RashtreeyaSikshanaSamithi Trust R.V COLLEGE OF ENGINEERING

(Autonomous Institution affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

SCHEME & SYLLABUS 3rd to 4thSemesters B.E-Civil Engineering (2016 Scheme)

Departmentvision

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

Department mission

- Disseminating and integrating the knowledge of civil engineering and allied fields.
- Enhancing industry-institute interaction leading to interdisciplinary research.
- Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- Motivate entrepreneurship and professional ethics to serve the society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO	Description
PEO1	Successfully address technological and managerial challenges
PEO2	Professionally design and execute Civil Engineering projects
PEO3	Pursue advanced education, research and continue life-long learning process to remain active professionals
PEO4	Play key roles in addressing societal needs through interdisciplinary approach

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

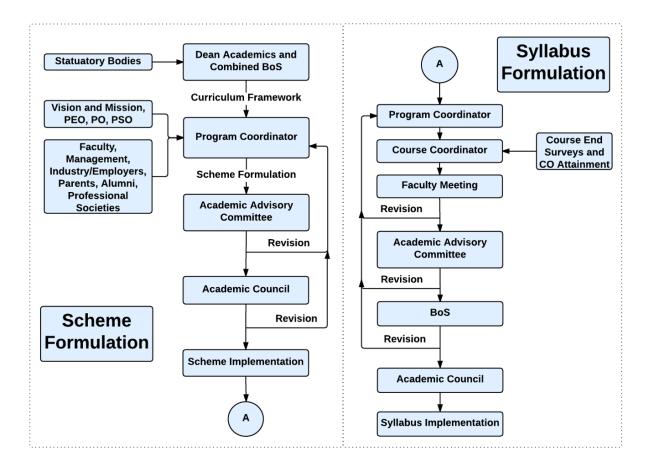
7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

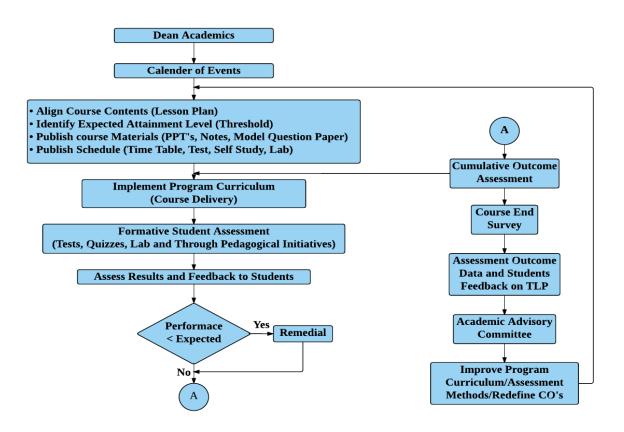
9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

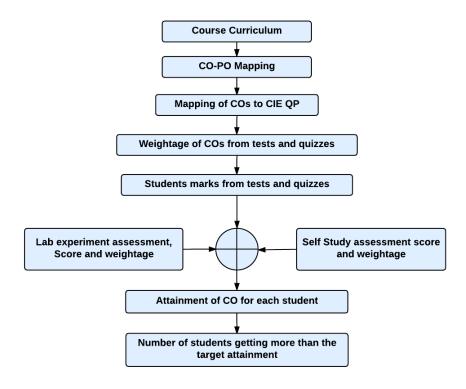
11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

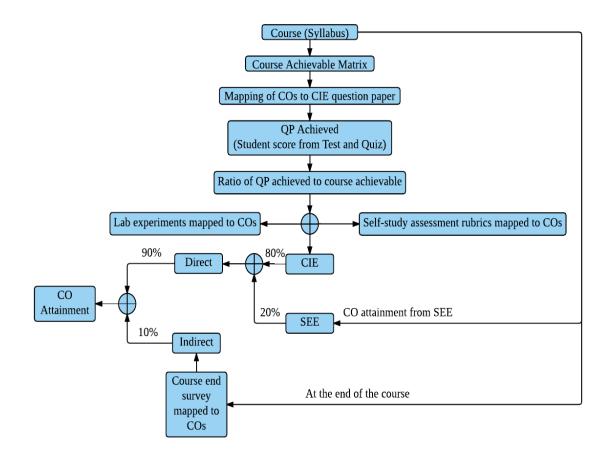

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

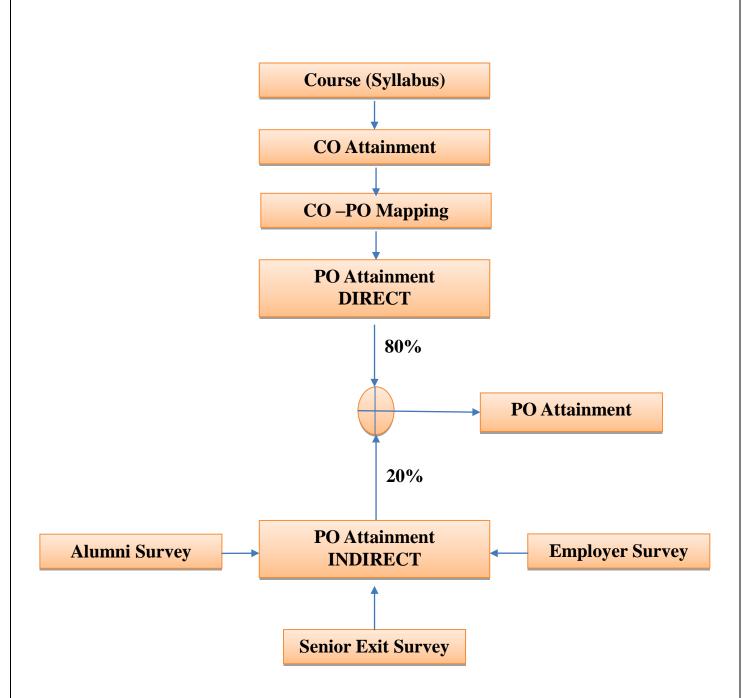
PROGRAM SPECIFIC OUTCOMES (PSOs)


