

Chemical Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of VII & VIII Semester (2021 Scheme)

B.E. Programs : AI, AS, BT, CH, CS, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

	TIMES HIGHER EDUCATION WORLD UNIVERSITY RANKINGS-2023		CURRICULUM STRUCTURE					
99 NIRF RANKING IN ENGINEERING (2024)	ISUIT TIMES HIGHER EDUCATION WORLD UNIVERSITY RENKINGS-2023 (ASIA) 501-600	61 PROFE	61 CREDITS PROFESSIONAL CORES (PC)		23 CREDITS BASIC SCIENCE			
	EDUFUTURE EXCELLENCE AWARD BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) BY ZEE DIGITAL		EDITS	18 PROJECT	edits Work /	12 OTHER ELECTIVES		
1001+	801+	SCIENCE		INTERNS	HIP	& AEC		
(ENGINEERING)		12 _{CREI} PROFESSIO ELECTIVES	12 PROFESSIONAL ELECTIVES		DITS S & IENCE	160		
ENGINEERING RANKING INDIA NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)	*ABILITY EN UNIVERSAL INDIAN KNO	*ABILITY ENHANCEMENT COUR UNIVERSAL HUMAN VALUES (U INDIAN KNOWLEDGE SYSTEM (5 (AEC),),), YOGA.	TOTAL		
17 Centers of Excellence 212	Centers of Competence	MOUS INSDU INSTI	5: 90- JSTR TUTI	+WITH RIES / AC ONS IN	CADEM INDIA	IIC & ABROAD		
Publications On Web Of Science	Publications Scopus (2023 - 24)							
1093 Citations	70 Patents Filed 39	EXE RS.4 SPO RES	CU 40 (NS EAF	TED M CRORE ORED RCH P	IORE ES W ROJI	THAN ORTH ECTS &		
Skill Based Laboratories Across Four Semesters	Patents Granted 61 Published Patents	CON	CONSULTANO SINCE 3 YEAR			ORKS		

Chemical Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of VII & VIII Semester (2021 Scheme)

B.E. Programs : AI, AS, BT, CH, CS, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

DEPARTMENT VISION

Imparting quality technical education in Chemical Engineering to promote leadership in research, innovation and sustainable technology through teamwork.

DEPARTMENT MISSION

- Impart quality education in basic and applied areas of Chemical Engineering.
- Enable students and faculty to achieve proficiency in the areas of Chemical Processes, Energy, Unit Operations and Computational Chemical Engineering using state-of-art laboratories and modern infrastructure.
- Encourage faculty and students to make career in research and contribute towards innovative processes and products.
- Develop inclusive technologies with a focus on new materials and sustainability.
- Collaborate with industries and research Institutes for academics and research.
- Inculcate leadership qualities, entrepreneurial skills, societal and ethical values in students and faculty.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1**: Exhibit knowledge of basic sciences, concepts and principles of Chemical Engineering.
- **PEO 2**: Comprehend, analyze, design and implement engineering systems with a focus on research, innovation and sustainability.
- **PEO 3**: Work in multidisciplinary team and cater to the needs of process industries with appropriate safety, health and environmental regulations.
- **PEO 4**: Demonstrate effective communication skills, leadership qualities and develop into successfulentrepreneurs.

PSO	Description
PSO1	Gain knowledge of Chemical Engineering fundamentals and demonstrate problem formulation capabilities
PSO2	Analyze and solve engineering problems with a focus on environment and sustainability
PSO3	Contribute to multidisciplinary research using relevant Chemical Engineering tools

PROGRAM SPECIFIC OUTCOMES (PSOs)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning				
1.	VTU	Visvesvaraya Technological University				
2.	BS	Basic Sciences				
3.	CIE	Continuous Internal Evaluation				
4.	SEE	Semester End Examination				
5.	CE	Professional Core Elective				
6.	GE	Global Elective				
7.	HSS	Humanities and Social Sciences				
8.	CV	Civil Engineering				
9.	ME	Mechanical Engineering				
10.	EE	Electrical & Electronics Engineering				
11.	EC	Electronics & Communication Engineering				
12.	IM	Industrial Engineering & Management				
13.	EI	Electronics & Instrumentation Engineering				
14.	СН	Chemical Engineering				
15.	CS	Computer Science & Engineering				
16.	TE	Telecommunication Engineering				
17.	IS	Information Science & Engineering				
18.	BT	Biotechnology				
19.	AS	Aerospace Engineering				
20.	PY	Physics				
21.	CY	Chemistry				
22.	MA	Mathematics				
23.	AEC	Ability Enhancement Courses				

INDEX

	VII SEMESTER COURSES						
Sl. No.	Course Code	Name of the Course	Page No.				
1.	21HS71	Constitution of India and Professional Ethics	1				
2.	21CH72	Chemical Equipment Design and Drawing	3				
3.	21CH73GX	Professional Core Elective-III	5-12				
4.	21CH74HX	Professional Core Elective-IV	13-20				
5.	21XX75IX	Institutional Electives – II	21-53				
6.	21CH76I	Summer Internship - III	54-55				
7.	21CH77	Minor Project	56-57				
	VIII SEMESTER COURSES						
1	21CH81P	Major Project	58-60				

Bachelor of Engineering in CHEMICAL ENGINEERING

	VII Semester												
SI.	Course Code	Course Title	Credit Allocatio			ation	BoS	Category	Max Marks CIE		SEE Duration	Max Marks SEE	
INO.			L	Т	Р	Total			Theory	Lab	(H)	Theory	Lab
1	21HS71	Constitution of India and Professional Ethics	3	0	0	3	HS	Theory	100	***	3	100	***
2	21CH72	Chemical Equipment Design and Drawing	3	0	1	4	СН	Theory + Practice	100	50	3	100	50
3	21CH73GX	Professional Core Elective-III (Group – G)	3	0	0	3	СН	Theory	100	***	3	100	***
4	21CH74HX	Professional Core Elective-IV (Group- H)	3	0	0	3	СН	Theory	100		3	100	50
5	21XX75IX	Institutional Electives – II (Group I)	3	0	0	3	Resp Board	Theory	100	***	3	100	***
6	21CH76I	Summer Internship-III	0	0	2	2	СН	Internship	***	50	2	***	50
7	21CH77P	Minor Project	0	0	2	2	СН	Project	***	50	3	***	50
		Total				20							

Professional Core Electives - III Group - G						
Sl.No	Course code	Course Title				
1	21CH73GA	Chemical Process Integration				
2	21CH73GB	Process Instrumentation				
3	21CH73GC	Transport Phenomena				
4	21CH73GD	Biochemical Engineering				
		Professional Core Elective-IV				
		Group- H				
Sl. No.	Course Code	Course Title				
1	21CH74HA	Chemical Technology				
2	21CH74HB	Pollution Control Engineering				
3	21CH74HC	Instrumental Methods of Analysis				
4	21CH74HD	Petrochemical Technology				

	Institutional Electives – II (Group I)						
Sl. No.	Course Code	BoS	Course Title				
1	21AS75IA	AS	Unmanned Aerial Vehicles				
2	21BT75IB	BT	Healthcare Analytics				
3	21CH75IC	CH	Sustainability and Life Cycle Analysis				
4	21CM75ID	СМ	Advances in Corrosion Science and Management				
5	21CS75IE	CS	Prompt Engineering				
6	21CV75IF	CV	Integrated Health Monitoring of Structures				
7	21EC75IG	EC	Wearable Electronics				
8	21EE75IH	EE	E-Mobility				
9	21EI75IJ	EI	Programmable Logic Controllers and applications.				
10	21ET75IK	ET	Space Technology and Applications				
11	21IS75IL	IS	Mobile Applications Development				
12	21IM75IM	IM	Project Management				
13	21IM75IN	IM	Supply Chain Analytics				
14	21ME75IO	ME	Nuclear Engineering				
15	21HS75IQ	HS	Cognitive Psychology				
16	21HS75IR	HS	Principle and Practices of Cyber Law				

Go, change the world

Bachelor of Engineering in CHEMICAL ENGINEERING

	VIII SEMESTER												
SI. No.	Course Code	e Course Title		Credit Allocation			BoS	Category	Max Marks CIE		SEE Duration (H)	Max Marks SEE	
			L	Т	Р	Total			Theory	Lab		Theory	Lab
1	21CH81P	Major Project	0	0	12	12	СН	Project	***	50	3	***	50
		Total				12							

Semester: VII						
CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS						
	Category: Professional Core					
			(Theory)			
Course Code	:	21HS71		CIE	:	100
Credits: L:T:P	:	3:0:0		SEE	:	100
Total Hours	:	39L		SEE Duration	:	3 Hours

Unit-I	10 Hrs				
Salient features of Indian Constitution; Preamble to the Constitution of India; Provisions Relating					
to Citizenship in India-Modes of Acquisition and Termination of Citizenship of India. Scope & Extent					
of Fundamental Rights-Articles 14-32 with case studies; Right to Information Act, 2005 with Case					
studies.					
Unit – II	10 Hrs				
Significance of Directive Principles of State Policy; Fundamental Duties in the Constitution of					
India; Union Executive- President and State Executive- Governor; Parliament & State Legislature					
Council of Ministers; Union and State Judiciary; Emergency provisions; Elections cor	nmission.				
Human Rights & Human Rights Commission.					
Unit –III 05					

Consumer Protection Law - Definition and Need of Consumer Protection; Consumer Rights under the Consumer Protection Act, 2019; Unfair Trade Practice, Defect in goods, Deficiency in services; Product liability and Penal Consequences, False and Misleading Advertisement, E-Commerce, Alternate dispute Redress mechanism; Redresses Mechanisms under the Consumer Protection Act, 2019.

Unit –IV	07 Hrs
Introduction to Labour and Industrial Law, Theory and Concept of Industrial Relations,	, Industrial
Relations Code 2020, Code on Social Security 2020, Code on Occupational Safety, H	Iealth and
Working Conditions 2020, Code on Wages 2020, Industrial Disputes Act,	
The Factories Act 1948 Analysis of Recent Amendments made in Labour Laws	

Analysis of Recent Amendments made in Labour I he

07 Hrs

Unit –V Scope and aims of engineering ethics (NSPE Code of Ethics), Responsibility of Engineers, Impediments to responsibility. Honesty, Integrity and reliability, Risks, Safety and Liability in Engineering.Corporate Social Responsibility,Statutory Provision regarding prohibition and prevention of Ragging, The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013.

Cours	Course Outcomes: After completing the course, the students will be able to: -						
CO1	Equips with a comprehensive understanding of the legal and political framework of India,						
	preparing them to engage with complex legal, social, and political issues both as						
	professionals and responsible citizens.						
CO2	Effectively advocate for consumer rights, navigate regulatory frameworks, and address						
	emerging challenges in the marketplace & empowers them with the legal knowledge and						
	practical skills necessary to protect consumers and promote fair business practices.						
CO3	Equipping with the knowledge and skills to navigate legal, ethical, and social issues in their						
	professional and personal lives & Cultivate a sense of professional integrity and						
	responsibility, emphasizing the importance of ethical behavior in engineering.						
CO4	Apply the knowledge to solve practical problems with regard to personal						
	issues & business enterprises						

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Reference Books

1.	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2023 Edition
2.	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5th
	Edition, 2015, ISBN: 9789351452461.
3.	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 8th Kindle
	Edition 2023, ASIN : B0C5CCJX63

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20) ADDING UPTO 40 MARKS .	40			
MAX	IMUM MARKS FOR THE CIE	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO	O. CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire	20			
	PART B				
(Maxii subdiv	num of TWO Sub-divisions only) * (Small case lets and case examp ision)case example in one subdivision)case example in one subdivision)	le in one			
2	Unit 1: (Compulsory)	16			
3&4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9&10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

00 TT

Semester: VII						
CHEMICAL EQUIPMENT DESIGN AND DRAWING						
	Category: Professional Core					
	(Theory & Practice)					
Course Code	:	21CH72	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:1	SEE	:	100 Marks	
Total Hours	:	39L	SEE Duration	:	3.00 Hours	

Unit-I	08 Hrs
Design of Heat Exchangers: Process and mechanical design of double pipe heat exchan	ger and
shell and tube heat exchanger.	

Unit – 11	08 Hrs			
Design of Condensers: Process and mechanical design of horizontal and vertical condensers.				
Unit –III	08 Hrs			
Design of evaporator: Types of evaporators, methods of feeding of evaporators, general	design			
consideration of single effect evaporator, process, and mechanical design of evaporators.				
Unit –IV	07 Hrs			
Unit –IV Design of distillation column: Process design of bubble cap distillation column. Design	07 Hrs			
Unit –IV Design of distillation column: Process design of bubble cap distillation column. Design internals.	07 Hrs of column			
Unit –IV Design of distillation column: Process design of bubble cap distillation column. Design internals. Unit –V	07 Hrs of column 08 Hrs			

Laboratory Component

Development of 3D models and 2D layout drawings of

- 1. Shells of shell and tube heat exchanger and column.
- 2. Development of hemispherical, torrispherical heads/covers.
- 3. Tube sheets of shell and tube heat exchanger.
- 4. Segmental baffles of a shell and tube exchanger.
- 5. Flanges with bolt slots and threaded holes.
- 6. Tube bank of u-tube bundle.
- 7. 3D part development of nozzles.
- 8. 3D part assembly of pass partition plate in channel.
- 9. Development of trays in distillation column.
- 10. Assembly of parts into a model equipment.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand design procedure of process equipment.				
CO2:	Apply chemical engineering principles to design process equipment's.				
CO3:	Estimate physical dimensions of various parts of chemical process equipment's and				
	accessories				
CO4:	Analyze various design options at all design stages				

Reference Books

1	Green, Don W., and Marylee Z. Southard, eds. 2019. Perry's Chemical Engineers'
-	Handbook. 9th ed. New York: McGraw-Hill Education.
	https://www.accessengineeringlibrary.com/content/book/9780071834087
2	Chemical Engineering, J.M.Coulson and J.F.Richardson, Vol.6, 3 rd Edition 1993, Pregman
2	Press, ISBN: 0750641428.
2	Process Equipment Design, M.V.Joshi, 3rd Edition, Reprint 1998, Macmillan and Co.
3	India, Delhi, ISBN 023-063-8104.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
COMPONENTS	MARKS
QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
LAB: 3D drawings of process equipment (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
2	Design and sketch of equipment	80
	OR	
3	Design and sketch of equipment	80
	TOTAL	100

