

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

INFORMATION SCIENCE & ENGINEERING

Department Vision

To be the hub for innovation in Information Science & Engineering through Teaching, Research, Development and Consultancy; thus make the department a well-known resource centre in advanced, sustainable and inclusive technology.

Department Mission

ISE1: To enable students to become responsible professionals, strong in fundamentals of information science and engineering through experiential learning.

ISE2: To bring research and entrepreneurship into class rooms by continuous design of innovative solutions through research publications and dynamic development oriented curriculum.

ISE3: To facilitate continuous interaction with the outside world through student internship, faculty consultancy, workshops, faculty development programmes, industry collaboration and association with the professional societies.

ISE4: To create a new generation of entrepreneurial problem solvers for a sustainable future through green technology with an emphasis on ethical practices, inclusive societal concerns and environment.

ISE5: To promote team work through inter-disciplinary projects, co-curricular and social activities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide adaptive and agile skills in Information Science and Engineering needed for professional excellence / higher studies /Employment, in rapidly changing scenarios.

PEO2: To provide students a strong foundation in basic sciences and its applications to technology.

PEO3: To train students in core areas of Information science and Engineering, enabling them to analyze, design and create products and solutions for the real world problems, in the context of changing technical, financial, managerial and legal issues.

PEO4: To inculcate leadership, professional ethics, effective communication, team spirit, multidisciplinary approach in students and an ability to relate Information Engineering issues to social and environmental context.

PEO5:To motivate students to develop passion for lifelong learning, innovation, career growth and professional achievement.

PSO	Description
PSO1	Recognize and appreciate the principles of theoretical foundations, data organization,
	data communication, security and data analytical methods in the evolving technology
PSO2	Learn the applicability of various system software for the development of quality
	products in solving real-world problems with a focus on performance optimization
PSO3	Demonstrate the ability of team work, professional ethics, communication and
	documentation skills in designing and implementation of software products using the
	SDLC principles

PROGRAM SPECIFIC OUTCOMES (PSOs)

Lead Society:

Program Criteria

All programs seeking accreditation from the Computing Accreditation Commission of ABET must demonstrate that they satisfy all of the specific Program Criteria implied by the program title.

PROGRAM CRITERIA FOR COMPUTER SCIENCE AND SIMILARLY NAMED COMPUTING PROGRAMS

Lead Society: CSAB

Computer Science	1. Coverage of fundamentals of algorithms, data structures, software design, concepts of programming languages and computer organization and architecture.[CS]
	2. An exposure to a variety of programming languages and systems. [CS]
	3. Proficiency in at least one higher-level language. [CS]
	 Advanced course work that builds on the fundamental course work to provide depth. [CS]
Information Technology	1. The core information technologies of human computer interaction, information management, programming, networking, web systems and technologies. [IT]
	2. information assurance and security.[IT]
	3. System administration and maintenance[IT].
	4. system integration and architecture. [IT]

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

INFORMATION SCIENCE & ENGINEERING

ABBREVIATIONS

SL. NO.	ABBREVIATION	MEANING
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	CHY	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	PHY	Engineering Physics
13.	SEE	Semester End Examination
14.	MAT	Engineering Mathematics
15.	PCE	Professional Core Elective
16.	GE	Global Elective

INDEX

	V Semester						
Sl. No.	Course		Course Title	Page No.			
	Code						
1.	16HSI51	Intellectual Pr	operty Rights and Entrepreneurship	1			
2.	16ISI52	Theory of Con	mputation	4			
3.	16ISI53	Computer Net	tworks	6			
4.	16IS54	Introduction t	o Parallel Programming	8			
5.	16IS55	System Softw	are	11			
		GROUP A: PI	ROFESSIONAL CORE ELECTIVES				
1.	16IS5A1	Natural Langu	age Processing with Python	14			
2.	16IS5A2	Management	Information System	17			
3.	16IS5A3	Information th	neory and Coding	19			
4.	16IS5A4	JAVA and J2	EE	21			
5.	16IS5A5	Advanced Alg	gorithm	23			
		GROU	JP B: GLOBAL ELECTIVES				
Sl. No.	Course	Host Dept	Course Title	Page No.			
	Code						
1.	16G5B01	BT	Bioinformatics	25			
2.	16G5B02	СН	Fuel Cell Technology	27			
3.	16G5B03	CV	Geoinformatics	29			
4.	16G5B04	CSE	Graph Theory	31			
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	33			
6.	16G5B06	EEE	Hybrid Electric Vehicles	35			
7.	16G5B07	IEM	Optimization Techniques	37			
8.	16G5B08	E&I	Sensors & Applications	39			
9.	16G5B09	ISE	Introduction To Management Information	41			
	1003009	1512	Systems				
10.	16G5B10	ME	Industrial Automation	43			
11.	16G5B11	TCE	Telecommunication Systems	45			
12.	16G5B12	MAT	Computational Advanced Numerical Methods	47			
13.	16G5B13	AE	Basics of Aerospace Engineering	49			

		VI Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	16HEM61	Foundations of Management & Economics	51
2.	16IS62	Web Programming	53
3.	16IS63	Software Engineering and Testing	55
4.	16IS64	Database Management System	58
	(GROUP C: PROFESSIONAL CORE ELECTIVES	
1.	16IS6C1	Information Security	61
2.	16IS6C2	System Simulation and Modelling	63
3.	16IS6C3	Supply Chain Management	65
4.	16IS6C4	Mobile Application Development	67
5.	16IS6C5	Data Storage Technologies and Networking	69
	(GROUP D: PROFESSIONAL CORE ELECTIVES	
1.	16IS6D1	Machine Learning and Pattern Recognition	71
2.	16IS6D2	Wireless Sensor Networks	73
3.	16IS6D3	Fuzzy Logic and Genetic Algorithm	75
4.	16IS6D4	Advanced Compiler Design	77
5.	16IS6D5	Computer System Performance Analysis	79
	•	GROUP E: GLOBAL ELECTIVES	
1.	16G6E01	Bioinspired Engineering	81
2.	16G6E02	Green Technology	83
3.	16G6E03	Solid Waste Management	85
4.	16G6E04	Introduction to Web Programming	87
5.	16G6E05	Automotive Electronics	89
6.	16G6E06	Industrial Electronics	91
7.	16G6E07	Project Management	93
8.	16G6E08	Virtual Instrumentation	95
9.	16G6E09	Introduction to Mobile Application Development	97
10.	16G6E10	Automotive Engineering	99
11.	16G6E11	Mobile Network System and Standards	101
12.	16G6E12	Applied Partial Differential Equations	103
13.	16G6E13	Aircraft Systems	105

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME							
SI.	Course	rse Course Title	BOS		Credit A	llocation		Total Credits
No.	Code	Course Title	BUS	L	Т	Р	S	
1.	16HSI51	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	0	3
2.	16IS52	Theory of Computation	ISE	3	0	0	0	3
3.	16IS53	Computer Networks	ISE	3	1	0	0	4
4.	16IS54	Introduction to Parallel Programming	ISE	3	0	1	1	5
5.	16IS55	System Software	ISE	3	0	1	1	5
6.	16IS5AX	Elective A (PE)	ISE	3	0	0	1	4
7.	16GB5XX	Elective B (GE)	Respect ive BOS	4	0	0	0	4
	Tota	l number of Credits		22	1	2	3	28
	Total N	umber of Hours / Week						

	SIXTH SEMESTER CREDIT SCHEME								
SI.	Course	Course Title	BOS		Credit All	ocation	cation		
No.	Code	Code	DOS	L	Т	Р	S	Credits	
1.	16HEM61	Foundations of Management & Economics	HSS	2	0	0	0	2	
2.	16IS62	Web Programming	ISE	3	0	0	0	3	
3.	16IS63	Software Engineering and Testing	ISE	3	0	1	1	5	
4.	16IS64	Database Management System	ISE	3	0	1	1	5	
5.	16IS6CX	Elective C (PE)	ISE	3	0	0	1	4	
6.	16IS6DX	Elective D (PE)	ISE	4	0	0	0	4	
7.	16GE6XX	Elective E(GE)	Respect ive BOS	3	0	0	0	3	
8.	16HSE68	Professional Practice-III (Employability Skills and Professional Development of Engineers)	HSS	0	0	1	0	1	
	Tota	al number of Credits		22	0	2	3	27	
	Total N	umber of Hours / Week							

	V Sem				
	GROUP A: PROFESSIONAL CORE ELECTIVES				
Sl. No.	Course Code	Course Title			
1.	16IS5A1	Natural Language Processing with Python			
2.	16IS5A2	Management Information System			
3.	16IS5A3	Information theory and Coding			
4.	16IS5A4	JAVA and J2EE			
5.	16IS5A5	Advanced Algorithm			
		VI Sem			
		GROUP C: PROFESSIONAL CORE ELECTIVES			
Sl. No.	Course Code	Course Title			
1.	16IS6C1	Information Security			
2.	16IS6C2	System Simulation and Modelling			
3.	16IS6C3	Supply Chain Management			
4.	16IS6C4	Mobile Application Development			
		GROUP D: PROFESSIONAL CORE ELECTIVES			
1.	16IS6D1	Machine Learning and Pattern Recognition			
2.	16IS6D2	Wireless Sensor Networks			
3.	16IS6D3	Fuzzy Logic and Genetic Algorithm			
4.	16IS6D4	Advanced Compiler Design			
5.	16IS6D5	Computer System Performance Analysis			

	GROUP B: GLOBAL ELECTIVES						
Sl. No.	Host Dept	Course Code	Course Title	Credits			
1.	BT	16G5B01	Bioinformatics	4			
2.	СН	16G5B02	Fuel Cell Technology	4			
3.	CV	16G5B03	Geo Informatics	4			
4.	CSE	16G5B04	Graph Theory	4			
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning	4			
6.	EEE	16G5B06	Hybrid Electric Vehicles	4			
7.	IEM	16G5B07	Optimization Techniques	4			
8.	E&I	16G5B08	Sensors & Applications	4			
9.	ISE	16G5B09	Introduction To Management Information Systems	4			
10.	ME	16G5B10	Industrial Automation	4			
11.	TCE	16G5B11	Telecommunication Systems	4			
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4			
13.	AE	16G5B13	Basics of Aerospace Engineering	4			

	GROUP E: GLOBAL ELECTIVES						
Sl. No.	Host Dept	Course Code	Course Title	Credits			
1.	BT	16G6E01	Bioinspired Engineering	3			
2.	CH	16G6E02	Green Technology	3			
3.	CV	16G6E03	Solid Waste Management	3			
4.	CSE	16G6E04	Introduction to Web Programming	3			
5.	ECE	16G6E05	Automotive Electronics	3			
6.	EEE	16G6E06	Industrial Electronics	3			
7.	IEM	16G6E07	Project Management	3			
8.	E&I	16G6E08	Virtual Instrumentation	3			
9.	ISE	16G6E09	Introduction to Mobile Application Development	3			
10.	ME	16G6E10	Automotive Engineering	3			
11.	TCE	16G6E11	Mobile Network System and Standards	3			
12.	MAT	16G6E12	Applied Partial Differential Equations	3			
13.	AE	16G6E13	Aircraft Systems	3			

	V SEMESTER						
	INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP						
	(Theory)						
	(Comm	on to AE, CSE, ECE, EEE, ISI					
Cour	rse Code: 16HSI51		CIE Marks: 100				
Cred	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hou	rs: 36L		SEE Duration: 3Hrs				
Cour	rse Learning Objectives: The	e students will be able to					
1	To build awareness on the var	rious forms of IPR and to build the	he perspectives on the concepts				
	and to develop the linkages ir	n technology innovation and IPR.					
2	To equip students on the need	d to protect their own intellectual	works and develop ethical				
	standards governing ethical w	vorks.					
3	To motivate towards entrepre	eneurial careers and build strong	foundations skills to enable				
	starting, building and growing	g a viable as well as sustainable v	venture.				
4							
	manage risks associated with						

Unit-I

Unit-I	
Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS.	07 Hrs
Patents: Introduction, Scope and salient features of patent; patentable and non-patentable	
inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents,	
protection of traditional knowledge, Infringement of patents and remedy, Case studies	
Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India.	
Unit – II	
Trade Marks: Concept, function and different kinds and forms of Trademarks, Registrable	04 Hrs
and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment	
and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade	
mark with Case studies	
Unit -III	

Industrial Design: Introduction, Protection of Industrial Designs, Protection and	09 Hrs
Requirements for Industrial Design. Procedure for obtaining Design Protection,	
Revocation, Infringement and Remedies, Case studies	
Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right	
protection, transfer of copy rights, right of broad casting organizations and performer's	
rights, Case Studies.	
Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software	
patent and Copyright in software; Software piracy; Data protection in cyberspace	

Unit –IV	
Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful entrepreneurs. Characteristics of a Successful Entrepreneur Understand the entrepreneurial journey and learn the concept of different entrepreneurial styles. Identify your own entrepreneurship style based on your personality traits, strengths, and weaknesses. Learn about the 5M Model, each of the five entrepreneurial styles in the model, and how they differ from each other. Communicate Effectively: Learn how incorrect assumptions and limiting our opinions about people can negatively impact our communication. Identify the barriers which cause communication breakdown, such as miscommunication and poor listening,	08 Hrs
 and learn how to overcome them. Communication Best Practices. Understand the importance of listening in communication and learn to listen actively. Learn a few body language cues such as eye contact and handshakes to strengthen communication. (Practical Application) 	

Unit –V	
Design Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs
solving process. Describe the principles of Design Thinking. Describe the Design Thinking	
process.	
Sales Skills to Become an Effective Entrepreneur: - Understand what is customer focus	
and how all selling effort should be customer-centric. Use the skills/techniques of personal	
selling, Show and Tell, and Elevator Pitch to sell effectively.	
Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits.	
Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical	
Application) Appreciate the role of failure on the road to success, and understand when to	
give up. Learn about some entrepreneurs/risk-takers. (Practical Application).	
Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real	
picture of the benefits and challenges of being an entrepreneur. Identify the reasons why	
people want to become entrepreneurs. Help participants identify why they would want to	
become entrepreneurs.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the							
	purview of engineering domain.							
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to							
	Intellectual Property Rights with the utility in engineering perspectives.							
CO3:	Enable the students to have a direct experience of venture creation through a facilitated							
	learning environment.							
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that							
	entrepreneurs use to succeed in real life.							

Reference Books

1	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co. LtdDelhi, ISBN: 9789350350300
2	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
3	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
4	Entrepreneurship, Rajeev Roy, 1 st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

Low-1 Medium-2 High-3

	Т	HEORY OF COMPUTATION (Theory)					
Соп	rse Code: 16IS52	CIE Marks: 100					
	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
	rs: 36L	SEE Duration: 03Hrs					
Cou	rse Learning Objectives:						
1		ng models like Finite Automata, Pushdown Automata, and	l Turing				
2	Identify different formal lang	uages and their equivalence to different computing model	s.				
3							
4	Determine the decidability an	d intractability of computational problems	_				
		Unit-I					
	ma, Closure and Decision pro	regular expressions, Non-regular languages - Pumping perties of Regular Languages, Problems on Pumping					
Lem		Unit – II					
 – Returns trees (CFI Left 	egular and Context Free Gram –Equivalence of regular gra L)– Ambiguity in grammars -	ammars: Introduction to Grammar– Types of Grammar mars (CFG) – Derivations and Derivation trees / Parse mmar and Finite automata - Context Free Languages Simplification of CFG – Left factoring, Elimination of oductions and Unit productions and Useless symbols –	07 Hrs				
	· · · · · · · · · · · · · · · · · · ·	Unit -III					
Insta autor	ntaneous descriptions – Langu mata (DPDA) – Equivalence of	on to Pushdown Automata – Definitions, Moves and ages of a Pushdown Automata, Deterministic pushdown of Pushdown automata and CFG - pumping lemma for ties of CFL, problems based on pumping Lemma.	08 Hrs				

Unit –IV

Turing Machines: Definitions of Turing machines – Models – Computable languages and	07 Hrs
functions – Techniques for Turing machine construction – Multi head and Multi tape Turing	
Machines - The Halting problem - Partial Solvability - Problems about Turing machine-	
Chomskian hierarchy of languages.	l
Unit V	

Unit –VUnsolvableProblems andComputableFunctions:UnsolvableProblems and07 HrsComputableFunctions – Primitive recursive functions – Recursive and recursively
enumerable languages – Universal Turing machine.Measuring and Classifying Complexity:Tractable and Intractable problems- Tractable07 Hrs

and possibly intractable problems - P and NP completeness - Polynomial time reductions.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Design Finite State Machine, Pushdown Automata, and Turing Machine.							
CO2:	Establish limitations and equivalence of different computing models.							
CO3:	Create and simplify the grammars for different formal languages.							
CO4:	Explain the Decidability or Undecidability of various problems and identify such problems.							

Refere	ence Books								
1	Introduction to Automata Theory, Languages and Computations, Hopcroft J.E., Motwani R. and Ullman J.D, 3 rd Edition, 2008, Pearson Education, ISBN: 9788131720479								
2	Introduction to Languages and the Theory of Computation, John C Martin, 3 rd Edition, 2007, Tata McGraw Hill Publishing Company, New Delhi, ISBN 13: 9780070660489								
3	Introduction of the Theory and Computation, Micheal Sipser, Thomson Brokecole, 1997, ISBN:978-0-557-24979-4								
4	An Introduction To Formal Languages & Automata, Peter Linz, 6 th Edition, 2007, Narosa Publishing House, ISBN:978-1-4496-1552-9								

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	1	-	-	-	-	-	2	2
CO2	2	3	2	1	1	-	-	-	2	1	1	1
CO3	2	2	1	1	-	-	-	-	-	-	1	1
CO4	3	2	2	2	-	-	-	-	1	-	1	3

	COMPUTER NETWORKS									
	(Theory)									
Cou	rse Code: 16IS53		CIE Marks: 100							
Cred	lits: L:T:P:S: 3:1:0:0		SEE Marks: 100							
Hou	SEE Duration: 03Hrs									
Cou	rse Learning Objectives:									
1	Identify the relationship betw	een OSI layers of the computer	networks							
2	Understand the layer services	and principles of various layer	s							
3	3 Apply the protocols and services prescribed for the physical, data link, network and transport									
	layers to real world case studies									
4	4 Comprehend the technology behind various applications for the internet.									

Unit-I	
Introduction: Uses of Computer Networks: Business Applications, Home applications,	09 Hrs
Mobile Users, Social issues, network hardware: Personal Area Networks, Local Area	
Networks, Metropolitan Area Networks, Wide Area Networks, Internetworks, network	
software: Protocol Hierarchies, Design issues for the layers, Connection Oriented Vs	
Connectionless Service, Service Primitives, Relationship services to Protocols Reference	
Models: The OSI Reference Model, The TCP/IP Reference Model	
The Physical Layer : Guided Transmission Media: Magnetic Media, Twisted Pair,	
Coaxial Cable, Power lines, Fiber Optics, Wireless Transmission: Electromagnetic	
spectrum, Radio transmission, microwave transmission, Infrared transmission, light	
transmission The Mobile Telephone System: 1G: Analog Voice,2G: Digital Voice,3G:	
Digital Voice and Data	
Unit – II	
The Data Link Layer: Data Link Layer Design Issues: Framing, error control, flow	09 Hrs
control, Error Detection And Correction: Error Correcting codes, Error detecting codes,	
Elementary Data Link Protocols: Utopian Simplex protocol, Stop and wait(error free	
channel & noisy channel), Sliding Window Protocols: One bit sliding window, Go back N,	
Selective Repeat.	
Unit -III	
The Network Layer : Network Layer Design Issues, Routing Algorithms, Congestion	09 Hrs
Control Algorithms, Quality Of Service, Internetworking, The Network Layer In The	
Internet: IPV4, IP addresses, IP version, Internet Control Protocols, OSPF, BGP, Internet	
Multicasting, Mobile IP	
Unit –IV	
The Transport Layer: The Transport Service, Elements Of Transport Protocols:	09 Hrs
Connection Establishment and Release, Error and Flow Control Multiplexing and Crash	
recovery, Congestion Control, The Internet Transport Protocols: UDP, RPC, RTP, TCP.	
Unit –V	
The Application Layer: DNS—The Domain Name System, Electronic Mail, World Wide	08 Hrs
Web, Streaming Audio And Video.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Differentiate between various models and devices used in networking.						
CO2:	Comprehend the concepts of various protocols at different layers of OSI model.						
CO3:	Discriminate routing algorithms and their applications.						
CO4:	Understand data delivery over networks through applications.						

R	efere	nce Books
	1	Computer Networks, Andrew S Tannenbaum, David J Wetherall, 5th Edition, Pearson
	-	Publications, ISBN-13: 978-0-13-212695-3
	2	Computer Networking -A Top-Down Approach Featuring the Internet, James F. Kurose,
	2	Keith W. Ross, 6th Edition, 2012, Pearson Education, ISBN: 0132856204, 9780132856201
	2	Computer Networks, A Top Down Approach, Behrouz A. Forouzan, Special Indian Edition
	3	Tata McGraw Hill, 2012, ISBN-13: 978-1-25-900156-7
		Data and Computer Communication, William Stallings, 10th Edition, 2010, Pearson
	4	Education, ISBN-10: 0131392050, ISBN-13: 978-0-13-212695-3.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	1	-	-	-	2	2	-	-	-	-	2
CO3	3	2	1	1	-	1	1	-	-	-	-	2
CO4	3	2	2	1	-	2	2	-	-	-	-	2

	INTRODUCTION TO PARALLEL PROGRAMMING							
	(Theory & Practice)							
Cou	Course Code: 16IS54 CIE Marks: 100 + 50							
Cred	lits: L:T:P:S: 3:0:1:1		SEE Marks: 100 + 50					
Hou	Hours: 35L SEE Duration: 03Hrs							
Cou	rse Learning Objectives:							
1	Review the trends in compute	ers and parallelism in computer a	architecture					
2	2 Demonstrate the basic ideas of vector processing, multiprocessing and parallel operations with							
	case studies							
3	3 Focus on performance of different processor architectures							
4	4 Exposure to basics of various parallel programming paradigms							

- 4. Write a program that computes a simple matrix-matrix multiplication using OpenMP.
- 5. Write a program using MPI to send different amount of data from each processor to the root processor. Use MPI_Gather to tell the root how much data is going to be sent.
- 6. Write a C program which counts the number of primes between 1 and N, using MPI for parallel execution.
- 7. Write a C program which demonstrates one way to generate the same sequence of random numbers for both sequential execution and parallel execution under MPI.
- 8. Write a program using MPI to implement the Hill cipher, an encryption algorithm based on matrices and cipher text.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Apply the fundamentals of high performance computing concepts on known case studies.						
CO2:	Analyze the performance of different CPU architectures.						
CO3:	Design and apply parallel computing constructs for different applications.						
CO4:	Demonstrate high performance computing concepts using various parallel programming						
	paradigms.						