PSO	Description
PSO1	Apply knowledge of fundamental aspects to analyze and design civil engineering structures
PSO2	Provide sustainable solutions to civil engineering problems
PSO3	Employ codal provisions to arrive at comprehensive solutions to address societal needs
PSO4	Exhibit communication and teamwork skills

Lead Society: American Society of Civil Engineers (ASCE)


Curriculum Design Process


Academic Planning and Implementation


PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

Sl. No.	Catagony	Percentage (%)	Minimum No. of	2016 scheme			
51. INO.	Category	Percentage (%)	credits	Without Mini Project	With Mini Project		
1	Humanities	5-10	10	9+2	9+2		
2	Basic Science	15-20	30	30	30		
3	Engineering Science	15-20	30	30	30		
4	Professional Core Courses (PC)	30-40	60	78+3=81 (3 credits core in place of Minor project in 7 th semester)	81-3=78 (3 Credits for minor project in 7 th semester)		
5	Professional Elective Courses	10-15	20	20	20		
6	Other Electives	5-10	10	10	10		
7	Project Work	10-15	20	16+2 Major project +Tech. Seminar	16+2+3 Major project +Tech. Seminar +Mini Project		
				200	200		

Credits Distribution as per UGC/VTU

R. V. COLLEGE OF ENGINEERING, BENGALURU – 59.

(An Autonomous Institution affiliated to VTU, Belgavi)

DEPARTMENT OF CIVIL ENGINEERING

SCHEME OF TEACHING AND EXAMINATION

		TI	HIRD SEMEST	ER				
Sl.	Correct Code	le Course Title	D - C	Credit Allocation				Total
No.	Course Code	Course Thie	BoS	Lecture	Tutorial	Practical	SS (EL)	Credits
1	16MA31C	Applied Mathematics-III	Maths	3	1	0	0	4
2	16EM32A	Engineering Materials	CV	2	0	0	0	2
3	16CV33	Strength of Materials	CV	3	0	1	0	4
4	16CV34	Concrete Technology	CV	3	0	1	1	5
5	16CV35	Fluid Mechanics	CV	3	0	1	1	5
6	16CV36	Water supply and Treatment Engineering	CV	3	0	0	1	4
7	16DMA37	Bridge Course Mathematics*	Maths	2	0	0	0	0
		Total No. of Credits						24
		No. of Hrs.		17+2	2	6	12**	25

*Mandatory Audit course for lateral entry diploma students

** Non-contact hours

1Hr. Theory= 1 credit

2Hrs. Practical=1credit

2Hrs. Tutorial=1 credit

4Hrs. SS(EL) = 1 Credit

R. V. COLLEGE OF ENGINEERING, BENGALURU – 59.

(An Autonomous Institution affiliated to VTU, Belgavi)

DEPARTMENT OF CIVIL ENGINEERING

SCHEME OF TEACHING AND EXAMINATION

		F	OURTH SEN	AESTER				
S1.					Total			
No	Course Code	Course Title	BOS	Lecture	Tutorial	Practical	SS (EL)	Credits
1	16MA41C	Applied Mathematics IV	Maths	3	1	0	0	4
2	16ET42	Environmental Technology	BT	2	0	0	0	2
3	16CV43	Theory of Structures	CV	3	0	0	1	4
4	16CV44	Building Construction and Planning	CV	3	0	1	1	5
5	16CV45	Surveying	CV	3	0	1	0	4
6	16CV46	Waste Water Engineering	CV	3	0	1	1	5
7	16HS47	Professional Practice-II (Communication Skills and Professional Ethics) \$	HSS	0	0	0	0	1
8	16DCS48	Bridge Course C Programming *	CSE	2	0	0	0	0
9	16CV49	Water Resources Engineering	CV	3	0	0	0	3
		Total No. of Credits						28
		No. of Hrs.		20+2	2	6	12**	28

*Mandatory Audit course for lateral entry diploma students **Non contact hours \$ 3 days (18 Hrs) in 3RD semester and 3 days (18 Hrs) in 4th semester, in the event of student not able to take the regular allotment, may have to complete this credit by attending other branch program.

1Hr. Theory= 1 credit

2Hrs. Practical=1credit

2Hrs. Tutorial=1 credit

4Hrs. SS(EL) = 1 Credit

	Semester: III					
	APPLIED MATHEMATICS – III (ASE,BT,CH,CV,IEM,ME)					
Cou	irse Code: 16MA31C	CIE Marks: 100				
Cre	dits: L:T:P:S: 3:1:0:0	SEE Marks: 100				
Ηοι	ırs: 40	SEE Duration: 3Hrs				
Cou	rse Learning Objectives:					
1	Identify and solve initial value problems, physically interpret the solution using Laplace					
	Transforms and Inverse Laplace transforms.					
2	Evaluate extremal of integrals involving functional with applications to physical					
	situations.					
3	3 Understand the basics of Matrix theory, Eigenvalues and Eigenvectors, solution of					
	system of linear equations.					
4	Analyze the given set of experimental	data and fit suitable approximating curves.				

