

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

BACHELOR OF ENGINEERING (B.E.) 2021 SCHEME

SCHEME & SYLLABUS THIRD YEAR B.E. PROGRAMS

ELECTRONICS & TELECOMMUNICATION ENGINEERING

ACADEMIC YEAR 2023-24

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ELECTRONICS & TELECOMMUNICATION ENGINEERING

Department Vision

Imparting quality education in Electronics and Telecommunication Engineering through focus on fundamentals, research and innovation for sustainable development

Department Mission

- Provide comprehensive education that prepares students to contribute effectively to the profession and society in the field of Telecommunication.
- Create state-of-the-art infrastructure to integrate a culture of research with a focus on Telecommunication Engineering Education
- Encourage students to be innovators to meet local and global needs with ethical practice
- Create an environment for faculty to carry out research and contribute in their field of specialization, leading to Centre of Excellence with focus on affordable innovation.
- Establish a strong and wide base linkage with industries, R&D organization and academic Institutions.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO	Description							
PEO1	Acquire appropriate knowledge of the fundamentals of							
	basic sciences, mathematics, engineering sciences,							
	Electronics & Telecommunication engineering so as to							
	adapt to rapidly changing technology							
PEO2	Think critically to analyze, evaluate, design and solve							
	complex technical and managerial problems through							
	research and innovation.							
PEO3	Function and communicate effectively demonstrating team							
	spirit, ethics, respectful and professional behavior.							
PEO4	To face challenges through lifelong learning for global							
	acceptance.							

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Analyze, design and implement emerging
	Telecommunications systems using devices, sub-systems,
PSO2	Exhibit Technical skills necessary to choose careers in the
	design, installation, testing, management and operation of
	Telecommunication systems.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Approved by AICTE, Institution Affiliated to Visvesvaraya Technological University, Belagavi

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	AEC	Ability Enhancement Courses

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

INDEX

Sl.		THIRD YEAR COURSES	Page
No.	Course Code	Name of the Course	No.
		V Semester	1
1.	21HS51A	Intellectual Property Rights & Entrepreneurship /	1
2.	21ET52	Communication Engineering II	4
3.	21ET53	Signal Processing II	7
4.	21ET54	RF Circuits	10
5.	21ET55BX	Professional Core Elective-I (Group-B)	13-23
6.	21ET55B1	Machine Learning	13
7.	21ET55B2	Digital Telephony	16
8.	21ET55B3	Multimedia Communication	18
9.	21ET55B4	Digital VLSI circuits	20
10.	21ET55B5	Operating Systems	22
11.	21ET56CX	Professional Core Elective-II (Group C)	24-30
12.	21ET56C1	Basic Linear Algebra	24
13.	21ET56C2	An Introduction to Information Theory	25
14.	21EI56C3	Cloud Computing and Distributed systems.	26
15.	21ET56C4	Electromagnetic Waves in Guided and Wireless Media	28
16.	21EC56C5	VLSI Signal Processing	29
17.	21ET56C6	Analog Circuits	30
18.			
19.	21ETI57	Summer Internship- II	31
		VI Semester	
20.	21HS61B	Foundations of Management & Economics	33
21.	21ET62	Antenna Theory and Design (Theory & Practice)	36
22	21ET62	Data Communications and Networking	20
22.	21E105	(Theory & Practice)	39
23.	21ET64DX	Professional Core Elective (Group – D)	42-51
24.	21ET64D1	Image Processing	42
25.	21ET64D2	VLSI Physical Design	44
26.	21ET64D3	WSN for IoT applications	46
27.	21ET64D4	Cryptography and Network Security	48
28.	21ET64D5	EMI, EMC and Signal Integrity	50
29.	21XX65EX	Professional Core Elective (Cluster Elective) (Group- E)	52-69
30.	21ET65E1	Smart Antennas	52
31.	21ET65E2	Satellite Communication	54
32.	21EC65E1	Real Time Systems	56
33.	21EC65E2	Digital System Design with FPGA	58
34.	21EE65E1	Smart Grid Technology	61
35.	21EE65E2	Modern Control Theory	64

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	THIRD YEAR COURSES							
Sl. No.	Course Code	Name of the Course	Page No.					
		VI Semester						
36.	21EI65E1	Electronics Equipment Integration And Prototype Building	66					
37.	21EI65E2	Virtual Instrumentation	68					
38.	21IE66FX	Institutional Electives – I (Group F)	70-					
39.	21IE6F1	Industrial Safety and Risk Management	70					
40.	21IE6F2	Renewable Energy Systems	72					
41.	21IE6F3	Systems Engineering	75					
42.	21IE6F4	Mechatronics	78					
43.	21IE6F5	Mathematical Modelling	81					
44.	21IE6F6	Industry 4.0 – Smart Manufacturing for The Future	83					
45.	21IE6F7	Industrial Psychology for Engineers	86					
46.	21IE6F8	Elements of Financial Management	89					
47.	21IE6F9	Universal Human Values-II	92					
48.	21IE6F10	Human Machine Interface (HMI)	95					

Go, change the world

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE, New Delhi

Autonomous	
Institution Affiliated	
to Visvesvaraya	
Technological	
University, Belagavi	

Technological University, Belagavi Bachelor of Engineering in ELECTRONICS AND TELECOMMUNICATION ENGINEERING

	V SEMESTER													
S1. No.	Course Code	Course Title	Cre	edit .	Alloca	ition	BoS	Category	CIE Duration	Max Marks CIE		SEE Duration	Max Marks SEE	
			L	Т	Р	Total			(П)	Theory	Lab	(п)	Theory	Lab
1	21HS51A/61A	Intellectual Property Rights & Entrepreneurship	3	0	0	3	HSS	Theory	1.5	100	****	3	100	****
2	21ET52	Communication Engineering II	3	0	1	4	ET	Theory + Lab	1.5	100	50	3	100	50
3	21ET53	Signal Processing II	3	0	1	4	ET	Theory + Lab	1.5	100	50	3	100	50
4	21ET54	RF Circuits	3	1	0	4	ΕT	Theory	1.5	100	****	3	100	****
5	21ET55BX	Professional Core Elective-I (Group-B)	3	0	0	3	ET	Theory	1.5	100	****	3	100	****
6	21ET56CX	Professional Core Elective-II (Group C)	2	0	0	2	ET	NPTEL	1	100	****	3	100	****
7	21ETI57	Summer Internship- II	0	0	2	2	ET	Internship	1.5	50	50	3	50	50
			00											

* Note: Summer Internship-II will be undertaken between IV & V semester for a period of 06 Weeks (this will have both CIE & SEE)

*Circuit Programs: 21HS51A ; Non-Circuit Programs: 21HS51B

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	GROUP-B						
SL. NO.	COURSE CODE	COURSE TITLE					
1	21ET55B1	Machine Learning					
2	21ET55B2	Digital Telephony					
3	21ET55B3	Multimedia Communication					
4	21ET55B4	Digital VLSI circuits					
5	21ET55B5	Operating Systems					

GROUP-C-NPTEL						
SL. NO.	COURSE CODE	COURSE TITLE				
1	21ET56C1	Basic Linear Algebra				
2	21ET56C2	An Introduction to Information Theory				
3	21EI56C3	Cloud Computing and Distributed systems.				
4	21ET56C4	Electromagnetic Waves in Guided and Wireless Media				
5	21EC56C5	VLSI Signal Processing				
6	21ET56C6	Analog Circuits				

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Go, change the world

Bachelor of Engineering in ELECTRONICS AND TELECOMMUNICATION ENGINEERING

	VI SEMESTER													
S1.	Course Code	Course Title	Credit Allocation				BoS	Category	CIE Duration	Max Marks CIE		SEE Duration	Max Marks SEE	
NO.			L	Т	Р	Total			(H)	Theory	Lab	(H)	Theory	Lab
1	21HS51B/61B	Principles of Management & Economics	3	0	0	3	HSS	Theory	1.5	100	****	3	100	****
2	21ET62	Antenna Theory and Design	3	0	1	4	ET	Theory + Lab	1.5	100	50	2	100	50
3	21ET63	Data Communications and Networking	3	0	1	4	ET	Theory + Lab	1.5	100	50	3	100	50
4	21ET64DX	Professional Core Elective-III (Group – D)	3	0	0	3	ET	Theory	1.5	100	****	3	100	****
5	21XX65EX	Professional Core Elective (Cluster Elective) (Group- E) (TWO Courses under Each Program)	3	0	0	3	XX	Theory	1.5	100	****	3	100	****
6	21IE66FX	Institutional Electives – I (Group F)	3	0	0	3	XX	Theory	1.5	100	****	2	100	****
						20								

* Non-Circuit Programs: 21HS61A ; Circuit Programs: 21HS61B

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	GROUP-D: PROFESSIONAL ELECTIVES							
Sl. No.	Course Code	Course Title						
1.	21ET64D1	Image Processing						
2.	21ET64D2	VLSI physical design						
3.	21ET64D3	WSN for IoT applications						
4.	21ET64D4	Cryptography and Network Security						
5.	21ET64D5	EMI, EMC and Signal Integrity						

GROUP-E(Cluster Elective)						
Sl. No.	Course Code	Course Title				
1	21ET65E1	Smart Antennas				
2	21ET65E2	Satellite Communication				
3	21EC65E1	Real Time Systems				
4	21EC65E2	Digital System Design with FPGA				
5	21EE65E1	Smart Grid Technology				
6	21EE65E2	Modern Control Theory				
7	21516551	Electronics Equipment Integration and Prototype				
	ZILIUJEI	Building				
8	21EI65E2	Virtual Instrumentation				

GROUP-F (Institutional Elective)					
Sl. No.	Course Code	BoS	Course Title		
1	21IE6F1	СН	Industrial Safety and Risk Management		
2	21IE6F2	EE	Renewable Energy Systems		
3	21IE6F3	IM	Systems Engineering		
4	21IE6F4	ME	Mechatronics		
5	21IE6F5	MA	Mathematical Modelling		
6	21IE6F6	ME	Industry 4.0 – Smart Manufacturing for The Future		
7	21IE6F7	HSS	Industrial Psychology for Engineers		
8	21IE6F8	IM	Elements of Financial Management		
9	21IE6F9	HSS	Universal Human Values-II		
10	21IE6F10	EC	Human Machine Interface (HMI)		

RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: V			
INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP						
		(Co	mmon to all Program	s)		
(Theory)						
Course Code	:	21HSI51A/61B		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours
		<u> </u>	J nit-I			09 Hrs
Introduction: Typ	es c	of Intellectual Property	y			
Patents: Introduct	ion	, Scope and salient f	features of patent; patent	atentable and non-	-pater	ntable inventions,
Patent Procedure -	Ov	erview, Transfer of Pa	atent Rights; protection	on of traditional kn	owle	dge, Infringement
of patents and rem	edy	, Case studies Patent	Search and Patent Di	rafting, Commercia	ilizat	ion and Valuation
of IP. Case example	es.		sit II			09 Um
Trada Sagrata: Da	fini	tion Significance To	ni – n ols to protect Trade s	acrots in India		00 1115
Trade Marks Co	nce	ont function and diff	erent kinds and form	of Trade marks	Reg	vistrable and non-
registrable marks	Reo	istration of Trade Ma	ork. Deceptive similar	ity. Transfer of Tr	ade N	Mark ECO Label
Passing off. Infring	em	ent of Trade Mark wit	th Case studies and R	emedies. Case Exa	mple	S.
		Ur	nit –III			08 Hrs
Industrial Design	: I	ntroduction of Indus	trial Designs Featur	es of Industrial, I	Desig	n. Procedure for
obtaining Design P	rote	ection, Revocation, In	fringement and Reme	dies, Case studies.	C	
Copy Right: Intro	odu	ction, Nature and sce	ope, Rights conferred	d by copy right, 0	Сору	right protection,
transfer of copy right	ghts	s, right of broad casti	ing organizations and	performer's right	s, Ex	ceptions of Copy
Right, Infringemen	t of	Copy Right with case	e studies.			
Introduction to C	Cyb	er law: Information	Technology Act, cyl	percrime and e-con	nmer	ce, data security,
confidentiality, priv	vac	y, international aspect	s of computer and on	ine crime.		
				F (1)		09 Hrs
Entrepreneursni	p:	Introduction, Ev	volution of the	Entrepreneurshi	p,	Importance of
Entrepreneursnip,		oncept of Entrepre	Eneursnip, Characte	ristics of a succ		Il Entrepreneur,
Classification of I		Frequencies of Frequencies	Entrepreneursnip, I	Entrepreneurial L	vever	opinent Models,
Problems Faced	Dy	A size Wassen En	the Capacity Build	ing for Entrepre	neur	snip .women
Entrepreneurship	ın	Asia, women En	trepreneurship in I	ndia, Challenges	s Fa	ced by women
Entrepreneurs. Ca	ise	studies.	Catting to Imary	Dusines	·	Eas anotom and
Entrepreneursni	р	in the New Age:	Getting to know	your Business,	ns I	Eco-system and
Environment, Pas	SS1C	in and values drivin	ng, building and gr	owing Family bu	isines	sses, Challenges
and suggested management approaches.						
Deretaria Discore	T		nit – V	Contonta of a Dur		a Dian Duainasa
Business Plans: Introduction , Purpose of a Business Plan , Contents of a Business Plan, Business						
Dusiness Dian Oral and Visual Presentation. Why De Care Dusiness Dians Fail? Dress from for						
Sotting Up on Enterprise, Dusiness Models and Dusiness Model Interstation Creating - Dusiness						
Dian Case late/Case studies						
Plan. Case lets/Ca	ise	studies.				1 / D / /
Preparation of j	pro	ject : Meaning of H	Project; Project Ide	ntification; Proje	ct Se	election; Project
Report; Need ar	10 D	Significance of R	eport; Contents; fo	orinulation; Gui	Jelino	es by Planning
Commission for	Pro	ject report; Networ	K Analysis; Errors	or Project Repor	τ; ΡΓ	oject Appraisal.
Identification of.	Вu	siness Opportunities	s: Market Feasibilit	y Study; Technic	al Fo	easibility Study;
Financial reasibility Study & Social reasibility Study. Use of standard templates for preparation						
of project report.						

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books

1.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
2.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
3.	Poornima M. Charantimath "Entrepreneurship Development and Small Business Enterprise", Pearson Education, 2005, ISBN: 9788177582604
4.	Dynamics of Entrepreneurial Development & Management-Vasant Desai, Himalaya Publishing House, 6 th Edition, 2018, ISBN - 978-93-5299-133-4
5	Entrepreneurial development, Khanka, Shobhan Singh, S. Chand Publishing, 2006, ISBN - 8121918014, 9788121918015

Cours	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Comprehend the applicable source, scope and limitations of Intellectual Property within the purview				
	of engineering domain.				
CO2	Knowledge and competence related exposure to the various Legal issues pertaining to Intellectual				
	Property Rights with the utility in engineering perspectives.				
CO3	Enable the students to have a direct experience of venture creation through a facilitated learning				
	environment.				
CO4	It allows students to learn and apply the latest methodology, frameworks and tools that entrepreneurs				
	use to succeed in real life.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO. CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B	-			
(M	aximum of TWO Sub-divisions only)* (Small case lets and case example in one subdivision	on)			
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: V							
	COMMUNICATION ENGINEERING II						
		Categ	ory: Professional Core Course				
		Stream: Electron	ics and Telecommunication Engin	eeri	ng		
			(Theory and Practice)				
Course Code	:	21ET52	CIE		100 +50 Marks		
Credits: L:T:P	:	3:0:1	SEE	:	100 +50 Marks		
Total Hours	:	45L+30P	SEE Duration	:	3+3 Hours		

Unit-I	9 Hrs			
Detection Concepts: Model of Digital communication System, Gram-Schmidt Orthogo	nalization			
procedure, Geometric Interpretation of Signals, Response of Bank correlators to Noisy Input, Detection of				
known signals in noise, Probability of Error, Correlation Receiver, Matched Filter Receiver.				
Unit – II	9 Hrs			
Baseband Transmission: Digital Modulation Formats, ISI, Nyquist criterion for distortion less	base-band			
binary transmission, eye pattern.				
Bandpass Transmission: MSK, M-ary Data Transmission systems (M-ary PSK, M-ary QAM, M-	ary FSK),			
Bandwidth efficiency, OFDM.				
Unit –III	9 Hrs			
Fundamental Limits on Performance of Sources and Channels: Uncertainty, Information, and	l Entropy,			
Source Coding Theorem, Huffman Coding, Discrete Memoryless Channels, Mutual Information	, Channel			
Capacity, Channel Coding Theorem, Mutual Information, Channel Capacity theorem.				
Unit –IV	9 Hrs			
Error-Control Coding: Rationale for Coding and Types of Codes, Discrete Memoryless Channel	els(coding			
Theorem)Linear Block Codes, Cyclic Codes, Convolution codes - Time domain and Transfe	er domain			
approaches, Viterbi decoding.				
Unit –V	9 Hrs			
Spread Spectrum Modulation: Pseudo noise sequences, Notion of Spread Spectrum, PN sequences	ces, DSSS			
Coherent Binary PSK, Signal-Space Dimensionality and Processing Gain, Probability of Error, Frequency-				
Hop spread spectrum, Applications.				
LABORATORY EXPERIMENTS				
Part A				
1. Digital Modulation Scheme – DPSK, QPSK generation and detection				
2. Quadrature Amplitude modulation – generation and detection.				
3. Spread Spectrum systems – DSSS and FHSS.				
4. Huffman Coding				
5. Linear block code				
6.Cyclic code				
7.Convolution Coding				
Part B				
1. Time Division Multiplexing.				
2. Generation and Detection of DPSK signals.				
3. Generation and Detection of QPSK				
4. Spread Spectrum –FHSS generation and Detection				
5. PN sequence generation				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Explain basic principles of digital modulation techniques, Source coding and channel coding					
	schemes and theorem.					
CO 2	Analyze & design various modulation and demodulation circuits and wide band modulation					
	techniques with and without noise.					
CO 3	Apply Probability Theory, Random Variables, Random process knowledge in formulating and					
	solving mathematical model for digital Communication system and Information Theory.					
CO 4	Implement, Demonstrate and Evaluate the performance parameters of different digital					
	communication circuits, Channel coder, Source Coder and wide band modulation techniques.					

Ref	Reference Books				
1.	Digital communication, Simon Haykin, 1988, Reprint 2009, John Wiley, ISBN: 9788126508242.				
2.	Communication Systems, Simon Haykin, 5 th Edition, 2006, John Wiley and Sons, ISBN: 9788126509041.				
3.	Lab VIEW Digital Signal Processing and Digital Communications, Cory L.Cork, 2005, Tata McGraw Hill, ISBN: 007060141.				
4.	Digital and Analog Communications, Sam Shanmugam, John Wiley, 2003.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (20 Marks) and Innovative Experiment/ Concept Design and Implementation (10Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE(THEORY+PRACTICE)	150

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	20
3	Viva	20
	TOTAL	50

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: V SIGNAL PROCESSING– II Category: Professional Core Course Stream: Electronics and Telecommunication Engineering (Theory and Practice) de : 21FT53 CIE : 100

Course Code	:	21ET53	CIE	••	100 + 50 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 + 50 Marks
Total Hours	:	45L + 30P	SEE Duration	:	3 + 3 Hours

Unit-I	09 Hrs
Digital Signal Processor: Features of fixed point and floating point processors.	
TMS320C67x Processor: Introduction, Features, Internal architecture, CPU, General p	urpose Register
files, Functional units and operations, Data paths, control Register file.	
Applications of DSP: Digital Crossover Audio system, Speech Coding and Compression	on, Interference
Cancellation in Electrocardiography, Compact-Disc Recording System, and DTMF	Generation and
Detection.	-
Unit – II	09 Hrs
Design of IIR Filters:	
Analog Filters: Characteristics of commonly used Analog Filters-Butterworth and Che	byshev Type-1
filters, Design of analog filters, Frequency transformation in the Analog Domain.	
Digital Filters: Analog to Digital Transformations: Impulse Invariance Techr	ique, Bilinear
Transformation. Design of Digital IIR Filters using Impulse Invariance and Bilinear Transfo	rmation.
Unit –III	09 Hrs
Design of FIR Filters: Symmetric and anti-symmetric FIR Filters, Window function	s: Rectangular,
Bartlett, Hanning, Hamming, Blackman and Kaiser. Design of Linear-phase FIR Filters usir	ıg Windows,
Design of Linear-phase FIR filters by Frequency-sampling method, Design of FIR Different	iators.
Unit –IV	09 Hrs
Structures of IIR Systems: Direct-form, Signal flow graphs and Transposed, Cascade-for	m and Parallel-
form Structures.	
Structures of FIR Systems: Direct-form, Cascade form, Linear-phase form, Lattice	and Polyphase
structures.	•
Unit –V	09 Hrs
Multirate Digital Signal Processing: Up sampling, Down sampling, Interpolation as	nd Decimation.
Changing Sampling rate by a non-integer factor, Applications: CD Audio player, Multista	ge Decimation,
Poly-phase filter structures and Implementation.	
LABORATORY EXPERIMENTS:	
Simulation-based experiments using MATLAB/SCILAB:	
1) Generation of step, ramp, sinewave and single/dual tone signals.	
2) Computation of Linear and Circular Convolution, Deconvolution, Auto and Cross-C	Correlation in
both time and frequency domains.	
3) Impulse response of the LTI system.	
4) Computation of DFT and inverse DFT.	
5) Design of digital filters (IIR and FIR).	

