

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

SCHEME & SYLLABUS SECOND YEAR B.E. PROGRAMS

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

BACHELOR OF ENGINEERING (B.E.) 2022 SCHEME

ACADEMIC YEAR 2023-24

Go, change the world

to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

ABBREVIATIONS

S1. No.	Abbreviation	Meaning					
1.	VTU	Visvesvaraya Technological University					
2.	BS	Basic Sciences					
3.	CIE	Continuous Internal Evaluation					
4.	SEE	Semester End Examination					
5.	PE	Professional Core Elective					
б.	IE	Institutional Elective					
7.	HS	Humanities and Social Sciences					
8.	PHY	Physics					
9.	СНҮ	Chemistry					
10.	MAT	Mathematics					
11.	AS	Aerospace Engineering					
12.	AI	Artificial Intelligence & Machine Learning					
13.	BT	Biotechnology					
14.	СН	Chemical Engineering					
15.	CS	Computer Science & Engineering					
16.	CV	Civil Engineering					
17.	EC	Electronics & Communication Engineering					
18.	EE	Electrical & Electronics Engineering					
19.	EI	Electronics & Instrumentation Engineering					
20.	ET	Electronics & Telecommunication Engineering					
21.	IM	Industrial Engineering & Management					
22.	IS	Information Science & Engineering					
23.	ME	Mechanical Engineering					
24.	CD	Computer Science & Engineering(Data Science)					
25.	СҮ	Computer Science & Engineering(Cyber Security)					

Go, change the world

AutonomousApproved by AICTE,Institution AffiliatedNew Delhito VisvesvarayaTechnologicalUniversity, Belagavi

INDEX

	THIRD SEMESTER COURSES					
S1.	Course	Name of the Course	Daga No			
No.	Code	Name of the Course	rage no.			
1.	MAT231ET	Mathematics for Artificial Intelligence & Machine Learning	1			
	XX232XT	Basket Courses – Group A				
2	CV232AT	Environment & Sustainability	3			
4.	ME232AT	Material Science for Engineers	6			
	BT232AT	Bio Safety Standards and Ethics	8			
3.	AI233AI	Fundamentals of Data Structures and Data Analysis	10			
4.	AI234AI	Foundations of Cyber Physical Systems	14			
5.	AI235AT	Statistics for Data Science	17			
6.	AI237DL	Design Thinking Lab	19			
7.	CS139DT	Bridge Course: C Programming	21			
		FOURTH SEMESTER COURSES	·			
1.	CS241AT	Discrete Mathematical Structures and Combinatorics	24			
	CV242AT	Environment & Sustainability	27			
2.	ME242AT	Material Science for Engineers	30			
	BT242AT	Bio Safety Standards and Ethics	32			
3.	CD343AI	Design and Analysis of Algorithms	34			
4.	AI244AI	Artificial Intelligence and Machine Learning	38			
5.	CY245AT	Computer Networks	41			
6.	AI246XT	Professional Elective Courses - Group B	44			
7.	HS247XL	Ability Enhancement Course - Group C	44			
8.	HS248AT	Universal Human Values	60			
9.	MAT149DT	Bridge Course: Mathematics	62			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi Go, change the world

Bachelor of Engineering in ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING III Semester

S1. No.	Course Code	Course Title	Cre	Credit Allocation		BoS Categor		Max Marks CIE		SEE Duration (H)	Max Marks SEE		
			L	Т	Ρ	Total			Theory	Lab		Theory	Lab
1	MAT231ET	Mathematics for Artificial Intelligence & Machine Learning	3	3 1 0 4 1		MAT	Theory	100	***	3	100	***	
2	XX232XT	Basket Courses – Group A	3	0	0	3	CV/ ME/ BT	Theory	100	***	3	100	***
3	AI233AI	Fundamentals of Data Structures and Data Analysis	3	0	1	4	AI	Theory + Lab	100	50	3	100	50
4	AI234AI	Foundations of Cyber Physical Systems	3	0	1	4	AI	Theory + Lab	100	50	3	100	50
5	AI235AT	Statistics for Data Science	3	1	0	4	AI	Theory	100	***	3	100	***
6	AI237DL	Design Thinking Lab	0	0	2	2	AI	Lab	***	50	2	***	50
7	CS139DT	Bridge Course: C Programming	2(A)	0	0	AUDIT	CS	Theory	50	***	***	***	***
		Total				21							

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

BASKET COURSES - GROUP A (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem)

S1. No.	Course Code	Course Title	Credits
1	CV 232AT	Environment & Sustainability	03
2	ME 232AT	Material Science for Engineers	03
3	BT 232AT	Bio Safety Standards and Ethics	03

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi Go, change the world

Bachelor of Engineering in ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IV Semester

S1. No.	Course Code	Course Title	Cred	Credit Allocation		Credit Allocation		it Allocation		Category	Max Ma CIE	Max Marks SEE CIE Duration (H)		Max Marks SEE	
		L T P Total Th		Theory	Lab		Theory	Lab							
1	CS241AT	Discrete Mathematical Structures and Combinatorics (Common to AI,CS,CD,CY,IS)	3	0	0	3	CS	Theory	100	***	3	100	***		
2	XX232XT	Basket Courses – Group A	3	3 0 0 3 ME/ Theory BT 100		***	3	100	***						
3	CD343AI	Design and Analysis of Algorithms (Common to AI,CS,CD,CY,IS)	3	0	1	4	CD	Theory + Lab	100	50	3	100	50		
4	AI244AI	Artificial Intelligence and Machine Learning	3	0	1	4	AI	Theory + Lab	100	50	3	100	50		
5	CY245AT	Computer Networks (Common to AI,CS,CD,CY,IS)	3	0	0	3	СҮ	Theory	100	***	3	100	***		
6	AI246XT	Professional Elective Courses Group B	2	0	0	2	AI	NPTEL	50	***	***	50	***		
7	HS247XL	Ability Enhancement Courses Group C	0	0	2	2	HS	Lab	***	50	2	***	50		
8	HS248AT	Universal Human Values	2	0	0	2	HS	Theory	50	***	2	50	***		
9	MAT149DT	Bridge Course: Mathematics	2 (A)	1	0	AUDIT	MAT	Theory	50	***	***	***	***		
		Total				23									

Go, change the world

AutonomousApproved by AICTE,Institution AffiliatedNew Delhito VisvesvarayaTechnological

University, Belagavi

BASKET COURSES - GROUP A (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem)

S1. No.	Course Code	Course Title	Credits
1	CV232AT	Environment & Sustainability	03
2	ME232AT	Material Science for Engineers	03
3	BT232AT	Bio Safety Standards and Ethics	03

	PROFESSIONAL ELECTIVE COURSES - GROUP B					
S1.	Course	Course Title	Credits			
No.	Code					
1	IS246AT	Computer Graphics (Common to IS & AI)	02			
2	AI246BT	Modern Algebra(Common to CS, IS, CD, AI & CY)	02			
3	AI246CT	Operations Research	02			
4	AI246DT	Introduction to Operating Systems	02			
5	AI246ET	Theory of Computation	02			

		ABILITY ENHANCEMENT COURSES – Group C	
S1.	Course	Course Title	Credits
No.	Code		
1	HS247AL	National Service Scheme	02
2	HS247BL	National Cadet Corps	02
3	HS247CL	Physical Education : Sports & Athletics	02
4	HS247DL	Music	02
5	HS247EL	Dance	02
6	HS247FL	Theater (Light Camera & Action)	02
7	HS247GL	Art Work & Painting	02
8	HS247HL	Photography & Film Making	02

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III						
MATHEMATICS FOR ARTIFICIAL INTELLIGENCE & MACHINE LEARNING						
Category: PROFESSIONAL CORE COURSE						
			(Theory)			
Course Code	:	MAT231ET		CIE	••	100 Marks
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks
Total Hours	:	45L+30T		SEE Duration	:	3.00 Hours

Unit-I	08 Hrs			
Probability and Random Variable:				
Random experiment, Sample space, Events - equally likely events, mutually disjoint events, en	xhaustive			
events, Axioms of probability, Conditional probability, Partitions and law of total probability	ty, Bayes			
theorem, Independence, Random variables - Discrete and continuous - Probability mass	function			
(PMF), Probability density function (PDF), Cumulative distribution function (CDF), Expec	ted value			
and variance of random variable, Markov and Chebyshev inequality. Implementation using M	ATLAB.			
Unit – II	08 Hrs			
Probability Distributions:				
Discrete distributions - Bernoulli, Binomial, Geometric, Equally Likely and Poisson. Co	ontinuous			
distributions – Exponential, Uniform, Normal. Implementation using MATLAB.				
Unit –III	09 Hrs			
Joint Distribution of Random Variables - Joint Probability mass function, Joint probabilit	y density			
function, Joint Cumulative distribution function, Marginals, Joint moments, Independence, Co	onditional			
PDF, Conditional PMF and Conditional mean and Conditional variance. Implementati	on using			
MATLAB.	-			
Unit –IV	10 Hrs			
Linear Algebra - I:				
Vector spaces, subspaces, linear dependence and independence, basis, dimension, four fun	damental			
subspaces of a matrix, Linear transformations - matrix representation, dilation, reflection, r	projection			
and rotation matrices. Implementation using MATLAB	5			
Unit –V	10 Hrs			
Linear Algebra - II:				
Inner Products, Orthogonally - Orthogonal complement subspace, orthogonal matrices, orthog	gonal and			
orthonormal bases Gram-Schmidt process OR-factorization eigenvalues and eigenvectors matrix				
diagonalization. Real symmetric matrices, singular value decomposition. Implementati	on using			
MATLAB.				

Course Outcomes: After completing the course, the students will be able to						
CO1	Illustrate the fundamental concepts of probability, random variables, probability					
	distributions, linear algebra.					
CO2	Apply the acquired knowledge of probability, discrete and continuous random variables,					
	probability distributions, linear algebra to solve the problems of engineering applications.					
CO3	Analyze the solution of the problems obtained from appropriate techniques of probability,					
	random variables, probability distributions, linear algebra to the real-world problem.					
CO4	Interpret the overall knowledge of probability, random variables, probability distributions,					
	linear algebra gained to demonstrate the problems arising in many practical situations.					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	ence Books
1	Introduction to Probability and Statistics for Engineers and Scientists, Sheldon Ross, 5 th Edition 2014, Academic Press, ISBN: 13,078,0123048113
	Edition, 2014, Academic Fless, ISBN: 13-976-0123946115.
2	2014, ISBN- 13: 978-1-4822-1410-9.
3	Linear Algebra and its Applications, David C. Lay, 3 rd Edition, 2002, Pearson Education India, ISBN:13: 978-81-7758-333-5.
4	Practical Linear Algebra: A Geometry Toolbox, Gerald Farin and Dianne Hansford, 3 rd Edition, 2014, CRC Press, ISBN: 13: 978-1-4665-7958-3.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III/ IV						
ENVIRONMENT & SUSTAINABILITY Cotogowy DROFESSIONAL CODE COURSE						
(Common to all Programs)						
(Common to an Frograms) (Theory)						
Course Code	:	CV232AT / CV242AT		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	3.0 Hours
		Unit-I				10 Hrs
ENVIRONMENT	AN	D BIODIVERSITY				I
Definition, scope an	nd i	mportance of environment –	need for p	ublic awareness. Eco	o-sy	stem and Energy flow-
ecological succession)n. '	Types of biodiversity: genetic	c, species a	and ecosystem divers	ity-	- values of biodiversity,
threats to biodiversit	y: h	abitat loss, poaching of wildli	fe, man-wi	ldlife conflicts – enda	nge	ered and endemic species
of India - conservat	ion	of biodiversity.			-	_
ENVIRONMENT A	۱ L	POLLUTION				
Causes, Effects and	Pre	ventive measures of Water, S	oil, Air and	l Noise Pollution. Sol	lid,	Hazardous and E-Waste
management.						
Occupational Healt	h a	and Safety Management syste	em (OHAS	MS). Environmental	pr	otection, Environmental
protection acts.						
		Unit – I	Ι			09Hrs
RENEWABLE SO	UR	CES OF ENERGY				
Energy management	t an	d conservation, New Energy S	Sources: Ne	ed of new sources. D	iffe	rent types of new energy
sources.						
Energy Cycles, carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socio						
economical and tech	inol	ogical change.			~	
Applications of - Hy	'dro	gen energy, Ocean energy res	sources, Tic	al energy conversion	. C	oncept, origin and power
plants of geotherma.	en	ergy.	T			0.0 11
Unit –III 09 Hrs						
SUSTAINABILITY AND MANAGEMENT						
Introduction to Env	iror	imental Economics, Environn	nental Aud	it, Development, GD	Р,	Sustainability - concept,
needs and challenge	es-e	conomic, social and aspects	of sustaina	ability - from unsust	tain	ability to sustainability-
millennium develop	mei	it goals and protocols				
Carada tarahla Darah			1 !	Ol :	1	Clabel Designal
Sustainable Develo	pm	ent Goals - targets, indicator	's and interv	vention areas Climate	e ch	ange - Global, Regional
and local environi	nen	tal issues and possible so	olutions. C	oncept of Carbon	Cre	ait, Carbon Footprint.
Environmental mana	agei	ment in industry.				
		Unit U	17			00 11.00
SUCTAINADI IT	V D		V			09 Hrs
SUSTAINADILITTERAUTIUES						
Environmental Impact Assessment Sustainable habitat: Graan buildings Graan materials Energy officiency						
Sustainable transports						
Sustamable transpor	ιδ.					
Linear vs evelical	resi	urce management systems	need for s	stems thinking and	dec	ion of cyclical systems
circular economy industrial ecology green technology Specifically apply these concents to: Water Resources						
	circular economy, industrial ecology, green technology. Specifically apply these concepts to: water Resources,					

Energy Resources, Food Resources, Land & Forests, Waste management.

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Unit –V

08 Hrs

Corporate Social Responsibility (CSR) - Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity, Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of CSR in India.

Sustainability Reporting: Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

Course Outcomes: After completing the course, the students will be able to:			
CO1	Understand the basic elements of Environment and its Biodiversity.		
CO2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.		
CO3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.		
CO4	Recognize the role of Corporate social responsibility in conserving the Environment.		