Refere	ence Books
1	Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis,
1	VipinKumar, 2 nd Edition, 2013, Pearson Education, ISBN 13: 9788131708071
2	Professional CUDA C Programming, John Cheng, Max Grossman, Ty McKercher, 1st
2	Edition, 2014, Wiley Publishers, ISBN: 978-1-118-73932-7
	CUDA by Example-An Introduction to General-Purpose GPU Programming, Jason Sanders,
3	Edward Kandrot, 2010 Edition, Publisher -Addison-Wesley Professional, ISBN-978-0-13-
	138768-3
4	Advanced Computer Architecture: Parallelism, Scalability, Programmability, Kai Hwang,
	Naresh Jotwani, 2 nd Edition, 2010, McGraw-Hill, ISBN- 13: 978-0-07-053070-6

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

R.V.College of Engineering-Bengaluru-59 Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	3	-	-	-	-	-	-	-
CO2	3	3	2	2	2	-	-	-	-	-	-	1
CO3	3	2	-	3	3	-	-	2	2	-	-	3
CO4	3	3	2	2	2	1	1	-	-	-	-	2

SYSTEM SOFTWARE (Theory & Practice)

Cou	rse Code: 16IS55	CIE Marks: 100 + 50					
Crec	lits: L:T:P:S: 3:0:1:1	SEE Marks: 100 + 50					
Hou	Hours: 36L SEE Duration: 03Hrs						
Cou	rse Learning Objectives:						
1	Differentiate between the system software and application software						
2	Identify the relationship between machine architecture and system software						
3	Understand the techniques involved in development of system software						
4	Apply design techniques for enhancing the features of system software						

Unit-I					
System Software: Introduction: What is System Software? Goals of System Software,	06 Hrs				
System Programs and Systems Programming, The Wonderland of System Software:					
Compiler and Interpreter, Programs related to compilers, Translation Process (Front End),					
Tiny Language					
Scanning: The Scanning Process, Lex and its application to generate scanner					
automatically, Scanner for TINY Language.					
UNIT-II					
Parsing: Parsing Process, Syntax of TINY Language, Top-down Parsing : First and Follow	09 Hrs				
Sets, LL(1) Parser, Bottom-Up Parsing : DFA of LR(0) Items, SLR(1) Parser, DFA of					
LR(1) Items, LR(1) Parser, LALR Parser, Error recovery in Bottom-Up Parsing					
Unit -III					
Instructional Computer (SIC) Machine Architecture, SIC/XE Machine Architecture, SIC	09 Hrs				
programming examples					
Assemblers-1: Basic Assembler Function - A Simple SIC Assembler, Assembler					
Algorithm and Data Structures, Machine Dependent Assembler Features - Instruction					
Formats & Addressing Modes, Program Relocation.					
Machine Independent Assembler Features – Literals, Symbol-Definition Statements,					
Expression					
Unit –IV	0 < 11				
Assemblers-2: Program Blocks, Control Sections and Program Linking, Implementation	06 Hrs				
example - MASM Assembler					
Loaders and Linkers – 1: Basic Loader Functions - Design of an Absolute Loader, A					
Simple Bootstrap Loader, Machine-Dependent Loader Features – Relocation, Program					
Linking, Algorithm and Data Structures for a Linking Loader					
	0611				
Loaders and Linkers – 2: Machine-Independent Loader Features - Automatic Library	06 Hrs				
Search, Loader Options, Loader Design Options - Linkage Editor, Dynamic Linkage,					
Bootstrap Loaders, Implementation Example - MS-DOS Linker.					
Other System Software : Text Editors, Interactive Debugging Systems					
ΙΑΡΟΡΑΤΟΡΥΓΕΥΒΕΡΙΜΕΝΤΩ					
LABORATORY EXPERIMENTS					
PART-A					
1. Develop a program to create a symbol table which stores the symbol name, symbol					
value and symbol address given the sample SIC program with the starting address					
2. Develop a program to evaluate the format of given SIC program instruction and					
extract the op-code of the given instruction if the instruction conforms to the SIC Machine Instruction Format					
3. Develop a program to validate and evaluate a given arithmetic expression					
4. Develop a program to identify and list the keywords used in a 'C' program					

R.V.College of Engineering-Bengaluru-59

5. Develop a program to evaluate the syntax of 'for' looping construct in 'C' programming language

PART-B

Groups with a maximum of TWO students in each are formed. Each group is assigned a project that implements any of the system software or its module that is complex enough, by lab-in charge. A list that is suggestive but not exhaustive is given below.

- 1. Implement a 2-pass Assembler for and SIC program
- **2.** Implement a Text Editor
- **3.** Implement a simple Lexical Analyzer for 'C' or 'C++' language
- 4. Implement a Single pass assembler for an SIC program
- 5. Implement a simple Parser for 'C' language
- 6. Implement a Shell
- 7. Implement an IDE for Lex &Yacc
- 8. Implement a Programming Language with Kannada keywords
- **9.** Implement a translator to generate instructions in 'C' language for operations specified through sentences in English grammar
- 10. Simulate a loader in 'C' language
- **11.** Simulate a linker in 'C' language
- 12. Generate a control flow graph through software testing techniques
- **13.** Implement an IDE to view contents of registers for each assembly instruction execution
- **14.** Implement a translator which converts 'C' language statements into assembly level language

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Analyze the working of essential system software					
CO2:	Design system software features which are dependent as well as independent of underlying					
	hardware					
CO3:	Apply the concepts learnt for improving the design of system software					
CO4:	Develop System Software to make user interaction level, simple and effortless					

Reference H	Books
--------------------	-------

Iterer	
1	System Software - An Introduction to Systems Programming, Leland L Beck, 3rd Edition,
1	1996, Pearson Publications, ISBN: 978-0201423006
2	Compiler Construction – Principles and Practice, Kenneth C Louden, 1997 Edition, PWS
2	Publishing Company, ISBN: 978-0534939724
2	Compilers, Alfred V. Aho, Monica S. Lam, Jeffrey D. Ullman, Ravi Sethi, 2 nd Edition,
3	2006, Addison Wesley Publications, ISBN: 978-0321486813
4	System Programming, D M Dhamdhere, 2011 Edition, Tata McGraw Hill Publications,
4	ISBN: 9780071333115

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks secured from three tests is reduced to 50. Self-study is evaluated for 20 marks. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. Evaluation includes phases of mini project

R.V.College of Engineering-Bengaluru-59

implementation. Student performance in laboratory for 40 marks is evaluated based on programs, project synopsis submission, project progress, project demonstration and project report review. At the end of the semester a test is conducted for 10 marks which is evaluated based on program execution, project demonstration, project viva and project report submission. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Project demonstration, implementation of suggested modifications on project and project viva is evaluated for 30 marks. Program Write-up, program execution and Viva related to program will be evaluated for 20 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	-	-	-	1	-	-	-
CO2	3	3	3	3	2	-	-	-	1	-	-	-
CO3	3	3	3	2	3	-	-	-	2	2	-	-
CO4	3	3	3	3	3	-	-	-	3	2	-	-

		E PROCESSING WITH PYTHON ofessional Core Elective) (Theory)						
Course Code: 16IS5A1 CIE Marks: 100								
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 45L SEE Duration: 03Hrs							
Cou	rse Learning Objectives:							
1	1 Demonstrate sensitivity to linguistic phenomena and an ability to model them with formal							
	grammars.							
2	2 Train and evaluate empirical NLP systems							
3								
	parameters using supervised and unsuper	ervised training methods						
4	Decign implement and analyze NI D al	achithma						

4 Design, implement, and analyze NLP algorithms

Unit-I

and Grammar-Processing Indian Languages- NLP Applications -Information Retrieval. Language Modeling: Various Grammar- based Language Models - Statistical Language Model Accessing Text Corpora Accessing Text Corpora, Conditional Frequency Distributions Unit – II	9 Hrs
Language Modeling: Various Grammar- based Language Models - Statistical Language Model Accessing Text Corpora Accessing Text Corpora, Conditional Frequency Distributions Unit – II Processing Raw Text : Accessing Text from the Web and from Disk, Strings: Text Processing at the Lowest Level Text Processing with Unicode, Regular Expressions for	
Model Accessing Text Corpora Accessing Text Corpora, Conditional Frequency Distributions Unit – II Processing Raw Text : Accessing Text from the Web and from Disk, Strings: Text Processing at the Lowest Level Text Processing with Unicode, Regular Expressions for	
Model Accessing Text Corpora Accessing Text Corpora, Conditional Frequency Distributions Unit – II Processing Raw Text : Accessing Text from the Web and from Disk, Strings: Text Processing at the Lowest Level Text Processing with Unicode, Regular Expressions for	
Unit – II Processing Raw Text : Accessing Text from the Web and from Disk, Strings: Text 09 Processing at the Lowest Level Text Processing with Unicode, Regular Expressions for 09	
Processing Raw Text : Accessing Text from the Web and from Disk, Strings: Text Processing at the Lowest Level Text Processing with Unicode, Regular Expressions for	
Processing at the Lowest Level Text Processing with Unicode, Regular Expressions for	
	Hrs
Detecting Word Patterns, Useful Applications of Regular Expressions, Normalizing Text	
,Regular Expressions for Tokenizing Text, Segmentation, Formatting: From Lists to	
Strings	
Unit -III	
Categorizing and Tagging Words : Using a Tagger, Tagged Corpora, Mapping Words to 09	9 Hrs
Properties Using Python Dictionaries Automatic Tagging, N-Gram Tagging,	
Transformation-Based Tagging, How to Determine the Category of a Word	
Learning to Classify Text : Supervised Classification, Further Examples of Supervised	
Classification, Evaluation, Decision Trees, Naive Bayes Classifiers, Markov Models,	
Hidden Markov Models	
Unit –IV	
	9 Hrs
and Evaluating Chunkers, Recursion in Linguistic Structure, Named Entity Recognition,	
Term weighting, Inverse document frequency, Residual inverse document frequency	
Analyzing Sentence Structure : Some Grammatical Dilemmas, What's the Use of	
Syntax?, Context-Free Grammar, Parsing with Context-Free Grammar, Dependencies and	
Dependency Grammar, Grammar Development.	
Unit –V	
	9 Hrs
Representing Meaning, Semantic Analysis, Lexical semantics, Word-sense disambiguation,	
Supervised – Dictionary based and Unsupervised Approaches, Compositional semantics,	
Semantic Role Labelling and Semantic Parsing	
Applications: Machine translation, Text summarization, Word-sense disambiguation,	
phrase-based translation, sentiment analysis, document classification	

Course Outcomes: After completing the course, the students will be able to

CO1:	Understand the approaches to syntax and semantics in Natural Language Processing, the											
	various types of language processors, the elements of formal language theory, the types of											
	grammar, and the computational morphology.											
CO2:	Understand the basic parsing technique for context-free grammars, the data structures and											
	algorithms for parsing, and the approaches to ambiguity resolution.											
CO3:	Apply the fundamental algorithms and techniques in the area of Natural Language											
	Processing.											

CO4: Comprehend and compare different natural language models.

Refere	ence Books
1	Natural Language Processing and Information Retrieval, Tanveer Siddiqui, U.S. Tiwary, OUP India, 2008, ISBN : 9780195692327
2	Natural Language Processing with Python, Steven Bird, Ewan Klein, Edward Loper, 2009,
	Publisher: O'Reilly Media, ISBN : 9780596516499
3	Natural Language Processing and Text Mining, Anne Kao and Stephen R. Poteet (Eds),
3	Springer, 2007, ISBN : 9781846281754
4	Natural Language Understanding, James Allen, 2 nd Edition, 1995, Benjamin / Cummings
4	Publishing company, ISBN: 9788131708958

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

SEE Evaluation Procedure

- 1. SEE will be conducted as Lab evaluation combining 40 marks for Theory and 60 marks for Lab programs.
- 2. Lab program evaluation:
 - a. External examiner will be called for the lab program evaluation.
 - b. Students are required to answer 3 questions (no choice) each of 20 marks.
 - c. Program execution is considered for Lab programs evaluation.
 - d. Students are allowed to use text books for execution of lab programs (Open Book exam)
 - e. Students will appear for exam (10-12) in a batch.
- 3. Theory evaluation:
 - a. Students are required to answer 5 questions (no choice) each carrying 8 marks, which would cover all the units. Questions need to be answered within the first 1 hour duration of the commencement of exam.
 - b. This is closed book exam
- 4. Students are not allowed to use internet during the exam (including the lab evaluation session)

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	3	3	-	-	-	-	-	-	-
CO2	1	2	3	3	2	-	-	-	-	2	-	-

R.V.College of Engineering-B	angaluru 50
K. V. Conege of Engineering-D	engalulu-39

CO3	2	1	2	3	3	-	-	-	-	2	-	2
CO4	2	1	2	1	2	-	-	-	-	-	-	-

	. –	EMENT INFORMATION SYSTEMS up A: Professional Core Elective) (Theory)						
Cou	Course Code: 16IS5A2 CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 45L SEE Duration: 03Hrs							
Cou	rse Learning Objectives:							
1	1 Understand the basic principles and working of information technology.							
2	Describe the role of information technology and information systems in business.							
3								
	processes.							
4	A A	the importance of application of internet technologies in business						
	administration.							

Unit-I	
Information systems in Global Business Today: The role of information systems in	09 Hrs
business today, Perspectives on information systems, Contemporary approaches to	
information systems, Hands-on MIS projects. Global E-Business and Collaboration :	
Business process and information systems, Types of business information systems,	
Systems for collaboration and team work, The information systems function in business. A	
Case study on E business.	
Unit – II	•
Information Systems, Organizations and Strategy: Organizations and information	09 Hrs
systems, How information systems impact organization and business firms, Using	
information systems to gain competitive advantage, management issues, Ethical and	
Social issues in Information Systems: Understanding ethical and Social issues related to	
Information Systems, Ethics in an information society, The moral dimensions of	
information society. A Case study on business planning.	
Unit -III	•
IT Infrastructure and Emerging Technologies : IT infrastructure, Infrastructure	09 Hrs
components, Contemporary hardware platform trends, Contemporary software platform	
trends, Management issues. Securing Information Systems: System vulnerability and	
abuse, Business value of security and control, Establishing framework for security and	
control, Technology and tools for protecting information resources. A case study on cyber	
crime.	
Unit –IV	
Achieving Operational Excellence and Customer Intimacy : Enterprise systems, Supply	09 Hrs
chain management(SCM) systems, Customer relationship management(CRM) systems,	
Enterprise application. E-commerce: Digital Markets Digital Goods: E-commerce and	
the internet, E-commerce-business and technology, The mobile digital platform and mobile	
E-commerce, Building and E-commerce web site. A Case study on ERP.	
Unit –V	
Managing Knowledge: The knowledge management landscape, Enterprise-wide	09 Hrs
knowledge management system, Knowledge work systems, Intelligent techniques.	
Enhancing Decision Making: Decision making and information systems, Business	
intelligence in the enterprise. Business intelligence constituencies. Building Information	
Systems: Systems as planned organizational change, Overview of systems development.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand and apply the fundamental concepts of information systems.								
CO2:	Develop the knowledge about management of information systems.								
CO3:	Interpret and recommend the use of information technology to solve business problems.								
CO4:	Apply a framework and process for aligning organization's IT objectives with business								
	strategy.								

Refer	rence Books
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane P. Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007
2	Management Information Systems, James A.O'Brien, George M. Marakas, Global 10 th Edition, 2011, McGraw Hill, ISBN: 978-0072823110
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson Education, ISBN:978-0130617736
4	Management Information Systems, W.S. Jawadekar, 2006, Tata McGraw Hill, ISBN: 9780070616349

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	-	1	-	-	-	1	-	-	1	-	
CO2	1	2	-	1	-	-	-	1	-	-	1	-	
CO3	-	-	3	2	2	-	-	1	-	1	1	-	
CO4	-	-	2	1	-	-	-	1	-	1	1	-	

	INFORMATION THEORY AND CODING (Group A: Professional Core Elective) (Theory)									
Cou	Course Code: 16IS5A3 CIE Marks: 100									
Cred	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100									
Hou	Hours: 45L SEE Duration: 03Hrs									
Cou	rse Learning Objectives:									
1	Interpret the basics of Inform	ation theory and channel capacity theorem								
2	2 Apply knowledge of error control coding techniques on communication systems									
3	3 Design; implement an error free communication of text audio, speech image and video.									
4	Formulate and solve problem	s creatively using block and convolutional coding.								

Unit-I					
Information Theory: Information – Entropy, Information rate, classification of codes,	08 Hrs				
Kraft McMillan inequality, Source coding theorem, Shannon-Fano coding, Huffman					
coding, Extended Huffman coding - Joint and conditional entropies, Mutual information -					
Discrete memoryless channels – BSC, BEC – Channel capacity, Shann onlimit.					
Unit – II					
Source Coding: Text, Audio And Speech: Text: Adaptive Huffman Coding, Arithmetic					
Coding, LZW algorithm - Audio: Perceptual coding, Masking techniques,					
Psychoacoustic model, MEG Audio layers I,II,III, Dolby AC3 - Speech: Channel					
Vocoder, Linear Predictive Coding					
Unit -III					
Source Coding: Image And Video : Image and Video Formats – GIF, TIFF, SIF, CIF,	10 Hrs				
QCIF - Image compression: READ, JPEG - Video Compression: Principles-I,B,P					
frames, Motion estimation, Motion compensation, H.261, MPEG standard					
Unit –IV					
Error Control Coding: Block Codes: Definitions and Principles: Hamming weight,	09 Hrs				
Hamming distance, Minimum distance decoding - Single parity codes, Hamming codes,					
Repetition codes - Linear block codes, Cyclic codes - Syndrome calculation, Encoder and					
decoder - CRC.					
Unit –V					
Error Control Coding: Convolutional Codes: Convolutional codes - code tree,	09 Hrs				
trellis, state diagram - Encoding – Decoding: Sequential search and Viterbi algorithm					
– Principle of Turbo coding					

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Identify and design the various components of a source coding in communication system.									
CO2:	Apply various error controlling coding techniques for error free communication in networks.									
CO3:	Analyze the block coding challenges and Design an efficient communication networks.									
CO4:	Build an efficient communication system using the convolutional coding techniques.									

Reference Books

1	Information Theory, Coding and Cryptography, R Bose, 2 nd Edition, 2013, TMH, ISBN : 9788126536801
2	Multimedia Communications: Applications, Networks, Protocols and Standards, Fred Halsall, 2012, Pearson Education Asia, ISBN: 0-13-035548-8
3	Introduction to Data Compression, K Sayood, 3 rd Edition, 2012, Elsevier, ISBN: 9780124157965
4	Introduction to Error Control Codes, S Gravano, 2010, Oxford University Press, ISBN 13: 9780198562313

R.V.College of Engineering-Bengaluru-59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	-	-	-	-	-	-	-	2	-	-	
CO2	-	3	-	-	-	-	-	-	-	2	-	-	
CO3	-	3	-	2	3	-	-	-	-	-	-	-	
CO4	3	2	3	-	-	-	-	-	-	-	2	1	

Credi	se Code: 16IS5A4	JAVA AND J2EE up A: Professional Core Elective) (Theory)							
Credi	se Code: 16IS5A4	1							
Credi									
		Course Code: 16IS5A4 CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100									
Hours: 45L SEE Duration: 03Hrs									
Course Learning Objectives:									
1	Understand fundamentals of object-oriented programming in Java								
2		b based enterprise applications							
3	Use the Java SDK environme level applications	nt to create, debug and run standalone, multi-tier and ent	erprise						
4	Integrate Servlets, JSPs and D	atabases in J2EE application							
		Unit-I ures; Java basics: identifiers, variables, data types,	09 Hrs						
overri		ted programming: classes, objects, inheritance, method stract class, polymorphism, inner class, wrapper classes;							
		Unit – II							
	Advanced Concepts: Exce es; I/O files in Java; Event hand	ption handling; Multithreaded Programming; Utility lling.	09 Hrs						
		Unit -III							
Servle Sessic Java	on management; Cookies.	e cycle; Deployment and web.xml; Servlet chaining; Life cycle, JSP tags, Expressions, JSP with database,	09 Hrs						
<u> </u>		Unit –IV							
Introd		C: Introduction, Types of drivers, Basic Steps of JDBC, ent, The Result Set Object, Working with Databases. Unit –V	09 Hrs						
Java	Enterprise Concepts - III:		09 Hrs						
	s: Struts architecture; Struts c	lasses; Action mapping; Struts flow; Combining Struts	071115						

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Comprehend the basic concepts of Java Standard Edition and the Enterprise Edition.								
CO2:	Create, debug and run Java standalone applications and access database through Java								
	programs.								
CO3:	Design and build maintainable web applications by creating dynamic web pages with Servlets								
	and JavaServer Pages.								
CO4:	Apply advanced enterprise concepts like tags, cookies, Struts for quick enterprise application								
	development.								

