

RV Educational Institutions [®] RV College of Engineering [®]

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Bachelor of Engineering (B.E)

Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

AEROSPACE ENGINEERING 2021-2022

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

DEPARTMENT OF AEROSPACE ENGINEERING

DEPARTMENT VISION

Emerge as a centre of excellence in Aerospace Engineering, Imparting Quality Technical Education, Interdisciplinary Research & Innovation with a focus on Societal empowerment through Sustainable & Inclusive Technologies.

DEPARTMENT MISSION

- Imparting Quality Technical Knowledge in Basic & Applied areas of Aerospace Engineering incorporating the principles of Outcome Based Education.
- Provide state-of-the art laboratories and infrastructure facilities, conducive to motivate Interdisciplinary Research and Innovation in Aerospace Engineering.
- Develop self-motivated engineers with a blend of Discipline, Integrity, Engineering Ethics and Social Responsibility.
- Strengthening collaboration with industries, research organizations and institutes for Internships, Joint Research and Consultancy.
- Focus towards Integrating Sustainable and Inclusive Technologies for Societal Symbiosis.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide opportunities for successful professional career with a sound fundamental knowledge in Mathematics, Physical Science & Aerospace Engineering.

PEO2: Motivate innovative research in specialized areas of Aerospace Engineering viz Aerospace structural design, Aerodynamics, Aerospace Propulsion and Guidance & Control systems.

PEO3: Promoting development of problem solving abilities by adopting analytical, numerical and experimental skills with awareness on societal impact.

PEO4: Imbibing sound communication skills, team working ability, professional ethics and zeal for lifelong learning.

PSO	Description
PSO1	Utilization of the fundamental knowledge and skills of Aerospace Engineering to develop pragmatic solutions for complex Aerospace Engineering problems.
PSO2	Apply Professional Engineering practices and strategies in the development of systems and subsystems for Aerospace Applications.
PSO3	Exhibit Effective Communication skills and a Zeal to function with multi-disciplinary teams
PSO4	Demonstrate Professional Ethics and Responsibilities in Engineering practices towards the achievement of societal symbiosis.

PROGRAM SPECIFIC OUTCOMES (PSOs)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	РҮ	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

VII Semester					
Sl. No.	Course Code	Course Title	Page No.		
1.	18HS71	Constitution of India & Professional Ethics	01		
2.	18AS72	Aircraft Performance and Stability	03		
3.	18AS73	Vibration Engineering	05		
4.	18AS74	Internship	08		
5.	18AS75	Aircraft Systems and Instrumentation	10		
6.	18AS7FX	Elective F (PE)	13-20		
7.	18AS7GX	Elective G (PE)	21-29		
8.	18G7HXX	Elective H (GE)	31-63		

	VIII Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	18ASP81	Major Project	64				

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) AEROSPACE ENGINEERING

	SEVENTH SEMESTER CREDIT SCHEME						
SI.			D C	Credit Allocation			Total
No	Course Code	Course Thie	B02	L	Т	Р	Credits
1.	18HS71	Constitution of India & Professional Ethics	HSS	3	0	0	3
2.	18AS72	Aircraft Performance and Stability	AS	3	0	0	3
3.	18AS73	Vibration Engineering (Theory & Practice)	AS	3	0	1	4
4.	18AS74	Internship*	AS	0	0	2	2
5.	18AS75	Aircraft Systems and Instrumentation (Theory & Practice)	AS	3	0	1	4
6.	18AS7FX	Elective F (PE)	AS	3	0	0	3
7.	18AS7GX	Elective G (PE)	AS	3	0	0	3
8.	18G7HXX	Elective H (GE)**	Res. BoS	3	0	0	3
	Total Number of Credits			21	0	4	25
	Total 1		21	0	5+5		

Note:

* Internship (6 weeks) is to be carried during the vacation after 6th semester and evaluation shall be conducted during 7th semester for 2 credits.

> ** Students should take other department Global Elective courses.

	EIGHTH SEMESTER CREDIT SCHEME						
SI.	Course		D G	C	Total		
No.	No. Code	Course Title	BoS	L	Т	Р	Credits
1	18ASP81	Major Project	AS	0	0	16	16
Total Number of Credits							16
Total number of Hours/Week				0	0	32	

		VII Semester					
	PROFESSIONAL ELECTIVES (GROUP F)						
Sl. No.	Course Code	Course Title	Credits				
1.	18AS7F1	Fatigue & Fracture Mechanics	03				
2.	18AS7F2	Systems Engineering	03				
3.	18AS7F3	Space Dynamics	03				
4.	18AS7F4	Optical Fibre Communication	03				

	VII Semester					
		PROFESSIONAL ELECTIVES (GROUP G)				
Sl. No.	Course Code	Course Title	Credits			
1.	18AS7G1	Hypersonic Aerodynamics	03			
2.	18AS7G2	Theory of Aeroelasticity	03			
3.	18AS7G3	Rotorcraft Dynamics	03			
4.	18AS7G4	Aircraft Maintenance, Repair & Overhaul	03			
5.	18AS7G5	Advanced Avionics	03			

VII Semester							
	GLOBAL ELECTIVES (GROUP H)						
Sl. No.	Course Code	Host	Course Title	Page No.			
1.	18G7H01	AS	Unmanned Aerial Vehicles	31			
2.	18G7H02	BT	Bioinformatics	33			
3.	18G7H03	СН	Industrial Safety and Risk Management	35			
4.	18G7H04	CS	Web Programming	37			
5.	18G7H05	CV	Solid Waste Management and Statutory Rules	39			
6.	18G7H06	EC	Image Processing and Machine Learning	41			
7.	18G7H07	EE	Renewable Energy Sources and Storage System	43			
8.	18G7H08	EI	MEMS and Applications	45			
9.	18G7H09	IM	Project Management	47			
10.	18G7H10	IS	Cyber Forensics and Digital Investigations	49			
11.	18G7H11	ME	Robotics and Automation	51			
12.	18G7H12	TE	Space Technology and Applications	53			
13.	18G7H13	PY	Introduction to Astrophysics	55			
14.	18G7H14	СҮ	Materials for Advanced Technology and Spectroscopic Characterization	57			
15.	18G7H15	HSS	Applied Psychology for Engineers	60			
16.	18G7H16	HSS	Advanced course in Entrepreneurship	62			

Semester: VII						
CO	NS	STITUTIO	N OF INDIA AND PROI	FESSIONAL ETH	IIC	S
	1		(Common to All Progra	ims)	1	
Course Code	:	18HS71		CIE	:	100 Marks
Credits: L:1:P	:	3:0:0:0		SEE SEE Down the se	:	100 Marks
I otal Hours		39L	a students will be able to	SEE Duration	:	3.00 Hours
1 Apply the k		vledge of co	is students will be able to	ne aware of the fun	lam	ental rights and
duties in the	ir r	ole as Engin	eers.	he aware of the func	14111	cintal fights and
2 Understandi	ng	of ethical an	d legal aspects of advertising	, consumer problems	s an	d their redressal
mechanism	ela	ited to produ	ct and service standards.			
3 Discuss the	kno	owledge of a	substantive Labor law and to	o develop skills for l	ega	l reasoning and
statutory inte	erp	retations.	····· · · · ·	0		
4 Evaluate ind	livi	dual role, re	esponsibilities and emphasize	e on professional/ er	ngin	eering ethics in
snaping prof	ess	lons.				
			Unit - I			10 Hrs
Indian Constituti	on	Salient fea	tures of Indian Constitution	Preamble to the Co	neti	tution of India:
Provisions Relatin	σt	o Citizenshi	n in India- at the Commence	ment of the Constitu	tion	and Later with
latest amendments	. N	Iodes of Ac	uisition and Termination of	Citizenship of India.	Sco	ope & Extent of
Fundamental Right	its-	Articles 14-	32 with case studies; Righ	nt to Information Ad	ct, 2	2005 with Case
studies.					-	
			Unit – II			10 Hrs
Directive Princip	ple	s of State	Policy- Significance of	Directive Principles	of	State Policy,
Fundamental Duti	es	in the Cons	titution of India; Union Exe	cutive- President an	nd S	state Executive-
Governor; Parliam	len	t & State Le	gislature; Council of Ministe	ers; Anti-defection la	w; l	Union and State
Rights Commissio	enc n	y provision	s; Elections, Administrative	e tribunais. Human	RI	gnis & Human
	11.		Unit –III			06 Hrs
Consumer Prote	cti	on Law - De	efinition and Need of Consu	mer Protection; Cons	sum	er Rights under
the Consumer Pro	tec	tion Act, 20	19; Unfair Trade Practice, I	Defect in goods, Def	icie	ncy in services;
Product liability	and	d Penal Co	nsequences, False and Mis	sleading Advertiser	ent,	, E-Commerce,
Alternate dispute	Red	dressal mech	anism; Redresses Mechanis	ms under the Consu	ner	Protection Act,
2019.						
An overview of Ir	idi	an Penal Co	de 1860 (Law Of Crimes)			
			Unit – IV			06 Hrs
Introduction to I	Lat	our Legisla	ations - Industrial Relation,	Labour Problem and	d L	abour Policy in
India; Labour We	lfa	re and Socia	al Security- Factories Act, 1	948, Sexual Harass	men	t of Women at
Workplace (Prevention, Prohibition and Redressal) Act, 2013; the Child Labour (Prohibition and						
Regulation) Act, 1986, Maternity Benefit (Amendment) Act, 2017; Industrial Dispute Act, 1947,						
Kererence of Disputes to Boards, Courts of Tribunals.						
		• • •	$\frac{\text{Unit}-\text{V}}{\text{Unit}-\text{V}}$	E41:) P '1	11.4	07 Hrs
Scope and aims	01	engineeri	ig ethics (NSPE Code of	Ethics), Responsib	ility	of Engineers,
Engineering Cor	esp	rate Social	Responsibility Statutory	Drovision recording	y a	nu Liability in
prevention of Rag	pul oin	g	Responsionity. Statutory	riovision regarding	вþ	and and
Prevention of Rag	5	b .				
Course Outcome		fter compl	ating the course the studen	ts will be able to		

Cours	c Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability
	and to take affirmative action as a responsible citizen.
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to

	professional environment, strengthen the ability to contribute to the resolve of human rights
	& Ragging issues and problems through investigative and analytical skills.
CO3	Understanding process of ethical and moral analysis in decision making scenarios and
	inculcate ethical behavior as a trait for professional development.
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business
	Enterprises.

Refer	ence Books
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5 th Edition, 2015, ISBN -13:978-9351452461
3	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6 th Edition, 2012, ISBN: 9789325955400
4	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics, Wadsworth Cengage Learning, 5 th Edition, 2009, ISBN-978-0495502791

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

			Semester: VII	[
	AIRCRAFT PERFORMANCE AND STABILITY					
			(Theory)			
Course Code	••	18AS72		CIE	:	100 Marks
Credits: L:T:P:S	••	3:0:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours

Course Learning Objectives: To enable the students to:

1 State different parameters associated with airplane and their performance

2 Understand and Explain the terminologies related to steady performance of airplanes

3 Describe the effect of static longitudinal stability on the performance of propeller and jet planes

4 Derive conclusions on performance of airplanes subjected to dynamic longitudinal instability

5 Understand and explain the concept of Dynamic Lateral and Directional Stability

Unit-I	08 Hrs
Elements of Aircraft Performance-I: Equation of motion, Thrust required for level un accel	lerated flight,
Thrust available and maximum velocity, Power required for level un accelerated flight and po	ower
available and maximum velocity-piston prop and Jet engine, Altitude effects, Rate of Climb,	Gliding
flight, Absolute and service ceilings, Time to climb.	-
Unit -II	08 Hrs
Elements of Aircraft Performance-II: Range and Endurance-Propeller and Jet driven airpla	ine, Take-off
and landing Performance, Turning Flight and V-n Diagram, Accelerated Rate of climb.	
Static Longitudinal Stability: Equilibrium conditions, Definition of static stability, 1	Definition of
longitudinal static stability, stability criteria, Contribution of airframe components: Wing	contribution,
Tail contribution, Fuselage contribution, Power effects- Propeller airplane and Jet airplane.	
Unit -III	08 Hrs
Static Longitudinal Stability and control Stick-Fixed: Trim Condition, Static Margin,	, Stick Fixed
Neutral Point, Longitudinal control, Elevator Power, Elevated Angle vs. Equilibrium Lif	t Coefficient,
Elevator required for Landing and Restrictions on Forward CG range.	
Static Longitudinal Stability and control Stick-Free: Hinge Moment Parameters, Con	ntrol Surface
Floating Characteristics, Trim Tabs, Stick Force Gradient, Stick Free Neutral Point, Restri	ctions on Aft
CG. Balancing Methods.	
Unit -IV	07 Hrs
Static Directional Stability and Control: Definitions, Static Directional Rudder Fixed, R	udder Power,
Stick Free Directional Stability, Rudder Directional Control, Rudder Lock and Dorsal Fin	
Static Lateral Stability and Control: Definition of Roll Stability, Estimation of Dihedral	Effect, Effect
of Wing Sweep Flap and Power, Lateral Control and Aileron Balancing.	
Unit -V	08 Hrs
Dynamic Stability: Definitions of Longitudinal, Lateral and Dynamic Lateral Stabilit	y, Basics of
Phugoid Motion & Short Period Motion (Without Derivation), Airplane Equations	of Motion,
Aerodynamic Forces and Moments Representation.	
Dynamic Derivatives and Stability Criteria: Due to Forward Speed, Pitching Velocity	y, Change of
Angle of Attack, Roll and Yaw Rate, Flying qualities in pitch, Cooper-Harper Scale. Dutch r	oll and Spiral
instability, Auto-rotation and Spin, Coupling between Rolling and Yawing Moment, A	Adverse Yaw
Effects, Aileron Reversal. Roll-Pitch-Yaw Inertial Coupling.	
Course Outcomes: At the end of this course the student will be able to :	

Course	e Outcomes: At the end of this course the student will be able to :
CO1:	Estimate and Evaluate the Performance of propeller powered and Jet powered airplane
CO2:	Analyse the static stability characteristics of the airplane
CO3:	Understand and Analyse Dynamic stability conditions for the longitudinal, lateral and directional
	stability of aircrafts
CO4:	Design the aircraft components based on performance stability requirements

Re	ference Books
1	Introduction to Flight, J D Anderson Jr, 5 th Edition, 2005, McGraw-Hill Book Co., ISBN- 9780072990713
2	Flight Stability and Automatic Control, Nelson, R.C., 2 nd Edition, 1997, McGraw-Hill Book Co., ISBN-978-0070462731
3	Performance, Stability, Dynamics and Control of Airplanes, Bandu N. Pamadi, 2 nd Edition Series, 2004, AIAA ISBN- 978-1563475832
4	Airplane Performance stability and Control, Perkins, C.D and Hage, R.E., 2 nd Edition, 1988, John Wiley Son Inc, New York, ISBN- 978-0471680468
5	Dynamics of Flight Stability and Control, Bernard Etkin, 2 nd Edition, 1982, John Wiley & Sons ISBN- 978-047103418

Scheme of Evaluation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +50(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	-	1	2	2	-	-	1
CO2	3	3	2	1	2	-	1	2	3	-	-	1
CO3	3	3	2	1	2	-	1	2	3	-	-	1
CO4	3	3	2	1	2	-	1	2	3	1	1	1

			Semester: VII				
	VIBRATION ENGINEERING						
			(Theory & Practice	2)			
Course Code	:	18AS73		CIE	:	100+50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100 +50 Marks	
Hours	:	39L+32.5P		SEE Duration		3.00+3.00 Hours	

Course Learning Objectives: To enable the students to:

- **1** Understand and classify the principle of vibrations
- 2 Analyse and solve the problems associated with damped and un-damped free vibrations
- **3** Evaluate and study the response of mechanical systems for different types of excitation.
- 4 Evaluate the behaviour of two degrees of freedom and multi degrees of freedom system using different methodologies.