UNIT-I	
LAPLACE TRANSFORM	09 Hrs
Existence and uniqueness of Laplace Transform (LT), Transform of elementary	
functions, RoC. Properties of LT: Linearity, change of scale and first shifting.	
Transform of function multiplied by tn, division by t, derivatives and integral. LT	
of periodic function, Heaviside unit step function, Unit impulse function.	
Heaviside shift (second shift) theorem.	
UNIT–II	
INVERSE LAPLACE TRANSFORM	09 Hrs
Definition, properties of inverse Laplace transform, evaluation using different	
methods. Convolution theorem, problems. Application to solve ordinary linear	
differential equations and simultaneous differential equations.	
UNIT-III	
CALCULUS OF VARIATION	09 Hrs
Introduction of variation of functions, extremal of a functional, Euler's equation-	
special cases-problems. Geodesics-problems, Hanging cable problem and	
Brachistochrome problem.	
UNIT-IV	
LINEAR ALGEBRA	09 Hrs
Rank of matrices-rank of matrix by Echelon form, consistency of system of linear	
equations- homogeneous and non-homogeneous equations, Gauss elimination,	
Gauss Jordan, Gauss Seidel methods, Eigen values and Eigen vectors-properties,	
largest Eigen value by Power method.	
UNIT-V	
STATISTICS	09 Hrs
Curve fitting by method of least squares, fitting of curves-linear, parabolic,	
exponential, power functions. Correlation and Regression analysis – problems.	

Course	Course outcomes: After completing the course, the students will be able to				
CO1:	Understand the fundamental concepts of - Laplace and inverse Laplace transforms				
	variation of functions, elementary transformation of matrices and method of least				
	squares.				
CO2:	Demonstrate - the properties of Laplace and inverse Laplace transforms knowledge				
	of extremal of functional, Eigen values, Eigen vectors and correlation.				

CO3:	Apply - Laplace and inverse Laplace transform technique to solve differential
	equations, Euler's equation to solve variational problems, matrix methods to solve
	system of linear equations, regression analysis for curve fitting.
CO4:	Analyze and interpret- solution of IVP and BVP, solution of functional, solution of
	linear systems, statistical data occurring in Engineering problems.

Reference Books

1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40 th Edition, 2007,
	ISBN: 81-7409-195-5.

- 2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2008, ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X.
- **3.** Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2007, ISBN: 978-81-265-3135-6.
- **4.** Introduction to Probability and Statistics by Lipshutz and Schiller (Schaum's outline series), ISBN:0-07-038084-8

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)				
Evaluation method	Course with Assignment/ Experiential Learning			
Quiz -1	10			
Test -1	50			
Quiz -2	10			
Quiz -3	10			
Test -2	50			
Experiential Learning	10			
	Quiz 10+10+10=30;			
Final Evaluation	Test 50+50=100, reduced to 60, Experiential			
	Learning:10			

Note:

• All the three tests and quiz are compulsory

Semester End Evaluation	
Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	
Total	100

	What		To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
		Quiz		Three	15	Answer			
t	CIE			30	Scripts	80%			
nen		Assignment		2 phases	05	Reports			
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	50	Answer Scripts	20%	100%	90%
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	Semester: III							
	Course Title: ENGINEERING MATERIALS							
Course Code:16EM32A CIE Marks: 50								
Cree	lits: L:T:P:S: 2:0:0:0	SEE Marks: 50						
Hours: 24 SEE Duration: 2 Hrs								
Cou	Course Learning Objectives: The students will be able to							
1	Understand the behaviour and propert	ies of Engineering materials						
2	Recognize various types of engineering materials used in construction industry							
3	Compare behaviour of various engineering materials in construction industry							
4	Describe properties of engineering materials in civil engineering							

UNIT-I					
Stones: Physical properties of minerals, major rock forming minerals, occurrence					
and use of minerals. Introduction to major rock types (Igneous, sedimentary and	05 Hrs				
metamorphic rocks); their genesis, classification and structures; Engineering					
properties of rocks, advantages and disadvantages of different rock types at					
constructions sites. Common building stones in India and its uses.					
UNIT-II	1				
Coarse and Fine Aggregates: Properties of Coarse and Fine Aggregates, Source	05 Hrs				
of sand, classification of Coarse and Fine Aggregates, bulking of sand, properties					
of good Coarse and Fine Aggregates.					
UNIT-III					
Timber , Classification of timber, qualities of good timber, common timbers used	05 Hrs				
for building work, Types of plywood					
Building blocks, Bricks, concrete block. and hollow concrete block types,					
manufacturing process, properties, classification					
UNIT-IV	1				
Metals: Types and properties of Steels - Manufacturing process of steel -	04 Hrs				
Advantages of new alloy steels – Properties and advantages of aluminium.					
UNIT-V					
Materials: Clay products, ceramics –Refractories Fibre Textiles – Geosynthetics	05 Hrs				
for Civil Engineering applications, Polymers in Civil Engineering, Recycling of					
waste material as building material					

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the properties of engineering materials							
CO2:	Select suitable various types of engineering materials to be used in construction							
	industry							
CO3:	Examine the behaviour of various engineering materials in construction industry							
CO4:	Illustrate the properties of engineering materials in civil engineering							

Reference Books						
1.	Parbin Singh, Engineering and General Geology, Katson Publication House, 1987.					
2.	Ashby, M.F. and Jones.D.R.H.H. "Engineering Materials 1: An introduction to					
	Properties, applications and designs", Elsevier Publications, 2005					
3.	Deucher, K.N, Korfiatis, G.P and Ezeldin, A.S, Materials for civil and Highway					
	Engineers, Prentice Hall Inc., 1998					

4. SateesgGopi "Basic civil engineering" Pearson publication ISBN 9788131729885

Continuous Internal Evaluation (CIE) (Theory – 50 Marks)						
Evaluation method	Course with Assignment					
Quiz -1	05					
Test -1	30					
Quiz -2	05					
Quiz -3	05					
Test -2	30					
Assignment	05					
	Quiz 05+05+05=15;					
Final Evaluation	Test 30+30=60; Reduced to					
	30, Assignment:05					