Refere	nce Books
1	Java 7 The Complete Reference, Herbert Schildt, 8 th Edition, 2011, McGraw-Hill Osborne Media, ISBN: 9780071606301
2	Java Server Programming Java EE7 J2EE 1.7, Kogent learning solution, 2015, Dreamtech Press, ISBN-13: 9789351194170
3	Java How to Program, H.M Deitel and P.J. Deitel, 10 th Edition, Pearson Education ISBN: 9780133807806
4	Thinking in Java, Bruce Eckel, 4th Edition, 2006, Pearson Education, ISBN: 0131872486

R.V.College of Engineering-Bengaluru-59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	-	-	-	-	-	-	-	-	-	1	
CO2	2	2	2	-	3	-	-	-	1	1	-	-	
CO3	2	2	3	-	2	-	-	2	2	1	2	-	
CO4	3	2	2	-	2	-	-	-	-	-	2	-	

	ADVANCED ALGORITHM (Group A: Professional Core Elective) (Theory)						
Cou	Course Code: 16IS5A5 CIE Marks: 100						
Cred	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hou	rs: 45L	SEE Duration: 03Hrs					
Cou	rse Learning Objectives:						
1	Be able to apply amortized analysis on data s	tructures.					
2	2 Understand the implementation and complexity analysis of fundamental algorithms such as						
	RSA, primality testing and max flow						
3	3 Have an idea of applications of algorithms in a variety of areas, including string matching,						
	game-theory						

4 Determine the most suitable algorithm for any given task and then apply it to the problem.

Unit-I	
Analysis Techniques: Insertion sort, Analyzing algorithms, Designing Algorithms,	09 Hrs
Growth of Functions: Asymptotic notations; Standard notations and common functions;	
Recurrences and Solution of Recurrence equations- The substitution method, The	
recurrence – tree method, The master method; Amortized Analysis: Aggregate, Accounting	
and Potential Methods.	
Unit – II	
Graph Algorithms: Representations of graphs, Bellman - Ford Algorithm; Single source	09 Hrs
shortest paths in a DAG; Dijkstra's algorithm, Johnson's Algorithm for sparse graphs; Flow	
networks and Ford- Fulkerson method; Maximum bipartite matching. Balanced search	
trees, Binary Search Trees, Red Black Trees, Fibonacci Heaps	
Unit -III	
String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; String	09 Hrs
matching with finite automata; Knuth-Morris-Pratt algorithm, Boyer-Moore algorithm.	
Computational Geometry: Line-segment properties, Determining whether any pair of	
segments intersects, Finding the convex hull, Finding the closest pair of points	
Unit –IV	
Number -Theoretic Algorithms: Elementary notions; GCD; Modular Arithmetic; Solving	09 Hrs
modular linear equations; The Chinese remainder theorem; Powers of an element; RSA	
cryptosystem; Primality testing; Integer factorization, Strassen's algorithm for matrix	
multiplication.	
Unit –V	
NP-Completeness and Approximation Algorithms: Polynomial time, Polynomial-time	09 Hrs
verification, NP-completeness and reducibility, NP-completeness proofs, NP-complete	
problems, Approximation Algorithms – Approximation Ratio, The vertex-cover problem,	
The travelling salesman problem	
<i>o i i i i i i i i i i</i>	
Course Outcomes: After completing the course, the students will be able to	
CO1: Understand the techniques of proof by contradiction, mathematical induction and	

• • • • = ie ·	· · · · · · · · · · · · · · · · · · ·						
CO1:	Understand the techniques of proof by contradiction, mathematical induction and						
	recurrence relation, and apply them to prove the correctness and to analyze the						
	running time of algorithms.						
CO2:	Apply the techniques to derive algorithmic solutions for new problems						
CO3:	Implement learned algorithm design techniques and data structures to solve						
	problems						
CO4:	Efficiently implement both basic as well as advanced data structures						

Refere	ence Books
1	Introduction to algorithms, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Clifford Stein, 3 rd Edition, 2009, MIT Press
2	The Design and Analysis of Computer Algorithms, Alfred V. Aho, John E. Hopcroft, J.D.Ullman, Addison-Wesley
3	Computer Algorithms, Horowitz E, Sahani S, Rajasekharan S, 2001, Galgotia Publications, ISBN:9780716783169
4	Data structures and Algorithm analysis in C++, Mark Allen Weiss, 2003, Pearson Education, ISBN:032144146

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	3	-	-	-	2	2	-	3
CO2	3	3	2	-	-	-	-	-	3	-	3	3
CO3	3	2	3	3	-	-	-	-	3	2	-	3
CO4	3	2	2	-	-	-	-	-	3	-	3	3

	Semester: V							
	BIOINFORMATICS							
		(Group B: Global	Elective)					
Cou	rse Code: 16G5B01		CIE Marks: 100					
Cre	dits :L:T:P:S: 4:0:0:0		SEE Marks: 100					
Hou	irs :04		SEE Duration: 03Hrs					
Cou	rse Learning Objectives:							
1	Understand the underlying te	chnologies of Bioinf	ormatics and Programming					
2	Explore the various algorithm	ns behind the comput	ational genomics and proteomic structural					
	bioinformatics, modeling and	l simulation of molec	ular systems.					
3	3 Apply the tools and techniques that are exclusively designed as data analytics to investigate the							
	significant meaning hidden behind the high throughput biological data.							
4	4 Analyze and evaluate the outcome of tools and techniques employed in the processes of							
	biological data preprocessing and data mining.							
	· · · · · · · · ·							

Unit-I

Unit-1								
Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of	09 Hrs							
Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy,								
Genes and Genomes. Bioinformatics & Biological Databases: Introduction to								
Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological								
databases - Sequence, structure, Special Databases and applications - Genome, Microarray,								
Metabolic pathway, motif, and domain databases. Mapping databases – genome wide								
maps. Chromosome specific human maps.								
Unit – II								
Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and Multiple	09 Hrs							
sequence alignment, Alignment algorithms (Needleman & Wunch, Smith & Waterman and								
Progressive global alignment). Database Similarity Searching- Scoring matrices -								
BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next								
Generation Sequencing – Alignment and Assembly. Molecular Phylogenetics:								
Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction								
Methods - Distance-Based & Character-Based Methods and Phylogenetic Tree evaluation.								
Unit -III								
Predictive methods: Predicting secondary structure of RNA, Protein and Genes -	09 Hrs							
algorithms to predict secondary structure of RNA, Protein and Gene. Prediction of Tertiary								
structure of Protein, Protein identity and Physical properties of protein. Molecular								
Modeling and Drug Designing: Introduction to Molecular Modeling. Methods of								
Molecular Modeling and Force Fields used in Molecular Modeling. Drug designing process								
- deriving Pharmacophore, Receptor Mapping, Estimating Receptor-Ligand interactions								
and Molecular Docking.								
Unit –IV								
Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and	09 Hrs							
Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions								
(REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.								
Subroutines - types of functions, defining and calling functions in Perl, calling function -								
call by value and call by reference. Object Oriented Programming in Perl-Class and object,								
Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package.								
Perl Module – writing and calling module.								
Unit –V								
BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence	09 Hrs							
retrieval from Database and submission of sequence to online Database, Indexing and								
accessing local databases, Transforming formats of database record, Sequence alignments								
BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Restriction								
mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and								
other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and								
phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for								

Information Science & Engineering

Sequence display and Annotation.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the Architecture and Schema of online databases including structure of records in
	these databases.
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in Biology,
	Chemical Engineering, and Medicine.
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to process
	simulation and process engineering in Biological system.
CO4:	Use Bioinformatics tools and Next Generation Technologies to model and simulate biological
	phenomenon.

Refere	Reference Books					
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text processing and scripting, O'Reilly Media, Inc., 4 th Edition, 2012, ISBN-13: 978-0596004927					
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach, new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624					
3	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and MySQL, Oxford University Press, 1st edition, 2009, ISBN					
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

Semester: V								
	FUEL CELL TECHNOLOGY							
	(Group B: Glo	bal Elective)						
Cou	rse Code: 16G5B02	CIE Marks: 100						
Cree	Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100							
Hou	Hours: 45L SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The students will be	able to						
1	1 Recall the concept of fuel cells							
2	2 Distinguish various types of fuel cells and their functionalities							
3	3 Know the applications of fuel cells in various domains							
4	Understand the characterization of fuel cells							

4 Understand the characterization of fuel cells

UNIT-I

Introduction: Fuel cell definition, historical developments, working principle of fuel cell, 09Hrs components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties.

Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel 09Hrs cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each .

UNIT-III

Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum 09Hrs efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation.

UNIT-IV

Fuel Cell Characterization: current – voltage curve, in-situ characterization, current –
voltage measurement, current interrupt measurement, cyclic voltammetry,
electrochemical impedance spectroscopy and ex-situ characterization techniques.09Hrs

UNIT-V

Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen 09 Hrs production, storage, handling and safety issues.

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the fundamentals and characteristics of fuel cells					
CO2:	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems					
CO3:	Analyze the performance of fuel cells using different characterization techniques					
CO4:	Evaluate the possibility of integrating fuel cell systems with conventional energy systems					

Reference Books							
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287						
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579						
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439						
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152						

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

CO - PO Mapping

	Semester: V								
	GEOINFORMATICS								
	(Group I	B: Global Elective)							
Cou	Course Code:16G5B03 CIE Marks: 100								
Hrs/	Week: L:T:P:S: 4:0:0:0	SEE Marks: 100							
Crec	lits: 48L	SEE Duration: 03 Hrs							
Cour	se Learning Objectives: The students wil	l be able to							
1	To understand concept of using photogr	aphic data to determine relative positions of points							
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative lan								
4	² information								
3	To analyze the data gathered from various sensors and interpret for various applications								
4	To understand the various applications of RS, GIS and GPS								

UNIT-I

Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition	10 Hrs				
earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition					
curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition					
curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition					
satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition					
of image interpretation and analysis - Principle of visual interpretation, recognition					
elements. Fundamentals of image rectification. Digital Image classification - supervised					
and unsupervised					
UNIT-II					
Photogrammetry: Introduction types of Photogrammetry, Advantages of 1	10 Hrs				
Photogrammetry, Introduction to digital Photogrammetry. Locating points from two					
phases determination of focal length.					
Aerial Photogrammetry: Advantages over ground survey methods - geometry of					
vertical phographs, scales of vertical photograph. Ground coordination- relief					
displacement, scale ground coordinates – flight planning					
UNIT-III					
Geographic Information System- Introduction, Functions and advantages, sources of 1	10 Hrs				
data for GIS. Database – Types, advantages and disadvantages. Data Management –					
Transformation, Projection and Coordinate systems. Data input methods, Data Analysis					
overlay operations, network analysis, spatial analysis. Outputs and map generation.					
Introduction to GPS- components and working principles					
UNIT-IV					
Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources	09 Hrs				
engineering and management (prioritization of river basins, water perspective zones and					
its mapping), Case studies on applications of GIS and RS in highway alignment,					
Optimization of routes, accident analysis, Environmental related studies. Case studies on					
applications of GIS and RS in Disaster Management (Case studies on post disaster					
management - Earthquake and tsunami and pre disaster management - Landslides and					
floods) Urban Planning & Management - mapping of zones, layouts and infrastructures.					

UNIT-V	
Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping.	09 Hrs
Case studies on infrastructure planning and management- Case studies on urban sprawl.	
Change detection studies - case studies on forests and urban area. Case studies on	
agriculture. Applications of geo-informatics in natural resources management: Geo	
Technical case Studies , site suitability analysis for various applications.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the principle of Remote Sensing (RS) and Geographical Information Systems								
	(GIS) data acquisition and its applications.								
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs.								
CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.								
CO4:	Create a feasible solution in the different fields of application of RS and GIS.								

Reference Books

1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3rd Edition, Wiley India
	Pvt. Ltd. New Delhi, 2009.
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5th Edition, John
	Wiley Publishers, New Delhi, 2007.
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi,
	2009

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

S	Semester: V						
GRAPH THEORY							
(Group I	B : Global Elective)						
Course Code:16G5B04	CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 45L	SEE Duration: 03 Hrs						

Course Learning Objectives: The students will be able to							
1	Understand the basics of graph theory and their various properties.						
2	Model problems using graphs and to solve these problems algorithmically.						
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.						

4 Optimize the solutions to real problems like transport problems etc.,

UNIT-I	
 Introduction to graph theory Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs. Basic concepts in graph theory Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs. 	09 Hrs
UNIT-II	
Graph representations, Trees, Forests Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees.	09 Hrs
UNIT-III	
 Fundamental properties of graphs and digraphs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. Planar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs. 	09 Hrs
UNIT-IV	
 Matchings and Factors Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. Coloring of graphs The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs 	09 Hrs
UNIT-V	•
Graph algorithms Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.	09Hrs
Course Outcomes: After completing the course, the students will be able to	· · · · · · · · · · · · · · · · · · ·
CO1:Understand and explore the basics of graph theory.CO2:Analyse the significance of graph theory in different engineering disciplines	
CO3: Demonstrate algorithms used in interdisciplinary engineering domains.CO4: Evaluate or synthesize any real world applications using graph theory.	

Refe	Reference Books								
1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,								
	ISBN-0130144002.								
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw, Pearson Education, 1 st Edition,2008, ISBN- 978-81-317-1728-8.								
	Pearson Education, 1st Edition, 2008, ISBN- 978-81-317-1728-8.								
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,								
	2010,PHI, ISBN:9780262033848								

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

Low-1 Medium-2 High-3

	Semester: V								
	ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING								
		(Group B: Global Elective)							
Cou	rse Code: 16G5B05		CIE Marks: 100						
Cree	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100						
Hou	rs: 46L		SEE Duration: 03 Hrs						
Cou	rse Learning Objectives: [The students will be able to							
1	Define what is Neural N	etwork and model a Neuron and E	Express both Artificial Intelligence						
1	and Neural Network								
2	Analyze ANN learning, l	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning,							
4	Competitive learning and Boltzmann learning								
		eption, Perception learning algorith							
3	algorithm, and Adaptive	e linear combiner, Continuous perception, learning in continuous							
	perception.								
	5	velop MLP with 2 hidden layers,							
4	Develop Delta learning r	rule of the output layer and Multil	ayer feed forward neural network						
	with continuous perception	with continuous perceptions,							

UNIT-I

Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical
notes.08 Hrs

UNIT-II

Learning Processes:Introduction, Error correction learning, Memory-based learning,
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,
learning with and without teacher, learning tasks, Memory and Adaptation.10 Hrs

UNIT-IIISingle layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple
perception, Perception learning algorithm, Modified Perception learning algorithm,
Adaptive linear combiner, Continuous perception, Learning in continuous perception.
Limitation of Perception.10 Hrs

UNIT-IV

Multi-Layer Perceptron Networks:Introduction, MLP with 2 hidden layers, Simple layer10 Hrsof a MLP, Delta learning rule of the output layer, Multilayer feed forward neural networkwith continuous perceptions, Generalized delta learning rule, Back propagation algorithm10 Hrs

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks, Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and examples (Google, image/speech recognition)

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.									
CO2:	Perform Pattern Recognition, Linear classification.									
CO3:	Develop different single layer/multiple layer Perception learning algorithms									
CO4:	Design of another class of layered networks using deep learning principles.									

Ref	erence Books
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson
	Prentice Hall, ISBN-13: 978-0-13-147139-9
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing
	Company, ISBN: 9780534954604
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-
	262-11255-8
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	2	-	-	-	-	1	-	1	
CO4	3	3	3	3	2	-	-	-	-	1	-	1	

Low-1 Medium-2 High-3

	Semester: V											
	HYBRID ELECTRIC VEHICLES											
	(Group B: Global Elective)											
Cou	Course Code : 16G5B06 CIE Marks : 100											
Cred	lits : L:T:P:S 4:0:0:0		SEE Marks : 100									
Hou	rs : 45L		SEE Duration : 03 Hrs									
Cou	rse Learning Objectives: The students	will be able to,										
1	Explain the basics of electric and h	ybrid electric vehicle	s, their architecture, technologies and									
1	fundamentals.											
2	Explain plug – in hybrid electric vehic	cle architecture, desig	n and component sizing and the power									
2	electronics devices used in hybrid electric vehicles.											
3	Analyze various electric drives suitab	le for hybrid electric	vehicles and Different energy storage									
3	technologies used for hybrid electric ve	hicles and their control	1.									
	Demonstrate different configurations	of electric vehicles	and its components, hybrid vehicle									
4	configuration by different techniques,	sizing of component	ts and design optimization and energy									
	management.											

Unit-I	
Introduction: Sustainable Transportation, A Brief History of HEVs, Why EVs Emerged and	07 Hrs
Failed, Architectures of HEVs, Interdisciplinary Nature of HEVs, State of the Art of HEVs,	
Challenges and Key Technology of HEVs.	
Hybridization of the Automobile: Vehicle Basics, Basics of the EV, Basics of the HEV, Basics	
of Plug-In Hybrid Electric Vehicle (PHEV), Basics of Fuel Cell Vehicles (FCVs).	
Unit-II	
HEV Fundamentals: Introduction, Vehicle Model, Vehicle Performance, EV Powertrain	10 Hrs
Component Sizing, Series Hybrid Vehicle, Parallel Hybrid Vehicle, Wheel Slip Dynamics.	
Plug-in Hybrid Electric Vehicles: Introduction to PHEVs, PHEV Architectures, Equivalent	
Electric Range of Blended PHEVs, Fuel Economy of PHEVs, Power Management of PHEVs,	
Component Sizing of EREVs, Component Sizing of Blended PHEVs, Vehicle-to-Grid	
Technology.	
Unit-III	
Power Electronics in HEVs: Power electronics including switching, AC-DC, DC-AC	10 Hrs
conversion, electronic devices and circuits used for control and distribution of electric power,	
Thermal Management of HEV Power Electronics.	
Batteries, Ultracapacitors, Fuel Cells, and Controls: Introduction, Different batteries for EV,	
Battery Characterization, Comparison of Different Energy Storage Technologies for HEVs,	
Battery Charging Control, Charge Management of Storage Devices, Flywheel Energy Storage	
System, Hydraulic Energy Storage System, Fuel Cells and Hybrid Fuel Cell Energy Storage	
System and Battery Management System.	
Unit-IV	
Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor Drives,	10Hrs
Permanent Magnet Motor Drives, Switched Reluctance Motors, Doubly Salient Permanent	
Magnet Machines, Design and Sizing of Traction Motors, Thermal Analysis and Modelling of	
Traction Motors. (only functional treatment to be given)	

Unit-V	
Integration of Subsystems: Matching the electric machine and the internal combustion engine	08Hrs
(ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage	
technology, Communications, supporting subsystems.	
Energy Management Strategies: Introduction to energy management strategies used in hybrid	
and electric vehicle, classification of different energy management strategies, comparison of	
different energy management strategies, implementation issues of energy strategies.	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and fundamentals.
CO2:	Evaluate the performance of electrical machines and power electronics converters in HEVs.
CO3:	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies and control and select appropriate technology
CO4:	Design and evaluate the sizing of subsystem components and Energy Management strategies in HEVs.
Refere	nce Books:
1.	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris, Masrur A.and Gao D.W. Wiley Publisher, 1 st Edition, 2011, <i>ISBN</i> :0-824-77653-5
2.	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E. Gay Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.
3.	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press, 2001, ISBN 0 19 850416 0.
4.	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao, Giorgio Rizzoni, <i>ISBN</i> : 978-1-4471-6779-2.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3 : Medium-2 : Low-1

	V Semester						
OPT	IMIZATION TECHNIQUES						
	Group B: Global Elective)						
Course Code : 16G5B07 CIE Marks : 100							
Credits : L: T: P: S:4:0:0:0 SEE Marks : 100							
Hours: 44L	SEE Duration : 03 Hrs						
Course Learning Objectives: The st							
1. To understand the concepts behind							
 To explain the modeling frameworks for solving problems using optimization techniques. 							
3. To design and develop optimization models for real life situations.							
4. To analyze solutions obtained using							
5. To compare models developed usin	g various techniques for optimization.						
	UNIT – I						
Introduction: OR Methodology, Defi	nition of OR, Application of OR to Engineering and	09 Hrs					
Managerial problems, Features of OR	models, Limitations of OR.						
Linear Programming: Definition	Aathematical Formulation, Standard Form, Solution						
8	le, Basic Feasible, Degenerate, Solution through						
	luct Mix, Blending, Marketing, Finance, Agriculture						
and Personnel.							
	ex Algorithm – Use of Artificial Variables.						
	UNIT – II						
Duality and Sensitivity Analysis:	Graphical sensitivity analysis, Algebraic sensitivity	09 Hrs					
	in objectives, Primal-Dual relationships, Economic						
	mal analysis - changes affecting feasibility and						
optimality, Revised simplex method							
	UNIT – III						
Transportation Problem: Formulation	on of Transportation Model, Basic Feasible Solution	08 Hrs					
	Vogel's Approximation Method, Optimality Methods,						
-	Degeneracy in Transportation Problems, Variants in						
Transportation Problems							
Assignment Problem: Formulation	of the Assignment problem, solution method of						
assignment problem-Hungarian Met	hod, Variants in assignment problem, Travelling						
Salesman Problem (TSP).							
	UNIT – IV						
Queuing Theory: Queuing system an	nd their characteristics, The M/M/I Queuing system,	09Hrs					
Steady state performance analyzing of	M/M/1 queuing models. Introduction to M/M/C and						
M/Ek/1 queuing models							
Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without							
saddle point - Arithmetic method, Gra	phical Method, The rules of dominance						
	UNIT – V						
Markov chains: Definition. Absolute	and n-step transition probabilities, Classification of	09 Hrs					
	ad mean return times of ergodic chains, First passage						
· _	n weather prediction and inventory management.						
Over view of OR software's used in pr	· · ·						

Cours	Course Outcomes: After going through this course the student will be able to									
CO1:	Understand the various optimization models and their areas of application.									
CO2:	Explain the process of formulating and solving problems using optimization methods.									
CO3:	Develop models for real life problems using optimization techniques.									
CO4:	Analyze solutions obtained through optimization techniques.									
CO5 :	Create designs for engineering systems using optimization approaches.									