Semester: VII						
		CHEMICA	AL PROCESS I	NTEGRATION		
		Catego	ory: Professiona	l Elective		
	-	I	(Theory)			
Course Code	:	21CH73GA		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3.00 Hours
[TI:4 T			00 11
Introduction I			Unit-1			09 1115
Process Synthesis	Pro	cess Analysis. T	argeting minimu	m waste, and strate	gie	s for targets
		Ū.	Jnit – II)	0	09 Hrs
Overall Mass Ta	rget	ing – II:				
Sources, Sinks, D	rect	-Recycle, Materi	ial Recycle Pinch	n Diagram		
		U	J nit –III			09 Hrs
Mass Integration	– II	1:				
Mass Exchangers	, M	ass Exchange F	Pinch Diagram	and Algebraic app	roa	ch to targeting mas
exchange network	S					
Unit –IV 09 Hrs						
Heat Integration	-1\		D' 1 D'		T. 11	
Heat Exchange N	etw	orks, Heat Excr	hange Pinch Dia	igram, Minimum (Jtili	ity largeting through
Algebraic Approa	cn	T	1			00 11.46
Unit –V 09 Hrs						
Heat engines has		rower miegrau	$10\Pi - V$:	d hast numps in he	ot a	vchance networks
Theat engines, nea	pui	nps, placement o	n neat engines a	ia neat pumps in ne		Achange networks
CO1: Understat	d th	e fundamentals	strategies and an	proaches of proces	s in	tegration
CO2: Apply pro	ces	s integration stra	tegies on chemi	cal engineering sys	tem	is for mass and utilit
targeting.	targeting.					
CO3: Analyze chemical engineering processes to identify limits on process integration.						
	hem	need engineering	CO4: Evaluate purchase/waste/energy minimization in chemical engineering processes			
CO4: Evaluate	hem ourc	hase/waste/energ	gy minimization	in chemical engined	erin	g processes
CO4: Evaluate	hem	hase/waste/energ	gy minimization	in chemical engined	erin	g processes
CO4: Evaluate 1 Process Integ - 13: 978 0 1	hem ourc ratic 2 37	hase/waste/energ	gy minimization i El-Halwagi, 1 st E	n chemical engined dition, 2006, Elsev	erin	g processes Academic Press, ISBN

3 Pinch Analysis and Process Integration, Ian C. K., 2nd Edition, 2007, Elsevier BH, ISBN – 13: 978 0 75068 260 2

4 Heat Exchanger Network Synthesis, Shenoy U. V., 1st Edition, 1995, Gulf Professional Publishing, ISBN – 0 884 15391 6

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10),	40			

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

 Program
 specific
 requirements
 (10),
 Video
 based

 seminar/presentation/demonstration
 (10)
 Designing & Modeling
 (10)
 Phase 2 will

 be done in the exhibition
 mode
 (Demo/Prototype/any
 outcome).
 ADDING

 UPTO 40 MARKS.
 MAXIMUM MARKS FOR THE CIE THEORY
 100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY) CONTENTS **Q. NO.** MARKS PART A 1 Objective type questions covering entire syllabus 20 PART B (Maximum of TWO Sub-divisions only) 2 Unit 1 : (Compulsory) 16 3 & 4 Unit 2 : Question 3 or 4 16 5&6 Unit 3 : Question 5 or 6 16 Unit 4 : Question 7 or 8 7&8 16 Unit 5: Question 9 or 10 9 & 10 16 TOTAL 100

Semester: VII					
PROCESS INSTRUMENTATION					
		Category: Prof	fessional Elective		
		(T	heory)		
Course Code	:	21CH73GB	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3.00 Hours

Unit-I	09 Hrs		
Basic Concepts:			
Measurement and its Aim, Functional Elements - Primary, Secondary, M	anipulating, Data		
Transferring, Static Characteristics, Dynamic Characteristics			
Unit – II	09 Hrs		
Temperature measurement:			
Temperature Scales, Expansion Thermometer, Thermo-Electric sensors, Electrical	resistance sensors,		
pyrometer			
Unit –III	09 Hrs		
Pressure measurement:			
Moderate and high-pressure measuring instruments and high vacuum measuring in	struments		
Unit –IV 09Hrs			
Flow and level measurement:			
Method of flow measurement, Inferential flow measurement, Quantity flow meter			
Methods of liquid level measurement, Direct methods, Indirect methods, Solid level measurement.			
Unit –V	09 Hrs		
Miscellaneous Measurements and P&ID Symbols:			
Measurements of concentration, density, viscosity, and pH; P&ID symbols			

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the physics of pressure, temperature, level and flow measurement				
CO2:	D2: Select a suitable instrument for measuring pressure and vacuum, temperature, level and flow				
	and other miscellaneous measurement				
CO3:	Analyse a suitable instrumentation system for various industries				
CO4:	Evaluate the use of various pressure, temperature level and flow measuring devices in				
	Chemical industries				

Re	ference Books
1	Instrumentation Measurement and Analysis, B. C. Nakra and K. K. Chaudhry, 4th Edition, 2016,
1	McGraw Hill Education India Private Limited, ISBN – 13: 978-9385880629
2	Industrial Instrumentation, D. P. Eckman, CBS Publishers & Distributors Pvt. Ltd., New Delhi,
2	ISBN: 9788123908106
3	Process Instrumentation, Napta, 2 nd Edition, 2020, Pearson, ISBN – 13: 978-0135213926
4	Fundamentals of Industrial Instrumentation and Process Control, William Dunn, 1 st Edition, 2005,
4	McGraw-Hill Education, ISBN – 13: 978-0071457354

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MAR KS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering,	40

	Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

				Semester: VII			
			TRANSI	PORT PHENOM	ENA		
			Category	y: Professional Ele	ctive		
				(Theory)	1		1
Cours	e Code	:	21CH73GC		CIE	:	100 Marks
Credit	ts: L:T:P	:	3:0:0		SEE	:	100 Marks
Total	Hours	:	45L		SEE Duration	:	3.00 Hours
			τ	J nit-I			09 Hrs
Shell n	nomentum b	oala	nce:				
Shell n	nomentum ba	alan	ce, Equation contin	uity and equation of	f motion, Developm	ent	of steady state
models	using shell	mor	nentum balance app	proach for falling fil	lm, pipe, annulus, w	rette	ed wall column
and sol	ution of thes	e m	odels.	•. **			0.0 11
E ('	6 1		U	nit – II			09 Hrs
Equati	ons of chan	ge:	41		A		· · · · · · · · · · · · · · · · · · ·
Use of	Equations of	c chi	ange, their modifies	ations simplification	is. Application of ed	juat fol	ling film flow
through	n narrow slit		uette flow rotating	cylinder	wetted wall column	, 1a	ining inin, now
unougi			<u>III</u>	nit –III			09 Hrs
Heat T	ransfer mo	lels	:				07 111 3
Shell e	nergy balance	e. h	neat conduction in a	an annulus (varving	k), models for elec	tric	al heat source.
viscous	s heat source	, nu	clear heat source				,
		-	U	nit –IV			09 Hrs
Mass 7	Fransfer Mo	del	s:				
Shell 1	nass balanc	e a	nd boundary con	ditions, Applicatio	on of shell mass b	ala	nce to simple
steady	state mas	s t	ransfer models:	diffusion through	n stagnant gas, c	lete	rmination of
diffusi	vity, diffus	ion	with heterogene	ous reaction, hon	nogeneous reactio	n, (diffusion and
reactio	n in porous	cat	talyst		C		
	-		U	nit –V			09 Hrs
Turbu	lent Flow:						
Introdu	uction to tur	bul	ent flow, Compar	rison of Laminar a	nd turbulent flow	(Fo	r circular and
non-ci	rcular cond	uits), Time smoothed	d equations of cha	nge-Reynold's de	con	nposition and
stresse	s, Near wal	l tui	rbulent flow regio	n (Qualitative trea	tment). Boussines	q ec	dy viscosity-
concep	ot of free an	d w	all turbulence, Pr	andtl mixing lengt	th.	1	5
			,	00			
Course	e Outcomes:	Af	ter completing the	course, the studen	ts will be able to		
CO1:	Apply fund	ame	entals of science to	arrive at force, mon	nentum, heat and m	ass	balance
<u>CO1</u> .	equations.	1	1 41 1-1- f			4	
<u>CO2:</u>	Develop an		bive the models for	steady state heat, m	ass and momentum	trai	ister systems.
CO4: Use equations of change to formulate and solve steady state models.							
Deference Realy							
Refere	D Dymon D		at al Transmort Dha	nomono 2nd Ed W	(1. 2012 ISDN: 0	70	01 265 00000
1	-2	ira e	et al, Transport Phe	nomena, 2nd Ed., w	11ey, 2013, 15DN: 9	/0-0	81-203-08008-
2	Harry C. He	ersh	ey (Author), Rober	t S. Brodkey Transp	oort Phenomena: A	Uni	fied Approach:
2	A Unified Approach, Vol 1, Bordkey Publishing, 2013, ISBN 0-9726635-9-2.						
3	Fundament	als o	of Momentum, Hea	t and Mass Transfer	, James R. Welty et	al.,	4th Ed., Wiley
-	India, 2007, ISBN: 978-81-265-1526-4.						
4	4 Introduction to transport phenomena: momentum, heat and mass, Bodh Raj, PHI Learning						
-	Private Ltd	, Ne	ew Delhi, 2012, ISE	3N-978-81-203-451	8-8		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10 Unit 5: Question 9 or 10				
	TOTAL	100		

Semester: VII							
BIOCHEMICAL ENGINEERING							
		Category: Prof	essional Elective				
	(Theory)						
Course Code	:	21CH73GD	CIE	:	100 Marks		
Credits: L:T:P : 3:0:0 SEE : 100 Marks							
Total Hours	:	45L	SEE Duration	:	3.00 Hours		

Unit-I	09 Hrs			
Microbiology: Scope, Classification of microorganisms, Whitaker"s	5-Kingdom concept.			
Prokaryotic and Eukaryotic cells.				
Biochemistry: Cell construction, Amino acids and proteins, Carbohydrates,	Nucleic acids.			
Unit – II	09 Hrs			
Enzyme Catalyzed Reactions: Introduction, Enzyme kinetics, MM, BH	approach, evaluation of			
kinetic parameters.				
Enzyme Inhibitors: Types of inhibitors, Effects of temperature and pH, E	inzyme immobilization,			
methods of immobilization				
Unit –III	09Hrs			
Stoichiometry of Cell Growth and Product Formation: Elemental bala	nces, available electron			
balances, degrees of reduction; yield coefficients of biomass and product	formation, maintenance			
coefficients. Growth media formulation, Oxygen consumption and hea	t evolution in aerobic			
cultures.				
Sterilization Techniques: Continuous and batch sterilization, sterilization of	of Air.			
Unit –IV	09 Hrs			
Kinetics of Microbial Growth and Product Formation: Phases of cell grow	wth and kinetics in batch			
cultures, Monod and Leudeking-Piret equations, unstructured non-segregate	ed models, models with			
growth inhibitors. Introduction to structured models, Ideal Bioreactors	s, Batch reactor, Ideal			
Chemostat				
Unit –V	09 Hrs			
Recovery and purification of products: Removal of microbial cells and other solid matter, foam				
separation, precipitation, filtration, centrifugation, cell disruption, chemical methods.				

Course Outcomes: After completing the course, the students will be able to				
CO1:	Recall the basics of microbiology and enzymes			
CO2:	Explain the various product recovery operations			
CO3:	Analyze the enzyme kinetics and the factors affecting enzyme kinetics			
CO4:	Predict appropriate sterilization Techniques and Design Bioreactors			

Reference Books

1	Bio-Process Engineering, Shuler and Khargi, 3rd edition, 2017, PrenticeHall, ISBN-13: 978 0137062706
2	Fundamentals, Bailey and Ollis, 2ndedition, 1986, McGraw-Hill, Chemical Engineering Series ISBN-13: 978-0070032125
3	Bioprocess Engineering Principles, Pauline M Doron, 1995, Elsevier Science & Technology Books, ISBN: 0122208552
4	Biochemical Engineering, Mukesh Doble, Sathyanarayana N Gumaadi, First Edition, 2101, PHI Learning 0 <i>ISBN</i> : 9788120330528

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	D. CONTENTS MAR					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semeste	er: VII				
		CHEN Catego	MICAL TH ory: Profe (Thee	ECHNOLOGY ssional Elective ory)				
Course Code	:	21CH74HA		CIE		:	100 Ma	rks
Credits: L:T:P	:	3:0:0		SEE		:100 Marks		
Total Hours	:	45L		SEE Duration		:3.00 Hours		
	1							
			Unit-I					09Hrs
Fuel and Indust oxygen and carbo Chlor-Alkali Ind soda ash.	rial (on di dust	Gases: Technology oxide ries: Production of o	options of	producing produc Ilt, caustic soda, c	er gas, syn hlorine, hy	ga ydi	s, pyrog rochlorie	gas, nitrogen, c acid and
		Ū	J nit – II					09 Hrs
Acids and Soap Sulfuric acid, Nit Soaps and deter Soaps and deterg	Induric a gent	ustries Acids: acid, Hydrochloric ac as : , manufacture of soa	cid and Pho ops and hea	osphoric acid by o vy duty detergent	electric fur s, linear al	na lky	ce meth 1 benzer	od. nes (LAB).
		U	J nit –III					09 Hrs
Fertilizers: Ammonia, Urea, phosphate and Ti	Amı iple	monium Nitrate, An Super Phosphate	nmonium I	Phosphate, Ammo	nium Sulfa	ate	e, DAP,	Super
		U	J nit –IV					09 Hrs
Sugar and Starc Production of car	e h In ne su	dustries: agar, chemistry of sta	arch. Manu	ifacturing of indu	strial starc	h a	and its a	pplications.
		[U nit –V					09 Hrs
Pesticides: Proce Pulp and Paper: paper making.	esses Rav	for manufacturing with with the materials, pulping	of insectici g processes	des, fungicides an , recovery of cher	nd herbicio nicals, stoo	les ck	s. prepara	tion and
Course Outcom	es: A	After completing th	e course, f	he students will	be able to			
CO1: Describe	vario	bus manufacturing p	rocesses u	sed in chemical p	ocess indu	ıst	ries	
CO2: Predict m	aior	engineering problem	ns encount	ered in chemical	process ind	lus	stries	
CO3: Draw and	exp	lain process flow dia	agrams for	a given process				
CO4: Analyze t	he fl	ow of raw materials	to finished	d products in proc	ess indust	ry		
				· ·				
Reference Book	s							
1 Chemi	cal 7	Technology: From P	Principles to	Products, Andre	as Jess and	d	Peter W	asserscheid,

	2^{rd} edition, 2020, whey-vCH, ISBN: 352/34421/
2	Shreve's Chemical Process Industries, Austin T George, 5 th Edition, 2017, Mc. Graw Hill, ISBN: 1259029455
3	Dryden's Outlines of Chemical Technology, M. GopalaRao Marshall Sittig, 2 ^{sd} Edition, 1997, East-West Press Publications, New Delhi, ISBN: 8185938790.
4	Textbook of Chemical Technology, G.N. Pandey, Vols. II, 2000, Vikas Publishing House Pvt Ltd, ISBN:0706986873

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7 & 8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

	Semester: VII						
	POLLUTION CONTROL ENGINEERING						
			Cat	tegory: Professional	Elective		
				(Theory)			
Cou	rse Code	:	21CH74HB		CIE Marks	:	100
Crea	lits: L:T:P	:	3:0:0		SEE Marks	:	100
Total Hours		:	45L		SEE Duration	:	3
Course Learning Objectives: The students will be able to							
1.	. The student is able to classify and characterize the waste according to various criteria in						
	accordance with the waste catalogue.						
2.	The student is able to use the knowledge of the applicable legal regulations.						
3.	Student can use the principles of waste management						
4.	Student can analyse methods and techniques of disposal, storage and organization of recycling						

Unit – I	9 Hrs	
Quality requirements of boiler and cooling waters, Quality requirements of process water for	r Textiles,	
Food processing and Brewery Industries, Boiler and cooling water treatment methods.		
Unit – II	9 Hrs	
Manufacturing process and origin of liquid waste from Textiles, Paper and Pulp indus	stries, and	
Tanneries, Special Characteristics, Effects and treatment methods		
Unit – III	9 Hrs	
Manufacturing process and origin of liquid waste from Fertilizers, Distillers, and Dairy, Special		
Characteristics, Effects and treatment methods.		
Unit – IV	9 Hrs	
Manufacturing Process and origin of liquid waste from Sugar Mills, Steel Plants, and Oil Re	efineries,,	
Special Characteristics, Effects and treatment methods.		
Unit – V	9 Hrs	
Common Effluent Treatment Plants - Advantages and Suitability, Limitations, Effluent	Disposal	
Methods.		