6) Demonstration of multirate operations.

Hardware experiments:

Implementation of various operations: Linear and Circular Convolution, DFT, and Correlation.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Go, change the world

Course Outcomes: After completing the course, the students will be able to:	
---	--

CO1 Explain the various signal processing operations, features of filters and processors.

CO2 Analyze various signal processing applications and multirate operations.

CO3 Design, and implement analog and digital filters for required specifications.

CO4 Evaluate the digital signal processing systems using simulation tool and DSP processors.

Refer	rence Books
1	Digital Signal Processing, John G. Proakis and Dimitris G. Manolakis, Pearson Education, 4 th Edition, 2014. ISBN: 81-317-1000-9
2	Digital Signal Processing – Fundamentals and Applications, Li Tan, 2008, Elsevier Inc., ISBN: 978-0-12-374090-8
3	Digital Signal Processors: Architecture, Programming and Applications, B. Venkataramani and M. Bhaskar, 2 nd Edition, 2012, McGraw Hill, ISBN:978-0-07-070256-1.
4	V. Udayashankara, Modern Digital Signal Processing, 2 nd Edition, 2012, PHI, ISBN: 978-81-203-4567-6.

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (20 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY+PRACTICE)	150

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO. CONTENTS				
	PART A			
1	Objective type of questions covering entire syllabus	20		
	PART B			
	(Maximum of THREE Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

		S	emester: V			
		RF	CIRCUITS			
		Category: Prof	essional Cor	e Course		
1	Stre	am: Electronics and T	Felecommun	ication Engineering		
		('	Theory)			
Course Code	:	21ET54		CIE	:	100 Marks
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks
Total Hours	:	45L + 30T		SEE Duration	:	3 Hours

Unit-I	09 Hrs
Introduction to Microwaves: Properties, Frequency bands, Application of Microw	aves
Transmission Lines: Transmission lines equations, Input Impedance derivation Sp	ecial Cases of
Transmission lines, Reflection and transmission coefficients, standing waves and	SWR, Quarter
wave transforms, Microstriplines	
High frequency lines -Waveguides: Rectangular Waveguide-TE &TM modes, Cut- derivation, Excitation of waveguides (Only Qualitative Description)	off frequency
Unit – IÌ	09 Hrs
S-Parameters: Review of S parameters and their properties and losses in microwa	ve networks.
(Only Qualitative description)	
Basic Smith chart - Construction, Basic Smith Chart Operations, Smith chart type	s-Impedance
and Admittance Chart, Single Stub Tuning- Shunt Stubs, Series Stubs	
Impedance Matching networks: Goal of impedance matching, Components f	or matching,
Concept of Matched Load, Matching network design using Lumped elements- RC, I	RL circuits
Unit –III	09 Hrs
RF Passive Devices : Overview of Waveguide passive circuits, Circulators, Isolat	ors, Properties
of Power dividers, Wilkinson power dividers, Hybrid Couplers (Qualitative descr	iption with S-
matrix), Digital Phase Shifters, Semiconductor Phase Shifter	
RF Filter Design: Basic filter configurations, Filter Transformation, Design of L	PF and BPF
using Insertion loss method	
Unit –IV	09 Hrs
High Power Microwave Sources: - Reflex Klystrons, Travelling Wave Tubes and	Magnetron
(only Qualitative description)	
Active RF Components: -Schottky Diodes- Detectors, PIN diodes: - as a switch and	d phase
shifter. Gunn diode-Modes, RF Transistors- MESFET and HEMT Construction and	V-I
Characteristics, Microwave Integrated Circuits, HMIC, MMIC Features	•
Unit –V	09 Hrs
Microwave Amplifiers-: Two port Power gains, Stability, Single stage Transist	or Amplifier
Design, Low Noise amplifier Design, Dynamic Range and Intermodulation Disto	ortion, Power
amplifier design	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Review and understand the Transmission Lines, S-parameters, Smith chart applications,
	Active RF semiconductor components.
CO2	Design and analyze the matching networks for the RF circuits using smith chart and
	EDA tools
CO3	Design RF Passive and Active circuits for given specifications
CO4	Evaluate the Performance of RF circuits through EDA tools.

Ref	erence Books
1	Microwave Engineering, David M Pozar, 3 rd Edition, 2011, John Wiley, ISBN-978-81-
	265-1049-8.2
2	RF and Microwave Electronics Illustrated, Matthew M. Radmanesh, 1st edition, 2004,
	Pearson Education, ISBN-978-81-775-8401-1
3	RF Circuit Design Theory and Applications, Reinhold Ludwig, and Pavel Bretchko,
	2004, Pearson Education edition, ISBN: 978-81-317-6218-9
4	Fundamentals of RF and Microwave Transistor Amplifiers, Inder J Bahl, 2009, John
4	Wiley & Sons Inc. ISBN: 9780470391662

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6 Unit 3 : Question 5 or 6					
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
TOTAL					

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvarava Technological University, Belagavi

Semester: V **MACHINE LEARNING Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering**

(Theory)

Course Code	:	21ET55B1		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	•	45L		SEE Duration	:	3 Hours
			Unit-I			09 Hrs

Introduction to Python Programming: Variables, Datatypes (string, list, tuple, dictionary, set), Conditional tests, Loops, Functions, Data Visualization: Matplotlib, plotting a simple line graph, downloading data and working with APIs. Statistics for ML-I: Inferential Statistics & Descriptive Statistics, Data Type, Population and Sample,

Central Tendencies & Measures of Dispersion, Relationships in variables (covariance, ANOVA, Correlation, Kurtosis) 09 Hrs

Unit – II

				Cmt					U / III 5
Statistics	for	ML-II:	Normal	Distribution,	Poisson	Distribution,	Binomial	Distribution	, Hypothesis
Testing, C	entra	al Limit '	Theorem,	Degrees Of Fi	reedom, O	Confidence Int	erval, P-va	lue	

Fundamentals of Machine Learning (ML): What is ML? Why use ML? Types of ML systems, main challenges of ML, get the data, discover, and visualize the data to gain insights.

Prepare to model: Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing. Unit –III

		09 Hrs
Model	(for	Superv

Modelling and Evaluation: Introduction, Selecting a Model, Training a Model (for Supervised Learning), Model Representation and Interpretability, Evaluating Performance of a Model, Supervised learning – classification, Supervised learning – regression, Unsupervised learning – clustering, Improving Performance of a Model

Basics of Feature Engineering: Introduction, Feature Transformation, Feature construction, Feature extraction, Feature Subset Selection, Issues in high-dimensional data, Key drivers of feature selection – feature relevance and redundancy, Measures of feature relevance and redundancy, Overall feature selection process, Feature Selection Approaches.

Unit –IV	09 Hrs
Fundamentals of Machine Learning (ML) – Supervised ML Regression: Regression,	Introduction,
Example of Regression, Common Regression Algorithms, Simple linear regressi	on, Multiple
linear regression, Assumptions in Regression Analysis, Main Problems in Regressi	on Analysis,
Improving Accuracy of the Linear Regression Model, Polynomial Regression Mo	del, Logistic
Regression.	

Supervised Learning: Classification: KNN, Naive Bayes, SVM, decision trees, ensemble learning and random forest.

Unit –V **09 Hrs** Unsupervised Learning: Introduction, Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, Clustering as a machine learning task, Different types of clustering techniques, Partitioning methods, K-Medoids: a representative object-based technique, Hierarchical clustering, Density-based methods – DBSCAN, Finding Pattern using Association Rule, Definition of common terms, Association rule, The apriori algorithm for association rule learning, Build the apriori principle rules

Autonomous Institution Affiliated to Visvesvaraya Technological University, Beladavi Approved by AICTE, New Delhi

UII	
Cours	se Outcomes: After completing the course, the students will be able to
CO1	Explore and apply the fundamentals of python programming and statistics in developing machine learning techniques.
CO2	Explore the fundamentals and analyse the different techniques of data pre-processing in ML techniques.
	Analyse the strength and weakness of different machine learning models to solve real

CO3	world problems
CO4	Implement and apply different supervised and unsupervised machine learning algorithms to solve real world problems.

Re	ference Books
1	Eric Matthes, Python Crash Course: A Hands-On, Project-Based Introduction to
1	Programming, 2nd Edition, May 2019, ISBN-13: 9781593279288.
2	Kothari C.R., Gaurav Garg, Research Methodology Methods and techniques, 4th edition, New Age International Publishers, 2020, ISBN: 978-93-86649-22-5.
3	Amit Kumar Das, SaikatDutt, Subramanian Chandramouli, Machine Learning, Pearson Education India, April 2018 ISBN: 9789389588132.
4	Introduction to Machine Learning, EthemAlpaydin, 2nd Edition, 2010, PHI Publication, ISBN: 978-81-203-4160-9.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	100				

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: V						
	DIGITAL TELEPHONY					
		Category:]	Professional Elec	ctive Course		
S	Stream: Electronics and Telecommunication Engineering					
			(Theory	-		
Course Code : 21ET55B2 CIE : 100 Marks						
Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	45L		SEE Duration	••	3 Hours

Unit-I	09 Hrs		
Background & Terminology: Telecommunications Standard Organization	ons, The Analog		
Network Hierarchy: Bell System Hierarch, Switching Systems, Transmission S	ystems, Pair-Gain		
Systems, FDM Multiplexing and Modulation, Wideband Transmission Med	dia, Transmission		
Impairments, Power levels, Signaling, Analog Interfaces, The Intelligent N	etwork, Dynamic		
Nonhierarchical Routing, Cellular Radio Telephone System, Voiceband Data 7	Fransmission, The		
Introduction of Digits.			
Unit – II	09 Hrs		
Why Digital? Advantages of digital voice networks: Ease of Multiplexing, E	ase of Signalling,		
Use of Modern Technology, Integration of Transmission and switching, Signal Regeneration,			
Digital Signal Processing, disadvantages of digital voice networks			
Unit –III	09 Hrs		
Digital Switching: Switching Functions, Space Division Switching, Time D	Division Switching,		
Two-Dimensional Switching, Digital Cross-Connect Systems, Digital Switch	ning in an Analog		
Environment			
Unit –IV	09 Hrs		

Traffic Analysis: Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems: Lost Calls Cleared, Lost Calls Returning, Lost Calls Held, Lost Calls Cleared-Finite Sources, Lost Calls Held-Finite Sources, Network Blocking probabilities, Delay Systems: Exponential Service Times, Constant Service Times, Finite Queues, Tandem queues.

 Unit –V
 09 Hrs

 Switching networks: Single-stage networks, Principle of gradings, Design of progressive grading, Types of grading, Traffic capacity of gradings, Applications of gradings, link systems. Grades of service of link systems, application of graph theory to link systems, stick-sense non-blocking networks, sectionalized switching networks

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Explain fundamental concepts of switching networks.
CO2	Analyse the various concepts related to Digital Switching
CO3	Analyse the performance of various functions related to call handling and call processing in Telecommunication Network.
CO4	Design Network models with respect to Grade of service and traffic capacity.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	erence Books
1	Digital Telephony, John C.Bellamy, 3 rd Edition, 2002, Wiley series, ISBN: 9814126357.
2	Telecommunications, switching traffic and networks, J.E.Flood, 2005, Pearson education Ltd, ISBN: 1844860140.
3	Telecommunication switching systems and networks, Thiagarajan Viswanathan, 2004, Prentice Hall, ISBN: 1587202166.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: V	V		
		MULTIME	DIA COMMU	UNICATION		
		Category: P	rofessional El	ective Course		
Stro	eam	a: Electronics	and Telecom	nunication Engin	eeri	ng
			(Theory)			
Course Code	:	21ET55B3		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3 Hours
		U	UNIT-I			09Hrs
Introduction: Mult	ime	dia informatio	n representation	on, multimedia net	wor	ks, multimedia
applications. QoS -N	Vetv	work QoS and	application Qo	S.		
		U	NIT-II			09Hrs
Multimedia Infor	mat	tion Represe	ntation: Text	formats–Unform	natte	d, formatted and
hypertext; Images-	Gr	aphics, Digiti	zed document	s& pictures, Aud	lio-I	PCM speech, CD-
quality audio, Synth	lesiz	zed audio and	Video – Broad	dcast television, D	igita	al video, PC video,
		UI	NIT-III			09Hrs
Text and image compression: Compression principles, Text compression- Huffman coding,						
Arithmetic Coding, LZ, LZW coding; Image compression- GIF, TIFF, Digitized documents						
and pictures, JPEG 2000: Development Process, Significant features, Architecture, Bit						
stream, Compression	neff	ficiency compa	arisons.			
		UI	NIT-IV			09Hrs
Audio and video compression: Audio compression - DPCM, Adaptive DPCM, Adaptive						
and Linearpredictive coding, CELP, MPEG and Dolby audio coders.						
Video compression	n - '	video compres	ssion principle	es; Standards - H	I.26	1, H.263, MPEG,
MPEG-1,MPEG-2, MPEG-4.						
	UNIT-V 09 Hrs					
Multimedia Netwo	rk	Communicati	ions and App	lications: Quality	of	Multimedia Data
Transmission: QoS	, Q	oS for IP proto	ocols, Prioritize	ed Delivery.		
Multimedia over IP: IP Multicast, RTP, RTCP, RSVP, RTSP, Internet Telephony.						
Multimedia over ATM Networks: Video Bitrates over ATM, ATM adaptation layer,						
MPEG – 2 Convergence to ATM, Multicast over ATM.						

Course Outcomes: After completing the course, the students will be able to:				
CO1	Understand and explain Multimedia information representation, networks, coding,			
	imageprocessing and compression techniques.			
CO2	Apply the knowledge learnt about the various coding, image processing and			
	compression techniques.			
CO3	Analyze and Justify the impact of multimedia communication on society			
	through various applications like interpersonal communication, interactive			
	applications over the internet			
CO4	Design and Evaluate various coding, processing and compression techniques.			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Reference Books

- 1 Fred Halsall, "Multimedia Communications", Pearson Education, 2013, ISBN: 978-81-317-0994-8.
- 2 K.R. Rao, Zoran S.Bojkovic, D.A.Milovanovic, "Multimedia Communication Systems", PHI,2014.
- 3 Ze-NianLi and Marks S Drew, "Fundamentals of Multimedia", PHI, 2006.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (TH	EORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	-
1	Objective type questions covering entire syllabus	20
	PART B	-
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Electronics and Telecommunication Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: V DIGITAL VLSI CIRCUITS Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering

(Ineory)					
Course Code	••	21ET55B4	CIE	••	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3 Hours

	Unit-I	09 Hrs
Revie	ew of MOS transistor: MOSFET operation, MOSFET current-voltage charac	cteristics.
Geon	netrical effects: Channel length modulation, Substrate bias effect, Short-channel have been been been been been been been be	nel effects,
Sub-t degra	dation	r-mobility
uegra	Unit – II	09 Hrs
CMC	OS Circuits: CMOS Inverter operation with VTC, Design of CMOS Inverter,	CMOS n-
well	process, CMOS Ring Oscillator Circuit, CMOS Logic Circuits, Pseudo-nMC	OS circuits,
CMC	S Transmission Gates, CMOS D-Latch and Flip-flop. VLSI Design Flow.	
	Unit –III	09 Hrs
CMC	OS Circuits: Dynamic CMOS, Domino CMOS, TSPC Dynamic CMOS circu	its.
Mem	ories: One-Transistor DRAM cell, Full CMOS SRAM cell, Nonvolatile Mer	nory: 4-bit
x 4-b	it NOR and NAND-based ROM array,	
Desig	gn Methodology: Concepts of Hierarchy, Regularity, Modularity, and Localit	y.
	Unit –IV	09 Hrs
Sync	hronous Design: Timing Metrics for Sequential Circuits, Synchronous Timi	ng Basics,
Clock	K Skew, Clock Jitter, Impact of Skew and Jitter on Performance, Sources of	Skew and
Jitter	Composition of a phase-locked loop (PLL), Application of PLL for synchro	nization of
comm	nunication between chips, On-chip Clock generation and Distribution.	
	Unit –V	09 Hrs
Low-	Power CMOS Logic Circuits: Need for low-power design, Supply volta	age scaling,
Over	view of Power Consumption, Low-Power design through Voltage Scaling	g, Variable-
Three	shold CMOS (VTCMOS) Circuits, Multiple-Threshold CMOS (MTCMOS	S) Circuits,
Pipel	ining Approach, Parallel Processing Approach, Introduction to adiabatic CMC	DS gates.
Cour	se Outcomes: After completing the course, the students will be able to	
CO1	Apply the fundamentals of semiconductor physics in MOS transistors and a	nalyze the
	geometrical effects of MOS transistors and discuss design methodologies.	
CO2	Analyze the synchronous timing metrics for sequential designs.	
CO3	Justify the need for low power design and analyze various sources	of power
	consumption and approaches to minimize them.	

Design and realize combinational, sequential digital circuits and memory cells in

CMOS logic.