Reference Books:

1.	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw
	Hill, ISBN 13: 978-0-07-133346-7
4.	Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education
	Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	1	1	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	1	1	-	-	-	-
CO4	2	-	3	-	1	-	-	-	-	-	-	-
CO5	-	-	2	-	-	1	-	-	-	-	-	1

V Semester							
	SENSORS & APPLICATIONS						
	(Group B: Global Elective)						
Cou	Course Code:16G5B08 CIE Marks: 100						
Cred	Credits/Week: L:T:P:S:4:0:0:0 SEE Marks: 100						
Hou	rs:44L	SEE Duration: 03Hrs					
Cou	rse Learning Objectives: The stud	lents will be able to					
1	Impart the principles and working modes of various types of Resistive, Inductive, Capacitive,						
	Piezoelectric and Special transducers.						
2	Give an idea about the application	ns of various transducers and selection criteria of a transducer					
	for a particular application.						
3	Give an insight into the static and	dynamic characteristics of different orders of instruments.					
4	D '1 1'00 - 1 -						

4 Describe different data conversion techniques and their applications.

UNIT-I

01111-1	
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers, Advantages of Electrical transducers.	09 Hrs
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, Applications and Problems.	
UNIT-II	
 Thermocouple: Measurement of thermocouple output, compensating circuits, lead compensation, advantages and disadvantages of thermocouple. LVDT: Characteristics, Practical applications and problems. Capacitive Transducers: Capacitive transducers using change in area of plates, distance 	10 Hrs
between plates and change of dielectric constants, Applications of Capacitive Transducers and problems.	
UNIT-III	
 Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-electric materials, equivalent circuit, loading effect, and Problems. Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers: Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the design of sensor, applications. 	10 Hrs
UNIT-IV	<u>.</u>
 Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potential sensor. Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled device. Tactile sensors: Construction and operation, types. 	08 Hrs
UNIT-V	
Data Converters : Introduction to Data Acquisition System, types of DAC, Binary Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain Amplifier.	07 Hrs

Course	Outcomes: After completing the course, the students will be able to
CO1:	Remember and understand the basic principles of transducers and smart sensors.
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation systems.
CO3:	Analyze and evaluate the performance of different sensors for various applications.
CO4:	Design and create a system using appropriate sensors for a particular application

Referen	nce Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

Low-1	Medium-2	High-3
-------	----------	--------

		Semester: V	
		MANAGEMENT INFORMATION SYSTEMS	
9		(Group B: Global Elective)	
	urse Code: 16G5B09	CIE Marks: 100	
	edits: L:T:P:S: 4:0:0:0	SEE Marks: 100	
	urs :45L	SEE Duration: 03 Hrs	
	urse Learning Objectives: The s		
1		es and working of information technology.	
2		technology and information systems in business.	. 1 .
3		internet and other information technologies supp	ort business
	processes.		1
4	U	e of the importance of application of internet tech	inologies in
	business administration.	* 12 17/11 *	
TA			00.77
	-	usiness Today: The role of information systems in	
		nformation systems, Contemporary approaches to	
		S projects. Global E-Business and Collaboration	
		systems, Types of business information systems	
-		work, The information systems function in business	•
A	Case study on E business.		
TO			0.0 11
		ons and Strategy: Organizations and information	
		s impact organization and business firms, Using	
		etitive advantage, management issues, Ethical and	
		ns: Understanding ethical and Social issues related to	
	÷	n information society, The moral dimensions o	t
infe	ormation society. A Case study on	· · · · · · · · · · · · · · · · · · ·	
		UNIT III	
		g Technologies : IT infrastructure, Infrastructure	
		e platform trends, Contemporary software platform	
		ng Information Systems: System vulnerability and	
		nd control, Establishing framework for security and	
		protecting information resources. A case study or	1
cyt	percrime.		
		UNIT IV	0.0
		e and Customer Intimacy: Enterprise systems	-
		systems, Customer relationship management (CRM	
•		-commerce: Digital Markets Digital Goods: E	
		merce-business and technology, The mobile digita	
-		Building and E-commerce web site. A Case study or	1
ER	Р		
		UNIT V	-
	naging Knowledge: The knowledge		
		Knowledge work systems, Intelligent techniques	
En	hancing Decision Making: De	cision making and information systems, Busines	8
	lligence in the enterprise Busine	ss intelligence constituencies. Building Information	.
		zational change, Overview of systems development.	

R.V.College	of Engine	ering-Bei	1galuru-59
10.1.0000660	or Engine		iguiuiu 57

Course Outcomes: After completing the course, the students will be able to				
ane				
on,				
,				
son				
JOII				
BN:				

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

	Semester: V							
	INDUSTRIAL AUTOMATION							
	(Group B: Global Elective)							
Cou	Course Code: 16GB510 CIE Marks: 100							
Cree	Credits: L:T:P:S : 4:0:0:0 SEE Marks: 100							
Hou	Hours: 44L SEE Duration: 03 Hrs							
Cou	urse Learning Objectives: The students should be able to:							
1	Identify types of actuators, sensors and switching devices f	or industrial automation						
2	Explain operation and controls of Hydraulic and Pneumati	c systems						
3	Understand fundamentals of CNC, PLC and Industrial robo	ots						
4	Define switching elements and sensors which are interfaced	1 in an automation system						
5								
6	Select sensors to automatically detect motion of actuators							
7	Develop manual part programs for CNC and Ladder logic f	For PLC						
8	Develop suitable industrial automation systems using all th	e above concepts						
	UNIT-I							

Automation in Production Systems:	08 Hrs
Manufacturing support systems, Automation principles and strategies, Levels of Automation,	
Production Concepts and Mathematical models, Numericals	
Automated Production Lines:	
Fundamentals, Applications, Analysis with no storage, Analysis with storage buffer, Numericals	
UNIT-II	
Switching theory and Industrial switching elements	08 Hrs
Binary elements, binary variables, Basic logic gates, Theorems of switching algebra, Algebraic	
simplification of binary function, Karnough maps, Logic circuit design, problems.	
Electromechanical relays, Moving part logic elements, Fluidic elements, Timers, Comparisons	
between switching elements, Numericals	
Industrial Detection Sensors and Actuators:	
Introduction, Limit switches, Reed switches, Photoelectric sensors- methods of detection, Hall	
effect sensors, Inductive proximity sensors, Capacitive proximity sensors, Pneumatic back	
pressure sensors, Absolute encoder, Incremental encoder, Pressure switches and temperature	
switches; their working principles and applications, Brushless DC motors, Stepper motors and	
Servo motors	
UNIT-III	
	10 Hrs
Components, Symbolic representations, Control of Single and Double Acting Cylinder,	
Regenerative Circuit application, Pump unloading circuit, Double Pump Hydraulic System, speed	
control circuits, accumulator circuits	
Pneumatic Control circuits	
Components, Symbolic representations as per ISO 5599, Indirect control of double acting	
cylinders, memory control circuit, cascading design, automatic return motion, quick exhaust valve	
circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits.	
UNIT-IV	
	08 Hrs
Introduction to CNC	
Numerical control, components of CNC, classification, coordinate systems, motion control	
Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts Industrial Robotics	
Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts Industrial Robotics Components of Robots, base types, classification of robots, end of arm tooling, robot precision of	
Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts Industrial Robotics Components of Robots, base types, classification of robots, end of arm tooling, robot precision of movement, programming, justifying the use of a robot, simple numericals	
Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts Industrial Robotics Components of Robots, base types, classification of robots, end of arm tooling, robot precision of movement, programming, justifying the use of a robot, simple numericals UNIT-V	10 Hrs
Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts Industrial Robotics Components of Robots, base types, classification of robots, end of arm tooling, robot precision of movement, programming, justifying the use of a robot, simple numericals UNIT-V Programmable logic control systems	10 Hrs
Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts Industrial Robotics Components of Robots, base types, classification of robots, end of arm tooling, robot precision of movement, programming, justifying the use of a robot, simple numericals UNIT-V Programmable logic control systems Difference between relay and PLC circuits, PLC construction, principles of operation, latching,	10 Hrs
Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts Industrial Robotics Components of Robots, base types, classification of robots, end of arm tooling, robot precision of movement, programming, justifying the use of a robot, simple numericals UNIT-V Programmable logic control systems	10 Hrs

Programming exercises on motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Illustrate applications of sensors actuators, switching elements and inspection technologies in									
	industrial automation									
CO2:	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its									
	application areas									
CO3:	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres									
	interfaced with Robots									
CO4:	Develop suitable industrial automated system integrating all of the above advanced automation									
	concepts									

Reference Books

1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls, Joji P, 1st Edition, Wiley India, ISBN – 978–81–265–1542–4
3.	Fluid Power with Applications, Anthony Esposito, 7 th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	-	-	2	1	2	1	-	-	1	2	
CO2	1	-	2	3	2	2	2	-	-	2	-	-	
CO3	-	1	-	2	1	-	-	-	-	2	-	-	
CO4	-	-	3	2	2	1	-	2	2	3	2	2	

	Semester: V									
TELECOMMUNICATION SYSTEMS										
(Group B: Global Elective)										
Cou	Course Code: 16G5B11 CIE Marks: 100									
Cree	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100									
Hou	Hours: 46L SEE Duration: 03 Hrs									
Cou	rse Learning Objectives: The students	will be able to								
1	Represent schematic of communication	system and identify its components.								
2	Classify satellite orbits and sub-systems	for communication.								
3	Analyze different telecommunication se	rvices, systems and principles.								
4	Explain the role of optical communication	on system and its components.								
5	Describe the features of wireless techno	logies and standards.								

Introduction to Electronic Communication: The Significance of Human Communication, Communication Systems, Types of Electronic Communication,	09 Hrs				
Communication, Communication Systems, Types of Electronic Communication,					
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of					
Communication Applications.					
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.					
UNIT-II					
0	10 Hrs				
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.					
Wideband Modulation: Spread spectrum, FHSS, DSSS.					
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time					
division multiplexing					
Multiple Access: FDMA, TDMA, CDMA, Duplexing.					
UNIT-III					
Satellite Communication:	09 Hrs				
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,					
Satellite Applications, Global Positioning System.					
UNIT-IV					
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-	09 Hrs				
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division					
Multiplexing, Passive Optical Networks.					
UNIT-V					
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.	09 Hrs				
Advanced Mobile Phone System (AMPS)					
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell					
Phones.					
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless					
Networks, WiMAX and Wireless Metropolitan-Area Networks.					

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Describe the basics of communication systems.									
CO2:	Analyze the importance of modulation and multiple access schemes for communication									
	systems.									
CO3:	Compare different telecommunication generations, wired and wireless communication.									
CO4:	Justify the use of different components and sub-system in advanced communication systems.									

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	-	1	1	-	-	-	1	-	-	-	
CO2	2	1	-	1	1	-	-	-	1	-	-	-	
CO3	2	1	-	1	1	-	-	-	2	-	-	-	
CO4	1	1	-	1	1	1	-	-	1	-	-	-	

		Semester: V				
	COMPUTATION	NAL ADVANCED NUMERICAL METHODS				
		(Group B: Global Elective)				
Cour	rse Code:16G5B12	CIE Marks: 100				
	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100				
Hours: 44LSEE Duration: 3Hrs						
Cour	rse Learning Objectives:					
1		n alternative methods and analyze mathematical pro	oblems to			
	determine the suitable numer					
2		ation, eigen value problem techniques for mathematical	problems			
-	arising in various fields.					
3		dary value problems which have great significance in er	igineering			
	practice using ordinary differ					
4		gramming language, implementation of algorithms and	computer			
	programs to solve mathematic	cal problems.				
		T T •/ T				
		Unit-I	0.0.77			
0	braic and Transcendental eq		08 Hrs			
		ractice, Polynomials and roots of equations, Fixed point				
iterat	ive method, Aitken's process,	Muller's method, Chebychev method.				
T 4	• •	Unit – II				
	polation:		08 Hrs			
		Finite differences of a polynomial, Divided differences				
		interpolation formula, Hermite interpolation, Spline				
mer	polation-linear, quadratic and o	A A				
Ordi	nom Differential Forestions	Unit -III	09 Hrs			
	nary Differential Equations:		09 Hrs			
		alue problems–Runge-Kutta method, Milne's method,				
		-Shooting method, Finite difference method for linear				
and n	onlinear problems, Rayleigh-F					
Fige	n valua problama	Unit –IV	09 Hrs			
	n value problems:	ower method, Inverse Power method, Bounds on Eigen	07 115			
		Jacobi method for symmetric matrices, Givens method.				
value	es, Oresengorin circle theorem,					
Com	nutational Tashniquas	Unit –V	10 Hrs			
	putational Techniques:	for Fixed point iterative method, Aitken's-process,	10 115			
0	1 0	thod, Newton's divided difference method, Hermite				
	÷	Power method, Inverse Power method, Runge-Kutta				
		g method, Rayleigh-Ritz method, Jacobi method and				
	ns method.	g method, Rayleign-Ritz method, Jacobi method and				
UNE	ns memou.		<u> </u>			
Cours	rea Autoomosi Afton completi	ing the course, the students will be able to				
		ing the course, the students will be able to indamental concepts of polynomial equations. Interpolati				

Course	se Outcomes: After completing the course, the students will be able to								
CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen								
	value problems, Differential equations and corresponding computational techniques.								
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and								
	transcendental equations, Ordinary differential equations and eigen value problems.								
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,								
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems								
	numerically using computational techniques.								
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the								
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value								
	problems arising in engineering practice.								

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-
	2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9th Edition,
2	2012, ISBN-13: 978-81-315-1654-6.
2	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
3	Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
4	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	-	-	-	-	-	-	-	2		
CO2	3	2	1	-	-	-	-	-	-	-	-	2		
CO3	2	3	2	2	-	-	-	-	-	-	-	1		
CO4	3	3	1	2	1	-	-	-	-	-	-	3		

High-3: Medium-2: Low-1

Semester: V							
BASICS	BASICS OF AEROSPACE ENGINEERING						
	(Group B: Global Elective)						
Course Code: 16GE5B13	CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 44L	SEE Duration: 3Hours						

Course	Learning	Objectives:	To enable	the students to:
--------	----------	--------------------	-----------	------------------

- **1** Understand the history and basic principles of aviation
- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I	
Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions, Introduction to Unconventional and Autonomous Air vehicles. Unit – II	08 Hrs
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an	
Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.	08 Hrs
Unit -III	
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines, Introduction to ramjets and scramjets, Comparative merits and demerits of different types Engines.	07 Hrs

Unit -IV	
Introduction to Space Flight : History of space flight, Evolution of Indian Space Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories. Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets, Types of rockets.	08 Hrs
Unit -V	
Aerospace Structures and Materials : Introduction, General types of construction,	
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage	
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum	07 Hrs
alloy, titanium, stainless steel and composite materials, Low temperature and high	
temperature materials.	

Cou	Course Outcomes:						
At t	At the end of this course the student will be able to :						
1	Appreciate and apply the basic principles of aviation						
2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and						
2	² aircraft materials during the development of an aircraft						
3	Comprehend the complexities involved during development of flight vehicles.						
4	Evaluate and criticize the design strategy involved in the development of airplanes						

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York, ISBN:1118174208, 9781118174203.
3	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

High-3 : Medium-2 : Low-1

	VI SEMESTER						
	FOUNDATIONS OF MANAGEMENT & ECONOMICS						
		(Theory)					
	(Common to BT, CHE, CV, E&I, IEM, ME)						
Cou	Course Code: 16HEM61 CIE Marks: 50						
Cred	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50						
Hou	Hours: 23L SEE Duration: 02 Hrs						
Cou	rse Learning Objectives:						
1	1 Understand the evolution of management thought						
2	2 Acquire knowledge of the functions of Management.						
3							
4	Understand the concepts of m	nacroeconomics relevant to differ	ent organizational contexts.				

Unit-I			
Introduction to Management: Management Functions, Roles & Skills, Management	04 Hrs		
History - Classical Approach: Scientific Management & Administrative Theory,			
Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies,			
Contemporary Approach: Systems & Contingency Theory.			
Unit – II			
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	02 Hrs		
Strategic Management Process, Corporate & Competitive Strategies.			
Organizational Structure & Design: Overview of Designing Organizational Structure:	03 Hrs		
Work Specialization, Departmentalization, Chain of Command, Span of Control,			
Centralization & Decentralization, Formalization, Mechanistic & Organic Structures.			
Unit -III			
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	03 Hrs		
Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory,			
Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory.			
Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan	03 Hrs		
Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey			
& Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional			
& Transformational Leadership.			
Unit –IV			
Introduction to Economics: Concept of Economy and its working, basic problems of an	04 Hrs		
Economy, Market mechanism to solve economic problems, Government and the economy,			
Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of			
microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of			
Microeconomics.			
Unit –V			
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic	04 Hrs		
product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate,			
Macroeconomic models- an overview, Growth theory, The classical model, Keynesian			
cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-			

 classical synthesis, Exchange rate determination and the Mundell-Fleming model

 Course Outcomes: After completing the course, the students will be able to

 CO1:

 Explain the principles of management theory & recognize the characteristics of an organization.

 CO2:

 Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.

 CO3:
 Select & Implement the right leadership practices in organizations that would enable systems orientation.

Refere	ence Books
1	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10 th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
•	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6th Edition, 1999, PHI,
2	ISBN: 81-203-0981-2.
•	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5 th Edition, 2009, TMH Pub.
3	Co. Ltd, ISBN: 13:978-0-07-008056-0.
	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill
4	Education; ISBN-13: 978-0070091450.
-	Essentials of Macroeconomics, (www.bookboon.com), Peter Jochumzen, 1st Edition. 2010, e-
5	book, ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	2	2	-	-	1	-	-	2	2	-
CO3	1	-	-	-	-	-	-	2	2	2	1	-
CO4	1	2	-	-	-	2	-	-	-	-	-	2

Low-1 Medium-2 High-3

WEB PROGRAMMING (Theory)						
Cou	se Code: 16IS62	CIE Marks: 100				
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Hou	Hours: 35L SEE Duration: 03 Hrs					
Cou	se Learning Objectives:					
1	Understand the key concepts of Web programming.					
2	Comprehend the concepts of web services, SOAP & WSDL					
3						
4	Implement web applications using XML & PHP.					

Unit-I	
HTML and XHTML: Introduction, editing XHTML, w3c XHTML validation service,	07 Hrs
headers, linking, images, special characters, unsorted lists, nested and ordered lists,	
XHTML tables, XHTML forms, internal linking, meta elements.	
Style Sheets: Inline styles, embedded style sheets, conflicting styles, linking external style	
sheets, positioning elements, backgrounds, element dimensions, Box Model and text flow,	
Media Types, Building a CSS drop-down menu, User style sheets.	
Unit – II	
Java Script: Introduction, Program modules in javascript, function definitions, scope rules,	07 Hrs
global functions, recursion, arrays, references and reference parameters, passing arrays to	
functions, sorting arrays, searching arrays, multi-dimensional arrays, math object, string	
object, date object, Boolean and number object, document object, window object, using	
cookies, using JSON to represent objects.	
Document Object Model: Introduction, Modeling a document, DOM Nodes and Trees,	
Traversing and modifying a DOM tree, DOM Collections, dynamic styles, summary of	
DOM objects and Collections, registering event handlers, onload, onmousemove, the event	
object, this, onmouseover, onmouseout, onfocus, onblur, onsubmit, onreset, event	
bubbling, more events.	
Unit -III	
XML : Mark-up languages, XML, Uses of XML. WELL-FORMED XML: Parsing XML,	07 Hrs
Tags, text, elements, attributes, comments and empty elements. XML Declaration,	07 1115
Processing Instructions, Errors in XML. XML NAMESPACES: Need for namespaces,	
How XML namespaces work, URIs, When to use namespace.	
VALIDATION: Document type definitions (DTD), Sharing vocabularies, Anatomy of	
DTD, Developing DTDs, DTD Limitations.	
XML SCHEMAS: Benefit of XML schemas, Elements of XML Schema Definition,	
Creating a Schema from multiple documents.	
Unit –IV	
HTML 5: Detecting HTML 5 features – Canvas, video, local storage, web workers, offline	07 Hrs
applications, geo-location, placeholders, input types. What does it all mean – doctype, root,	07 1115
headers, articles, dates and times, navigation and footers. Let's call it drawing surface	
Simple shapes, canvas, Paths, texts, gradients and images. The past, present and future of	
local storage for web applications, A Form of madness – place holders, autofocus fields,	
email, web addresses, numbers as spinboxes and sliders, date and color pickers, search	
boxes. Unit –V	
PHP & MySQL : PHP Installation, Configuration of Apache Web Server and basic PHP	07 Hrs
syntax.PHP input/output.PHP IfElse, Loops.PHP Functions writing and calling. Basic	0/1115
difference between Get/Post. Handling user requests through Get/Post. E-mailing and file	
uploading through PHP. PHP Date, PHP Include. How can you maintain user states on	
server. PHP Cookies, PHP Sessions. Basic overview of different DBMS. MySQL	
Introduction, Installation, configuration and its administration Basic queries Execution like	
select/update/insert/delete. PHP database connectivity with MySQL ,PHP Errors and	
Exceptions	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Define and understand protocols used in Web development.						
CO2:	Analyze various Client/Server approaches involved in Web design.						
CO3:	Design web applications by adopting Mark-up languages & accepted standards.						
CO4:	Justify and explain relevant alternatives for design recommendations of web applications.						

Reference Books

1	Programming the World Wide Web, Robert W. Sebesta, 8th Edition, 2015, University of
1	Colorado, Colorado Springs, ISBN 9780321303325
2	Internet & World Wide Web How To Program, P Deitel, HmDeital, Tr Nieto, 1st Edition,
4	2012, Pearson Education Limited Publications, ISBN 9788131701126.
2	Beginning Xml, Andrew Watt, Jeff Rafter, David Hunter, 4th Edition, 2011, Wiley India,
3	ISBN: 9788126513031
4	Professional Web 2.0 Programming, Erik Bruchez, Danny Ayers, Eric Van Der Vlist, 1 st
4	Edition, 2014, Wiley India Pvt. Ltd, ISBN: 9788126510665

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	2	-	-	1	-	1	1	-
CO2	1	1	3	1	2	-	-	1	-	1	1	-
CO3	1	2	3	1	2	-	-	1	-	1	1	-
CO4	2	2	3	1	2	-	-	1	-	1	1	-

	SOFTWARE ENGINEERING AND TESTING							
	(Theory & Practice)							
Cou	rse Code:16IS63	CIE Marks: 100 + 50						
Crec	lits: L:T:P:S: 3:0:1:1	SEE Marks: 100 + 50						
Hou	rs: 35L	SEE Duration: 03 Hrs						
Cou	rse Learning Objectives:							
1	Describe software engineering print	ciples and activities involved in building large software						
	programs.							
2	Identify ethical and professional issues and explain why they are of concern to software							
	engineers.							
3	3 Perform the process of requirements gathering, requirements classification, requirements							
	specification and requirements validation.							
4	Outline software quality standards a	and practices involved.						

Unit-I	
Introduction: From an art form to an Engineering Discipline, Software Development	07 Hrs
Projects, Exploratory style of software development, Emergence of software engineering,	
Notable changes in software development Practices, Computer Systems Engineering.	
Software Evolution: Evolution processes, Program evolution dynamics, Software	
maintenance, Legacy system management.	
The Software Life Cycle Models, A few Basic Concepts, The Waterfall Model and its	
extensions, Rapid Application Development, Agile development models, Spiral Model,	
Comparison of different lifecycle models.	
	07 11
Software Project Management: Software Project Management Complexities,	07 Hrs
Responsibilities of a software project Manager, Project Planning, Metrics for project size	
estimation, Project estimation techniques, Empirical estimation techniques, COCOMO,	
Halstead's Software Science, Staffing level estimation, Scheduling, Organization and Team Structures, Staffing, Risk Management, Software Configuration Management.	
ISO9000, SEI Capability Maturity Model, Other Important Quality Standards, Six Sigma.	
Unit –III	
Requirements Gathering and Analysis, Software Requirements Specification, Formal	07 Hrs
System Specification, Axiomatic specification, Algebraic Specification, Executable	07 1115
Specification.	
Dependability and Security : Socio Technical Systems, Dependability and Security.	
System Modelling: Context models, Interaction models, Structural models, Behavioral	
models, Model-driven engineering.	
Unit –IV	
Software Design: Characteristics of software design; Cohesion and coupling; Layered	07 Hrs
arrangement of modules; Function-oriented and object-oriented design approach.	
User Interface Design: Characteristics of Good User Interface, Basic Concepts, Types of	
User Interfaces, Fundamentals of Component based GUI Development, A User Interface	
Design Methodology	
Unit –V	
Software Quality Management Software Reliability; Statistical Testing, Software	07 Hrs
Quality, Software Quality Management System,	
Coding and Testing, Coding, Code Review, Software Documentation, Testing, Unit	
Testing, Black Box Testing, White Box Testing, Debugging, Program Analysis Tools,	
Integration Testing, Testing OO Programs, System Testing, General Issues associated with	
Testing.	
LABORATORY COMPONENT	
1. Considering the following case studies,	
a) Identify the requirements and prepare the SRS document (as per IEEE format)	
from Problem Statements.	