Refer	rence Books
1	Environmental Science and Engineering, Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 -
1.	978-9387432352
2.	Introduction to Environmental Engineering and Science, Gilbert M.Masters, Wendell P Ela, 3 rd edition,
	Pearson Education, 2006. ISBN-13 - 978-0132339346
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006
4.	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David
	Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III						
MATERIALS SCIENCE FOR ENGINEERS						
Category: Professional Core						
Carrie Cala		MEQ22AT	(Theory)	CIE	_	100 Maadaa
Course Code	:	ME232A1			:	100 Marks
Credits: L:1:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
		U	nit-l			06 Hrs
The Fundamenta	ls o	of Materials			1	1 . 1 1
The electronic str	ucti	are of atoms, types of	atomic and molecular l	bonds: 10n1c bon	d, co	ovalent bond,
metallic bond, sec	onc	lary bonds, mixed bond	ling, hybridization. Ener	gy bands in meta	IS, 11	nsulators, and
and allows coromi	ası	c crystallography. Del	ects and dislocations. Ty	pes of materials:	pory	mers, metals
	ιs,	Imi				10 Hrs
Matarial habaria		UII	lt – 11			10 111 5
Thermal propertie		thermal conductivity	thermoelectric effects	heat conscity th	Jarm	al expansion
coefficient therm	-5. al c	hock thermocouple F	Electrical Properties: diel	licat capacity, il	an(d temperature
dependence of th	an s e (lielectric constant ins	sulating materials ferro	electricity niezo	s and pelec	tricity super
conductor. Optica	al i	properties: luminescer	ice. optical fibers. Me	chanical Propert	ties:	Stress-strain
diagram, elastic d	efo	rmation, plastic deform	nation, hardness, viscoel	lastic deformation	n, in	npact energy,
fracture toughness	, fa	tigue.	, , ,		,	1 0.77
		<u> </u>				
		Uni	t –III			10 Hrs
Materials and the	eir .	Uni Applications	t –III			10 Hrs
Materials and the Semiconductors,	eir . diel	Uni Applications ectrics, optoelectronic	t –III s, structural materials,	ferrous alloys, r	onfe	10 Hrs errous alloys,
Materials and the Semiconductors, cement, concrete,	eir . diel cei	Uni Applications ectrics, optoelectronic ramic, and glasses. Po	t –III s, structural materials, lymers: thermosets and	ferrous alloys, r thermoplastics, c	ionfe comp	10 Hrs errous alloys, posites: fibre-
Materials and the Semiconductors, cement, concrete, reinforced, aggreg	eir diel cei ateo	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic	t –III s, structural materials, lymers: thermosets and c packaging materials, bi	ferrous alloys, r thermoplastics, c omaterials, proce	ionfe comp ssing	10 Hrs errous alloys, posites: fibre- g of structural
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials.	eir diel cei ateo	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic	t –III s, structural materials, lymers: thermosets and c packaging materials, bi	ferrous alloys, r thermoplastics, c omaterials, proce	ionfe comp ssing	10 Hrs errous alloys, posites: fibre- g of structural
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials.	eir diel cei ateo	Uni Applications ectrics, optoelectronic ramic, and glasses. Po l composites, electroni- Uni	t –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV	ferrous alloys, r thermoplastics, c omaterials, proce	ionfe comp ssinį	10 Hrserrous alloys, posites: fibre- g of structural07 Hrs
Materials and the Semiconductors, o cement, concrete, reinforced, aggreg materials. Heat Treatment	eir . diel cei ateo	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electroni Uni	t – III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV	ferrous alloys, r thermoplastics, c omaterials, proce	onfe comp ssinį	10 Hrserrous alloys, posites: fibre- g of structural07 Hrs
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing 1	eir diel cen ateo	Uni Applications ectrics, optoelectronic ramic, and glasses. Po l composites, electronic Uni	it –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal op	ferrous alloys, r thermoplastics, c omaterials, proce xidation, diffusio	onfe comp ssing	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsrapid thermal
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat	eir diel diel cen ateo neat	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic Uni t treatment of electro atment of ferrous man	it –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal or terials: annealing, spher	ferrous alloys, r thermoplastics, c omaterials, proce kidation, diffusio roidizing, normal	onfe comp ssing on, r	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsrapid thermal g, hardening,
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format	eir diel diel cen atec neat trea	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic Uni t treatment of electro atment of ferrous man of austenite, construct	it –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal ov terials: annealing, spher ction of Time Temperatu	ferrous alloys, r thermoplastics, c omaterials, proce kidation, diffusio roidizing, normal ure Transformati	onfe comp ssing on, r lizing on (10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves.
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat	eir diel cer ateo neat trea ion mer	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic Uni t treatment of electro atment of ferrous man of austenite, construct at processes: carburizi	t – III s, structural materials, lymers: thermosets and c packaging materials, bi t – IV nic devices: thermal ox terials: annealing, spher ction of Time Temperatu ng, nitriding, cyaniding	ferrous alloys, r thermoplastics, c omaterials, proce kidation, diffusio roidizing, normal ure Transformati , flame, and ind	onfe comp ssing on, r lizing on (uctio	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves. on hardening.
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat Defects in heat treat	eir diel cen ateo neat trea ion men atm	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic Uni t treatment of electron atment of ferrous man of austenite, construct at processes: carburizitient.	t – III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal or terials: annealing, spher ction of Time Temperatu ng, nitriding, cyaniding	ferrous alloys, r thermoplastics, c omaterials, proce xidation, diffusio roidizing, normal ure Transformati , flame, and ind	onfe comp ssing on, r lizing on (uctio	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves. on hardening.
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat Defects in heat treat	eir diel cen atec meat trea ion men atm	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic Uni treatment of electro atment of ferrous man of austenite, construct at processes: carburizi itent. Uri	t – III s, structural materials, lymers: thermosets and c packaging materials, bi t – IV nic devices: thermal ox terials: annealing, spher ction of Time Temperatu ng, nitriding, cyaniding hit-V	ferrous alloys, r thermoplastics, c omaterials, proce xidation, diffusio roidizing, normal ure Transformati , flame, and ind	onfe comp ssing on, r lizing on (uctic	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves. on hardening.07 Hrs
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat Defects in heat tree Nanomaterials	eir Jiel diel cer ateo neat trea ion mer atm	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic Uni treatment of electro atment of ferrous mat of austenite, construct at processes: carburizi terials: ball milling of	it –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal or terials: annealing, spher ction of Time Temperatu ng, nitriding, cyaniding nit-V	ferrous alloys, r thermoplastics, c omaterials, proce xidation, diffusio roidizing, normal ure Transformati , flame, and ind	onfe comp ssing on, r lizing on (uctio	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves. on hardening.07 Hrs
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat Defects in heat treat Defects in heat treat Nanomaterials Synthesis of nano sputtering lithog	eir . diel cer ateo neat trea ion mer atrr	Uni Applications ectrics, optoelectronic ramic, and glasses. Po l composites, electronic Uni treatment of electro atment of ferrous mat of austenite, construct nt processes: carburizi ient. Ur terials: ball milling, s by Nano porous mate	it –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal or terials: annealing, spher ction of Time Temperatu ng, nitriding, cyaniding nit-V ol-gel, vapour deposition prials: zeolites mesonor	ferrous alloys, r thermoplastics, c omaterials, proce xidation, diffusic oidizing, normal ure Transformati , flame, and ind	onfe comp ssinį on, r lizinį on (uctic lase	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves. on hardening.07 Hrs07 Hrs
Materials and the Semiconductors, o cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat Defects in heat treat Defects in heat treat Synthesis of nance sputtering, lithogy graphene, nano F	eir	Uni Applications ectrics, optoelectronic amic, and glasses. Po d composites, electronic Uni treatment of electro atment of ferrous mat of austenite, construct at processes: carburizi terials: ball milling, s my. Nano porous mate s, nano fabrics, biore	it –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal or terials: annealing, spher ction of Time Temperatu ng, nitriding, cyaniding nit-V ol-gel, vapour depositio erials: zeolites, mesopor sorbable and bio-erodab	ferrous alloys, r thermoplastics, c omaterials, proce xidation, diffusic roidizing, normal ure Transformati , flame, and ind on growth, pulse rous materials, c ole materials, par	onfe comp ssing on, r lizing on (uction lase arbo	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves. on hardening.07 Hrsor, magnetron on nanotubes, eramic, nano
Materials and the Semiconductors, cement, concrete, reinforced, aggreg materials. Heat Treatment Post processing I processing. Heat tempering. format Special heat treat Defects in heat treat Defects in heat treat Synthesis of nano sputtering, lithogr graphene, nano F glasses, nano bio	eir diel cer ateo neat trea ion atm atm man aph RP	Uni Applications ectrics, optoelectronic ramic, and glasses. Po d composites, electronic Uni treatment of electronic atment of ferrous mate of austenite, construct of austenite, construct the processes: carburizinent. Uri terials: ball milling, s ny. Nano porous mate s, nano fabrics, biores terials, nano implant	it –III s, structural materials, lymers: thermosets and c packaging materials, bi it –IV nic devices: thermal or terials: annealing, spher ction of Time Temperatu ng, nitriding, cyaniding hit-V ol-gel, vapour deposition erials: zeolites, mesopor sorbable and bio-erodab associated materials. Ch	ferrous alloys, r thermoplastics, c omaterials, proce xidation, diffusio roidizing, normal ure Transformati , flame, and ind on growth, pulse rous materials, c ole materials, nam naracterisation of	onfe comp ssin lizin on (uction lase arbo no c nan	10 Hrserrous alloys, posites: fibre- g of structural07 Hrsapid thermal g, hardening, TTT) curves. on hardening.07 Hrson hardening, err, magnetron on nanotubes, eramic, nano no structures.

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to:				
CO1	Understand the classification of materials, their atomic structure, and properties.			
CO2	Investigate the properties and applications of different materials.			
CO3	Analyse the effect of different heat treatment processes.			
CO4	Recognize different types of nanomaterials, synthesis methods and characterisation techniques.			

Refe	erence Books
1	Material Science and Engineering, William D Callister, 6 th Edition, 1997, John Wiley and Sons, ISBN:
1.	9812-53-052-5
2.	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN:
	0-07-Y85018-6
3	Material Science and Engineering, William F Smith, 4th Edition, 2008, Mc. Graw Hill Book Company,
5.	ISBN: 0-07-066717-9
4.	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC
	Press 1996. ISBN:978-0849322749

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO. CONTENTS				
	PART A	-		
1	Objective type questions covering entire syllabus	20		
	PART B	-		
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8 Unit 4 : Question 7 or 8		16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: III/IV						
		BIO SAFETY ST	ANDARDS A	AND ETHICS			
		Category: PROFE	SSIONAL C	ORE COURSE			
	(Common to all Programs)						
Course Code	•	BT232AT/ BT242AT	(Theory)	CIE	•	100 Marks	
Credits: L: T.P	•	3.0.0		SFE	•	100 Marks	
Total Hours	•	451		SEE Duration	•	3 Hours	
10tul 110tilis	•	Unit-1	r	SEL Dui ation	•	09 Hrs	
Richazards Rics	afet	v levels and cabinets. Intr	oduction to Bi	ohazards Biological S	afety	levels Bio safety	
Cabinets. Study of	var	ious types of Bio safety cal	binets. Variou	s parameters for desig	n of I	Biosafety cabinets	
(Materials used for	fał	prication, sensors, filters, p	umps, compre	essors)			
		Unit – I	II			08 Hrs	
Biosafety Guideli	nes	Biosafety guidelines of Ge	overnment of	India, GMOs & LMOs	s, Ro	les of Institutional	
Biosafety Commit	ttee	, RCGM (Review Comm	ittee on Ger	etic Manipulation), (GEA	C (Genetic Engg	
Approval Committ	tee)	for GMO applications in fo	ood and agricu	ulture. Overview of Na	tiona	l Regulations and	
relevant Internation	nal	Agreements including Cart	agena Protoco	ol.		40.77	
Unit –III 10 Hrs							
Food safety standards: FSSAI (Food Safety and Standards Authority of India), Functions, License, types							
of FSSAI Licences and compliance rules.							
microorganisms in	the	food chain (raw materials	water air eo	uinment etc.)	; pau	logens, sources of	
Quality of foods N	Mici	robial food spoilage and Fo	odborne dise	ases Overview of ben	eficia	1 microorganisms	
and their role in fo	od p	processing and human nutrit	tion, Food An	alysis and Testing, Gei	neral	principles of food	
safety managemen	t sy	stems, Hazard Analysis Cr	itical Control	Point (HACCP).			
	Unit –IV 09 Hrs						
Food Preservation	Food Preservations, processing, and packaging						
Food Processing (Ope	rations, Principles, Good	Manufacturin	g Practices HACCP,	Good	l production, and	
processing practice	es (0	GMP, GAP, GHP, GLP, BA	AP, etc)				
Overview of food	Overview of food preservation methods and their underlying principles including novel and emerging						
methods/principles							
Overview of food	pac	kaging methods and princip	$\frac{1}{7}$	novel packaging mate	mais.	00 Шта	
Fail a fata and F	41.5		/ 1.1:4:				
in Animals Eact	in Animals Factors That Contribute to Foodborne Illness Consumer Lifestyles and Demand Food						
Production and Economics. History of Food Safety. The Role of Food Preservation in Food Safety							
Ethics: Clinical ethics, Health Policy, Research ethics, ethics on Animals, Biosafety and Bioethics.							
		,	,				

Course	Course Outcomes: After completing the course, the students will be able to:			
CO1	Have a comprehensive knowledge of Biohazards and bio safety levels			
CO2	Understand the biosafety guidelines and their importance to the society			
CO3	Acquire knowledge with respect to the Food standards, Hygiene, food processing and packing			
CO4	Appreciate the food safety, Ethics, biosafety and bio ethics			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	erence Books
1.	Deepa Goel, Shomini Parashar IPR, Biosafety and Bioethics 1st Edition. 2013, ISBN: 978-8131774700.
2.	Cynthia A Roberts, The Food Safety, Oryx Press, first edition, 2001, ISBN: 1-57356-305-6.
3.	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.
4.	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2nd edition, 2017, ISBN: 978-0415790314.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A	•			
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: (Internal Choice)	16			
5&6	Unit 3: (Internal Choice)	16			
7 & 8	Unit 4: (Internal Choice)	16			
9 & 10	Unit 5: (Internal Choice)	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: III FUNDAMENTALS OF DATA STRUCTURES AND DATA ANALYSIS Category :PROFESSIONAL CORE COURSE (Theory and Prosting)