CO4

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
	CMOS Digital Integrated Circuits: Analysis and Design, Sung-Mo Kang and Yusuf
1	Leblebici, 3 rd Edition, Tata McGraw-Hill, ISBN: 0070530777, 2003.
	Digital Integrated Circuits: A Design Perspective, Jan M. Rabaey. Anantha
2	Chandrakasan, and Borivoje Nikolic, 2 nd Edition, Pearson Education India, ISBN:
-	9385152343.
	Basic VLSI Design, Douglas A. Pucknell and Kamran Eshraghian, 3 rd Edition, 2003,
3	PHI, ISBN: 8120309863.
	Deep-Submicron CMOS ICs, Harry Veendrick, 2 nd Edition, 2000, Kluwer academic
4	publishers, ISBN: 9044001116.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	D. CONTENTS MARK						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	2 Unit 1 : (Compulsory) 16						
3 & 4	Unit 2 : Question 3 or 4	16					
5 & 6 Unit 3 : Question 5 or 6 16							
7 & 8 Unit 4 : Question 7 or 8 16							
9 & 10	Unit 5: Question 9 or 10	16					
TOTAL 100							

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: V						
		OPER	ATING SYSTEMS			
		Category: Pro	ofessional Elective Course			
		Stream: Electronics a	nd Telecommunication Engineeri	ng		
			(Theory)	_		
Course Code	Course Code : 21ET55B5 CIE : 100 Marks					
Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	45L	SEE Duration	:	3 Hours	

Unit-I	09 Hrs
Overview of Operating Systems: Abstract Views of Operating Systems, Goals of	of an OS, Operation of an OS,
Classes of OS -Batch Processing Systems, Multiprogramming Systems, Time	Sharing Systems, Real-Time
Operating Systems, Distributed Operating Systems.	-
Unit-II	09 Hrs
Process Management:	
Process Concept: Process Concept, Process Scheduling, Operations on Processes,	Inter-process Communication,
IPC in Shared-Memory Systems, IPC in Message-Passing Systems.	
Threads & Concurrency: Overview, Multicore Programming, Multicore Pr	ramming, Implicit Threading:
Thread pools, Fork-join, Implicit Threading.	_
CPU Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms, Mu	ulti-Processor Scheduling
Unit –III	09 Hrs
Process Synchronization:	
Synchronization Tools, Background, The Critical-Section Problem, Peterson's S	olution, Hardware Support for
Synchronization, Mutex Locks, Mutex Locks, Monitors.	
Deadlocks: System Model, Deadlock in Multithreaded Applications, Deadlock	Characterization, Methods for
Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detecti	on, Recovery from Deadlock
Unit –IV	09 Hrs
Memory Management:	
Main Memory: Background, Contiguous Memory Allocation, Paging, Structur	re of the Page Table. Virtual
Memory: Background, Demand Paging, Page Replacement: Basic Page Replac	ement, FIFO, LRU, Counting-
Based Page Replacement, Allocation of Frames: Minimum Number of Frames,	Allocation Algorithms, Global
versus Local Allocation, Thrashing: Causes of Thrashing	
Unit –V	09 Hrs
File-System Interface: File Concept: File Attributes, File Operations, File Typ	es, Access Methods Directory
Structure	
Linux System: Process Management, Memory Management	
Course Outcomes: After completing the course, the students will be able to	
CO1 Describe the concepts of Operating Systems including functions, goals and	classes of operating system.
CO2 Analyze the key concepts of Process, Threads and CPU Scheduling.	
Evaluate the performance of various algorithms in Operating systems with	respect to Process scheduling

CO3 Evaluate the performance of various algorithms in Operating systems with respect to Process scheduling, Synchronization, Deadlocks and File management.

CO4 Apply the concepts of Process, Synchronization, Memory and filesystems in to understand any existing operating system.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refer	ence Books
	Operating System Concepts, Abraham Silberschatz, Peter B. Galvin and Greg Gagne, 10th Edition, Reprint
1	2018, Addison Wesley, ISBN: 978-1-118-06333-0
	Operating Systems – A Concept Based Approach, D. M. Dhamdhere, 3rd Edition, Reprint 2017, McGraw
2	Hill Education, ISBN: 978-0070611948
	Operating Systems Internals and Design Principles, William Stallings, 9th Edition, 2018, Pearson Prentice
3	Hall, ISBN: 978-9352866717.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS MARKS						
	PART A	-					
1	Objective type questions covering entire syllabus	20					
	PART B	-					
	(Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7&8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: V					
		BA	SIC LINEAR ALGE	BRA		
		Category	: Professional Elect	ive Course		
		Stream: Electron	ics and Telecommu	nication Enginee	ring	
			(Theory)	0	C	
Course Code:21ET56C1Duration:8 Weeks						
Credits: L:T:P	:	2:0:0				

Week 1 : Matrices and Matrix operations, REF
Week 2 : Linear systems, Gauss Elimination and Inverse of a matrix
Week 3 : Rn; subspaces, linear independence, rank of a matrix
Week 4 : Determinants, rank, inveribility
Week 5 : Linear transformations, rank-nullity
Week 6 : Inner product spaces, Gram-Schmidt process
Week 7 : Eigenvalues and Eigenvectors
Week 8 : Similarity, diagonalization and applications

Refer	rence Books
1	From Geometry to Algebra, an introduction to linear Algebra, Inder K Rana, Ane Books 2007.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: V AN INTRODUCTION TO INFORMATION THEORY Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering

(Theory)

Course Code	:	21ET56C2	Duration	:	8 Weeks
Credits: L:T:P	:	2:0:0			

Week 1: Introduction: Entropy, Relative Entropy, Mutual Information; Information Inequalities;
Week 2: Block to variable length coding-I: Prefix-free code, Block to variable length coding-II: Bounds on optimal codelength; Block to variable length coding-III: Huffman coding.
Week 3: Variable to block length coding, The asymptotic equipartition property, Block to block coding of DMS
Week 4: Universal Source Coding-I: Lempel-Ziv Algorithm-LZ77, Universal source coding-II: Lempel-Ziv Welch Algorithm (LZW)

Week 5: Coding for sources with memory, Channel capacity of discrete memoryless channels.

Week 6: Joint typical sequences, Noisy channel coding theorem; Differential entropy;

Week 7: Gaussian Channel; Parallel Gaussian Channel.

Week 8: Rate Distortion Theory; Blahut-Arimoto Algorithm for computation of channel capacity and ratedistortion function.

Refer	ence Books
1	James L. Massey, Lecture notes on ``Applied Digital Information Theory I".
2	David J. C. MacKay, ``Information Theory, Inference, and Learning Algorithms", Cambridge University Press.
3	Thomas M. Cover, Joy A. Thomas, ``Elements of Information Theory", 2nd Edition, John Wiley & Sons, 2006.
4	Robert G. Gallager, ``Information Theory and Reliable Communications", John Wiley & Sons, 1968.
5	Raymond W. Yeung, ``Information Theory and Network Coding", Springer, 2008.
6	Robert Ash, ``Information Theory", Dover Publications, 1965.
7	Imre Csiszar and Jonos Korner, ``Information Theory", Second edition, Cambridge University Press, 2011

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: V						
CLOUD COMPUTING AND DISTRIBUTED SYSTEMS						
Category: Professional Elective Course						
Stream: Electronics and Telecommunication Engineering						
(Theory)						
Course Code	:	21EI56C3		Duration		8 Weeks
Credits: L:T:P	:	2:0:0				

Week 1: Introduction to Clouds, Virtualization and Virtual Machine

1. Introduction to Cloud Computing: Why Clouds, What is a Cloud, Whats new in todays Clouds, Cloud computing vs. Distributed computing, Utility computing, Features of today's Clouds: Massive scale, AAS Classification: HaaS, IaaS, PaaS, SaaS, Data-intensive Computing, New Cloud Paradigms, Categories of Clouds: Private clouds, Public clouds

2. Virtualization: What's virtualization, Benefits of Virtualization, Virtualization Models: Bare metal, Hosted hypervisor

3. Types of Virtualization: Processor virtualization, Memory virtualization, Full virtualization, Para virtualization, Device virtualization

4. Hotspot Mitigation for Virtual Machine Migration: Enterprise Data Centers, Data Center Workloads, Provisioning methods, Sandipiper Architecture, Resource provisioning, Black-box approach, Gray-box approach, Live VM Migration Stages, Hotspot Mitigation

Week 2: Network Virtualization and Geo-distributed Clouds

1. Server Virtualization: Methods of virtualization: Using Docker, Using Linux containers, Approaches for Networking of VMs: Hardware approach: Single-root I/O virtualization (SR-IOV), Software approach: Open vSwitch, Mininet and its applications

2. Software Defined Network: Key ideas of SDN, Evolution of SDN, SDN challenges, Multi-tenant Data Centers: The challenges, Network virtualization, Case Study: VL2, NVP

3. Geo-distributed Cloud Data Centers: Inter-Data Center Networking, Data center interconnection techniques: MPLS, Google's B4 and Microsoft's Swan

Week 3: Leader Election in Cloud, Distributed Systems and Industry Systems

1. Leader Election in Rings (Classical Distributed Algorithms): LeLann-Chang-Roberts (LCR) algorithm, The Hirschberg and Sinclair (HS) algorithm

2. Leader Election (Ring LE & Bully LE Algorithm): Leader Election Problem, Ring based leader election, Bully based leader election, Leader Election in Industry Systems: Google's Chubby and Apache Zookeeper

3. Design of Zookeeper: Race condition, Deadlock, Coordination, Zookeeper design goals, Data model, Zookeeper architecture, Sessions, States, Usecases, Operations, Access Control List (ACL), Zookeeper applications: Katta, Yahoo! Message Broker

Week 4: Classical Distributed Algorithms and the Industry Systems

1. Time and Clock Synchronization in Cloud Data Centers: Synchronization in the cloud, Key challenges, Clock Skew, Clock Drift, External and Internal clock synchronization, Christians algorithm, Error bounds, Network time protocol (NTP), Berkley's algorithm, Datacenter time protocol (DTP), Logical (or Lamport) ordering, Lamport timestamps, Vector timestamps

2. Global State and Snapshot Recording Algorithms: Global state, Issues in Recording a Global State, Model of Communication, Snapshot algorithm: Chandy-Lamport Algorithm

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

3. Distributed Mutual Exclusion: Mutual Exclusion in Cloud, Central algorithm, Ring-based Mutual Exclusion, Lamport's algorithm, Ricart-Agrawala's algorithm, Quorum-based Mutual Exclusion, Maekawa's algorithm, Problem of Deadlocks, Handling Deadlocks, Industry Mutual Exclusion : Chubby

Week 5: Consensus, Paxos and Recovery in Clouds

1. Consensus in Cloud Computing and Paxos: Issues in consensus, Consensus in synchronous and asynchronous system, Paxos Algorithm

2. Byzantine Agreement: Agreement, Faults, Tolerance, Measuring Reliability and Performance, SLIs, SLOs, SLAs, TLAs, Byzantine failure, Byzantine Generals Problem, Lamport-Shostak-Pease Algorithm, Fischer-Lynch-Paterson (FLP) Impossibility

3. Failures & Recovery Approaches in Distributed Systems: Local checkpoint, Consistent states, Interaction with outside world, Messages, Domino effect, Problem of Livelock, Rollback recovery schemes, Checkpointing and Recovery Algorithms: Koo-Toueg Coordinated Checkpointing Algorithm

Week 6: Cloud Storage: Key-value stores/NoSQL

1. Design of Key-Value Stores: Key-value Abstraction, Key-value/NoSQL Data Model, Design of Apache Cassandra, Data Placement Strategies, Snitches, Writes, Bloom Filter, Compaction, Deletes, Read, Membership, CAP Theorem, Eventual Consistency, Consistency levels in Cassandra, Consistency Solutions

2. Design of HBase: What is HBase, HBase Architecture, Components, Data model, Storage Hierarchy, Cross-Datacenter Replication, Auto Sharding and Distribution, Bloom Filter, Fold, Store, and Shift

Week 7: P2P Systems and their use in Industry Systems

1. Peer to Peer Systems in Cloud Computing: Napster, Gnutella, FastTrack, BitTorrent, DHT, Chord, Pastry and Kelips.

Week 8: Cloud Applications: MapReduce, Spark and Apache Kafka

1. MapReduce: Paradigm, Programming Model, Applications, Scheduling, Fault-Tolerance, Implementation Overview, Examples

2. Introduction to Spark: Resilient Distributed Datasets (RDDs), RDD Operations, Spark applications: Page Rank Algorithm, GraphX, GraphX API, GraphX working

3.Introduction to Kafka: What is Kafka, Use cases for Kafka, Data model, Architecture, Types of messaging systems, Importance of brokers

Refer	ence Books
	Distributed and Cloud Computing From Parallel Processing to the Internet of Things- Kai Hwang,
1	Jack Dongarra, Geoffrey Fox.
	Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M.
2	Goscinski, Wile, 2011
-	Distributed Computing: Principles, Algorithms, and Systems- Ajay D. Kshemkalyani and Mukesh
3	Singhal
-	Distributed Computing: Fundamentals, Simulations and Advanced Topics-Hagit Attiya and Jennifer
4	Welch

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: V ELECTROMAGNETIC WAVES IN GUIDED AND WIRELESS MEDIA Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering (Theory)

Course Code	••	21ET56C4	Duration	:	8 Weeks
Credits: L:T:P	:	2:0:0			

- Week 1 : Transmission lines
- Week 2 : Applications of transmission lines
- Week 3 : EM waves in free-space
- Week 4 : Diffraction of EM waves
- Week 5 : Guided waves in metallic waveguides
- Week 6 : Guided waves in dielectric waveguides
- Week 7 : Fundamentals of radiation
- Week 8 : Wireless channel modeling

Reference Books				
1	Electromagnetic waves, D. H. Staelin et al, 1993.			
2	Electromagnetic wave propagation, radiation and scattering, A. Ishimaru, 2017			
3	Fields and waves in modern communication electronics, S. Ramo et. al., Wiley 1993			
4	Digital communications with emphasis on data modems, R. W. Middlestead, 2017.			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Semester: V VLSI SIGNAL PROCESSING Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering

> > (Theory)

Course Code	:	21EC56C5	Duration	:	8 Weeks
Credits: L:T:P	••	2:0:0			

Week 1: Graphical representation of DSP algorithms, signal flow graph (SFG), data flow graph (DFG) and dependence graph (DG), high level transformation, critical path.

Week 2 :Retiming of DFG, critical path minimization by retiming, loop retiming and iteration bound Week 3 :Cutset retiming, design of pipelined DSP architectures, examples

Week 4 :Parallel realization of DSP algorithms, idea of unfolding, unfolding theorem, loop unfolding

Week 5: Polyphase decomposition of transfer functions, hardware efficient parallel realization of FIR filters, 2parallel and 3-parallel filter architectures.

Week 6 :Hardware minimization by folding, folding formula, examples from biquad digital filters,

Week 7 :Delay optimization by folding, lifetime analysis, forward-backward data allocation, examples from digital filters

Week 8 :Pipelining digital filters, look ahead techniques, clustered and scattered look ahead, combining parallel processing with pipelining in digital filters

Refer	ence Books
1	."VLSI Digital Signal Processing Syustems", Keshab K. Parhi, Wiley Eastern
2	"Digital Signal Processing for Multimedia Systems", Keshab K. Parhi and Takao Nishitani, Marcel Dekker.
3	"Pipelined Lattice and Wave Digital Recursive Filters", J. G. Chung and Keshab K. Parhi, Kluwer.

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Semester: V ANALOG CIRCUITS Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering

> > (Theory)

Course Code	:	21ET56C6	Duration	:	8 Weeks
Credits: L:T:P		2:0:0			

Week 1: Introduction, Poles and Zeros, Ideal Opamp, Applications of OPAMP – Inverting and Non Inverting Amplifier
Week 2: Applications of OPAMP (..Contd) – Summer Amplifier, Difference Amplifier, Integrator, Differentiator
Week 3: Non Idealities in an OPAMP – Finite Gain, Bandwidth, Slew Rate, Saturation, Offset Voltage, Bias Current
Week 4: Bode Plots, Frequency Response, Millers Theorem, Feedback, Effect of Feedback
Week 5: Stability, Nyquist Plot, Phase Margin, Gain margin, Frequency Compensation
Week 6: Filter Design, Butterworth and Chebyshev Filters Non Linear Applications of Filters – Limiters, Oscillators, Multivibrators
Week 7: Diodes, Basic BJT Circuits
Week 8: Basic BJT based circuits

Refer	Reference Books				
1	Microelectronic Circuits : Theory and Applications, by sedra and smith				
2	Fundamentals of Electric Circuits by Alexander and Sadiku				
3	Analog Integrated Circuit Design, by Johns and Martin,				
4	Analysis and Design of Analog Integrated Circuits, by Grey, Hurst and Mayer				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SUMMER INTERNSHIP - II (Practical) Course Code : 21ETI57 CIE : 50 Marks Credits: L: T: P : 0:0:2 SEE : 50 Marks Total Hours : 4 Weeks SEE Duration : 02 Hrs	Semester: V						
(Practical) Course Code : 21ETI57 CIE : 50 Marks Credits: L: T: P : 0:0:2 SEE : 50 Marks Total Hours : 4 Weeks SEE Duration : 02 Hrs		SUMMER INTERNSHIP - II					
Course Code:21ETI57CIE:50 MarksCredits: L: T: P:0:0:2SEE:50 MarksTotal Hours:4 WeeksSEE Duration:02 Hrs		(Practical)					
Credits: L: T: P :0:0:2SEE:50 MarksTotal Hours:4 WeeksSEE Duration:02 Hrs	Course Code	:	21ETI57		CIE	:	50 Marks
Total Hours : 4 Weeks SEE Duration : 02 Hrs	Credits: L: T: P : 0:0:2 SEE : 50 Marks						50 Marks
	Fotal Hours : 4 Weeks SEE Duration : 02 Hrs						
Students can opt the internship with the below options 4 Weeks							

A. Within the respective department at RVCE (Inhouse) Departments may offer internship opportunities to the students through the available tools so that the students come out with the solutions to the relevant societal problems that could be completed within THREE WEEKS.

B. At RVCE Center of Excellence/Competence

RVCE hosts around 16 CENTER OP EXCELLENCE in various domains and around 05 CENTER OP COMPETENCE. The details of these could be obtained by visiting the website https://rvce.edu.in / rvce-center- excellence. Each centre would be providing the students relevant training/internship that could be completed in three weeks.

C. At InternShala

Intern Shala is India's no.1 internship and training platform with 40000+ paid internships in Engineering. Studentscan opt any internship for the duration of three weeks by enrolling on to the platform through https: //internshala.com

D. At Engineering Colleges nearby their hometown

Students who are residing out of Bangalore, should take permission from the nearing Engineering College of theirhometown to do the internship. The nearby college should agree to give the certificate and the letter/email stating the name of the student along with the title of the internship held with the duration of the internship in their officialletter head.

E. At Industry or Research Organizations

Students can opt for interning at the industry or research organizations like BEL, DRDO, ISRO, BHEL, etc.. through personal contacts. However, the institute/industry should provide the letter of acceptance through hard copy/email with clear mention of the title of the work assigned along with the duration and the name of the student.

Procedures for the Internship:

1. Request letter/Email from the office of respective departments should go to Places where internships are intended to be carried out with a clear mention of the duration of Three Weeks. Colleges/Industry/ CoEs/CoCs will confirm the training slots and the number of seats allotted for the internship via confirmation letter/ Email.

2. Students should submit a synopsis of the proposed work to be done during internship program. Internship synopsis should be assessed or evaluated by the concerned Colleges/Industry/CoEs/CoC. Students on joining internship at the concerned Colleges/Industry/ CoEs/CoCs submit the Daily log of student's dairy from the joining date.

Students will submit the digital poster of the training module/project after completion of internship.
 Training certificate to be obtained from industry.

Course Outcomes: After completing the course, the students will be able to: -

CO1 Develop interpersonal, critical skills, work habits and attitudes necessary for employment.

CO2 Assess interests, abilities in their field of study, integrate theory and practice and explore career opportunities prior to graduation.

CO3 Explore and use state of art modern engineering tools to solve the societal problems with affinity towards environment and involve in ethical professional practice.

Go, change the world

MAR

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

CO4 Compile, document and communicate effectively on the internship activities with the engineering community.

RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION COMPONENTS

KS 1. **REVIEW I:** Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments, exhibiting professional and ethical 20 practice, communication skills (oral and body language).

