of the ir	nternship final repor	t. Ho	wever interim	
or perio	odic	e reports and reports as r	required by the in-	dustry / organizatio	n can	be submitted	
as per t	he	format acceptable to the	respective industr	y /organizations.			
6) The rep	ort	s shall be printed on bon	nd paper – 80GSM	I, back to back prin	t, wit	h soft binding	
– A4 si	zev	with 1.5 spacing and time	es new roman fon	t size 12.			
7) The bro	bad	format of the internship	final report shall	be as follows			
•	Co	ver Page					
•	Certificate from College						
•	Ce	rtificate from Industry /	Organization				
•	Ac	knowledgement					
•	Syı	nopsis					
•	Tal	ble of Contents					

- Chapter 1 Profile of the Organization Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
- Chapter 2 Activities of the Department -
- Chapter 3 Tasks Performed summaries the tasks performed during 8 week period
- Chapter 4 Reflections Highlight specific technical and soft skills that you acquired during internship
- References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

- CO1: Apply engineering and management principles
- CO2: Analyse real-time problems and suggest alternate solutions
- CO3: Communicate effectively and work in teams
- CO4: Imbibe the practice of professional ethics and need for lifelong learning.
 - 1. Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of the Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries	35%
(2) Ability to comprehend the functioning of the organization/ departments	20%
(3) Importance of resource management, environment and sustainability	25%
(4) Presentation Skills and Report	20%

			Dissertation Phase 1	l		
Course Cod	e :	18MCH34		CIE Marks	:	100
Credits	:	L:T:P: 0:0:5		SEE Marks	:	100
Hours	:	10		SEE Duration	:	3 Hours
Course Lean	ning	Objectives:				
The students	shall	be able to				
1. Understa	nd the	e method of apply	ng engineering knowled	dge to solve specific	: proł	olems.
2. Apply en	ginee	ering and manager	ent principles while exe	ecuting the project		
3. Demonst	rate g	good verbal preser	ation and technical repo	ort writing skills.		
4. Identify a	ind so	olve complex eng	neering problems using	professionally prese	cribed	d standards.
			GUIDELINES			
1. Major	proje	ct will have to be	arried out by only one s	student in his/her are	ea of	interest.
2. Each st	uden	t has to select a c	ntemporary topic that w	vill use the technical	knov	wledge of their
program	n of s	specialization.				
3. Allocat	ion o	of the guides prefe	ably in accordance with	the expertise of the	e facu	ılty.
4. The pr approv	oject al fro	can be carried of the the Head of the	t on-campus or in an Department.	industry or an orga	nizat	ion with prior
5. The sta	ndaro	d duration of the	roject is for 16 weeks, h	nowever if the guide	e and	the evaluation
commi	ttee o	of the department,	after the assessment feel	l that the work is ins	uffic	ient and it has
to be e	xtend	led, then the stud	ent will have to continue	e as per the direction	ns of	the guide and
the cor	nmitt	ee.		1		U
6. It is ma	indate	ory for the studen	to present his/her work	in one of the intern	ation	al conferences
or publ	ish th	e research findin	in a reputed unpaid jou	rnal with impact fac	ctor.	
Course Outco	omes		• • •	*		
After going t	hroug	gh this course the	tudents will be able to			
CO1: Cond	eptua	alize, design and	nplement solutions for s	specific problems.		
CO2: Com	muni	cate the solutions	hrough presentations ar	nd technical reports.		
CO3: App	y pro	ject and resource	nanagements skills, pro	ofessional ethics, soo	cietal	concerns
CO4: Synt	hesiz	e self-learning, su	tainable solutions and	demonstrate life-lor	ig lea	rning