Unit-I08 HrsIntroduction: Types of vibrations, Definitions, Derivations for spring mass systems, Simple Harmonic
Motion (S.H.M.), Work done by harmonic force, Principle of super position applied to SHM, Beats
phenomenon, Fourier series applied to vibration problems, Numerical on Fourier series, superposition of
SHM and beats.

Unit – II08 HrsDamped and Undamped Vibrations: Methods of Analysis, Natural frequencies of simple systems,
Springs in series and parallel, Torsional and transverse vibrations and Problems. Derivations for over,
critical and under damped systems, Logarithmic decrement and Problems.

IIn:4 III

0111 -111	UO IIIS
Forced Vibrations (1DOF): Introduction, Analysis of forced vibration with constant	t harmonic
excitation - Magnification factor, rotating and reciprocating unbalances, excitation of supp	ort (relative
and absolute amplitudes), force and motion transmissibility, Energy dissipated due to da	amping and
Problems.	

Unit -IV	08 Hrs
Systems with two degrees of Freedom: Principle modes of vibrations, Normal mode	and natural
frequencies of systems (without damping) - Masses on tightly stretched strings, double	pendulum,
torsional systems, combined rectilinear and angular systems, Undamped dynamic vibration a	bsorber and
Problems.	
Unit -V	07 Hrs

Numerical Methods for multi degree freedom of systems: Introduction, Maxwell's reciprocal theorem, Influence coefficients, Rayleigh's method, Dunkerley's method, Stodola method, Holzer's method, Orthogonality of principal modes.

LABORATORY EXPERIMENTS

- 1. Free Vibration of Single Degrees of freedom System
- 2. Forced Vibration of Single Degrees of Freedom System
- 3. Vibration Behaviour of Single Pendulum
- 4. Laplace Solution for Single DOF
- 5. Laplace Solution for MDOF
- 6. Response of MDOF system using ODE 45
- 7. Response of MDOF using State Space approach
- 8. Modal Response Analysis of MDOF
- 9. Base excitation of MDOF system
- 10. Response of rotating masses
- 11. Random and Shock test using electro dynamic shaker
- 12. Sine sweep testing on cantilever plate

Aerospace Engineering

00 TT

Course	Course Outcomes: At the end of this course the student will be able to :							
CO1:	State and classify the principle of vibrations							
CO2:	Analyse and solve the problems associated with damped and un-damped vibrations							
CO3:	Demonstrate the effect of external excitation on a 1D system and identify their critical							
	parameters							
CO4:	Evaluate a Multi DOF system for modes of vibration and appreciate the effect of dampers							

Reference Books

1	Mechanical Vibrations, Singiresu S. Rao,6th Edition, 2003, Pearson, ISBN: 978-0134361307
2	Principles of Vibration, Benson H Tongue, 2 nd Edition, 2002, Oxford University Press, ISBN: 978-0195106619
3	Theory of Vibration with Applications, Thomson, W.T., 5th Edition, 28 August 1997, Pearson, 978-0136510680
4	Fundamentals of Mechanical Vibrations, Kelly, Har/Dsk Edition, 2000, McGraw Hill Publications, ISBN: 978-0079116611

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	3	1					2
CO2	3	3	3	3	1							2
CO3	2	2	3	3								1
CO4	3	3	3	3		1	2					1

High-3 : Medium-2: Low-1

		SE	MESTER : VII						
		Ι	NTERNSHIP						
Course Code	:	18AS74		CIE Marks	:	50			
Credit L:T:P	:	0:0:2		SEE Marks	:	50			
Hours/week	:	4		SEE Duration	:	3.00 Hours			
		(GUIDELINES		·				
1) The duration	on of	the internship shall b	e for a period o	of 6/8 weeks on ful	l ti	me basis after	IV		
semester fin	nal ez	kams and before the co	mmencement of	VII semester.					
2) The studen	t mu	st submit letters from	the industry cle	early specifying his	/	her name and t	the		
3) Internship	the f	be related to the fiel	d of specializati	on of the respectiv	ure	IG programme	in		
which the s	tudei	t has enrolled.	d of specialization	on of the respectiv		o programme			
4) Students un	nderg	oing internship training	g are advised to a	report their progress	s ar	d submit period	dic		
progress re	ports	to their respective guid	les.	1 1 0		1			
5) Students ha	ive to	present the internship	activities carrie	d out to the departn	nen	tal committee a	ınd		
only upon	appro	oval by the committee,	, the student can	proceed to prepare	an	d submit the ha	ard		
copy of th	e fin	al internship report. H	Iowever, interim	or periodic report	s a	s required by 1	the		
industry / c	organ	ization can be submitte	ed as per the form	mat acceptable to the	ne r	espective indus	try		
/organizatio	ons.	l be printed on A4 size	a with 1.5 spacin	a and Times New 1	Dor	non with font a			
12 outer co	over	of the report (wrapper)	has to be Ivory	color for UG circui	t Pi	orams and Lie	oht		
Blue for No	on-Ci	rcuit Programs.	hus to be fivery			ograms and Lig	5110		
7) The broad t	forma	at of the internship fina	l report shall be a	as follows					
• Co	ver P	age	•						
• Cer	rtifica	ate from College							
• Cer	rtifica	ate from Industry / Org	anization						
• Ac	know	ledgement							
• Syı	nopsi	S							
• Tal	ole of	f Contents			_				
• Ch	apter	1 - Profile of the Or	ganization: Orga	inizational structure	e, P	roducts, Servic	es,		
Bu	sines	s Partners, Financials, I	Manpower, Socie	etal Concerns, Profe	SS10	onal Practices,			
• Ch	apter	2 - Activities of the De	epartment	les norformed durin	~ 9	weak pariod			
• Ch	apter	A Reflections: High	light specific te	sks perioritied during	g o 11a	that you acquir	red		
• Ch dur	ino i	14 – Kenceuolis, Iligi nternshin	inght specific tex	chilical and soft ski	115	that you acqui	lu		
• Re	feren	ces & Annexure							
Course Outcon	ies:								
After going thro	ugh t	the internship the stude	nt will be able to	:					
CO1: Apply er	igine	ering and management	principles						
CO2: Analyze	real-	time problems and sug	gest alternate solu	utions					
CO3: Commun	licate	e effectively and work i	n teams	1.0.1 1 .					
CO4: Imbibe th	ne pra	actice of professional e	thics and need to	r lifelong learning.					
The avaluation		ous internal Evaluatio	on (CIL): of Guida Drafa	agor/Aggosista Dra	for	or and Assist	ont		
Professor The c	omm	ninuce shall assess the pr	resentation and the	e progress reports i	n tu	vo reviews	anı		
The evaluation	crite	ria shall be as per the r	ubrics given belo)W:					
Reviews		Activity		Weig	hta	ge	1		
Review-I	Exp	planation of the a	application of			<u> </u>	1		
	eng	ineering knowledge	in industries,	15	0/_				
	abil	ity to comprehend the	functioning of	43	/0				
	the	organization/ departme	ents,						

Review-II	Importance of resource environment and presentation skills and repor	management, sustainability t writing	55%	
-----------	--	--	-----	--

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

Semester: VII							
	AIRCRAFT SYSTEMS & INSTRUMENTATION						
			(Theory & Practice				
Course Code	:	18AS75		CIE	:	100+50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100 +50 Marks	
Hours	:	39L+32.5P		SEE Duration	:	3.00+3.00 Hours	

Course Learning Objectives: To enable the students to:

- 1 List the various aspects of design of aircraft systems involved in an aircraft.
- 2 Demonstrate the technical attributes of all the subsystems of an aircraft.
- **3** Explain the significance of each systems and its subsystems for developing an airplane.
- 4 Demonstrate the integration of the systems with the airplane.

Unit-I	09 Hrs
Aircraft Power Generation Systems:	
Aircraft Electrical System: Aircraft Power Generation & Distribution System. Components	of Aircraft
Electrical System - Aircraft battery, Aircraft Generators (AC/DC Generators), Aircraft A	Alternators:
Theory of operation Alternator regulation, Fundamentals of Constant speed drives (CSD) and	nd Variable
Speed Constant Frequency (VSCF) Integrated Drive Generators (IDG).	
Aircraft Hydraulic & Pneumatic Systems Components of a typical Hydraulic system,	Working of
Hydraulic system, Power packs, Hydraulic actuators. Aircraft, Landing gear and Wheel E	sraking and
Anti-Skid & Shimmy System. Pneumatic system and its components,	
Electrical, Hydraulic & Pneumatic system Instruments	
Unit – II	10 Hrs
Air Data Systems: Pitot-static Sensing probes, Air Speed Indicator, Altimeter, Vertical spee	d indicator,
Angle of Attack Sensing & indication, Mach meter, Air Data Computer and its functioning w	vith respect
to FBW system, Aerodynamic Alerting Systems.	
Flight Control Systems: Primary and secondary flight controls, Conventional Flight cont	trol linkage
System, Power Assisted and fully powered flight controls. Fly By Wire Control System & Fl	ly By Light
control system.	
Unit -III	08 Hrs
Gyroscopic Instruments & Magnetic Reference Heading System: Type of Gyroscopes, P	rinciples of
Mechanical, MEMS and Optical Gyroscopes, Properties of Mechanical Gyroscope-I	Rigidity &
Precession, limitations of gyroscope, Artificial Horizon, Errors due to acceleration and turnin	g, Turn and
Bank indicator.	
Terrestrial magnetism, Aircraft magnetism, Direct Reading Compasses, Magnetic Heading	Reference
System - Remote Indicating Compass System - Flux Detector Valve, Direction Indica	ator, Block
Diagram.	
Unit -IV	06 Hrs
Aero Engine Systems: Types of Starting and Ignition systems, Engine starting sequence, I	Engine Oils
and a typical Engine Lubricating system. Engine Fuel System & functioning of a typical	engine fuel
control unit.	
Aero Engine Instruments: Pressure measurements & indicating systems, pressure	switches,
Temperature measurements & Indicating systems.	
Unit -V	06 Hrs

Air-conditioning and Pressurisation Systems: Cockpit & Cabin Temperature control system, De-icing systems, Cold air units, Compact heat exchangers: Cockpit and Cabin Pressurization valves: filters: air bottles: capsules and bellows: indication and warnings. systems, sensor units

LABORATORY EXPERIMENTS

- 1. Characteristic Curve of Variable Displacement Hydraulic Pump.
- 2. Study of Application of 4/3 Directional Control Valve (Tandem & Closed Centre).
- 3. Study of Operation of Hydraulic Motor Using 4/3 Directional Control Valve.
- 4. Study of Operation of Accumulator Using 4/3 Directional Control Valve.
- 5. Study of Application of Pressure Switch Using 4/2 Directional Control Valve.
- 6. Study of Position Dependent Control of a Double Acting Cylinder with Mechanical Limit Switches.
- 7. Study of Logical Control of Pneumatic circuit with 'AND' & 'OR' function using Electro pneumatics

Part – II : Aircraft Instrumentation Lab

- 8. (A) Measurement of Aircraft Pressure, using Sensor Test Bed.
 - (B) Measurement of Aero-engine RPM using Sensor Test Bed.
 - (C) Measurement of Aero-engine Temperature using Sensor Test Bed.

9. Measurement of Fuel Flow & Quantity of Fuel Consumed in Aero-Engine using Fuel Flow Transmitter using sensor Test Bed.

10. Study of Gyroscopic Behaviour of Rotating Masses and Verification of Gyroscopic Relationship (Using Electromechanical Gyroscope using Table Top Model).

11. Measurement of Roll & Pitch with Artificial Horizon and Calibration of Magnetic Compass Using Magnetometer.

<u> Part – III : Air Data System Lab</u>

9. 12. Measurement of Air Data Parameters Using Air Data test Set.

Course Outcomes: At the end of this course the student will be able to :

CO1: Categorise the various systems required for designing a complete airplane

CO2: Comprehend the complexities involved during development of flight vehicles.