(Theory and Fractice)							
Course Code	:	AI233AI		CIE	:	100+50 N	larks
Credits: L: T: P	:	3:0:1		SEE	:	100+ 50 N	Marks
Total Hours	••	45L+30P		SEE Duration	••	3.00 Hou	rs
Unit-I 09 Hrs							

Introduction:

Data Structure, Classifications of Data Structures, Application of Data Structures, Abstract Data Type, Operations Perform on Data Structure, Overview of Different Data Structures

Pointers:

Pointer Declaration, Address of Operator, Indirection Operator, Null Pointer, void Pointer, Generic Functions, Dangling Pointer, Arithmetic Operation with Pointer, Pointer to pointer Pointers and Arrays, Array of Pointers, Pointer to an Array, Pointer to Function, Passing addresses to Function, Function returning Pointer, Dynamic Memory Allocation

Linked Lists:

Limitations of Array, Linked List, Singly Linked list, Operations on Singly linked list, Representation of polynomials using linked list, Circular Linked list, Operation on Circular Link List, Josephus Problem, Doubly Linked list, Operation on Doubly Link List, Circular Doubly Linked List, Disadvantages of Linked List

Unit – II

Stacks and Queues:

Stack, Operations on Stack, Stack Representation with Array, Stack Representation with Linked List, Processing of function calls, Evaluation of Arithmetic expressions; Queue, Operations on Queue, Queue Representation with Array, Queue Representation with Linked List, Application of Queue, Drawback of Linear Queue, Circular Queue, Circular Queue Representation with Array, Dequeue, Operation on De Queue, Priority Queue, Representation of Priority Queue

Trees:

Terminology of Tree, Binary Tree, Strictly Binary Tree, Extended Binary Tree, Complete Binary Tree, Full Binary Tree, Skewed Binary Tree, Binary Expression Tree, Balanced Binary Tree, Threaded Binary Tree, Properties of Binary Tree, Representation of Binary Tree, Binary Tree Traversal, Binary Search Tree, Operations on Binary Search Tree, Heaps

Unit –III09 Hrs.Graphs:
Terminology of Graph, Terminology of a Directed Graph, Operations on Graph, Representation of Graph,
Graph Traversal, Shortest Paths, Dijkstra's Algorithm, Bellman-Ford Algorithmof Graph,
Hashing:
Hash Table, Hash Function, Division Method, Mid Square method, Folding method, Collision Resolution,

 Hash Table, Hash Function, Division Method, Mid Square method, Folding method, Collision Resolution,

 Linear Probing, Quadratic Probing, Double Hashing, Separate Chaining, Load Factor

 Unit –IV
 09 Hrs.

Unit –IV	0	J
Introduction to Data-Analytic Thinking:		

The ubiquity of data opportunities, Examples: Hurricane Fraces, Predicting Churn, Data Science, Engineering and Data-Driven Decision Making, Data Processing and Big Data, From Big Data 1.0 to Big Data 2.0, Data-Analytic Thinking

09 Hrs.

Autonomous Institution Affiliated to Visvesvarava Technological University, Belagavi Approved by AICTE, New Delhi

Business Problems and Data Science Solutions:

From Business Problems to Data Mining Tasks, Supervised and Unsupervised Methods, Data mining and its results, The Data mining process: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation and Deployment, Implications of managing the data science team Unit –V

09 Hrs.

Introduction to Predictive Modeling: Models, Induction and Prediction, Supervised Segmentation: Selecting informative attributes, Attribute selection with information gain, supervised segmentation with Tree-structured models, Visualizing segmentations, Tress as sets of rules, probability estimation, Example of churn problem.

List of Laboratory Experiments

Exp.	Data Structure Name	Application to be coded using C			
No.					
1	Stack	Arithmetic Expression Evaluation			
		• Evaluating the given postfix expression by considering the			
		priority of the operators.			
		 Identify the invalid expression 			
		• Operators: $+,/,*$ and -			
		• Nested Parenthesis: (())			
2	Queues	Simulating a shared resource management			
		• Create a simulated version of a shared memory.			
		 Generate N random requests for memory. 			
		• Use queues to manage the resource requests.			
3	Singly Linked List	Polynomial Arithmetic			
		 Adding two polynomials of any degrees. 			
4	Doubly Linked List	Simple Text Editor			
		• Browsing through the text, line by line in both directions			
		• Insert New lines anywhere in the text			
		• Delete line/s from the text			
5	Binary Trees	Arithmetic Expression Conversion			
		 Building an expression tree 			
		 Infix to Prefix conversion 			
		 Infix to Postfix conversion 			
6	Binary Search Trees	Creating a dictionary of words			
		• Insert a new word into a dictionary			
		• Delete a word from a dictionary			
		• Print Dictionary			
7	Graphs	• Implementing Dijkstra's algorithm and finding the shortest route			
		between nodes			
8	Hash Table	• Implementing the Rabin-Karp algorithm for pattern matching			
		using Hashing			
9	Heaps	• Implement a Max-heap data structure from a binary tree			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PART-B OF LAB

A batch of two students develops a prototype using the C/C++ language. The prototype demonstrates the use of data structure in real-time applications. E.g., using trees to index search results, using graphs to navigate places, using graphs for recommendations and match-making, using queues for message passing, developing spell and grammar checkers, using matrices to generate the survey insights, etc. (Ref: https://www.geeksforgeeks.org/real-time-application-of-data-structures/). The innovative applications of data structures attract high marks.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Apply the knowledge of data structures in providing solutions to some software development				
	requirements.				
CO2	Identify appropriate data structures and understand requirements in solving some problems of				
	industry and society.				
CO3	Perform data analysis of some real-world scientific/business use cases and present the analysis				
	results.				
CO4	Use data analysis tools to illustrate the principles of data interpretation, statistical analysis, and				
	graphical visualizations of the datasets.				
CO5	Appraise data structures and analysis knowledge to build a successful career as an AIML engineer,				
	work in teams, and communicate their ideas effectively.				

Refere	ence Books
1	Data Structures and Algorithms with C, Debdutta Pal and Suman Halder, Alpha Science International Ltd, Oxford, UK, 2018. ISBN 978-1-78332-368-5, E-ISBN 978-1-78332-427-9
2	Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking 1st Edition, Foster Provost and Tom Fawcett, O'Reilly Media, 2013. ISBN: 978-1449361327
3	Fundamentals of Data Structures, Ellis Horowitz, Sartaj Sahni, Illustrated Edition, Computer Science Press.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE(THEORY+LAB)	150

RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS		
1	Write Up	10		
2	Conduction of the Experiments	20		
3	Viva	20		
	TOTAL	50		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type of questions covering entire syllabus	20
	PART B	
	(Maximum of THREE Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

FOUNDATIONS OF CYBER PHYSICAL SYSTEMS Category: PROFESSIONAL CORE COURSE (Theory and Practice) Course Code : A1234AI Cite : 100+50 Marks Coredits: L: T: P : 3:0:1 SEE : 100+50 Marks Coredits: L: T: P : 3:0:1 SEE Duration : 100+50 Marks Credits: L: T: P : 3:0:1 SEE Duration : 100+50 Marks Credits: L: T: P : 3:0:1 SEE Duration : 100+50 Marks Credits: L: T: P : 3:0:1 SEE Duration : 100+50 Marks Coreation: Attract to the state of the state o					Semester: III					
Category: PROFESSIONAL CORE COURSE (Theory and Practice) Course Code i Al234AI CIE i 100+50 Marks Coredits: L: T: P i 30:1 SEE i 100+50 Marks Credits: L: T: P i 30:1 SEE i 100+50 Marks Total Hours i 30:0 Hours SEE i 100+50 Marks Coredits: L: T: P i 30:0 Hours SEE i 100+50 Marks Credits: L: T: P i 30:0 Hours SEE i Jota + 45.00 Marks Total VIII- II 9 Hrs. Gomputer and Embedded Architecture, CPS of Health and Medical Sciences, CPS for the Smart Grids, Future appets of CPS, Challenges and Opportunities. VIII - II 9 Hrs. Basics of Computer and Embedded Architecture Computer Architecture-Processors, Basic System Architecture, SIMD computers,				FOUNDATIO	NS OF CYBER PHY	SICAL SYSTEM	[S			
(Theory and Practice) Course Code : A1234AI CIE : 100+50 Marks Credits: L: T: P : 3:0:1 SEE : 100+50 Marks Total Hours : 45L+30P SEE Duration : 3.00 Hours Cyber-Physical Systems-Basics and Fundamentals Unit-I 9Hrs. Cyber-Physical Systems-Basics and Fundamentals Unit - II 9Hrs. Introduction, CPS concept and requirements, CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. 9Hrs. Basics of Computer and Embedded Architecture 9Hrs. Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Inpu/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computers, Introduction, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Law System Oropoents - Boot Code, Device Drivers, Operating System Services 9Hrs. Sensors Sensor Sensor Networks as Sensor Networks and Associated Thechnologies: Wireless Sensor Networks as Sensor Networks and Associated Technologies: Wireless Sensor Sensor Sensor Performance, Smart Sensor Networks, Traditional Sensor Networks as Sensor Networks, Stervers, Sensor Networks, Thermal or mag				Category:]	PROFESSIONAL C	ORE COURSE				
Course Code Intervention Intervention </th <th></th> <th></th> <th></th> <th></th> <th>(Theory and Pract</th> <th>ice)</th> <th></th> <th></th> <th></th>					(Theory and Pract	ice)				
Crediis: L: T: P : 30:1 SEE : 100+ 50 Marks Total Hours : 45L+30P SEE Duration : 3.00 Hours Cyber-Physical Systems-Basics and Fundamentals Introduction, CPS concept and requirements, CPS Architecture, CPS Applications: CPS for Vehicular, Environments, CPS for Agriculture, CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. 9Hrs. Basics of Computer and Embedded Architecture Unit – II 9Hrs. Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Embedded System Components Unit –III 9Hrs. Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Low-Speed Serial Interconnection, Low-Speed Sensor Networks, Standard Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks. 9Hrs. Sensors Sensor Networks as Sensor Networks and Smart Sensor Networks. 9Hrs <tr< th=""><th>Course</th><th>Code</th><th>:</th><th>AI234AI</th><th></th><th>CIE</th><th>:</th><th>100+50 Mar</th><th>ks</th></tr<>	Course	Code	:	AI234AI		CIE	:	100+50 Mar	ks	
Total Hours : 45L+30P SEE Duration : 3.00 Hours Unit-1 9Hrs. Cyber-Physical Systems-Basics and Fundamentals Introduction, CPS concept and requirements, CPS Architecture, CPS Applications: CPS for Vehicular, Environments, CPS for Agriculture, CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. 9Hrs. Basics of Computer and Embedded Architecture Interrupts, CISC and RISC, Digital Signal Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture 9Hrs. Bmbedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System or Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Low-Speed Sensor Definition, Use of Sensors, Sensor Vetworks and Smart Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks, Traditional sensor Networks vs. Works, Straduator S, Soft actuators, Actuators, Actuator S, Soft actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Actuator	Credits	: L: T: P	:	3:0:1		SEE	:	: 100+ 50 Marks		
Unit-I 9Hrs. Cyber-Physical Systems-Basics and Fundamentals Introduction, CPS concept and requirements, CPS Architecture, CPS Applications: CPS for Vehicular, Environments, CPS for Agriculture, CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. 9Hrs. Basics of Computer and Embedded Architecture 9Hrs. 9Hrs. Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Embedded System Components Unit – III 9Hrs. Introduction, Hardware Components- Boot Code, Device Drivers, Operating System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Cow-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Serices 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks. 9Hrs. Kesnors Experiment Description 9Hrs. Ketuator	Total H	ours	:	45L+30P		SEE Duration	:	3.00 Hours		
Cyber-Physical Systems-Basics and Fundamentals Introduction, CPS concept and requirements, CPS Architecture, CPS Applications: CPS for Vehicular, Environments, CPS for Agriculture, CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. Unit – II 9Hrs. Basics of Computer and Embedded Architecture Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Embedded System Components Introduction, Hardware Components - Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services 9Hrs. Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs <td arm,="" colspatient="" in="" introduction,="" robotic="" sensin<="" td=""><td></td><td></td><td></td><td></td><th>Unit-I</th><td></td><td></td><td></td><th>9Hrs.</th></td>	<td></td> <td></td> <td></td> <td></td> <th>Unit-I</th> <td></td> <td></td> <td></td> <th>9Hrs.</th>					Unit-I				9Hrs.
Introduction, CPS concept and requirements, CPS Architecture, CPS Applications: CPS for Vehicular, Environments, CPS for Agriculture, CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. 9Hrs. Basics of Computer and Embedded Architecture Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services Unit –IV 9Hrs. Sensors Sensors Unit –IV 9Hrs. Actuators , Actuator Speer Performance, Smart Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy.	Cyber-l	Physical Sys	ster	ns-Basics and Fund	lamentals				•	
Environments, CPS for Agriculture, CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. 9Hrs. International CPS for Health and Medical Sciences, CPS for the Smart Grids, Future aspects of CPS, Challenges and Opportunities. Unit – II 9Hrs. Basics of Computer and Embedded Architecture Computer Architecture-Processors, Basic System Architecture, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Unit – III 9Hrs. Embedded System Components Introduction, Hardware Components - Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services 9Hrs. Sensors Sensor Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Sunt Sensor Networks. 9Hrs Introd	Introduc	tion, CPS	cor	ncept and requiren	nents, CPS Archited	ture, CPS Applic	atio	ns: CPS for	Vehicular,	
aspects of CPS, Challenges and Opportunities. Unit – II 9Hrs. Basics of Computer and Embedded Architecture 9Hrs. Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Actuator Types: Hydraulic actuator, Shape memory polymers, Actuator Characteristics. 9Hrs Kobotic Application Introduction, Automation and Autonomy. 9Hrs Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. Imagnetic actuators, Thermal or magnetic ac	Environ	ments, CPS	fo	Agriculture, CPS	for Health and Medi	cal Sciences, CPS	for	the Smart Gri	ds, Future	
Unit – II 9Hrs. Basics of Computer and Embedded Architecture Gomputer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Embedded System Components Unit –III 9Hrs. Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors Networks as Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Actuator Types: Hydraulic actuators, Antuation and Autonomy. 9Hrs Kobotic Application Introduction, Automation and Autonomy. Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. <td>aspects</td> <td>of CPS, Cha</td> <td>ller</td> <td>iges and Opportunit</td> <th>ies.</th> <td></td> <td></td> <td></td> <th></th>	aspects	of CPS, Cha	ller	iges and Opportunit	ies.					
Basics of Computer and Embedded Architecture Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers. Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. Unit –III 9Hrs. Embedded System Components Introduction, Hardware Components - Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Sensors 9Hrs. Sensors Sensor Networks vs. WSNs, Types of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Descripti					Unit – II				9Hrs.	
Computer Architecture-Processors, Basic System Architecture, Interrupts, CISC and RISC, Digital Signal Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Unit –III 9Hrs. Embedded System Components Introduction, Hardware Components - Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services 9Hrs. Sensors Sensor Networks, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks, Preumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. 9Hrs Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy.	Basics o	of Compute	r aı	nd Embedded Arch	itecture				·	
Processors, Memory-RAM and ROM, Input/ Output: Programmed I/O, Interrupt-driven I/O, Direct Memory Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Networks and Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Comput	er Architect	ture	-Processors, Basic	System Architectur	e, Interrupts, CISO	C an	d RISC, Digi	tal Signal	
Access (DMA)-Standard block transfer, Demand-mode transfers, Fly-by transfer, Data-chaining transfers. Parallel and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. 9Hrs. Unit –III 9Hrs. Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services 9Hrs. Sensors Sensor Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, Soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy.	Processo	ors, Memory	y-R	AM and ROM, Inp	out/ Output: Program	med I/O, Interrup	driv	ven I/O, Direc	t Memory	
and Distributed Computers-Introduction to parallel architectures, SIMD computers, MIMD computers, Embedded Computer Architecture. Unit –III 9Hrs. Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Unit –V OHIT Vertuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No Introduction in LCD / OLED.	Access (DMA)-Stan	dar	d block transfer, Der	mand-mode transfers,	Fly-by transfer, Da	ta-c	haining transfe	rs. Parallel	
Computer Architecture. Unit –III 9Hrs. Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services 9Hrs. Sensors Unit –IV 9Hrs. Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators Unit –V 9Hrs Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. 9Hrs Robotic Application Introduction, Automation and Autonomy. Experiment Description No Experiment Description 1. No Introduction and buzzer /beeper and display the distance in LCD / OLED.	and Dist	ributed Con	nput	ers-Introduction to	parallel architectures,	SIMD computers,	MIN	ID computers,]	Embedded	
Unit –III 9Hrs. Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services 9Hrs. Sensors Unit –IV 9Hrs. Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensors Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators Unit –V 9Hrs Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. 9Hrs Robotic Application Introduction, Automation and Autonomy. PART A Exp. Experiment Description Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED. Intercon	Comput	er Architect	ure.			•				
Embedded System Components Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensors, Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Unit –V 9Hrs Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No Introduction actuators of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.					Unit –III				9Hrs.	
Introduction, Hardware Components- Sensors, Actuators, IO Interfaces, Processor Complex or System on Chip (SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensors, Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. PART A Exp. Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Embedo	ded System	Co	mponents						
(SoC), Processor and IO Interconnection, Bus Interconnection, High-Speed Serial Interconnection, Low-Speed Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Introduc	tion, Hardw	are	Components- Sense	ors, Actuators, IO Int	erfaces, Processor (Com	olex or System	on Chip	
Serial Interconnection, Firmware Components - Boot Code, Device Drivers, Operating System Services Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Virit – V 9Hrs Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	(SoC), F	Processor and	d IC) Interconnection, B	us Interconnection, H	ligh-Speed Serial I	nterc	onnection, Lov	w-Speed	
Unit –IV 9Hrs. Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Unit –V 9Hrs. Actuators Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No 1. Urit a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Serial Ir	terconnectio	on,	Firmware Compone	nts - Boot Code, Dev	ice Drivers, Operat	ing S	System Service	s I	
Sensors Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensors, Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.			,	1	Unit –IV		0	5	9Hrs.	
Sensor Definition, Use of Sensors, Sensor Network Definition and the Use of Sensor Networks, Traditional Sensor Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensors, Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Methods and Sensor Networks as Sensor Networks and Smart Sensor Networks 9Hrs Actuators Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. PART A Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Sensors									
Networks vs. WSNs, Types of Sensors, Sensor Performance, Smart Sensors, Sensor Networks and Associated Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Unit –V 9Hrs Actuators Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Sensor I	Definition, U	se	of Sensors, Sensor N	letwork Definition and	d the Use of Sensor	Netv	vorks, Traditio	nal Sensor	
Technologies: Wireless Sensor Networks as Sensor Networks and Smart Sensor Networks Unit –V 9Hrs Actuators Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Network	ks vs. WSNs	s, T	ypes of Sensors, Se	ensor Performance, S	mart Sensors, Sens	or N	Networks and A	Associated	
Unit –V 9Hrs Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Technol	ogies: Wirel	less	Sensor Networks as	s Sensor Networks an	d Smart Sensor Ne	twor	ks		
Actuators Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. Exp. Image: No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.					Unit –V				9Hrs	
Actuators, Actuator Types: Hydraulic actuators, Pneumatic actuators, Electric actuators, Thermal or magnetic actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Actuato	ors								
actuators, Mechanical actuators, soft actuator, Shape memory polymers, Actuator Characteristics. Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Exp. Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Actuator	rs, Actuator	Ту	pes: Hydraulic actu	ators, Pneumatic act	uators, Electric act	uato	rs, Thermal or	magnetic	
Robotic Application Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No Introduction and Autonomy. Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No Introduction and Sensitive Automation and Autonomy. 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	actuator	s, Mechanic	al a	ctuators, soft actuat	or, Shape memory po	lymers, Actuator C	hara	cteristics.	C	
Introduction, Robotic Arm, Sensing, Actuation, Automation and Autonomy. PART A Experiment Description No Introduction and Autonomy. 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Robotic	Applicatio	n			•				
PART A Exp. Experiment Description No Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Introduc	tion, Roboti	c A	rm, Sensing, Actuat	tion, Automation and	Autonomy.				
Exp. Experiment Description No 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.					рарт а					
No Experiment Description 1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	Fyn				Fyneriment De	scription				
1. Write a program with ESP8266 to calculate the distance of an obstacle. If the distance calculated is less than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	No				Experiment De	scription				
than a certain value turns on a buzzer /beeper and display the distance in LCD / OLED.	1.	Write a pro	ogra	um with ESP8266 to	calculate the distance	e of an obstacle. If	the d	distance calcula	ated is less	
		than a certa	ain	value turns on a buz	zer /beeper and displ	av the distance in L	CD	OLED.		
2. Write a program with ESP8266 to capture the temperature and relative humidity from the environment	2.	Write a pro	ogra	am with ESP8266 to	capture the tempera	ture and relative h	mid	ity from the en	vironment	
and display the same using LCD/ LED.		and display	y th	e same using LCD/	LED.			., une en		
3. Write a program to collect data using Temperature sensors on RaspberryPi3 and apply visualization	3.	Write a pr	ogr	am to collect data	using Temperature s	ensors on Raspher	vPi	and apply vis	sualization	
techniques to display the processed data	5.	techniques	to	display the processe	d data		<i>j</i> - 10	and apply th		
4 Write a program to collect data using RaspherryPi3 from the environment and unload data to the any of	4	Write a pro	ore	im to collect data us	ing RaspherryPi3 fro	m the environment	and	unload data to	the any of	
the Cloud Platform	ч.	the Cloud	Plat	form	ing Raspoerryr 15 110	in the environment,	anu	apiona ana to	the arry of	
5 Write an interactive python script on RaspherryDi3 to control serve motor	5	Write on ir	ter	active nuthon soriet	on Rasnherry Dig to a	ontrol servo motor				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