•						
Course	Course Outcomes: After completing the course, the students will be able to					
CO 1:	Provide knowledge of the classification of waste and principles of waste management					
CO 2:	Familiarize the current legal regulations and economic mechanisms of waste					
	management					
CO 3:	Acquaint the methods and techniques of neutralization and waste disposal on					
	selected examples.					
CO 4:	Acquire practical skills in using the knowledge of basic methods and techniques used in					
	waste management.					

Referen	Reference Books:					
1.	Environmental Pollution Control Engineering, C.S. Rao, 2nd Edition (Reprint), 2015, New					
	Age International, ISBN:978-81-224-1835-4.					
2.	Waste Water Engineering Treatment Disposal Reuse, Metcalf and Eddy, 4th Edition, 2003,					
	Tata McGraw Hill, ISBN: 978-0071241403.					
3.	Pollution Control in Process Industries, S.P. Mahajan, 27th Edition, 2012, Tata McGraw Hill,					
	ISBN: 9780074517727.					
4.	Waste Water Treatment, M.N. Rao and Dutta, III edition, 2017, Oxford & IBH, New Delhi,					
	ISBN: 8120417127					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RV College of Engineering [®]	1
lysore Road, RV Vidyaniketan Post,	
Bengaluru - 560059, Karnataka, India	

Semester: VII						
	INSTRUMENTAL METHODS OF ANALYSIS					
		Cat	egory: Professional Elective			
			(Theory)			
Course Code	:	21CH74HC	CII	E :	100 Marks	
Credits: L:T:P	:	3:0:0	SE	E :	100 Marks	
Total Hours	:	45 L	SE	E Duration :	3.00 Hours	

Unit-I	09 Hrs			
Introduction: Selection of techniques, Measurement and readings, errors in analysis, G	Graph and			
measurement, Statistics to data evaluation, Uncertainty in chemical analysis.				
Sampling and sample preparation: Homogenization of samples, sample integrity, s	eparation,			
types of sample, sample matrices, sample preparation.				
Quantitation and calibration: Response factor, peak area, composition, external and in	ternal			
standard methods, standard addition method, calibration method, linear regression.				
Unit – II	09 Hrs			
General Introduction to Spectroscopy: Types of spectroscopy, representation of a	spectrum,			
nature and interaction of electromagnetic radiation, energies corresponding to various	kinds of			
radiations, atomic and molecular transitions, selection rules, spectral width, factors ir	fluencing			
positions and intensity of spectral lines.				
Electronic Spectroscopy (Absorption Spectroscopy): Quantitative aspects of	absorption			
measurements – Beer's law and its limitations, terminology associated with electronic spo	ectroscopy,			
types of absorption bands and theoretical interpretation, effect of solvent and structu	re on I_{max} ,			
Instrumentation for Qualitative and Quantitative analysis, structure determination.	00.11			
	09 Hrs			
Infrared Spectroscopy: Theory of IR absorption, types of vibrations, theoretical n	umber of			
fundamental nodes of vibrations and group frequencies, factor affecting the group freque	encies and			
band shapes. Instrumentation – FITR Instrument and its advantages, sample handling to	chniques.			
Qualitative applications of IR.				
Applications of IR to structural elucidation of sample organic molecules.				
Unit –IV	09 Hrs			
Flame Photometry and Atomic Absorption Spectroscopy: Introduction, principle, fl	ames and			
flame spectra, variation of emission intensity with flame, metallic spectra in flame, flam	e ground,			
role of temperature on absorption emission and fluorescence. Comparative study of flame	e emission			
spectroscopy (FES) and Atomic absorption spectroscopy (AAS). Application – Qualitativ	ve and			
Quantitative determination of alkali and alkaline earth metals.	0.0 77			
Unit –V	09 Hrs			
Chromatography: General description, definitions, terms and parameters used in chrom	atography,			
classification of chromatographic methods, working principle, Instrumentation and applications of				
high pressure liquid chromatography (HPLC), Gas chromatography (GC).				

Course Outcomes: After completing the course, the students will be able to				
CO1:	Recollect the basic principles of spectroscopy and chromatography;			
CO2:	Interpret and communicate an analytical result			
CO3:	Identify suitable technique for analysis.			
CO4:	Formulate analytical procedure to characterize samples			

Referen	Reference Books				
1	Silverstein, R. M., Webster, F. X., and Kiemle, D. J. Spectrometric Identification of Organic Compounds, 8th ed.; John Wiley and Sons: Hoboken, NJ, 2014. ISBN: 978-0-470-61637-6				
2	Ewing G.W; Instrumental methods of Chemical Analysis; Mc Graw Hill International; 1985;ISBN:07-085210-3				
3	Chatwal Anand; Instrumental Methods of Chemical Analysis;5 th edition, Himalaya Publishing House; 2023; ISBN: 978-93-5142-088-0				
4	Douglas A. Skoog, F. James Holler, Stanley R. Crouch, Principles of Instrumental Analysis, 7 th edition, Cengage Learning, 2017. ISBN: 978-1-337-46803-9				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	5 & 6 Unit 3 : Question 5 or 6				
7 & 8 Unit 4 : Question 7 or 8					
9 & 10 Unit 5: Question 9 or 10					
	TOTAL	100			

				Semester: VI	I			
			PETRO	CHEMICAL TEC	CHNOLOGY			
Category: Professional Elective								
C	(Theory)							
Cours	e Code	:	21CH74HD		CIE	:	100 Marks	
Total		:	3:0:0 451		SEE SEE Duration	:	100 Mari	<u> </u>
TOTAL	liours	•	45L		SEE DUration	•	5 nours	
				Unit-I				09 Hrs
Introdu	iction to P	etro	ochemicals:					
	Overview	of F	etrochemical Ind	ustry: History, sigr	nificance, and curr	ent	trends.	
	Raw Mater	ials	s: Sources of petro	ochemicals (natura	l gas, crude oil, co	al),	feedstock	selection.
	Petroleum	Re	fining: Overview	v of refining proce	esses, products, a	nd t	heir uses.	
				Unit – II				09 Hrs
Produc	tion of Bas	sic l	Petrochemicals:					
	Olefins: Pr	odu	action of ethylene	, propylene, butadi	ene.			
	Aromatics	Pr	oduction of benze	ene, toluene, xylene	es.			
	Synthesis (Gas	: Production meth	ods, applications i	n petrochemicals.			
				Unit –III				09 Hrs
Deriva	tives of Bas	sic 1	Petrochemicals:					
	Polymers:	Pro	duction and appli	cations of polyethy	ylene, polypropyle	ne,	polystyrer	ne, PVC.
	Synthetic I	Rub	bers: Production a	and applications of	SBR, butadiene r	ubb	er.	-
	Industrial	Che	emicals: Product	ion of methanol, f	ormaldehyde, ace	etic	acid, etc.	
				Unit –IV				09 Hrs
Process	Technolo	gies	in Petrochemic	als:				
	Steam Cracking: Process description, feedstock selection, operating conditions.							
	Catalytic R	lefc	orming: Process de	escription, catalyst	s, and applications	5.		
	Polymeriz	atic	on Technologies:	Bulk, solution, su	uspension, and en	nuls	ion polyn	nerization.
				Unit –V				09Hrs
Advan	ed Petrocl	nem	nical Processes					
	Biomass to	Pe	trochemicals: Pro	cesses, challenges	, and opportunities	5.		
	Gas to Liq	uids	s (GTL): Technol	ogies, products, an	d market potential			
	Coal to Li	qui	ds (CTL): Proces	sses, environment	al impact, and eco	ono	mics.	
<u> </u>	<u> </u>							
Cours	se Outcome	es: /	Atter completing	the course, the stu	udents will be able	e to	:-	
	Understand	1 th	e technology of dil	iterent processes	hlag on mer			
CO2		1 an	u evaluate the effe	ifferent products	ibles on processes			
CO_4	Haderston	d he	mental impact of a	sociated in chemics	1 processes			
004	Onderstand nazard and safety associated in chemical processes							
Reference Books								
1 N.	N.N. Lebdev, Chemistry and technology of basic organic and petrochemical synthesis, Vol. 1 & 2							
¹ · Mi	¹ · Mir publications, Moscow							

2. Dryden, Charles E., Outlines of Chemical Technology, Affilated East-West Press Pvt Ltd.; Standard Edition (1 January 1997), ISBN-13 : 978-8185938790

3. Dr. B.K. Bhaskarrao, "A text on Petrochemicals" 4th Ed, Khanna publishers, New Delhi.- 110094, ISBN No. 81 -7409 -044 - 4

4. G.N. Sarkar, "Advanced Petrochemicals" 1st Ed, Khanna Publishers, New Delhi Publication Year -1998 ISBN: 978-81-7409-096-6

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: VII							
UNMANNED AERIAL VEHICLES							
Category: Institutional Elective - I							
			(Theory)				
Course Code	:	21AS75IA		CIE	:	100) Marks
Credits: L:T:P	:	3:0:0		SEE	:	100) Marks
Total Hours	:	45L		SEE Duration	:	3.0	0 Hours
		Un	it-I				08 Hrs
Introduction to U	nma	anned Aerial Vehi	cles (UAVs): Hi	story of UAVs, Ne	ed	ofui	nmanned aerial
systems, Overvie	w	of UAV Systems-	System Compo	sition, Classes an	d]	Miss	ions of UAVs-
Classification of U	AV	s based on size, rar	nge and enduran	ce, Applications, E	xar	nples	s of UAVs
		Unit	t – II				11 Hrs
Aerodynamics &	Pro	pulsion aspects of	UAVs: B asic A	erodynamic Equat	ion	s, Ai	r foils, lift, drag,
moments, Aircraft	Po	lar, The Real Wir	ng and Airplane	, Induced Drag, 7	ota	ıl Ai	r-Vehicle Drag,
Flapping Wings, R	otaı	y wings.					
Propulsion: Thrus	st C	eneration and bas	sic thrust equation	on, Sources of Po	wei	r for	UAVs- Piston,
Rotary, Gas turbine engines, electric or battery powered UAVs.							
		Unit	t –III				08 Hrs
Airframe of UAVs	s: N	lechanic loading, b	asics of types of	load calculation an	d st	ructu	iral engineering,
Material used for U	JAV	/ (general introduc	tion), FRP and i	nethods of usage i	n U	AV,	Testing of FRP
specimens for UAV	V, s	election criteria for	r structure, Type	s of structural elen	nen	ts us	ed in UAV their
significance and ch	ara	cteristics, Methods	of manufacturin	ng UAV structure.			
	-	Unit	t-IV				<u>10 Hrs</u>
Payloads for UAV	s:	Barometers, Accel	erometer, Magn	etometer, RADAR	an	d rar	ige finder, Non-
dispensable and dispensable Payloads- Optical, electrical, weapon, imaging payloads.							
Unit –V 08 Hrs							
Mission Planning	an	d Control: Air V	ehicle and Payl	oad Control, Reco	nna	issar	nce/Surveillance
Payloads, Weapon Payloads, Other Payloads, Data-Link Functions and Attributes, Data-Link							
Margin, Data-Rate Reduction, Launch Systems, Recovery Systems, Launch and Recovery Tradeoffs							
Course Outcomes	: A	t the end of this co	ourse the studen	t will be able to :			
(()) Approved	haa	volution of LAVe	and understand	the current notentic	<u> </u>	anafi	ta of LAVa

CO1 :	Appraise the evolution of UAVs and understand the current potential benefits of UAVs
CO2:	Apply the principles of Aerospace Engineering in design and development of UAVs
CO3:	Evaluate the performance of UAV designed for various Missions and applications
004	

CO4: Assess the performance and airworthiness of the designed UAV

Reference Books

1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

1

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR)					
#		COMPONENTS	MARKS			
1.	QU will Mar QU	IZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 rks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL IZ MARKS.	20			
 IESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS. 						
3.	 EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS. 					
		MAXIMUM MARKS FOR THE CIE THEORY	100			
RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q .	NO	CONTENTS	MARKS			
PART A						
	1	Objective type questions covering entire syllabus	20			
		PART B (Maximum of THREE Sub-divisions only)				
	2	Unit 1: (Compulsory)	16			
38	& 4	Unit 2: Question 3 or 4	16			
5 8	& 6	Unit 3: Question 5 or 6	16			
78	7 & 8 Unit 4: Question 7 or 8					
98	k 10	Unit 5: Question 9 or 10	16			
		TOTAL	100			