CO3: Explain the role and importance of each systems for designing a safe and efficient flight vehicle

CO4: Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

1	E.H.J.Pallet, Aircraft Instruments, 1 st Revised Edition, 1992, Prentice Hall of India, ISBN-
	9780273015390
ſ	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems
2	Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968
2	Harris, D., Ground Studies for Pilots: Flight Instruments and Automatic Flight Control Systems,
3	sixth edition 2004, Blackwell Science, ISBN: 978-0632059515
4	Moir, I. and Seabridge, Civil Avionics Systems, AIAA (American Institute of Aeronautics &
4	Astronautics) Wiley; 2 edition (October 14, 2013), ISBN: 978-1118341803

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks

					CO-P	O Mapp	oing					
CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO
PO											11	12
CO1	3	1	3	1	3	1	1	1	-	-	-	2
CO2	3	2	3	1	2	2	-	-	-	-	-	1
CO3	3	3	3	2	3	1	-	-	-	-	-	2
CO4	3	1	1	1	1	1	1	1	-	-	-	1

	Semester: VII							
	FATIGUE & FRACTURE MECHANICS							
	Group-F: Professional Elective							
	(Theory)							
Course Code	:	18AS7F1		CIE	:	100 Marks		
Credits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks		
Total Hours	:	39L		SEE Duration	:	3.00 Hours		

Course Learning Objectives: To enable the students to:

1	Identify	the	vario	ous j	possible	mechanisr	ns of c	occurrer	nce of	frac	ture in	material	s ar	nd s	struc	tures.	
					-												

- 2 Interpret the behaviour of a crack growth under various loading conditions in brittle and ductile materials.
- **3** Demonstrate the various methods of arresting a potential crack in structures.
- 4 Analyse the effect of fatigue fracture on the life of a structure

Unit-I	08 Hrs
Fundamentals of Fracture Mechanics: Introduction to fracture Mechanics, Types and Cha	racteristics of
Brittle & Ductile Fractures, Brittle-Ductile transition, Fracture mechanics approach to des	ign - Energy
approach, Stress Intensity approach, Time dependent crack growth & damage tolerance	, Crack in a
structure, Modes of cracking, Fracture Toughness.	
Unit -II	08 Hrs
Linear Elastic Fracture Mechanics (LEFM): Griffith's Energy balance criterion, Energy	y release rate
(ERR), Stability of crack growth-R curve, Stress intensity factor (SIF), Direction of crack	propagation,
mixed mode fracture, SIF for different geometries, Relationship between K and G,	Experimental
determination of Kc, Crack-tip plasticity Correction factor for plasticity effects.	
Unit -III	08 Hrs
Elastic-Plastic Fracture Mechanics: Introduction, J-integral, Relation between J-integral	and CTOD,
crack resistance curve, Experimental determination of Kc and J, Constraints effects in Fractur	re.
Unit -IV	07 Hrs
Fatigue of Structures: S.N. curves, Stress-life approach, Strain-life approach, Mean s	stress effects,
Goodman, Gerber and Soderberg relations, Neuber's stress concentration factors - 1	Plastic stress
concentration factors - Notched S.N. curves.	
Unit -V	08 Hrs
Statistical Aspects of Fatigue Behaviour: Low cycle and high cycle fatigue - coffin - Man	son's relation
- Transition life - cyclic strain hardening and softening -Cycle counting techniques, Paris	law, Miner's
rule, Damage rule for irregular loads, Variable amplitude loading.	
Course Outcomes: At the end of this course, the student will be able to :	

Course	Course Outcomes: At the end of this course the student will be able to :							
CO1:	Demonstrate the phenomenon of formation of cracks in different structural materials.							
CO2:	Develop solutions to estimate the size of the cracks and its effect under different loading conditions.							
CO3:	Extend the life of a structure by applying various methods of crack arresting techniques.							
CO4:	Evaluate the fracture strength of materials by incorporating different testing methods for different loading environments.							

Re	ference Books
1	T.L. Anderson, Fracture Mechanics – Fundamentals and Application, 4 th Edition, 2017, CRC press, ISBN- 9781498728140
2	David Broek, Martinus Nijhoff,, Elementary Engineering Fracture Mechanics, 5 th Edition, 1999, London, ISBN 978-94-009-4333-9
3	Jayatilake , Fracture of Engineering Brittle Materials, 2 nd Edition, 2001, Applied Science, London ISBN-9780853348252

4 Jaap Schijve, Fatigue of Structures and Materials, 2004, Kluwer Academic publishers, , ISBN-0792370139

Scheme of Evaluation Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +50(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	1	1	1	1	1				1	
CO2	3	2	3	3	1	1	1	1				2	
CO3	3	2	3	3	3	1	3	3				2	
CO4	3	3	3	3		2	1	2				2	

	Semester: VII											
	SYSTEMS ENGINEERING											
	Group-F: Professional Elective											
	(Theory)											
Cou	Course Code : 18AS7F2 CIE : 100 Marks											
Credits: L:T:P			3:0:0		SEE	:	100 Marks					
Tota	al Hours	:	39 L		SEE Duration	:	3.00 Hours					
Cou	rse Learning Ob	ject	ives: To enable the	students to								
1.	Understand the	Life	e Cycle of Systems.									
2.	Explain the role	of	Stake holders and t	heir needs in organ	nizational systems.							
3.	Develop and Do	ocur	nent the knowledge	e base for effective	systems engineeri	ng p	rocesses.					
4.	Apply available	toc	ls, methods and tec	hnologies to suppo	ort complex high te	echn	ology systems.					
5.	Create the fram	ewo	orks for quality proc	cesses to ensure high	gh reliability of sys	tem	S.					

	0.6 11
UNIT-I	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, C	Drigins of
System Engineering, Examples of Systems Requiring Systems Engineering, System En	gineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.	
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex	systems,
System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evo	olutionary
Characteristics of the development process, The system engineering method, Testing throughout s	system
development, problems.	
UNIT – II	10 Hrs
Systems Engineering Management: Managing systems development and risks, Work by	reakdown
structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organi	ization of
Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems En	gineering
standards, Problem.	0 0
Needs Analysis: Originating a new system, Operations analysis, Functional analysis, F	easibility
analysis, Feasibility definition, Needs validation, System operational requirements, problems.	2
Concept Exploration: Developing the system requirements, Operational requirements	analysis.
Performance requirements formulation, Implementation concept exploration, Performance requirements	quirements
validation, problems.	1
UNIT – III	10 Hrs
Concept Definition: Selecting the system concept, Performance requirements analysis, F	unctional
analysis and formulation. Concept selection. Concept validation. System Development planning	g. System
Functional Specifications, problems	
Advanced Development: Reducing program risks. Requirements analysis. Functional Analysis	and
Design Prototype development Development testing Risk reduction problems	
UNIT – IV	07 Hrs
Fngineering Design: Implementing the System Building blocks, requirements analysis	Functional
analysis and design Component design Design validation Configuration Management problem	ne
Integration and Evaluation. Integrating Testing and evaluating the total system Test pla	nning and
nreparation System integration Developmental system testing Operational test and evaluation	nrohlems
preparation, System integration, Developmental system testing, Operational test and evaluation,	problems.
UNIT – V	06 Hrs
Production: Systems Engineering in the factory, Engineering for production, Transition	from
development to production Production operations. Acquiring a production knowledge base pro-	hlems
Operations and support: Installing maintenance and ungrading the system Installation and	test In-
service support. Major system upgrades: Modernization. Operational factors in system day	a wor, m-
nroblems	sopment,

~									
Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the Life Cycle of Systems.								
CO2:	Explain the role of Stake holders and their needs in organizational systems.								
CO3:	Develop and Document the knowledge base for effective systems engineering processes.								
CO4:	Apply available tools, methods and technologies to support complex high technology systems.								
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.								

Reference Books:

ittit	Tence Books.
1	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
1.	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
ſ	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
2.	John Wiley & Sons, Inc., ISBN 0-471-15405-9
n	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
3.	Penguin University Books, ISBN: 0140600043, 9780140600049.
4	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
4.	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE): Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	1
CO2	-	2	3	-	1	-	-	1	-	-	2	-
CO3	-	3	-	-	-	2	2	1	-	3	2	-
CO4	-	-	2	1	-	-	-	-	-	-	-	-
CO5	1	1	-	2	-	1	2	I	3	-	-	-

Semester: VII											
SPACE DYNAMICS											
		Group	-F: Professional E	lective							
			(Theory)								
Course Code	:	18AS7F3		CIE	:	100 Marks					
Credits: L:T:P:S	Credits: L:T:P:S : 3:0:0:0 SEE : 100 Marks										
Total Hours	Fotal Hours: 39LSEE Duration: 3.00 Hours										

Course Learning Objectives: To enable the students to:

1	Develop an understanding of celestial mechanics required to predict the behaviour of various
1	celestial bodies
2	Obtain a detailed knowledge of orbital mechanics and its solutions with applications to geocentric
Z	orbits and interplanetary transfers
3	Examine the effect of perturbations on the performance of a satellite in its orbit
4	Familiarize with various types of Interplanetary Trajectories in space domain

Unit-I10 HrsUnderstanding Astronomy: Reference Frame & Coordinate System: Position of the Earth's Surface, The
Celestial Sphere, The Ecliptic, Geocentric Reference Frames, Heliocentric Reference Frames, Vernal
Equinox Motion, Velocity Vector, Time & Calendar: Sidereal Time, Solar Time, Mean Solar Time,
Standard Time, Ephemeris Time & Atomic Time, The Year, The Julian Date, The Earth and its Shape,
The Earth's Atmosphere.

Unit -II08 HrsFundamentals of Orbital Mechanics : Two Body Motion, Circular & Escape Velocity, Orbit Equation,
Kepler's Equation, Motion in Various Orbits, Position & Velocity, Orbit Determination & Satellite
Tracking.

Unit -III07 HrsRigid Body Dynamics : Choice of Origin, Angular Momentum & Energy, Principal Body Axis Frame,
Parallel Axis Theorem, Euler's Equation, Orientation Angles.

 Unit -IV
 07 Hrs

 Satellite Attitude Dynamics: Torque Free Axisymmetric Rigid Body, General Torque Free Rigid Body

 Attitude Control: Spinning & Non-Spinning Spacecraft, Yo-Yo Mechanism, Gravity Gradient Satellite,

 Dual Spin Spacecraft.

Unit -V07 HrsSatellite Launching & Injection : Launch Vehicle Ascent Trajectories, Injection of a Satellite: General
Aspects of Injection, Dependence of Orbital Parameters, Launch Vehicle Performances, Orbital
Deviations due to Injection Errors.07 Hrs

Course (Course Outcomes: At the end of this course the student will be able to								
CO1:	Comprehend the fundamental behaviour of various planets through celestial mechanics								
CO2:	Extend the knowledge of orbital mechanics to achieve space flight								
CO3:	Study the attitude characteristics of satellites in space under various celestial environments								
CO4:	Estimate and reduce the perturbations encountered by a satellite during injection operations								

Refe	rence Books
1	Rocket Propulsion and Spaceflight Dynamics, J.W.Cornelisse, H.F.R. Schoyer, and K.F. Wakker, ,
1	1 st Edition, 2000, Pitman Publishing, ISBN-13: 978-0273011415
2	Spaceflight Dynamics, William E.Wiesel, 2 nd Edition, 1997, McGraw-Hill, 2001, I SBN-13: 978-
Z	0070701106
3	Orbital Mechanics, Vladimir A. Chobotov, 3 rd Edition, 2002, AIAA Education Series, Published by
	AIAA, ISBN 978-1-56347-537-5

4	Spacecraft Mission Design,	Charles D.Brown,	2 nd Edition,	2001,	AIAA	Education	Series,	ISBN-
4	13: 978-1563472626							

Scheme of Evaluation Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				2
CO3	1		3	3								2
CO4	3	3	3	3		2	1	2				2

Semester: VII							
		OPTICAL	FIBER COMMU	NICATION			
		Grouj	p-F: Professional I	Elective			
			(Theory)				
Course Code	:	18AS7F4		CIE	:	100 Marks	
Credits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3.00 Hours	

Cou	rse Learning Objectives: To enable the students to:							
1	Understand the various fundamentals of Optical Fiber communications.							
2	2 Demonstrate the technical attributes of Optical Fiber communications and its implantation in th							
2	industry as well as in the aircraft.							
2	Explain the significance of each system and its subsystems for developing an Optical Fiber							
5	communication system							
4	Demonstrate the integration of the Optical Fiber communication systems with the airplane.							

	Unit-I	08 Hrs				
Funda	mentals of Optics : Reflection and Refraction, Phase Velocity and Group Velocity, I	Polarization				
of Ligh	nt,					
Optica	I Fiber & Transmission: Fiber Structure, Ray Propagation in Fibers, Optical W	ave guides,				
Optical Fiber Signal Attenuation and Dispersion, Modes of a Step-Index Optical Fiber, Comparison						
betwee	n Multi-Mode and Single-Mode Fibers, Power Distribution and Non-linear optical Eff	ects				
	Unit -II	07 Hrs				
Lasers	Basic Concepts, Conditions for Laser Oscillations, Wave-Particle Duality,	Laser Rate				
Equation	ons-Ruby Laser, Semiconductor Lasers, The PN Junctions, Spontaneous and	Stimulated				
Emissi	on at the PN Junction, Direct and Indirect Band-Gap Semiconductors, Semicond	uctor Laser				
Diode						
	Unit -III	10 Hrs				
Optica	I Modulators and Modulation Schemes: Power Spectral Density, Digital Modulation	on Schemes,				
Optical	l Modulators, Optical Realization of Modulation Schemes.					
Optica	I Receivers: Photodetector Performance Characteristics, Common Types of Pho	todetectors,				
Direct	Detection Receivers, Receiver Noise, Coherent Receivers,					
Optica	I Amplifiers : Optical Amplifier Model, Amplified Spontaneous Emission in	Two-Level				
System	ns, Semiconductor Optical Amplifiers, Semiconductor Optical Amplifiers,					
	Unit -IV	07 Hrs				
Transı	mission System Design: Fiber Loss-Induced Limitations, Dispersion-Induced Limita	tions, ASE-				
Induce	d Limitations.					
Perfor	mance Analysis : Optimum Binary Receiver for Coherent Systems, Homodyne	Receivers,				
Hetero	dyne Receivers, Direct Detection					
	Unit -V	07 Hrs				
Chann	el Multiplexing Techniques : Polarization-Division Multiplexing, Waveleng	th-Division				
Multip	lexing, OFDM, Time-Division Multiplexing.					
Nonlin	ear Effects in Fibers : Origin of Linear and Nonlinear Refractive Indices, Fiber	Dispersion,				
Self-Phase Modulation, Combined Effect of Dispersion and SPM.						
Course	e Outcomes:					
At the	end of this course the student will be able to :					
CO1:	Explain the various systems/components required for Optical Fiber communication.					
CO2 :	Comprehend the complexities involved during development of Optical Fiber commun	nications.				
CO3 :	Explain the role and importance of each systems for designing an efficient Op	ptical Fiber				
003:	communications.					

Demonstrate the integration of the Optical Fiber communication systems with the airplane.