6.	Write a program to capture the live image using the USB Camera on Jetson Nano and send it as
	notification
7.	Write a program to capture the live image using the USB Camera on Jetson Nano development kit and
	mark the region of interest and display using Open CV
8.	Write a program to show the communication between client and server.
	PART B
A batch	n of two students should develop a prototype for any one of the Sustainable Development Goals. The
prototy	pe should demonstrate the use of various sensors & actuators, and embedded modules in real-time
applicat	tions.

Cours	e Outcomes: After completing the course, the students will be able to:-
CO1	Understand the concept of Cyber-Physical Systems and apply it to address complex engineering
001	problems
CO2	Analyze the various Cyber-Physical System Components used in solving the real-world problem
CO3	Design and implement data acquisition and processing techniques to extract meaningful information
COS	from CPS
CO4	Demonstrate the use of modern tools in solving day-to-day problems by exhibiting teamwork
004	through oral presentations and reports
CO5	Collaborate in a group to design, develop, and evaluate Cyber-Physical Systems

Re	ference Books
1	Cyber-Physical System Design with Sensor networking Technologies, Control, Robotics and Sensor Series,
1	Edited by Sherali Zeadally and Nafaa Jabeur ISBN 978-1-84919-825-7
2	Designing Embedded Hardware, John Catsoulis, 2nd Edition, O'Reilly Media, 2005, ISBN: 0-596- 00755-8
2	Real-Time Embedded Components and Systems with LINUX and RTOS, S. Siewert and J. Pratt, 2016, ISBN:
3	978-1-942270-04-1
4	Introduction to IoT, Sudip Misra, Anandarup Mukherjee and Arijit Roy, Cambridge University Press, 1st
4	Edition, 2020, ISBN 978-1-108-84295-2, ISBN 978-1-108-95974-2.

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical	
	implementation of the problem. Case study based teaching learning (10), Program specific	
	requirements (10), Video based seminar/presentation/demonstration (10) Designing &	40
	Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any	
	outcome). ADDING UPTO 40 MARKS.	
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	50
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	
	MAXIMUM MARKS FOR THE CIE(THEORY+LAB)	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B				
	(Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)	
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	20
3	Viva	20
	TOTAL	50

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: III				
	STATISTICS FOR DATA SCIENCE						
		Category: 1	PROFESSIONAL C	CORE COURSE			
	1		(Theory)		1	400 35 3	
Course Code	:	AI235AT		CIE	:	100 Mark	S
Credits: L:T:P	:	03:01:00		SEE	:	100 Mark	S
Total Hours	:	45L+301	TT •4 T	SEE Duration	:	3Hours	00 II
		D 11 1 4	Umt-I	1 1 1		. 11	08 Hrs
Descriptive Statisti	cs -	· Describing data set	s - Frequency tables	and graphs, relative f	req	uency tables	s and graphs,
Grouped data, histog	grar	ns, Summarising dat	a sets - Sample Mean	i, sample median, sar	mpi	e mode, sam	iple variance
and sample standard	i de	viation, percentiles a	and box-plots				
			Unit – II	~			<u>08 Hrs</u>
Sampling and Sai	npl	ing Distributions	- Types of samplin	g, Sample Mean, S	am	ple Varianc	e, Sampling
distributions from a	no	rmal population, sar	npling from a finite	population, Normal	Dis	tribution, ap	proximating
binomial, Poisson d	istri	butions using norma	ll distribution				00 II
Umt –III 08 Hrs							
Correlation, Cova	Correlation, Covariance and Independent Random Variables: Joint behavior of random variables,						
Correlation, Covaria	ince	e, variance-covariance	imit Theorem	it random variables, S	um	is of indepen	dent random
variables, Law of La	arge	e Numbers, Central I					10 Шия
Lange Comple Est		tion Statistical Inf	Unit –IV	innatana Daint aatima		n Deint est	IU Hrs
Large Sample Esti	Large Sample Estimation – Statistical Inference, Types of Estimators, Point estimation - Point estimation of a						
for a Population M	21, 11 20 n	Interval Estimation -	constructing a conne	rga sampla confiden	Sai	interval for	a population
proportion Estimat	ing	the difference betw	reen two population	means Estimating t	te i ha	difference h	a population
binomial distribution	ns i	One-sided confidence	re bounds Choosing	the Sample size	liic		between two
	115,		Unit _V	the Sumple Size.			11 Hrs
Hypothesis Testin	σ	Testing of hypoth	esis about populati	on parameters Stat	isti	cal Test of	hypothesis
A large-sample test	ь abo	ut the population me	an - Essentials of the	test, calculating the	n-v	alue, two tvi	pes of errors.
power of a statistica	al te	est. A large-sample t	est of hypothesis for	the difference betwe	een	two popula	tion means -
Hypothesis testing a	and	confidence intervals	s. Hypothesis testing	for the binomial. So	me	comments	on testing of
hypothesis			, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,		-		6
✓↓							

Course Ou	utcomes: After completing the course, the students will be able to:-
CO1 A	Apply the knowledge of statistics in providing solutions to some common real-life and business
pi pi	problems.
	Visualize data better, make logical inferences about the data in real-world scientific/business use cases,
co ₂ ai	and present the analysis results.
CO3 M	Make inferences about a population from samples through various statistical techniques.
U.	Ise statistical tools to illustrate the principles of data distribution data sampling and data
CO4	visualization.
CO5 A	Appraise the knowledge of statistics in data science to build a successful career as an AI&ML
er	engineer, work in teams, and communicate their ideas effectively.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refer	ence Books
1.	Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 5th Edition,
	Academic Press, 2014
2.	David Freedman, Robert Pisani and Roger Purves, Statistics, 4th Edition, Nortan & Company, 2007
3.	Richard A. Johnson, Miller & Freund's - Probability And Statistics For Engineers, 9th Edition, Pearson,
	2018
4.	William Mendenhall, R J Beaver, B M Beaver, Introduction to Probability and Statistics - Cengage
	Learning, 2019.
5.	The R Book, Michael J. Crawley, Second Edition, John Wiley Publications, 2013

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III DESIGN THINKING LAB Category: PROFESSIONAL CORE COURSE

(I	∠ab)
_ (I	an

			(Lau)			
Course Code	:	AI237DL		CIE	:	50 Marks
Credits: L:T:P	:	00:00:02		SEE	:	50 Marks
Total Hours	:	30P		SEE Duration	:	3Hours
			Guidelines			

Guidelines for Design Thinking Lab:

- 1. The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the department
- 4. Each group should follow the stages of Empathy, Design, Ideate, Prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