REVIEW II: Presentation in the form digital poster, report writing, exhibiting ethics inreport 2. 30 writing, oral presentation. 50

MAXIMUM MARKS FOR THE CIE THEORY

The SEE ex	Γhe SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner.					
Q.NO.	CONTENTS					
		S				
1	Write Up	10				
2	Conduction of the Experiments	20				
3	Viva	20				
	TOTAL	50				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI						
PRINCIPLES OF MANAGEMENT & ECONOMICS						
(Theory)						
Course Code	:	21HSM51A / 61B		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours
		Unit-	I			06 Hrs
Introduction to	M	anagement: Manag	ement Function	ons – POSDCORE	3 -	- an overview,
Management lev	els	& Skills, Manage	ment History	- Classical App	roa	ach: Scientific
Management, Ac	lmi	nistrative Theory,	Quantitative	Approach: Ope	rati	ions Research,
Behavioral App	roa	ch: Hawthorne Stuc	lies, Contemp	orary Approach:	S	ystems Theory,
Contingency Theo	ory.	Caselets / Case stu	dies			
U	nit	I – II				10 Hrs
Foundations of l	Pla	nning: Types of Goa	als & Plans, A	pproaches to Settin	ıg	Goals & Plans,
Strategic Manage	me	nt Process, Corpora	te strategies –	types of corporat	e s	trategies, BCG
matrix, Competiti	ve	Strategies – Porters	Five force Mo	odel, types of Comp	peti	itive Strategies.
Caselets / Case st	tud	ies				
Organizational S	Stru	ucture & Design: (Overview of I	Designing Organiza	ıtio	nal Structure -
Work Specializa	itio	n, Departmentalizat	tion, Chain	of Command, S	par	n of Control,
Centralization &	D	Decentralization, For	rmalization, N	Aechanistic & Or	ga	nic Structures.
Caselets / Case st	tud	ies				
		Unit –	III			10 Hrs
Motivation: Ear	ly	Theories of Motiv	ation - Masl	ow's Hierarchy o	f]	Needs Theory,
McGregor's Theo	ry	X & Theory Y, Herz	berg's Two Fa	actor Theory. Conte	emp	porary Theories
of Motivation: Ad	lam	's Equity theory, Vro	oom's Expecta	ncy Theory. Casele	ets	/ Case studies
Leadership: Bel	nav	ioral Theories: Bla	ke & Mouto	n's Managerial C	hrid	l, Contingency
Theories of Leade	ersh	ip: Hersey & Blanch	nard's Situation	nal Leadership, Co	nte	mporary Views
of Leadership: Tra	ans	actional & Transforn	national Leade	rship. Caselets / Ca	ise	studies
Unit –IV 10 Hrs						
Introduction to I	Eco	nomics: Microecond	omics and Mac	roeconomics, Circu	ılaı	r flow model of
economics, An O	ver	view of Economic Sy	stems.			
Macroeconomic	Macroeconomic models- The classical growth theory, Keynesian cross model, IS-LM-					
model, The AS-AD model, The complete Keynesian model, The neo-classical synthesis.						
National Budgeting process in India.						
Macroeconomic Indicators: Prices and inflation, Consumer Price Index, Exchange rate,						
Labor Market, Money and banks, Interest rate. Gross Domestic product (GDP) - components						
of GDP, Measures of GDP: Outcome Method, Income method and Expenditure method,						
Numericals on GDP Calculations.						
Unit –V 09 Hrs						
Essentials of Mic	roe	conomics: Demand	, Supply, and H	Equilibrium in Marl	cets	s tor Goods and
Services, Price E	last	icity of Demand and	I Price Elastic	ity of Supply, Elas	tici	ty and Pricing,
Numericals on de	ter	mining price elastici	ty of demand	and supply. Chang	;es	in Income and
Prices Affecting C	Prices Affecting Consumption Choices, Monopolistic Competition, Oligopoly.					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Cours	e Outcomes: After completing the course, the students will be able to:-						
CO1	Elucidate the principles of management theory & recognize the characteristics of an						
	organization.						
CO2	Demonstrate the importance of key performance areas in strategic management and						
	design appropriate organizational structures and possess an ability to conceive various						
	organizational dynamics.						
CO3	Compare and contrast early and contemporary theories of motivation and select and						
	implement the right leadership practices in organizations that would enable systems						
	orientation.						
CO4	Demonstrate an understanding on the usage and application of basic economic						
	principles.						
CO5	Appreciate the various measures of macro-economic performance and interpret the prevailing						
	economic health of the nation.						

Refe	rence Books:
1.	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 15 th Edition, 2021,
	Pearson Education Publications, ISBN: 13: 978-0-13-558185-8
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 2009,
	PHI, ISBN: 81-203-0981-2.
3.	Principles of Microeconomics, Steven A. Greenlaw, David Shapiro, 2 nd Edition, 2017,
	ISBN:978-1-947172-34-0
4	Macroeconomics: Theory and Policy, Dwivedi D.N, 5 th Edition, 2021, McGraw Hill
4.	Education; ISBN : 9789353163334

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	2. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.					
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
(Maximun	n of TWO Sub-divisions only; wherein one sub division will be a caselet in the	related topics)					
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7&8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI ANTENNA THEORY AND DESIGN Category: Professional Core Course Stream: Electronics and Telecommunication Engineering (Theory and Practice)

Course Code	:	21ET62	CIE	:	100 + 50 Marks
Credits: L:T:P	••	3:0:1	SEE	••	100 + 50 Marks
Total Hours	••	45L + 30P	SEE Duration	••	3 + 3 Hours

Unit-I	09 Hrs
Antenna Basics: Basic antenna parameters, Radiation patterns, Radiation Inte	nsity. Beam
area, Beam Efficiency, Directivity and Gain, Antenna field zones, Radiation inter	nsity, Power
patterns, Electric dipole-fields of short dipole and Half wave dipole (Qualitative	description),
radiation resistance of short and half wave dipole.	1
Antenna Arrays Introduction, pattern multiplication, Array of two isotropic po	int sources
with various cases, Derivation of Array factor, Array factor N element lin	near array,
Broadside, End fire array and Extended End Fire array	
Unit – II	09 Hrs
Antenna Types: Yagi-Uda array, Frequency Independent Antennas: log periodic a	antenna
RF Antennas: Rectangular Horn antenna and its radiation characteristics, Parabol	ic antenna:
Paraboloid reflector, Feed methods for parabolic reflectors. Helical antenna geom	etry and its
modes, Microstrip Antennas: Introduction, Advantages and Limitations, F	Rectangular
Microstrip antenna, feeding methods, Transmission line Model Analysis	
Unit –III	09 Hrs
Antennas for Special Applications: Ground Plane Antennas, Surface Wave	and Leaky
wave Antennas, Antennas for Terrestrial Mobile communications systems, Ar	ntennas for
Ground Penetrating Radars, Embedded Antennas, Ultra-Wide band Antennas	
Wave Propagation: Wave Propagation – Categorizations and General Class	sifications,
Different Modes of Wave Propagation, Ground Wave Propagation -Plane Earth F	Reflections,
Space and Surface Waves, Wave Tilt, Space Wave Propagation-Field Strengtl	n of Space
wave, Scattering Phenomena, Troposphere Propagation, Sky Wave Propagation-S	Structure of
Ionosphere, MUF, Virtual height and Skip distance	
Unit –IV	09 Hrs
Practical Microstrip Antenna Design: - Antenna Design for Wireless Commun	nication and
Mobile Phones- Mobile Communication Standards, Mobile Phone Antennas	, Multiband
Antenna Design for Mobile Phones, Printed Antenna Arrays: Linear Microst	rip Antenna
Arrays, Planar Microstrip Antenna Arrays, Feed Techniques for Array	y Antenna,
Reconfigurable Antennas	
Phased Array Antennas- Active Phased Arrays, Hybrid Phased Arrays, Ph	nased Array
Theory, Active Phased Array Antenna Design, Need for Smart Antennas, Sm	art Antenna
Configurations, Architecture of Smart Antenna System	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Unit –V

09 Hrs

Antenna Measurements

Antenna Ranges, Radiation Patterns, Gain Measurements, Directivity Measurements, Impedance Measurements, Polarization Measurements, Radiation Efficiency, Vector Network Analyzer and Spectrum Analyzer- block diagram and Measurements.

LABORATORY EXPERIMENTS:

Students are expected to implement the following circuits on Microwave Benches

- 1. Characterization of Gunn diode sources, Microstrip devices
- 2. Characterization of Directional Coupler, Tee junctions
- 3. Horn antenna, Parabolic Dish, Micro strip antennas

The students are expected to simulate the following Antennas using RF CAD tools

- 1. Design of Matching circuits using ADS
- 2. Radiation characteristics of Dipole antenna, Microstrip Patch Antenna Using HFSS
- 3. Antenna array simulation Using MATLAB
- 4. Design of Passive circuits, Active circuits using ADS/AWR

Course Outcomes: After completing the course, the students will be able to:

CO1	Understand basic parameters of antenna, principles of Phased Array Antennas, physical phenomenon of wave propagation.			
CO2	Analyze the characteristics of antennas and array structures for different applications			
CO3	3 Design the antenna for a given application and evaluate its performance using RF CAD Tools			
CO4	Characterize antennas using different measurement techniques.			

Refe	Reference Books					
1	Antennas, John D. Kraus & Ronald J. Marhefka, 4th Edition, 2011, Mc Graw Hill, ISBN -0-07-060185-2					
2	Antenna Theory, Constantine A Balanis, 2nd Edition, 2005, John Wiley & Sons, ISBN – 9971-51-233-5.					
3	Anil Pandey, Practical Microstrip and Printed Antenna Design, ARTECH House,2019, ISBN-13: 978-1-63081-668-1					
4	Introduction to Smart Antennas. Balanis, C.A., Ioannides, P.I.: 2(1), 1– 175,2007, 9781598291766					

ADDING UPTO 40 MARKS.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

1.

2.

3.

4.

Approved by AICTE, New Delhi

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION					
COMPONENTS	MARKS				
QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20				
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40				
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome).	40				

Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL				
	MARKS WILL BE 50 MARKS			
	MAXIMUM MARKS FOR THE CIE(THEORY+PRACTICE) 150		
	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO	. CONTENTS	MARKS		
	PART A			
1	Objective type of questions covering entire syllabus	20		

LAB: Conduction of laboratory exercises, lab report, observation, and

analysis (20 Marks), lab test (20 Marks) and Innovative Experiment/ Concept

	FARIB (Maximum of TUDEE Sub divisions only)					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	ΤΟΤΑΙ	100				

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	20				
3	Viva	20				
	TOTAL	50				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI DATA COMMUNICATIONS AND NETWORKING Category: Professional Core Course Stream: Electronics and Telecommunication Engineering (Theory and Practice)

(Theory and Tractice)						
Course Code	:	21ET63		CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 + 50 Marks
Total Hours	:	45L + 30P		SEE Duration	:	3 + 3 Hours

09Hrs

Introduction: Networks: Network Criteria, Physical Structures, Network types: Local Area Network, Wide Area Network, Switching, The Internet, Accessing the Internet.

Network Models: TCP / IP protocol suite: Layered Architecture, Layers in the TCP/IP Protocol Suite, Description of Each Layer, Encapsulation and Decapsulation, Addressing, Multiplexing and Demultiplexing, The OSI Model: OSI versus TCP/IP, Lack of OSI Model's Success.

Introduction to Physical Layer: Performance.

Switching: Introduction : Three Methods of Switching , Switching and TCP/IP Layers, Circuit-Switched Networks : Three Phases , Efficiency , Delay , Packet Switching : Datagram Networks , Virtual-Circuit Networks.

Introduction to Data-Link Layer: Introduction: Nodes and Links, Services, Two Categories of Links, Two Sublayers, Link-Layer Addressing: Three Types of addresses.

of Elliks, Two Sublayers, Ellik Edger Addressing. Three Types of addresses.	
Unit – II	09 Hrs
Link Layer: Data Link Control (DLC): DLC Services: Framing, Flow and E	Error Control,
Connectionless and Connection-Oriented, High Level Data Link Contro	l (HDLC) :
Configurations and Transfer Modes, Framing, Point-to-Point Protocol (PP	P): Services,
Framing, Transition Phases, Multiplexing.	
Media Access Control (MAC): Random Access, Controlled Access.	
Wired LANs: Ethernet: Ethernet Protocol, Standard Ethernet: Characteristics,	, Addressing,
Access Method, Efficiency of Standard Ethernet.	
Wireless LANs: Introduction: Architectural Comparison, Characteristics, Ac	cess Control,
IEEE 802.11 Project: Architecture, MAC Sublayer, Addressing Mechanism.	
Unit –III	09 Hrs
Network Layer : Introduction to Network Layer: Network-Layer Services:	Packetizing ,
Routing and Forwarding, Other Services, Network-Layer Performance, Ipv4	Addresses :
Address Space, Classful Addressing, Classless Addressing, Dynamic Host	Configuration
Protocol (DHCP), Network Address Resolution (NAT), Forwarding Of	IP Packets :
Forwarding Based on Destination Address, Forwarding Based on Label, Rout	ers as Packet
Switches.	
Network-Layer Protocols: Internet Protocol (IP): Datagram Format, Fragmenta	ation,Options,
Security of IPv4 Datagrams, IPv6 Protocol: Packet Format.	

Unit –IV09 HrsNetwork Layer: Unicast Routing: Routing Algorithms: Distance-Vector Routing, Link-StateRouting, Path-Vector Routing, Unicast Routing Protocols: Internet Structure, RoutingInformation Protocol (RIP), Open Shortest Path First (OSPF), Border Gateway Protocol

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Version 4 (BGP4).

Transport Layer: Introduction: Transport-Layer Services, Connectionless and Connection-Oriented Protocols, Transport-Layer Protocols: Simple Protocol, Stop-and-Wait Protocol, Go-Back-*N* Protocol (GBN), Selective-Repeat Protocol, Bidirectional Protocols: Piggybacking.

Unit –V

09 Hrs

Transport-Layer Protocols: Introduction: Services, Port Numbers. User Datagram Protocol: User Datagram, UDP Services, UDP Applications. Transmission Control Protocol: TCP Services, TCP Features, Segment A TCP Connection, Windows in TCP, Flow Control, Error Control, TCP Congestion Control, TCP Timers.

LABORATORY EXPERIMENTS:

Part- A

Experiments Using Routers and Switches: Configuration of Cisco router, IP static routing and RIP using Cisco router, and VLAN using Cisco switch.

Part- B

Experiments Using Qualnet: Experiments on PPP, IEEE 802.3 and IEEE 802.11, RIP and OSPF protocols for wired networks.

Part-C

Programs based on implementation of various algorithm using C/C++.

- 1. Program for error detecting code using CRC-CCITT (16-bits).
- 2. Shortest Path algorithm to find suitable path for transmission.
- 3. Spanning Tree algorithm to find loop less path.
- 4. Implement a client and server communication using sockets programming.
- 5. Message queues of FIFOs as IPC Channel.
- 6. Implement a simple multicast routing mechanism.
- 7. Computation of Linear Block code using C++ Program.
- 8. Implementation of congestion control algorithm.

Course	Outcomes: After completing the course, the students will be able to:
CO1	Explain the principles of computer network and layered model of networking.
CO2	Apply the algorithms/techniques of routing, congestion and Quality of Service to solve problems related to Computer Networks.
CO3	Design and Implement protocols and algorithms for TCP/IP model.
CO4	Evaluate and compare various algorithms/protocols available to address networking issues.

Ref	erence Books
1	Data Communications and Networking, Behrouz A Forouzan, 5 th Edition, 2013, Tata McGraw- Hill, ISBN – 9781259064753.
2	Computer Networks, Andrew S Tanenbaum, 5th Edition, 2014, Pearson Education; ISBN – 978-81-7758-165-2.
3	Computer Networking, A Top-Down Approach, James Kurose and Keith Ross, 6th Edition, 2013, ISBN-13: 978-0-13-285620-1.
4	Data and Computer Communications, William Stallings, 8th Edition, 2009, Pearson Education, ISBN-13: 978-0131392052.

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (20 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE (THEORY+PRACTICE)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEO	DRY)
Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type of questions covering entire syllabus	20
	PART B	
	(Maximum of THREE Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	20
3	Viva	20
	TOTAL	50

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI IMAGE PROCESSING Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering (Theory)

			(Ineory)		
Course Code	•••	21ET64D1	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3 Hours

Unit-I	09 Hrs
Introduction: Introduction to Digital Image Processing, Origins of Digital	ıl Image
Processing, Examples of fields that use DIP, Fundamental Steps in digita	al Image
Processing, Components of an Image Processing System.	
Digital Image Fundamentals: Elements of Visual Perception, A Simple Image F	ormation
Model, Basic Concepts in Sampling and Quantization, Representing Digital Image	s, Spatial
and Grav-level Resolution, Zooming and Shrinking Digital Images, Som	ne Basic
Relationships Between Pixels, Linear and Nonlinear Operations.	
Unit – II	09 Hrs
Image Transforms:	•> •••
Two-dimensional & orthogonal unitary transforms, Properties of unitary transforms	orms, two
dimensional discrete Fourier transform, discrete cosine transform, sine transf	ansform,
Hadamard transform, Haar transform, Slant transform, KL transform.	,
Unit -III	9 Hrs
Image Enhancement in Spatial domain: Some Basic Gray Level Transfo	rmations,
Histogram Processing, Enhancement using Arithmetic/Logic Operations, Basics	of Spatial
Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters.	-
Image Enhancement in the Frequency Domain: Smoothing Frequency-Doma	un Filters,
Sharpening, Frequency Domain Filters, Homomorphic Filtering.	
Unit –IV	9 Hrs
Image Restoration: A Model of the Image Degradation/Restoration Proces	s, Noise
Models, Restoration in the Presence of Noise Only-Spatial Filtering, Period	ic Noise
reduction by Frequency Domain Filtering, Linear,	Position-
Invariant Degradations, Estimating the Degradation Function, Inverse	Filtering,
Minimum Mean Square Error (Wiener) Filtering.	
Color Fundamentals, Color Models, Pseudo-color Image Processing, Basics of F	ull-Color
Image Processing.	
Unit –V	9 Hrs
Morphological Image Processing: Preliminaries, Dilation and Erosion, Opening	gand
Closing, The Hit-or-Miss Transformation, Some Basic Morphological Algorithms.	1
Segmentation: Detection of Discontinuities, Edge Linking and Boundary De	tection,
Thresholding, Region-Based Segmentation.	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Cour	se Outc	omes	: After c	ompl	leting	the	course,	the students	s wil	l be able	to
CO1	Unders	tand d	igital im	age p	roces	sing	fundam	entals and its	app	lications.	
CO2	Apply i	mage	processi	ng te	chniq	ues i	in both s	patial and fre	que	ncy domai	ins.
CO3	Analyz	e and	apply dif	fferen	t ope	ratio	ns on an	image for va	ariou	s applicat	ions.
CO4	Apply commu	and nicati	justify on, socie	the ty	use	of	image	processing	in	modern	multimedia

KUUUUUUUUU

4	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, Pearson
Ι	Education, 2 nd Edition, 2001, ISBN-13: 978-0131687288.
	Fundamentals of Digital Image Processing, Anil K. Jain, Pearson Education / PHI,
2	2001, ISBN: 9780133361650.
	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, 2 nd edition,
3	Pearson Education, 2001.
4	Digital Image Processing, William K. Pratt, 3 rd Edition John Wilely, 2004.
4	

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY						
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO. CONTENTS						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Electronics and Telecommunication Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI VLSI PHYSICAL DESIGN **Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering**

(Theory)

Course Code	:	21ET64D2		CIE	:	100 Marks
Credits: L:T:P	••	3:0:0		SEE	:	100 Marks
Total Hours	••	45L		SEE Duration	:	3 Hours
			IInit_I			AO Hrc

Introduction to ASICs: Full-custom, Standard-cell based, Gate-array based, and Programmable ASICs, ASIC Design flow, ASIC cell Libraries.

Datapath Logic Cells: Data Path Elements, Adders: RCA, Carry save, Carry bypass, and Brent-Kung adder.

09 Hrs

Datapath Logic Cells: Adders: Carry select and Conditional sum adder. Multiplier (Booth encoding).

ASIC Library Design: Logical effort: Cell delay, Logical effort of Inverter, NAND and NOR gates, Predicting delay, Logical paths, Logical area and logical efficiency, Multi-stage cells, Optimum delay, Optimum number of stages.

Unit -III

9 Hrs

Programmable ASIC Logic Cells:

Actel ACT: ACT 1, ACT 2, and ACT 3 Logic Modules, Timing model and critical path for ACT 2 and ACT 3 Logic Modules. Xilinx LCA: XC3000 CLB, Altera: FLEX architecture, and MAX architecture.

Programmable ASIC I/O Cells: Xilinx XC4000 IOB, Altera IOC, and Altera IOE.