CO4:

Re	ference Books
1	Shiva Kumar & M Jamal Deen, Fiber Optic Communication- Fundamentals & Applications, 2014
1	edition, John Wiley & Sons Ltd, ISBN:978-0-470-51867-0
2	Casimer DeCustis, Hand Book of Fiber Optic Data Communication, 3ed 2008, Academic Press,
2	ISBN: 978-0-12-374216-2
2	Ivan P. Kaminow, Tingye Li, Alan E. Willner, Optical Fiber Telecommunications V B - Systems
3	and Networks, 2008, Academic Press, ISBN: 978 0 12 374172 1.
4	Le Nguyen Binh, Optical Fiber Communications Systems, 2010, CRC Press, International
4	Standard Book Number-13: 978-1-4398-0621-0

Scheme of Evaluation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	1	3	1	1	1	-	-	-	2
CO2	3	2	3	1	2	2	-	-	-	-	-	1
CO3	3	3	3	2	3	1	-	-	-	-	-	2
CO4	3	1	1	1	1	1	1	1	-	-	-	1

Semester: VII									
	HYPERSONIC AERODYNAMICS								
		Grou	p-G: Professional I	Elective					
			(Theory)						
Course Code	:	18AS7G1		CIE	:	100 Marks			
Credits: L:T:P:S : 3:0:0:0 SEE : 100 Marks									
Total Hours	Fotal Hours : 39L SEE Duration : 3.00 Hours								

Course Learning Objectives: To enable the students to:1Outline all the important aspects required to understand the hypersonic flight regime2Understand various theories and establish equations specific to hypersonic flow conditions3Formulate the governing equations instrumental in determining the flow properties involving viscous behaviour of fluid4Thoroughly comprehend the concepts of rarefied gas dynamics and their effect on crafts in outer atmosphere

Unit-I	08 Hrs					
Fundamentals of Hypersonic Flows : Qualitative aspects of hypersonic flow, Physical phenomena in						
hypersonic flows: Thin shock layers, Entropy layer, Viscous interaction, High temperature	e flows, Low-					
density flows, Recapitulation, Hypersonic flight path-velocity altitude map, Stagnation reg	gion flow field					
properties.						
Unit -II	08 Hrs					
Inviscid Hypersonic Flows : Basic Hypersonic Relations, Hypersonic Similarity Parameter	er, Hypersonic					
Expansion-Wave Relations, Newtonian Flow, Modified Newtonian Law, Centrifugal Force	Corrections to					
Newtonian Theory, Tangent-Wedge Tangent-Cone Methods, Shock-Expansion Method.						
Unit -III	08 Hrs					
Solutions for Hypersonic Inviscid Flow fields : Basic Governing Equations, M	Iach Number					
Independence, Hypersonic Small-Disturbance Equations, Hypersonic Similarity, Hypersoni	c Equivalence					
Principle and Blast-Wave Theory, Thin Shock-Layer Theory, Method of Characteristics.						
Unit -IV	07 Hrs					
Viscous Hypersonic Flow : Governing Equations for Viscous Flow: Navier-Stokes Equations, Similarity						
Parameters and Boundary Conditions, Boundary-Layer Equations for Hypersonic Flow	v, Hypersonic					
Transition, Hypersonic Aerodynamic Heating, Entropy-Layer Effects on Aerodynamic Heat	ing.					
Unit -V 08 Hrs						
Rarefied Gas Dynamics : The Conception of Rarefied Gas Dynamics, Molecular Model of Gases, Mean						
Free Path of Molecules, Division of Flow Regimes, Non-equilibrium Phenomena and Rarefied Gas						
Dynamics, Similarity Criteria, Collision Frequency and Mean Free Path, Velocity and Spee	ed Distribution					
Functions: Mean Velocities.						

Course	Course Outcomes: At the end of this course the student will be able to :						
CO1:	Comprehend the important aerodynamic features distinguishing hypersonic flight regime						
CO2:	Utilize different theories to build basic equations specific to high speed flow regimes						
CO3:	Establish fundamental governing equations to determine the significant hypersonic flow						
	properties						
CO4	Analyze the effect of free molecular flow on the construction of an hypersonic vehicle operating						
CO4:	in exosphere						

Re	ference Books
1	Hypersonic and High Temperature Gas Dynamics, John David Anderson, 2 nd Edition, 2006,
1	AIAA Education Series, USA, ISBN 978-1-56347-780-5
n	Hypersonic Aerothermodynamics, John J. Bertin, 1994 AIAA Education Series, USA., ASIN
Z	B01A68GUDG
3	Introduction to Hypersonic flow, Cherni C. G, 1 st Edition, 1961Academic Press, New York, ISBN

	9781483271682
4	Hypersonic Flow Theory, Hayes W. D and Probstein R F, 2 nd Edition, 1966, Academic Press, New York
5	Elements of Hypersonic Aerodynamics, Cox R. N, Crabtree L. P, 1 st Edition, 1965, Academic press,New York, ASIN B003RNTS9G

Scheme of Evaluation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				2
CO3	1		3	3								2
CO4	3	3	3	3		2	1	2				2

Semester: VII									
		THEOR	RY OF AEROELA	STICITY					
		Grouj	p-G: Professional I	Elective					
			(Theory)						
Course Code	:	18AS7G2		CIE	:	100 Marks			
Credits: L:T:P:S : 3:0:0:0 SEE : 100 Marks									
Total Hours	Fotal Hours : 39L SEE Duration : 3.00 Hours								

Cou	Course Learning Objectives: To enable the students to:					
1	Understand classical Aeroelastic problems arising due to fluid structure interaction.					
2	Understand the underlying principles of static aeroelasticity.					
3	Understand the significance of unsteady aerodynamics on the aircraft structures.					
4	Comprehend solution of dynamic instability and aeroelastic response problems.					

Unit-I	10 Hrs						
Introduction to Aeroelasticity: Vibration and its forces, Flexibility effect on aerodynamic	Introduction to Aeroelasticity: Vibration and its forces, Flexibility effect on aerodynamics, structure						
and aerodynamic interaction, Aeroelasticity, Classificatin of Aeroelasticity, Collar's trian,	gle, Simple						
definition on Static aeroelasticity: Divergence, load distribution, control effectiveness, con	trol system						
reversal, Simple definition on Dynamic aeroelasticity: Flutter, buffeting, dynamic response							
Unit -II	09 Hrs						
Static Aeroelasticity: Divergence: Torsional Wing Box, Divergence of A Two Dimens	ional Rigid						
Aerofoil With Spring Attachment, Static Aeroelastic Behaviour Of Fixed Root Flex	ible Wing,						
Divergence Prediction Using Dynamic Method, Numericals On Divergence.							
Control effectiveness and Reversal: Effect of wing Flexibility on Control Effectivene	ss, Rolling						
Effectiveness of a Flexible Wing- Steady Roll Case, and Determination of Reversal Speed	for Steady						
Roll Case, Problems On Control Reversal.							
Unit -III	07 Hrs						
Unsteady Aerodynamics: Quasi Steady Aerodynamics, Unsteady Aerodynamics, Aerod	ynamic lift						
and moment for a harmonically oscillating Aerofoil, Oscillatory aerodynamic	derivatives,						
Aerodynamic damping and stiffness, Unsteady Aerodynamics Related to Gusts.							
Unit -IV	07 Hrs						
Dynamic aeroelasticity: Fluter: Simplified Unsteady Aerodynamic Model, Binary	Aeroelastic						
Model, General Form of the aeroelastic Equations, Eigenvalue Solution of Flutter	Equations,						
Aeroelastic behaviour of the Binary Model, Aeroelastic behaviour of a Flexible Wing, Fl	lutter speed						
prediction for binary systems.							
Unit -V	06 Hrs						
Dynamic Aeroelasticity: Gusts and Turbulence: Types of Gust, Assumption in mode	elling Gust,						
Gust response in time domain - Flexible Aircraft, equations of motions, Definition of Continuous							
turbulence and harmonic gust velocity component, FRF for flexible aircraft response in Heave/Pitch							
per Harmonic gust velocity.							
Course Outcomes: At the end of this course the student will be able to :							
CO1. Identify the type and peremeters influencing different elegsical Approaching problem	20						

CO1:	Identify the type and parameters influencing different classical Aeroelastic problems.
CO2:	Formulate mathematical model for solution of common static Aeroelastic problems
CO3:	Realize the effect of unsteady aerodynamics on the behavior of Aeroelastic systems
CO4:	Understand the dynamic behavior of aircraft structures to identify dynamic instabilities

Re	ference Books
	A Modern Course in Aeroelasticity, Dowell, E. H., Crawley, E. F., Curtiss Jr., H. C., Peters, D.
1	A., Scanlan, R. H., and Sisto, F., 3 rd Edition, 1995, Kluwer Academic Publishers,. (TL574.A37.M62)
2	Aeroelasticity, Bisplinghoff, R., Ashley, H., and Halfman, R. L., 1st Edition, 1996, Dover

	Publications, ISBN-13: 978-0486691893
3	An Introduction to the Theory of Aeroelasticity, Fung, Y. C., 1 st Edition, 1955, Dover Publications, ISBN 9780486495057
4	Aircraft structures for Engineering students, Megson THG, 3 rd Edition, 1999, Edward Arnold, ISBN-13: 978-0470349373
5	Jan R. Wright, Jonathan E. Cooper, Introduction to Aircraft Aeroelasticity and Loads, 1 st Edition, 2007, AIAA, ISBN-13: 978-1563479359

Scheme of Evaluation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				2
CO3	1	2	3	3	1							2
CO4	3	3	3	3	2	2	1	2				2

Semester: VII									
	ROTORCRAFT DYNAMICS								
		Group-	G: Professional E	lective					
			(Theory)						
Course Code	:	18AS7G3		CIE	:	100 Marks			
Credits: L:T:P:S	Credits: L:T:P:S : 3:0:0:0 SEE : 100 Marks								
Total Hours	:	39L		SEE Duration	:	3.00 Hours			

Course Learning Objectives: To enable the students to

- 1 Understand the basic concepts associated with rotor aerodynamics
- 2 Classify the types of rotor and determine their behaviour in various configurations

3 Interpret the performance of the helicopter along various axes

4 Apply the basic concepts of trim in achieving the stability of an helicopter

Unit-I	08 Hrs					
Fundamentals of Rotor Aerodynamics: Momentum Analysis in Axial: Flow near a Hovering Rotor,						
Conservation Laws applied to the Hovering Rotor, Disc Loading and Power Loading, Forv	ward Flight:					
Induced Velocity, Axial Climb and Decent, Working States of Rotor in Axial Flight, A	utorotation,					
Induced Inflow Ratio, Application of Momentum Theory to Coaxial, Tandem and Ducted	l Fan Rotor					
Design.						
Unit -II	08 Hrs					
Blade Element Analysis: Blade Element Analysis in Hover and Axial Flight: Integrated R	lotor Thrust					
and Power, Untwisted Blades and Uniform Flow, Linearly Twisted Blades and Uniform Fl	ow, Torque					
Power Approximation, Tip Loss Factor, Blade Element Momentum Theory: Analytical	Approach,					
Circulation Theory of Lift, Weighted Solidity: Thrust, Power and Torque, Tip Losses.						
Unit -III	08 Hrs					
Rotating Blade Motion: Types of Rotors, Equilibrium about Flapping and Lead/I	Lag Hinge,					
Equations of Motion for Flapping Blades, Blade Flapping: Longitudinal and Lateral, Ro	otor Control					
using Swash plates, Concepts of Blade Feathering.						
Unit -IV	07 Hrs					
Helicopter Performance: Hovering and Axial Climb Performance, Forward Flight Pe	erformance:					
Induced and Blade Profile Power, Climb Power, Tail Rotor Power, Total Power, Optimum Speed,						
Maximum Level Speeds, Rotor Limits Envelop.	-					
Unit -V	08 Hrs					
Helicopter Trim, Stability and Control: Trim, Treatment of Stability and Control, Stat	ic Stability,					
Dynamic Stability, Hingeless Rotor and Control, Autostabilization.						
Course Outcomes: At the end of this course, the student will be able to :						

Course	Course Outcomes: At the end of this course the student will be able to :					
CO1.	Apply the knowledge of blade element momentum theory to determine the aerodynamic					
COI.	characteristics of the rotor blade					
CO2:	Study the behavior of the helicopter under various blade configurations					
CO3:	Estimate the performance parameters of a helicopter					
CO4:	Evaluate the stability and control characteristics of a helicopter under various conditions					

Re	ference Books
1	Principles of Helicopter Aerodynamics, Gordon Leisshman J, 2002, Cambridge University Press, ISBN 9780521523967
2	Basic Helicopter Aerodynamics, John M. Seddon, Simon Newman, 3 rd Revised Edition, 2011, Wiley-Blackwell; ISBN-13: 978-0470665015
3	Helicopter Dynamics, Bramwell, 2 nd Edition, 2001, Butterworth-Heinemann, ISBN-13: 978-0750650755
4	The Helicopter, History, Piloting & How it Flies, John Fay, 4 th Revised edition, 1990, Sterling Book House 2007, ISBN 978-0715389409

Scheme of Evaluation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	2		1						2
CO2	2	2	2	3								1
CO3	3	3	3	1								2
CO4	3	2	3	3		1	1	1				1

Semester: VII										
AIRCRAFT MAINTENANCE, REPAIR & OVERHAUL										
	Group-G: Professional Elective									
		•	(Theory)							
Course Code	:	18AS7G4		CIE	:	100 Marks				
Credits: L:T:P:S : 3:0:0:0 SEE : 100 Marks										
Total Hours	fotal Hours : 39L SEE Duration : 3.00 Hours									

Course Learning Objectives: To enable the students to

- 1 Comprehend the fundamentals of maintenance and certification.
- 2 Acquire the knowledge of documentation for maintenance.
- 3 Understand the Aircraft Maintenance, safety and trouble shooting.

Fundamentals of Maintenance & Certification Types of maintenance Redesign Failure rate					
nattern Other maintenance considerations Aviation industry certification requirements Type					
certificate (FAA form 8110.9), Airworthiness certificate (FAA form 8100-2), Aviation maintenance					
certifications, General, Airframe, Power plant, Avionics courses					
Unit -II 08 Hrs					
Documentation for Maintenance Manufacturers documentation, Airplane maintenance manual,					
Fault insulation manual, Illustrated parts catalogue, structural repair manual, wiring diagram manual,					
Master minimum equipment, Federal Aviation regulation (FAR), Advisory circulars, Airworthiness					
direction ATA document standards, Technical policies and procedure manuals (TPPM).					
Unit -III 08 Hrs					
Aircraft Management Maintenance Structure, Role of aviation management, Line supervisory					
management, Management areas of concern in airlines, Manager of overhaul shops, Line maintenance					
control centre flight line (prefight & post flight), Aircraft Logbook, Maintenance crew skill					
requirements					
Unit -IV 08 Hrs					
Hanger Maintenance (on Aircraft) & Material Support Introduction, organization of hanger					
maintenance, Non- routine item, parts availability, cannibalization, Types of shops- sheet metal shop,					
Aircraft interior shop, Engine shop, Avionics shop, ground support equipment, outsourcing of shop					
maintenance work, operation of overhaul shops, Material support, Material management inventory					
control, Support functions of material, Parts ordering, Storage, Issue, control and handling, Parts					
receiving quality control, calibration program, stock level adjustments, shelf life, exchanges, warranty					
& modifications of parts					
Maintenance Safety & Irouble shooting Safety regulations, occupational safety and health					
standards maintenance safety program, Airlines safety management, General safety rules, Accident &					
shooting Knowledge of malfunctions					
shooting, Knowledge of manufictions.					
Course Outcomes. At the end of this course, the student will be able to :					
Course Outcomes. At the end of this course the student will be able to :					
CO1: Waintain the aircrait maintenance manual and logbook.					