				0 4 1	711		
Semester: VII							
HEALTHCAKE ANALYTICS Cotogowy Institutional Elective I							
(Theory)							
Cours	e Code	:	21BT75IB	(Theory)	CIE	:	100 Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total	Hours	:	42 Hrs		SEE Duration	:	3 Hours
			U	nit-I			09 Hrs
Introd	uction to tool	s ai	nd databases:	Introduction to	Bioinformatics, Goals	, Sc	cope, Applications,
Sequer	nce databases,	St	ructure databa	ases, Special d	atabases, Applications	5 0	f these databases,
Databa	se similarity	sea	arch: Unique	requirements of	of database searching	, F	Ieuristic Database
Search	ing, Basic Lo	cal	Alignment Se	arch Tool (BLA	AST), FASTA, Compa	arise	on of FASTA and
BLAS	r, Database Se	arc	hing with Smit	th-Waterman Mo	ethod		00.11
Segue	nao Analysia	Tu		t - H	Doimyigo and Multiple		09 Hrs
Alignn	nce Analysis:	ı y د ۲	Scoring matric	es Statistical si	raifwise and Multiple		lignment Multiple
Sequer	icht algorithin	s, r · Sa	coring function	n Exhaustive al	gorithms Heuristic al	o a	thms Profiles and
Hidder	n Markov Moo	lels	: Position-Spe	cific scoring ma	atrices. Profiles. Marko	ov l	Model and Hidden
Marko	v Model, Scori	ng	matrices – BL	OSSUM and PA	M		
Molec	ular Phylogen	etio	es: Introduction	n, Terminology,	Forms of Tree Repres	enta	ation. Phylogenetic
Tree C	Construction M	leth	ods - Distanc	e-Based, Chara	cter-Based Methods a	nd	Phylogenetic Tree
evalua	tion.						
			Uni	t –III	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		09 Hrs
	uction to Nex	x t-(Jeneration Se	quencing (NG	S) analysis: Sanger se	eque	encing principles -
nistory	and landma	rks,	A review of l	Ing Technology	t technologies Pase es	y (a algorithms Pass
auality	nhred values	Re	, A leview of I	ecks Interpretati	ions from quality check	uuuu Ks A	Adapter and primer
contan	ination. Proce	ssir	ig reads using o	clipping of reads	-Advantages and disad	van	tages of processing
of read	s						ages of processing
Unit –IV 09 Hrs							
Struct	ural analysis d	& S	ystems Biolog	y: Gene predict	ion programs – ab initi	o ar	d homology-based
approa	ches Detectio	on c	of functional si	ites and codon b	pias in the DNA. Predi	ctir	ng RNA secondary
structu	re, Protein str	ucti	ure basics, str	ucture visualiza	tion, comparison and	clas	ssification. Protein
structu	re predictive	me	thods using p	protein sequenc	e, Protein identity ba	asec	l on composition,
Predict	tion of second	lary	structure. So	cope, Application	ons. Concepts, implei	mer	itation of systems
DIDIOg	y, Mass spectro		Un	is biology. it _V			A9 Hrs
Drug S	Screening. Intr	Do	iction to Comr	uter-aided drug	discovery target select	ion	ligand preparation
and en	umeration. m	blec	ular docking.	post-docking p	rocessing, molecular of	lvn	amics simulations.
applica	tions and test	case	es.	1 81	6,	5	,
Cours	e Outcomes: A	\fte	er completing	the course, the	students will be able	to:-	
CO1	Comprehend	E	Bioinformatics	Tools: Unde	erstand and effectiv	vely	utilize various
	bioinformatio	s to	ools and databa	ases for sequence	e and structure analysis	5.	
CO2	Investigate a	nd :	apply innovati	ve sequencing t	echnologies and analy	tica	l methods to solve
	complex biol	ogi	cal questions a	nd advance rese	arch in genomics and r	nol	ecular biology.
003	Analyze Nex	t-G	eneration Seq	uencing: Profic	iency in NGS techno.	logi	es, including data
	quanty assess	sme	and read pro	beessing techniq	ues and nandle big dat	ä.	

CO4 Apply bioinformatics tools to model and simulate various biological processes, leveraging gene prediction programs including both ab initio and homology-based approaches.

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Reference Books

1.	Xiong J. Essential bioinformatics. Cambridge University Press; 2006 Mar 13.
2	Buehler LK, Rashidi HH, editors. Bioinformatics basics: applications in biological science and
۷.	medicine. CRC Press; 2005 Jun 23.
2	Ghosh Z, Mallick BM. Bioinformatics principles and Applications. Oxford University Press;
5.	2018 Jun 13.
4	Low L, Tammi MT. Introduction to next generation sequencing technologies. Bioinformatics.
4.	WORLD SCIENTIFIC. 2017 Jul 26:1-21.
4	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn;
5.	ISBN: 9780879697129.
	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated
6.	edn; ISBN: 978-01-208-87866.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR				
	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the rel topics)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	Semester VII								
		SU	JSTAINABILI	FY AND LIFE	CYCLE ANALYS	SIS			
Category: Institutional Elective - I									
(Theory)									
Cours	e Code	:	21CH75IC		CIE	:	: 100 Marks		
Credi	ts: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total	Hours	:	45L		SEE Duration	:	3Hours	0.077	
.				Unit-I				09Hrs	
Intro	luction to sus	tain	ability:						
Introd	uction to Su	staiı	nability Concep	ts and Life C	ycle Analysis, M	ate	rial flow	and waste	
manag	gement, Chem	icals	s and Health Eff	ects, Character o	of Environmental P	rob	lems		
			τ	J nit – II				09 Hrs	
Envir	onmental Dat	ta C	ollection and L	CA Methodolog	gy:				
Enviro	onmental Data	a C	ollection Issues	, Statistical Ar	alysis of Enviror	nme	ental Data	, Common	
Analy	tical Instrume	nts,	Overview of LC	A Methodology	. – Goal, Definition	n.			
T 10 C			l	nit –111				09 Hrs	
Life C	Cycle Assessm	ent	: 	la Internatation	ICA Demofite on	1 Г			
Life C	ycle Impact A	isses	ssment, Life Cyc	cle interpretation	, LCA Benefits an	αL	rawbacks.		
Introd	uction Classic	ficat	; tion of feedstoc	k for biogas ger	eration Biomass	con	version te	chnologies:	
Photos	synthesis Bio	nca nas	generation Fact	tors affecting bi	n-digestion Classi	fica	tion of hi	oraș plants	
Floati	ng drum plant	gas and	fixed dome play	ot their advantag	es and disadvantag	res		ogas plants,	
Tiouth	ing ur unit prunt	unu	Inter come più	Init –IV	os una ansua (unug	,00.		09 Hrs	
Design for Sustainability:									
Green	Sustainable N	late/	rials, Environme	ental Design for	Sustainability.				
Dry B	iomass Gasif	iers	•	C	2				
Bioma	ass energy con	vers	ion routes, Ther	mal gasification	of biomass, Classif	icat	ion of gasi	fiers, Fixed	
bed sy	stems:							1	
			1	U nit –V				09Hrs	
Case S	Studies:								
Odor I	Removal for O	rgai	nics Treatment P	lant, Bio-methar	nation, Bioethanol	pro	duction. B	to fuel from	
water	hyacinth.								
0	0	1.0	• .• .						
Cours	e Outcomes:	Ait	er completing t	he course, the s	tudents will be ab	le t	0:-	. 1 1	
COI	Understand 1	the	sustainability ch	allenges facing	the current genera	at10	n, and sys	stems-based	
COL	approaches r	equi	ired to create sus	ity and formation	is for society.	tia	ha hacad a	n coiontific	
	research arr	lied	is in sustainabil	and economic is	e appropriate solu	101	is based o	n scientific	
CO3	Apply scient	ific	method to a syst	ems-based tran	sucs. s-disciplinary appr	0.90	h to sustai	nahility	
C03	Formulate or	nnre	nriate solutions	hased on soie	ottic research appr	lie	1 science	social and	
0.04	economic iss	anes			nine research, app	me	a science,	social allu	
L	continue 155								
Refer	ence Books								
C	Sustainable Engineering Dringinles and Dreatice Devile D. Destration 2010. Combridge University								

1.	Sustainable Engineering Principles and Practice, Bavik R Bhakshi, 2019, Cambridge University
	Press, ISBN - 9781108333726.
2.	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
3.	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7 & 8 Unit 4 : Question 7 or 8							
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Semester: VII							
ADVANCES IN CORROSION SCIENCE AND MANAGEMENT							
Category: Institutional Elective - I							
(Theory)							
Course Code	:	21CM75ID	CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	42 L	SEE Duration	:	03 Hours		

Course Learning Objectives: The students will be able to				
1	Understand the fundamental & socio, economic aspects of corrosion.			
2	Identify practices for the prevention and remediation of corrosion.			
3	Analyzing methodologies for predicting corrosion tendencies.			
4	Evaluate various corrosion situations and implement suitable corrosion control measures.			

Unit-I

08 Hrs

Basics of corrosion:

Introduction: Galvanic series, Pilling-Bedworth ratio, Types: Galvanic corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, erosion corrosion, stress corrosion, season cracking, hydrogen embrittlement, bacterial corrosion.

Corrosion in different engineering materials: Concrete structures, duplex, stainless steels, ceramics, composites.

	1
U nit-II	08 Hrs

Corrosion mechanism:

Electrochemical theory of corrosion, Crevice corrosion-mechanism of differential aeration corrosion, mixed potential theory for understanding common corrosion of metals and alloys.

Thermodynamics of Corrosion: Pourbaix diagram and its importance in metal corrosion and its calculation for Al, Cu, Ni and Fe.

Unit – III	08 Hrs

Effects of corrosion:

The direct and indirect effects of corrosion, economic losses, Indirect losses -Shutdown, contamination, loss of product, loss of efficiency, environmental damage, Importance of corrosion prevention in various industries, corrosion auditing in industries, corrosion map of India.

Corrosion issues in specific industries-power generation, chemical processing industries, oil and gas Industries, corrosion effect in electronic industry.

Unit –IV

Corrosion Testing and monitoring:

Introduction, classification. Purpose of corrosion testing, materials, specimen. Surface preparation, measuring and weighing. Types of testing, lab, pilot plant and field tests. Measurement of corrosion rate, weight loss method, CPR numericals, Electrochemical methods, Tafel extrapolation. Linear polarization method.

Unit –V

09 Hrs

09 Hrs

Corrosion Control:

Principles of corrosion prevention, material selection, design considerations, control of environmentdecrease in velocity, passivity, removal oxidizer, Inhibitors and passivators, coatings- organic, electroplating of Copper, Nickel and Chromium, physical vapor deposition-sputtering, Electroless plating of Nickel.

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the causes and mechanism of various types of corrosion						
CO2:	Apply the knowledge of chemistry in solving issues related to corrosion.						
CO3:	Analyse and interpret corrosion with respect to practical situations.						
CO4:	Develop practical solutions for problems related to corrosion.						
Reference Books							
1	Corrosion Engineering, M.G, Fontana, 3rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.						
2	Principles and Prevention of Corrosion, D. A Jones, 2nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.						
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897						
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.						

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

				Semester: VII				
PROMPT ENGINEERING								
Category: Institutional Elective - I								
	(Theory)							
Course C	Course Code : 21CS75IE CIE : 100 Marks							
Credits:	L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Ho	urs	:	40L		SEE Duration	:	03 Hours	
Course L	earning Obj	ecti	ves: The stude	ents will be able to	· · ·			
1	Describe the	e pr	inciples and co	oncepts underlying prom	pt engineering	1	• • •	
2	Design and	tori	nulate effectiv	e prompts for various A	I models to achiev	e de	estred outputs	
3	Analyse and	d as	ssess the perfo	ormance of different pro	ompts to improve	the	e quality and	
1	A pply prom	I AI	-generated ou	ipuis. Anniques to solve real wo	orld problems in v	orio	us domains	
4	Apply ploin	րւ	ingineering tee	liniques to solve real-we		ano	us domains	
			1	U nit-I			08Hrs	
Introduc	tion to Prom	pt l	Engineering					
Raise of	Context Lear	nin	g, Prompts, F	Prompt Engineering, LL	M Settings, Basic	cs o	f prompting,	
Elements	of a Prompt, S	Sett	ings for Promp	oting Language Model, G	eneral Tips for De	sigr	ning Prompts,	
Designing	g Prompts for	· Di	fferent Tasks:	few examples of comn	non tasks using di	iffer	ent prompts-	
Text Su	mmarization,	. I	nformation E	Extraction, Question	Answering, Text	C	classification,	
Conversa	tion/Role Play	yıng	g, Code Genera	ation, Reasoning			00 H	
Tabatan		•	<u>U</u>	nit – II			08 Hrs	
Techniqu	les for Effect	ive	Prompts	nance on complex tasks	Zero Shot Pror	nnti	ng Faw shot	
nrompting	cs designed a	thai	ipiove periori ight (CoT) pr	ompting Zero-Shot Co	- Zelo-Shot Hon T Self-Consisten	npu	Knowledge	
Generatio	n Prompting	1	Program-aided	Language Model (PA)	L) ReAct Dire	ctio	nal Stimulus	
Promptin	g	, .	rogium under	Lunguuge mouer (m		0010	inar Stillarab	
·	0		U	nit —III			07 Hrs	
Best Prac	ctices in Pror	npt	Engineering					
Tools &	IDEs							
Capabiliti	les include: D	eve	loping and ex	perimenting with promp	ts, Evaluating proi	npt	s. Versioning	
and deplo	ying prompts	; A	dvanced prom	pting techniques: advanc	ed applications wi	th I	LLMs	
External l	d external too	$\frac{01S}{1}$	APIS LLIVIS	with External Tools; Da	ata-augmented Ge	nera	ition – Steps,	
External	Data, QA witi	1 50		nit IV			08 Hrs	
Annlicati	ions of Prom	nt I	U. Engineering:				00 111 5	
LLM An	nlications: Fi	nct	ion Calling wi	th LLMs - Getting Starte	ed with Function (Call	ing Function	
Calling w	ith GPT-4. Fu	inci	tion Calling w	ith Open-Source LLMs.		Jun	ing, i unetion	
Function	Function Calling Use Cases: Conversational Agents. Natural Language Understanding. Math							
Problem Solving, API Integration, Information Extraction								
Unit –V AR Hrs								
Opportu	nities and Fu	tur	e Directions				00 m 3	
Model sa	fety, Prompt 1	nie	ction, Prompt	Leaking, Jail Breaking:				
Reinforcement Learning from Human Feedback (RLHF) Popular examples: aClaude (Anthropic).								
ChatGPT	(OpenAI),	0		() -F.	1	-	× 1 //	
Future directions: Augmented LMs, Emergent ability of LMs, Acting / Planning - Reinforcement								
Learning,	Multimodal	Pro	mpting, Graph	Prompting				

Course Outcomes: After completing the course, the students will be able to

CO1	Demonstrate an understanding of prompt engineering principles including how prompt structure and phrasing impact the performance of AI models.
CO2	Design and implement effective prompts- to create and apply prompts for various natural language processing (NLP) tasks, such as text generation, summarization, and translation, using AI models.
CO3	Critically evaluate the effectiveness of prompts - assess the quality and performance of prompts in terms of accuracy, coherence, and relevance, identifying areas for improvement.
CO4	Apply prompt engineering techniques in real-world scenarios - use prompt engineering strategies to address practical problems in domains such as education, healthcare, and business, demonstrating the applicability of AI-driven solutions.
CO5	Collaborate on projects involving prompt engineering - work effectively in teams to design, implement, and evaluate prompt-based solutions, showcasing their ability to contribute to complex AI-related projects.