Semester End Evaluation					
Theory (50)					
Part- –A	10				
Objective type questions	10				
Part –B					
There should be five questions from five units. Each question should be for maximum of 08 Marks.					
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.					
The UNIT-2 and UNIT-3 should have an internal choice.	40				
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.					
Total	50				

	What				To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
		Quiz		Three	15	Answer					
t	CIE	Test		Two	30	Scripts 80%					
nen		Assignment		2 phases	05	Reports					
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	50	Answer Scripts	20%	100%	90%		

Indirect Assessment methods	Course End Survey	Students	End of course		Questionnaire Based on COs	10%
--------------------------------	-------------------	----------	---------------	--	----------------------------------	-----

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	1	-	-	-	-	1
CO2	3	2	-	-	-	-	1	-	-	-	-	1
CO3	3	2	-	-	-	-	1	-	-	-	-	1
CO4	3	2	-	-	-	-	1	-	-	-	-	1

	Semester: III						
	Course Title: STRENGTH OF MATERIALS						
Cou	CIE Marks: 100+50						
Credits: L:T:P:S: 3:0:1:0 SEE Marks: 100+50							
Hours: 36 SEE Duration: 3 Hrs+3							
Cou	Course Learning Objectives: The students will be able to						
1		stems and analyze the Shear force and bending					
1	moment for beam elements						
2	Evaluate the behaviour of column and structure	ut under compression					
3	3 Compare the behaviour of solid and hollow shaft under various loading condition						
4	Examine the mechanical properties of various materials under tensile, compressive,						
4	torsion and impact loading						

UNIT-I			
Bending moment and shear force: shear force and Bending moment for Statically determinate beams, Sign conventions, Relationship between loading, shear force and bending moment. S.F and B M diagrams for cantilever, simply supported and over hanging beams subjected to point load, UDL, UVL, moment, Couple and combinations - Numerical problems.	07 Hrs		
UNIT-II			
Bending stress and shear stress in beams: Introduction, Assumptions in simple bending theory, Derivation of Bernoulli's equation, modulus of rupture, section modulus, flexural rigidity, expression for horizontal shear stress in beam, variation of bending stress and shear stress diagram for cross-sections-rectangular, T and I sections - Numerical problems.	07 Hrs		
UNIT-III			
Deflection of determinate Beams: Introduction, Elastic curve –Derivation of differential equation of flexure, Sign convention, Slope and deflection using double integration method and Macaulay's method for beams subjected to point loads ,UDL, moment, couple and their combinations. Numerical problems.	07 Hrs		
UNIT-IV			
Analysis of columns and struts: Introduction, short and long columns, radius of gyration, slenderness ratio, buckling load, effective length, Euler's theory of columns, Derivation of Euler's Buckling load for columns with different end conditions, Limitations of Euler's theory, Rankine's formula. Numerical problems on solid and hollow column section.	07 Hrs		
UNIT-V			
 Two Dimensional Stress Systems: Introduction, Stress components on inclined planes, Principal Stresses, principal planes- Analytical and Mohr's circle methods of stress computations - Numerical problems. Temperature Stresses of homogeneous materials – Numerical problems. Torsion: Assumptions in theory of pure torsion, Torsion equation, Torsional rigidity and modulus of rupture, power transmitted, Comparison of solid and hollow circular shafts. Numerical problems. 	08 Hrs		

PART-B(Laboratory)	
1. Dimensionality of bricks, Water absorption, Initial rate of absorption	
2. Fineness modulus of Fine and Coarse aggregate	
3. Compressive strength tests on building blocks (brick, solid blocks	
and hollow blocks)	
4. Tension test on Mild steel and HYSD bars	
5. Compression test on HYSD, Cast iron	
6. Torsion test on Mild Steel circular sections – solid sections.	
7. Bending Test on Wood under two point loading.	
8. Shear Test on Mild steel – single and double shear	
9. Impact test on Mild Steel (Charpy & Izod)	
10. Vickers Hardness tests	

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Illustrate the mechanical behaviour of various elements							
CO2:	Apply the basic concepts of mechanics in determining the stress developed in the							
	materials							
CO3:	Evaluate the behaviour of materials under various loading condition							
CO4:	Examine the mechanical properties of various materials under different loading							
	conditions							

Reference Books

1.	R. C. Hibbler "Mechanics of Materials" Eight Edition, Pearson Publications, ISBN	13:
	978-0-13-602230-5	

2. Timoshenko and Young "Elements of Strength of Materials", Affiliated East-West Press

- **3.** F.P.Beer and R.Johnston, "Mechanics of Materials", McGraw-Hill Publishers, 2006 ISBN 9780073529387
- **4.** S.Ramamrutham, R.Narayanan"Strength of Materials", DhanapathRai Publishing company, New Delhi ,2012 ISBN 818743354X

		rnal Evaluation (CIE) oratory – 150 Marks)			
(Theory –	100 Marks)	(Laboratory- 50 Marks)		Total	
Evaluation method	Course with assignment			(150)	
Quiz -1	10	Performance of the student in			
Test -1	50	the laboratory, every week	40		
Quiz -2	10				
Quiz -3	10	Test at the end of the semester	10	10	
Test -2	50		10		
Assignments	10				
	Quiz 10+10+10=30				
	Test 50+50=100				
	Reduced to 60,	Total	50		
Final Evaluation	Assignment 10			150	