CO4: Understand and design shop floor management principles

1	Aviat educa	tion N ation,	Aaintenance Maintenance Maintenance Maintenance	√lanag Ltd, l	emen SBN:	t, Harry 978007	⁷ A Ki 718050	innison,)32	Tariq	Siddiqui,	Mc C	braw	Hill
			•					- 1		~~~~			

2 Aircraft maintenance and repair, Kroes, Watkins, Delp, Mc Graw Hill, 2013 McGraw-

	Hill Education, 7 th edition, 2013, ISBN: 978-0071801508
3	Aircraft Repair Manual, Larry Reithmaier, Palmar Books, Marquette, 1992, ISBN: 978-0932882028
4	Aircraft Maintenance, Brimm. DJ, Bogges, HE, Pitman publishing corp, London, 1952,. ASIN: B000NQ539E

Scheme of Evaluation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	2		1						2
CO2	2	2	2	3								1
CO3	3	3	3	1								2
CO4	3	2	3	3		1	1	1				1

Semester: VII							
ADVANCED AVIONICS							
	Group-G: Professional Elective						
			(Theory)				
Course Code	:	18AS7G5		CIE	:	100 Marks	
Credits: L:T:P:S		3:0:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3.00 Hours	

Course Learning Objectives: To enable the students to

1	Understand the various advances made in the field of display systems, flight management system, avionics architectures.
2	Explain the significance of each avionics system and its subsystems
2	II. Length 14. A share the standard for the standard for the standard for the standard stand

3 Understand the technologies involved in integration of various avionics systems

4 Develop the understanding of Certification process for avionics components as well as system.

Unit-I	08 Hrs
Emerging Technologies in Aircraft Systems : Technological advances in Cockpit displ	ay systems,
Head Up Displays, Head Mounted Displays and Retinal Scanning Displays.	
Speech Recognition & Synthesis Systems, Terrain Awareness systems, Automatic	Dependent
Surveillance – Broadcast (ADS-B), Traffic Alert & Collision & Avoidance System (TCAS	-II);
Fly-By-Wire Flying Control, System; Electrical Flying Control System	[
Unit -II	08 Hrs
Evolution of Avionics - Safety & Certification: Elements of Certification process f	for Civil &
Military Avionics, System safety concepts, Elements of Civil aviation system safety proce	ess, System
safety assessment and verification. Elements of Mil - std - 882 system safety standards.	in Avionics
Certification process (Role of RTCA DO – 160, RTCA – 178B/C, EUROCAE ED-12B/C,	RTCA DO
– 254/ EUROCAE ED 80)	ſ
Unit -III	08 Hrs
Fault -Tolerant Avionics: Definitional Frame Work, Fault-Tolerant Options, Design	Approach,
System Level Fault -Tolerance, Fault-Tolerant Hardware Design Principles, Software - Ir	nplemented
Fault-Tolerance.	
Electronics Hardware Reliability: Design for reliability, RMA, Risk Assessment,	Electronic
Component Management Plan	1
Unit -IV	07 Hrs
Flight Management Systems: Navigation, Flight Planning, Trajectory Prediction, P	erformance
Computations, Guidance.	
Vehicle Health Management Systems: Definition of Integrated Vehicle health m	anagement,
Evolution of VHM Standards, Key Technologies, Example of VHM system.	
Unit -V	08 Hrs
Integration of Avionics Systems - Avionics Data Buses & Architectures: ARINC-42	9, Mil-Std-
1553, AFDX (ARINC-664 Pt-7), Genesis Platform Concept - Examples of IMA (Be	being 787),
Genesis Platform Characteristics	
Course Outcomes: At the end of this course the student will be able to :	

CO1:	Explain the various developments in the field of Avionics.
CO2:	Comprehend the complexities involved during certification and reliability assessment
	processes.
CO3:	Explain the role and importance of Flight management systems, Fly-by-wire Flying control
	system and Vehicle health management system.
CO4:	Explain the nuances of technologies involved in the integration of the various avionics
	systems.
Re	ference Books
----	---
1	Ian Moir, Allan Seabridge & Malcolm Jukes - Civil Avionics Systems, 2 nd edition, 2013, John
1	Wiley & Sons Ltd, ISBN-978-1-118-53672-8
ſ	Ian Moir & Allan Seabridge – Military Avionics Systems, 2017, John Wiley & Sons Ltd, ISBN-
2	978-81-265-6855-0
2	Cary R Spitzer, Uma Ferrell, Thomas Ferrell - Digital Avionics Hand Book, 2017, Taylor &
3	Francis Group & CRC Press, ISBN-978-1-138-07698-3
4	Ian Moir and Allan Seabridge - Design and Development of Aircraft Systems, First Edition,
4	2013, John Wiley & Sons Ltd, ISBN-978-1-119-94119-4.

Scheme of Evaluation

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	1	3	1	1	1	-	-	-	2
CO2	3	2	3	1	2	2	-	-	-	-	-	1
CO3	3	3	3	2	3	1	-	-	-	-	-	2
CO4	3	1	1	1	1	1	1	1	-	-	-	1

Semester: VII									
UNMANNED AERIAL VEHICLES									
	(Group H: Global Elective)								
Course Code	:	18G7H01	CIE	:	100 Marks				
Credits: L:T:P:S	:	3:0:0:0	SEE	:	100 Marks				
Hours	:	39L	SEE Duration:	:	3.00 Hours				

1	Get an overview of the history of UAV systems
2	Understand the importance of aerodynamics, propulsion, structures and avionics in the design of UAV
3	Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion systems, integration with manned systems
4	Comprehend the importance of guidance and navigation of a UAV

Unit-I	07 Hrs				
Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unmann	ned aerial				
systems, Overview of UAV Systems-System Composition, Classification of UAVs based on s	size, range				
and endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.					
Unit – II	08 Hrs				
Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characterist	ics, Basic				
aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flappi	ng wings,				
Airframe configurations-HTOL, VTOL and Hybrids.					
Unit -III	08 Hrs				
Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV	(general				
introduction), Selection criteria for structure, Types of structural elements used in U	AV their				
significance and characteristics.					
UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAV	s- Piston,				
Rotary, Gas turbine engines, electric or battery powered UAVs.					
Unit -IV	08 Hrs				
Payloads of UAVs : Non-dispensable Payloads- Electro-optic Payload Systems, Radar	т				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads.					
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads.	Imaging				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi	cles- Rail				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I	cles- Rail Launch of				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute	cles- Rail Launch of Recovery,				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery.	cles- Rail Launch of Recovery,				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery. Unit -V	cles- Rail Launch of Recovery, 08 Hrs				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute V VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery. Unit -V UAV Navigation and Guidance Systems: Navigation, Dead Reckoning, Inertial, Radio N	cles- Rail Launch of Recovery, 08 Hrs avigation,				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery. Unit -V UAV Navigation and Guidance Systems: Navigation, Dead Reckoning, Inertial, Radio N Satellite–Way point Navigation, UAV Guidance, Types of guidance, UAV communication	 Imaging cles- Rail Launch of Recovery, 08 Hrs avigation, avstems, 				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery. Unit -V UAV Navigation and Guidance Systems: Navigation, Dead Reckoning, Inertial, Radio N Satellite–Way point Navigation, UAV Guidance, Types of guidance, UAV communication Ground control station, Telemetry, UAS future.	 Imaging cles- Rail Launch of Recovery, 08 Hrs avigation, avigation, systems, 				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery. Unit -V UAV Navigation and Guidance Systems: Navigation, Dead Reckoning, Inertial, Radio N Satellite–Way point Navigation, UAV Guidance, Types of guidance, UAV communication Ground control station, Telemetry, UAS future.	cles- Rail Launch of Recovery, 08 Hrs avigation, a systems,				
Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads. Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO I UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery. Unit -V UAV Navigation and Guidance Systems: Navigation, Dead Reckoning, Inertial, Radio N Satellite–Way point Navigation, UAV Guidance, Types of guidance, UAV communication Ground control station, Telemetry, UAS future. Course Outcomes: At the end of this course the student will be able to :	 Imaging cles- Rail Launch of Recovery, 08 Hrs avigation, avigation, systems, 				

Cours	could be the one of this could be the student will be use to .
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs
CO3	Determine and evaluate the performance of UAV designed for various Missions and applications
CO4	Appreciate the guidance and navigation systems for enabling the versatility of UAV systems

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4

3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
	Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-
	Hill, Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed
Э	Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				2
CO3	1		3	3								2
CO4	3	3	3	3		2	1	2				2

Semester: VII								
	BIOINFORMATICS							
		(Gi	roup H: Global Elective)					
Course Code	:	18G7H02		CIE	:	100 Marks		
Credits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks		
Hours	:	39L		SEE Duration:	:	3.00 Hrs		

Cou	rse Learning Objectives: The students will be able to
1	Acquire the knowledge of biological database and its role in insilico research
2	Understand the essential algorithms behind the biological data analysis such as Dynamic programming, Dot plotting, Evolutionary and Clustering algorithms along with their implementation.
3	Use various tools and techniques for the prediction of linear & non-linear structures of both macro and micro molecules and study the dynamics of macromolecules and High Throughput Virtual Studies.
4	Perform annotation of unknown DNA and Protein sequences and explore the principles of molecular modelling
5	Apply the knowledge towards analyzing the sequences using programming languages and Drug development

Unit-I	08 Hrs
Biomolecules and Introduction to Bioinformatics:	
Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Lipids, Nuc	leic Acids
and Proteins. Genetic code, Codon degeneracy, Genes and Genomes. Introduction to Bioin	formatics,
Goals, Scope, Applications in biological science and medicine. Biological databases -	Sequence,
structure, Special Databases and applications - Genome, Microarray.	•
Unit – II	08 Hrs

Sequence analysis: Introduction, Types of sequence alignments, Pairwise sequence alignment, Multiple sequence alignment, Alignment algorithms Needleman & Wunch, Smith & Waterman and Progressive global alignment, Database Similarity Searching- Scoring matrices – BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next Generation Sequencing – Alignment and Assembly. Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation

Unit –III09 HrsPredictive and structural bioinformatics: Gene prediction programs – ab initio and homology based
approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA.
Predicting RNA secondary structure, Protein structure basics, structure visualization, comparison and
classification. Protein structure predictive methods using protein sequence, Protein identity based on
composition. Structure prediction - Prediction of secondary structure.

 Unit –IV
 07 Hrs

 PERL: Introduction to Perl, writing and executing a Perl program, Operators, Variables and Special variables. Object Oriented Programming in Perl–Class and object, Polymorphism, inheritance and encapsulation. Data Types – Scalar, Array and Associative array. Regular Expressions (REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.
 07 Hrs

 Unit –V

 07 Hrs

BioPERL: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence retrieval from Database and submission of sequence to online Database, Indexing and accessing local databases, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Parsing BLAST and FASTA results.

Course Outcomes: At the end of this course the student will be able to :

CO1	Demonstrate the knowledge of retrieval of the biological data in the essential formats and its analysis.
CO2	Analyse the gene, protein and RNA data to find the degree of similarities and identifying the patterns
CO3	Apply the drug designing methods for screening and inventing the new targets and drugs
CO4	Predict the structure of a compound and design the molecule.

1	Essential Bioinformatics, Jin Xiong, 2006, Cambridge University Press, ISBN: 978-05-216-00828.
2	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VII										
INDUSTRIAL SAFETY AND RISK MANAGEMENT										
	(Group H: Global Elective)									
Course Code	:	18G7H03	CIE	:	100 Marks					
Credits: L:T:P:S	:	3:0:0:0	SEE	:	100 Marks					
Hours	:	39L	SEE Duration:	:	3.00 Hours					

- 1 Select appropriate risk assessment techniques
- 2 Analyze public and individual perception of risk
- **3** Relate safety, ergonomics and human factors
- 4 Carry out risk assessment in process industries

Unit-I	08 Hrs					
Introduction: Introduction to industrial safety engineering, major industrial accidents, safety a	and health					
issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard actuation,	Actuation					
transition, Causal factors, Hazard recognition.						
Unit – II	08 Hrs					
Risk assessment and control: Individual and societal risks, Risk assessment, Risk percentered	ception,					
Acceptable risk, ALARP, Prevention through design.						
Hazard Identification Methods: Preliminary Hazard List (PHL): Overview, methodology, we	orksheets,					
case study. Preliminary Hazard Analysis (PHA): Overview, methodology, worksheets, ri	sk index,					
example.						
Unit –III	08 Hrs					
Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Process parameter	rs, Guide					
words, HAZOP matrix, Procedure, Example. Failure Modes and Effects Analysis (FMEA): Intr	roduction,					
system breakdown concept, methodology, example.						
Unit –IV	08 Hrs					
Application of Hazard Identification Techniques: Case of pressure tank, system breakdown	structure,					
safety ontology, Accident paths, HAZOP application, risk adjusted discounted rate method, p	robability					
distribution, Hiller's model	-					
Unit –V	07 Hrs					
Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safet	y glasses,					
face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, types of foot PPE, types						
of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical plant explosion ar	nd fire.					
Course Outcomes: At the end of this course the student will be able to :						

Cours	e Outcomes: At the end of this course the student will be able to :
CO1	Recall risk assessment techniques used in process industry.
CO2	Interpret the various risk assessment tools.
CO3	Use hazard identification tools for safety management.
CO4	Analyze tools and safety procedures for protection in process industries.

Ref	erence Books
1	Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina, Lulu publication, ISBN:1291187235
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.
4	Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	-	-	1	-	1	-

Semester: VII									
WEB PROGRAMMING									
		(Gi	roup H: Global Elective)						
Course Code	:	18G7H04		CIE	:	100 Marks			
Credits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks			
Hours	:	39L		SEE Duration:	:	3.00 Hours			

Course Learning Objectives:	The students will be able to
------------------------------------	------------------------------

		-	*
1	Understan	d the	standard structure of HTML/XHTML and its differences.

- 2 Adapt HTML and CSS syntax & semantics to build web pages.
- 3 Learn the definitions and syntax of different web programming tools such as JavaScript, XML and Ajax to design web pages.
- 4 Design and develop interactive, client-side, server-side executable web applications using different techniques such as CSS, JavaScript, XML and Ajax.