Referen	ice Books
1	Unlocking the Secrets of Prompt Engineering: Master the art of creative language generation
	to accelerate your journey from novice to pro, Gilbert Mizrahi, Jan 2024, 1st Edition, Packt
	Publishing, ISBN-13:978-1835083833
2	Prompt Engineering for Generative AI, James Phoenix, Mike Taylor, May 2024, O'Reilly
Ζ.	Media, Inc.,ISBN: 9781098153434
3.	Prompt Engineering for LLMs, John Berryman, Albert Ziegler, O'Reilly Media, Inc. Dec
	2024, ISBN: 9781098156152
4	The Art of Asking ChatGPT for High-Quality Answers A Complete Guide to Prompt
4.	Engineering, Ibrahim John, Nzunda Technologies Limited, 2023, ISBN-13: 9781234567890
5	Programming Large Language Models with Azure Open AI: Conversational programming
	and prompt engineering with LLMs, Francesco Esposito, Microsoft Pr, 1st Edition, April
	2024,ISBN-13: 978-0138280376

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Real time problemsolving (10) ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARK S FOR THE CIE THEORY	100		

RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: VI	[
Π	NT	EGRATED HEA	LTH MONITOR	ING OF STRUC	TU	RES
		Catego	ory: Institutional	Elective - I		
			(Theory)			
Course Code	:	21CV75IF		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	3Hours
			Unit-I			08 Hrs
Structural Healt	h : F	Factors affecting H	Iealth of Structures	s, Causes of Distres	ss, I	Regular Maintenance,
Importance of ma	inte	enance				
Structural Healt	th N	Monitoring: Con	cepts, Various Me	asures, Analysis c	of b	ehavior of structures
using remote strue	ctur	al health monitor	ing, Structural Safe	ety in Alteration.		
			Unit – II			08 Hrs
Materials: Piezo-	-ele	ectric materials and	d other smart mate	rials, electro-mech	nani	cal impedance (EMI)
technique, adapta	tion	is of EMI techniq	ue, Sensor technolo	ogies used in SHM	[
Structural Audit	:: A	ssessment of Heal	lth of Structure, Co	ollapse and Investig	gati	on, Investigation
Management, SH	ΜI	Procedures, SHM	using Artificial Int	telligence		
Unit –III 08 Hrs						
Static Field Test	ing	: Types of Static	Tests, Simulation	and Loading Meth	ods	s, sensor systems and
hardware requirer	nen	ts, Static Respons	se Measurement.			1
Unit –IV 08 Hrs						
Dynamic Field	Fest	ting: Types of D	ynamic Field Test	, Stress History D)ata	, Dynamic Response
Methods, Hardwa	ire f	for Remote Data A	Acquisition System	s, Remote Structu	ral	Health Monitoring.
Unit –V 08 Hrs						
Remote Structural Health Monitoring: Introduction, Hardware for Remote Data Acquisition						
Systems, Advantages, Case studies on conventional and Remote structural health monitoring						
Case studies: Structural Health Monitoring of Bridges, Buildings, Dams, Applications of SHM in						
offshore Structures- Methods used for non-destructive evaluation (NDE) and health monitoring of						
structural components						
Course Outcome	Course Outcomes: After completing the course, the students will be able to:-					

	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Diagnose the distress in the structure understanding the causes and factors.					
CO2	Understand safety aspects, components and materials used in Structural Health Monitoring.					
CO3	Assess the health of structure using static field methods and dynamic field tests.					
CO4	Analyse behavior of structures using remote structural health monitoring					

Refer	Reference Books					
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, 2006,					
	John Wiley and Sons, ISBN: 978-1905209019					
2	Health Monitoring of Structural Materials and Components Methods with Applications,					
	Douglas E Adams, 2007, John Wiley and Sons, ISBN:9780470033135					
3	Structural Health Monitoring and Intelligent Infrastructure, J. P. Ou, H. Li and Z. D. Duan,					
	Vol1,2006, Taylor and Francis Group, London, UK. ISBN: 978-0415396523					
4	Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu,					
	2007,Academic Press Inc, ISBN: 9780128101612					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			

2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO. CONTENTS					
	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	5 & 6 Unit 3 : Question 5 or 6				
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	9 & 10 Unit 5: Question 9 or 10				
TOTAL					

				Semester: VII			
WEARABLE ELECTRONICS Category: Institutional Elective - I							
			·	(Theory)		1	
Cou	rse Code	:	21EC75IG		CIE	:	100 Marks
Crec	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	03 Hours
Cou	rse Learning	Obj	ectives: The s	students will be able to			
1	Explain the t	ype	s and applicat	ion of wearable sensor.			
2	Describe the	wo	rking of sensit	ivity, conductivity and ene	rgy generation in v	vear	rable devices.
3	Explain the v	ario	ous facets of v	vearable application, advan	tage & challenges.		
4	Understand d	liffe	erent testing a	nd calibration in wearable d	levices.		
							T
				Unit-I			07 Hrs
Intro The Wear	duction: wor Ecosystem E cables, Taxon	ld c nab om ara	of wearable (V ling Digital y for Weara bles [Ref 1: 0	VOW), Role of wearable, 7 Life, Smart Mobile Com bles, Advancements in V Thanter 1 11	The Emerging Con munication Devic Wearables, Textile	cep es, es	ot of Big Data, Attributes of and Clothing,
<u> </u>		uru		Unit – II			08 Hrs
Wea Samj Inter Spor	rable Bio and bling Gases, T face with the ts Performance	d C ype Boc e, S	Chemical Sent s of Sensors, d ly, Textile Int afety and Secu	sors: Introduction, System Challenges in Chemical Bio egration, Power Requirem urity, Case studies. [Ref 1: 0	Design, Microne ochemical Sensing ents, Applications: Chapter 2.1]	edl , Se Pe	e Technology, ensor Stability, ersonal Health,
•			•	Unit –III	.		07 Hrs
Wea Appl Tech Hand	rable Textile: ications of conniques for pro- ls on project in 3: Chapter 6 9	Co ndu ces 1 W	nductive fibre ctive fibres, E sing CPYs, W earable textile	s for electronic textiles: an Bulk conductive polymer y et-spinning technique, Elec Solar Backpack, LED M	overview, Types of arn, Bulk conducti ctrospinning techni atrix wallet. [Ref 2	f co ive ique 2: C	nductive fibre, polymer yarn, e, case studies, 'hapter 1,2] &.
IKei	5. Chapter 0,9			Unit –IV			08 Hrs
Ener	ov Harvestin	σ S	vstems. Introd	uction Energy Harvesting	from Temperature	Gr	adient
Ther Input Tran	moelectric Gen Voltages, Enersission, Ener	ergy	ators, Dc-Dc C y Harvesting f Harvesting fro	Converter Topologies, Dc-D rom Foot Motion, Ac-Dc C om Light, Case studies. [Re	Converter Desig onverters, Wireles f 1: Chapter 4.1]	n fo s Ei	or Ultra-Low nergy
				Unit –V			08 Hrs
Wearable antennas for communication systems: Introduction, Background of textile antennas, Design rules for embroidered antennas, Integration of embroidered textile surfaces onto polymer substrates, Characterizations of embroidered conductive, textiles at radio frequencies, RF performance of embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]							
Course Outcomes: After completing the course, the students will be able to							
CO1	: Describe th	ne o	lifferent types	and wearable sensors, tex	tile, energy harves	stin	g systems and
antenna							
<u>CO2</u>	: Analysis m	eas	urable quantit	y and working of wearable	electronic devices		
<u>CO3</u>	: Determine	& i	nterpret the ou	atcome of the wearable dev	ices and solve the	des	ign challenges
CO4	: Analyse ar problem sta	nd e ater	valuate the w nent.	earable device output para	meter in real time	sce	nario or given

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Reference Books

R

1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R. Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing: 1 edition ISBN-13 : 978-0081002018.
3	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill Education, 1st Edition, ISBN-13: 978-1260116151.
4	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang, Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
5	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos Miguel Costa, Wiley, 1 edition, ISBN-13: 978-1119287421

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Real time problem solving (10) ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type of questions covering entire syllabus	20				
PART B (Maximum of THREE Sub-divisions only)						
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	5 & 6 Unit 3: Question 5 or 6					
7 & 8 Unit 4: Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL						

Chemical Engineering

Semester: VII								
E-MOBILITY								
		Catego	ory: Institutional 1	Elective - I				
		0	(Theory)					
Course Code	Course Code : 21EE75IH CIE : 100Marks							
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	45 L		SEE Duration	:	3 Hours		

Unit-I	06 Hrs		
E-Mobility: A Brief History of the Electric Powertrain, Energy Sources for Propu	ilsion and		
Emissions, The Advent of Regulations, Drive Cycles, BEV Fuel Consumption, Rang	e, Carbon		
Emissions for Conventional and Electric Powertrains, An Overview of Conventional	l, Battery,		
Hybrid, and Fuel Cell Electric Systems, A Comparison of Automotive and Other Tran	sportation		
Technologies. Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Dr	rive Cycle		
for Vehicle Comparisons			
Unit – II	09 Hrs		
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations, Battery	Charging,		
Protection, and Management Systems, Battery Models, Determining the Cell/Pack Vol	tage for a		
Given Output\Input Power, Cell Energy and Discharge Rate.			
Battery Charging: Basic Requirements for Charging System, Charger Architectures, Grid	Voltages,		
Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, Wireless	Charging,		
The Boost Converter for Power Factor Correction.			
Unit –III	09 Hrs		
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion Batteries, BMS			
Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Functionality			
Comparison, Technology, Topology. Measurement: Voltage, Temperature, Current, Management:			
Protection, Thermal Management, Balancing, Distributed Charging, Evaluation, External			
Communication: Dedicated analog and digital wires.			
Unit –IV	09 Hrs		
Electric Drive train: Overview of Electric Machines, classification of electric machine	es used in		
automobile drivetrains, modelling of electric machines, Power Electronics, controllin	ig electric		
machines, electric machine and power electronics integration Constraints.			
Energy Management Strategies: Introduction to energy management strategies used in h	nybrid and		
electric vehicles, Classification of different energy management strategies, Comparison o	f different		
energy management strategies and implementation issues of energy management strategie	s.		
Unit –V	09 Hrs		
Charger Classification and standards: classification based on charging, levels (reg	ion-wise),		
modes, plug types, standards related to: connectors, communication, supply equipments, EMI/EMC.			
Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE),			
Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology,			
Communications supporting subsystems			

Communications, supporting Subsystems: In vehicle networks- CAN

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies				
	and modelling.				
CO 2	Discuss and implement different energy storage technologies used for electric vehicles and				
	their management system.				
CO 3	Analyze various electric drives and its integration techniques with Power electronic circuits				
	suitable for electric vehicles.				
CO 4	Design EV Simulator for performance evaluation and system optimization and understand				
	the requirement for suitable EV infrastructure.				

Re	ference Books
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel
	Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN
	9781119063667.
2.	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition, 2010,
	ARTECH HOUSE, ISBN-13 978-1-60807-104-3.
3.	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions
-	Technip, Paris, ISBN 978-2-7108-0994-4.
4.	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford
	university press, ISBN 0 19 850416 0.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

\smile							
				Semester: VI	[
	PROC	GR	AMMABLE LO	GIC CONTROLI	LER'S AND APP	LIC	CATIONS
			Categ	ory: Institutional	Elective - I		
				(Theory)			
Course	Code	:	21EI75IJ		CIE	:	100Marks
Credits	:: L:T:P	:	3:0:0		SEE	:	100 Marks
Total H	lours	:	45 L		SEE Duration	:	3 Hours
							0.6 11
x / x				Unit-l			06 Hrs
Introdu	iction:	1	1	TT' 4 ' 11 1	1. D. CC		
Introdu	tion to In	aus Iz di	ran Automation,	Historical backgro	und, Different par	rts a DT 6	The Product Application
Danges	Fixed on	k u A N	Adular I/O Hard	LC Versus Other L	ion: Binary Data	ranı	esentation Input and
	tatus files	fo	modular PLC A	ddressing concept	ion. Dinary Data	repi	esentation, input and
output		101	inouului 1 Le, 1	UNIT II			
PLC H	ardware:			011111			I
The I/C) section	, E	Discrete I/O Mo	dules, Analog I/C) Modules, Spec	ial	I/O Modules, I/O
specific	ations				1		,
Input a	and Outpu	ıt n	nodules: Brief ov	erview of Discrete	e and Analog inpu	it n	nodules, Discrete and
TTL/Re	elay outpu	t m	odules				
				Unit –III			09 Hrs
Basics	of PLC P	rog	ramming:				
Process	or memo	ry	organization, Pr	ogram scan, PLO	c programming	lang	guages, Basic Relay
Instruct	ion, Bit of	r re	lay instructions, I	NO, NC, One Shot	, Output latching	soft	ware, negated Output
and internal Bit Type instructions, mode of operations							
Special	nrogram	mi	na Instructions	Unit –IV Timor and Counter	Instructions: On	dala	y and Off dalay and
retentiv	e timer ins	tru	ing misci actions.	ter up and down in	structions, combin	ina	counters and timers
Progra	m Contr	nl	&Data maninul	ation Instruction	s Data handling	ing	structions Sequencer
instruct	ions. Prog	ran	ming sequence of	utput instructions.	5. Duta handing	111	si dellons, sequencer
				UNIT V			09 Hrs
SCADA	A & DCS						
Buildin	g Block of	f SC	CADA System, H	ardware structure of	of Remote Termina	al U	nit, Block diagram of
Distribu	tive Cont	rol	System				
Case S	tudies: Bo	ottle	e filling system, l	Material Sorter. El	evator, Traffic co	ntro	ol, Motor sequencers,
Piston e	extraction	and	retraction using	timers and counter	S.		
C	0		A 64	41		1. 4	
Course CO1	Underste	s: 1	the basic completing	the course, the su	ADA techniques	ie i	0: -
$\frac{001}{002}$	Apply th	illu e n	rogramming cond	sol FLC's allu SC	ADA techniques.		
002		ie p				1.	
CO3	Analyze	and	a evaluate the aut	omation techniques	s for industrial app	olica	ations.
004	Develop	a s	ystem for automa	ation application.			
Referen	ce Books						
1 Pr	ogrammał	ole	Logic controll	ers, Frank D.	Petruzella. Mc	Gra	w hill, 4 th Edition.
IS	BN:97800)73:	510880, 2017	, .	, -· - •		,
т	1 1	4	<u>,</u> D 11 I	and Contra 11 and			

	1551(.)/600/5510000, 201/
2.	Introduction to Programmable Logic Controllers, Garry Dunning, CENGAGE Learning, 3rd Edition, 2017, ISBN: 978-8131503027
3.	Industrial Control and Instrumentation, Bolton W, Universities Press, 6th Edition, 2006. ISBN 978-0128029299
	Computer Based Industrial control Krishna Kant PHI Publishers 2nd Edition 2010 ISBN 078

4. Computer Based Industrial control, Krishna Kant, PHI Publishers, 2nd Edition, 2010. ISBN 978-8120339880.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1 Objective type questions covering entire syllabus					
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

		Semester: VII		
SPACE TECHNOLOGY AND APPLICATIONS				
	Category:	Institutional Ele	ective - I	
		(Theory)		
			CIE	10

CourseCode	:	21ET75IK	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
TotalHours	:	45 L	SEEDuration	:	3 Hours

Unit-I	9 Hrs
Earth'senvironment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiation	on belts,
Interplanetary medium, Solar wind, Solar- Earth Weather Relations. Launch	Vehicles:
Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic	engines,
Control and Guidance system, Ion propulsion and Nuclear Propulsion.	