Schematic entry for ASICs, Hierarchical design with an example, Net-list screener	•
Unit –IV	9 Hrs
ASIC Construction-I: Physical Design, CAD Tools. Partitioning: Goals and	objectives,
Constructive Partitioning, Iterative Partitioning Improvement: KL, FM, and L	ook-ahead
algorithms. Floor planning: Goals and objectives, Floor planning tools, Channel of	lefinition.
Unit –V	9 Hrs
ASIC Construction II.	

ASIC Construction-II:

Placement: Goals and objectives, Min-cut Placement algorithm, Iterative Placement Improvement algorithms, Physical Design flow.

Global Routing: Goals and objectives, Global Routing Methods, Back-annotation.

Detailed Routing: Goals and objectives, Measurement of Channel Density, Left-Edge, and Area-Routing Algorithms, Final Routing Steps, Design checks.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the concepts of ASIC design methodology, data path elements, FPGA							
COI	architectures and goals and objectives of Physical design.							
CO2	Analyze the design of FPGAs and ASICs suitable for specific tasks, perform design							
	entry and explain the physical design flow.							
CO3	Design data path elements for ASIC cell libraries and compute optimum path delay.							
CO4	Evaluate CAD algorithms for system partitioning, floorplan, placement and routing.							

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

R	leference Bo	ooks								
1	Application	Specific	Integrated	Circuits,	Michael	John	Sebastian	Smith,	1 st Edition,	1997,

Addison-Wesley Professional, ISBN: 0-201-50022-1. CMOS VLSI Design: A Circuits and Systems Perspective, Neil H.E. Weste, David Harris,

² and Ayan Banerjee, 3rd Edition, 2006, Pearson education, ISBN: 108177585681. VI SL Design: A Practical Guide for EPGA and ASIC Implementations. Vikram Av

VLSI Design: A Practical Guide for FPGA and ASIC Implementations, Vikram Arkalgud 3 Chandrasetty, 2011, Springer, ISBN: 978-1-4614-1119-2.

Digital Integrated Circuits: A Design Perspective, Jan M. Rabaey. Anantha Chandrakasan, and Borivoje Nikolic, 2nd Edition, Pearson Education India, ISBN: 9385152343.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR						
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	MARKS						
	PART A	•					
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7&8	16						
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI WSN FOR IoT APPLICATIONS Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering (Theory)

(Theory)						
Course Code	:	21ET64D3	CIE	••	100 Marks	
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	:	45L	SEE Duration		3 Hours	

Unit-I	09 Hrs
Introduction and Overview and Applications of Wireless Sensor	Networks:
Introduction, Background of Sensor Network Technology, Basic overvie	ew of the
Technology, Basic Sensor Network Architectural Elements.	
Applications of Wireless Sensor Networks: Introduction, Background,	Range of
Applications, Examples of Category 2 WSN Applications, Examples of Category	ry 1 WSN
Applications.	
Unit – II	09 Hrs
Basic Wireless Sensor Technology: Introduction, Sensor Node Technolog	gy, Sensor
Taxonomy, WN Operating Environment, WN Trends.	
MAC and Routing Protocols for Wireless Sensor Networks: Introduction, Ba	ackground,
Fundamentals of MAC Protocols, MAC Protocols for WSNs,	
Unit -III	9 Hrs
Routing Protocols for Wireless Sensor Networks: Introduction, Backgro	ound, Data
Dissemination and Gathering, Routing Challenges and Design Issues in WSN	s, Routing
Strategies in WSNs.	
Unit –IV	9 Hrs
Transport Control Protocols for Wireless Sensor Networks : Traditional	Transport
Control Protocols, Transport Protocol Design Issues, Examples of Existing	Transport
Control Protocols, Performance of Transport Control Protocols.	-
Unit –V	9 Hrs
Network Management Requirements for Wireless Sensor Networks: In	ntroduction,
Network Management Requirements, Traditional Network Management models	3, Network
Management Design Issues, Example of Management Architecture : MANNA.	
Course Outcomes: After completing the course, the students will be able to	
CO1 Understand the Wireless sensor networks its architecture and its application	18
CO2 Analyze the challenges in MAC layers and MAC protocols in WSN.	
CO3 Analyze the routing challenges, routing protocols in WSN.	

CO4 Analyze the transport and network management requirements in sensor networks.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books

Wireless Sensor Networks: Technology, Protocols and Applications, Kazem Sohraby, 1 Daniel Minoli, Taieb Znati, 2nd Edition (Indian), 2014, WILEY, ISBN 978-0-471-74300-2.

Wireless Sensor Networks, Ian F. Akyildiz, Mehmet Can Vuran,2010,Wiley, ISBN-13: 9780470036013.

Wireless Sensor Networks- An Information Processing Approach, Feng Zhao & Leonidas **3** J. Guibas, 2007, Elsevier, ISBN-1558609148, 9781558609143.

Fundamentals of Wireless Sensor Networks Theory and Practice, Waltenegus Dargie andChristin Poellabauer, 1st EditionJohn Wiley 2010, ISBN 978-0-470- 99765-9.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	MARKS			
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI **CRYPTOGRAPHY AND NETWORK SECURITY Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering** (

		`
1 n	eorv)
		,

Course Code	:	21ET64D4	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3 Hours

Unit-I	09 Hrs
Computer and Network Security Concepts: Computer Security Concepts, The C	SI Security
Architecture, Security Attacks, Security Services, Security Mechanisms, Fundamen	tal Security
Design Principles, A Model for Network Security, Standards.	
Classical Encryption Techniques: Symmetric Cipher Model, Substitution T	echniques,
Transposition Techniques, Rotor Machines, Steganography.	
Unit – II	09 Hrs
Block Ciphers and Data Encryption Standards (DES): Traditional Block Ciphe	er Structure,
The Data Encryption Standard, A DES Example, The Strength of DES, Block Cij	pher Design
Principles.	
Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems,	The RSA
Algorithm, Diffie-Hellman key exchange, Elgamal Cryptographic System, Ellip	ptic Curve
Arithmetic, Elliptic Curve Cryptography.	
Unit -III	09 Hrs
Cryptographic Hash Functions: Applications of Cryptographic Hash Functions,	Гwo Simple
Hash Functions, Requirements and Security, Hash Functions Based on Cipher Block	c Chaining.
Message Authentication Codes: Message Authentication Requirements,	, Message
Authentication Functions, Requirements for Message Authentication Codes (MAC	C), Security
of MACs, MACs Based on Hash Functions: HMAC.	
Digital Signatures: Digital Signatures, Elgamal Digital Signature Scheme, NI	ST Digital
Signature Algorithm.	
Unit –IV	09 Hrs
Network Access Control and Cloud Security : Network Access Control,	Extensible
Authentication Protocol, IEEE 802.1X Port-Based Network Access Control, Cloud	Computing,
Cloud Security Risks and Countermeasures, Data Protection in the Cloud, Cloud S	ecurity as a
Service, Addressing Cloud Computing Security Concerns.	
Transport-Level Security: Web Security Considerations, Transport Layer Securit	y, HTTPS,
Secure Shell (SSH).	
Unit –V	09 Hrs
Electronic Mail Security: Internet Mail Architecture, Email Formats, Email	Threats and
Comprehensive Email Security.	
IP Security: IP Security Overview, IP Security Policy, Encapsulating Security	ty Payload,
Combining Security Associations, Internet Key Exchange, Cryptographic Suites.	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Go, change the world

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Explain the fundamental concepts, issues and principles of cryptography for data					
001	transmission.					
CO2	Apply cryptographic techniques and algorithms to provide security to the transmitted information.					
CO3	Analyze the concepts of Authentication, Hash functions and Digital signature.					
CO4	Understand and analyze System level security issues and protocols.					

Reference Books

Cryptography and Network Security, Williams Stallings, Seventh Edition, 2017, Pearson India Education Services, ISBN 978-0-13-444428-4.

Network Security, Perlman - Kaufman Spenciner, 2002, Pearson Education/PHI, ISBN: 29971–51–45–5.

Cryptography & Network Security, AtulKahate, 2003, TMH, ISBN-81-203-2186-3.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO. CONTENTS					
	PART A	-			
1	Objective type questions covering entire syllabus	20			
	PART B	-			
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Electronics and Telecommunication Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI EMI, EMC AND SIGNAL INTEGRITY Category: Professional Elective Course Stream: Electronics and Telecommunication Engineering (Theory)

Course Code	:	21ET64D5	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3 Hours

	Unit-I	09 Hrs
Introd	uction to Electromagnetic Compatibility: Aspects of EMC, Decibels and	Common
EMC U	Jnits.	
EMC	Requirements for Electronic Systems: Governmental Requirements,	Additional
Produc	t Requirements, Design Constraints for Products, Advantages of EMC Desi	gn
	Unit – II	09 Hrs
Transı	nission Lines and Signal Integrity: The Per-Unit-Length Parameters, High	h-Speed
Digital	Interconnects and Signal Integrity	
Nonid	eal Behavior of Components: Wires, Printed Circuit Board (PCB) Lands	s, Effect of
Compo	onent Leads, Resistors, Capacitors, Inductors, Ferromagnetic Materials, Fer	rite Beads,
Comm	on-Mode Chokes, Electromechanical Devices, Digital Circuit Devices,	Effect of
Compo	onent Variability	
	Unit -III	09 Hrs
Condu	cted Emissions and Susceptibility: Measurement of Conducted Emission	ions, Power
Supply	Filters-Basic Properties of Filters, Power Supplies, Power Supply	and Filter
Placem	ent, Conducted Susceptibility	
Radiat	ed Emissions and Susceptibility: Simple Emission Models for Wires	and PCB
Lands,	Simple Susceptibility Models for Wires and PCB Lands	
	Unit –IV	09 Hrs
Crosst	alk: Three-Conductor Transmission Lines and Crosstalk, Shielded Wires, T	wisted
Wires		
Shield	ing: Shielding Effectiveness.	1
	Unit –V	09 Hrs
System	Design for EMC : Grounding, Safety Ground, Signal Ground, S	Single-Point
Ground	ling, Multipoint Grounding, and Hybrid Grounding, Ground Loops and	Subsystem
Decou	pling, Printed Circuit Board (PCB) Design, System Configuration a	nd Design,
Diagno	ostic Tools	
Cour	se Outcomes: After completing the course, the students will be able to	
CO1	Understand and explain the concepts of EMI and EMC, standards and meas	surements
CO2	Apply EMI controlling techniques to reduce effect of interference of	n modern
02	communication systems.	
CO3	Analyze and measure the system for EMI and EMC to the standards define	d
004	Design and develop a system and PCBs to control the effects of electr	omagnetic
004	interference.	-

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books

- C.R.Paul,"Introduction to Electromagnetic Compatibility", John Wiley and Sons, Inc, 1 2008.
- V.P.Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE
 Press, Newyork, 2010.
- Henry W.Ott.,"Electromagnetic Compatibility Engineering", A Wiley Inter Science **3** Publications, John Wiley and Sons, Newyork, 2009

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO. CONTENTS						
	PART A	-				
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI SMART ANTENNAS Category: Professional (Cluster) Elective Course Stream: Electronics and Telecommunication Engineering (Common to EC,EE,EI& ET Programs) (Theory)

Course Code	••	21ET65E1	CIE	:	100 Marks
Credits: L:T:P		3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3 Hours

Unit-I	09 Hrs
Arrays Introduction, Two-Element Array, N-Element Linear Array: Uniform Amplit	tude and
Spacing, N-Element Linear Array: Directivity Design Procedure, N-Element Linea	r Array:
Three-Dimensional Characteristics, Rectangular-to-Polar Graphical Solution, N-	Element
Linear Array: Uniform Spacing, Planar Array	
Unit – II	09 Hrs
Introduction to Smart Antennas: Need for Smart Antennas, Overview, Smart A	Intenna
Configurations, Space Division Multiple Access, Architecture of Smart Antenna S	System,
Benefits, Drawbacks, Basic Principles, Mutual Coupling Effects.	
Unit –III	09 Hrs
Beamforming: Fixed Weight Beamforming Basics - Maximum Signal-to-Interference	e Ratio,
Minimum Mean-Square Error, Maximum Likelihood, Minimum Variance A	daptive
Beamforming - Least Mean Squares, Sample Matrix Inversion, Recursive Least S	Squares
Constant Modulus, Least Squares Constant Modulus, Conjugate Gradient M	Aethod,
Spreading Sequence Array Weights, Description of the New SDMA Receiver	
Unit –IV	09 Hrs
Angle-of-Arrival Estimation: Array Correlation Matrix, AOA Estimation Methods	-Bartlett
AOA Estimate, Capon AOA Estimate, Linear Prediction AOA Estimate, Maximum	Entropy
AOA Estimate, Pisarenko Harmonic Decomposition AOA Estimate, Min-Norr	n AOA
Estimate, MUSIC AOA Estimate, Root-MUSIC AOA Estimate, ESPRIT AOA Estimate	ate.
Unit –V	09 Hrs
Next generation Antennas: Metamaterial Antennas Metamaterial Antennas Based	on NRI
Concepts ,High-Gain Antennas Utilizing EBG Defect Modes, Reconfigurable A	ntennas:
Introduction, Analysis, Overview of Reconfiguration Mechanisms for Antennas, UW	B planar
antennas, Phased array antennas for 5G communications, MIMO antennas	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Elucidate parameters and principles of Adaptive Antennas, Application specific Antennas					
CO2	Apply signal processing concepts in analyzing beamforming techniques and Algorithms					
CO3	Analyze and Compare various techniques employed in designing Adaptive Antennas with Beam forming algorithms					
CO4	Design and evaluate the Industry specific Practical antennas					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	erence Books
1	Introduction to Smart Antennas. Synth. Lect. Antennas, Balanis, C.A., Ioannides, P.I.: 2(1), 1–175,2007, 9781598291766.(Unit-2,Unit-3)
2	Smart Antennas with Matlab: Principles and Applications in Wireless Communication, Frank B Gross,2015, McGraw-Hill Professional, New York, ISBN- 978-0-07-182494- 1(Unit-1,Unit-4)
3	Frontiers in Antennas: Next Generation Design & Engineering, Frank B gross, 2011, Mcgraw Hill Publications, ISBN : 9780071637930. (Unit-5)
4	Smart antenna, Lal Chand Godara, 2004, CRC press, London, ISBN: 9780849312069.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	RY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	IO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: V	VI		
		SATELLIT	E COMMU	UNICATION		
	(Category: Professi	onal (Clus	ter) Elective Cou	irse	
St	rea	m: Electronics an	d Telecom	munication Engi	ineer	ing
		(Common to I	EC,EE,EI&	& ET Programs)		
	1		(Theory)			100 3 5 3
Course Code	:	21ET65E2		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hrs	:	45L		SEE Duration	:	3Hrs
		Unit-I				09 Hrs
Orbital Mechanics	: 0	rbital Mechanics, L	ook Angle.	Determination, Or	bital	Perturbations, Orbit
Determination, Laun	che	s and Launch Vehicle	es, Orbital E	Effects in Communi	catio	n systems
		Unit – I	[09 Hrs
Satellite Sub-Syste	ems	: Altitude and orbi	t control sy	stem, TT&C Sub	-Syst	em, Altitude control
Sub-System, Power	r Sy	stems, Communica	ation Subsy	stems, Satellite a	ntenr	na Equipment.
Satellite Link: Basic	trar	nsmission theory, sys	stem noise t	emperature and G/	Г rati	o, Design of Uplinks
and Downlink, C-bar	nd s	ystem Design Examp	ole.			
		Unit –II	Ι			09 Hrs
Propagation effects : Introduction, Atmospheric Absorption, Cloud Attenuation, Tropospheric and Ionospheric Scintillation and Low angle fading, Rain Induced attenuation, rain induced cross polarization interference. Multiple Access: Frequency Division Multiple Access (FDMA), Intermodulation, Calculation of C(A). Time Division Multiple Access (TDMA). Frame structure Durat						
structure Satellite	Sv	vitched TDMA O	nhoard nr	cessing Deman	1 As	signment Multiple
Access (DAMA) (ים אחי	A Spread Speetru	m Tronemi	esion and Decenti	on	signment maniple
Access (DAMA), (7 TIANSIN	ission and Recept	OII	00 11
<u> </u>			/ 			<u> </u>
Communication S	ate	lites: Introduction	, Related A	Applications, Freq	uenc	y Bands, Payloads,
Satellite Vs. Terre	stria	al Networks, Satel	lite Teleph	ony, Satellite Tel	levisi	on, Satellite radio,
Regional satellite S	yst	ems, National Sate	llite Systen	ns.		
		Unit –V	•			09 Hrs
Remote Sensing Sa	atell	lites: Classification	of remote	sensing systems, o	orbits	, Payloads, Types of
images: Image C	lass	ification, Interpreta	ation, App	lications. Weathe	r Fe	orecasting Satellites:
Fundamentals, Image	es, (Drbits, Payloads, Ap	plications. N	Navigation Satellite	s: De	velopment of Satellite
Navigation Systems,	GP	S system, Applicatio	n	-		-
Course Outcome	s: /	After completing t	he course.	the students will	be a	ble to
$\frac{1}{1}$						
CO2 Analyse the station.	ele	ctronic hardware sy	vstems asso	ciated with the sa	tellite	e subsystem and earth

CO3 Compute the satellite link parameters under various propagation conditions with the illustration of multiple access techniques
 CO4 Identify and Analyse the working of the satellites used for applications in remote sensing,

weather forecasting and Navigation

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

R	eference Books
	Satellite Communications- Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE,
1	Wiley Publications, 2nd Edition, 2003, John Wiley & Sons.
	Anil K. Maini, Varsha Agrawal, Satellite Communications, Wiley India Pvt Ltd,
2	2015, ISBN: 978-81-265-2071-8.
	K. N. Raja Rao, Satellite Communication: Concepts and Applications, PHI Learning
3	Private India, 2013, ISBN-978-81-203-4725-0

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEO)	RY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

		Se	mester: VI			
REAL TIME SYSTEMS						
	Ca	tegory: Profession	al (Cluste	r) Elective Cours	se	
St	rea	m: Electronics and	d Commu	nication Enginee	ring	
		(Common to EC	,EE,EI& I	ET Programs)		
	1	((Theory)			
Course Code	:	21EC65E1		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hrs	:	45L		SEE Duration	:	3Hrs
		Unit-I				09 Hrs
Introduction: Over	rvie	ew, Real-Time Syst	ems, Case	Study: Radar Sys	tem,	Cross-Platform
Development Proce	ess,	Hardware Archited	cture, Build	l Target Images, 7	Frans	fer Executable
File Object to Targe	et, I	Integrated Testing of	on Target, l	System Productio	n, Int	errupts
Overview, Design	oatt	erns for ISR's, Inte	errupt Resp	oonse time, Syster	n Bo	otloader,
System Boot FO Re	eso	urces: Memory: Ph	ysical Hier	archy, Cache, Me	emory	v Planning,
Memory shadowing	3	-	-	-	-	-
Unit – II 09 Hrs						
Real-Time UML: General Resource Modeling: Overview of UML, Architecture						
modelling in UML, Real-Time UML Profile, Resource Modeling, Time Modeling,						
Concurrency Modeling.						
Real-Time UML: Model Analysis: Elicitation of Timing Constraints, RT-UML Profile						
Unit –III 09 Hrs						
Software Architectures for Real-Time Embedded Systems: Real-Time Tasks, WCET,						
intermediate FO, Execution Efficiency, Round-Robin Architecture, Round Robin with						
Interrupts, Queue-E	Base	ed Architecture, Mu	ultitask De	sign, Multitask Re	esour	ce Sharing,
Addressing Resour	ce I	Deadlocks, Address	sing Priori	Inversion		
		Unit –IV	7			09 Hrs
Real-Time Schedu	ılin	g: Clock-Driven A	Approach, l	Rate-Monotonic a	appro	ach, Sporadic
Server approach, l	Res	ource sharing, IPC	C: Message	e Ques, Pipes, S	ignal	ling, Remote
Procedure and Soc	kets	s, Real Time Mem	ory Manag	ement: Process S	tack	Management,
Dynamic Allocation	n, F	Hardware and softw	are timing	management.		
		Unit –V				09 Hrs
Examples of Real Time OS: Vx-Works, RTX-ARM: Task Management, Scheduling,						
Primitive Kernel Services, Application Program development using APIs, QNX						
resource manageme	ent,	Case studies: Calc	ulator, Dev	vice Drivers		
Course Outcome	s: /	After completing f	he course	the students will	be a	ble to