			Dissertation Phase II	[
Course Code	:	18MCH41		CIE Marks	:	100
Credits	:	L:T:P: 0:0:20		SEE Marks	:	100
Hours/Week	:	40		SEE Duration	:	3 Hours
Course Learni	ng	Objectives:				
The students sh	all	be able to				
1. Understand	the	e method of applyi	ng engineering knowled	lge to solve specific	: proł	olems.
2. Apply engin	nee	ring and managen	ent principles while exe	ecuting the project		
3. Demonstrat	e g	ood verbal presen	ation and technical repo	ort writing skills.		
4. Identify and	l so	lve complex engin	eering problems using p	professionally prese	cribed	l standards.
			GUIDELINES			
1. Major proje	ct v	vill have to be dor	e by only one student in	his/her area of inte	erest.	
2. Each studen	t h	as to select a cont	emporary topic that wil	l use the technical	knov	vledge of their
program of	spe	cialization.			•	
3. Allocation of	of th	ne guides preferab	y in accordance with the	e expertise of the fa	culty	⁷ .
4. The project	can	be carried out on-	campus or in an industry	or an organization	with	prior approval
from the He	from the Head of the Department.					
5. The standar	a a fti	uration of the pro	ject is for 16 weeks, ho	wever if the guide	and	the evaluation
be extended	ท แ +h	the department, and	ill have to continue as t	at the work is insur-	f tho	guide and the
committee	, u	ien me student w	In have to continue as p		i ule	guide and the
6 It is mandat	orv	for the student to	present his/her work in	one of the internati	onal	conferences or
o. It is manual	or y rese	arch finding in a	present ins/ner work in venuted unpaid journal w	vith impact factor	onai	contenences of
Course Outcou	nee		eputed unpaid journal w			
After going thr	110	h this course the s	tudents will be able to			
CO1: Concer	otua	lize. design and in	nplement solutions for s	pecific problems		
CO2: Comm	uni	cate the solutions	hrough presentations an	d technical reports		
CO3: Apply	pro	iect and resource	nanagements skills, prot	fessional ethics, so	cietal	concerns
CO4: Synthe	size	e self-learning, sus	tainable solutions and c	lemonstrate life lon	g lea	rning

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

Phase II	Activity	Weightage
5 th week	Review and refinement of Objectives and methodology.	20%
10 th week	Mid-term progress review shall check the compliance with the objectives and methodology presented in Phase I, review the work performed.	40%
15 th week	Oral presentation, demonstration and submission of project report. Outcome and publication	40%

CIE Evaluation shall be done with marks distribution as follows:

•	Review of formulation of objectives	and methodology	10%
•	Design and simulation/ algorithm deve	elopment/experimental setup	25%

- Design and simulation/ algorithm development/experimental setup •
- Conducting experiments / implementation / testing / analysis 25% •

•	Demonstration & Presentation	20%
•	Report writing	20%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Formulation of Project Objectives & Methodology	20%
3.	Experiments / Analysis Performed; Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

TECHNICAL SEMINAR						
Course Code	••	18MCH42		CIE Marks	:	50
Credits	:	L:T:P:0:0:2		SEE Marks		50
Hours/Week	:	4		SEE Duration		30 min

Course Learning Objectives (CLO):

The students shall be able to:

- (1) Understand the technological developments in their chosen field of interest
- (2) Explain the scope of work and challenges in the domain area
- (3) Analyze these engineering developments in the context of sustainability and societal concerns.
- (4) Improve his/her presentation skills and technical report writing skills

GUIDELINES

- 1) The presentation will have to be done by individual students.
- 2) The topic of the seminar must be in one of the thrust areas with in-depth review and analysis on a current topic that is relevant to industry or on-going research.
- 3) The topic could be an extension or complementary to the project
- 4) The student must be able to highlight or relate these technological developments with sustainability and societal relevance.
- 5) Each student must submit both hard and soft copies of the presentation.

Course Outcomes:

After going through this course the student will be able to:

- CO1: Identify topics that are relevant to the present context of the world
- CO2: Perform survey and review relevant information to the field of study.
- CO3: Enhance presentation skills and report writing skills.

CO4: Develop alternative solutions which are sustainable

2.

Scheme of Continuous Internal Evaluation (CIE):

3. Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

Rubrics for Evaluation:

1)	Topic – Technical Relevance, Sustainability and Societal Concerns	15%
2)	Review of literature	25%
3)	Presentation Skills	35%
4)	Report	25%