Unit– II	9Hrs
Satellite Technology: Structural, Mechanical, Thermal, Power control, Te	elemetry,
Telecomm and Quality and Reliability, Payloads, Classification of satellites.	Satellite
structure: Satellite Communications, Transponders, Satellite antennas.	
	OIIma

Unit-m	9015
Satellite Communications: LEO, MEO and GEO orbits, Altitude and orbit	controls,
Multiple Access Techniques. Space applications: Telephony, V-SAT, DBS system	n,Satellite
Radio and TV, Tele-Education, Telemedicine, Satellite navigation, GPS.	
Unit IV	0Hrc

Unit–IV	9Hrs
Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Re-	esources,
Land use, Land mapping, geology, Urban development resource Management, and	nd image
processing techniques. Metrology: Weatherforecast(Long term and Short term)),weather
modelling,Cyclonepredictions,Disasterandfloodwarning,rainfallpredictionsusing	

Unit-V9 HrsSpace Missions: Technology missions, deep space planetary missions, Lunar missions, zero
gravity experiments, space biology and International space Missions. Advanced space
systems: Remote sensing cameras, planetary payloads, space shuttle, space station,
Interspace communication systems.

Cours	CourseOutcomes:Aftercompletingthecourse,thestudentswillbeableto			
CO1	Explain various Orbital Parameters, Satellite Link Parameters, Propagation considerations			
	and Radar systems.			
CO2	Apply the concepts to determine the parameters of satellite, performance of radar and			
	navigation systems.			
CO3	Analyze the design issues of satellite and its subsystems, radars and navigation systems.			
CO4	Evaluate the performance of the satellite systems and its parameters, radar and navigation			
	systems			

Reference Books

1.	Atmosphere, weather and climate, RGBarry ,Routledge publications,2009,ISBN-
	10:0415465702.
2.	Fundamentals of Satellite Communication, KNRajaRao,PHI,2012,ISBN:
3.	Satellite Communication, Timothypratt, JohnWiley, 1986ISBN: 978-0-471-37007 -9,

ISBN10: 047137007X.

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

R

4 Remote sensing and applications, BCPanda, VIVAbooksPvt.Ltd.,2009, ISBN: 108176496308.

	RUBRICFORSEMESTERENDEXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PARTA					
1	Objective type of questions covering the entire syllabus	20				
PARTB (MaximumofTHREESub-divisions only)						
2	Unit 1: (Compulsory)	16				
3 &4	Unit2: Question3 or4	16				
5 & 6	Unit3: Question5 or6	16				
7 & 8	Unit4: Question7 or8	16				
9 & 10	Unit5:Question9 or10	16				
	TOTAL	100				

	RUBRICFORTHECONTINUOUSINTERNALEVALUATION(THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES:Quizzes will be conducted in online/offline mode. QUIZZESwillbeconducted&EachQuizwillbeevaluatedfor10Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , addingupto100 Marks. FINALTESTMARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIALLEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode(Demo/Prototype/anyoutcome). ADDINGUPTO40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30Marks),labtest(10Marks)and Innovative Experiment/ Concept Design and Implementation(10Marks)addingupto50Marks.THEFINALMARKS WILL BE 50 MARKS	50
	MAXIMUMMARKS FORTHE CIE THEORY	150

Semester: VII					
	MOBILE APPLICATION DEVELOPMENT				
	Category: Institutional Elective - I				
			(Theory)		
Course Code	:	21IS75IL	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
TotalHours	:	45L	SEE Duration	:	03 Hours

Prerequisite: - Programming in Java.

Unit-I	09 Hrs
Introduction:	
Smart phone operating systems and smart phones applications. Introduction to A Android Studio, creating an Android app project, deploying the app to the emulate	Android, Installing or and a device. UI
Design: Building a layout with UI elements, Layouts, Views and Resources, Text ar Activities and Intents, The Activity Lifecycle, Managing State, Activities and In	nd Scrolling Views. Applicit Intents, The
Android Studio Debugger, Testing the Android app, The Android Support Library.	
Unit–II	09 Hrs
User experience:	
User interaction, User Input Controls, Menus, Screen Navigation, Recycler Vie	w, Delightful user
experience, Drawables, Styles, and Themes, Material Design, Testing app UI,	Testing the User
Interface	
Unit–III	09 Hrs
Working in the background:	
Async Task and Async Task Loader, Connect to the Internet, Broadcast Recei	vers and Services.
Scheduling and optimizing background tasks - Notifications, Scheduling Alarms	s, and Transferring
Data Efficiently	
Unit–IV	09 Hrs
All about data:	
Preferences and Settings, Storing Data, Shared Preferences. Storing data usin	g SQLite, SQLite
Database. Sharing data with content providers.	
Advanced Android Programming: Internet, Entertainment and Services. Displaying	ing web pages and
maps, communicating with SMS and emails, Sensors.	
Unit–V	09 Hrs
Hardware Support & devices:	
Permissions and Libraries, Performance and Security. Fire base and AdMob, Publis	sh and Polish,
Multiple Form Factors, Using Google Services.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the basic features of android platform and the application development
	process. Acquire familiarity with basic building blocks of Android application and its
	architecture.
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications
	incorporating. Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced
	Android technologies, handle security issues, rich graphics interfaces, using debugging and
	troubleshooting tools.
CO4:	Create innovative applications, understand the economics and features of the app marketplace
	by offering the applications for download.

1	Android Programming, Phillips, Stewart, Hardyand Marsicano, Big Nerd Ranch Guide, 2 nd Edition, 2015, ISBN-13 978-0134171494
2	AndroidStudioDevelopmentEssentials-Android6, NeilSmyth,2015, Create space Independent Publishing Platform, ISBN:9781519722089
3	Android Programming–Pushing the limits, EricHellman,2013, Wiley, ISBN-13:978- 1118717370
4	Professional Android2ApplicationDevelopment, 1stEdition, 2012,RetoMeier, Wiley India Pvt. Ltd,ISBN-13:9788126525898
5	BeginningAndroid3, Mark Murphy, A press Springer India Pvt Ltd,1 st Edition,2011, ISBN- 13:978-1-4302-3297-1
6	AndroidDeveloperTraining-https://developers.google.com/training/android/ AndroidTestingSupportLibrary-https://google.github.io/android-testing-support-library/

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	1 Objective type questions covering entire syllabus 20				
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VII						
PROJECT MANAGEMENT						
		Catego	ory: Institutional	Elective - I		
			(Theory)			
Course Code	:	21IM75IM		CIE	:	100Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours

Unit-I	06 Hrs
Introduction: Project, Project management, relationships among portfolio management	, program
project management, operations management and organizational project management, relationship	role of the
project manager, project management body of knowledge.	
Generation and Screening of Project Ideas: Generation of ideas, monitoring the environmenta approximate according for project ideas, proliminary screening, project rating index	rironment,
of positive net present value.	x, sources
Unit – II	09 Hrs
Project Scope Management: Project scope management, collect requirements define sco	pe, create
WBS, validate scope, control scope.	
Organizational influences & Project life cycle: Organizational influences on project man	nagement,
project state holders & governance, project team, project life cycle.	
Unit –III	09 Hrs
Project Integration Management: Develop project charter, develop project managem	ient plan,
direct & manage project work, monitor & control project work, perform integrated chang	e control,
close project or phase.	
Project Quality management: Plan quality management, perform quality assurance, contr	ol quality.
Unit –IV	09 Hrs
Project Risk Management: Plan risk management, identify risks, perform qualitative risk perform quantitative risk analysis, plan risk resources, control risk.	c analysis,
Project Scheduling: Project implementation scheduling, Effective time management, scheduling techniques, Resources allocation method, PLM concepts. Project life cycle cos	Different ting.
Unit –V	09 Hrs
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for	combined
activities, logic diagrams and networks, Project evaluation and review Techniques (PERT)	Planning,
Computerized project management.	
Course Outcomes: After completing the course the students will be able to: -	

Course	Course Outcomes. After completing the course, the students will be able to			
CO 1	Understand the fundamental concepts of project management and its relationship with			
	organizational strategy, operations management, and business value.			
CO 2	Apply techniques for generating, screening, and evaluating project ideas, considering factors			
	such as net present value and project rating index.			
CO 3	Create Work Breakdown Structures (WBS), utilization of PERT/CPM for developing project			
	schedule, alongside requirement collection, scope definition, scope validation, and scope			
	control.			
CO 4	Develop skills in project integration, quality, risk management, and scheduling, enabling			
	effective project planning, execution, monitoring, and control.			

1	Project Management Institute, "A Guide to the Project Management Body of Knowledge
1.	(PMBOK Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9
2.	Harold Kerzner, Project Management A System approach to Planning Scheduling &
	Controlling, John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
3.	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review,
	Tata McGraw Hill Publication, 7th Edition, 2010, ISBN 0-07-007793-2.
4.	Rory Burke, "Project Management - Planning and Controlling Techniques", John Wiley &
	Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)								
Q. NO.	Q. NO. CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2 : Question 3 or 4	16						
5&6	Unit 3 : Question 5 or 6	16						
7&8	Unit 4 : Question 7 or 8	16						
9 & 10	Unit 5: Question 9 or 10	16						
TOTAL								