	R.V.College of Engineering-Bengaluru-59							
b)	Design Models using following UML diagrams for the case studies given below							
``	(Tool: Star UML/Enterprise Architect)							
c)	Use of any Open Source Test Tool like Selenium or equivalent as determined by the course co-ordinator							
Structural Diagrams								
•	Class diagram							
•	Object diagram							
٠	Component diagram							
٠	Deployment diagram							
Behavi	ioral Diagrams							
•	Use case diagram							
•	Sequence diagram							
•	Collaboration diagram							
•	State chart diagram							
٠	Activity diagram							
List of	Case Studies							
2150 01	1. Library Management System							
	2. Hospital Management System							
	3. Online reservation Management System							
	4. Airport check-in and security screening System							
	5. Restaurant business System							
	6. Bank ATM System							
	7. Ticket vending machine							
	8. Student marks Analysing System							
	ign and execute test cases and test suites for the following applications.							
	a) A Web Application (Website) Using Selenium IDE.							
	b) Design the test cases for following programs using Equivalence class Partitioning (weak							
	and strong normal), Boundary value analysis test cases and robustness Software							
-	g techniques. Use a Bug Repository tool (like Bugzilla) to log the bugs while testing							
the pro	grams.							
	Nextdate program							
	Triangle program							

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Comprehend the basic concepts of Software Engineering.						
CO2:	Apply the concepts of Software Engineering in an organizational context.						
CO3:	Analyze the Software Engineering Methodologies.						
CO4:	Compare and Evaluate best Software Engineering practices for building software						
	system.						

Refere	nce Books
1	Fundamentals of Software Engineering, Rajib Mall, 2015, Prentice-Hall Of India Pvt. Ltd., ISBN: 9788120348981
2	Software Engineering, Ian Sommerville, 9th Edition, 2007, Person Education,. ISBN: 9789332518858
3	Software Testing -A Craftsman's Approach, Paul C. Jorgensen, 4 th Edition, 2013, Auerbach Publications, ISBN: 9781138628076
4	Software Testing Principles and Practices, Srinivasan Desikan, Gopalaswamy Ramesh, Pearson, 2014. ISBN: 9788177581218

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	3	3	-	1	2	2	-	-	-	1
CO2	-	2	2	2	-	1	2	2	3	3	3	2
CO3	1	3	2	2	2	2	2	2	2	2	-	1
CO4	-	-	-	-	-	-	-	3	-	-	-	1

	DATABASE MANAGEMENT SYSTEMS							
	(Theory & Practice)							
Cou	rse Code:16IS64	CIE Marks: 100 + 50						
Cred	lits: L:T:P:S: 3:0:1:1	SEE Marks: 100 + 50						
Hou	rs: 35L	SEE Duration: 03 Hrs						
Cou	rse Learning Objectives:							
1	List and explain the fundament	al concepts of a relational database system.						
2	Analyze database requirements and determine the entities involved in the system and their							
	relationship to one another.							
3	Develop the logical design of the database using data modeling concepts such as entity-							
	relationship diagrams.							
4	4 Create a relational database using a relational database package and manipulate a database							
	using SQL.							
5	Assess the quality and ease of u	use of data modeling and diagramming tools.						

Unit-I

Unit-I	
Introduction to Database Systems Databases and Database users: Introduction, An	07 Hrs
example, Characteristics of Database Approach, Actors on the scene, Workers behind the	
scene, Advantages of using the DBMS Approach, Database System-Concepts and	
Architecture: Data Models, Schemas and Instances, Three-schema Architecture and Data	
Independence, Database Languages and Interfaces, The Database System Environment,	
Centralized and Client/Server Architectures for DBMSs, Classification of Database	
Management Systems.	
Entity-Relationship Model Using High-Level Conceptual Data Models for Database	
Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys;	
Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity	
Types; Refining the ER Design for the COMPANY Database; ER Diagrams, Naming	
Conventions and Design Issues, Enhanced Entity Relationship(EER) Modeling,	
Subclasses, Superclasses, and Inheritance, Specialization and Generalization ,Constraints	
and Characteristics of Specialization and Generalization Hierarchies. Modeling of UNION	
types using categories, A sample UNIVERSITY EER schema, Design Choices and Formal	
Definitions.	
Unit – II	
Relational Model and Relational Algebra Relational Model Concepts; Relational	07 Hrs
Model Constraints and Relational Database Schemas; Update Operations and Dealing with	
Constraint Violations; Unary Relational Operations: SELECT and PROJECT; Relational	
Algebra Operations from Set Theory; Binary Relational Operations : JOIN and DIVISION	
;Additional Relational Operations; Examples of Queries in Relational Algebra; Relational	
Database Design Using ER- to-Relational Mapping, Mapping EER Model Constructs to	
Relations	
Relational Database Design Informal Design Guidelines for Relation Schemas;	
Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of	
Second and Third Normal Forms; Boyce-Codd Normal Form; Multivalued Dependencies	
and Fourth Normal Form; Join Dependencies and Fifth Normal Form	
Unit -III	
Sql-99: Schema Definition, Basic Constraints and Queries SQL Data Definition,	07 Hrs
Specifying Basic Constraints in SQL, Schema Change Statements in SQL; Basic Queries in	
SQL; More Complex SQL Queries; Insert, Delete and Update Statements in SQL;	
Query Processing and Optimization: Translating SQL queries into Relational Algebra,	
Algorithm for external Sorting, Algorithm for SELECT and JOIN operations, Algorithm	
for project and Set Operations, Implementing Aggregate Operations and OUTER JOINs,	
Combining Operations using Pipelining, Using Heuristics in Query Optimization, Using	
selectivity and cost estimation in query optimization.	
Unit –IV	
Overview of Transaction Management The ACID property Transaction and schedules	07 Hrs

Overview of Transaction Management The ACID property, Transaction and schedules, **07 Hrs**

R.V.College of Engineering-Bengaluru-59

R.V.College of Engineering-Bengaluru-59]
Concurrent Execution of Transactions, Lock based Concurrency control, performance of	
locking, Transaction support in SQL, Introduction to crash recovery.	
Concurrency Control 2PL, Serializability, recoverability, Introduction to Lock	
management, Lock conversions, Dealing with Deadlocks, Specialized Locking	
Techniques, Concurrency control without Locking.	
Crash Recovery Introduction to ARIES, the LOG, Other recovery related structures, The	
Write-Ahead Log protocol, check pointing, Recovery from a system Crash, media	
recovery, other approaches and interaction with concurrency control.	
NOSQL Databases: Introduction to NOSQL Systems, The CAP Theorem, Document-	07 Hrs
Based NOSQL Systems and MongoDB, NOSQL Key-Value Stores, Column-Based or	07 1115
Wide Column NOSQL Systems, NOSQL Graph Databases and Neo4j.	
LABORATORY COMPONENTS	
Contents	
A Mini Project should be implemented and shall be carried out in a batch of two students.	
The students will finalize a topic in consultation with the faculty. The mini project must be	
carried out in the college only.	
The Mini Project tasks would involve	
• Understand the complete domain knowledge of application and derive the	
complete data requirement specification of the Mini Project	
• Design of the project	
• Normalization of the Relational design up to 3NF (Desirable 5NF).	
• Appreciate the importance of security for database systems.	
• Documentation and submission of report.	
General Guidelines :	
• Database for the project- MySQL, DB2, Oracle, SQL Server etc	
• Front End for the project – Visual Basic, C++, C#, Web Interface (HTML, PhP)	
Typical Mini Projects	
Placement management system.	
• Result management & analysis system.	
RVCE Blog management system.	
Student Feedback system	
Library management	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the different issues involved in the design and implementation of a database
	system
CO2:	Master the basics of SQL, NOSQL, basics of query evaluation techniques and query
	optimization
CO3:	Develop an understanding of essential DBMS concepts such as: database security, integrity,
	concurrency, distributed database, and intelligent database, Client/Server (Database Server)
CO4:	Design and understand a simple database system and demonstrate competence with the
	fundamental tasks involved with Transaction Management, recovery, modeling, designing in
	Database Systems and distributed database systems

Refere	ence Books					
1	Fundamentals of Database Systems, Ramez Elmasri, Shamkant B. Navathe, 7th Edition,					
1	2016, Published by Pearson, Copyright ©, ISBN-10: 0133970779					
2	Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, 3rd Edition,					
² 2003, McGraw-Hill, ISBN: 9780071231510						
2	Data Base System Concepts, Silberschatz, Korth and Sudharshan, 5th Edition, 2006, Mc-					
3	GrawHill, ISBN: 9789332901384					
4	A Introduction to Database Systems, C.J. Date, A. Kannan, S. Swamynatham, 8th Edition,					
4	2006, Pearson Education, ISBN: 9788177585568					

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. Evaluation includes phases of mini project implementation and execution. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks which can include evaluating students based on demonstration and implementation of modifications suggested. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Project demonstration and implementation of suggested modifications is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	3	1	-	-	-	1	-	-	1
CO2	3	3	1	3	3	-	-	-	-	-	-	2
CO3	2	2	2	3	-	-	-	-	1	-	-	1
CO4	2	3	2	2	1	-	-	-	-	-	-	1

		PRMATION SECURITY : Professional Core Elective) (Theory)					
Cou	rse Code: 16IS6C1	CIE Marks: 100					
Crec	lits :L:T:P:S: 3:0:0:1	SEE Marks:100					
Hou	rs: 36L	SEE Duration : 03Hrs					
Cou	rse Learning Objectives:						
1	1 Comprehend the basics of Security in computing						
2	2 Understand security for Operating Systems and Databases and apply the concepts in designing						
	of databases.						
3	3 Analyze programs for security and develop secure programs.						
4	4 Recognize the importance of administering security and be aware of legal and ethical issues in						
	computer security.						

Unit-I

Unit-I					
Introduction to Security Fundamentals: Meaning of "Secure": Protecting Valuables,	07 Hrs				
Characteristics of Computer intrusion, Attacks: Vulnerabilities, Threats, Attacks, Controls,					
Method, Opportunity, Motive, Meaning of Computer Security: Security Goals.					
Vulnerabilities, Computer Criminals: Definition, Types, Methods of Defense: Hacking,					
Methodology of hacking, Hacker Classification, Controls, Effectiveness of Controls.					
Unit – II					
Program Security: Secure programs: Types of faults, fixing faults, unexpected behaviour,	08 Hrs				
non-malicious program errors: Buffer overflow, Incomplete mediation, Time of check to					
time of use, Combination of non-malicious program flaws. Viruses and other malicious					
code: How Viruses attach, gain control, homes for viruses, virus signature, source of virus,					
Prevention of virus infection, The Brain Virus, Internet Worm Targeted malicious code:					
Trojans, Trap doors, Salami Attack, Privilege escalation, Interface Illusion, Keystroke					
logging, Man in the middle attack, Timing Attack, Covert channels. Control against					
Program threats: Developmental Control, Program Control.					
Unit -III					
Protection in OS: Protected Objects and methods of protection: Protected objects, Security	07 Hrs				
methods of Operating system, File protection mechanisms: Basic forms, individual					
permissions, per object and per user protection. User Authentications: Passwords as					
authenticators, Attacks on Passwords, Password selection criteria, Authentication Process,					
Biometrics as authenticators.					
Database Security: Security requirements: Integrity, Auditability, Availability, Reliability					
and Integrity: Two phase update, Redundancy, Recovery, Concurrency, Monitors.					
Sensitive data, Access decisions, Types of Disclosures, Security Vs. Precision					
Unit –IV					
Privacy in Computing: Privacy on Web: Payments, Portal registrations, Precautions,	07 Hrs				
Spyware, Shopping on the internet: Security breaches. Email Security: Interception,					
Monitoring email, Anonymous Emails, Remailers, Spoofing, Spamming, Impact on					
Emerging Technologies, RFID, E-Voting, VoIP, Skype.					
Administering Security: Security Planning, Contents of a Security plan, Security planning					
team members, Assuring commitment to Security plan, Risk Analysis, Nature of risk, Steps					
of risk analysis					
Unit –V					
Legal and Ethical Issues in Computer Security: Protecting program and data:	07 Hrs				
Copyrights, Patents for software, Information and Law, Redress for Software failure,					
Ethical issues in Computer security.					

Γ

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the concepts of information security, the need and issues related with it.					
CO2:	Evaluate the existing systems to handle security vulnerabilities.					
CO3:	Analyze and design new security solutions for software development to secure networks					
	using firewalls and intrusion detection systems.					
CO4:	Demonstrate and do computation of the secure technologies on to the networks, systems and					
	deployment of security tools in real scenarios.					

Reference Books

KUUU	LICC DOORS
1	Security in Computing, Pearson Education, Charles P. Pfleeger, Shari Lawrence Pfleeger, 4th
1	Edition, ISBN 978-0-13-408504-3
2	Analyzing Computer Security, A Threat, Vulnerability Countermeasure Approach, Charles P. Pfleeger, Shari Lawrence Pfleeger, Pearson Education, ISBN-13: 978-0132789462
2	P. Pfleeger, Shari Lawrence Pfleeger, Pearson Education, ISBN-13: 978-0132789462
2	Network Security Essentials, William Stallings, 4th Edition, 2011, Prentice Education
3	Pearson, ISBN 13: 9780136108054
4	Introduction to Computer Security, Matt Bishop, Addison-Wessley- Pearson Education,
4	ISBN 13: 9780321247445

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	1	1	-	-	-	-	1
CO2	3	2	2	1	-	1	1	-	-	-	-	1
CO3	3	3	3	2	2	2	2	-	-	-	-	3
CO4	2	3	3	2	3	2	-	-	-	-	-	1

	SYSTEM SIMULATION AND MODELLING (Group C: Professional Core Elective) (Theory)							
Cou	rse Code:16IS6C2		CIE Marks:100					
Cred	lits: L:T:P:S: 3:0:0:1		SEE Marks:100					
Hou	Hours: 36L SEE Duration : 03Hrs							
Cou	rse Learning Objectives:							
1	1 Understand the major capabilities and commonly encountered limitations of discrete-event							
	simulation for modeling systems that industrial engineers commonly encounter							
2	2 Formulate a real world problem and select an appropriate analytical technique for modeling and							
	ultimately solving this problem							
3	3 Use simulation software for model development and analysis							
4	4 Communicate the results of the modeling process to management and other non-specialist users							
	of engineering analysis.							

Unit-I	
Modeling and Simulation: Introduction. Models: Approximations of Real World Events,	07 Hrs
A Brief History of Modeling and Simulation, Application Areas, Using Modeling and	
Simulation, Advantages and Disadvantages.	
The Role of Modeling and Simulation: Using Simulations to Solve Problems.	
Uncertainty and Its Effects. Gaining Insight. A Simulation's Lifetime.	
Unit – II	
Simulation: Models That Vary Over Time. : Discrete Event Simulation.	07 Hrs
Continuous Simulation.	
Queue Modeling and Simulation. : Analytical Solution, Queuing Models, Sequential	
Simulation, SimPack Queuing Implementation, Parallel Simulation.	
Unit -III	
Verification and Validation: Performing Verification and Validation, Verification and	07 Hrs
Validation Examples.	
Uses of Simulation: The Many Facets of Simulation. Experimentation Aspect of	
Simulation, Experience Aspect of Simulation, Examples of Uses of Simulation. Ethics in	
the Use of Simulation, Some Excuses to Avoid Simulation	
Unit –IV	
Modeling and Simulation: Real World - Examples	08 Hrs
Introduction, Transportation, Business M&S, Medical M&S, Social Science M&S.	
Unit –V	
The Future of Simulation: Introduction, A Brief and Selective History of Simulation,	07 Hrs
Convergent Simulations, Serious Games, Human-Simulator Interfaces, Computing	
Technology, The Role of Education in Simulation, The Future of Simulation.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Classify various simulation models and give practical examples for each category					
CO2:	Construct a model for a given set of data and motivate its validity					
CO3:	Generate and test random number varieties and apply them to develop simulation models					
CO4:	Analyze output data produced by a model and test validity of the model					

Refer	Reference Books							
1	Principles of Modeling and Simulation: A Multidisciplinary Approach, John A. Sokolowski, Catherine M. Banks, 2009, Wiley, ISBN: 978-0-470-28943-3							
2	Discrete-Event System Simulation", Jerry Bank, John S. Carson II, Barry L. Nelson, David M. Nicol , 5 th Edition, 2009, Pearson, ISBN-13: 978-0136062127							
3	System Modeling and Simulation: An Introduction, Frank L. Severance, 2001, John Wiley & Sons, ISBN-13: 978-0471496946							
4	Theory of Modeling and Simulation, Bernard P. Zeigler, Herbert Praehofer, Tag GonKim Academic Press, 2 nd Edition, 2000, ISBN-13: 978-0127784557							

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	1	1	2	2	-	-	-	-	1	1	
CO2	2	2	2	1	1	-	-	-	1	-	1	1	
CO3	2	2	3	2	-	-	-	-	1	1	1	2	
CO4	3	3	2	1	1	1	-	1	1	2	1	2	

	SUPPLY CHAIN MANAGEMENT (Group C: Professional Core Elective) (Theory)									
Cou	rse Code:16IS6C3	CIE Marks:100								
Cree	Credits: L:T:P:S:3:0:0:1 SEE Marks:100									
Hou	Hours: 36L SEE Duration: 03 Hrs									
Cou	rse Learning Objectives:									
1	Enable students understand the overview o	f Supply Chain Management								
2	Learn the basic concepts and key elements	of Supply Chain Management.								
3										
4	4 Enable students to design models in order to achieve efficiency in Supply Chain Management using various technologies.									

using various technologies.	
Unit-I	
Understanding the Supply Chain: What is Supply Chain? Historical perspective; Objective of Supply Chain; The Importance of supply Chain Decisions; Decisions Phases in a Supply Chain; Process Views of a Supply Chain; Examples of Supply Chains. Supply	07 Hrs
Chain Performance:	
Achieving Strategic Fit and Scope: Competitive and supply Chain Strategies; Achieving	
Strategic Fit; Expanding Strategic Scope; Obstacles to Achieving Strategic Fit. Supply	
Chain Drivers and Metrics: Impellers of Supply Chain; Drivers of Supply chain	
performance; A framework for structuring Drivers; Facilities; Inventory; Transportation;	
Information; Sourcing; Pricing; Obstacles to Achieving Strategic Fit.	
Unit – II	
Designing Distribution Networks and Applications to e-Business: The role of	09 Hrs
Distribution in Supply Chain; Factors influencing Distribution Network Design; Design	
Options for a Distribution Network; Indian Distribution Channels; Distribution Networks	
in Practice.	
Network Design in the Supply Chain: The Role of Network Design in the Supply Chain;	
Factors Influencing Network design decisions; A framework for Network design decisions;	
Models for Facility Location and Capacity Allocation; The role of information Technology	
in Network Design; Jaipur Rugs Networking Tradition with Modernity; Making Network	
Design Decisions in Practice; The impact of Uncertainty on Network Design.	
Unit -III	
Designing Global Supply Chain Networks: The impact of Globalization on Supply Chain	08 Hrs
Networks; The Off shoring Decision: Total Cost; Risk Management in Global Supply	
Chains; the Basic Aspects of Evaluating Global Supply Chain Design; Evaluating Network	
Design Decisions Using Decision Trees; Making Global Supply Chain Design Decisions	
Under uncertainty in Practice; Uncertainty in Global Supply Chain operations –An Indian	
Experience. Demand	
Demand Forecasting in a Supply Chain: The Role of Demand Forecasting in the Supply	
Chain; Characteristics of forecasts; Components of Forecast and forecasting methods;	
Basic approach to demand forecasting; Time-series Forecasting Methods; Measures of	
Forecast Error; The Role of information Technology in Forecasting; Risk Management in	
Forecasting; Forecasting in Practice.	
Unit –IV	
Managing Economies of Scale in a Supply Chain: Cycle Inventory: The role of Cycle	07 Hrs
Inventory in a Supply Chain; Estimating Cycle inventory-Related Costs in Practice;	
Economies of scale to exploit fixed costs; Economies of scale to exploit Quantity	
Discounts; Short-Term Discounting: Trade Promotions; Managing Multiechelon Cycle	
Inventory; Cycle Inventory Optimization in Indian Distribution Channels.	
Transportation in a Supply Chain: The role of transformation in a supply chain; Modes	
of transportation and their Performance Characteristics; Design options for a	
Transportation Network; Trade-offs in Transportation Design; Tailored Transportation;	
The Role of information Technology in Transportation; Risk Management in	
Transportation; Making Transportation Decisions in Practice; Transportation Network in	

R.V.College of Engineering-Bengaluru-59

Support of Indian Cooperative Endeavor-Milk Run for Milk.

Unit –V					
Information Technology in Supply Chain: The role of information Technology in a					
supply chain; The Supply Chain IT Framework; Customer Relationship Management;					
Internal Supply Chain Management; Supplier Relationship Management; The Transaction					
Management Foundation; The Future of IT in the Supply Chain; Risk Management in It;					
Supply Chain IT in Practice; IT System Selection Processes-Indian Approach and					
Experiences.					
Coordination in a Supply Chain: Lack of supply chain coordination and the bullwhip					
effect; Effect of lack of coordination on performance; Obstacles to coordination in a supply					
chain; Managerial Levers to achieve coordination; Building strategic partnerships and trust					
within a supply chain; Continuous Replenishment and Vendor-Managed Inventories;					
Collaborative Planning, Forecasting, and Replenishment (CPFR); The Role of IT in					
Coordination; Achieving Coordination in Practice; coordination in Supply Chains-					
Multiechelon Models.					