Semester End Ev (Theory and Labora				
Theory (100 Marks)	Laboratory (50 M	larks)	Total (150)	
Part- –A	20	Experiment		
Objective type questions		Conduction with	40	
Part –B		proper results		
There should be five questions from five units.		Viva	10	
Each question should be for maximum of 16				
Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not	80			
have any choice.				
The UNIT-2 and UNIT-3 should have an internal				
choice.				
Both the questions should be of the same				
complexity in terms of COs and Bloom's				
taxonomy level.				
Total	100	Total	50	150

		What		Frequency of conduction	Max Marks	Evidence Contribution Course Outc			
	Quiz		Three	30	Answer				
spou		Test		Two	60	Scripts			
	CIE	Assignment		2 phases	10	Reports /	80%		
Metł		Laboratory		Weekly	50	Record Books			
Direct Assessment Methods	SEE	Semester End Examination	n d	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%	100%	90%
Direc		Semester End Laboratory		End of every semester laboratory	50				
Indirect Assessment methods	Course End Survey		Students	End of course		Questionn aire Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	2	1	2	-	-	-	-	-	-	-	1
CO3	-	1	-	3	-	-	-	-	-	-	-	-
CO4	-	-	2	3	-	-	-	-	-	-	-	-

	Semester: III						
	Course Title: CONCRETE TECHNOLOGY						
Course Code:16CV34 CIE Marks: 100+50							
Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50							
Hou	Hours: 35 SEE Duration: 3Hrs + 3 Hrs						
Cou	rse Learning Objectives: The students will be able to						
1	Outline the manufacturing and types of cements and concre	te and its application.					
2	2 Assess the methods of measuring properties of concrete						
2	Describe various strength of concretes and enhancing the properties of concrete using						
3	3 admixture						
1	Analyze the methods of mix proportion and importance of t	andy mix concrete					

4 Analyze the methods of mix proportion and importance of ready mix concrete

UNIT-I				
Cement : Manufacturing of cement (dry and wet process), Hydraulic Cement, Bogue's	07 Hrs			
compounds, Types of cement, Hydration, product of hydration and its importance,				
importance of water cement ratio, Transition zone, brief description of fieldand				
laboratory testing of cement. Water and its Quality, Gel space ratio (Numerical				
problems)				
UNIT-II				
Concrete: Manufacturing Concrete: Mixing, Transporting, Placing, Compaction and	07 Hrs			
Curing, Segregation, Bleeding. Workability: Factors affecting workability,				
Measurement by various tests, Recommendations of IS: 456-2000 - Sampling				
procedure, Acceptance criteria.				
UNIT-III				
Admixtures: Chemical admixtures. Action of plasticizers, Water reducers,	07 Hrs			
superplasticizers, accelerators, retarders, air entraining admixtures. Mineral	07 1115			
admixtures: GGBS, fly ash, metakaolin, silica fume				
Significance of Durability in concrete – Cracking, chemical attack, Alkali aggregate				
reaction, Permeability, water absorption, Sorptivity.				
UNIT-IV				
Strength Compressive Strength Factors affecting, Abrams' law, Importance of	07 Hrs			
Strength development with age, Maturity concept (Numerical Problems), accelerated	07 HIS			
curing, Relation between compressive and tensile strength, Flexural strength, Methods				
of finding the strength.				
Importance of Nondestructive tests, Rebound hammer test, Ultra sonic pulse velocity				
test. Procedure to conduct tests – Penetration and pull out test				
UNIT-V				
Concrete mix Design: Significance and objectives of concrete mix proportioning,	07 Hrs			
General Considerations, Mix proportioning using IS 10262 : 2009 method				
(Numerical problems)				
RMC-Advantages, components of RMC plant, Concrete specifications, Distribution				
and transport, Conditions of sale and product liability.				
Experiential learning				
Compatibility of cement and admixture, Bulking of sand Different types of concrete,				
Laboratory				
1. Bulking of sand and water absorption of coarse aggregate.				
2. Specific gravity of cement, Fine and Coarse aggregate				
3. Consistency of Cement, Initial and final setting time of cement,				
4. Compressive Strength of cement				

- 5. Mix Design and Workability tests on fresh concrete (Slump Test, Compaction Factor Test and Vee-Bee consistometer)
- 6. Tests on Hardened concrete Properties(Compressive Strength, Split Tensile Strength)
- 7. Demonstration Experiment
 - Soundness test
 - Flexural Strength
 - Flow test on cement mortar
 - Non Destructive Testing of concrete

Course Outcomes: After completing the course, the students will be able to

- CO1: Understand the properties of cement and concrete
- CO2: Assess the quality of ingredients of concrete
- CO3: Identify the concrete for specific application
- CO4: Proportion the concrete mix for a particular requirement

Reference Books

1.	Shanthakumar.A.R, Concrete technology, Oxford University Press, New Delhi, 2007,ISBN 978 0195671537
2.	Shetty. M.S., Concrete Technology Theory and Practice, S.Chand& Co Ltd., New Delhi, 2007 ISBN-13: 978-8121900034
3.	Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materials, Indian Edition, Indian Concrete Institute, Chennai, 1997 ISBN-13: 978-9339204761 Publisher: McGraw Hill Education; 4 edition (1 April 2014)
4.	Neville. A.M, Properties of concrete V Edition, (2012) Peaerson Education, Inc, and Dorling Kindersley Publishing Inc. ISBN-13: 978-8131791073
5.	Gambhir M L., Concrete Technology theory and Practice, Fifth Edition, Tata McGraw Hill Education private Ltd, New Delhi. 2013 ISBN-13: 978-1259062551
6	IS 10262 : 2009, Concrete Mix proportioning guidelines, First Revision.2009. IS 456:2000 Plain and Reinforced Concrete