				Semester: VI	I			
SUPPLY CHAIN ANALYTICS								
Category: Institutional Elective - I								
(Theory)								
Course Code	:	21	IM75IN		CIE	:	100	Marks
Credits: L:T:	P :	3:0):0		SEE	:	100	Marks
Total Hours	:	42	L		SEE Duration	:	03 H	ours
				Unit-I				06 Hrs
Introduction:	Suppl	y C	hain, Supply	y Chain Manager	nent, Business A	nal	ytics,	Supply Chain
Analytics.								
Data-Driven S	upply	Cha	ins: Data and	d its value in SCM	I, Data Source in S	Supp	oly Cha	ains, Big Data,
Introduction to	Pythe	on (C	Concepts only	<i>y</i>).				1
			1	Unit – II				08 Hrs
Data Manipul	tion:	Data	1 Manipulatic	on, Data Loading	and Writing, Data	Ind	lexing	and Selection,
Data Merging	and Co	ombi	nation, Data	Cleaning and Prepa	aration, Data Comp	outat	tion an	d Aggregation,
Working with	Text a	ind I	Datetime Data	a (Concepts only).				1
			1	Unit –III				08 Hrs
Customer Ma	nagen	nent:	Customers	in Supply Chain	s, Understanding	Cu	stomer	rs, Building a
Customer-Cer	tric So	C, Co	ohort Analysi	is, RFM Analysis,	Clustering Algorit	hms	(Conc	cepts only).
Supply Mana	emen	t: Pi	rocurement i	n Supply Chains,	Supplier Selection	on,	Suppli	er Evaluation,
Supplier Rela	ionshi	ip M	anagement, S	Supply Risk Mana	gement, Regressio	on A	lgoritl	nms (Concepts
only).								
								00 H
*** 1	1 7		1	Unit –IV		•		08 Hrs
Warehouse a	nd In	vent	ory Manage	Unit –IV ement: Warehous	e Management,	Inve	entory	08 Hrs Management,
Warehouse a Warehouse Op	nd In timiza	vent	ory Manage , Classificatio	Unit –IV ement: Warehouse on Algorithms (Co	e Management, ncepts only).	Inve	entory	08 Hrs Management,
Warehouse a Warehouse O Demand Man	nd In timiza ageme	vent ation ent:	ory Manage , Classificatio Demand Ma	Unit –IV ement: Warehous on Algorithms (Co magement, Deman	e Management, ncepts only). nd Forecasting, T	Inve `ime	entory Serie	08 Hrs Management, s Forecasting,
Warehouse a Warehouse Op Demand Man Machine Lear	nd In timiza ageme ting N	vent ation ent: fetho	ory Manage , Classificatio Demand Ma ods (Concepts	Unit –IV ement: Warehouse on Algorithms (Co magement, Deman s only).	e Management, ncepts only). nd Forecasting, T	Inve	entory Serie	08 Hrs Management, s Forecasting,
Warehouse a Warehouse Op Demand Man Machine Lear	nd In timiza ageme iing N	vent ation ent: Ietho	ory Manage , Classificatio Demand Ma ods (Concepts	Unit –IV ement: Warehouse on Algorithms (Co magement, Deman s only). Unit –V	e Management, ncepts only). nd Forecasting, T	Inve	entory Serie	08 Hrs Management, s Forecasting, 06 Hrs
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man	nd In timiza ageme ing M	vent ation ent: <u>1ethc</u> ent: I	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Mar	Unit –IV ement: Warehouse on Algorithms (Co magement, Deman s only). Unit –V magement, Modes	e Management, ncepts only). nd Forecasting, T	Inve ime gist	entory Serie ics, Lo	08 Hrs Management, s Forecasting, 06 Hrs gistics Service
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo	nd In timiza ageme ing M ageme bal Lo	ent: Ation ent: Aetho ent: I ogisti	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Man cs Managem	Unit –IV ement: Warehouse on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route	Inve Time gist	entory Serie ics, Lo otimiza	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only).	nd In timiza ageme ing M ageme bal Lo	vent ation ent: <u>Iethc</u> ent: I ogisti	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Mar ics Managem	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route	Inve ime gist	entory Serie ics, Lo otimiza	08 HrsManagement,s Forecasting,06 Hrsgistics Servicetion (Concepts
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential	nd In timiza ageme ing M ageme oal Lo Learn	vent ation ent: fetho ent: I ogisti ing:	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Mar cs Managem	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route	Inve ime gist	entory Serie ics, Lo otimiza	08 Hrs Management, ss Forecasting, 06 Hrs gistics Service tion (Concepts
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza	nd In timiza ageme ageme oal Lo Learn tion: 1	ivent ation ent: <u>fetho</u> ent: I ogisti ing: Data	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Man cs Managem Visualization	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pytl	Inve ime gist e Op	entory Serie ics, Lo otimiza Forma	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, atting a Figure,
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Log	nd In timiza ageme ing N ageme bal Lo cearn tion: 1 e Cha	ivent ation ent: Ietho ent: I ogisti ing: Data arts,	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Man cs Managem Visualization Plotting with	Unit –IV ement: Warehouse on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pytl uphic Mapping wi	ime jime gist e Op	entory Serie ics, Lo otimiza Forma Basema	08 HrsManagement,s Forecasting,06 Hrsgistics Servicetion (Conceptsatting a Figure,up, Visualizing
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loo	nd In timiza ageme ing M ageme bal Lc bal Lc Learn tion: I e Cha ations	ivent ation ent: fetho ent: I ogisti ing: Data arts,	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Mar ics Managem Visualization Plotting with	Unit –IV ement: Warehouse on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pytl uphic Mapping wi	Inve ime gist: e Op hon, th E	entory Serie ics, Lo otimiza Forma Basema	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, p, Visualizing and modelling
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loc Python progra	nd In timiza ageme ageme coal Lo Learn tion: I e Cha ations mmin	vent ation ent: Ietho ent: I ogisti ing: Data arts, g fo	ory Manage , Classificatio Demand Ma ods (Concepts Cogistics Maragem Visualization Plotting with of the syllab	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra gorithms applied	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pytl uphic Mapping wi to supply chain p	Inve ime gist e Op hon, th E	entory Serie ics, Lo otimiza Basema esses	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, up, Visualizing and modelling
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loo Python progra included in the	nd In timiza ageme ageme bal Lo Learn tion: I e Cha ations mmin five u	vent ation ent: <u>Iethc</u> ent: I ogisti ing: Data arts, g fo units	ory Manage , Classificatio Demand Ma ods (Concepts Cogistics Man cs Managem Visualization Plotting with or various all of the syllab	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra gorithms applied us.	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pytl uphic Mapping wi to supply chain p	Inve ime gist: e Op hon, th E	Serie Serie ics, Lo otimiza Basema esses	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, p, Visualizing and modelling
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualizz Plotting Simp Starbucks Loc Python progra included in the	nd In timiza ageme ing N ageme oal Lo Learn tion: l e Cha ations mmin five u	vent ation ent: I ent: I ogisti ing: Data arts, g fo units	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Man cs Managem Visualization Plotting with or various all of the syllab	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra gorithms applied us.	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pyth uphic Mapping wi to supply chain p	Inve ime gist: e Op hon, th E proc	entory Serie ics, Lo otimiza Basema esses	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, up, Visualizing and modelling
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loc Python progra included in the Course Outco	nd In timiza ageme ing N ageme bal Lo cearn tion: l e Cha ations min five u mes:	vent ation ent: I ent: I ogisti ing: Data arts, g fo units Afte	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Managem Visualization Plotting with or various alg of the syllab	Unit –IV ement: Warehouse on Algorithms (Co- magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra gorithms applied us.	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pyth uphic Mapping wi to supply chain p tudents will be ab	Inve ime gist: e Op hon,, th E proc	entory Serie ics, Lo otimiza Forma Basema esses a o know	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, p, Visualizing and modelling v bal
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loo Python progra included in the Course Outco CO1: Unde	nd In timiza ageme ing N ageme coal Lo Learn tion: I e Cha ations mmin five u mes: stand	vent ation ent: <u>Iethc</u> ent: I ogisti ing: Data arts, g fo units Afte supp envi	ory Manage , Classification Demand Ma ods (Concepts Logistics Managem Visualization Plotting with or various algorithe syllab r completing oly chain condition	Unit –IV ement: Warehouss on Algorithms (Co magement, Demand s only). Unit –V nagement, Modes ent, Logistics Netwon in Python, Creati in Seaborn, Geogra gorithms applied us. g the course, the s cepts, systemic and	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pyth phic Mapping wi to supply chain p tudents will be ah	ime gist: e Op hon, th E proc	Forma Basema o knov	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, up, Visualizing and modelling v obal
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loc Python progra included in the Course Outco CO1: Unde comp	nd In timiza ageme ing N ageme coal Lo Learn tion: I e Cha ations five u five u mes: stand	vent ation ent: Ietho ent: I ogisti ing: Data arts, g fo units Afte supp envi	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Mara cs Managem Visualization Plotting with of the syllab r completing oly chain concepts	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra gorithms applied us. g the course, the s cepts, systemic and	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pyth phic Mapping wi to supply chain p tudents will be all d strategic role of S	Inve ime gist e Op hon, th E proc	entory Serie ics, Lo otimiza Basema esses o know I in glo	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, up, Visualizing and modelling v obal
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loc Python progra included in the Course Outco CO1: Under comp CO2: Evalu	nd In timiza ageme ing N ageme bal Lo Learn tion: I e Cha ations mmin five u stand etitive ate alt	vent ation ent: fetho ent: I ogisti ing: Data arts, g fo units envi envi envi ernat	ory Manage , Classificatio Demand Ma ods (Concepts Logistics Man cs Managem Visualization Plotting with of the syllab r completing oly chain condition ronment.	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra gorithms applied us. g the course, the s cepts, systemic and nd distribution netv	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pyth phic Mapping wi to supply chain p tudents will be ah d strategic role of S work structures usi	Inve ime gist: e Op hon, th E proc	entory Serie ics, Lo otimiza Forma Basema esses o knov I in glo optimiz	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, up, Visualizing and modelling v obal zation models.
Warehouse a Warehouse Op Demand Man Machine Lear Logistics Man Providers, Glo only). Experiential Data Visualiza Plotting Simp Starbucks Loc Python progra included in the Course Outco CO1: Unde comp CO2: Evalu	nd In timiza ageme ing N ageme oal Lo Learn tion: l e Cha ations mmin five u mes: stand stitive ate alt	vent ation ent: Ietho ent: I ogisti ing: Data arts, g fo units Afte supp envi ernat	ory Manage , Classificatio Demand Ma ods (Concepts Cogistics Man cs Managem Visualization Plotting with of the syllab r completing of the syllab r completing oly chain conc ironment. tive supply an sourcing and te informatio	Unit –IV ement: Warehouss on Algorithms (Co magement, Deman s only). Unit –V nagement, Modes ent, Logistics Netw n in Python, Creati n Seaborn, Geogra gorithms applied us. g the course, the s cepts, systemic and nd distribution netw d inventory policie n technology fram	e Management, ncepts only). nd Forecasting, T of Transport in Lo vork Design, Route ng a Figure in Pyth phic Mapping wi to supply chain p tudents will be ah d strategic role of S work structures usi s in the supply cha	Inve ime gist: e Op hon,, th E proc	entory Serie ics, Lo otimiza Forma Basema esses o knov I in glo optimiz ontext	08 Hrs Management, s Forecasting, 06 Hrs gistics Service tion (Concepts atting a Figure, p, Visualizing and modelling v obal zation models. . . .

processes.

Refer	Reference Books				
1.	Kurt Y. Liu, Supply Chain Analytics - Concepts, Techniques and Applications, Palgrave -				
	Macmillan, Springer Nature Switzerland AG, 2022, ISBN 978-3-030-92224-5 (eBook)				
2.	Işık Biçer, Supply Chain Analytics - An Uncertainty Modeling Approach, 2023, Springer				
	Texts in Business and Economics, Springer Nature Switzerland AG, e-ISSN 2192-4341, e-				
	ISBN 978-3-031-30347-0				

3.	Supply Chain Management – Strategy, Planning & Operation, Sunil Chopra, Peter Meindl & D V Kalra, 6 th Edition, 2016, Pearson Education Asia; ISBN: 978-0-13-274395-2.
4.	Supply Chain Management – Creating Linkages for Faster Business Turnaround, Sarika Kulkarni & Ashok Sharma, 1 st Edition, 2004, TATA Mc Graw Hill, ISBN: 0-07-058135–5

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO. CONTENTS							
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	5 & 6 Unit 3 : Question 5 or 6						
7&8	7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

			Semester: VII			
NUCLEAR ENGINEERING						
Category: Institutional Elective - I						
Comme Code		211027510	(Theory)	CIE		100 Maadaa
Course Code	:	21ME/510		CIE	:	100 Marks
Total Hours	:	3:0:0 45 I		SEE SFF Duration	:	3 Hours
Total Hours	•	43 L		SEE Duration	•	5 110015
Prerequisites: Basic k	now	ledge of Physi	cs and Mathematics at	the college level		
•		Ū.	J nit-I			09 hrs
Introduction to Nucle	ar I	Engineering				
Historical Developmen	nt of	f Nuclear Engi	ineering, Overview of	Nuclear Energy A	pplic	ations, Nuclear
Physics Fundamentals:	At	omic Structure	and Nuclear Models: N	uclear Forces and	Intera	actions, Nuclear
Reactions and Cross-s	ecti	ons, Types of	Nuclear Reactions: Fi	ssion and Fusion	Reac	tions, Neutron-
Induced Reactions, Ap	plic	ations in Powe	er Generation and Indu	stry, Nuclear Pow	er Ge	eneration: Basic
Principles of Nuclear R	eact	tors, Types of f	Nuclear Reactors, Radia	tion Basics, Types	of Ra	adiation (Alpha,
Beta, Gamma), Radio	Sact	ive Decay a	nd Decay Chains, Ui	nits of Radioacti	vity	and Radiation
Measurement		T	[:4)			10 hag
Nuclear Reactors		U	mt-2			10 nrs
Types of Nuclear Read	etor	s Reactor Cor	mponents and Their Fu	nctions Nuclear F	React	or Kinetics and
Control, Neutron Intera	ictic	ons and Transp	ort, Neutron Moderation	n and Absorption,	Reac	tor Kinetics and
Dynamics, Specific Ty	pes	of Nuclear Rea	actor, Light Water Reac	tors: Pressurized V	√ater	Reactor (PWR)
and Boiling Water Read	ctor	(BWR), Heavy	Water Reactors: Canac	la Deuterium Uran	ium (CANDU), Gas-
Cooled Reactors: Gas-	Coc	oled Reactor an	nd Fast Breeder Reacto	or (and HTGR), I	Liquio	d Metal-Cooled
Reactors (LMFR).		TI				10 has
Nuclear Fuel Cycle		U	nnt - 5			10 nrs
Introduction to the Nuc	clea	r Fuel Cycle:]	Importance of Fuel Cvo	cle Management. I	Jrani	um Mining and
Ore Processing, Typ	es	of Uranium	Deposits, Mining M	ethods and Proc	essir	g Techniques,
Environmental and He	ealtl	n Consideratio	ns, Uranium Enrichme	ent and Fuel Fabi	icati	on: Enrichment
Technologies (Centrifu	ıgat	ion, Gaseous	Diffusion), Fuel Fabric	cation Processes,	Quali	ity Control and
Safety Measures, Nucle	ear l	Reactors and F	uel Utilization: Fuel As	sembly Design and	d Coi	mposition.
D H H D H H		U	nit-4			08 hrs
Radiation Protection	and	Safety:	nizina Dadiatian Intan	action of Dadiation		h Mattan Iluita
of Padiation Maguran	alle	Dialogical Ef	facts of Padiation, Inter	action of Radiation	1 WIU bosti	a Effects A outo
and Chronic Radiation	Ff	fects Risk As	sessment and Dose Re	esponse Relationsh	nasin	Radiation Dose
Assessment: External a	nd	Internal Dosin	etry Radiation Monito	ring Devices Occ	unati	onal and Public
Dose Limits, Radiation	Sat	fety Measures:	Emergency Response	and Contingency F	lann	ing: Emergency
Procedures and Drills.	Con	nmunication St	trategies During Radiati	ion Incidents.		
,		U				08 hrs
Environmental and Se	ocie	tal Aspects			·	
Environmental Impact	Ass	sessment: Life	Cycle Analysis of Nucl	lear Energy, Impac	tofl	Jranium Mining
and Fuel Cycle Operation	ons,	Radioactive W	Vaste Management and	Environmental Con	iside	rations, Societal
Perceptions and Attitud	ies,	Factors Influe	ncing Public Perception	n, Ethical Consider	ation	is: Principles of
Technology Nuclear Eng	gine	ering, Nuclear	r Energy and Social J	vistice, Ethical D	nemr	nas in Nuclear
reennology, Nuclear E	ner	gy and Chinate	Change. Carbon root	mint of inuclear Po	wer.	

Course Outcomes:

CO1	Understand nuclear physics: grasp atomic structure, nuclear models, and the forces driving
	nuclear interactions
CO2	Evaluate various reactor types and advanced concepts, applying kinetics and controls to
	ensure safe and efficient nuclear reactor analysis and design.
CO3	Examine the nuclear fuel cycle from mining to recycling, assess environmental impact and
	safety, and promote responsible, sustainable practices throughout.
CO4	Apply ionizing radiation principles for safety measures; integrate communication and
	regulatory compliance into emergency response plans effectively.

-	
1	Bodansky, D. (2007). "Nuclear Energy: Principles, Practices, and Prospects." Springer. ISBN-
	13: 978-0387261994.
2	Lamarsh, J. R., & Baratta, A. J. (2001). "Introduction to Nuclear Engineering." Prentice Hall.
	ISBN-13: 978-0201824988.
3	Duderstadt, J. J., & Hamilton, L. J. (1976). "Nuclear Reactor Analysis." John Wiley & Sons.
	ISBN-13: 978-0471223634.
4	Knoll, G. F. (2008). "Radiation Detection and Measurement." John Wiley & Sons. ISBN-13:
	978-0470131480

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4 Unit 2: (Internal Choice)							
5&6	Unit 3: (Internal Choice)	16					
7&8	Unit 4: (Internal Choice)	16					
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					

Semester: VII						
	COGNITIVE PSYCHOLOGY					
	Category: Institutional Elective - I					
	(Theory)					
Course Code	:	21HS75IQ	CIE	:	100	
Credits: L:T:P	:	3:0:0	SEE	:	100	
Total Hours	:	42L	SEE Duration	:	3 Hours	

 Unit-I
 09 Hrs

 Fundamentals & current trends in cognitive psychology: Definition, Emergence of cognitive psychology, Cognitive development theories and perspectives; Current status and trends in cognitive Psychology. Research methods in cognitive psychology- goals of research. Distinctive research method. Current areas of research in cognitive psychology, (Educational application, marketing and advertisement).

Unit – II	UO HIS			
Basic cognitive processes: Sensation and Perception: Sensory receptors and Brain, The constancies,				
pattern recognition, Modularity, Imagery: Characteristics of Imagery, Cognitive maps. Att	ention and			
Information processing: Nature and Types, Theories and models of attention. Neuropsy	chological			
studies of Attention. Consciousness: - meaning, Modern Theories and Contemporary R	esearch of			
Consciousness.				
Unit –III	08 Hrs			
Reasoning, Creativity and Problem-Solving: Reasoning definition, types, influencing	ig factors.			
Creativity- definition, steps involved in creative process, obstacles involved in creativity,	enhancing			
techniques of creativity. Metacognition: Problem-solving, steps in problem solving, types, methods,				
obstacles, and aids of problem-Solving. Concept of Design Thinking				
Unit –IV	08 Hrs			
Psycholinguistics: Definition, characteristics of language, theories - Chomsky. Stu	ructure of			
Language (Properties), Stages in Language Development, Neurological Language. Comprehension				
and Production. Bilingualism, Multilingualism and Learning disability.				
Unit –V	09 Hrs			

Cognitive Neuroscience: Definition and emergence of cognitive neuroscience, Scope of Neuroscience, structure and functions of Brain, Brain Plasticity, Intelligence and Neuroscience.Meta-cognitive strategies. Artificial intelligence, Robotics, Models on Information Processing.