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Understand the fundamental concepts of real-time system and real-time operating system.
CO2	Analyze given requirements, design hardware & software for real time systems.
CO3	Apply modern engineering tools for real time firmware development & performance analysis
CO4	Verify the specifications of various real time operating systems used for meeting timing constraints of given problem

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ogical ty, Belagavi

Approved by AICTE, New Delhi

Refe	rence Books
	Real-Time Embedded Systems Design Principles and Engineering Practices by
1	X1aocong Fan, Newnes Publishers an imprint of Elsevier 2015, ISBN10:)0128015071
2	Real-Time Embedded Systems and Components, Sam Siewert, 2007, Cengage Learning India Edition, ISBN: 9788131502532
3	Real-Time Embedded Systems Krishna CM and Kang Singh G, 2003, Tata McGraw Hill, ISBN: 0-07-114243-64
4	Real-Time Concepts for Embedded Systems Qing Li and Carolyn Yao, 2003 CMP Books ISBN:1578201241
5	Real Time Systems Jane W. S. Liu, 2000, Prentice Hall, ISBN:0130996513

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Electronics and Telecommunication Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI DIGITAL SYSTEM DESIGN WITH FPGA Category: Professional (Cluster) Elective Course Stream: Electronics and Communication Engineering (Common to EC,EE,EI& ET Programs) (Theory) Code : 21EC65E2 CIE : 100

Course Code	:	21EC65E2	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hrs	:	45L	SEE Duration	:	3Hrs

Unit-I	09 Hrs	
Introduction to Verilog and Design Methodology:		
Verilog IEEE standards, Verilog Data Types: Net, Register and Constant. Verilog	Operators,	
Number representation and Verilog ports, Simulation and Synthesis, Test-benches	s.	
Verilog Primitives. Logic Simulation, Design Verification, and Test Methodo	logy:	
Four-Value Logic and Signal Resolution in Verilog, Test Methodology Signal Ge	nerators	
for Test benches, Sized Numbers.		
Introduction to Design Methodology:		
Digital Systems and Embedded Systems, Real-world circuits. Design Methodolog	gy: Design	
Flow-Architecture, Functional design and verification, Synthesis, Physical design. Design		
Optimization-Area, Timing and Power, System representation.		
Unit – II	09 Hrs	
Number Basics and Verilog Modelling Styles:		
Number Basics: Unsigned and Signed Integers, Fixed-point and Floating-point N	Jumbers.	
Boolean Functions and Boolean Algebra, Verilog models for Boolean switching function,		
Binary Coding.		
Behavioural Modelling: Latches and Level-Sensitive Circuits in Verilog, Cyclic Behavioural		
Models of Flip- Flops and Latches, Behavioural Models of Multiplexers, Encoder	s, Decoders	
and Arithmetic circuits.		

Dataflow Modelling: Boolean Equation-Based Models of Combinational Logic, Propagation Delay and Continuous Assignments. Linear-Feedback Shift Register. Tasks & Functions.

Structural Modelling: Design of Combinational Logic, Verilog Structural Models, Top-Down Design and Nested Modules. (Hands on using Xilinx Vivardo tool).

Unit –III			
Synthesis of Combinational Sub-systems: Introduction to Synthesis, Synthesis of			
Combinational Logic, Synthesis of Sequential Logic with Latches, Synthesis of Three-state			
Devices and Bus Interfaces.			
Synthesis of Sequential Sub-systems: Synthesis of Sequential Logic with Flip-Flops,			
Synthesis of Explicit State Machines, Registered Logic, State Encoding, Synthesis of			
Implicit State Machines, Registers and Counters. (Hand on using Xilinx Vivardo)			
Unit –IV	09 Hrs		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

System Implementation and Fabrics: CPLD vs FPGA Architecture - Programming Technologies-Chip I/O- Programmable Logic Blocks- Fabric and Architecture of FPGA. Xilinx Virtex VI Architecture - ALTERA Cyclone II Architecture - ALTERA Stratix IV Architecture, Hardcore and Softcore FPGA.

Unit –V

Approved by AICTE,

New Delhi

09 Hrs

Processor Design and System Development: Design of Processor Architectures: Functional Units for Addition, Subtraction and Multiplication (overview). Design: Hierarchical Decomposition STG-Based Controller Design, Efficient STG-Based Sequential Binary Multiplier.

Cour	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the digital system designs skills using VERILOG HDL based on IEEE-1364				
	standards and managed by Open Verilog International (OVI).				
CO2	Demonstrate the skill on cost-effective system designs through proper selection of				
	implementation fabrics for the desired application.				
CO3	Analyze complete systems and build small scale applications using Interfacing				
	Concepts				
CO4	Design and implement complete digital systems using VERILOG HDL and				
	demonstrate the innovation skills.				

Refe	Reference Books				
1	Advanced Digital Design With the Verilog HDL, Michael D. Ciletti, 2nd Edition, PHI, ISBN: 978–0–07-338054-4 2015.				
2	Digital Design: An Embedded Systems Approach Using VERILOG, Peter J. 1st Edition, Ashenden, Elsevier, ISBN: 978-0-12-369527-7, 2010.				
3	Digital Systems Design Using Verilog, 1st Edition, Charles Roth, Lizy K. John, Byeong Kil Lee, Cengage Learning, ISBN-10: 1285051076, 2015.				
4	Fundamentals of Digital Logic with Verilog Design, Stephen Brown and Zvonko Vranesic, 6th Edition, McGraw Hill publication, ISBN: 978-0-07-338054–4, 2014.				

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based	40				

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

seminar/presentation/demonstration (20)Phase 2 will be done in the exhibitionmode (Demo/Prototype/any outcome).ADDING UPTO 40 MARKS.MAXIMUM MARKS FOR THE CIE THEORY100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Semester: VI SMART GRID TECHNOLOGY Category: Professional (Cluster) Elective Course Stream: Electrical and Electronics Engineering (Common to EC,EE,EI& ET Programs)

> > (Theory)

			(Incory)			
Course Code	:	21EE65E1	CII	E	:	100 Marks
Credits: L:T:P	:	2:0:0	SEI	E	:	100 Marks
Total Hours	:	45 L	SEI	E Duration	:	3Hrs

Unit-I	09 Hrs
Introduction to Smart Grid: Concept of Smart Grid, Conventional Grid Vs Smar	t Grid, Smart
Grid Domains, Early Smart Grid Initiatives, Overview of the technologies required	for the Smart
Grid, Core Applications of Smart grid.	
Modern Technologies in Transmission and Distribution for Smart Grid: Presen	nt Challenges
on Transmission Grids, Smart Transmission, Energy management systems,	Wide Area
applications, Substation automation, Distribution management systems, App	lications for
distribution network automation.	
Unit – II	09 Hrs
Measurement and Monitoring in Smart Grid: Intelligent Electronic devices, RTU,	, Evolution of
Smart meters, Communication Infrastructure for smart Metering, WAMPAC, Multi	agent System
Technology.	
Communication Technologies for Smart Grid: Introduction, Communication	Fechnologies,
Smart Grid Network architecture.	
Interoperability, Cyber Security and standards: Interoperability, Information secu	rity for smart
grid, Encryption and Decryption for security, Authentication, Digital signatures, C	yber security
standards, Cyber security risks.	1
Unit –III	09 Hrs
Communication technologies for smart grid	
Wireless technologies: WPANs, LAN, Wireless metropolitan area network, cells	ular network,
satellite communication, Zigbee, Bluetooth, LAN, NAN	
Wireline communication: Phone line technology, powerline technology, c	oaxial cable
technology; Optical communication, TCP/IP networks	1
Unit –IV	09 Hrs
Renewable Energy Sources and Storage in Smart Grids: Sustainable energy opti	ons for smart
grid, Penetration and variability issues associated with sustainable energy technological	ogy, Demand
response issues, Energy Storage Technologies, Selection of storage technology, C	Case study of
micro grid with renewable energy, Case study of renewable Energy Resources integra	tion.
Unit –V	09 Hrs
Power Quality Management in Smart Grid: Power Quality & EMC in Smart	Grid, Power
Quality issues of Grid connected Renewable Energy Sources, Power Quality Con	iditioners for
Smart Grid, Web based Power Quality monitoring, Power Quality Audit.	
Indian Smart Grid Scenario: Indian Power Sector, Renewable energy developm	nent in India,
Smart grid Drivers for India, Smart grid Initiatives in India, Roadmap, Smart grid	pilot projects,
Case studies.	

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to: -CO 1Understand the fundamental concepts of a smart grid and discuss the technologies
needed for it.CO 2Analyse the power quality and cyber risks of the smart grid and propose appropriate
measures.CO 3Select suitable energy storage devices for a given grid.CO 4Design a WAM system for the grid, including the metering and communication
infrastructure.

Refe	erence Books
1	Smart Grid Applications, Communications, and Security, by Lars T. Berger and
1.	Krzysztof Iniewski, 1st Edition, Wiley, 2015, ISBN: 978-8126557363.
	Smart Grid: Technology And Applications, by Janaka Ekanayake, Kithsiri Liyanage,
2.	Jianzhong Wu, Akihiko Yokoyama, and Nick Jenkins, 1st Edition, John Wiley & Sons,
	2012, ISBN: 978-0470974094.
3.	Smart Grid: Fundamentals of Design and Analysis, by James Momoh, 1st Edition, Wiley
	IEEE-Press, 2012, ISBN: 978-0470889398.
4	Smart Grids – Fundamentals and Technologies in Electricity Networks, by Buchholz,
4.	Bernd M., Styczynski, Zbigniew, 2nd Edition, Springer, 2020, ISBN: 978-3662609293.
5.	Smart Grid: Infrastructure, Technology and Solutions, by Stuart Borlase, 1st Edition,
	CRC Press, 2012, ISBN: 978-1439829059.
6.	Fundamentals of Smart Grid Technology, by Bharat Modi, Anu Prakash, Yogesh Kumar,
	1st Edition, S.K.Kataria & Sons, 2015 ISBN: 978-9350144855.

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIMUM MARKS FOR THE CIE THEORY 10		

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)						
Q.NO. CONTENTS						
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub divisions only)					
2		16				
2	Unit I : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	Total 100					

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI

MODERN CONTROL THEORY Category: Professional (Cluster) Elective Course Stream: Electrical and Electronics Engineering (Common to EC,EE,EI& ET Programs)

(Theory)

			(=====;)			
Course Code	:	21EE65E2		CIE	:	100Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours
			Unit-I			09 Hrs

Introduction: State Variable Analysis of Dynamic systems, State Equations, SISO and MIMO Systems. State Model of Physical Systems: Signal flow graphs, Relation between Transfer function and State equation.

Eigen Values: Characteristic equation, Eigen values, Eigen vectors, generalized Eigen vectors, Similarity transformation, transformation of a state model to diagonal/Jordan canonical form.

Unit – II09 HrsSolution of State Model: Solution of state equation, transition matrix and its properties,
computation using Laplace transformation, power series method, similarity transformation,
Cayley-Hamilton method.09 Hrs

Controllability & Observability: Concept of controllability & observability, methods of determining the same, Relation between controllability, observability & pole zero cancellations.

Unit –III09 HrsStability of Linear Systems: Lyapunov stability criteria, Lyapunov functions, direct method of
Lyapunov for the linear systems.

Pole placement design techniques: Stability improvements by state feedback, necessary and sufficient conditions for arbitrary pole placement, state regulator design, and design of state observer.

Unit –IV09 HrsNon-Liner Systems:Introduction, behaviour of non-liner system, common physical non-
linearity saturation, friction, backlash, dead zone, relay, multivariable non-linearity. Phase plane
method, singular points, stability of nonlinear system, limit cycles, construction of phase
trajectories.

Stability of Non-linear systems: Construction of Lyapunov functions for nonlinear system by Krasovskii's method

Unit –V09 HrsNonlinear Control Design: Design and analysis of feedback control for nonlinear systemsthrough linearization, feedback linearization and Lyapunov based methods, design and analysisof high gain feedback, e.g. sliding mode control, observers for non linear systems.

Course Outcomes: After completing the course, the students will be able to: -								
CO1	Explain the concepts of state space, eigen value and Eigen vectors, controllability							
	and observability, pole placement, non-linear systems and Lyapunov stability.							
CO2	Represent the systems in state space, Response of systems with and without state							
	feedback controllers and observers, Analysis of stability of linear and nonlinear systems							

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

C O3	Transform state models to canonical, observable and controllable forms. Asses the need
	of state feedback controllers and observers, Evaluate the stability of non-linear systems
	and Liapunov stability criterion.

CO4 Design state feedback controllers and observers.

г						
	Reference Books					
	1	Modern Control Engineering, Katsuhiko Ogata, 5th Edition, 2003, PHI ISBN 81-7808-579-8.				
	2	Automatic control system, Benjamin C. Kuo and Farid Golnaraghi, 8 th Edition, 2003, John Wiley and Sons, ISBN 0-471-13476-7.				
	3	G. J. Thaler and M. P. Pastel Analysis and Design of Nonlinear Feedback Control Systems, McGraw-Hill, 1962.				
	4	D. Graham and D. McRuer Analysis Of Nonlinear Control Systems, John Wiley 1961 (also Dover edition 1971).				

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)						
Q.NO.	MARKS					
	PART A					
1	20					
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	16					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Electronics and Telecommunication Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV

ELECTRONICS EQUIPMENT INTEGRATION AND PROTOTYPE BUILDING Category: Professional (Cluster) Elective Course Stream: Electronics and Instrumentation Engineering (Common to EC,EE,EI& ET Programs)

(Theory)

Course Code	••	21EI65E1	· •	CIE	:	100 Marks
Credits: L:T:P	••	3:0:0		SEE	••	100 Marks
Total Hours	••	45L		SEE Duration	:	3 Hours

Unit-1 09 Hrs				
Introduction: Introduction to electronic products, examples from real life: Parts to system,				
simulation of flat prismatic parts, flat parts enclosures, real life parts to scale on a graph.				
Product Concepts and Prototyping: First steps of prototyping, top down, outside to internals,				
using a print and fabrication video, details of keys and displays, improvement on marking				
and skills.				
Unit – II 09 Hrs				
Integrating sub systems to larger systems: Mass production in sheet metal, prototyping of				
user interfaces for concepts, stacking of equipment to make a system, Recapitualising a				
subsystem, off the shelf enclosures and making a user interface.				
Unit –III 09 Hrs				
Small units: looking around for concepts and integration, representation on a paper, example				
features of solids and surfaces, simple and curved surfaces, describing inclined surfaces.				
Drafting and Design: Basics of engineering drawing, introduction to sizing and fits,				
practical mechanical assemblies, analogous mechanical to electronics detailing, solid				
modelling				
Unit IV 09 Hrs				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign,				
Use of CAD drawing for detailing : Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical				
Use of CAD drawing for detailing : Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing.				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple				
 Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen. 				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen. Unit V 09 Hrs				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing.Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen.Unit V09 HrsA design fully by low cost 2D 3D CAD: Fastenings and hardware, fastener representation				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing.Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen.Unit V09 HrsA design fully by low cost 2D 3D CAD: Fastenings and hardware, fastener representation and detailing, practical detailing, Recapitulation, context of course, Low cost is the key.				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen. Unit V 09 Hrs A design fully by low cost 2D 3D CAD: Fastenings and hardware, fastener representation and detailing, practical detailing, Recapitulation, context of course, Low cost is the key. Case studies: physical simulation of small systems, building of prototype mock ups, Designs				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen. Unit V 09 Hrs A design fully by low cost 2D 3D CAD: Fastenings and hardware, fastener representation and detailing, practical detailing, Recapitulation, context of course, Low cost is the key. Case studies: physical simulation of small systems, building of prototype mock ups, Designs for production scale up, Design of front panel layout and graphics.				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen. Unit V O9 Hrs A design fully by low cost 2D 3D CAD: Fastenings and hardware, fastener representation and detailing, practical detailing, Recapitulation, context of course, Low cost is the key. Case studies: physical simulation of small systems, building of prototype mock ups, Designs for production scale up, Design of front panel layout and graphics.				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen. Unit V 09 Hrs A design fully by low cost 2D 3D CAD: Fastenings and hardware, fastener representation and detailing, practical detailing, Recapitulation, context of course, Low cost is the key. Case studies: physical simulation of small systems, building of prototype mock ups, Designs for production scale up, Design of front panel layout and graphics. Course Outcomes: After completing the course, the students will be able to:-				
Use of CAD drawing for detailing: Importance of dimensioning, ease of editing redesign, dimensioning of electronic components, 2D flat representation, Electronics to mechanical interfacing. Practical example mock up: complexity of 3D assemblies with wiring, illustrative simple design, practical detailing, rendered onscreen. Unit V 09 Hrs A design fully by low cost 2D 3D CAD: Fastenings and hardware, fastener representation and detailing, practical detailing, Recapitulation, context of course, Low cost is the key. Case studies: physical simulation of small systems, building of prototype mock ups, Designs for production scale up, Design of front panel layout and graphics. Course Outcomes: After completing the course, the students will be able to:-CO 1 Understand the concepts of protype building				

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	ference Books
1.	Product Design and Development, Karl Ulrich, Steven D Eppinger, Tata Mc Graw Hill, 6th Edition, 2016, ISBN-13 : 978-0-07-802906-6
2.	Electronic Prototype Construction, Stephan D. Kasten, September 1983, Sams Technical Publishing, ISBN-13 : 978-0672218958

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY	()
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7&8	16						
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Ser	mester: VI				
			VIRTUAL IN	ISTRUMEN	TATION			
		C	Category: Profession	al (Cluster)) Elective Course	;		
	S	tre	am: Electronics and	d Instrumer	ntation Engineer	ing	5	
			(Common to EC	,EE,EI& E	T Programs)			
~			(Theory)			100	
Course	e Code	:	21EI65E2		CIE	:	100	Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100	Marks
Total	Hours	:	45L		SEE Duration	:	03	Hours
T 7• 4	1 •		Unit-I		···· 1:4:- ··· 1 ··· - 4 ····			09 Hrs
Virtua	al instrumer	ita	tion: Virtual instru	ment and	traditional instru	nei	nt, n	ardware and
SOITWE	tre in vi, g	rap	onical system design	n using La	idviEw. Introdu		on to	0 Labview:
Advan	itages, softwa	ire	environment, creating	ng and savi	ng VI, front pane	1 a	na b	lock diagram
t001 Da	ar, palettes, co	<u>nt</u>	rois and indicators, b	TOCK diagram	n, data types, data	i IIO	ow pi	rogram.
N. 1	1		$\frac{\text{Unit} - \mathbf{I}}{\text{Unit} - \mathbf{I}}$	I •	1.1		1	09 Hrs
Modu	lar program	m1	ing: Build a VI from	t panel and	block diagram, b	u11	aing	a connector
pane,	displaying su	1D-	vis and express vi	Is, creating	sub-vis, Repetit	101	i and	1 loops: For
loops,	while loops	, :	structure tunnels, ter	rminal insid	de or outside lo	ops	s, shi	ift registers,
feedba	ick nodes, co	onti	rol timing, commun	ication amo	ong multiple loop	ıs,	local	and global
variab	les. Structure	s:	Case, sequence, cust	tomizing, tii	med structures, fo	rm	iula i	nodes, event
structu	ires.			-				00 T
			Unit –II	1	• • • • •.•	1.		09 Hrs
Array	s & Clusters	;; (reating one dimensi	onal, two di	imensional, multi	-d1r	nens	ional arrays,
array	initialization,	de	eleting, inserting, rep	placing elem	ients within an ai	ray	, arr	ray function,
auto 11	idexing. Clus	ter	s functions.					
File a	nd Strings:	Int	roduction to Files, F	The Formats	s, File I/O Functi	ons	3, F1l	le operation,
Introd	uction to Str	Ing	g Functions, Labvie	EW String	Functions, Typica	ιe	exam	ples, Visual
displa	y types- grapi	18,	charts, XY graph	. 7				00 11
D	• • • • •	• 41		V 	:-:		1	U9 Hrs
Data A	Acquisition v	vit	h Labview: PC ba	ased data aco	quisition, Typical	on	board	d DAQ card,
Resolu	ition and sa	mp	pling frequency, Mi	ultiplexing	of analog input	s-S	ingle	e-ended and
differe	ential inputs,	.0	oncept of universal	DAQ card	, Use of timer-	<i>εοι</i>	inter	and analog
output	outputs on the universal DAQ card, DAQ Assistants, Analysis Assistants. Real time							
applica	ation using DA	Q	Lards.	7				00 H ma
Docia	n Dattanne Di	- d	Unit – v	lal Event S	tructure Model N	/loc	tor S	U9 HIS
Design State	I Fattern: Pl	:00 1	and Supebronization	lei, Event S	anhoro	Tas	aer-5	slave Model,
State I	Drocossing A	ei, nni	and Synchronization	lightion wir	apilore.	180	muD	IO for speed
control	of DC Motor	րը։ ուi	ng encoder	plication usi	ig mykio, comig	ne	шук	10 for speed
control	TOT DC MOTOR	usi	ng encoder.					
Cours	e Outcomes:	A	fter completing the	course, the	students will be	abl	e to:	
	Pamamhar		d understand the fu	ndamontala	of Virtual Inst	100	antot	ion and data
COI	Acquisition	an		nuamentals	or virtual mstru	1111(Untal.	ion and uata
CO2	Apply the th	000	ratical concerts to re	aliza prostia	alexetane			
002	Apply the th	CO	renear concepts to re	anze practic	ai systems.			