	Continuous Interna (Theory and Labora			
(Theor	y – 100 Marks)	(Laboratory- 50 Marl	ks)	Total
Evaluation method	Course with assignment			(150)
Quiz -1	10	Performance of the student		
Test -1	50 in the laboratory, every		40	
Quiz -2	10	week		
Quiz -3	10	Test at the end of the	10	
Test -2	50	semester	10	
Experiential	20			150
Learning	20			
	Quiz 10+10+10=30	Total	50	
Final Evaluation	Test 50+50=100, Reduced	Totai	30	
Final Evaluation	to 50, Experiential			
	Learning 20			

Semester End Ev	aluation	n (SEE)		
(Theory and Labora	tory –	150 Marks)		
Theory (100 Marks)		Laboratory (50 M	larks)	Total (150)
Part- –A	20	Experiment		
Objective type questions		Conduction with	40	
Part –B		proper results		
There should be five questions from five units.		Viva	10	
Each question should be for maximum of 16				
Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80			
The UNIT-2 and UNIT-3 should have an internal choice.				
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

		What	To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
		Quiz Test		Three Two	30 50	Answer Scripts			
ethods	CIE	Experiential Learning	Experiential Learning		20	Reports / Record	80%		
Ň	Laboratory			Weekly	50	Books			
Direct Assessment Methods	SEE	Semester End Examination	nester End Students		100	Answer Scripts	20%	100%	90%
Dire		Semester End Laboratory		End of every semester laboratory	50				
Indirect Assessment methods			Students	End of course		Questionn aire Based on COs		10%	

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	3	-	2	2	2	3	1	-	-	
CO2	2	2	1	2	-	1	3	2	3	2	-	-	
CO3	2	2	2	-	-	1	3	2	3	2	-	-	
CO4	2	2	-	1	-	2	3	1	3	2	-	-	

	Se	emester: III							
	Course Title: FLUID MECHANICS								
Cou	rse Code:16CV35	CIE Marks: 100+50							
Cree	lits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50							
Hou	Hours: 36 SEE Duration: 3Hrs + 3 Hrs								
Cou	rse Learning Objectives: The stude	nts will be able to							
1	Describe fundamental properties of	fluids and its applications.							
2	Analyze hydrostatic laws and its app	lications to solve practical problem.							
3									
4	Examine basic flow rate measureme	ent techniques.							

UNIT-I	
Fluid Properties: Definition of fluid properties and fluid characterization for its	08 Hrs
usage.	
Fluid Pressure and its measurement: Pascal's Law, Variation of pressure in	
fluids; Absolute and Gauge pressure and their relationship; Measurement of	
pressure using simple and differential Manometer, Numerical problems.	
Hydrostatic Forces on surfaces: Calculation of Force on submerged planes	
(vertical and inclined planes), Definition of Centre of pressure and its	
determination.	
UNIT-II	1
Kinematics of fluid flow: Classification of flows; Steady and unsteady, uniform	07 Hrs
and non-uniform, laminar and Turbulent- Rotational and Irrotational flow.	
Dynamics of fluid flow: Laws of Mass, Energy and Momentum,	
continuity equation (one dimensional), Euler's equation, Bernoulli's equation,	
modified Bernoulli's equation limitations and its application, Numerical problems.	
UNIT-III	
Flow through pipes: Major loss, minor loss, Darcy-Weisbach Equation,	07 Hrs
Hydraulic gradient line, Total Energy Line. Series and parallel network of pipes,	
numerical problems.	
Orifice and mouth piece: Hydraulic coefficients, concept of orifice and mouth	
piece (no numerical problems).	
Notches and Weirs: Definition of Notch, Weir, Flow through V-notch,	
Rectangular weir, corrections for velocity of approach, end contractions,	
Cippoletti weir, Notch Sensitivity, numerical problems. UNIT-IV	
	07 Hrs
Flow through Open Channel: Calculation of velocity using Chezy and Manning's experiments Hydraulia efficient channels: Restangular and	U/ Hrs
Manning's experiments, Hydraulic efficient channels: Rectangular and Trapezoidal channel, numerical problems.	
Specific energy, critical depth, Froude's number, specific Energy diagram,	
subcritical and supercritical flows, Alternative depths, Hydraulic jump, numerical	
problems.	
UNIT-V	
Impact of Jet on Vanes: Impact of Jet on Vanes on straight & curved vane	07 Hrs
without & with motion. Velocity triangles, its application in vane analysis	0/1115
numerical problems.	
PART-B(Laboratory)	1
1. Calibration of 90° V-notch	

- 2. Calibration of Rectangular notch
- 3. Calibration of Cippoletti notch
- 4. Calibration of Ogee weir
- 5. Calibration of Venturimeter
- 6. Calibration of Orificemeter
- 7. Calibration of water meter
- 8. Determination of Hydraulic coefficients for orifice.
- 9. Determination of Hydraulic coefficients for Mouthpiece.
- 10. Determination of friction factor for a pipe.
- 11. Impact of jet on vanes
- 12. Determination of loss of energy in sudden expansion, contraction and Bends in a pipe.

Course Outcomes: After completing the course, the students will be able to

CO1:	Describe the different properties of fluids, for the flow characterization and
	measurements.
CO2:	Explain the behavior of the fluids under static and dynamic conditions.
CO3:	Apply continuity equation and energy equation in solving problems on flow through
	conduits.
CO4:	Distinguish and examine various flow measuring techniques.