Cours	Course Outcomes: After completing the course, the students will be able to: -			
CO1	Describe the basic theories, principles, and concepts of cognitive psychology as they relate to			
	behaviours and mental processes.			
CO2	Define learning and compare and contrast the factors that cognitive, behavioural, and			
	Humanistic theorists believe influence the learning process.			
CO3	Develop understanding of psychological attributes such as reasoning, problem solving			
	and self-improvement			
CO4	Apply the theories into their own and others' lives in order to better understand their			
004	Appry the meetics into their own and others inves in order to better understand their			
	personalities and experiences.			

1.	Sterberg R.J and Sternberg Karin(2012) Cognitive Psychology 6th Edition Woods worth
	Cenguage Learning
2.	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

- 3. Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
- 4. Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Some of the Experiential learning topics may include Reading Leadership books and summarizing, Analysis and interpretation of various economic reports, Visit to various organizations to understand organizational mechanics. Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO. CONTENTS				
	PART A			
1	Objective type questions covering entire syllabus	20		
(Maxin	PART B (Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Semester: VII					
	PF	RINCIPLES AND	PRACTICES OF CYBER LAW	V	
		Category: I	nstitutional Elective - I		
			(Theory)		
Course Code	:	21HS75IR	CIE	:	100
Credits: L:T:P	:	3;0;0	SEE	:	100
Total Hours	:	39 L	SEE Duration	:	3 Hours
		· · · ·			
		Uı	nit-I		08 Hrs
Introduction - Or	igin a	nd meaning of Cyb	perspace; Introduction to Indian C	Cybe	er Law, Distinction
between Cyber Crime and Conventional Crime, Cyber Criminals and their Objectives, Kinds of					
Cyber Crime & Cyber Threats, challenges of cybercrimes, Overview of General Laws and					
Procedures in India	ı.				
Cyber Jurisdiction - Concept of Jurisdiction, Jurisdiction in Cyberspace, Issues and concerns of					
Cyberspace Jurisdiction in India. International position of Cyberspace Jurisdiction. Judicial					
interpretation of Cyberspace Jurisdiction					
Activities: Case Studies and Practical Applications					
Unit – II 08 Hrs					

Information Technology Act: A brief overview of Information Technology Act 2000, IT Act 2000 vs. IT Amendment Act 2008, Relevant provisions from Indian Penal Code, Indian Evidence Act, Bankers Book Evidence Act, Reserve Bank of India Act, etc.

Electronic Signature and Digital Signature - Meaning & Concept of Relevance of Signature, Handwritten signature vs Digital Signature, Technological Advancement and development of signature, Digital Signature: IT Act, 2000, Cryptography, Public Key and Private Key, Public Key Infrastructure Electronic Signature vs. Digital Signature, E-Commerce under IT Act 2000, Issues and challenges of E-Commerce.

Activities:Case Studies and Practical Applications

08 Hrs

Data Protection and Privacy Concerns in Cyberspace - Need to protect data in cyberspace, Types of data, Legal framework of data protection, Data protection bill -an overview, GDPR, Concept of privacy, Privacy concerns of cyberspace, Constitutional framework of privacy, Judicial interpretation of privacy in India.

Unit –III

Data Privacy and Data Security- Defining data, meta-data, big data, non- personal data. Data protection, Data privacy and data security, Data protection regulations of other countries- General Data Protection Regulations (GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA)., Social media- data privacy and security issues.

Activities: Case Studies and Practical Applications

Unit –IV	08 Hrs

IP Protection Issues in Cyberspace

Copyright Issues in Cyberspace- Copyright infringement in digital environment. Indian legal protection of copyright in cyberspace.

Trademark Issues in Cyberspace - Domain Name Vs Trademark, Domain Name dispute and Related Laws, Different Form of Domain in Cyberspace.

Patent Issues in Cyberspace - Legal position on Computer related Patents - Indian Position on Patents.

Activities:Case Studies and Practical Applications

Unit –V		
Digital Forensics - Computer Forensics, Mobile Forensics, Forensic Tools, Anti-Forensics		
Cyber Crime & Criminal Justice Agencies - Cyber Crime Cells, Cyber Crime Appellate- Cyber		
Crime Investigation, Investigation Procedure - FIR - Charge Sheet		

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Course Outcomes: After completing the course, the students will be able to: -

CO1	Understand the importance of professional practice, Law and Ethics in their personal lives
	and professional careers.
CO2	Build in Depth Knowledge of Information Technology Act and Legal Frame Work of Right
	to Privacy, Data Security and Data Protection.
CO3	Identify the bone of contentions of cybercrime investigation techniques, evaluate problem-
	solving strategies, and develop science-based solutions.
CO4	Develop an Understanding of the Relationship Between E-Commerce and Cyberspace.

CO4 Develop an Understanding of the Relationship Between E-Commerce and Cyberspace.

	Cyber Law by Dr. Pavan Duggal Publisher: LexisNexis, ISBN-10: 8196241070, ISBN-13: 978-
	8196241070
	Introduction to Information Security and Cyber Laws by Surya Prakash Tripathi, Ritendra Goel,
2.	Praveen Kumar Shukla ASIN: 9351194736, Publisher: Dreamtech Press, ISBN-10:
	9789351194736, ISBN-13: 978-9351194736.
2	Cyber Forensics in India: A Legal Perspective by Nishesh Sharma, 1st Edition, ISBN:
3.	9788131250709.
4.	Cyber Laws, Justice Yatindra Singh, 6 th Edition, Vol. 1, ISBN : 9789351437338

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	 TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. 	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20) ADDING UPTO 40 MARKS.	40			
	MAXIMUM MARKS FOR THE CIE	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
(Maxin	PART B (Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: VII							
SUMMER INTERNSHIP							
Course Code	:	21CH761		CIE	:	50 Ma	arks
Credits: L:T:P	:	0:0:2		SEE	:	50 Ma	arks
Hours/Week	:	04		SEE Duration	:	2 Hou	irs
			GUIDELL	NES	_		
1. The duration of	th	e internship s	hall be for a	period of 6/8 wee	ks o	n full ti	me basis after VI
semester final e	xar	ns and before	the commen	cement of VII sen	nest	er.	
2. The student mu	st s	submit letters	from the ind	ustry clearly spec	ifyir	ng his /	her name and the
duration of the	inte	ernship on the	company let	ter head with auth	oriz	ed sign	ature.
3. Internship must	be	related to the	e field of spe	cialization of the 1	esp	ective U	JG programme in
which the stude	nt l	nas enrolled.					
4. Students under	goi	ng internship	training are	advised to report	t th	eir pro	gress and submit
periodic progre	ss r	eports to thei	r respective g	uides.			
5. Students have t	оp	resent the int	ernship activi	ties carried out to	the	departi	mental committee
and only upon a	ippi	roval by the c	ommittee, the	e student can proce	eed	to prepa	are and submit the
hard copy of the	e fi	nal internship	report. How	ever, interim or pe	erio	dic repo	orts as required by
the industry / o	rga	nization can	be submitted	as per the format	acc	entable	to the respective
industry /organi	izat	ions				-1	·· ··· ··· ··· ··· ··· ··· ··· ··· ···
6 The reports sha	11 h	e printed on	A4 size with	1.5 spacing and]	Fime	es New	Roman with font
size 12 outer c	nve	er of the repo	rt (wrapper)	has to be Ivory co	lor	for UG	circuit Programs
and Light Blue	for	Non-Circuit	Programs	hus to be ivery et	101	101 00	eneuri i logiums
7 The broad form	ot d	f the internel	i i ografijs.	t chall be as follow	TTC.		
7. The broad form			lip illiai lepoi		ws		
• C0*	ver :f:	rage	11.000				
• Cer	un 	cate from Co	liege	• ,•			
• Cei	T1T1	cate from Inc	lustry / Organ	ization			
• Acl	knc	wledgement					
• Syr	10p	S1S					
• Tat	ble	of Contents					
• Cha	apto	er I - Profile	e of the Org	anization: Organi	zati	onal str	ucture, Products,
Ser	vic	es, Business	s Partners,	Financials, Man	pow	ver, So	cietal Concerns,
Pro	fes	sional Practic	es,				
Cha	apte	er 2 - Activiti	es of the Dep	artment			
• Cha	apte	er 3 - Tasks F	Performed: su	mmary of the tas	ks p	perform	ed during 8-week
per	iod						
Cha	apte	er 4 – Reflec	tions: Highli	ght specific techn	ical	and so	oft skills acquired
dur	ing	internship					
• Ref	fere	ences & Anne	xure				
Course Ortererer							
Course Outcomes:							
After going unough the internship the student will be able to:							
CO1. Appry Engineering and wanagement principles							
CO3: Communicate effectively and work in teams							
CO4: Imbibe the practice of professional ethics and need for lifelong learning							
Scheme of Continuous Internal Evaluation (CIE).							
The evaluation committee shall consist of Guide Professor/Associate Professor and Assistant							
Professor. The committee shall assess the presentation and the progress reports in two reviews. The							
evaluation criteria shall be as per the rubrics given below:							
······							
Reviews			Activity				Weightage

Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments.	25 Marks
Review - II	Importance of resource management, environment and sustainability, presentation skills and report writing	25 Marks

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

Scheme of Evaluation for SEE				
Particulars	%Marks			
Project Synopsis (Initial Writeup)	10%			
Project Demo/Presentation	30%			
Methodology and Results Discussion	30%			
Project Work Report	10%			
Viva-voce	20%			
Total	100			

Semester: VII							
MINOR PROJECT							
Course Code	:	21CH77	CIE	:	50 Marks		
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks		
Hours/Week	:	04	SEE Duration	:	2 Hours		

GUIDELINES

1. The minor project is to be carried out individually or by a group of students. (maximum of 4 members and minimum of 3 students).

2. Each student in a team must contribute equally in the tasks mentioned below.

3. Each group has to select a current topic that will use the technical knowledge of their program of study after detailed literature survey.

4. The project should result in system/module which can be demonstrated, using the available resources in the college.

5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.

6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carrying out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integration testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course Outcomes:

After going through the minor project the student will be able to:

CO1: Interpreting and implementing the project in the chosen domain by applying the concepts learnt.

CO2: The course will facilitate effective participation by the student in team work and development of communication and presentation skills essential for being part of any of the domains in his / her future career.

CO3: Appling project life cycle effectively to develop an efficient product.

CO4: Produce students who would be equipped to pursue higher studies in a specialized area or carry out research work in an industrial environment.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in three review phases. The evaluation criteria shall be as per the rubrics given below:

ReviewPhase

Activity

Weightage

Phase-I	Synopsis submission, approval of the selected topic, Problem	10 Marks
	definition, Literature review, formulation of objectives,	
	methodology	
Phase - II	Mid-term evaluation to review the progress of implementation,	15 Marks
	design, testing and result analysis along with documentation	
Phase -III	Submission of report, Final presentation and demonstration	25 Marks

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

Scheme of Evaluation for SEE			
Particulars	%Marks		
Project Synopsis (Initial Writeup)	10%		
Project Demo/Presentation	30%		
Methodology and Results Discussion	30%		
Project Work Report	10%		
Viva-voce	20%		
Total	100		

Semester: VIII							
MAJOR PROJECT							
Course Code	:	21CH81P		CIE	:	100 Marks	
Credits: L:T:P	:	0:0:12		SEE	:	100 Marks	
Hours/Week	:	24		SEE Duration	:	03 Hours	

GUIDELINES

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (approved by the department Project Review Committee) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project.
- The project may be carried out In-house / Industry / R & D Institution. The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the field of respective program areas or in line with CoE's(Centre of Excellence) identified by the college or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in NPTEL from the discipline of Humanities and Social Sciences, Management, Multidisciplinary and Design Engineering. The course chosen could be either of 4w/8w/12w duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. The same will be considered as one of the components during project evaluation of phase 2 and phase 5.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of Industry project, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.

- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Course Outcomes:

After going through the major project the student will be able to:

CO1: Apply knowledge of mathematics, science and engineering to solve respective engineering domain problems.

CO2: Design, develop, present and document innovative/multidisciplinary modules for a complete engineering system.

CO3: Use modern engineering tools, software and equipment to solve problem and engage in lifelong learning to follow technological developments.

CO4: Function effectively as an individual, or leader in diverse teams, with the understanding of professional ethics and responsibilities.

Scheme of Continuous Internal Evaluation (CIE):

3.Methodology and Experimental Results & Discussion

The following are the weightings given for the various stages of the	he project.	
1. Selection of the topic and formulation of objectives	10%	
2.Design and Development of Project methodology	25%	
3.Execution of Project	25%	
4. Presentation, Demonstration and Results Discussion	30%	
5.Report Writing & Publication	10%	
Scheme for Semester End Evaluation (SEE):		
The following are the weightages given during Viva Examination		
1.Written presentation of synopsis	10%	
2.Presentation/Demonstration of the project	30%	

4.Report

5.VivaVoce

30%

10%

20%

Calendar of Events for the Project Work:

Wee	Even
k	t
Beginning of 7 th	Formation of group and approval by the department committee.
Semester	
7 th Semester	Problem selection and literature survey
Last two weeks of	Finalization of project and guide allotment
7 th Semester	
II Week of 8 th	Synopsis submission and preliminary seminar
Semester	
III Week	First visit of the internal guides to industry(In case of project being carried out
	In industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by
	Department project Committee and guide for internal assessment. Finalization
	of CIE.

Evaluation & Scheme for CIE and SEE

Scheme of Evaluation for CIE		Scheme of Evaluation for SEE		
Partic ulars	%Mar ks	Particu lars	%Mar ks	
Project Evaluation I	10%	Project Synopsis(Initial Writeup)	10%	
Project Evaluation II	25%	Project Demo/Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Curriculum Design Process

Process For Course Outcome Attainment

Program Outcome Attainment Process

KNOWLEDGE & ATTITUDE PROFILE

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM OUTCOMES (POs)

- * **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- * PO2: Problem Analysis: Identify, formulate, review research literature and analyze engineering problems reaching substantiated complex conclusions with consideration for sustainable development. (WK1 to WK4)
- * **PO3:** Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex * engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- * **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- PO6: The Engineer and The World: Analyze and evaluate societal and environmental * aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- * PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- * **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- * **PO9:** Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- * **PO10:** Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and * ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVUKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Professionalism, Commitment, Integrity, Team Work, Innovation

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India +91-80-68188110 www.rvce.edu.in

Go, change the world[®]

Scan Here