CO3 Analyze and evaluate the performance of Virtual Instrumentation Systems.

CO4 Create a VI system to solve real time problems using data acquisition.

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	erence Books
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI
1.	Learning Pvt.Ltd , ISBN: 978-8120340305
2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2nd Edition,
۷.	2017, Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2nd Edition, 2008, Prentice Hall of India, ,
5.	ISBN : 978-013185672
4	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition ,
4.	2017, McGraw Hill Professional, ISBN: 978-1259005336

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS	MARKS						
PART A								
1	Objective type questions covering entire syllabus	20						
	PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1: (Compulsory)	16						
3 & 4	Unit 2: Question 3 or 4	16						
5&6	Unit 3: Question 5 or 6	16						
7&8	Unit 4: Question 7 or 8	16						
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester:	· VI			
]	IND	USTRIAL SA	AFETY AND	RISK MANAGEM	EN	T	
		Categ	gory: Instituti	onal elective			
		Strea	m: Chemical	Engineering			
			(Theory	y)			
Course Code	:	21IE6F1		CIE	:	100 N	/larks
Credits: L:T:P	:	3:0:0		SEE	:	100 N	/larks
Total Hours	:	45L		SEE Duration	:	3Hou	irs
			Unit-I				09 Hrs
Introduction Safe	ety:						
Introduction to in	dust	rial safety en	ngineering, ma	of industrial accide	ents	s, safet	y and health
issues, key conce	pts a	and terminolo	ogies, Hazard	theory, Hazard triar	ngle	e, Haza	ard actuation,
Actuation transition	on, C	ausal factors,	Hazard recog	nition.			
		τ	U nit – II				09 Hrs
Risk assessment	an	d control:	Individual an	d societal risks, R	Risk	asses	ssment, Risk
perception, Accep	table	risk, ALARI	P, Prevention t	hrough design.			
Hazard Identific	atior	n Methods: H	Preliminary Ha	azard List (PHL): O	ver	view, 1	methodology,
worksheets, case	stud	y. Prelimina	ry Hazard Aı	nalysis (PHA), Faul	lt t	ree an	d Event tree
analyses.							
		ι	Unit –III				09 Hrs
Hazard analysis:	Haz	ard and Oper	rability Study	(HAZOP): Definition	on,	Proces	s parameters,
Guide words, HA	AZOI	P matrix, Pro	ocedure, Exan	nple. Failure Modes	ar	nd Effe	ects Analysis
(FMEA): Introduc	tion,	system break	kdown concept	t, methodology, exan	npl	e.	
		τ	Unit –IV				09 Hrs
Application of H	azar	d Identificat	tion Techniqu	es: Case of pressure	e ta	nk, he	at exchanger,
system breakdown	n str	ucture, Accid	lent paths, HA	ZOP application, ri	sk	adjuste	ed discounted
rate method, proba	abilit	y distribution	n, Hiller's mod	el			
	Unit –V 09 Hrs						
Safety in process	ind	ustries and	case studies:	Personnel Protection	on	Equip	ment (PPE):
Safety glasses, fac	e shi	ields, welding	g helmets, abso	orptive lenses, hard h	ats	, types	of hand PPE,
types of foot PP	E, ty	pes of body	PPE. Bhopal	gas tragedy, Chern	nob	yl nuc	lear disaster,
Chemical plant ex	plosi	on and fire.					
Course Outcome	s: Af	ter completi	ng the course	, the students will b	e al	ble to:	-
CO1 Recall risk	asse	ssment techni	iques used in p	process industry			

CO2 Interpret the various risk assessment tools.

CO3 Use hazard identification tools for safety management.

CO4 Analyze tools and safety procedures for protection in process industries.

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Ref	ference Books
	Functional Safety in the Process Industry: A Handbook of practical Guidance in the
1	application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North
	corolina,Lulu publication, ISBN:1291187235.
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and
۷.	William M., 2005, Pensulvania ISA publication, ISBN:155617909X.
2	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition,
5.	2003, The University of alberta press, Canada, ISBN: 0888643942.
4.	ndustrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao,
	4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY	')
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)										
Q. NO.	CONTENTS MARKS										
	PART A										
1	Objective type questions covering entire syllabus	20									
	PART B	-									
	(Maximum of TWO Sub-divisions only)										
2	Unit 1 : (Compulsory)	16									
3 & 4	Unit 2 : Question 3 or 4	16									
5&6	Unit 3 : Question 5 or 6	16									
7 & 8	Unit 4 : Question 7 or 8	16									
9 & 10	Unit 5: Question 9 or 10	16									
	TOTAL	100									

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Semester: VI **RENEWABLE ENERGY SYSTEMS Category: Institutional elective Stream: Electrical and Electronics Engineering**

(Theory)

				y)		
Course Code	:	21IE6F2		CIE	:	100Marks
Credits: L:T:P		3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
			Unit-I			08 Hrs

Introduction: Energy systems model causes of Energy Scarcity, Solution to Energy Scarcity, Factors Affecting Energy Resource Development, Energy Resources and Classification, Renewable Energy -Worldwide Renewable Energy Availability, Renewable Energy in India.

Basics of Solar Energy: Sun- earth Geometric Relationship, Laver of the Sun, Earth – Sun Angles and their Relationships, Solar Energy Reaching the Earth's Surface, Solar Thermal Energy Application. Block diagram of solar energy conversion. Unit II 08 Hrs

	UO IIIS
Solar PV Systems: Basic Principle of SPV conversion - Types of PV Systems(Standal	one, Grid
connected, Hybrid system)- Types of Solar Cells, Photovoltaic cell concepts: Cell, module,	array ,PV
Module I-V Characteristics, Array design (different methodologies), peak-power operatio	n, system
components.Efficiency & Quality of the Cell, series and parallel connections, maximum po	ower point
tracking, Applications	
Unit –III	08 Hrs

Wind Power Systems:

Wind speed and energy: Introduction, history of wind energy, scenario- world and India. Basic principle of Wind energy conversion system (WECS), Classifications of WECS, part of a WECS. Derivation of power in the wind, electrical power output and capacity of WECS, wind site selection consideration, advantages and disadvantages of WECS. Maximum energy capture, maximum power operation, , environmental aspects. In:+ IV 00 TTma

					UII						00 1115
Geothermal	and	d ocean	energy	syste	ems: (Geothe	rmal well	drilli	ng, advanta	iges and disa	idvantages,
Comparison	of	flashed	steam	and	total	flow	concept	(T-S	diagram).	Associated	Problems,
environmenta	al Ef	fects.									

Energy from ocean: OTEC power generation, OPEN and CLOSED cycle OTEC. Estimate of Energy and power in simple single basin tidal and double basin tidal system. Issues Faced in Exploiting Tidal Energy

Unit –V **Hydrogen Energy:** Benefits of Hydrogen Energy, Hydrogen Production through block diagram, Use of Hydrogen Energy, Merits and Demerits, Problems Associated with Hydrogen Energy. **Biomass Energy:**

Introduction-Biomass resources - Energy from Biomass: conversion processes-Biomass Cogeneration-Environmental Benefits. Biomass products – ethanol, biodiesel, biogas Electricity and heat production by biomass.

08 Hrs

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Cou	rse Outcomes: After completing the course, the students will be able to: -
CO1	Understand the working principle and operation of various renewable energy sources and
	systems.
CO2	Analyze the performance and characteristics of renewable energy sources and systems.
CO3	Evaluate the parameters of wind and solar energy systems.
CO4	Design and demonstrate the applications of renewable energy sources in a typical systems.

Ref	ference Books
1	Non conventional energy sources, by G.D Rai, Khanna publishes, 19th Edition, 2017, ISBN: 978-81-7409-073-8
2	Solar photo voltaic Technology and systems, by Chetan Singh Solanki, 3 rd Edition, PHI, Learning private limited New Delhi, 2013, ISBN: 978-81-203-4711-3.
3	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition. CRC Group, Taylor and Francis group, New Delhi, ISBN 978-0-8493-1570-1.
4	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt, Wolfgang Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR)	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEO	RY)	
Q. NO.	CONTENTS		MARKS
	PART A	-	
1	Objective type questions covering entire syllabus		20
	PART B (Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)		16
3 & 4	Unit 2 : Question 3 or 4		16
5&6	Unit 3 : Question 5 or 6		16
7&8	Unit 4 : Question 7 or 8		16
9 & 10	Unit 5: Question 9 or 10		16
	TO	DTAL	100

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI SYSTEMS ENGINEERING Category: Institutional elective Stream: Industrial Engineering and Management

(Theory)

			(
Course Code	:	21IE6F3		CIE	:	100 Marks	S
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	S
Total Hours	:	45 Hrs		SEE Duration	:	3 Hours	
			Unit-I				06 Hrs

System Engineering and the World of Modem System: What is System Engineering?, Origins of System Engineering, Examples of Systems Requiring Systems Engineering, System Engineering viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.

Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions.

The System Development Process: Systems Engineering through the system Life Cycle, Evolutionary Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

Unit – II10 HrsSystems Engineering Management: Managing systems development and risks, Work
breakdown structure (WBS), System Engineering Management Plan (SEMP), Risk
Management, Organization of Systems Engineering, Systems Engineering Capability Maturity
Assessment, Systems Engineering standards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

Unit –III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis,
Functional analysis and formulation, Concept selection, Concept validation, System
Development planning, System Functional Specifications, problems10 Hrs

Advanced Development:Reducing program risks, Requirements analysis, Functional
Analysis and Design, Prototype development, Development testing, Risk reduction, problems.Unit –IV10 Hrs

Engineering Design: Implementing the System Building blocks, requirements analysis, Functional analysis and design, Component design, Design validation, Configuration Management, problems.

Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and preparation, System integration, Developmental system testing, Operational test and evaluation, problems.

Unit –V09 HrsProduction: Systems Engineering in the factory, Engineering for production, Transition from
development to production, Production operations, Acquiring a production knowledge base,
problems.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Operations and support: Installing, maintenance and upgrading the system, Installation and test, In-service support, Major system upgrades: Modernization, Operational factors in system development, problems.

Cours	se Outcomes: After completing the course, the students will be able to:-
CO1	Understand the Life Cycle of Systems.
CO2	Explain the role of Stake holders and their needs in organizational systems.
CO3	Develop and Document the knowledge base for effective systems engineering processes.
CO4	Apply available tools, methods and technologies to support complex high technology
	systems.

Refere	nce Books:
1	Alexander Kossoaikoff, William N Sweet, "Systems Engineering - Principles and
1.	Practice" John Wiley & Sons, Inc, edition: 2012, ISBN: 978-81-265-2453-2
2	Andrew P. Sage, William B. Rouse, "Handbook of Systems Engineering And
2.	Management" John Wiley & Sons, Inc., edition:1999, ISBN 0-471-15405-9
	Ludwig von Bertalanffy, "General System Theory: Foundation, Development,
3.	Applications", Penguin University Books, 1973, Revised, ISBN: 0140600043,
	9780140600049.
4.	Blanchard, B., and Fabrycky, W. Systems Engineering and Analysis, Saddle River, NJ,
	USA: Prentice Hall, 5th edition, 2010.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40				
	MAXIMUM MARKS FOR THE CIE THEORY	100				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO. CONTENTS MA						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(Maximum	(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: VI			
			MECHATRONICS			
		Categ	ory: Institutional elec	tive		
	Stream: Mechanical Engineering					
			(Theory)			
Course Code	:	21IE6F4		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 Hrs		SEE Duration	:	3 Hours
		•	Unit-I			09 Hrs
Overview of Mecha	atro	nic Systems				
Traditional and med	hatr	onic design,	automatic washing mad	chine, automatic d	looi	r, dishwasher,
compact disc drive	cop	y machine, c	amera and temperature	control. Principle	e ar	nd working of
hall sensor, displac	eme	nt sensor, al	osolute and incrementa	l encoders, photo	oele	ctric sensors,
inductive and capa	citiv	e proximity	sensors. Relays and s	olenoids. Brushle	ess	DC. AC and
servo motors, pulse	e wi	dth modulati	on by basic transistor	circuit. H bridge	ci	rcuit. Stepper
motor: variable relu	ctar	ice and perm	anent magnet stepper i	motor control circ	nite	s selection of
motors	ctur	lee und perm	unent mugnet, stepper i		uiu	s, selection of
motors.		T	nit – II			10 Hrs
Signal Conditionin	<u>م</u> • (Diversional A	mplifiers - circuit diag	rams and derivation	n.	Numerical
filtering multipleye	g.	$1 \cdot 1$ MUX ti	me division multiplevi	ng _seven segmet	ot d	display data
acquisition Analog	and	digital sign	als analog to digital o	ng -seven segner	n (inspiray, data
acquisition, Analog	anu diff	r ulgital sigli	ais, allalog to ulgital C	Silverters. Introduc	cuc	on to Digital
Signal processing –			on (Numericais).	an anotion and differ		the exercise
Programmable logi		and as a set	a of lodder discrete of	operation, modify	ng	
basic PLC instruction	ons,	and concept	s of ladder diagram, la	itching, timer inst	ruc	tions, counter
instructions.		T				10 11
				• 1		IU HIS
Ladder Diagram for PLCs: Examples with ladder logic programs, simple programs using						
Boolean logic, word	leve	el logic instru	ctions. Relay to ladder c	onversion example	es.	
Industrial application	tion	s of PLCs:	Central heating syster	n, valve sequence	ıng	, traffic light
control in one dire	ectic	on, water le	vel control, overhead	garage door, sec	lue	ntial process,
continuous filling o	pera	tion, Fluid p	umping with timers, par	rking garage coun	ter,	can counting
in assembly line.						
		U	nit –IV			08 Hrs
Microcontrollers:	Con	nponents of	a full featured microc	ontroller, Memory	y,]	I/O Ports, Bus
Read & Write Cy	vcle,	Architectu	e of Intel 8051 mic	rocontroller, Pin	di	agram, simple
instructions for a mi	icro	controller. – l	Data transfer, arithmetic	c functions, logica	l oj	perations, Jump
and branching opera	ntion	l.				
Digital circuits: Di	Digital circuits: Digital representations, Combinational logic - Case studies: BCD to 7 segmen					
decoder, calendar subsystem in a smartwatch., timing diagrams, Karnough maps - 3 variable						
and 4 variable, desig	gn o	f logic netwo	rks, flip-flops, Counter	s.		
			Unit –V			08 Hrs
Dynamic Response	es of	f Systems: C	Closed loop system. Ter	rminology, transfe	er f	unctions. step
response of first or	ler :	and second o	rder systems performa	ince measures for	fir	st and second
order systems - Nu	meri	cal	i sjotemo, performa			st and becond
Machanical Actua	tion	Systome.	Four har chain clide	r crank mechani	cm	Came and
Micchanical Actua	uul	i systems:	i oui oai chaili, silue		sm	, Cams and

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

followers, gear trains - Numerical

Course	e Outcomes: After completing the course, the students will be able to				
CO1:	Select appropriate sensors and transducers and devise an instrumentation system for				
	collecting information about processes				
CO2:	Apply the electrical and logic concepts and inspect the functioning of mechatronic				
	systems.				
CO3:	Evaluate a control system for effective functioning of Mechatronics systems using				
	digital electronics, microprocessors, microcontrollers and programmable logic				
	controllers				
CO4:	Develop conceptual design for Mechatronics products based on potential customer				
	requirements				

Re	ference Books
1	Nitaigour Premchand, 'Mechatronics-Principles, Concepts & Applications', TMH 1st
1	Edition, 2009, ISBN: 9780070483743
2	Bolton W., 'Mechatronics-Electronic Control System in Mechanical and Electrical
۷.	Engineering', Pearson Education, 4 th Edition, 2012; ISBN:9788131732533
3.	Tilak Thakur 'Mechatronics', Oxford University Press, I Edition, 2016, ISBN:
	9780199459329
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4 th Edition, 2013,
	ISBN-13: 978-0-07-351088-0

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40			
MAXIMUM MARKS FOR THE CIE THEORY					

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO. CONTENTS							
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: (Internal Choice)	16					
5&6	Unit 3: (Internal Choice)	16					
7 & 8	Unit 4: (Internal Choice)	16					
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					

CO4

RV Educational Institutions [®] **RV College of Engineering**[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological

Uni	versity, Belagavi	i					
				Semester: VI			
			MATHEM	ATICAL MOI	DELLING		
			Category	: Institutional	elective		
			Stre	am: Mathema	tics		
				(Theory)			
Cours	e Code	:	21IE6F5		CIE	:	100 Marks
Credit	ts: L:T:P	:	3:0:0		SEE	:	100 Marks
Total]	Hours	:	45L		SEE Duration	:	3Hours
			Uni	it-I			09 Hrs
Contin	nuous Mode	els I	Using Ordinary I	Differential Eq	uations:		<u>.</u>
Basic	concepts, r	eal	world problems	(Science and	Engineering), ap	oproz	ximation of the
proble	m, steps inv	olv	ed in modelling, fo	ormation of var	ious continuous m	nodel	ls.
			Unit	– II			09 Hrs
Mathe	ematically N	Лос	lelling Discrete P	rocesses:			
Differe	ence equati	ons	- first and see	cond order, in	ntroduction to d	iffer	ence equations,
introdu	action to dis	cret	e models-simple e	examples, math	ematical modellin	ng th	rough difference
equation	ons in eco	non	nics, finance, po	pulation dynai	nics, genetics a	nd c	other real-world
proble	ms.						
Unit –III 09 Hrs							
Marko	ov modellin	g:					
Mathe	matical four	ndat	ions of Markov ch	ain, application	ns of Markov mod	lellin	lg.
			Unit	-IV			09 Hrs
Model	ling throug	h g	raphs:				
Graph	theory conc	ept	s, modelling situat	ions through di	fferent types of g	raphs	5.
			Unit	-V			09 Hrs
Variat	tional Prob	lem	and Dynamic Pr	ogramming:			
Optimi	ization prin	cipl	es and technique	s, mathematica	l models of vari	atior	al problem and
dynam	ic program	nin	g and applications				
Cours	e Outcomes	s: A	fter completing t	he course, the	students will be	able	to
CO1	Explore the	e fu	ndamental concep	ts of mathemat	ical models arisin	g in	various fields of
	engineering	g.					
CO2	D2 Apply the knowledge and skills of discrete and continuous models.						
CO3	Analyze th	ne a	ppropriate mather	matical model	to solve the real	-woi	d problem and