Reference Books

1.	P.N.Modi and S.M.Seth, Hydraulics and Fluid Mechanics including Hydraulic
	Machines, Standard Book House 2002, New Delhi, 14th edition, ISBN- 8190089374,
	9788190089371.
2.	K. Subramanya "Flow in open Channels" Tata McGraw Hill, III Edition 2009,
	ISBN-0070086958, 9780070086951
3.	Frank M White "Fluid Mechanics" TATA McGraw Hill, New Delhi,8th Edition 2016.
	ISBN-10: 9385965492, ISBN-13: 978-9385965494
4.	Streeter: "Fluid Mechanics" 9th Edition, Tata McGraw Hill Publications.2010, ISBN-
	13:978-0-07-070140-3
5.	Dr.A.K.Jain, "Fluid Mechanics including Hydraulic Machines", Khanna Publishers,
	12th Edition, ISBN-13-978-81-7409-194-7, ISBN 10-81-7409-194-7.

Continuous Internal Evaluation (CIE) (Theory and Laboratory – 150 Marks)										
(Theory – 1	00 Marks)	(Laboratory- 50 Marks))	Total						
Evaluation method	Course with Self - Study			(150)						
Quiz -1	10	Performance of the student in								
Test -1	25	the laboratory, every week								
Quiz -2	10									
Quiz -3	10	Test at the end of the semester	10							
Test -2	25		10							
Experiential Learning	20]						
	Quiz									
Final Evaluation	10+10+10=30	Total	50							
	Test 50+50=100,	Total		150						

Reduced to 50,		
Experiential		
Learning 20		

Semester End Ev (Theory and Labora		· ,		
Theory (100 Marks)	lion y	Laboratory(50 M	(arks)	Total (150)
Part- –A	20	Experiment		
Objective type questions		Conduction with	40	
Part –B		proper results		
There should be five questions from five units.		Viva	10	
Each question should be for maximum of 16				
Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80			
The UNIT-2 and UNIT-3 should have an internal choice.				
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

	What		To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
		Quiz		Three	30	Answer			
		Test		Two	50	Scripts			
pods	CIE	Experiential Learning		2 phases	20	Reports / Record	80%		
letl		Laboratory		Weekly	50	Books			
Direct Assessment Methods	SEE	Semester End Examination	r End Students semester		100	Answer Scripts 20%		90%	
Dire		Semester End Laboratory		End of every semester laboratory	50				
Indirect Assessment methods	Cou	rse End Survey	Students	End of course		Questionnaire Based on COs		10%	

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	-	-	2	-	-	-	-	-	3	-	1	
CO2	2	-	-	2	-	2	2	-	-	-	2	-	
CO3	3	2	-	-	2	1	-	-	-	-	2	1	
CO4	3	-	2	3	2	-	-	-	2	2	-	1	

	Semester: III							
	Course Title: WATER SUPPLY AND TREATMENT ENGINEERING							
Cou	rse Code:16CV36	CIE Marks: 100						
Cree	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hou	Hours: 36 SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	To analyze the variation of water demand and to estimate water requirement for a community							
2	To evaluate the sources and conveya	ance systems for raw and treated water						
3	To study drinking water quality standards and to illustrate qualitative analysis of water							
4 To design physical, chemical and biological treatment methods to ensure safe and potable water Supply								

UNIT-I	
Introduction : Human activities and environmental pollution, Requirement of water for various beneficial uses. Need for protected water supply. Demand of Water : Types of water demands -domestic demand, institutional and commercial, public use, fire demand. Factors affecting percapita	07 Hrs
demand.Population forecasting - different methods with merits and demerits.	
Variations in demand of water. Peak factor, Design period and factors governing	
design period. Numerical problems.	
UNIT-II	
Quality of Water: Objectives of water quality management, Concept of safe water, wholesomeness and palatability.Water borne, water based, water washed and vector diseases.	06 Hrs
Examination of Water :- Sampling - Objectives, Methods, Preservation techniques. Physical, Chemical and Microbiological Examinations, (IS:	
3025and IS: 1622) using analytical & Instrumental techniques. Drinking water	
BIS, ICMR standards & WHO guidelines, Health significance of Fluoride,	
Nitrates, Hardness and Heavy metals like Mercury and Cadmium.	
Sources: surface and subsurface sources -suitability with regard to quality and	
quantity.	
UNIT-III	
Collection and Conveyance of Water: Intake structures -different types of	07 Hrs
intakes – river, canal and reservoir intake.	
Design of the economical diameter for the rising main; Pipe appurtenances.	
Pipe materials: different materials with advantages and disadvantages.	
Pumps: Types of pumps with working principles. Numerical Problems.	
Water Treatment: Objectives, Treatment flow chart – significance of each unit	
UNIT-IV	I
Aeration : Principle of working and types of aerators, Design of cascade aerator	08 Hrs
Screening: Types and design of bar screen.	
Sedimentation -theory, settling tanks, types, design.	
Coagulation aided sedimentation-types of coagulants, chemical feeding, flash	
mixing, flocculators -design of all units	
Filtration, machanism theory of filtration types of filters slow and rapid and	1

Filtration: mechanism -theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning. Design of slow

and rapid sand filter without under drainage system.

UNIT-V	
	8 Hrs
chlorine demand, residual chlorine, break point chlorination.	
Miscellaneous Treatment: Softening, Fluoridation and De-fluoridation,	
Activated carbon treatment.	
Distribution system: Methods- Gravity, Pumping, Combined gravity and pumping system.	
Layouts : Dead end, Radial, Grid iron, Circular system.	
Network analysis in distribution system – Hardy cross method, Hazen- Williams	
formula.	

Cours	Course Outcomes: After completing the course, students will be able to					
CO1:	Estimate average and peak water demand for a community.					
CO2:	Evaluate available sources of water, quantitatively and qualitatively and make					
	appropriate choice for a community.					
CO3:	Evaluate water quality and environmental significance of various parameters and plan					
	suitable treatment system.					
CO4:	Design a comprehensive water treatment and distribution system to purify and					
	distribute water to the required quality standards.					