Course Outcomes: After completing the course, the students will be able to								
Comprehend the Supply Chain Processes in industries.								
	CO2: Demonstrate the impact of various uncertainties on various Supply Chain D							
	CO3: Examine and analyse the case studies related to Supply Chain Management.							
	CO4: Design, analyse models considering various factors for an efficient Supply							
	Management using various technologies.							
	CO3: Examine and analyse the case studies related to Supply Chain Management.CO4: Design, analyse models considering various factors for an efficient Supply							

Refere	Reference Books								
1	Supply Chain Management, Chopra & Meindl, 4th Edition, 2010, Pearson Education –								
1	Addison Wesley Longman, ISBN-13: 978-0738206677								
	Designing and Managing the Supply Chain Concepts, Strategies and Case Studies, David								
2	Simchi Levi, Philip Kaminsky & Edith Simchi Levi, 3rd Edition, 2008, Tata McGraw Hill,								
	ISBN-13: 978-1935182399								
2	Supply Chain Management Theories and Practices, R P Mohanty, S G Deshmukh, Bizmantra,								
3	2005, ISBN-0957597118								
	Logistics and Supply Chain Management, M Martin Christopher, 4th Edition, 2011, Pearson								
4	Education, ISBN-13: 978-1493909827								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	2	2	-	-	3	2	-	1	1	-	-	
CO2	2	-	2	2	2	3	2	2	1	1	-	-	
CO3	2	3	2	2	2	-	-	2	1	1	-	-	
CO4	2	-	-	2	3	-	-	2	1	1	-	-	

Low-1 Medium-2 High-3 Information Science & Engineering

	MOBILE APPLICATION DEVELOPMENT (Group C: Professional Core Elective) (Theory)									
Cou	Course Code: 16IS6C4 CIE Marks:100									
	Credits: L:T:P:S:3:0:0:1 SEE Marks:100									
Hou	Hours: 36L SEE Duration(Theory): 03 H									
Cou	rse Learning Objectives:									
1	1 Comprehend the knowledge on essentials of android application development.									
2	Demonstrate the basic and ad	vanced features of android technology.								
3										
4	Create. debug and publish inr	ovative mobile applications using android Platform.								

Unit-I	
Introduction to mobile communication and computing: Introduction to mobile computing, Novel applications, limitations and GSM architecture, LTE vs. VoLTE. Smart phone operating systems and smart phones applications. Introduction to Android, Installing Android Studio, creating an Android app project, deploying the app to the emulator and a device. UI Design: Building a layout with UI elements, Layouts, Views and Resources, Text and Scrolling Views. Activities and Intents, The Activity Lifecycle, Managing State, Activities and Implicit Intents, Testing, debugging, and using support libraries, The Android Studio Debugger, Testing android app, The Android Support Library. Unit – II	07 Hrs
User experience : User interaction, User Input Controls, Menus, Screen Navigation, Recycler View, Delightful user experience, Drawables, Styles, and Themes, Material Design, Providing Resources for Adaptive Layouts, Testing app UI, Testing the User Interface	07 Hrs
Unit -III	
Working in the background: Background Tasks, AsyncTask and Async Task Loader, Connect to the Internet, Broadcast Receivers, and Services. Triggering, scheduling and optimizing background tasks – Notifications, Scheduling Alarms, and Transferring Data Efficiently.	08 Hrs
Unit –IV	
All about data: Preferences and Settings, Storing Data, Shared Preferences, App Settings. Storing data using SQLite - SQLite Primer, SQLite Database. Sharing data with content providers. Loading data using loaders. Using Selection Widgets and Debugging, Displaying and Fetching Information, Using Dialogs and Fragments, Advanced Android Programming: Internet, Entertainment, and Services, Implementing drawing and animations. Displaying web pages and maps, communicating with SMS and emails. Creating and consuming services - Location based services, Sensors.	07 Hrs
Unit –V	
Information Technology in Supply Chain: The role of information Technology in a supply chain; The Supply Chain IT Framework; Customer Relationship Management; Internal Supply Chain Management; Supplier Relationship Management; The Transaction Management Foundation; The Future of IT in the Supply Chain; Risk Management in It; Supply Chain IT in Practice; IT System Selection Processes-Indian Approach and Experiences. Coordination in a Supply Chain: Lack of supply chain coordination and the bullwhip effect; Effect of lack of coordination on performance; Obstacles to coordination in a supply	07 Hrs
chain; Managerial Levers to achieve coordination; Building strategic partnerships and trust within a supply chain; Continuous Replenishment and Vendor-Managed Inventories; Collaborative Planning, Forecasting, and Replenishment (CPFR); The Role of IT in Coordination; Achieving Coordination in Practice; coordination in Supply Chains- Multiechelon Models.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Comprehend the basic features of android platform and the application development process.								
	Acquire familiarity with basic building blocks of android application and its architecture.								
CO2:	Apply and explore the basic framework, usage of SDK to build android applications								
	incorporating android features in developing mobile applications.								
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced								
	android technologies, handle Security issues, rich graphics interfaces, using debugging and								
	troubleshooting Tools.								
CO4:	Create innovative apps, understand the economics and features of the app marketplace by								
	offering the app for download.								

1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition, 2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978- 1118717370
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1 st Edition, 2012, ISBN-13: 9788126525898
5	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1 st Edition, 2011, ISBN-13: 978-1-4302-3297-1
6	Android Developer Training - https://developers.google.com/training/android/ Android Testing Support Library - https://google.github.io/android-testing-support-library/

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	CO/PO PO PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
	1											
CO1	2	-	-	-	3	-	-	-	-	-	-	2
CO2	3	-	-	-	3	-	-	-	-	-	1	2
CO3	-	3	3	-	3	-	1	-	-	2	1	3
CO4	3	3	3	1	3	2	1	2	2	1	1	3

	DATA STORAGE TECHNOLOGIES AND NETWORKING (Group C: Professional Core Elective) (Theory)							
Cou	Course Code:16IS6C5 CIE Marks: 100							
Hrs/	Week: L:T:P:S: 3:0:0:1		SEE Marks: 100					
Cred	lits:36L		SEE Duration: 03 Hrs					
Cou	rse Learning Objectives:							
1	Interpret the storage architectures and demonstrate the logical and physical components of a							
	storage infrastructure including	ng storage subsystems, RAID ar	nd Intelligent storage systems					
2	Analyze storage networking technologies such as FC-SAN, NAS, IP-SAN, data archival							
	solutions and virtualization technologies.							
3	3 Apply and articulate business continuity solutions including backup technologies, local and							
	remote replication solutions.							
4	Identify security parameters f	for managing and monitoring sto	orage infrastructure					
4	remote replication solutions. Identify security parameters for managing and monitoring storage infrastructure							

Unit-I

Unit-1	
Introduction to Information Storage: Information Storage, Evolution of Storage	07 Hrs
Architecture, Data center Infrastructure, Virtualization and cloud computing. Data Center	
Environment: Application, Database Management System(DBMS), Host(compute),	
Connectivity, Storage, Disk Drive Components, Disk Drive Performance, Host Access to	
Data, Direct-Attached Storage, Storage Design Based On Application, Disk Native	
Command Queuing, Introduction to Flash Drives, Concept in Practice: VMware ESXi.	
Data Protection: RAID: RAID Implementation Methods, RAID Array Components,	
RAID Techniques, RAID Levels, RAID Impact on Disk Performance, RAID Comparison,	
Hot Spares.	
Unit – II	
Intelligent Storage Systems: Components of an Intelligent Storage System, Storage	07 Hrs
Provisioning, Types of intelligent Storage Systems, Concepts in Practice: EMC Symmetrix	
and VNX. Fibre Channel Storage Area Networks: Fiber Channel: Overview, The SAN	
and Its Evolution, Components of FC SAN, FC Connectivity, Switched Fabric Ports, Fibre	
Channel Architecture, fabric Services, Switched fabric Login Types, Zoning, FC SAN	
Topologies, Virtualization in SAN, Concepts in Practice: EMC Connectrix and EMC	
VPLEX.IP SAN and FcoE: iSCSI, FCIP, FcoE	
Unit -III	
Network-Attached Storage: General-purpose Servers versus NAS Devices, benefits of	07 Hrs
NAS, File Systems and network File Sharing. Components of NAS, NAS I/O Operation,	
NAS Implementations, NAS File-Sharing Protocols, factors Affecting NAS Performance,	
File-Level Virtualization, Concepts in Practice: EMC Isilon and EMC VNX gateway.	
Object-Based and unified Storage: Object-Based Storage Devices, Content-Addressed	
Storage, CAS use Cases, unified Storage, Concepts in Practice: EMC atoms, EMC VNX,	
and EMC centera. Introduction to Business Continuity. Information Availability, BC	
Terminology, BC Planning life Cycle, failure Analysis, Business Impact Analysis, BC	
Technology solutions.	
Unit –IV	
Backup and Archive : Backup Purpose, Backup Considerations, Backup Granularity,	07 Hrs
Recovery Considerations, Backup Methods, Backup Architecture, Backup and Restore	0. 1110
Operation, Backup Topologies, Backup in NAS Environments, Backup Targets, Data	
Dedupulication for Backup, Backup in Virtualized Environments, Data Archive, Archiving	
Solution Architecture, Concepts in Practice :EMC Networker, EMC Avamar, and EMC	
Data domain. Local Replication: Replication Terminology, Uses of Local Replicas,	
Replica Consistency, Local Replication Technologies, Tracking Changes to Source and	
Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication	
in Virtualized Environment, Concepts in Practice: EMC TimeFinder. Remote Replication :	
Modes of Remote Replication, Remote Replication Technologies, Three-Site Replication,	
Data Migration Solutions, Remote Replication and Migration in a Virtualized	
Environment, Concepts in Practice : EMC SRDF, EMC MirrorView, and EMC	
Environment, Concepts in Fractice. ENIC SKDF, ENIC MINITOLVIEW, and ENIC	

Information Science & Engineering

RecoverPoint

Recovertonit	
Unit –V	
Securing the Storage Infrastructure: Information Security Framework, Risk Triad,	08 Hrs
Storage Security Domains, Security implementations in Storage Networking, Securing	
Storage Infrastructure in Virtualized and Cloud Environments, Concepts in practice: RSA	
and VMware Security Products. Managing the Storage Infrastructure: Monitoring the	
Storage Infrastructure, Storage Infrastructure Management Activities, Storage	
Infrastructure Management Challenges, Developing an Ideal Solution, Information	
Lifecycle Management, Storage Tiering, Concepts in Practice: EMC Infrastructure.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Identify the decisive role and key challenges in managing information and analyze different						
	storage networking and virtualization technologies.						
CO2:	Analyze the SAN and NAS deployment for file and data sharing for a collaborative						
	development environment of organizations.						
CO3:	Apply backup, recovery, and archival solutions for business critical data.						
CO4:	Evaluate various replication solutions to meet different business continuity needs and address						
	security concerns to perform monitoring and management of information infrastructure.						

Reference Books

Refere	LICE DOOKS
1	EMC ² : Information Storage and Management, EMC Education Services, 2 nd Edition, 2013, Willey India, ISBN-13: 978-1118094839
2	Storage Networks: The Complete Reference, Robert Spalding, 1 st Edition, 2003, Tata McGraw Hill India, ISBN: 9780070532922
3	Storage Networks Explained, Ulf Troppens, Rainer Erkens, Wolfgang Muller-Friedt, Rainer Wolafka, Nils Haustein, 2 nd Edition, 2009, Wiley India, ISBN: 978-0-470-74143-6
4	Building Storage Networks, Marc Farley, 2 nd Edition, 2001, Tata McGraw Hill India, ISBN- 13: 978-0070447455

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	-	-	-	-
CO2	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	2	-	-	2	-	-	-	-	-	-	-
CO4	1	2	-	-	2	-	-	-	-	-	-	-

	MACHINE LEARNING AND PATTERN RECOGNITION (Group D: Professional Core Elective) (Theory)						
Cour	se Code:16IS6D1	CIE Marks:100					
Cred	lits: L:T:P:S:4:0:0:0	SEE Marks:100					
Hou	rs:44L	SEE Duration(Theory): 03 Hrs					
Cour	se Learning Objectives:						
1	Introduce students to the basic concepts and techniques of Machine Learning.						
2	Develop skills of using recent machine learning software for solving practical problems.						
3	Instigate the student to variou	s Pattern recognition classification techniques.					

4 Bring out structural pattern recognition and feature extraction techniques

Unit-I					
Introduction, Concept Learning and Decision Trees: Learning Problems – Designing	07 Hrs				
Learning systems, Perspectives and Issues - Concept Learning - Version Spaces and					
Candidate Elimination Algorithm – Decision Tree learning – Representation – Algorithm –					
Heuristic Space Search in Decision Tree learning.					
Unit – II					
Representation:	07 Hrs				
Definition of PR, Applications, Datasets for PR, Different paradigms for PR, Data					
structures for PR, Representation of clusters, proximity measures, size of patterns,					
Abstraction of Data set, Feature extraction, Feature selection, Evaluation					
Unit -III					
Nearest Neighbor based classifiers & Bayes classifier: Nearest neighbor algorithm,	07 Hrs				
variants of NN algorithms, use of NN for transaction databases, efficient algorithms, Data					
reduction, prototype selection, Bayes theorem, minimum error rate classifier, estimation of					
probabilities, estimation of probabilities, comparison with NNC, Naive Bayes classifier,					
Basyesian belief network					
Unit –IV					
Instant Based Learning And Learning Set of Rules: K- Nearest Neighbor Learning –	07 Hrs				
Locally Weighted Regression - Radial Basis Functions - Case-Based Reasoning -					
Sequential Covering Algorithms – Learning Rule Sets – Learning First Order Rules –					
Learning Sets of First Order Rules - Induction as Inverted Deduction - Inverting					
Resolution.					
Unit –V					
Analytical Learning and Reinforced Learning: Explanation Based Learning – Inductive-	08 Hrs				
Analytical Approaches - FOCL Algorithm - Reinforcement Learning - Task .					
Clustering: Hierarchical (Agglomerative, single/complete/average linkage, wards,					
Partitional (Forgy's, k-means, Iso-data), clustering large data sets, examples					
Course Outcomes: After completing the course, the students will be able to					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Identify and apply the appropriate machine learning technique to classification, pattern							
	recognition, optimization and decision problems.							
CO2:	Apply different estimation techniques for parameter estimation to solve real-world problems.							
CO3:	Analyze the similarity measures and design the relevant model.							
CO4:	Evaluate and perform diagnoses of any machine learning system.							

Refere	ence Books
1	Machine Learning, Tom M. Mitchell, Indian Edition, 2013, McGraw-Hill Education, ISBN:978-1-25-909695-2
2	Pattern Recognition (An Introduction), V SusheelaDevi, M Narsimha Murthy, 2011, Universities Press, ISBN : 978-81-7371-725-3
3	Pattern Recognition and Machine Learning, Christopher M Bishop, Springer, Reprint 2013, ISBN : 978-81-322-0906-5
4	Introduction to Machine Learning, Ethem Alpaydin, 3 rd Edition, 2015, PHI Learning Pvt. Ltd. ISBN: 978-0262-02818-9

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	I											
CO1	3	3	-	2	1	-	-	-	1	-	-	1
CO2	2	2	-	1	1	-	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	-	2
CO4	1	2	2	3	1	-	-	-	-	-	-	1

WIRELESS SENSOR NETWORKS (Group D: Professional Core Elective) (Theory)								
Cou	Course Code:16IS6D2 CIE Marks: 100							
Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100								
Hours:44L SEE Duration: 03								
Cou	rse Learning Objectives:							
1	1 Interpret the basics of Wireless sensor networks and enabling technologies.							
2	2 Apply knowledge of wireless sensor networks to various application areas.							
3								
4	Formulate and solve problem	s creatively.						

Unit-I	
Overview of Wireless Sensor Networks: Challenges for Wireless Sensor Networks,	08 Hrs
Enabling Technologies For Wireless Sensor Networks.	
Unit – II	
Architectures: Single-Node Architecture - Hardware Components, Energy Consumption	09 Hrs
of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture -	
Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.	
Unit -III	
Networking Sensors: Physical Layer and Transceiver Design Considerations, MAC	09 Hrs
Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup	
Concepts - S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts, Address	
and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-	
Efficient Routing, Geographic Routing.	
Unit –IV	
Infrastructure Establishment: Topology Control, Clustering, Time Synchronization,	09 Hrs
Localization and Positioning, Sensor Tasking and Control	
Unit –V	
Sensor Network Platforms And Tools: Sensor Node Hardware – Berkeley Motes,	09 Hrs
Programming Challenges, Node-level software platforms, Node-level Simulators, State-	
centric programming.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify and design the various components of a Wireless Sensor networks.					
CO2:	Apply various wireless sensor network routing protocols and clustering technology which is					
	used for remote sensor networks					
CO3:	Analyze the programming challenges and Design an efficient sensor networks.					
CO4:	Build a wireless sensor network using the available simulation tools.					

1	Protocols And Architectures for Wireless Sensor Networks, Holger Karl & Andreas Willig, 2014, John Wiley, ISBN:0470095105
2	Wireless Sensor Networks- An Information Processing Approach, Feng Zhao & Leonidas J. Guibas, Elsevier, 2010, ISBN: 9788122430752
3	Wireless Sensor Networks- Technology, Protocols, And Applications, Kazem Sohraby, Daniel Minoli, & Taieb Znati, , 2010, John Wiley, ISBN 978-0-471-74300-2. 1
4	Wireless Sensor Network Designs, Anna Hac, 2014, John Wiley, ISBN 10: 0470867361

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1	3	3	2	2	-	-	-	-	-	3	-	-
CO2	3	2	2	3	-	-	-	-	-	3	-	-
CO3	3	3	3	3	2	-	-	-	-	-	-	-
CO4	3	3	3	3	3	-	-	-	-	3	2	-

	OGIC AND GENETIC ALGORITHM	
	oup D: Professional Core Elective)	
	(Theory)	
Course Code:16IS6D3	CIE Marks: 100	
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100	
Hours:44L	SEE Duration: 03 Hrs	
Course Learning Objectives:		
	t of fuzziness involved in various systems.	
	ce with emphasis on their use in the design of intelligent s	
^	evolutionary computing paradigm known as genetic algorithms	rithms
and its application to enginee4 Foster competence in recognition	izing the feasibility and applicability of the design and	
	systems (that employ fuzzy logic, genetic algorithm) for	specific
application areas.	systems (mat employ fuzzy logic, genetic argoritim) for	speeme
upprioution aroust		
	Unit-I	
Fuzzy Set Theory: Introduction, T	The Case for Imprecision, The Utility of Fuzzy Systems,	08 Hrs
	certainty and Information, Fuzzy Sets and Membership,	
Chance Versus Fuzziness, Fuzzy	Sets, Fuzzy Set Operations, Properties of Fuzzy Sets,	
Alternative Fuzzy Set Operations		
	Unit – II	
	s, Cardinality of Fuzzy Relations, Operations on Fuzzy	09 Hrs
· · · ·	Relations, Fuzzy Cartesian Product and Composition,	
	ons, Fuzzy Tolerance and Equivalence Relations, Cosine	
Amplitude, Max – Min Method.	TT '4 TT	
		00.11
	ions, Fuzzification, and Defuzzification : ction, Various Forms, Fuzzification, Defuzzification to	09 Hrs
	Relations, Defuzzification to Scalars, Approximate	
Reasoning, Natural Language, Ling		
Fuzzy (Rule-Based) Systems.	subte fieldes	
	Unit –IV	
Genetic Algorithm : Introduction	on to Genetic Algorithm, working cycle of Genetic	09 Hrs
-	Algorithm, Genetic Algorithm – parameters setting,	
Constraints handling in Genetic	Algorithm, Advantages & disadvantages of genetic	
Algorithm.		
	Unit –V	
	thm, Real coded Genetic Algorithm, Micro Genetic	09 Hrs
Algorithm, Visualized interactive	e Genetic Algorithm, scheduling Genetic Algorithm,	09 Hrs
Algorithm, Visualized interactive		09 Hrs

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify and describe soft computing techniques and their roles in building intelligent					
	machines					
CO2:	Recognize the feasibility of applying a soft computing methodology for a particular problem					
CO3:	Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems					
CO4:	Apply genetic algorithms to combinatorial optimization problems					

Refere	Reference Books					
1	Fuzzy Logic with Engineering Applications, Timothy J Ross, 3 rd Edition, 2010, Wiley, 9780470743768					
2	Soft computing fundamentals & Applications, D K Pratihar, 2015, Alpha Science International Limited, ISBN :9781783322053					
3	Genetic Algorithms ; Search, optimization and Machine Learning, Davis E Goldberg, 1989, Addison Wesley, ISBN : 9780201157673					
4	Neural Networks, Fuzzy Logic and Genetic Algorithms, Rajasekaran and G A V Pai, 4 th Edition, 2003, PHI, ISBN - 81-203-2186-3					

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1	2	3	-	1	2	-	-	-	-	-	-	-
CO2	1	1	-	-	-	-	-	-	-	1	-	-
CO3	2	1	-	-	-	-	-	-	-	1	-	-
CO4	2	1	-	-	-	-	-	-	-	-	-	-

	ADVANCED COMPILER DESIGN (Group D: Professional Core Elective) (Theory)					
Cou	rse Code:16IS6D4	CIE Marks: 100				
Crec	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100				
Hou	Hours:44L SEE Duration: 03 Hrs					
Cou	Course Learning Objectives:					
1	Understand the major concept areas of language translation and compiler design.					
2	2 Enhance their knowledge in various phases of compiler ant its use, code optimization					
	techniques, machine code generation, and use of symbol table.					
3	3 Extend the knowledge of parser by parsing LL parser and LR parser.					
4	Gain practical programming skills necessary for constructing a compiler.					