Unit-I	07 Hrs
Introduction to Web, HTML and XHTML:	
Fundamentals of Web(Internet, WWW, Web Browsers and Web Servers, URLs, MIM	E, HTTP,
Security, the Web Programmers Toolbox), XHTML: Basic syntax, Standard structure,	Basic text
markup, Images, Hypertext Links, Lists, Tables, Forms, Frames.	
HTML 5: Core HTML attributes, headings, paragraphs and breaks, quotations, preformatted	text, lists,
horizontal rules, block-level elements, text-level elements The audio Element; The video	Element;
Organization Elements; The time Element, Syntactic Differences between HTML and XHTMI	<u>_</u> .
Unit – II	08 Hrs
CSS (Cascading Style Sheet)	
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property va	lue forms,
Font properties, List properties, Color, Alignment of text, The box model, Background in	ages, The
 and <div> tags, Conflict resolution.</div>	
The Basics of JavaScript:	
Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics;	Primitives,
operations, and expressions; Screen output and keyboard input; Control statements.	-
Unit –III	09 Hrs
JavaScript (continued):	
Object creation and modification; Arrays; Functions; Constructor; Pattern matching usin	ng regular
expressions; Errors in scripts.	
JavaScript and HTML Documents:	
The JavaScript execution environment; The Document Object Model; Element access in J	avaScript;
Events and event handling; Handling events from the Body elements, Button elements, Tex	at box and
Password elements; The DOM 2 event model; The navigator object.	1
Unit –IV	08 Hrs
Dynamic Documents with JavaScript:	
Introduction to dynamic documents; Positioning elements; Moving elements; Element	visibility;
Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; F	leacting to
a mouse click; Slow movement of elements; Dragging and dropping elements.	
Introduction to PHP:	
Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Oper	ations and
Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handlin	g;Cookies;
Session Tracking.	<u> </u>
Unit –V	07 Hrs
XML:Introduction; Syntax; Document structure; Document Type definitions; Namespace	es; XML
schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT styl	e sheets.
Ajax: Overview of Ajax; Basics of Ajax: The Application; The Form Document; The Requ	est Phase;
The Response Document; The Receiver Phase.	

Cours	Course Outcomes: At the end of this course the student will be able to :					
CO1	Understand the basic syntax and semantics of HTML/XHTML.					
CO2	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style Sheet.					
CO3	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and utilize the concepts of XML & Ajax to design dynamic web pages.					
CO4	Develop web based applications using PHP, XML and Ajax.					

1	Programming the World Wide Web - Robert W. Sebesta, 7th Edition, Pearson Education, 2013,
I	ISBN-13:978-0132665810.
r	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006,
2	ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4th Edition, Tata McGraw
	Hill, 2003, ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

	Semester: VII					
S	SOLID WASTE MANAGEMENT AND STATUTORY RULES					
		(Gr	oup H: Global Elective)			
Course Code	:	18G7H05	CIE	:	100 Marks	
Credits: L:T:P:S	:	3:0:0:0	SEE	:	100 Marks	
Hours	:	39L	SEE Duration:	:	3.00 Hours	

1	Impart the knowledge of present methods of solid waste management system and to analyze the
-	drawbacks.
2	Understand various waste management statutory rules for the present system.
3	Analyze different elements of solid waste management and design and develop recycling options
	for biodegradable waste by composting.
4	Identify hazardous waste, e-waste, plastic waste and bio medical waste and their management
4	systems.

Unit-I08 HrsIntroduction: Present solid waste disposal methods. Merits and demerits of open dumping, incineration,
pyrolysis, composting, sanitary landfill. Scope and importance of solid waste management. Definition
and functional elements of solid waste management.Definition
and functional elements of solid waste, types of solid waste, composition of municipal solid waste, generation
rate, Problems.Collection and transportation of municipal solid waste: Collection of solid waste services and
systems. Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to

systems, Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to collection system.

Unit – II08 HrsComposting Aerobic and anaerobic composting - process description, process microbiology,
Vermicomposting, Site visit to compost plant, Numerical problems.08 Hrs

Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site visit to landfill site.

Unit –III	08 Hrs
Hazardous waste management: Definitions, Identification of hazardous waste, Classification	1 of
hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Hazard	ous and
other wastes (Management and Transboundary Movement) Rules, 2016 with amendments. Site	visit to
hazardous landfill site	
Unit –IV	08 Hrs
Bio medical waste management: Classification of bio medical waste, collection, transp	ortation,
disposal of bio medical waste, Biomedical waste management (Management & Handlin	g Rules)
2016 with amendments. Site visit to hospital to observe biomedical waste collection and trans	portation
system and visit to biomedical waste incineration plant.	
Unit –V	07 Hrs
E-waste management: Definition, Components, Materials used in manufacturing electron	nic goads,
Recycling and recovery integrated approach. e-waste (Management) Rules 2016 and amendm	nents. Site
visit to e- waste treatment plant.	

Plastic waste management: Manufacturing of plastic with norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with amendments.

Cours	e Outcomes: At the end of this course the student will be able to :
CO1	Understand the current solid waste management system and statutory rules.
CO2	Analyse drawbacks in the present system and provide recycling and disposal options for each

Aerospace Engineering

	type of waste in compliance to rules.
CO3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management
COS	system.
COA	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal
C04	waste management as per the rules laid by Ministry of Environment, Forest and Climate change.

14010	
1	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993, McGraw hill publication. ISBN 978-0070632370
2	Electronic waste management, R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC Publication, ISBN 9780854041121
3	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 8th April 2016
4	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 04 th April, 2016.
5	Biomedical waste management (Management & Handling Rules) 2016,. Ministry of Environment & Forest Notification, New Delhi, amendment on 28 th March, 2016.
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 23 rd March, 2016.
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 27 th March, 2018

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	2	1	-	1	-	2
CO2	2	2	2	2	-	1	2	1	-	-	-	-
CO3	1	-	2	2	-	1	2	1	-	1	-	-
CO4	2	-	-	3	-	1	2	1	-	-	-	1

	Semester: VII						
	IMAGE PROCESSING AND MACHINE LEARNING						
		(Gr	oup H: Global Elective)				
Course Code	:	18G7H06		CIE	:	100 Marks	
Credits: L:T:P:S	:	3:0:0		SEE	:	100 Marks	
Hours	:	40 L		SEE Duration:	:	3.00 Hours	

Cou	rse Learning Objectives: The students will be able to
1	Understand the major concepts and techniques in image processing and Machine Learning
2	To explore, manipulate and analyze image processing techniques
3	To become familiar with regression methods, classification methods, clustering methods.
4	Demonstrate image processing and Machine Learning knowledge by designing and

⁴ implementing algorithms to solve practical problems

Unit-I	08 Hrs				
Introduction to image processing:					
Introduction to image processing, Applications of image processing, Components of	an image				
processing system, Fundamental steps in image processing, Image formation and representation	on, Color				
imagery, basic definitions, Pixels, Image resolution, PPI and DPI, Bitmap images, Lossless and lossy					
compression, Image file formats, Color spaces, Bezier curve, Ellipsoid, Gamma correction, Ex	amples of				
zooming and shrinking in image processing Advanced image concepts.	-				
Unit – II	08 Hrs				
Basics of Python, Scikit image & Advanced Image Processing using Open CV:					
Basics of python, variables & data types, data structures, control flow & conditional st	tatements,				
uploading & viewing an image, Image resolution, gamma correction, determining structural sin	nilarities.				
Unit –III	08 Hrs				
Advanced Image processing using Open CV					
Blending Two Images, Changing Contrast and Brightness Adding Text to Images Smoothin	g Images,				
Median Filter, Gaussian Filter, Bilateral Filter, Changing the Shape of Images, Effectiv	ng Image				
Thresholding, Calculating Gradients, Performing Histogram Equalization					
Unit –IV	08 Hrs				
Image Processing using Machine Learning					
Feature mapping using SIFT algorithm, Image registration using the RANSAC algorithm	m, Image				
classification using Artificial Neural Networks, Image classification using CNNs, Image class	ssification				
using machine learning Approaches.					
Unit –V	08 Hrs				

Real time use CASES

Exhaustive vs. Stochastic Search, Shapes, Contours, and Appearance Models. Mean-shift tracking; Contour-based models, finding palm lines, Face Detection / Recognition, Tracking movements.

Cours	e Outcomes: At the end of this course the student will be able to :
CO1	Gain knowledge about basic concepts of Image Processing
CO2	Identify machine learning techniques suitable for a given problem
CO3	Write programs for specific applications in image processing
CO4	Apply different techniques for various applications using machine learning techniques.

Reference Books 1 Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, 3rd Edition, ISBN 978-81-317-2695-2. 2 Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python, Himanshu Singh, 1st Edition, Apress, ISBN:978-1-4842-4149-3

3	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer, 2008, ISBN: 978-0387-31073-2
4	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition, Prentice Hall India 2004, ISBN: 978-0136085928

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	-	-	-	-	-	-	1
CO2	-	3	-	1	2	-	-	1	2	-	-	1
CO3	3	-	2	1	3	-	-	1	1	1	-	1
CO4	3	3	3	3	2	-	-	1	1	1	-	1

Semester: VII								
RENEWABLE ENERGY SOURCES AND STORAGE SYSTEM								
		(Gr	oup H: Global Elective)					
Course Code	:	18G7H07		CIE	•••	100 Marks		
Credits: L:T:P:S	:	3:0:0		SEE	••	100 Marks		
Hours	:	39 L		SEE Duration:	••	3.00 Hours		

- Understand Concepts of nonconventional energy sources and allied technology required for 1 energy conversion.
- 2 Analyse the Basics of battery working and sizing of battery for a given application.
- 3 Design aspects of solar and wind power systems.
- 4 Energy storage techniques

UNIT-I 08 Hrs Basics of Renewable Energy: Energy balance of the earth, Solar radiation, wind energy, geothermal energy.

Geothermal Energy – principles, technical description, heat supply by hydro-geothermal systems, heat supply by deep wells, geothermal generation, economic and environmental analysis.

Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification, Theory of Gasification, Gasifier and Their Classifications, Updraft, Downdraft and Cross-draft Gasifiers, Applications of Biomass Gasifier.

Tidal Energy: Introduction, Tidal Energy Resource, Tidal Power Basin, Advantages and Disadvantages of Tidal Power. Unit тт 00 U

Unit – II	U8 Hrs
Photo Voltaic Systems: PV Cell, Module and array; Equivalent electrical circuit, Open -circuit	it voltage
and short circuit current, I-V and P-V curves, Array design, Peak power Tracking, System Con	ponents,
Grid Connected Solar PV Power System: Introduction to grid connected PV system, Config	guration of
Grid-connected solar PV system, Components of Grid -connected solar PV systems, Grid con	nected PV
system Design for small power Applications, Grid- connected PV system design for power plan	nts.
Unit -III	08 Hrs

Wind Power: Introduction, site selection, Advantages and Disadvantages, Wind power installations in the world.

Wind Speed and Energy: Speed and Power Relations, Power Extracted from the wind. Rotor-Swept Area, Air Density, Global Wind Patterns, Wind Speed Distribution, Weibull Probability, Distribution, Mode and Mean Speeds, Root Mean Cube Speed, Mode, Mean, and RMC Speeds, Energy Distribution, Digital Data Processing, Effect of Hub Height, Importance of Reliable Data, Wind Speed Prediction, Wind Energy Resource Maps.

Wind Power Systems: System Components, Tower, Turbine, Blades, Speed Control, Turbine Rating, Power vs Speed and TSR. **TT A: TT T**

Unit –I v	Uð Hrs
Wind Power Systems: Maximum Energy Capture, Maximum Power Operation Constant-TSF	Scheme,
Peak-Power-Tracking scheme, System-Design Trade-offs, Turbine Towers and Spacing, N	umber of
Blades, Rotor Upwind or Downwind, Horizontal vs. Vertical Axis.	
System Control Requirements: Speed Control, Rate Control.	
Environmental Aspects: Audible Noise, Electromagnetic Interference (EMI), Effects on Birds	
Unit –V	07 Hrs
Unit –V Energy storage	07 Hrs
Unit –V Energy storage Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charging	07 Hrs
Unit –V Energy storage Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charging management	07 Hrs
Unit –V Energy storage Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charging management Flywheels: Energy Relations, Components, Benefits over battery	07 Hrs

Other Storage devices: Superconducting magnetic energy storage, Compressed air, Pumped storage hydropower, Hydrogen Energy storage

00 TT

Cours	Course Outcomes: At the end of this course the student will be able to :					
CO1	Understand the concepts of power generation from various renewable sources.					
CO2	Design the Size of the battery required for solar PV applications.					
CO3	Design main components of solar and wind power systems.					
CO4	Execute projects in renewable power generation.					

1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt, Wolfgang
I	Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3
r	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), PHI,
2	Learning private limited New Delhi ISBN: 978-81-203-4711-3
2	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition. CRC
3	Group, Taylor and Francis group, New Delhi, ISBN 978-0-8493-1570-1
4	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN 978-0-
4	12-812902-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	-	-	-	-	-	1	-	1
CO2	3	3	2	1	1	2	-	-	-	1	-	1
CO3	3	2	2	2	2	2	2	1	-	1	-	1
CO4	3	3	3	3	2	3	1	1	1	3	1	3

Semester: VII								
MEMS & APPLICATIONS								
		(Gr	oup H: Global Elective)					
Course Code	:	18G7H08		CIE	:	100 Marks		
Credits: L:T:P:S	:	3:0:0		SEE	:	100 Marks		
Hours	:	39 L		SEE Duration:	:	3.00 Hours		

Course Learning Objectives: The students will be able to)
---	---

- 1 Understand the rudiments of Micro fabrication techniques.
- 2 Identify and associate the various sensors and actuators to applications.
- 3 Analyze different materials used for MEMS.
- 4 Design applications of MEMS to disciplines.

Unit-I	06 Hrs			
Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and mic	ro system			
products, Evolution of micro fabrication, Microsystems and microelectronics, Multidisciplina	ary nature			
of Microsystems, Design and manufacture, Applications of Microsystems in automotive, h	ealthcare,			
aerospace and other industries.				
Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acoustic, G	Chemical,			
Optical, Pressure, Thermal.				
Unit – II	09 Hrs			
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and ele	ectrostatic			
forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and mic	cropumps,			
microaccelerometers, microfluidics.				
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling in Ele	ectrostatic			
forces, scaling in electromagnetic forces and scaling in fluid mechanics.				
Unit –III	09 Hrs			
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materials,	Silicon as			
substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelectric	Crystals,			
Polymers and packaging materials. Three level of Microsystem packaging, Die level packagin	g, Device			
level packaging, System level packaging. Interfaces in microsystem packaging. Essential j	packaging			
technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.				
Unit –IV	08 Hrs			
Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion Imp	lantation,			
Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition by Epitaxy, Etching, LIGA process	: General			
description, Materials for substrates and photoresists, Electroplating and SLIGA process.				
Unit –V	07 Hrs			
Micro Sensors, Actuators, Systems and Smart Materials: An Overview				
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Fibre-optic sensors, Conductometric				
Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable blood analyzer, Piezo electric				
Inkjet Print head, Micromirror array for Video projection, Micro-PCR Systems, Smart materials and				
systems.				
Course Outcomes: At the end of this course the student will be able to :				

CO1	Understand the operation of micro devices, micro systems and their applications.
CO2	Apply the principle of material science to sensor design.
CO3	Analyze the materials used for sensor designs.
CO4	Conceptualize and design micro devices, micro systems.