Distinguish the overall knowledge gained to demonstrate the problems arising in

optimize the solution

many practical situations.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Refere	Reference Books					
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN: 81-224-0006-X.					
2	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and Hall/CRC Textbook, ISBN 9781439854518.					
	Case Studies in Mathematical Modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly					
5	Thames, Cheltonham, ISBN: 0470271779, 9780470271773.					
4	Modeling with Difference Equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981,					
	ISBN 13: 9780853122869.					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20). ADDING UPTO 40 MARKS.	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO. CONTENTS						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	5 & 6 Unit 3: Question 5 or 6					
7 & 8 Unit 4: Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Electronics and Telecommunication Engineering

08 Hrs

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: VI **INDUSTRY 4.0 - SMART MANUFACTURING FOR THE FUTURE Category: Institutional elective Stream: Mechanical Engineering** (Theory) CIE 100 Marks **Course Code** : **21IE6F6** : Credits: L:T:P SEE 100 Marks : 3:0:0 : **Total Hours** : 45 Hrs **SEE Duration** : **3 Hours**

Introduction	
mirouucuon:	

The Various Industrial Revolutions, Need – Reason for Adopting Industry 4.0, Definition, Goals and Design Principles – Interoperability, Virtualization, Decentralization, Real-time Capability, Service Orientation, Modularity. Individualization, Volatility, Energy and resource efficiency. Road to Industry 4.0 - Internet of Things (IoT), Architecture of IoT, Technologies for IoT & Industrial Internet of Things (IIoT), Internet of Services, Standardization, Cyber-Physical Systems, Smart Manufacturing, Network via Ethernet/Wi-Fi for high-speed data transmission, Mobile technologies

Unit-I

Horizontal and Vertical integration

End-to-end engineering of the overall value chain, Digital integration platforms, Role of machine sensors, Sensing classification according to measuring variables, Machine-to-Machine communication **Artificial Intelligence/Machine Learning in Industry 4.0**

Fundamentals, Case Studies, Technology paradigms in production logistics - Intelligent conveyor system, Intelligent commissioning system, Intelligent production machine, Intelligent load carrier, Application-specific demand on Intelligent Objects (user-oriented functions), Technological realization of Intelligent Objects (product-oriented functions)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Go, change the world

Unit –IV

08 Hrs

09Hrs

Augmented Worker

Augmented and Virtual Reality, softwares, Industrial Applications – Maintenance, Assembly, Collaborative operations, Training

Digital-to-Physical

Additive Manufacturing technologies, Advantages, impact on environment, Applications – Automotive, Aerospace, Electronics and Medical

Unit –V

Digital twin, Virtual factory, Total Productive Maintenance, Industry 4.0 case studies, Understanding I 4.0 in MSMEs, What's Next: Industry 5.0/Society 5.0

Course Outcomes: After completing the course, the students will be able to:				
CO1	Identify the basic components of Industry 4.0			
CO2	Analyse the role of Big data for modern manufacturing			
CO3	Create AR/VR models for industrial scenario			
CO4	Create simple Additive manufactured parts			

Reference Books1.Industry 4.0: Managing the Digital Transformation, Alp Ustundag, Emre Cevikcan, 2017, Springer, ISBN:
978-3-319-57869-9, ISBN: 978-3-319-57870-52.The Concept Industry 4.0 - An Empirical Analysis of Technologies and Applications in Production
Logistics, Christoph Jan Bartodziej, 2017, Springer Gabler, ISBN 978-3-658-16501-7 ISBN 978-3-658-
16502-43.Industry 4.0 - The Industrial Internet of Things, Alasdair Gilchrist, 2016, APRESS, ISBN-13 978-1-4842-
2046-7 ISBN-13: 978-1-4842-2047-44.Digitizing the Industry – Internet of Things connecting the Physical, Digital and Virtual Worlds, Ovidiu
Vermesan, 2016, River Publishers, ISBN 978-87-93379-81-7

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
MAXIMUM MARKS FOR THE CIE THEORY				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: (Internal Choice)	16			
5&6	Unit 3: (Internal Choice)	16			
7 & 8	Unit 4: (Internal Choice)	16			
9 & 10	Unit 5: (Internal Choice)	16			
	TOTAL	100			

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: VI					
		Indu	istrial Psychology fo	or Engineers		
Category: Institutional elective						
		Stream	: Humanities and	Social Science		
	-		(Theory)			
Course Code	:	21IE6F7		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 Hrs		SEE Duration	:	3 Hours
			Unit-I			08 Hrs
Introduction to	Psy	chology: De	efinition and goals	of Psychology: Ro	le (of a Psychologist in
the Society: '	Toda	ay's Perspec	tives (Branches	of psychology-	C	linical, Industrial).
Psychodynamic,	Beł	navioristic, C	ognitive, Humanist	ic, Psychological I	Res	search and Methods
to study Human	Beh	avior: Experi	mental, Observation	n, Questionnaire an	d C	Clinical Method.
			Unit – II			08 Hrs
Intelligence and	d Aj	p titude: Con	cept and definition	of Intelligence an	d .	Aptitude, Nature of
Intelligence. The	eorie	es of Intellige	nce – Spearman, T	hurston, Guilford V	/er	non. Characteristics
of Intelligence	test	s, Types of t	ests. Measurement	of Intelligence and	l A	ptitude, Concept of
IQ, Measuremen	nt of	Multiple Inte	lligence – Fluid and	d Crystallized Intell	ige	ence.
			Unit –III			10 Hrs
Personality: Concept and definition of personality, Approaches of personality-						
psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist,						
Trait and type approaches. Assessment of Personality: Self- report measures of Personality,						
Questionnaires,	Rati	ing Scales ar	nd Projective techn	iques, its Characte	eris	stics, advantages &
limitations, exan	nple	s. Behavioral	Assessment.			
Unit –IV 10 Hrs						
Learning: Definition, Conditioning - Classical Conditioning, Basics of Classical						
Conditioning (P	avlo	v), the proces	s of Extinction, Di	scrimination and G	len	eralization. Operant
Conditioning (S	kinn	er expt). The	basics of operant of	conditioning, Sched	lule	es of reinforcement.
Cognitive – Soc	cial a	approaches to	learning – Latent	Learning, Observa	atic	onal Learning, Trial
and Error Metho	od, Ir	nsightful Lear	ning.			
Unit –V 09 Hrs						
Application of Psychology in Working Environment: The present scenario of information						
technology, the role of psychologist in the organization, Selection and Training of Psychology						
Professionals to work in the field of Information Technology. Psychological Stress: a. Stress-						
Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma.						
Causes of Stress - Job related causes of stress. Sources of Frustration, Stress and Job						
Performance, S	tress	Vulnerabilit	y-Stress threshold	, perceived contro	l.	Type A and Type
B.Psychological	1 0	Counseling -	Need for Counse	ling, Types – Dir	ect	ed, Non- Directed,
Participative Counseling.						

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Cours	Course Outcomes: After completing the course, the students will be able to:-						
CO1	Describe the basic theories, principles, and concepts of applied psychology as they						
	relate to behaviors and mental processes.						
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and						
	Humanistic theorists believe influence the learning process.						
CO3	³ Develop understanding of psychological attributes such as intelligence, aptitude,						
	creativity, resulting in their enhancement and apply effective strategies for self-						
	management and self-improvement.						
CO4	Apply the theories into their own and others' lives in order to better understand their						
	personalities and experiences.						
CO5	Understand the application of psychology in engineering and technology and develop a						
	route to accomplish goals in their work environment.						

Ref	erence Books
2.	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
2.	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
3.	Organizational Behaviour, Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN – 81-317 – 1132 – 3
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5
5	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO. CONTENTS N							
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
(Maximu	m of TWO Sub-divisions only; wherein one sub division will be a caselet in the related	l topics)					
2	Unit 1 : (Compulsory)						
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7 & 8 Unit 4 : Question 7 or 8							
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI **ELEMENTS OF FINANCIAL MANAGEMENT Category: Institutional elective Stream: Industrial Engineering and Management**

(Theory)

			(=====,)			
Course Code	:	21IE6F8		CIE	:	100 M	arks
Credits: L:T:P	:	3:0:0		SEE	:	100 M	arks
Total Hours	:	45 Hrs		SEE Duration	:	3 Hou	rs
		I	Jnit-I				06 Hrs

Financial Management-An overview: Financial Decisions in a firm, Goals of a firm, Fundamental principle of finance, Organization of finance function and its relation to other functions, Regulatory framework.

The financial System: Functions, Assets, Markets, Market returns, Intermediaries, regulatory framework, Growth and trends in Indian financial system.

Financial statements, Taxes and cash flow: Balance sheet, statement of profit and loss, items in annual report, manipulation of bottom line, Profits vs Cash flows, Taxes.

(Conceptual treatment only)

Unit – II **10 Hrs** Time Value of Money: Future value of a single amount, future value of an annuity, present value of a single amount, present value of an annuity.

Valuation of securities: Basic valuation model, bond valuation, equity valuation-dividend capitalization approach and other approaches.

Risk and Return: Risk and Return of single assets and portfolios, measurement of market risk, relationship between risk and return, implications

J NT. $(\mathbf{C}$ - 1

(Conceptual and Numerical treatment)					
Unit –III	10 Hrs				
Techniques of Capital Budgeting: Capital budgeting process, project c	lassification,				
investment criteria, Net present value, Benefit-Cost ratio, Internal Rate of retu	ırn, Payback				
period, Accounting rate of return.					
Cost of Capital: Preliminaries Cost of debt and preference, cost of retained earnings, cost of external equity, determining the proportions, weighted average cost of capital, weighted					
marginal cost of capital schedule.	marginal cost of capital schedule.				
Capital structure and cost of capital: Assumptions and concepts, net income approach, net operating income approach, traditional position, Modigliani and Miller Position, Taxation and Capital structure, Other imperfections and Capital structure					
Unit –IV	10 Hrs				
Long term finance: Sources- Equity capital Internal accruals preference	canital term				

Long term finance: Sources- Equity capital, Internal accruals, preference capital, term loans, debentures. Raising long term finance- Venture capital, Initial Public Offer, Follow on Public Offer, Rights Issue, Private Placement, Term Loans, Investment Banking

Securities Market: Primary market vs Secondary market, Trading and Settlements, Stock market quotations and Indices, Govt. securities market, Corporate debt market.

Working Capital – Policy and Financing: Factors influencing working capital requirements, Current assets financing policy, operating cycle and cash cycle. Accruals, trade credit, banks, public deposits, inter-corporate deposits, short term loans, right debentures, commercial paper, Factoring(Conceptual treatment only)

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Unit –V09 HrsContemporary topics in Finance: Reasons and Mechanics of a merger, Takeovers,
Divestures, Demergers, World monetary system, Foreign exchange markets, raising
foreign currency finance, International capital budgeting, Options market, Futures market,
Warrants, Venture capital financing framework, Indian venture capital scenario. (Conceptual
treatment only)

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Explain the features of financial system and basic principles of financial management.					
CO2	Describe the processes and techniques of capital budgeting and theories of capital					
	structure.					
CO3	B Demonstrate an understanding of various sources of long term and working capital					
	financing by organizations.					
CO4	Analyze the trends in global financial scenarios.					

R	Reference Books:						
1	Fundamentals of Financial Management, Prasanna Chandra, 6th Edition, 2018, McGraw						
1	Hill Education(India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5						
2	Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018,						
2	McGraw Hill Education(India) Pvt. Ltd, ISBN: 9353162181, 9789353162184						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY				

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO. CONTENTS						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(Maximu	m of TWO Sub-divisions only; wherein one sub division will be a caselet in the rel	ated topics)				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10 Unit 5: Question 9 or 10						
	TOTAL	100				

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Semester: VI Universal Human Values - II Category: Institutional elective Stream: Humanities and Social Science

(Theory)						
Course Code	:	21IE6F9		CIE	••	100 Marks
Credits: L:T:P	••	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration		3.00 Hours

Unit-I	10 Hrs			
Introduction-Basic Human Aspiration, its fulfillment through All-encompassing Resolution.				
The basic human aspirations and their fulfillment through Right understanding and				
Resolution, Right understanding and Resolution are the activities of the Self, Sel	f is central			
to Human Existence; All-encompassing Resolution for a Human Being, its of	details and			
solution of problems in the light of Resolution.				
Unit – II	10 Hrs			
Right Understanding (Knowing)- Knower, Known & the Process. The doma	in of right			
understanding starts from understanding the human being (the knower, the exper	riencer and			
the doer); and extends up to understanding nature/existence - its interconnectedne	ess and co-			
existence; and finally understanding the role of human being in existence (human	conduct).			
Unit –III	09 Hrs			
Understanding Existence (including Nature). A comprehensive understanding (k	nowledge)			
about the existence, which certainly includes the Nature. The need and the proce	ess of inner			
evolution (through self-exploration, self-awareness and self-evaluation)-	particularly			
awakening to activities of the Self: Realization, Understanding and Contempla	tion in the			
Self (Realization of Co-Existence, Understanding of Harmony in Nature and Con	templation			
of Participation of Human in this harmony/ order leading to comprehensive	knowledge			
about the existence).				
Unit –IV	08 Hrs			
Understanding Human Being. Understanding the human being comprehensively	is the first			
step and the core theme of this course; human being as co-existence of the se	elf and the			
body, the activities and potentialities of the self, Reasons for harmony/contradiction in the				
self.				
Unit –V	08 Hrs			
Understanding Human Conduct, All-encompassing Resolution & Holistic Way of Living.				
Understanding Human Conduct, Understanding different aspects of All-encompassing				
Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being				
with All-encompassing Resolution covering all four dimensions of human ende	with All-encompassing Resolution covering all four dimensions of human endeavour viz.,			

realization, thought, behavior and work (participation in the larger order) leading to

harmony at all levels from self to Nature and entire Existence.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completion of the course the students will be able to				
CO1	Understand the basic human aspiration with program of its fulfilment and meaning of			
	resolution in the complete expanse of human living.			
CO2	Understand human being in depth and see how self is central to human being			
CO3	Understand existence in depth and see how coexistence is central to existence			
CO4	Understand human conduct and the holistic way of living leading to human tradition			

Reference Books			
1	A foundation course in human values and professional ethics, R. R. Gaur, R Asthana, G		
1	P Bagaria, 2nd revised Edition, excel books, New Delhi – 2019, ISN 978-93-87034-47-1		
2	Avartansheel Arthshastra, A Nagraj, Divya Path Sansthan, Amarkantak, India,		
	ISBN 978-8-174-46781-2		
3	Economy of Performance- a quest for social order based on non – violence, J C		
	Kumarappa, 2010, Sarva-Seva-Sangh-Prakashan, Varanasi, India		
4	Energy and Equity, Ivan Illich, 1974, The Trinity Press, Worcester & Harper Collins,		
	USA, ISBN, 0060803274, 9780060803278		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS				
	PART A				
1 Objective type questions covering entire syllabus					
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: VI						
Human Machine Interface (HMI)						
	Institutional Elective					
Industry Assisted Elective-BOSCH						
Course Code	:	21IE6F10		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3Hours
			Unit-I			09 Hrs
FOUNDATIONS	OF	HMI: The Human	n: History of User	Interface Designing	g, I	O channels, Hardware,
Software and Oper	atin	g environments, T	he Psychopathology	of everyday Thing	s, 1	Psychology of everyday
actions, Reasoning	ar	nd problem solving	g. The computer:	Devices, Memory,	pro	ocessing and networks.
Interaction: Models,	fra	meworks, Ergonom	ics, styles, elements,	interactivity, Paradig	gms	
Introduction to 1	HN	II and domains:	Automotive, Indust	rial, CE, Medical, I	ECI	Us within car and their
functionalities. Inte	ract	tion between ECUs	. Communication pr	cotocols for ECUs(C		N, LIN, Most, FlexRay,
Ethernet etc)			TT •4 TT			00.11
A		M	<u>Unit – II</u>			09 Hrs
Automotive Hum	an.	-Machine Interia	ces:	atura cata Swatama		itaatuma Tranda
Automotive miota	11111 1	ient system - Evon	ution road map, rea	motivo Llor Evnor		an (LIV) Design
Dringinlag In Vah		Information System	ma (IVIS) Driver	Assistance System		CE(UA) Design
design for adaptive		uise control Voice	and Gesture Reco	anition in Automot	s (I tive	HMIs Touchscreen
Interfaces and Cor	otro	ls Usability Testir	or and Evaluation i	n Automotive HMI		Safety Considerations
and Regulations in		itomotive HMIs F	Emerging Technolo	gies in Automotive	H	MIs Human-Machine
Interfaces for Auto	no	mous Vehicles	inerging reennois			viis, mainai machine
Interfaces for flat	/110	inous venieres	Unit –III			09 Hrs
UX and Guidelines	:					
Introduction to UX	K d	esign - stages, the	ory, Design thinkir	ng, UX Study, Inte	rac	tion concepts, Graphic
design tools - Add	obe	Photoshop, Adob	e XD, Blender, GI	MP, Asset Design	ı –	Overview, Guidelines
and norms, 2D/3D	rei	ndering, OpenGL,	OSG.	-		
			Unit –IV			09 Hrs
HMI User Int	erf	ace: User-centered	ed HMI develop	oment process,	Bas	sics of Web-Server.
Web-based H	Web-based HMI: Basics of TwinCAT and HTML, CSS, JavaScript.					
HMI on Mobile: Four Principles of Mobile UI Design, Benefits of Mobile HMIs, Mobile HMI						
Development Suites.						
Unit –V 09 Hrs						
HMI Control Sy	ste	ms: Introduction	to Voice-Based H	MI, Gesture-Basec	I H	MI, Sensor-Based UI
controls.						
Haptics in Automotive HNII: Kinesthetic Feedback Systems, Tactile Feedback Systems, Haptics in Multimedal HNII. Automotive Lies Coses						
WILL Testing: Limitations of Traditional Test Solutions, Case, Study: Bosch's UMI validation tool						
HIVE TESTING : LIMITATIONS OF FRAMEWORK TEST SOLUTIONS, Case - Study: Bosch's HIVE Validation tool -						
Utaphics Test Systems (UTS).						
UT analytics . Usage patterns, Debugging, Performance Pronning, Use Cases.						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to:-				
CO1	Understanding the application of HMIs in various domain			
CO2	Comparison of various communication protocols used in HMI development.			
CO3	Apply and Analyse the car multimedia system free software and hardware evolution			
CO4	Design and Evaluate the graphic tools and advanced techniques for creating car dashboard multimedia			
	systems			
Refe	rence Books			
1	Shuo gao, Shuo Yan, Hang Zhao, Arokia Nathan " Touch based HMI; Principles and Applications"			
1	Springer Nature Switzerland AG, 1 st Edition.			
2	Robert Wells, "Unity 2020 by Example: A Project based guide to building 2D, 3D augumented reality			
	and Virtual reality games from sratch" Packt Publishing ltd , edition 2020			
3	Ryan Cohen, Tao Wang, "GUI Design and Android Apps" Apress, Berkley, CA,2014			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Approved by AICTE, Institution Affiliated New Delhi to Visvesvaraya Technological

University, Belagavi

Curriculum Design Process

Academic Planning and Implementation

Electronics and Telecommunication Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Process For Course Outcome Attainment

Final CO Attainment Process

Electronics and Telecommunication Engineering
RV Educational Institutions [®] RV College of Engineering [®]

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Program Outcomes Attainment Process

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems anddesign system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and needfor sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leaderin diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member andleader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.