Unit-I

Cint-1	
Introduction and Syntax-Directed Translation: Language processors; The structure of a	09 Hrs
Compiler; Syntax-directed definitions; Evaluation orders for SDDs; Applications of	
syntax-directed translation; Syntax-directed translation schemes; Implementing L-	
attributed SDD's	
Unit – II	
Intermediate Code Generation : Variants of syntax trees; Three-address code; Types and	09 Hrs
declarations, Translation of expressions; Control flow; Back patching; Switch statements,	
Intermediate code for procedures.	
Unit -III	
Run-Time Environments: Storage Organization; Stack allocation of space, Access to	09 Hrs
non-local data on the stack, Introduction to Trace-Based Collection, Short-Pause Garbage	
Collection	
Unit –IV	
Machine Independent Optimizations: Leaders, Basic blocks and flow graphs, Principle	09 Hrs
sources of optimization; Introduction to data-flow analysis; Partial redundancy elimination;	
Loops in flow graphs.	
Unit –V	
Code Generation: Issues in the design of Code Generator; The Target Language;	08 Hrs
Addresses in the target code; A Simple Code Generator, Peephole Optimization, Register	
Allocation and Assignment, Instruction selection by tree rewriting	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Describe working of each phase in the development of a compiler				
CO2:	Apply syntax directed translation rules to generated intermediate code				
CO3:	Design a compiler for a simple customized high level language				
CO4:	Generation of basic block and flow graphs for intermediate code				

Refere	ence Books
1	Compilers- Principles, Techniques and Tools, Alfred V Aho, Monica S.Lam, Ravi Sethi, Jeffrey D Ullman, 2 nd Edition, 2007, Pearson Education, ISBN: 978-8-13172-101-8
-	Jeffrey D Ullman, 2 nd Edition, 2007, Pearson Education, ISBN: 978-8-13172-101-8
2	Compiler Construction Principles & Practice, Kenneth C Louden, Cengage Learning, ISBN-
2	10: 0534939724 ISBN-13: 978-0534939724,1997
2	Crafting a Compiler with C, Pearson Education, Charles N. Fischer, Richard J. leBlanc, Jr.
3	ISBN-13: 978-0805321661 ISBN-10: 0805321667,1991
4	Modern Compiler Implementation in C, Andrew W Apple, Cambridge University Press,
4	ISBN 0-521-60765-5,1997

Γ

1

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	2	-	-	-	-	-	-	-	-	-
CO3	3	3	3	2	2	-	-	-	1	-	-	2
CO4	3	3	2	2	-	-	-	-	-	-	-	-

		TEM PERFORMANCE ANALYSIS : Professional Core Elective) (Theory)
Cou	rse Code: 16IS6D5	CIE Marks: 100
Cred	lits: L:T:P:S:4:0:0:0	SEE Marks: 100
Hou	rs: 45L	SEE Duration(Theory): 03 Hrs
Cou	rse Learning Objectives:	
1	Comprehend the need for performa	nce evaluation and its systematic approach.
2	Explore various types of monitorin	g and capacity planning techniques.
3	Formulate experiments with variou	s levels and factors.
4	Demonstrate working of various qu	eues, their representations and rules.

Unit-I	
Introduction: The art of Performance Evaluation, Common mistakes in Performance	09 Hrs
Evaluation, A systematic approach to Performance Evaluation, Selecting an evaluation	
technique.	1
Metrics of Performance: What is a performance metric? Characteristics of a good	1
performance metric, Processor and system performance metrics, Other types of	
performance metrics, Speedup and relative change, Means versus ends metrics, Summary.	
Unit – II	
Average Performance and Variability: Why mean values? Indices of central tendency,	09 Hrs
Other types of means, Quantifying variability, Summary.	
Errors in Experimental Measurements: Accuracy, precision, and resolution, Sources of	
errors, A model of errors, Quantifying errors.	
Unit -III	
Comparing Alternatives: Comparing two alternatives, Comparing more than two	09 Hrs
alternatives, Summary, For further reading, Exercises.	
Measurement Tools and Techniques: Events and measurement strategies, Interval timers,	
Program profiling, Event tracing, Indirect and ad hoc measurements, Perturbations due to	
measuring.	
Unit –IV	
Benchmark Programs: Types of benchmark programs, benchmark strategies, example of	09 Hrs
benchmark programs, summary.	
Linear regression models: Least squares minimization, confidence intervals for regression	
parameters, correlation, multiple linear regression, verifying linearity, nonlinear models,	
summary.	
Unit –V	
The design of experiments: Types of experiments, terminology, two factor experiments,	09 Hrs
generalized m-factor experiments, n2 ^m experiments, summary.	
Queuing Analysis: Queuing Network models, basic assumptions and notation, Operational	
analysis, stochastic analysis, summary.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the need for performance evaluation and its systematic approach.
CO2:	Apply performance measurement techniques to evaluate computer systems.
CO3:	Design and analyse various performance evaluation techniques.
CO4:	Compare and evaluate performance of computer systems using sophisticated models.

Refer	ence Books
1	Measuring Computer Performance: A Practitioner's Guide, David J. Lilja, Cambridge
1	University Press, 2005 ISBN: 9781107439863
2	The Art of Computer Systems Performance Analysis, Raj Jain, 2008, John Wiley ISBN:
2	8126519053
2	Probability and Statistics with Reliability, Queuing and Computer Science Applications,
3	Trivedi K S, Kishor S. Trivedi, 2 nd Edition, 2008, John Wiley, ISBN: 978-0-471-33341-8
4	Research Methodology, R. Panneerselvam, 2004, Prentice Hall;, ISBN - 9788120324527

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O MAI	PPING					
CO/PO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1	2	3	2	1	2	-	-	-	-	-	-	-
CO2	1	2	1	-	-	-	-	-	-	1	-	-
CO3	2	2	-	-	-	-	-	-	-	1	-	-
CO4	2	1	-	-	-	-	-	-	-	-	-	-

		Semester: VI	
	В	IOINSPIRED ENGINEERING	
		(Group E: Global Elective)	
	rse Code: 16G6E01	CIE Marks: 100	
	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100	
	rs: 36L	SEE Duration: 03Hrs	
	rse Learning Objectives:		
1		udents with basic biological concepts	
2	Utilize the similarities note designer.	ed in nature for a particular problem to bring inspirati	on to the
3	Explain applications such a their bio logical analogs	s smart structures, self-healing materials, and robotics	relative to
4	To gain an understanding the	hat the design principles from nature can be translated an appreciation for how biological systems can be engi	
		Unit-I	
Cell	types- Microbial, plant, ani	ecules-Proteins, carbohydrates, lipids and Nucleic acids. mal.Organ system- Circulatory, digestive, respiratory, se organs. Plant process- Photosynthesis.	06 Hrs
		Unit – II	
inno	votion. Mimicking and inspi		
struc Mate fluor	ture and tools: Biological c erials and processes in biology		
struc Mate fluor bene	eture and tools: Biological c erials and processes in biology rescent materials in fire flies. I ficiary for biomimetic technology	clock, honey comb as strong light weight structure. Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as bgies. Unit -III	
struc Mate fluor bene Biolo High comp contr	eture and tools: Biological c erials and processes in biology rescent materials in fire flies. I ficiary for biomimetic technology ogical materials in Engin ogical and synthetic materials: a performance fibers from nature posites from nature. Shark sl	clock, honey comb as strong light weight structure. - Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as bogies. Unit -III teering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to	08 Hrs
struc Mate fluor bene Biolo High comp contr mech	eture and tools: Biological cerials and processes in biology rescent materials in fire flies. If ficiary for biomimetic technology ogical materials in Engin ogical and synthetic materials: a performance fibers from nature posites from nature. Shark sl rol of fluid dynamics, Musch nanical engineering.	Block, honey comb as strong light weight structure. - Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV	08 Hrs
struc Mate fluor bene Biolo High comp contr mech Biolo Medi	ture and tools: Biological of erials and processes in biology rescent materials in fire flies. If ficiary for biomimetic technology ogical materials in Engin ogical and synthetic materials: a performance fibers from nature posites from nature. Shark sl rol of fluid dynamics, Musch nanical engineering.	Block, honey comb as strong light weight structure. /- Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- ure, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV oroducts: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super Sect. Bionic leaf and Photovoltaic cells.	
struc Mate fluor bene Biole High contr mech Biole medi hydr	ture and tools: Biological cerials and processes in biology rescent materials in fire flies. If ficiary for biomimetic technology ogical materials in Engine ogical and synthetic materials: a performance fibers from nature posites from nature. Shark sl rol of fluid dynamics, Musch nanical engineering.	Block, honey comb as strong light weight structure. Spider web, honey bee as a multi-material producer, Bird and insect as source of inspiring flight. Robotics as ogies. Unit -III eering mechanisms: Introduction, Comparison of Silk processing and assembly by insects and spiders- are, Seashells- High performance organic and inorganic kin- Biological approaches to efficient swimming via les- Efficient biological conversion from chemical to Unit –IV oroducts: Artificial neural networks, genetic algorithms, as Bioinspirations: Energy efficiency, Biomimetic super	08 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Remember and explain the fundamentals of Biology
CO2:	Describe the basic principles of design in biological systems.
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design
	problems
CO4:	Create engineered solutions to customer needs utilizing a variety of bio-inspiration
	techniques.

Refer	ence Books
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: <u>8123928726</u> / ISBN 13: <u>9788123928722</u>
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press, ISBN: 9780849331633
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version. Wiley John and Sons, 2012. ISBN: 1118092449.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3 : Medium-2 : Low-1

	Semes	ter: VI
	GREEN TEO	CHNOLOGY
	(Group E: G	lobal Elective)
Cour	rse Code: 16G6E02	CIE Marks: 100
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100
Hou	rs: 36L	SEE Duration: 03Hrs
Cour	se Learning Objectives:	
1	Learn the tools of green technology	
2	Know various forms of renewable energy	
3	Study the environmental consequences of en-	ergy conversation
4	Understand energy audits and residential ene	rgy audit
5	Understand the application of green technological	gy in various industries

Unit-I	
Current Practices and Future Sustainability: Need for green technology, fundamentals	07 Hrs
of energy and its impact on society and the environment, the mechanics, advantages and	
disadvantages of renewable energy sources, energy conservation and audits, zero waste	
technology, life cycle assessment, extended product responsibility, concept of atom	
economy, tools of Green technology	
Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner	
production, cleaner production technologies.	
Unit – II	
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's	08 Hrs
surface, solar radiation geometry, solar radiation measurements	
Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar	
heating of buildings), space cooling (or solar cooling of building), solar thermal electric	
conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar	
cooking	
Geothermal Energy: Resource identification and development, geothermal power	
generation systems, geothermal power plants case studies and environmental impact	
assessment.	
Unit -III	
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet	07 Hrs
Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas	
plants (KVIC model & Janata model), selection of site for biogas plant	
Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal	
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification	
process, applications of the gasifiers.	
Unit –IV	
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion	07 Hrs
system), classification of WEC systems, types of wind machines (Wind Energy Collectors),	
horizontal-axial machines and vertical axis machines.	
Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC),	
methods of ocean thermal electric power generation, open cycle OTEC system, the closed	
or Anderson, OTEC cycle, Hybrid cycle	
Energy from Tides: Basic principles of tidal power, components of tidal power plants,	
operation methods of utilization of tidal energy, advantages and limitations of tidal power	
generation	

Unit –VHydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for
motor vehicle, safety and management, hydrogen technology development in India07 Hrs

Application of Green Technology: Electronic waste management, bioprocesses, green composite materials, green construction technology Sustainability of industrial waste management: Case studies on cement industry, iron

and steel industry, petroleum sectors, marble and granite industry, sugar industry

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Recall the fundamentals of various forms of energy
CO2:	Explain the principles of various forms of renewable energy
CO3:	Apply the concept of zero waste, atom economy for waste management
CO4:	Create a waste management plan incorporating tools of green technology in various industries

Refere	Reference Books				
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738				
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339				
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744				
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VI				
	SOLID WASTE MANAGEMENT				
	(Group E: Global Elective)				
Cou	rse Code:16G6E03	CIE Marks: 100			
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hou	rs: 36L	SEE Duration: 03Hrs			
Cou	Course Learning Objectives: The students will be able to				
1	Impart the knowledge of present methods of solid waste management system and to analyze the				
1	drawbacks.				
2	2 Understand various waste management statutory rules.				
3	Analyze different elements of solid waste management, design and develop recycling options for				
3	⁵ biodegradable waste by composting.				
4	Identify hazardous waste, e-waste, plastic waste and bio medical waste and their management systems.				

	UNIT-I	
was pyro man Sou gene Coll syst	 roduction: Land Pollution. Scope and importance of solid waste management. Present solid te disposal methods. Merits and demerits of open dumping, feeding to hogs, incineration, olysis, composting, sanitary landfill. Definition and functional elements of solid waste agement. rces: Sources of Solid waste, types of solid waste, composition of municipal solid waste, eration rate, Numerical Problems. lection and transportation of municipal solid waste: Collection of solid waste - services and ems, Municipal Solid waste (Management and Handling) 2000 rules with 2016 amendments. 	08 Hrs
Site	visit to collection system. UNIT-II	
Ver	nposting Aerobic and anaerobic composting - process description, process microbiology, micomposting, Site visit to compost plant, Numerical problems.	08 Hrs
occi	itary land filling : Definition, advantages and disadvantages, site selection, methods, reaction urring in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site to landfill site.	
	UNIT-III	
haza	tardous waste management : Definitions, Identification of hazardous waste, Classification of ardous waste, onsite storage, collection, transfer and transport, processing, disposal, hazardous te (Management and handling) rules 2008 with amendments. Site visit to hazardous landfill	06 Hrs
	UNIT-IV	
disp ame	medical waste management: Classification of bio medical waste, collection, transportation, osal of bio medical waste, Bio medical waste (Management and Handling) rules 1998 with ndments. Site visit to hospital to see the collection and transportation system and visit to nedical waste incineration plant.	06 Hrs
	UNIT-V	
goo 201 plas ame	aste management : Definition, Components, Materials used in manufacturing electronic ds, Recycling and recovery integrated approach. E- waste (management and handling) rules 1.Site visit to e- waste processing facility. Plastic waste management : Manufacturing of tic with norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with ndments.	06 Hrs
Cou	rse Outcomes: After completing the course, the students will be able to	
1	Understand the existing solid waste management system and to identify their drawbacks.	
2	Analyze drawbacks in the present system and provide recycling and disposal options for ea type of waste.	
3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific manageme system.	
4	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municip waste management as per the rules laid by Ministry of Environment & Forest.	bal
- 0		_

Re	ference Books
1.	Integrated Solid Waste Management : Engineering principles and management issues George
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous,
	Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.
3.	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC
	Publication, 2009, ISBN 9780854041121
4.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
5.	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

S	emester :VI			
INTRODUCTION TO WEB PROGRAMMING				
(Group E : Global Elective)				
Course Code:16G6E04	CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hours: 36L	SEE Duration: 03 Hrs			

1 '0111				
	rse Learning Objectives: The students will be able to			
1	Understand the basic concepts used in web programming.			
2	Learn the definitions and syntax of different web technologies.			
3				
4	Design and develop web pages which are quick, easy and well-presented using different			
-	techniques such as CSS,XML and JavaScripts.			
	UNIT-I			
	oduction to Web Concepts	07 Hrs		
	lamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and			
	ks, divisions and centering, quotations, preformatted text, lists, horizontal rules,			
	k-level elements, text-level elements.XHTML - 1: Internet, WWW, Web Browsers			
	Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox.			
	TML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext			
Link	s.XHTML (continued): Lists, Tables, Forms, Frames.			
<u> </u>	UNIT-II	0.0 7-		
	cading Style Sheets (CSS):	09 Hrs		
	duction, Levels of style sheets, Style specification formats, Selector forms, Property			
	e forms, Font properties, List properties, Color, Alignment of text, The box model,			
	cground images, The and <div> tags, Conflict resolution.</div>			
	Basics of JavaScript:			
	rview of JavaScript; Object orientation and JavaScript; General syntactic			
	acteristics; Primitives, operations, and expressions; Screen output and keyboard			
inpu	t; Control statements			
	UNIT-III			
Java	Script (continued):	09 Hrs		
	ect creation and modification; Arrays; Functions; Constructor; Pattern matching using	•••		
	lar expressions; Errors in scripts.			
-	Script and HTML Documents:			
	JavaScript execution environment; The Document Object Model; Element access in			
	Script; Events and event handling; Handling events from the Body elements, Button			
	ents, Text box and Password elements; The DOM 2 event model; The navigator			
	ct; DOM tree traversal and modification.			
5				
	UNIT-IV			
Dyna	amic Documents with JavaScript:	06 Hrs		
•	duction to dynamic documents; Positioning elements; Moving elements; Element			
Intro	vility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the			
visib	se cursor; Reacting to a mouse click; Slow movement of elements; Dragging			
visib mous				
visib mous and	se cursor; Reacting to a mouse click; Slow movement of elements; Dragging			
visib mous and Intro	se cursor; Reacting to a mouse click; Slow movement of elements; Dragging dropping elements. oduction to PHP:			
visib mous and Intro Orig	se cursor; Reacting to a mouse click; Slow movement of elements; Dragging dropping elements.			

UNIT-V	
XML:	05 Hrs
Introduction; Syntax; Document structure; Document Type definitions; Namespaces;	
XML schemas; Displaying raw XML documents; Displaying XML documents with CSS;	
XSLT Style sheets; XML processors; Web services.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and explore internet related concepts that are vital for web development.
CO2:	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.
CO3:	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.
CO4:	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and
	XML.

Refe	erence Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications, Chris Bates, 3rd Edition, , 2006, Wiley India,
	ISBN : 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

	Semester: VI							
	AUTOMOTIVE ELECTRONICS							
	(Group E: Global Elective)							
Course Code: 16G6E05 CIE Marks: 100								
Cred	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hou	Hours: 36L SEE Duration: 3Hrs							
Cour	rse Learning Objectives: The students	will be able to						
1	Understand the application of principles of sensing technology in automotive field							
2	Apply control systems in the automotive domain							
3	Understand automotive specific communication protocols / techniques							
4	Analyze fault tolerant real time embedded systems							

UNIT-I	
Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol, diesel and gas engines, electric motors and control systems. Basic Automotive System, System Components, Evolution of Electronics in Automotive. Alternators and charging, battery technology, Ignition systems. Working principles of various electronic components and accessories used in Automotive. Developments in existing engine forms and alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic Transmission systems.	08 Hrs
UNIT-II	0
Sensor Technologies in Automotive: In-vehicle sensors: Working principles, Characteristics, limitations and use within the automotive context of the following: Temperature sensing e.g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate. Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel injection. Interfacing principles: Operation, topologies and limitations of all sensors covered in the above to in-vehicle processing or communications nodes. Use of Actuators: Types, working principle, Characteristics, limitations and use within the automotive context of each type.	07 Hrs
UNIT-III	
Automotive Control Systems: Control system approach in Automotive: Analog and Digital control methods, stability augmentation, control augmentation. Transmission control, System components and functions. Cruise control, traction control, actuator limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle braking fundamentals, Antilock systems. Variable assist steering and steering control. Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Anti-theft System, Emission Course-system control. Control techniques used in hybrid system. Electronic Engine control: Motion equations, modeling of linear and non-linear systems, numerical methods, system responses Objective of Electronic Engine control. Spark Ignition and Compression Ignition Engines and their electronic controls. Engine management testing: Engine management system strategies and implementation. Simulation and implementation methods. Methods of improving engine performance and efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and Architecture.	07 Hrs
UNIT-IV	07 11
Automotive Communication Systems: Communication interface with ECU's: Interfacing techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS), for use in an automotive environment. Vehicle to Vehicle Communication Higher End	07 Hrs

Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

Course Outcomes: After completing the course, the students will be able to

- **CO1:** Acquire the knowledge of automotive domain fundamentals and need of electronics in Automotive systems
- **CO2:** Apply various sensors and actuators for Automotive applications
- **CO3:** Analyze different control systems and communication interfaces used in automotive systems.
- **CO4:** Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

- 1. Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier science, Newness publication, ISBN-9780080481494.
- 2. Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,
- **3.** Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial Information Technology Series, CRC press.
- **4.** Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen, Springer, 2nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

Low I moutum 2 mgn 5	Low-1	Medium-2	High-3
----------------------	-------	----------	--------

		Semester: VI			
		INDUSTRIAL ELECTRONICS	8		
		(Group E: Global Elective)			
	se Code: 16G6E06		CIE Marks: 100		
	its: L:T:P:S: 3:0:0:0		SEE Marks: 100		
	rs: 36L		SEE Duration: 3Hrs		
	0	The students will be able to			
1		the devices used in power electronic		<u> </u>	
2	and economically and Id	power electronic circuits which han entify the typical practical problems	with industrial exposure	acquired	
3	Use basic concepts of de electrical energy.	sign and working of electronic circuit	its for conversion and con	trol of	
4		o work as part of teams on multid regard to application of Power Elect		to discuss	
		Unit-I			
Powe	er semi-conductor Device	s and static characteristics:			
Construction, working & characteristics of MOSFET, SCR, IGBT. Comparison of Power BJT, MOSFET, SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design of R, R-C, and UJT (pulse train) Gate triggering methods of SCR.					
		Unit-II			
Gate for S	characteristics of SCR, D	stics, Specifications and Protection ynamic characteristics of SCR. Des and Forced Commutation circuit tion of SCR.	ign of Snubber circuit	07 Hrs	
		Unit-III			
Converters: Single Phase Controlled Convertor- Full wave Half and Fully controlled line commutated bridge converters, Derivation of average load voltage and current. Three phase converters – Six pulse converters- with R load- Active inputs to the convertors with and without Freewheeling diode, Derivation of average load voltage and current. Converter applications: Industrial Applications of Half and Fully controlled converters to DC drives (Control of DC drives)				06 Hrs	
		Unit-IV			
Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and Current limit control strategies –Derivation of load voltage and currents with R, RL of Step down, Step up Chopper, Step up/Down Chopper – load voltage expression.				07 Hrs	
Appli	cation of choppers to subv	vay cars, Industrial drives, battery op	perated vehicles.		
		Unit-V			
Type Chop	per –phase control type.	d Applications: e D, Type E choppers and their indu		08 Hrs	

Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter, bridge inverter(single phase) – Voltage control techniques for inverters Pulse width modulation techniques. – UPS-online, offline (Principle of operation only

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the comprehensive working of different devices and their applications.						
CO2:	Analyze the application of skills in controlling and conversion of electrical energy.						
CO3:	Evaluate and distinguish the performance of converters and inverters.						
CO4:	Ability to implement their knowledge and skills in design of applications.						