1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata McGraw
1	Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.

2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015, Wiley
	Publications, ISBN-:9/8-81-265-2/15-1.
3	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.
4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006,
4	Wiley-INDIA, ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11								PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-		-	1	-	1
CO3	3	3	2	2	1	-	-		-	1	-	1
CO4	3	3	3	3	1	-	-		1	1	1	1

Semester: VII						
	PROJECT MANAGEMENT					
		(Gr	oup H: Global Elective)			
Course Code	:	18G7H09		CIE	:	100 Marks
Credits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks
Hours	:	39L		SEE Duration:	:	3.00 Hours

- 1 To understand the principles and components of project management.
- 2 To appreciate the integrated approach to managing projects.
- **3** To explain different process groups and knowledge areas used to manage project.

Unit-I	07 Hrs	
Introduction: What is project, what is project management, relationships among portfolio man	nagement,	
program management, project management, and organizational project management, relationship		
between project management, operations management and organizational strategy, business value, role		
of the project manager, project management body of knowledge.		
Unit – II	09 Hrs	

Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle.

Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated change control, close project or phase.

	07 11	
Project Scope Management: Project scope management, collect requirements define a	scope, cre	eate
WBS, validate scope, control scope.		

Project Time Management: Plan schedule management, define activities, sequence activities, estimate activity resources, estimate activity durations, develop schedule, control schedule.

Unit –IV	07 Hrs
Project Cost management: Project Cost management, estimate cost, determine budget, control costs.	
Project Quality management: Plan quality management, perform quality assurance, control quality.	
Unit –V	07 Hrs
Project Risk Management: Plan risk management, identify risks, perform qualitative risk	analysis,
perform quantitative risk analysis, plan risk resources, control risk	

Project Procurement Management: Project Procurement Management, conduct procurements, control procurements, close procurement.

Cours	Course Outcomes: At the end of this course the student will be able to :			
CO1	Understand the concepts, tools and techniques for managing large projects.			
CO2	Explain various knowledge areas and process groups in the project management framework.			
CO3	Analyze and evaluate risks in large and complex project environments.			
CO4	Develop project plans for various types of organizations.			

Reference Books

1	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project
1	Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
ſ	Project Planning Analysis Selection Financing Implementation & Review, Prasanna
2	Chandra, 7 th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner,
3	10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry

Aerospace Engineering

Schmidt,	1 st Edition, 2009,	John Wiley &	& Sons, ISBN:	978-047041158

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2														
CO2	2	2		1	1										
CO3							1	1							
CO4	2		3		1										

Semester: VII												
CYBER FORENSICS AND DIGITAL INVESTIGATIONS												
(Group H: Global Elective)												
Course Code	:	18G7H10		CIE	:	100 Marks						
Credits: L:T:P:S	:	3:0:0		SEE	:	100 Marks						
Hours	:	39 L		SEE Duration:	:	3.00 Hours						

- 1 To provide an understanding Computer forensics fundamentals and comprehend the impact of cybercrime and forensics.
- 2 Describe the motive and remedial measures for cybercrime, detection and handling.
- **3** Demonstrate and investigate the use of Tools used in cyber forensics.
- 4 Analyse areas affected by cybercrime and identify Legal Perspectives in cyber security.

Unit-I	09 Hrs						
Introduction to Cybercrime: Cybercrime: Definition and Origins of the Word, Cyberc	crime and						
Information Security, Who are Cybercriminals, Classifications of Cybercrimes, Cybercri	rime Era:						
Survival Mantra for the Netizens.							
Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social Eng	ineering,						
Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector	or, Cloud						
Computing.							
Unit – II	08 Hrs						
Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and	Wireless						
Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era,	Security						
Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication	Service						
Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for organ	nizations,						
Organizational Measures for Handling Mobile devices, Organizational Security Policies and M	Measures						
in Mobile Computing Era, Laptops.							
Unit –III	07 Hrs						
Tools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing,							
Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and B	lackdoors,						
Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on	Wireless						
Networks. Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft).							
Unit –IV	08 Hrs						
Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics	s, Digital						
Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, I	Forensics						
Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network F	orensics,						
Approaching a Computer Forensics Investigation, Setting up a Computer Forensics La	boratory:						
Understanding the Requirements, Computer Forensics and Steganography, Relevance of the	e OSI 7						
Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security	/Privacy						
Threats, Computer Forensics from Compliance Perspective, Challenges in Computer Forensics	s, Special						
Tools and Techniques, Forensics Auditing, Anti-forensics.							
Unit –V	07 Hrs						
Cybercrime And Cyber Security: The Legal Perspectives-Introduction, Why Do We Ne	eed Cyber						
laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime S	cenario in						
India, Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cyber	crime and						
Punishment.							

Cours	Course Outcomes: At the end of this course the student will be able to :									
CO1	Interpret the basic concepts of cyber security, cyber law and their roles.									
CO2	Articulate evidence collection and legal challenges.									
CO3	Discuss tool support for detection of various attacks.									
CO4	Demonstrate through use of proper tools knowledge on the cyber security, Cybercrime and									

Aerospace Engineering

forensics	

Ref	erence Books
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives, Sunit
1	Belapure and Nina Godbole, , Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.
ſ	Introduction to information security and cyber laws, Dr. Surya Prakash Tripathi, Ritendra Goyal,
2	Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.
2	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J.
3	Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 -1-118 84965 -1
4	Cyber Forensics, Technical Publications, I. A. Dhotre, 1st Edition, 2016, ISBN-13: 978-
4	9333211475

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	-	-	-	-	-	-	3	1	-	-			
CO2	1	2	-	2	2	-	-	2	2	3	1	2			
CO3	2	3	-	2	2	2	-	2	3	2	-	-			
CO4	3	2	3	2	3	1	-	2	3	2	1	1			

Semester: VII												
ROBOTICS AND AUTOMATION												
(Group H: Global Elective)												
Course Code	:	18G7H11	CIE	:	100 Marks							
Credits: L:T:P:S	:	3:0:0	SEE	:	100 Marks							
Hours	:	39 L	SEE Dura	tion: :	3.00 Hours							

- 1 Understand the concepts of robotics and automation.
- 2 Impart the knowledge of robotic programming and robotic operation control
- 3 Selection and analysis of robot configuration and kinematics
- 4 Importance of automation manufacturing techniques and processing industries
- 5 Development of automation system for manufacturing and processing industries

Unit-I		06 Hrs								
Introduction - Basics of kinematics, Anatomy of robot, Robot	configuration, Robot joints, Ser	isors and								
drive system, Control modes, Specification of robots, Robot pro	ogramming methods.									
Unit – II		09 Hrs								
Robot Kinematics - Position and orientation of objects, Objects coordinate frame, Rotation matrix,										
Euler angles roll, pitch and yaw angles coordinate transforma	Euler angles roll, pitch and yaw angles coordinate transformations, Joint variables and position of end									
effector, Homogeneous transformation.										
D-H parameters and conventions, D-H matrix, Direct kinematic and inverse analysis of planar and 3										
DoF robots.										
Unit –III		10 Hrs								
Trajectory planning - Introduction, Path versus trajector	ory, Joint-space versus Cartes	sian-space								
descriptions, Basics of trajectory planning, Joint-space trajector	ory planning, Third-order and F	Fifth-order								
polynomial trajectory planning.										
Automation in Production Systems - Manufacturing supp	ort systems, Automation princ	ciples and								
strategies, Levels of Automation, Production Concepts and Mathematical models, Numericals.										
Unit –IV		08 Hrs								
Machine Vision - Object recognition by features, Basic	features used for object ider	ntification,								
Moments, Template matching, Discrete Fourier descriptors	s, Computed Tomography (CT	Γ), Depth								
measurement with vision systems, Scene analysis versus mapp	oing, Range detection and Depth	n analysis,								
Stereo imaging, Scene analysis with shading and sizes, Speci	alized lighting, Image data cor	npression,								
Intraframe spatial domain techniques, Interframe coding, C	compression techniques, Colou	r images,								
Heuristics, Applications of vision systems										
Unit –V		06 Hrs								
Flexible Manufacturing Systems - Introduction to FMS - co	ncepts, integration in the data p	processing								
systems, FMS scheduling. Case studies.										
Material Handling systems - Conveyors - AGVs - industrial	robots in material handling – A	utomated								
Storage and retrieval system.										
Distributed data processing in FMS - Database Managen	nent System and their applic	cations in								
CAD/CAM and FMS – distributed systems in FMS - Integratio	n of CAD and CAM									
Course Outcomes: At the end of this course the student will be	be able to :									
CO1 Understand the characteristics and working princip	le of robots.									
Apply the related mathematical model to formulate	the kinematics and trajectory	/								
Diaming of industrial robot										

CO3 Analyse the machine vision for effective Flexible Manufacturing Systems.

CO4 Develop model and integrate drives for industrial robots and automation systems.

Reference Books

Aerospace Engineering

1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3 rd Edition, New York, ISBN:006045931X									
2	John J. Craig, "Introduction to Robotics", Pearson Education International, 3 rd Edition, ISBN:109876543, 1-13-123629-6									
3	Mikell P Groover, "Automation, Production Systems, and Computer-integrated Manufacturing", Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2									
4	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and Simulation", CRC Press, 1987, ISBN 9780824777180									

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	-	1	-	-	1	-	-	-	2	-	2			
CO2	3	3	1	3	1	1	-	-	-	2	-	2			
CO3	2	-	2	-	1	1	-	-	2	-	-	2			
CO4	3	3	2	3	1	1	-	2	3	-	3	2			

Semester: VII												
SPACE TECHNOLOGY AND APPLICATIONS												
(Group H: Global Elective)												
Course Code	:	18G7H12		CIE	:	100 Marks						
Credits: L:T:P:S	:	3:0:0:0	S	SEE	:	100 Marks						
Hours	:	39L	5	SEE Duration:	:	3.00 Hours						

- Define the earth environment and its behaviour, launching vehicles for satellites and its associated 1 concepts.
- Analyse satellites in terms of technology, structure and communications. 2

3 Use satellites for space applications, remote sensing and metrology.

Apply the space technology, technology mission and advanced space systems to nation's growth. 4

	UNIT-I	08 Hrs
Earth	n's environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiat	tion belts,
Interp	planetary medium, Solar wind, Solar- Earth Weather Relations.	
Laun	ch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogeni	c engines,
Contr	ol and Guidance system, Ion propulsion and Nuclear Propulsion.	
	UNIT-II	07 Hrs
Satell	lite Technology: Structural, Mechanical, Thermal, Power control, Telemetry, T	Felecomm
and Q	Quality and Reliability, Payloads, Classification of satellites.	
Satell	lite structure: Satellite Communications, Transponders, Satellite antennas.	
	UNIT-III	08 Hrs
Satell	lite Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, Multip	ole Access
Techn	niques.	
Space	e applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Educat	ion, Tele-
medic	sine Satellite pavigation GPS	
	sine, Saterine havigation, GIS.	-
	UNIT-IV	08 Hrs
Remo	UNIT-IV Dete Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources,	08 Hrs Land use,
Remo Land	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech	08 Hrs Land use, miques.
Remo Land	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr	08 Hrs Land use, iniques. redictions,
Remo Land Metro Disast	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites.	08 Hrs Land use, miques. redictions,
Remo Land Metro Disast	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V	08 Hrs Land use, iniques. redictions, 08Hrs
Remo Land Metro Disast	UNIT-IV Dete Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer	08 Hrs Land use, miques. redictions, 08Hrs ro gravity
Remo Land Metro Disast Space experi	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions.	08 Hrs Land use, miques. redictions, 08Hrs ro gravity
Remo Land Metro Disast Space experi Adva	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions. nced space systems: Remote sensing cameras, planetary payloads, space shuttle, space	08 Hrs Land use, iniques. redictions, 08Hrs ro gravity ce station,
Remo Land Metro Disast Space experi Adva Inter-s	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions. nced space systems: Remote sensing cameras, planetary payloads, space shuttle, space space communication systems.	08 Hrs Land use, miques. redictions, 08Hrs ro gravity ce station,
Remo Land Disast Space experi Adva Inter-s	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions. nced space systems: Remote sensing cameras, planetary payloads, space shuttle, space space communication systems.	08 Hrs Land use, iniques. redictions, 08Hrs ro gravity ce station,
Remo Land Disast Space experi Adva Inter-s	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions. nced space systems: Remote sensing cameras, planetary payloads, space shuttle, space space communication systems.	08 Hrs Land use, iniques. redictions, 08Hrs ro gravity ce station,
Remo Land Disast Space experi Adva Inter-s Cours CO1	UNIT-IV ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone pr ter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions. nced space systems: Remote sensing cameras, planetary payloads, space shuttle, space space communication systems. se Outcomes: At the end of this course the student will be able to : Explain different types of satellites, orbit and associated subsystems.	08 Hrs Land use, iniques. redictions, 08Hrs ro gravity ce station,
Remo Land Disast Space experi Adva Inter-s Cours CO1 CO2	UNIT-IV Ote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone preserve and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions. nced space systems: Remote sensing cameras, planetary payloads, space shuttle, space space communication systems. se Outcomes: At the end of this course the student will be able to : Explain different types of satellites, orbit and associated subsystems. Apply the basics of launching vehicles, satellites and sub systems for space applications	08 Hrs Land use, iniques. redictions, 08Hrs ro gravity ce station, s.
Remo Land Disast Space experi Adva Inter-s Cours CO1 CO2	UNIT-IV UNIT-IV Dote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, mapping, geology, Urban development resource Management, and image processing tech ology: Weather forecast (Long term and Short term), weather modelling, Cyclone presenter and flood warning, rainfall predictions using satellites. UNIT-V e Missions: Technology missions, deep space planetary missions, Lunar missions, zer iments, space biology and International space Missions. nced space systems: Remote sensing cameras, planetary payloads, space shuttle, space space communication systems. se Outcomes: At the end of this course the student will be able to : Explain different types of satellites, orbit and associated subsystems. Apply the basics of launching vehicles, satellites and sub systems for space applications of satellite in the area of communication, remote sensing, metric	08 Hrs Land use, iniques. redictions, 08Hrs ro gravity ce station, s.

Study technology trends, satellite missions and advanced space systems. **CO4**

Refe	Reference Books					
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009, ISBN- 10 :0415465702.					
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN: 9788120324015.					
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0- 471-37007 -9,					

Aerospace Engineering

etc.

	ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009, ISBN: 108176496308.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1									1	
CO2	2	2	1	1							1	
CO3	2	2	1								1	
CO4	2	2	1								1	

			Semester: VII		
		INTRODU	UCTION TO ASTROPHYSICS		
		(Gr	oup H: Global Elective)		
Course Code	:	18G7H13	CIE	:	100 Marks
Credits: L:T:P:S	:	3:0:0	SEE	:	100 Marks
Hours	:	39 L	SEE	Duration: :	3.00 Hours

Cou	rse Learning Objectives: The students will be able to
1	Familiarize with the various celestial bodies and the laws governing their behavior
2	Understand the fundamental concepts of relativity and establish the relation between light and matter
3	Study the methods used to identify and investigate the nature of different stellar bodies
4	Determine the characteristic features of any star by understanding its spectral properties
5	Contemplate the complex system of the milky way galaxy and its components

Unit-I	07 Hrs
Fundamental concepts in Astronomy:	
Origin of the Universe, Major constituents of the universe, Cosmic Microwave Radiatic	on (CMR)
background, Geocentric Universe, Retrograde Motion of planets, Brief introduction to the C	opernican
Revolution, Positions of the Celestial Sphere: Altitude-Azimuth Coordinate System,	Equatorial
Coordinate System, Solar System, Planets - laws of motion of planets, inner planets, outer plan	ets,
Unit – II	08 Hrs
Theory of Special Relativity:	
Galilean Transformations, Failure of Galilean Transformations, Lorentz Transformations, E	Derivation,
Time & Space in Special Relativity, Momentum & Energy in Relativity, Doppler Effect for lig	ht (Red &
Blue Shift), The equivalence principle, the principle of minimal gravitational coupling, Schw	varzschild
spacetime, Past-Present-Future (Light Cone diagram).	
Unit –III	08 Hrs
Stellar Astrophysics:	
Blackbody radiation, Connection between Color and Temperature, Stellar Parallax, Magnitude	ude Scale,
Life cycle of stars (Birth, Life & Death), Hertzsprung-Russel Diagram, Classification of Bir	ary Stars,
Mass Determination using Visual Binaries, Eclipsing Spectroscopic Binaries, Formation o	f Spectral
Lines, Schrodinger's time-dependent and independent equations, Boltzmann-Saha	Equation,
Chandrashekar's Limit, black holes (qualitatively).	
Unit –IV	08 Hrs
Light and Matter:	
Dispersion of light (Prism & Grating), Spectral Lines, de-Broglie's Wavelength and F	requency,
Heisenberg's Uncertainty Principle, Broadening of Spectral lines	
Spectral Characterization of Stars:	
Description of the Radiation Field, Stellar Opacity, Transfer Equation, Profile of Spectral Line	es, Optical
Telescopes, Radio Telescopes (Case Studies)	
Unit –V	08 Hrs
Galaxy Astronomy:	
The Milky way Galaxy, Counting the Stars, Historical Models, Differential & Integrated Sta	ar Counts,
Extrasolar planets, Methods of detection of extrasolar planets, Distance to the Galactic Centre	e, Galactic
Coordinate System, Classification of Galaxies, Introduction to Elliptical galaxies, Irregular	galaxies,
Dwarf galaxies.	
Course Outcomes: At the end of this course the student will be able to :	
Contemplate the nature of our universe by identifying and studying the behavior	of
celestial bodies.	

CO2 Explain the usefulness of the theory of relativity, light and matter in establishing the fundamental

	behavior of stellar bodies.
CO3	Utilize various techniques to discover the components of our universe and conclude their
	celestial properties.
CO4	Interpret the spectral properties of any astronomical body to illustrate its properties.
CO5	Inspect the milky way galaxy to identify the proponents and their characteristic features.

1101	creater books
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2 nd Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press, ISBN-9780521016278.
3	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-0935702057.
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-0387949437.
5	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st Edition, 1983, Wiley, ISBN: 9780471873167.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	-	1	-	-	2
CO2	3	2	2	2	-	-	1	-	1	-	-	2
CO3	2	3	1	2	2	1	1	-	2	1	-	2
CO4	3	3	1	2	2	1	2	-	3	3	-	2

Semester: VII					
MATERIALS FOR ADVANCED TECHNOLOGY AND SPECTROSCOPIC					
	CHARACTERIZATION				
		(Gr	oup H: Global Elective)		
Course Code	:	18G7H14	CI	IE :	100 Marks
Credits: L:T:P:S	:	3:0:0	SE	EE :	100 Marks
Hours	:	40L	SE	EE Duration: :	3.00 Hours

1	Apply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering.
2	Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field.
3	Develop analytical capabilities of students so that they can characterize, transform and use

materials in engineering and apply knowledge gained in solving related engineering problems.

Unit-I

Coating and packaging materials

Surface Coating materials:

Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.

Properties required in a pigment and extenders.

Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, molybdate orange, chrome green, ultramarine blue, iron blue, cadmium red.

Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders.

Developments in new polymers such as dendrimers, biopolymers & biodegradable polymers.

Packaging materials:

Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminum, tin, paper, plastics, composites. Pharmaceutical products: Injectables and tablet packaging materials.

1 5			
	Unit -	- II	08 Hrs

Adhesives

Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One-part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.

Unit –III	08 Hrs

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication. -Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium,

08 Hrs

regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes. Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Jn	it	-Г	V
Jn	it	-I	١

Unit –V

08 Hrs

08 Hrs

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent – magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Cours	Course Outcomes: At the end of this course the student will be able to :			
CO1	Identify sustainable engineering materials and understand their properties.			
CO2	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications in different areas of engineering.			
CO3	Analyze and evaluate the specific application of materials.			
CO4	Design the route for synthesis of material and its characterization.			

Reference Books

1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38 th Edtion, Tata McGraw-Hill Publishing Company Limited-2015, ISBN: 9780074517963
2	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1- 4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
3	Spectroscopy of organic compounds by P.S.Kalsi, New Age International (P) ltd, Publisher, 2005, ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill Publishing Company Limited, 1996, ISBN :0074622382 9780074622384.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	2	2	-	-	1	-	-
CO3	-	3	-	2	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	1	1	-	-	-	-	1

			Semester: VII			
	APPLIED PSYCHOLOGY FOR ENGINEERS					
		(Gı	roup H: Global Elective)			
Course Code	:	18G7H15	CIE	:	100 Marks	
Credits: L:T:P:S	:	3:0:0	SEE	:	100 Marks	
Hours	:	39 L	SEE Duration:	:	3.00 Hours	

Cou	rse Learning Objectives: The students will be able to
1	To appreciate human behavior and human mind in the context of learner's immediate society and
1	environment.
n	To understand the importance of lifelong learning and personal flexibility to sustain personal and
2	Professional development as the nature of work evolves.
2	To provide students with knowledge and skills for building firm foundation for the suitable
3	engineering professions.
1	To prepare students to function as effective Engineering Psychologists in an Industrial,
4	Governmental or consulting organization.
5	To enable students to use psychological knowledge, skills, and values in occupational pursuits in a
	variety of settings that meet personal goals and societal needs.

Unit-I	07 Hrs
Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist	t in the
Society: Today's Perspectives (Branches of psychology). Psychodynamic, Behavioristic, Cog	gnitive,
Humanistic, Psychological Research and Methods to study Human Behavior: Experi-	imental,
Observation, Questionnaire and Clinical Method.	
Unit – II	09 Hrs
Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of Intell	ligence.
Theories of Intelligence - Spearman, Thurston, Guilford Vernon. Characteristics of Intelligence	ce tests,
Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of M	Multiple
Intelligence – Fluid and Crystallized Intelligence.	_
Unit –III	09 Hrs
Personality: Concept and definition of personality, Approaches of personality- psychoana	alytical,
Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type appr	oaches.
Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Sca	les and
Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Asses	ssment.
Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s B	Burnout,
Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Str	ress and
Job Performance, Stress Vulnerability-Stress threshold, perceived control	
Unit –IV	07 Hrs
Application of Psychology in Working Environment: The present scenario of infor	rmation
technology, the role of psychologist in the organization, Selection and Training of Psyc	chology
Professionals to work in the field of Information Technology. Distance learning, Psycho	ological
consequences of recent developments in Information Technology. Type A and Type B Psycho	ological
Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.	
Unit –V	07 Hrs
Learning: Definition, Conditioning - Classical Conditioning, Basics of Classical Condi	itioning
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (S	Skinner
expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive - Social appr	roaches
to learning - Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning	ing.
Course Outcomes: At the end of this course the student will be able to :	

Cours	course outcomes. At the end of this course the student will be able to .					
CO1	Understand the application of psychology in engineering and technology and develop a					
COI	route to accomplish goals in their work environment.					
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and					

Aerospace Engineering

	Humanistic theorists believe influence the learning process.
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting in their enhancement and apply effective strategies for self-management and self-improvement.
CO4	Apply the theories into their own and others' lives in order to better understand their personalities and experiences.

1101	crence books
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
3	Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN $-81-317-1132-3$
4	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VII							
ADVANCED COURSE IN ENTREPRENEURSHIP							
	(Group H: Global Elective)						
Course Code	:	18G7H16	CI	E	:	100 Marks	
Credits: L:T:P:S	:	3:0:0	SE	E	:	100 Marks	
Hours	:	39 L	SE	EE Duration:	:	3.00 Hours	

1	Acquire additional knowledge and skills for developing early customer traction into a repeatable business.
2	Learn the tools and methods for achieving sustainable growth, such as by refining their product or service and business models, building brand strategy, making a sales and financial plan

- 3 Develop brand strategy and create digital presence, Develop channel strategy for customer outreach.
- 4 Leverage social media to reach new customers cost effectively, Develop strategies to increase revenues and expand markets

Unit-I	07 Hrs			
Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product Life Cycle? Assess your Start-up's attractiveness				
Competition & testing: Conduct a Competition Analysis Identify your Competitive Advantag	e			
Unit – II	06 Hrs			
Market Validation: Market validation, Customer Usability Interviews, Analyzing Customer fe	edback			
Delivering Value: Enlist marketing channels, Identify partners for your venture, Create a Sales plan				
Unit –III	07 Hrs			
Customer acquisition & growth channels: Types of Marketing Channels: Targeting Blogs, Unconventional PR, Search Engine Marketing, Search Engine Optimization, Social ads, display ads and existing platforms, Email Marketing, Viral Marketing, Affiliate programs, Magazines, Newspaper, Radio and TV ads, Offline Ads, Trade Shows				
Unit –IV	10 Hrs			
Business model: Reiterate and Refine your Business Model Canvas, Choose the right business model for your start-up Financial Planning: Forecasting sales and revenue projections, Cash-flow statement				
Unit –V	09 Hrs			
Leveraging Technologies and Available Platforms: Identify the technology needs of your ve Choose the key technologies and platforms for banking, accounting, sales, legal, and human res management, Technology as a differentiator and a competitive weapon	nture, source			

Experiential Learning: Student teams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Cours	Course Outcomes: At the end of this course the student will be able to :				
COI	Develop strategies to increase revenues and expand markets, Explore licensing and franchising				
COI	for business expansion.				
COL	Leverage technologies and platforms for growth stage companies, Develop key metrics				
CO2	to track progress.				
CO3	Basics of registering a company, Understanding business regulations and compliances.				
CO4	Advanced concepts of business finance, Financial planning.				

Ref	erence Books
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A.,
1	2012.
2	Entrepreneurship. Roy, R., 2012. Oxford University Press
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial
	Modern Classics

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester : VIII						
			MA	JOR PROJECT			
Cou	rse Code	••	18ASP81		CIE	:	100 Marks
Cred	lits: L:T:P	••	0:0:16		SEE	:	100 Marks
Tota	l Hours		32		SEE Duration	:	3.00 Hours
Cou	rse Learning	Ob	jectives: The stud	dents will be able t	to		
1.	Acquire the a	abil	ity to make links ac	ross different areas c	of knowledge and to	gen	erate, develop
	and evaluate ideas and information so as to apply these skills to the project task.						
2.	Acquire the skills to communicate effectively and to present ideas clearly and coherently to a						
	specific audience in both written and oral forms.						
3.	3. Acquire collaborative skills through working in a team to achieve common goals.						
4.	Self-learn, reflect on their learning and take appropriate action to improve it.						
5.	Prepare schee	Prepare schedules and budgets and keep track of the progress and expenditure.					

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- \Box Students are free to choose their project partners from within the program or any other program.
- □ Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution.
- □ <u>The project work is to be carried out by a team of two to four students</u>, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- □ The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- □ In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with* CoE's(Centre of Excellence) identified by the college or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in *NPTEL* from the discipline of *Humanities and Social Sciences, Management, Multidisciplinary and Design Engineering.* The course chosen could be either of *4w/8w/12w* duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. *The same will be considered as one of the components during project evaluation of phase 2 and phase 5.*

Project Evaluation:

□ Continuous monitoring of project work will be carried out and cumulative evaluation will be done.

- □ The students are required to meet their internal guides once in a week to report their progress in project work.
- □ Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- □ In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- □ For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- □ The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- □ The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- □ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- □ Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Cours	e Outcomes of Major Project:
1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain
	problems.
2	Design, develop, present and document innovative/multidisciplinary modules for a complete engineering
	system.
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long learning to
	follow technological developments.
4	Function effectively as an individual, or leader in diverse teams, with the understanding of professional
	ethics and responsibilities.

CIE Assessment:

The following are the weightings given for the various stages of the project.

		<u> </u>	•	
1.	Selection of the topic and formulation of objectives			10%
2.	Design and Development of Project methodology			25%
3.	Execution of Project			25%
4.	Presentation, Demonstration and Results Discussion			30%
5.	Report Writing & Publication			10%

SEE Assessment:

The following are the weightages given during Viva Examination.

Written presentation of synopsis	10%	
Presentation/Demonstration of the project		30%
Methodology and Experimental Results & Discussion	30%	
Report		10%
Viva Voce		20%
	Written presentation of synopsis Presentation/Demonstration of the project Methodology and Experimental Results & Discussion Report Viva Voce	Written presentation of synopsis10%Presentation/Demonstration of the project30%Methodology and Experimental Results & Discussion30%ReportViva Voce

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar

Calendar of Events for the Project Work:

Aerospace Engineering
III Week	First visit of the internal guides to industry (In case of project being carried out in industry)		
III to VI Woolr	Design and development of project methodology		
III to VI Week	Design and development of project methodology		
VII to IX Week	Implementation of the project		
X Week	Submission of draft copy of the project report		
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by Department project Committee and guide for internal assessment. Finalization of CIE.		

Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CIE		Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks	
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%	
Project Evaluation II	25%	Project Demo / Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

COs

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.