Design Thinking Lab Tasks

1. Carry out the detailed questionnaire to arrive at the problem of the selected theme.

- 2. The empathy report shall be prepared based on the response of the stake holders.
- 3. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 4. Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- 5. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 6. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing
- 7. Demonstrate the functioning of the prototype along with presentations of the same.
- 8. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 9. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Outcomes: After completing the course, the students will be able to:-
CO1	Apply the knowledge of engineering science to empathize with the stake holder needs and draw insights trough effective communication
CO2	Formulate, analyze and ideate sustainable solutions considering societal and environmental needs
CO3	Demonstrate knowledge effectively and work in intra-disciplinary or interdisciplinary groups to develop prototypes
CO4	Apply project management skills to enhance the solutions by engaging in lifelong learning

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION				
Phase	Activity	Marks		
1.	Empathy and Define Phase	20		
2.	Ideate Phase	20		
3.	Prototype & Testing Phase	10		
	MAXIMUM MARKS FOR THE CIE	50		
	RUBRIC FOR SEMESTER END EXAMINATION			
Q.NO.	CONTENTS	MARKS		
1.	Write Up	10		
2.	Presentation and Demonstration	30		
3.	Viva	10		
	TOTAL	50		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: III							
	BRIDGE COURSE: C PROGRAMMING						
(Mandatory Audit Course)							
		(Common to all Prog	grams)	-		
Course Code	:	CS139DT		CIE	:	50	Marks
Credits: L:T:P	:	2:0:0(Audit)		SEE	:		
Total Hours	:	30L		SEE Duration	:		
		T	T:4 T				6 IIma
Introduction to Dr	ar	mming	J IIIt-1				0 1115
Definition of a com	ygi a vute	anning or Components of co	omputer system Proc	ramming Language	c		
Design and implem	ente	tion of efficient pro	ograms Program De	sign Tools. Algorith	o. Ime	Flo	webarts and Pseudo
codes Types of Erro	ors	ation of efficient pro	ograms. Trogram De	sign 10013. Augoriti	1115	, 110	wenarts and I seddo
	515.	U	nit — II				6 Hrs
Introduction to C							
Introduction, structu	ıre	of a C program, W	riting the first progr	am, Files used in a	C	progr	am. Compiling and
executing C Program	ns u	ising comments, C T	okens, Character set	in C, Keywords, Ide	entif	iers,	Basic Data Types in
C, Variables, Consta	ants	, I/O statements in C	2.				
Operators in C, Typ	e co	onversion and type c	asting, scope of varia	ables.			
Unit –III 6 Hrs							
Decision Control and Looping Statements							
Introduction to decision control, conditional branching statements, iterative statements, Nested loops, Break and							
continue statements, goto statements							
Arrays							
Introduction, Declar	ratio	on of Arrays, Acces	ssing elements of an	array, Storing valu	ies	in ar	rays, Operations on
Arrays- Traversing,	Ins	erting and Deletion	of element in an arr	ay. Two dimensiona	al ai	rays	- Operations on two
dimensional arrays.							
		Un	nit —IV				6 Hrs
Strings Introduction, Operations on strings- finding length of a string, converting characters of a string into uppercase and lowercase, Concatenating two strings, appending a string to another string, comparing two string, reversing a string. String and character Built in functions. Functions							
Introduction, Using functions, Function declaration/function prototype, Function definition, Function call, Return							
statement.							
Unit-V 6 Hrs							
Functions Passing parameters Structures and Poi Introduction: Struct structures, Introduct	Unit-V6 HrsFunctionsPassing parameters to a function, Built-in functions. Passing arrays to functions. Recursion.Structures and PointersIntroduction: Structure Declaration, Typedef declaration, initialization of structures, accessing members of a structures, Introduction to pointers, declaring pointer variables.						

Autonomous Institution Affiliated to Visvesvarava Technological University, Belagavi Approved by AICTE, New Delhi

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO 1	Analyse problems and design solution using program design tools.				
CO 2	Evaluate the appropriate method/data structure required in C programming to develop solutions by				
	investigating the problem.				
CO 3	Design a sustainable solution using C programming with societal and environmental concern by				
	engaging in lifelong learning for emerging technology				
CO 4	Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by				
	exhibiting team work through oral presentation and written reports.				

Refe	rence Books
1.	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall, ISBN (13): 9780131103627.
3.	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, Mcgraw Hill Education, ISBN-13: 9780070411838.
4	Algorithmic Problem Solving Roland Backhouse 2011 Wiley ISBN: 978-0-470-68453-5

PRACTICE PROGRAMS

Implement the following programs using cc/gcc compiler

- Familiarization with programming environment: Concept of creating, naming and saving the program file 1. in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment. 2.
 - Implementation and execution of simple programs to understand working of
 - Formatted input and output functions- printf() and scanf().
 - Escape sequences in C.
 - Using formula in a C program for specific computation: For example: computing area of circle, • converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define).
- Execution of erroneous C programs to understand debugging and correcting the errors like: 3.
 - Syntax / compiler errors. •
 - Run-time errors.
 - Linker errors.
 - Logical errors.
 - Semantical errors.
- Implementation and execution of simple programs to understand working of operators like: 4.
 - Unary. •
 - Arithmetic. .
 - Logical.
 - Relational.
 - Conditional.
 - Bitwise.
- 5. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.
- 6. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.
- 7. Develop a C program for Matrix multiplication.
- 8. Develop a C program to search an element using Binary search and linear search techniques.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

- 9. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.
- 10. Develop a C program to compute average marks of 'n' students (Name, Roll_No, Test Marks) and search a particular record based on 'Roll_No'.
- 11. Develop a C program using pointers to function to find given two strings are equal or not.
- 12. Develop a C program using recursion, to determine GCD, LCM of two numbers and to perform binary to decimal conversion.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 05 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 25 Marks, adding upto 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS.	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Somostor: IV]
DIS	CP	ΕΤΕ ΜΑΤΗΕΜΑΤΙΟ	Semester: IV	PES AND COMBIN	JAT	ORICS
D15	CN	Category: PR()FESSIONAL C	ORE COURSE		UNICS
		Cutegory	(Theory)			
		(Commo	n to AI ,CS, IS, (CD & CY)		
Course Code	:	CS241AT		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3 Hours
		Uni	t-I			9 Hrs
Fundamental Princ	iple	es of Counting and Co	nbinatorics			
The Rule of Sum and	d Pı	oduct, Permutations, Co	ombinations, Prin	ciple of Inclusion an	d E	xclusion, Derangements,
The Binomial Theorem	em,	Combinations with repo	etition.			
Recursive Definition	ns,	Recurrence Relations				
Recursive definition	, Fi	rst order linear recurrent	nce relation- For	mulation problems a	and	examples, Second order
linear recurrence rela	ntion	ns with constant coeffici	ents- Homogeneo	ous and Non homoger	neo	us, Generating functions.
Unit – II 9 Hrs						
Fundamentals of L	ogic					
Basic Connectives a	nd '	Fruth Tables, Tautologi	es, Logical Equiv	valence: The laws of	log	ic, Logical Implications,
Rules of inference. C)pei	n Statement, Quantifiers	, Definition and t	he use of Quantifiers	, D	efinitions, and the proofs
of theorems.		Unit	TIT			0 Ung
Relations		Unit	-111			9 1118
Properties of relation	ns	Composition of Relation	ons Partial Order	s Hasse Diagrams	Ear	uivalence Relations and
Partitions.	,	composition of relation	, i u tiur or der	s, masse Diagrams,	29	si varone e iterations, ana
Functions						
Functions-plain, On	e-to	-one, onto functions, S	Stirling numbers	of the second kind,	, Fi	unction composition and
Inverse function, Gro	owt	h of function.	_			-
		Unit -	-IV			9 Hrs
Groups theory						
Definition, Example	s ai	nd Elementary propertie	es, Abelian group	s, Homomorphism i	son	orphism, cyclic groups,
cosets and Lagrange	's th	neorem.				
Coding Theory:						
Elementary coding th	neoi	ry, the namming metric,	the parity-Check	and Generator Mat	rice	S 0 11
Introduction to Cur		Unit Theorem Crowles and th	- V 	an danaa mathaan	<u></u>	9 Hrs
isomorphism Comp	apn uter	representations of grap	he Fulerian and I	les - degree, path, cy Hamiltonian graphs	Gre	complement, subgraphs,
oranhs	uici	representations of grap		iannitoinan graphs,	JIA	ph coloring, 1 lallal
Trees: Definitions	Pror	perties, and Examples R	Couted Trees. Tree	es and Sorting. Span	nin¢	z trees.
Trees. Definitions, Troperties, and Examples, Routed Trees, Trees and Soluting, Spanning trees.						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course (Dutcomes: After completing the course, the students will be able to
CO 1:	Apply the concepts of discrete mathematical structures for effective computation and relating problems in
	the computer science domain.
CO 2:	Analyze the concepts of discrete mathematics to various fields of computer science.
CO 3:	Design solutions for complex problems using different concepts of discrete mathematical structure as a
	logical predictable system.
CO 4:	Explore/Develop new innovative ideas to solve some open problems in theoretical computer science.
CO 5:	Effectively communicate, work in groups in order to accomplish a task and engage in continuing
	professional development.

Reference	ce Books:
1.	Ralph P. Grimaldi and B V Ramana, Discrete and Combinatorial Mathematics- An Applied Introduction,
	Pearson Education, Asia, 5th Edition – 2017, ISBN 978-0321385024
2.	J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science,
	Tata – McGraw Hill, 1st Edition 2017, ISBN 13:978-0074631133
3.	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata – McGraw Hill, 6th Edition, 7 edition
	2017, ISBN-(13): 978-0070681880

EXPERIENTIAL LEARNING

Based on the concepts learnt in this course like relations, functions- problems on graph theory such as graph coloring, scheduling problems could be given for Experiential learning.

Also using the concepts of logical reasoning and group theory some of the NLP problems could also be given for Experiential learning.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIMUM MARKS FOR THE CIE THEORY		

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

09Hrs

09 Hrs

09 Hrs

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Semester: III/ IV ENVIRONMENT & SUSTAINABILITY Category: PROFESSIONAL CORE COURSE

(Common to all Programs)

(Theory)						
Course Code	:	CV232AT / CV242AT		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	3.0 Hours
Unit-I 1					10 Hrs	

ENVIRONMENT AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollution. Solid, Hazardous and E-Waste management.

Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

Unit – II

Unit –III

Unit –IV

RENEWABLE SOURCES OF ENERGY

Energy management and conservation, New Energy Sources: Need of new sources. Different types of new energy sources.

Energy Cycles, carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socio economical and technological change.

Applications of - Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

SUSTAINABILITY AND MANAGEMENT

Introduction to Environmental Economics, Environmental Audit, Development, GDP, Sustainability - concept, needs and challenges-economic, social and aspects of sustainability - from unsustainability to sustainability-millennium development goals and protocols

Sustainable Development Goals - targets, indicators and intervention areas Climate change - Global, Regional and local environmental issues and possible solutions. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry.

SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment. Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports.

Linear vs. cyclical resource management systems, need for systems thinking and design of cyclical systems, circular economy, industrial ecology, green technology. Specifically apply these concepts to: Water Resources, Energy Resources, Food Resources, Land & Forests, Waste management.

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Unit –V

08 Hrs

Corporate Social Responsibility (**CSR**) - Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity, Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of CSR in India.

Sustainability Reporting: Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

Course Outcomes: After completing the course, the students will be able to:		
CO1	Understand the basic elements of Environment and its Biodiversity.	
CO2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.	
CO3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.	
CO4	Recognize the role of Corporate social responsibility in conserving the Environment.	

Refer	ence Books
1.	Environmental Science and Engineering, Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 -
	978-9387432352
2.	Introduction to Environmental Engineering and Science, Gilbert M.Masters, Wendell P Ela, 3rd edition,
	Pearson Education, 2006. ISBN-13 - 978-0132339346
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006
4.	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David
	Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO OUIZZES WILL BE THE FINAL OUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS					
	PART A				
1 Objective type questions covering entire syllabus					
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV						
MATERIALS SCIENCE FOR ENGINEERS						
Category: Professional Core						
Course Code		ME242AT	(Theory)	CIE		100 Mortza
Course Coue	•	2:0:0			•	100 Marks
Total Hours	•	3.0.0		SEE SEE Duration	•	2 Hound
Total Hours	•	40L	.:4 T	SEE DUIAUOII	•	
The Free descente	1	UI .f M-4l-	111-1			UO HIS
The electronic str	IS 0	or Materials	atomic and molecular	bonds: ionic bon	d co	ovalent bond
metallic bond sec	ond	lary bonds mixed bond	ling hybridization Ener	ov hands in meta	u, cu ils in	sulators and
semiconductors. B	lasi	c crystallography. Defe	ects and dislocations. Ty	pes of materials:	polv	mers. metals
and alloys, cerami	cs,	semiconductors, compo	osites.	r · · · · · · · · · · · · · · · · · · ·	r	
•		Uni	t – II			10 Hrs
Material behavio	ur					-
Thermal propertie	es:	thermal conductivity,	thermoelectric effects,	heat capacity, th	herm	al expansion
coefficient, therma	al s	hock, thermocouple. E	lectrical Properties: die	lectric behaviour	s and	l temperature
dependence of th	e d	lielectric constant, ins	ulating materials, ferro	electricity, piezo	pelec	tricity, super
conductor. Optica	al j	properties: luminescen	ce, optical fibers, Me	echanical Proper	ties:	Stress-strain
diagram, elastic d	efo	rmation, plastic deform	nation, hardness, viscoe	lastic deformatio	n, in	npact energy,
fracture toughness	, fa	tigue.				40.77
Unit –111 10 Hrs						
Materials and the	eir .	Applications	a atmustrus 1 mastariala	formore allows a	. .	
semiconductors, o		ectrics, optoelectronic	s, structural materials,	thermonlastics		errous alloys,
reinforced aggreg	ater	d composites electronic	packaging materials hi	iomaterials proce	com	of structural
materials						
		Uni	t –IV			07 Hrs
Heat Treatment						
Post processing h	neat	t treatment of electron	nic devices: thermal or	xidation, diffusion	on, r	apid thermal
processing. Heat treatment of ferrous materials: annealing, spheroidizing, normalizing, hardening,						
tempering. formation of austenite, construction of Time Temperature Transformation (TTT) curves.						
Special heat treatment processes: carburizing, nitriding, cyaniding, flame, and induction hardening.						
Defects in heat treatment.						
		Un	it-V			07 Hrs
Nanomaterials						
Synthesis of nanomaterials: ball milling, sol-gel, vapour deposition growth, pulse laser, magnetron						
sputtering, litnography. Nano porous materials: zeolites, mesoporous materials, carbon nanotubes,						
glasses nano biomaterials nano implant associated materials. Characterisation of nano structures						
glasses, nano biomaterials, nano implant associated materials. Characterisation of nano structures,						
specific tech	mq	spectroscopic techniques, automatic force microscopy.				