1.	Power Electronics, M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
2.	Power Electronics : Circuits, Devices and Applications, M. H. Rashid, Prentice Hall of India, 2 nd
	Edition, ISBN : 0131228153, 9780131228153, 2004
3.	Power Electronics, P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	Power Electronics P S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th
	Edition.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
00/10	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	2	2	1	1	2	0	1	3	2	2
CO2	3	2	2	3	3	0	1	0	0	0	2	1	3	2	2
CO3	3	2	2	3	2	2	0	1	0	0	1	2	3	2	2
CO4	3	3	3	3	2	3	2	0	1	0	0	1	3	3	3

High-3: Medium-2: Low-1

	Semester: VI	
PRO	DJECT MANAGEMENT	
(G)	roup E: Global Elective)	
Course Code : 16G6E07	CIE Marks : 100	
Credits : L: T: P: S:3:0:0:0	SEE Marks : 100	
Hours: 33L	SEE Duration : 03 Hrs	
Course Learning Objectives: The stud	dents will be able to	
1. To understand the principles and con	ponents of project management.	
2. To appreciate the integrated approach	n to managing projects.	
3. To explain the processes of managing	g project cost and project procurements.	
	Unit – I	
Introduction: What is project, what is p	project management, relationships among portfolio	06 Hrs
	project management, and organizational project	
	oject management, operations management and	
	role of the project manager, project management	
body of knowledge.		
	UNIT – II life cycle: Organizational influences on project	08 Hrs
	vernance, project team, project life cycle.	00 1115
	velop project charter, develop project management	
	onitor & control project work, perform integrated	
change control, close project or phase.	r J.	
	UNIT – III	
Project Scope Management: Project	scope management, collect requirements define	07 Hrs
scope, create WBS, validate scope, cont	rol scope.	
Project Time Management: Plan sc	hedule management, define activities, sequence	
•	estimate activity durations, develop schedule,	
control schedule.		
	UNIT – IV	
	ost management, estimate cost, determine budget,	06 Hrs
control costs.		
	quality management, perform quality assurance,	
control quality.		
	UNIT – V	06 11.00
	nanagement, identify risks, perform qualitative risk	06 Hrs
analysis, perform quantitative risk analy	: Project Procurement Management, conduct	
procurements, control procurements, clo		
procurements, control procurements, cit	se procurement.	
Course Outcomes: After going throug	this course the student will be able to	
Source outcomes. Anter going throug		

Cours	Course Outcomes: After going through this course the student will be able to						
CO1:	Understand the concepts, tools and techniques for managing large projects.						
CO2:	Explain various sub processes in the project management frameworks.						
CO3:	Analyze and evaluate risks in large and complex project environments.						
CO4:	Develop project plans for various types of organizations.						

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	1	1	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	1	1	-	-	-	-
CO4	2	-	3	-	1	-	-	-	-	-	-	-

	Semester: VI							
	VIRTUAL INSTRUMENTATION							
	(Group E: Global Elective)							
Cours	se Code:16G6E08	CIE Marks: 100						
Credi	ts/Week: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hour	s:35L	SEE Duration: 3Hrs						
Cours	se Learning Objectives: The students will be	able to						
1	Understand the difference between conven	tional and graphical programming, basic data						
	acquisition concepts.							
2	Differentiate the real time and virtual instrume	ent.						
3	Develop ability for programming in LabVII	EW using various data structures and program						
	structures.							
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with							
	LabVIEW.							

UNIT-I	
Graphical Programming Environment:	06 Hrs
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction	
to LabVIEW, Components of LabVIEW and Labels.	
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code	
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch	
actions, String data types, enum, ring, Dynamics.	
UNIT-II	
Fundamentals of Virtual Instrumentation Programming:	09 Hrs
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.	
Timing function: Timing VI, elapsed time, wait function.	
Case structures, formula node, Sequence structures, Arrays and clusters, visual display	
types- graphs, charts, XY graph. Local and Global variables.	
UNIT-III	
Error Handling- error and warning, default error node, error node cluster, automatic and	08 Hrs
manual error handling.	
String Handling: Introduction, String Functions, LabVIEW String Formats.	
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.	
Design patterns: Producer/consumer, event handler, derived design pattern, Queued	
message handler, Producer/consumer (events), Producer/consumer (state machine).	
UNIT-IV	-
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal	06 Hrs
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.	
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,	
DAQ Assistants, Analysis Assistants.	
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,	
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.	
UNIT-V	
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process	
Communication, Notifier, Semaphore, Data Sockets.	
Simulation of systems using VI: Development of Control system, Image acquisition and	
processing.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.						
CO2:	Apply the theoretical concepts to realize practical systems.						
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.						
CO4:	Create a VI system to solve real time problems using data acquisition.						

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3 rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

		Semester: VI						
	INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT							
	(Group E: Global Elective)							
-	urse Code: 16G6E09	CIE Marks: 100						
	edits: L:T:P:S: 3:0:0:0 urs : 36L	SEE Marks: 100						
		SEE Duration: 03Hrs						
1	urse Learning Objectives: The st	oppment platform for mobile devices and use it.						
1 2	Understand mobile application at	A A						
<u>2</u> 3		nming concepts such as activities, intents, fragments	corvicos					
5	broadcast receivers and content p		, services,					
4		sensors, environmental sensors, and positional sensors	ore most					
-		devices along with their application programming inte						
	commonly embedded in Android	UNIT I	lindee.					
Ov	erview of Software platforms ar	d Development: Mobile OS: Android development	07 Hrs					
		anguage, Emulator, SDK and Development	07 1115					
^	vironments							
		ities: Introducing the Application Manifest File;						
		Architecture Patterns (MVC); Android Application						
	ecycle.							
	•	UNIT II						
Use	er Interface Design: Fundame	ntal Android UI Design; Introducing Layouts;	07 Hrs					
Inti	roducing Fragments.							
Int	ents and Broadcasts: Introduci	ng Intents; Creating Intent Filters and Broadcast						
Ree	ceivers.							
		UNIT III						
		introducing Android Databases; Introducing SQLite;	07 Hrs					
		rking with SQLite Databases; Creating Content						
Pro	viders; Using Content Providers; (Case Study: Native Android Content Providers.						
		UNIT IV						
	· -	y and SMS: Using Location-Based Services; Using	08 Hrs					
	the Emulator with Location-Based Services; Selecting a Location Provider; Using							
	Proximity Alerts; Using the Geocoder; Example: Map-based activity; Hardware Support							
for	Telephony; Using Telephony; Int	roducing SMS and MMS.						
	UNIT V							
Ha	rdware Support and Devices (A	UDIO, VIDEO, AND USING THE CAMERA):	07 Hrs					
Usi	ing Sensors and the Sensor M	Ianager; Monitoring a Device's Movement and						
		nmental Sensors; Playing Audio and Video; Using						
Au	dio Effects; Using the Camera; Re-	cording Video						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Assess the basic framework and usage of SDK to build GUI and apply advanced						
	technologies in developing Android mobile applications.						
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file						
	systems (internal and external storage), and SQLite database						
CO3:	Articulate the communication programming features and capabilities of Android platforms.						
CO4:	Design and create innovative, sophisticated mobile applications using Android platform.						

1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3 rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace
	Independent Publishing Platform, ISBN: 9781519722089

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

	Semester: VI									
	AUTOMOTIVE ENGINEERING									
		(Group E: Global Elective)	·							
Cou	rse Code:	16G6E10	CIE Marks: 100							
Cred	lits: L:T:P:S	3:0:0:0	SEE Marks: 100							
Hou	rs:	36L	SEE Duration: 03Hrs							
Cou	rse Learning Ol	bjectives: The students will be able to								
1	Identify the dif	ferent sub-systems in automobiles.								
2	Describe the fu	nctions of each of the sub-systems and its e	ffect.							
3	Discuss fuel in	jection, transmission, braking, steering, suspension, air intake and exhaust								
3	systems.									
1	Explain the imp	portance of selection of suitable sub-system for a given performance								
-+	requirement.									

UNIT-I					
Automobile Engines	06 Hrs				
Classifications of Internal Combustion Engines based on no. of cylinders, Arrangement					
of cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.					
Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine.					
Direct and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel,					
LPG and Natural Gas For automotive applications. Fuel properties- Octane number and					
Cetane number. Pollutants and Emission norms- Regulated pollutants and its effects,					
Regulations as per emission norms.					
UNIT-II					
Engine Auxiliary Systems:	08 Hrs				
AirIntake and Exhaust System- Working principle of Air filters, Intake manifold,					
Turbocharger, Intercooler, Exhaust manifold, Catalytic convertor, Exhaust Gas					
Recirculation system, Muffler.					
Cooling system- Components, working principle, Coolant.					
Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.					
Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter.					
Working of ignition system, Battery, Immobilizer.					
UNIT-III					
Transmission:	08 Hrs				
Clutch- Classification and working, Gear box- Classification, Working of sliding mesh					
and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential					
assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing					
classification of tyres, Radial, Tubeless.					
UNIT-IV					
Vehicular Auxiliary Systems:	06 Hrs				
Suspension- Front and rear suspension working, Types of springs.					
Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake,					
Front and rear wheel brakes. Antilock Braking Systems.					
Steering- components and operation of power steering.					
Vehicle frame and body classification- Hatchback, Sedan, SUV.					
Safety systems- Passive safety systems, Active safety systems- Principle of Electronic					
Stability Program, Air bags, Crash testing methods.					
UNIT-V					
Demonstrations of Automobile Systems: Engine performance measurement in terms of	06 Hrs				
Brake power, Emission measurement and principle, Drawing Valve Timing Diagram for					
multi-cylinder engine, Production and properties of biodiesel.					

Course Outcomes: After completing the course, the students will be able to							
1	Describe the different types of automotive systems. (L1-L2)						
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)						
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)						
4	Evaluate the performance of engines by determining Brake Power. (L6)						

11010								
1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,							
	SAE International, ISBN: 0768009871							
2.	Bosch Automotive Handbook, Robert Bosch, 9 th Edition, 2004, ISBN: 9780768081527.							
3.	Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,							
	1 st Edition, 2009, ISBN: 9781856175784.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1:	1	1	-	1	-	-	2	-	2	-	-	1
CO2:	-	2	-	-	-	-	-	-	-	-	-	
CO3:	-	2	1	-	-	2	-	1	-	-	2	1
CO4:	2	2	1	1	1	1	2	1	1	2	2	-

	Semester: VI						
	MOBILE NETWORK SYSTEMS AND STANDARDS						
	(GROUP E	: GLOBAL ELECT	(VE)				
Cou	rse Code: 16G6E11		CIE Marks: 100				
Crea	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Hou	Hours: 34L SEE Duration: 03Hrs						
Cou	rse Learning Objectives: The students	s will be able to					
1	Understand land mobile concepts, radio link design and cellular network.						
2	Compare the standards of WPAN, WLAN and WMAN.						
3	Analyze WPAN, WLAN and WMAN standards and their architecture.						
4	Design and demonstrate wireless netw	orks for various appli	cations.				

4	Design and demonstrate wireless networks for various applications.
---	--

UNIT-I			
Cellular Wireless Networks: Principles of cellular Networks, cellular system components and Operations, channel assignment, Attributes of CDMA in cellular system.	06 Hrs		
UNIT-II			
Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE.	08 Hrs		
UNIT-III			
Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in the network.			
UNIT-IV			
WirelessPersonalAreaNetworks:Networkarchitecture,components,Applications, Zigbee, Bluetooth.WirelessLocalAreanetworks:NetworkArchitecture,Standards,Applications.	08 Hrs		
UNIT-V			
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN Network architecture, Protocols, Applications.	06 Hrs		

	Course Outcomes: After completing the course, the students will be able to						
CO1:	Describe the architectures and characteristics of different mobile networks. (L1-L2)						
CO2:	Apply the Network standards to a suitable application (L3)						
CO3:	Analyze the operation of various network technologies and standards (L4)						
CO4:	Evaluate the performance of various network technologies (L5)						

Refere	Reference Books							
1	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,							
	ISBN-13:978-0-19-806066-6.							
2	Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010,							
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.							
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,							
	Pearson, ISBN 97881-317-3186-4.							

R.V.College of Engineering-Bengaluru-59 Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	-	-	2	-	2	-	1
CO2	3	3	2	-	2	-	-	2	-	2	-	1
CO3	3	3	3	-	2	-	-	2	-	2	-	2
CO4	3	3	3	-	3	-	-	2	-	2	-	2

Low-1 Medium-2 High-3

		Semester: VI	
	APPLIED P	ARTIAL DIFFERENTIAL EQUATIONS	
		(Group E: Global Elective)	
	rse Code:16G6E12	CIE Marks: 100	
	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100	
	urs: 35L	SEE Duration: 3Hrs	
	rse Learning Objectives:		
1	problems to determine the su		
2	Use analytical techniques and hyperbolic differential equati	I finite element technique for the solution of elliptic, para ons.	bolic and
3	Solve initial value and bound	dary value problems which have great significance in en	gineering
	practice using partial differen		
4	Identify and explain the basis behavior of the system.	cs of partial differential equations and use the same to an	alyze the
		Unit-I	
Part	tial Differential Equations of t		07 Hrs
		al differential equations, Cauchy problem, Orthogonal	•••
		r partial differential equations-Charpit's method,	
		of partial differential equations.	
		Unit – II	
Ellip	otic Differential Equations:		07 Hrs
Deri	vation of Laplace and Poisso	on equation, Separation of variable method, Dirichlet	
prob	olem, Neumann problem, Solu	tion of Laplace equation in cylindrical and spherical	
coor	dinates.		
		Unit -III	
Para	abolic Differential Equations:		07 Hrs
		n equation, Dirac-Delta function, Separation of variable	
meth	nod, Solution of Diffusion equa	tion in cylindrical and spherical coordinates.	
		Unit –IV	
Нур	erbolic Differential Equation	s:	07 Hrs
		dimensional wave equation, D'Alembert's solution,	
vibra	ating string, Forced vibration,	Periodic solution of one dimensional wave equation in	
cylir	ndrical and spherical coordinate	es, Vibration of Circular membrane.	
		Unit –V	
Nun	nerical solutions of Partial Di	fferential Equations:	07 Hrs

Numerical solutions of Partial Differential Equations:07 HrsFinite difference method for Elliptic, Parabolic and Hyperbolic partial differential
equations, Introduction to the finite element method-simple problems.07 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,
	hyperbolic and elliptic differential equations using analytical and numerical methods.
CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,
	hyperbolic and elliptic differential equations arising in the field of science and engineering.
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to
	solve and optimize the solution using the appropriate governing equations.
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012, ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978-81-265-5423-2.
3	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005, ISBN 13: 9780072466850.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

S	emester: VI
AIRCH	RAFT SYSTEMS
(Group]	E: Global Elective)
Course Code: 16GE6B13	CIE Marks: 100
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100
Hours: 36L	SEE Duration: 3Hrs

Cou	Course Learning Objectives: To enable the students to					
1	List the various systems involved in the design of an aircraft					
2	Demonstrate the technical attributes of all the subsystems of an aircraft					
3	Explain the significance of each systems and its subsystems for developing an airplane					
4	Demonstrate the integration of the systems with the airplane					

Unit-I						
Flight Control Systems : Primary and secondary flight controls, Flight control linkage system, Conventional Systems, Power assisted and fully powered flight controls.						
Unit – II						
Aircraft Hydraulic & Pneumatic Systems : Components of a typical Hydraulic system, Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction mechanism.	08 Hrs					
Unit -III						
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.	07 Hrs					

Unit -IV					
Environmental Control Systems : Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids.	07 Hrs				
Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.					
Unit -V					
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.	07 Hrs				

Coι	Course Outcomes: At the end of this course the student will be able to									
1	Categorise the various systems required for designing a complete airplane									
2	Comprehend the complexities involved during development of flight vehicles.									
3	Explain the role and importance of each systems for designing a safe and efficient flight vehicle									
4	Demonstrate the different integration techniques involved in the design of an air vehicle									

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Moir, I. and Seabridge, A.Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

R.V.College of Engineering-Bengaluru-59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

High-3 : Medium-2 : Low-1

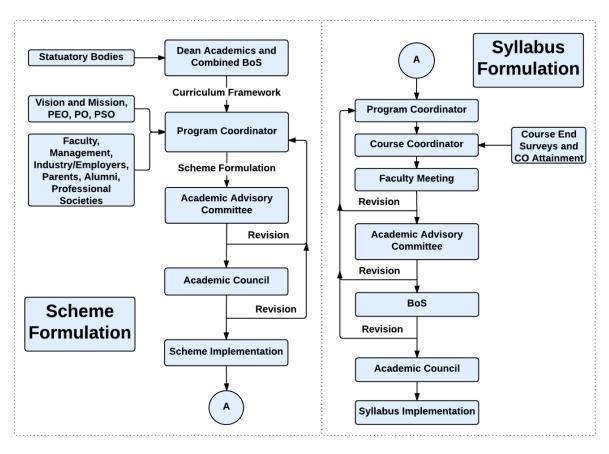
	V/VI Semester								
	PROFESSIONAL PRACTICE – III								
H	EMPLOYABILITY SKILLS AND PROFESSIONAL DEVELOPMENT OF ENGINEERS								
Course Code: 16HS68 CIE Marks: 50									
Cre	edits: L:T:P:S: 0:0:1:0		SEE Marks: NA						
Hours: 18 Hrs CIE Duration: 02 Hrs									
Co	urse Learning Objectives: The students	will be able to							
1	Improve qualitative and quantitative prob	lem solving skills.							
2	Apply critical and logical thinking proces	s to specific problems.							
3	Ability to verbally compare and contrast words and arrive at relationships between concepts, based								
3	on verbal reasoning.								
4	4 Applying good mind maps that help in communicating ideas as well as in technical documentation								

V Semester	
UNIT-I	
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc. Reasoning and Logical Aptitude - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning.	06 Hrs
UNIT-II	
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion - Theory & Evaluation : Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD.	06 Hrs
UNIT-III.A	
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.	06 Hrs
VI Semester	
UNIT-III.B	
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.	06 Hrs
UNIT-IV	
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.	06 Hrs
UNIT-V	
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.	06 Hrs

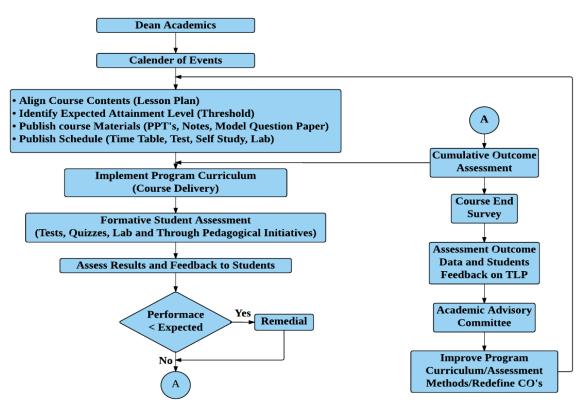
Cou	Course Outcomes: After completing the course, the students will be able to								
CO	: Inculcate employability skill to suit the industry requirement.								
CO2: Analyze problems using quantitative and reasoning skills									
CO3	: Exhibit verbal aptitude skills with appropriate comprehension and application.								
CO ⁴	: Focus on Personal Strengths and Competent to face interviews and answer								
Refe	rence Books								
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:								
	0743272455								
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:								
	9789380914787								
3.	3. Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,								
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204								
4.	Aptimithra: Best Aptitude Book, Ethnus, 2014 Edition, Tata McGraw Hill ISBN: 9781259058738								

Scheme of Continuous Internal Examination (CIE)

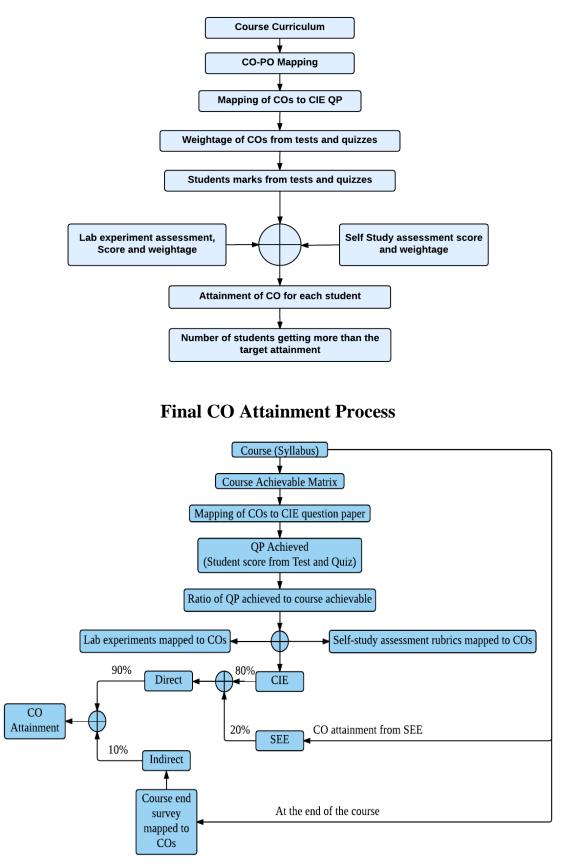
Evaluation of CIE will be carried out in TWO Phases.

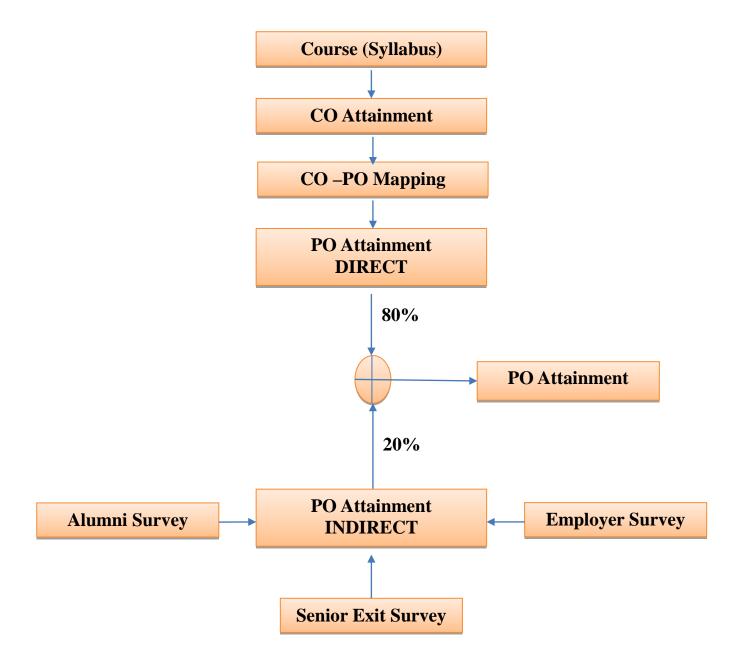

Phase	Activity	Weightage							
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35 Marks								
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18								
	hours of training sessions.								
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35 Marks	50%							
	Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18								
	hours of training sessions.								
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for 50 mark	s (Average of							
	Test1 and Test 2 (T1+T2/2). The grading is provided by the Coe. The final CIE marks is								
	scrutinized by the committee comprising of HSS- Chairman, Training	Co-ordinator,							
	respective department Staff Placement co-ordinator before submitting to CoE.								

SEE: NA


CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	1	1	1	2	1
CO2	1	2	2	-	-	-	-	1	2	1	2	1
CO3	-	-	3	-	-	1	-	2	1	2	1	-
CO4	-	-	-	-	-	1	3	1	1	1	1	-

Low-1 Medium-2 High-3


Curriculum Design Process



Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.