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to:		
CO1	Understand the classification of materials, their atomic structure, and properties.	
CO2	Investigate the properties and applications of different materials.	
CO3	Analyse the effect of different heat treatment processes.	
CO4	Recognize different types of nanomaterials, synthesis methods and characterisation techniques.	

Refe	erence Books
1.	Material Science and Engineering, William D Callister, 6 th Edition, 1997, John Wiley and Sons, ISBN:
	9812-53-052-5
2	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN:
۷.	0-07-Y85018-6
3	Material Science and Engineering, William F Smith, 4th Edition, 2008, Mc. Graw Hill Book Company,
5.	ISBN: 0-07-066717-9
4.	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC
	Press 1996. ISBN:978-0849322749

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

BIO SAFETY STANDARDS AND ETHICS Category: PROFESSIONAL CORE COURSE (Theory) (Common to all Programs) Course Code : BT232AT/BT243AT CIE : 100 Marks Credits: L: T:P : 3:0:0 SEE : 100 Marks Total Hours : 45L SEE Duration : 3 Hours Biohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors) 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Eng Approval		
Category: PROFESSIONAL CORE COURSE (Theory) (Common to all Programs)Course Code:BT232AT/BT243ATCIE:100 MarksCredits: L: T:P:3:0:0SEE:100 MarksTotal Hours:45LSEE Duration:3 HoursBiohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors)08 HrsBiosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engg Approval		
(Theory) (Common to all Programs) Course Code : BT232AT/BT243AT CIE : 100 Marks Credits: L: T:P : 3:0:0 SEE : 100 Marks Total Hours : 45L SEE Duration : 3 Hours Biohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety cabinets, Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors) 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Eng Approval		
(Common to all Programs) Course Code : BT232AT/BT243AT CIE : 100 Marks Credits: L: T:P : 3:0:0 SEE : 100 Marks Total Hours : 45L SEE Duration : 3 Hours Biohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for Fabrication, sensors, filters, pumps, compressors) O9 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engr Approval		
Course Code : BT232AT/BT243AT CIE : 100 Marks Credits: L: T:P : 3:0:0 SEE : 100 Marks Total Hours : 45L SEE Duration : 3 Hours Biohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors) 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Eng Approval		
Credits: L: T:P : 3:0:0 SEE : 100 Marks Total Hours : 45L SEE Duration : 3 Hours Biohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety : 09 Hrs Biohazards, Study of various types of Bio safety cabinets. Various parameters for design of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors) With - II 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engrapproval)		
Total Hours:45LSEE Duration:3 HoursUnit-I09 HrsBiohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors)08 HrsBiosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Eng Approval		
Unit-I09 HrsBiohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors)808 HrsIntroduction for fabrication, sensors, filters, pumps, compressors)Unit – II08 HrsBiosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Eng Approval)		
Biohazards, Bio safety levels and cabinets: Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors) Unit – II 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engg Approval		
Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors) Unit – II 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Eng Approval		
(Materials used for fabrication, sensors, filters, pumps, compressors) Unit – II 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engg Approval		
Unit – II 08 Hrs Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engg Approval		
Biosafety Guidelines: Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engg Approval		
Biosafety Committee, RCGM (Review Committee on Genetic Manipulation), GEAC (Genetic Engg Approval		
Committee) for GMO applications in food and agriculture. Overview of National Regulations and relevant		
International Agreements including Cartagena Protocol.		
Food safety standards: FSSAI (Food Safety and Standards Authority of India), Functions, License, types of		
FSSAI Licences and compliance rules.		
Food Hygiene: General principles of food microbiology and overview of foodborne pathogens, sources of		
Quality of foods Microbial food spoilage and Foodborne diseases. Overview of beneficial microorganisms and		
their role in food processing and human nutrition. Food Analysis and Testing General principles of food safety		
management systems. Hazard Analysis Critical Control Point (HACCP).		
Unit –IV 09 Hrs		
Food Preservations, processing, and packaging		
Food Processing Operations, Principles, Good Manufacturing Practices HACCP, Good production, and		
processing practices (GMP, GAP, GHP, GLP, BAP, etc)		
Overview of food preservation methods and their underlying principles including novel and emerging		
methods/principles		
Overview of food packaging methods and principles including novel packaging materials.		
Unit-V 09 Hrs		
Food safety and Ethics: Food Hazards, Food Additives, Food Allergens Drugs, Hormones, and Antibiotics in		
Animals. Factors That Contribute to Foodborne Illness, Consumer Lifestyles and Demand, Food Production and		
Economics, History of Food Safety, The Role of Food Preservation in Food Safety.		
Ethics: Clinical ethics, Health Policy, Research ethics, ethics on Animals. Biosafety and Bioethics.		

Course Outcomes: After completing the course, the students will be able to:		
CO1	Have a comprehensive knowledge of Biohazards and bio safety levels	
CO2	Understand the biosafety guidelines and their importance to the society	
CO3	Acquire knowledge with respect to the Food standards, Hygiene, food processing and packing	
CO4	Appreciate the food safety, Ethics, biosafety and bio ethics	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refe	Reference Books		
1.	Deepa Goel, Shomini Parashar IPR, Biosafety and Bioethics 1st Edition, 2013, ISBN: 978-8131774700.		
2.	Cynthia A Roberts, The Food Safety, Oryx Press, 1st Edition, 2001, ISBN: 1–57356–305–6.		
3.	Hal King, Food Safety Management Systems, Springer Cham, 2020, ISBN: 978-3-030-44734-2.		
4.	Alastair V. Campbell, Bioethics: The Basics, Routledge; 2 nd Edition, 2017, ISBN: 978-0415790314.		

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

8Hrs

1011

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV **DESIGN AND ANALYSIS OF ALGORITHMS Category: PROFESSIONAL CORE COURSE** (Theory and Practice) (Common to AI, CS, IS, CD, & CY) CIE **Course Code** CD343AI 100 + 50 Marks Credits: L:T:P 3:0:1 SEE 100 + 50 Marks : : **Total Hours** 45L+30P **SEE Duration** : : **3 Hours**

Introduction- Perspectives

Business domain: Banking, Finance services, IT, Manufacturing, e-Commerce, Online services and marketing, Logistics and Supply Chain Management, Telecommunication.

Unit-I

TT •4

тт

Applications: Communication & Networking, Search engines, Machine learning, Database management, Software tools development, Data organization, GPS navigation systems

Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solving, Fundamentals of the Analysis of Algorithmic Efficiency: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-recursive and Recursive Algorithms. **Brute Force:** Selection Sort and Bubble Sort.

	IUNIS	
Divide and Conquer: Merge sort, Quicksort, Multiplication of Long Integers, Strassen's Ma	trix Multiplication.	
Decrease and Conquer: Insertion Sort, Depth First Search, Breadth First Search, Topological Sorting,		
Application of DFS and BFS.		
Unit –III	10Hrs	
Transform and Conquer: Presorting, Heapsort, Problem reduction.		
Space and Time Tradeoffs: Sorting by Counting, Naive String Matching, Input Enhancement	t in String Matching:	
Horspool's and Boyer-Moore algorithm.		
Unit –IV	10Hrs	
Dynamic Programming: Computing a Binomial Coefficient, Warshall's and Floyd's Algorithms	ithms, 0/1 Knapsack	
Problem and Memory Functions.		
Greedy Technique: Prim's Algorithm, Dijkstra's Algorithm, Huffman Trees and codes, H	Fractional Knapsack	
Problem		
Unit-V	7 Hrs	
Paaltraalring: N. Ougan's Drahlom, Sum of Subset Drahlom		

Backtracking: N-Queen's Problem, Sum of Subset Problem.
Branch-and-Bound: Travelling Salesperson Problem, Assignment Problem
Decision Trees: Decision Trees for Sorting
NP and NP-Complete Problems: Basic Concepts, Non- Deterministic Algorithms, P, NP, NP Complete, and NP-Hard classes

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Course	Course Outcomes: After completing the course, the students will be able to:-		
CO1	Apply knowledge of computing and mathematics to algorithm analysis and design		
CO2	Analyze a problem and identify the computing requirements appropriate for a solution		
CO3	Apply algorithmic principles and computer science theory to the modeling for evaluation of computer-		
	based solutions in a way that demonstrates comprehension of the trade-offs involved in design choices.		
CO4	Investigate and use optimal design techniques, development principles, skills and tools in the		
	construction of software solutions of varying complexity.		
CO5	Demonstrate critical, innovative thinking, and display competence in solving engineering problems.		
CO6	Exhibit effective communication and engage in continuing professional development through		
	experiential learning.		

Ref	erence Books
1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin, University, 3rd Edition, 2012,
	Pearson, ISBN 13: 978-0-13-231681-1.
2.	Introduction to Algorithms, Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., 3rd Edition, 2010, PHI,
	ISBN:9780262033848.
3.	Computer Algorithms, Horowitz E., Sahani S., Rajasekharan S., 2nd Edition, 2006, Galgotia Publications,
	ISBN:9780716783169.

Laboratory Component

Note: The following programs should be implemented in C++ language

Practice Programs:

- Implementation and execution of simple programs to understand running time analysis of non-recursive algorithms
 - Finding maximum element in a given array.
 - Linear search,
 - Bubble sort,
 - Determine whether all the elements in a given array are distinct.
 - Given 2 NXN matrices, perform matrix multiplication using bruteforce approach.
- Implementation and execution of simple programs to understand running time analysis of recursive algorithms
 - Find the Factorial of a given number.
 - Print Fibonacci series
 - Given a positive decimal integer n, find the number of binary digits in n's binary representation.
 - To solve tower of Hanoi problem.
 - Recursive linear search.

<u>Lab Programs:</u>(At-least one application from each of the following group)

- 1. Apply divide and conquer strategy to solve sorting problem
 - Merge sort
 - Quicksort
- 2. Apply decrease and conquer strategy to solve graph problem
 - Breadth first search
 - Topological sorting using depth first search

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

- 3. Apply transform and conquer strategy
 - Heapsort
 - Checking element uniqueness after presorting
- 4. Apply input enhancement strategy to solve string-matching problem
 - Horspool's algorithm
 - Boyer Moore's algorithm
- 5. Apply dynamic programming strategy to solve optimization problem
 - Warshall Floyd's Algorithms,
 - Knapsack problem solution using memory function.
- 6. Apply greedy strategy to solve graph problem
 - Dijkstra's algorithm
 - Prim's algorithm
- 7. Apply backtracking strategy to solve combinatorial problem
 - N- Queen's problem
 - Subset sum problem
- 8. Apply branch and bound strategy to solve combinatorial problem
 - Travelling salesperson problem
 - Assignment problem

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10)Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50	
	MAXIMUM MARKS FOR THE CIE(THEORY+LAB)	150	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO.	Q.NO. CONTENTS					
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of THREE Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3&4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	CONTENTS	MARKS				
1	Write Up	10				
2	Conduction of the Experiments	20				
3	Viva	20				
	TOTAL	50				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING Category: PROFESSIONAL CORE COURSE (Theory and Practice)

(Theory and Truckee)					
Course Code	:	AI244AI	CIE	:	100+50 Marks
Credits: L: T: P	:	3:0:1	SEE	:	100+50 Marks
Total Hours	:	45L+30P	SEE Duration	:	3.00 Hours

Unit-I	9Hrs.			
Introduction: What is AI?				
Intelligent agents: Intelligent Agents: Agents and environment; Rationality; the nature of environments; the				
structure of agents				
Problem Solving & Uninformed Search Strategies: Problem-solving agents, Breadth-first Search, I	epth-first			
Search, Depth-limited Search and Iterative Deepening Depth First Search				
Unit – II	9Hrs.			
Informed (Heuristic) Search Strategies: A [*] Search, Heuristic Functions				
Beyond Classical Search: Local Search Algorithms and Optimization Problems, Hill-climbing	Search,			
Simulated Annealing, Local-beam Search, Genetic Algorithms				
Adversarial search: Games, Optimal decision in games, Alpha-Beta Pruning				
Unit –III	9Hrs.			
Supervised Learning: Basic Concepts, General Framework for Classification				
Decision Tree Classifier-A Basic Algorithm to Build a Decision Tree, Methods for Expressing Attribu	te Test			
Conditions, Measures for Selecting an Attribute Test Condition, Algorithm for Decision Tree Induction	,			
Characteristics of Decision Tree Classifiers,				
Model Overfitting- Reasons for Model Overfitting				
Model Selection - Using a Validation Set, Incorporating Model Complexity, Estimating Statistical Bounds, Model				
Selection for Decision Trees, Model Evaluation				
Unit –IV	9 Hrs.			
Nearest Neighbor Classifiers-Characteristics of Nearest Neighbor Classifiers				
Naive Bayes Classifier-Basics of Probability Theory, Naive Bayes assumption				
Logistic Regression-Logistic Regression as a Generalized Linear Model, Learning Model Pa	rameters,			
Characteristics of Logistic Regression				
Ensemble Methods – Methods for constructing Ensemble classifier, Bagging, Boosting, Random Fores	sts			
Unit –V	9 Hrs			
Unsupervised Learning- Overview, What Is Cluster Analysis, Different Types of Clustering's, Differ	ent Types			
of Clusters				
K-means-The Basic K-means Algorithm, Additional Issues, Bisecting K-means, K-means and Different Types of				
Clusters, Strengths and Weaknesses, K-means as an Optimization Problem				
Cluster Evaluation-Overview, Unsupervised Cluster Evaluation Using Cohesion and Separation, Unsupervised				
Cluster Evaluation Using the Proximity Matrix, Determining the Correct Number of Clusters, Supervised				
Measures of Cluster Validity, Assessing the Significance of Cluster Validity Measures, Choosing a Cluster				
Validity Measure				

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	PART-A					
Sl. No	• Implement the following algorithms (5 to 8) using required statistical formulae and do not					
	use direct API's					
	 Demonstrate the working of the algorithms by considering appropriate datasets 					
	Display the values of all the model parameters					
1.	Solve the Tic-Tac-Toe problem using the Depth First Search technique.					
2.	Demonstrate the working of Alpha-Beta Pruning.					
3.	Solve the 8-Puzzle problem using the A [*] algorithm					
4.	Implement a Hill-climbing search algorithm to maximize a single variable function f(x).					
5.	Logistic regression algorithm.					
6.	Naïve Bayes Classifier					
7.	KNN algorithm.					
8.	K- means algorithm					

PART-B

Two students from the same batch must develop a Machine Learning model on the problem statements chosen from Agriculture, Health Care, Manufacturing, and Process Control/Automation Domains related to Indian Scenarios.

- The data collected should be cleansed and pre-processed.
- The complete EDA process has to be demonstrated
- Selection of the suitable algorithms and model-building
- Model evaluation has to be carried out by selecting the proper metrics
- Prediction/classification results have to be obtained and should be demonstrated through visualizations

Cours	e Outcomes: After completing the course, the students will be able to:-
CO1	Explain and apply AI and ML algorithms to address various requirements of real-world problems.
CO2	Design and develop AI and ML solutions to benefit society, science, and industry.
CO3	Use modern tools to create AI and ML solutions.
CO4	Demonstrate effective communication through team presentations and reports to analyze the impact of AI and ML solutions on society and nature.
CO5	Conduct performance evaluation, modeling, and validation of AI and ML solutions benefiting lifelong learning.
Refe	rence Books
1.	AI – A Modern Approach ,Stuart Russel, Peter Norvig, 3rd Edition, 2010, Pearson, ISBN-13: 978-0136042594
2.	Artificial Intelligence Basics: A Self Teaching Introduction, Neeru Gupta and Ramita Mangla, Mercury Learning and Information, 1 st Edition, 2020, ISBN: 978-1-68392-516-3.
3.	Machine Learning ,Tom M. Mitchell, Indian Edition, 2013, McGraw Hill Education, ISBN - 10 - 1259096955
4.	Introduction to Data Mining ,Pang-Ning Tan, Michael Steinbach, Vipin Kumar,2nd Edition, 2019,Pearson, ISBN-10-9332571406, ISBN-13 -978-9332571402

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10)Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40			
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50			
	MAXIMUM MARKS FOR THE CIE(THEORY+LAB)	150			
	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

				Semester: IV			
COMPUTER NETWORKS							
			Category: 1	PROFESSIONAL (CORE COURSE		
				(Theory)			
-		1	(Com	mon to AI ,CS, IS,	CD & CY)	1	
Course	e Code	:	CY245AT		CIE	:	100 Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total I	lours	:	45L		SEE Duration	:	3 Hours
				J nit-I			10Hrs
Introdu	ction-Perspec	ctiv	es				
Busine	ss Domains:	Ne	tworks.				
Applic	ations: Resou	urce	e Sharing, Client Ser	ver programming, e-	commerce and digita	l co	ommunications.
Introdu	ction: Netwo	rks	, Network types. Ne	etwork Models: TCP	/ IP protocol suite, A	dd	ressing, The OSI Model.
Transm	nission Modes	s: P	arallel Transmission	and Serial Transmis	sion. Link Layer: Dat	ta L	Link Control(DLC): DLC
Service	es, Data Link	La	ayer Protocols, High	n Level Data Link C	Control (HDLC), Poi	nt-1	to-Point Protocol (PPP):
Framin	g, Transition	pha	ases. Media Access	Control (MAC): Ran	dom Access: CSMA/	CC	,CSMA/CA.
			U	nit — II			09Hrs
Netwo	rk layer desi	ign	issues: Store and F	Forward packet Swite	ching, Services Provi	ideo	d to the Transport Layer
Implen	nentation of	Co	nnectionless Service	e, Implementation of	f Connection Oriente	ed	Service, Comparison of
Virtual	Circuit and	Da	tagram Subnets; Ro	uting algorithms: Sh	ortest Path Routing,	Fl	ooding, Distance Vector
Routin	g, Link state	Roi	ting, Hierarchical R	outing Broadcast Ro	uting, and Multicast	Roi	iting.
Unit –III 08 Hrs							
Conge	stion Contro	ol A	Igorithms: General	l Principles of Cong	estion Control, Cong	gest	ion Prevention Policies,
Conges	stion Control	in	Virtual-Circuit Subr	ets, Congestion Con	trol in Datagram Sul	one	ts, Load Shedding, Jitter
Contro	l; Quality O	t S	ervice: Requiremen	ts, Techniques for .	Achieving Good Qu	alıt	y of Service Integrated
Service	Services Differentiated Services.						
Unit –IV 09 Hrs							
Intern	etworking: 1	HOV	v networks differ,	How networks can	be connected Conn	ect	ionless Internetworking,
Tunnel	mig, miernet	woi	K Kouting, Fragmen	ILULIOII. ID Drotocol ID Addr	acces Internet Contra	-1 T	Protocolo OSDE Interior
Gotow	v Pouting Dr	r II oto	al RCP Exterior	Cotoway Pouting Pro	viscol IDv6	ЛГ	Totocols, OSFF- Interior
Gatewa	Unit V						
The In	tornot Tran	sno	rt Protocols: Intro	Juction to LIDP Intr	oduction to TCP. Th	р Т	CP Service Model The
ТСР Р	rotocol· TCF	o pu	rotocol TCP Segme	nt Header TCP Cont	ection Establishmen	t T	CP Connection Release
TCP Transmission Policy TCP Congestion Control TCP Timer Management							
Application Laver: World Wide web and HTTP Telnet							
representation way out the first the first and the first follow							
Course Outcomes: After completing the course, the students will be able to-							
C01	Apply the a	lgo	rithms/techniques of	routing and congest	ion control to solve p	rob	lems related to
	Computer N	Jetv	vorks.	0	Ĩ		
CO2	CO2 Analyse the services provided by various layers of TCP/IP model to build effective solutions.						
CO3	Design sust	aina	able networking solu	tions with societal an	nd environmental con	ncer	rns by engaging in

CO4Exhibit network configuration, protocol usage and performance evaluation in networks.CO5Demonstrate the solutions using various algorithms/protocols available to address networking issues

using modern tools by exhibiting team work and effective communication.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Refe	Reference Books				
1.	Data Communications and Networking, Behrouz A Forouzan, 5th Edition, 2013, Tata McGraw-Hill, ISBN – 9781259064753.				
2.	Computer Networks, Andrew S Tanenbaum, 5th Edition, 2014, Pearson Education; ISBN–978-81-7758-165-2.				
3.	Computer Networking, A Top-Down Approach, James Kurose and Keith Ross, 6th Edition, 2013, ISBN-13: 978-0-13-285620-1.				
4.	Data and Computer Communications, William Stallings, 8th Edition, 2009, Pearson Education, ISBN-13: 978-0131392052.				

EXPERIENTIAL LEARNING

To work on Problems similar to following aspects of Networks: Modern Networking tools usage to solve problems in Networking (Path Characterization & Bandwidth Estimation, Analysing Real-time information about the global routing system, Measure latency and packet loss reason in wired and wireless network). Online data Privacy, Host/Network Intrusion detection, Detection of potential DDoS attacks, Network analysis to monitor Ethernet and WLAN traffic in real time, IP Spoofing, TCP Off path attacks, Privacy Preserving network log data, wireless Security).

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10)Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV NATIONAL SERVICE SCHEME Category: ABILITY ENHANCEMENT COURSE

(Lab)

			(Liuo)			
Course Code	:	HS247AL		CIE	:	50 Marks
Credits: L: T: P	:	0:00:02		SEE	:	50 Marks
Total Hours	:	30P		SEE Duration	:	2.00 Hours
D						

Prerequisites:

- 1. Students should have service-oriented mindset and social concern.
- 2. Students should have dedication to work at any remote place, any time with available resources and proper time management for the other works.
- 3. Students should be ready to sacrifice some of the timely will and wishes to achieve service-oriented targets on time.

Content

30 Hrs

Students must take up any one activity on below mentioned topics and must prepare contents for awareness and technical contents for implementation of the projects and has to present strategies for implementation of the same. Compulsorily must attend one camp.

CIE will be evaluated based on their presentation, approach, and implementation strategies. (Any one of the below mentioned activity)

- 1. Helping local schools to achieve good result and enhance their enrolment in Higher/technical/ vocational education.
- 2. Preparing an actionable business proposal for enhancing the village/ farmer income and approach for implementation.
- 3. Developing Sustainable Water management system for rural/ urban areas and implementation approaches.
- 4. Setting of the information imparting club for women leading to contribution in social and economic issues.
- 5. Spreading public awareness/ government schemes under rural outreach program. (Minimum 5 programs)
- 6. Contribution to any national level initiative of Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc...
- 7. Social connect and responsibilities
- 8. Plantation and adoption of plants. Know your plants
- 9. Organic farming, Indian Agriculture (Past, Present and Future) Connectivity for marketing
- 10. Waste management Public, Private and Govt organization, 5 R's
- 11. Water conservation techniques Role of different stakeholders Implementation
- 12. Govt. School Rejuvenation and assistance to achieve good infrastructure.
- 13. Organize National integration and social harmony events/ workshops / seminars. (Minimum 2 programs) and ONE NSS-CAMP.

Course	e Outcomes: After completing the course, the students will be able to:-
CO1	Understand the importance of his/her responsibilities towards society.
CO2	Analyze the environmental and societal problems/ issues and will be able to design solutions for the
	same.
CO3	Evaluate the existing system and to propose practical solutions for the same for sustainable
	development.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN				
WEIGHTAGE	50%	50%		
	CIE	SEE		
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****		
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****		
Case Study-based Teaching-Learning	10	Implementation		
Sector wise study & consolidation	10	strategies of the project		
Video based seminar (4-5 minutes per student)	with report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS		

RV Educational Institutions[®] RV College of Engineering[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV NATIONAL CADET CORPS Category: ABILITY ENHANCEMENT COURSE

(L	.ab))
(1	<i>i</i> un	,

			(LaD)				
Course Code	:	HS247BL		CIE	••	50 Marks	
Credits: L: T: P	:	0:00:02		SEE	:	50 Marks	
Total Hours	:	30P		SEE Duration	••	2.00 Hours	
			Unit-I			14Hrs	s.
Drill (Contact Hrs.	12)	. Foot Drill- Drill k	i Aam Hidayaten, W	ord ki Command, Sa	avd	han, Vishram, Aram S	e,
Murdna, Kadvar Siz	ing	, Teen Line Banana,	Khuli Line, Nikat L	ine, Khade Khade Sa	lute	e Karna	
			Unit – II			06Hrs	s.
Weapon Training (W	VT)	: Introduction & Ch	aracteristics of 7.62 S	Self Loading rifle, Ide	enti	fication of rifle parts	
				-			
			Unit –III			05Hrs	5 .
Adventure activities	: Tı	ekking and obstacle	course				

Unit -IV05HrsSocial Service and Community Development (SSCD): Students will participate in various activities throughout
the semester e.g., Blood donation Camp, Swachhata Abhiyan, Constitution Day, All National Festival

Course	e Outcomes: After completing the course, the students will be able to:-
CO1	Understand that drill as the foundation for discipline and to command a group for common goal.
CO2	Understand the importance of a weapon its detailed safety precautions necessary for prevention of
	accidents and identifying the parts of weapon.
CO3	Understand that trekking will connect human with nature and cross the obstacles to experience army
	way of life.
CO4	Understand the various social issues and their impact on social life, Develop the sense of self-less social
	service for better social & community life.

D 4	
Refere	nce Books
1	NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R- 1991,
	ISBN: 978-93-87918-57-3, HSN Code: 49011010
2	nccindia.ac.in

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN			
WEIGHTAGE	50%	50%	
	CIE	SEE	
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****	
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****	
Case Study-based Teaching-Learning	10	Implementation	
Sector wise study & consolidation	10	strategies of the project	
Video based seminar (4-5 minutes per student)10			
TOTAL MARKS FOR THE COURSE	50 MARK	5 50 MARKS	

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

		Semes	ter: IV		
		PHYSICAL EDUCATION :	SPORTS AND A	THLETICS	
		Category: ABILITY ENI	HANCEMENT (COURSE	
ourse Code	•	HS247CL	aD) CIE	•	50 Marks
Credits: L: T: P	:	0:00:02	SEE		50 Marks
Fotal Hours	:	30P	SEE Durat	ion :	2.00 Hours
4		Introduction of Physics	d Education an	d Sports	
General & Sner	ific wa	rm un exercises		aspons	
Conditioning of	ane wa	thi up exercises			
Conditioning es	tercises	H.			
Any 2 Major G	ames				
Intramural Con	petition	15			
		Choose any one ac	cording to seria	l no	
1. Kho-Kho	Givin	g Kho, Single chain, Pole	6. Kabaddi	Hand touch	, Chain hold, Ankle
	dive,	Pole turning, 3-6 Up	C 201000 D C 1462 4457 4738 30044	hold, Thigh	hold, Getting bonus
2. Throwball	Servi	ce, Receive, Spin pass,	7. Volleyball	Attack, Blo	ck, Service, Upper
	Simp	le pass, Jump throw		hand pass, I	ower hand pass
3. Netball	Step	with ball, Shooting,	8. Handball	Step with ba	all, Shooting,
Passing, Blocking Passing, Blocking, Dribbling			cking, Dribbling		
4. Softball	Catch	ing, Pitching, Slugging,	9. Football	Dribbling, G	Thest Drop, Ball
	Base	Running, Stealing		Control, Thi	gh Drop, Shooting
5. Ball	Servi	ce, Fore hand receive, Back	10. Table	Service, Fo	re hand receive, Back
badminton	hand	racaiva Spin cmach Rally	Tennis	hand receiv	- Smach Rally

Course (Course Outcomes: After completing the course, the students will be able to:-				
CO1					
	Understand the basic principles and practices of Physical Education and Sports				
CO2					
	Instruct the Physical Activities and Sports practices for Healthy Living				
CO3	To develop professionalism among students to conduct, organize & Officiate Physical Education and				
	Sports events at schools and community level				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Reference Books

- 1. Health, Exercise and Fitness, Muller, J. P. (2000), Delhi: Sports.
- 2. Play Field Manual, Anaika ,2005, Friends Publication New Delhi.
- **3.** IAAF Manual.
- 4. Track and Field Marking and Athletics Officiating Manual, M.J Vishwanath,2002, Silver Star Publication, Shimoga.
- 5. Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinestics.

Note: Skills of Sports and Games (Game Specific books) may be referred

ASSESSMENT AND EVALUATION PATTERN			
WEIGHTAGE	50%	50%	
	CIE	SEE	
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****	
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****	
Case Study-based Teaching-Learning	10	Implementation	
Sector wise study & consolidation	10	strategies of the project	
Video based seminar (4-5 minutes per student)	10		
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS	

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: IV			
			MUSIC			
		Category: AF	BILITY ENHANCE	EMENT COURSE		
		0.	(Lab)			
Course Code	:	HS247DL		CIE	:	50 Marks
Credits: L: T: P	:	0:00:02		SEE	:	50 Marks
Total Hours	:	30P		SEE Duration	:	2.00 Hours
1. Introduction to di	ffer	ent genres of music				

2. Evolution of genres in India: Inspiration from the world

3. Ragas, time and their moods in Indian Classical Music

4. Identification of ragas and application into contemporary songs

5. Adding your touch to a composition

6. Maths and Music: A demonstration

7. Harmonies in music

8. Chords: Basics and application into any song

9. Music Production-I

10. Music Production-II

Students have to form groups of 2-4 and present a musical performance/ a musical task which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course	e Outcomes: After completing the course, the students will be able to:-
CO1	Understand basics of Music and improve their skills.
CO2	Appreciate the impacts on health and well being.
CO3	Perform and present music in a presentable manner.
CO4	Develop skills like team building and collaboration.

Refere	ence Books
1	Music Cognition: The Basics by Henkjan Honing
2	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory Answer Book by Glory
	St Germain
3	Elements Of Hindustani Classical Music by Shruti Jauhari
4	Music in North India: Experiencing Music, Expressing Culture (Global Music Series) by George E.
4	Ruckert

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN			
WEIGHTAGE	50%	50%	
	CIE	SEE	
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****	
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****	
Case Study-based Teaching-Learning	10	Implementation	
Sector wise study & consolidation	10	strategies of the project	
Video based seminar (4-5 minutes per student)	10	with report	
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: IV			
			DANCE			
		Category: ABI	LITY ENHANCE	MENT COURSE		
Course Code	•	HS247FI	(Lad)	CIF		50 Morks
Credits: L: T: P	:	0:00:02		SEE	•	50 Marks
Total Hours	:	30P		SEE Duration	:	2.00 Hours
1. Introduction to Da	ance	e				
2. Preparing the bod	y fo	or dancing by learning	different ways to w	varm up.		
3. Basics of different	t da	nce forms i.e. classica	al, eastern, and west	ern.		
4. Assessing the inte	rest	t of students and divid	ling them into differ	ent styles based on	inte	raction.
5. Advancing more i	into	the styles of interest.				
6. Understanding of	mu	sic i.e. beats, rhythm,	and other compone	nts.		
7. Expert sessions in	ı the	e respective dance form	ms.			
8. Activities such as	cyţ	oher, showcase to gaug	ge learning.			
9. Components of pe	erfo	rmance through demo	onstration.			
10. Introduction to c	hor	eographies and routin	es.			
11. Learning to chor	eog	graph.				
12. Choreograph and	d pe	rform either solo or ir	n groups.			

Course	e Outcomes: After completing the course, the students will be able to:-
CO1	Understand the fundamentals of dancing.
CO2	Adapt to impromptu dancing.
CO3	Ability to pick choreography and understand musicality.
CO4	To be able to do choreographies and perform in front of a live audience.

Refere	nce Books
1	Dance Composition: A practical guide to creative success in dance making by Jacqueline M. Smith- Autard

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVAL	UATION PATTERN			
WEIGHTAGE	50%	50%		
	CIE	SEE		
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****		
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****		
Case Study-based Teaching-Learning	10	Implementation		
Sector wise study & consolidation	10	strategies of the project		
Video based seminar (4-5 minutes per student)10				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV THEATER (LIGHT CAMERA & ACTION) Category: ABILITY ENHANCEMENT COURSE

Lah)
Lavi

			()			
Course Code	:	HS247FL		CIE	:	50 Marks
Credits: L: T: P	:	0:00:02		SEE	:	50 Marks
Total Hours	••	30P		SEE Duration	:	2.00 Hours

1. Break the ICE

2. Introduction to freedom Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over social anxiety, Shyness and Nervousness.

3. Ura

4. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing Voice projection is the strength of speaking or singing whereby the voice is used powerfully and clearly. It is a technique employed to command respect and attention, as when a teacher talks to a class, or simply to be heard clearly, as used by an actor in a theatre.

5. Its Leviosa, Not Leviosaaa!

6. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The art of dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from the dramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue delivery skills:

7. Elementary, My dear Watson.

8. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.

9. Show time

10. Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Mono acting: different types of characters

Course	e Outcomes: After completing the course, the students will be able to:-
CO1	Develop a range of Theatrical Skills and apply them to create a performance.
CO2	Work collaboratively to generate, develop and communicate ideas.
CO3	Develop as creative, effective, independent and reflective students who are able to make choices in
	process and performance.
CO4	Develop an awareness and understanding of the roles and processes undertaken in contemporary
	professional theatre practice.

Refere	nce Books
1	The Empty Space by Peter Brook
2	The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina Landau

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV ART WORK & PAINTING Category: ABILITY ENHANCEMENT COURSE

(Lab)

(Lab)						
Course Code	:	HS247GL		CIE	:	50 Marks
Credits: L: T: P	:	0:00:02		SEE	:	50 Marks
Total Hours	••	30P		SEE Duration	:	2.00 Hours
Contents 1					13 Hrs.	

1. Use points, line and curves to create various shapes and forms

2. Use of shapes and forms to create various objects and structures

3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions of perspective

4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.

5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization to create a composition.

6. Learn how to use which materials and for what types of art and textures.

7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie and dye.

8. Real world application of the above concepts in the form of book cover design and illustration, cartoon, poster, advertisements, magazine, computer graphics and animation

9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY

Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorily take part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presented art style.

Course	Course Outcomes: After completing the course, the students will be able to:-						
CO1	To use lines, shapes, and colors to depict the various sentiments and moods of life and nature.						
CO2	To use one's creativity to develop forms and color schemes, as well as the ability to portray them						
	effectively in drawing and painting on paper.						
CO3	To develop the ability to properly use drawing and painting materials (surfaces, tools and equipment,						
	and so on).						
CO4	To improve their observation abilities by studying everyday items as well as numerous geometrical and						
CO4	non- geometrical (i.e. organic) shapes found in life and nature and to hone their drawing and painting						
	talents in response to these insights.						
Refere	nce Books						
1	Catching the Big Fish: Meditation, Consciousness, and Creativity, David Lynch						
2	Art & Fear: Observations on the Perils (and Rewards) of Artmaking, David Bayles & Ted Orland						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation strategies				
Sector wise study & consolidation	10	of the project with report				
Video based seminar (4-5 minutes per student)	10					
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: IV PHOTOGRAPHY AND FILM MAKING Category: ABILITY ENHANCEMENT COURSE

(Lab)

(Lub)						
Course Code	:	HS247HL		CIE	:	50 Marks
Credits: L: T: P	:	0:00:02		SEE	:	50 Marks
Total Hours	••	30P		SEE Duration	••	2.00 Hours

- 1. Introduction to photography.
- 2. Understanding the terminologies of DSLR.
- 3. Elements of photography.
- 4. Introduction to script writing, storyboarding.
- 5. Understanding the visualization and designing a set.
- 6. Basics of film acting
- 7. Video editing using software
- 8. Introduction to cinematography.
- 9. Understanding about lighting and camera angles.
- 10. Shooting a short film.

Students must form groups of 2-4 and present a short film which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course	Course Outcomes: After completing the course, the students will be able to:-					
C01	Understand basics of photography and videography and improve their skills					
CO2	Appreciate the skills acquired from photography					
CO3	Perform and present photos and films in a presentable manner					
CO4	Develop skills like team building and collaboration					

Refere	nce Books
1	Read This If You Want to Take Great Photographs – Henry Carroll
2	The Digital Photography Book: Part 1 – Scott Kelby

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

ASSESSMENT AND EVALUATION PATTERN						
WEIGHTAGE	50%	50%				
	CIE	SEE				
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour withsurveyed data.	10	****				
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementationmethodologies.	10	****				
Case Study-based Teaching-Learning	10	Implementation				
Sector wise study & consolidation	10	strategies of the project				
Video based seminar (4-5 minutes per student)	10	with report				
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS				

10Hrs.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: IV UNIVERSAL HUMAN VALUES Category: HUMANITIES AND SOCIAL SCIENCE (Theory)

(Theory)						
Course Code	:	HS248AT		CIE	:	50 Marks
Credits: L: T: P	:	2:0:0		SEE	:	50 Marks
Total Hours	••	28L		SEE Duration	:	2.00 Hours

Unit-I

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Purpose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration–what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facility, Understanding Happiness and Prosperity.

Practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility

Understanding Harmony in the Human Being - Harmony in Myself!: Understanding human being as a coexistence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body', Understanding the Body as an instrument of 'I', Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health;

Practice Sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life

Unit – II	10Hrs.
Understanding Harmony in the Family and Society- Harmony in Human Relationship: Understand	ing values
in human-human relationship; meaning of Justice (nine universal values in relationships) and progra	am for its
fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship, Under	erstanding
the meaning of Trust; Difference between intention and competence, Understanding the meaning of	Respect,
Difference between respect and differentiation; the other salient values in relationship, Understanding the	harmony
in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-	-existence
as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided	l Society,
Universal Order- from family to world family.	
	-

practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Unit –III	08 Hrs.
Understanding Harmony in the Nature and Existence - Whole existence as Coexistence: Understa	nding the
harmony in the Nature, Interconnectedness and mutual fulfilment among the four orders of nature rec	yclability
and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting un	its in all
pervasive space, Holistic perception of harmony at all levels of	existence.
practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), j	pollution,
depletion of resources and role of technology etc.	

Course Outcomes: After completing the course, the students will be able to:-			
CO1	Become more aware of themselves, and their surroundings (family, society, nature); they would become		
	more responsible in life, and in handling problems with sustainable solutions		
CO2	Understand human relationships and human nature in mind so that they will have better critical ability.		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

CO3	Become sensitive to their commitment towards what they have understood (human values, human					
	relationship and human society).					
CO4	Apply what they have learnt to their own self in different day-to-day settings in real life.					

Reference Books		
1.	Human Values and Professional Ethics, R. R. Gaur, R Sangal, G P Bagaria, 1st Edition, 2010, Excel	
	Books, New Delhi, ISBN: 9788174467812.	
2.	Human Values, A.N. Tripathi, 3rd Edition, 2019, New Age Intl. Publishers, New Delhi, ISBN:	
	9788122425895.	
3.	India Wins Freedom, Maulana Abdul Kalam Azad, 1st Edition, 1988, Orient Blackswan, ISBN:	
	97881250051481.	
4.	The Story of My Experiments with Truth, Mohandas Karamchand Gandhi, 1st Edition, 2011, Create	
	Space Publishing platform, ISBN: 9781463694876.	
5.	Small is Beautiful, E. F Schumacher, 1st Edition, 2011, (PBD)VINTAGE, ISBN: 9780099225614.	

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION					
#	COMPONENTS				
1.	This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation. Example: Assessment by faculty mentor: 10 marks Self-assessment: 10 marks Assessment by peers: 10 marks Socially relevant project/Group Activities/Assignments: 20 marks Semester End Examination: 50 marks. The overall pass percentage is 40%. In case the student fails, he/she must repeat the course				
	MAXIMUM MARKS FOR THE CIE THEORY 50				

MAXIMUM MARKS FOR THE CIE THEORY

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO. CONTENTS				
PART A				
1	Objective type questions covering entire syllabus	10		
PART B				
(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14		
3 & 4	Unit 2 : Question 3 or 4	13		
5&6	Unit 3 : Question 5 or 6	13		
	TOTAL	50		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

particular integral based on input function (force function).

Semester: IV						
Bridge Course: MATHEMATICS						
Category : AUDIT COURSE						
(Common to all Programs)						
Course Code	:	MAT149DT		CIE	:	50 Marks
Credits: L: T: P	:	2:0:0(Audit)		SEE	:	
Total Hours	:	30L				

Unit-I	10 Hrs		
Multivariable Calculus:			
Partial Differentiation: Introduction, simple problems. Total derivative, composite functions. Jacobians –			
simple problems.			
Vector Differentiation: Introduction, velocity and acceleration, gradient, divergence – solenoidal vector			
function, curl – irrotational vector function and Laplacian, simple problems.			
Unit – II	10 Hrs		
Differential Equations:			
Higher order linear differential equations with constant coefficients, solution of homogeneous ec	juations -		
Complementary functions. Non-homogeneous equations – Inverse differential operator method of finding			

Numerical Methods:

Solution of algebraic and transcendental equations – Intermediate value property, Newton-Raphson method. Solution of first order ordinary differential equations – Taylor series and 4th order Runge-Kutta methods. Numerical integration – Simpson's $1/3^{rd}$, $3/8^{th}$ and Weddle's rules. (All methods without proof).

Unit –III

Course Outcomes: After completing the course, the students will be able to			
CO1:	Illustrate the fundamental concepts of partial differentiation, vector differentiation, higher order		
	linear differential equations and numerical methods.		
CO2:	Derive the solution by applying the acquired knowledge of differential calculus, differential		
	equations, velocity, and acceleration vectors to the problems of engineering applications.		
CO3:	Evaluate the solution of the problems using appropriate techniques of differential calculus,		
	vector differentiation, differential equations, and numerical methods.		
CO 4:	Compile the overall knowledge of differential calculus, vector differentiation, differential		
	equations and numerical methods gained to engage in life – long learning.		

Reference Books				
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN:			
	9/8-81-955284-9-1.			
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN:			
2	978-0-07-063419-0.			
2	A Textbook of Engineering Mathematics, N.P. Bali & Manish Goyal, 7th Edition, 2010,			
3	Lakshmi Publications, ISBN: 978-81-31808320.			
	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley &			
4	Sons, ISBN: 978-0470458365.			

10 Hrs

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 30 Marks, adding upto 60 Marks. FINAL TEST MARKS WILL BE AVERAGE OF TWO TESTS.	30		
	MAXIMUM MARKS FOR THE CIE THEORY	50		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Curriculum Design Process

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic Planning and Implementation

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Process For Course Outcome Attainment

Final CO Attainment Process

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

> Program Outcomes (POs) Attainment Process

Go, change the world

RV Educational Institutions [®] RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change.