Ref	erence Books				
1.	S.K.Garg, Environmental Engineering vol-I, Water supply Engineering – M/s Khanna Publishers, New Delhi 2010				
2.	Mark.J Hammer, Water & Waste Water Technology, John Wiley & Sons Inc., New York,				
	2008.				
Ref	erence Books				
3.	B.C. Punmia and Ashok Jain, Environmental Engineering I-Water Supply Engineering, Laxmi				
	Publications (P)Ltd., New Delhi 2010.				
4.	Howard S. Peavy, Donald R. Rowe, George T, Environmental Engineering - McGraw Hill				
	International Edition. New York, 2000				
5.	CPHEEO Manual on water supply and treatment engineering, Ministry of Urban				
	Development, Government of India, New Delhi.				

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)					
Evaluation method	Course with Experiential				
	Learning				
Quiz -1	10				
Test -1	25				
Quiz -2	10				
Quiz -3	10				
Test -2	25				
Experiential Learning	20				
	Quiz 10+10+10=30				
Final Evaluation	Test 50+50=100, Reduced to				
	50, Experiential Learning 20				

Semester End Evaluation	
Theory (100)	
Part- –A	20
Objective type questions	
Part –B	
There should be five questions from five units. Each question should be for maximum	
of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	
Total	100

	What		To whom	Frequency of conduction	Max Marks	Evidence		tributio se Outc	
thods	CIE	Quiz Test		Three Two	30 50	Answer Scripts	80%		
nent Metl		Experiential Learning	Students	2 phases 20		Reports	100		90%
Direct Assessment Methods	SEE	Semester End Examination		End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		
Indirect Assessment methods	Course End Survey		Students	End of course		Questionn aire Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	1	-	-	-	-	1
CO2	2	3	1	-	-	2	1	2	-	-	-	1
CO3	3	2	1	1	-	2	1	3	-	-	-	1
CO4	3	3	3	-	-	2	2	1	-	-	-	1

	Semester	: III				
	Course Title: BRIDGE COURSE MATHEMATICS					
Cou	rse Code:16DMA37	CIE Marks: 100				
Cree	lits: L:T:P:S: 2:0:0:0	SEE Marks: 100				
Hou	rs: 30 (Audit Course)	SEE Duration: 3Hrs				
Cou	rse Learning Objectives: The students will	be able to				
1	1	es as possible 2-D geometry, approximate a				
1	function of single variable in terms of infini					
2	Gain knowledge of multivariate functions	s, types of derivatives involved with these				
4	functions and their applications.					
2	Recognize linear differential equations,	apply analytical techniques to compute				
3	solutions.					
Acquire concepts of vector functions, vector fields and differential calculu		or fields and differential calculus of vector				
4	4 functions in Cartesian coordinates.					
_	Explore the possibility of finding approximate solutions using numerical methods in the					
5	5 absence of analytical solutions of various systems of equations.					
Pre	requisites :					
Нур	erbolic functions, Trigonometric identities	s, methods of differentiation and basic				
tech	niques of integration, reduction formulae, vec	tor algebra.				

UNIT-I	
DIFFERENTIAL CALCULUS	06 Hrs
Taylor and Maclaurin's series for function of single variable.	
Partial derivatives – Introduction, simple problems. Total derivative, Composite	
functions, Jacobians- simple problems	
UNIT-II	
MULTIPLE INTEGRALS	06 Hrs
Evaluation of double and triple integrals – direct problems, change of order in	
double integral, change of variables to polar, cylindrical and spherical coordinate	
systems.	
UNIT-III	
DIFFERENTIAL EQUATIONS	06 Hrs
Higher order linear differential equations with constant coefficients,	
Complementary function and Particular integral, problems. Equations with	
variable coefficients – Cauchy and Legendre differential equations, problems.	
UNIT-IV	
VECTOR DIFFERENTIATION	06 Hrs
Introduction, simple problems in terms of velocity and acceleration. Concepts of	
Gradient, Divergence- solenoidal vector function, Curl- irrotational vector	
function and Laplacian, simple problems.	
UNIT-V	1
NUMERICAL METHODS	06 Hrs
Algebraic and transcendental equations – Regula-Falsi method, Newton-Raphson	
method.	
Ordinary Differential Equations – Taylor's, modified Euler's and 4 th order Runge-	
Kutta methods.	
Numerical Integration – Simpson's 1/3 rd , 3/8 th and Weddle's rules.	

Cours	e Outcomes: After completing the course, the students will be able to				
CO1:	Demonstrate the understanding of the basics of polar coordinates, partial				
	differentiation, multiple integrals, vector differentiation, classification and types of				
	solutions of higher order linear differential equations, requirement of numerical				
	methods and few basic definitions.				
CO2:	Solve problems on total derivatives of implicit functions, double integrals by				
	changing order of integration, homogeneous linear differential equations, velocity and				
	acceleration vectors.				
CO3:	Apply acquired knowledge to find infinite series form of functions, multiple integrals				
	by changing order, solution of non-homogeneous linear differential equations,				
	numerical solution of equations.				
CO4:	Evaluate multiple integrals by changing variables, different operations using del				
	operator and numerical solutions of differential equations and numerical integration.				

Reference Books

1.	B.S. Grewal; Higher Engineering Mathematics; Khanna Publishers; 40 th Edition; 2007;		
	ISBN: 81-7409-195-5.		
2.	R. K. Jain & S.R.K. Iyengar; Advanced Engineering Mathematics; Narosa Publishing		
	House; 2002; 817319-420-3; Chapters: 1, 2, 8, 15;		
3.	N.P Bali & Manish Goyal; A Text Book of Engineering Mathematics; Lakshmi		

- **3.** N.P Bali & Manish Goyal; A Text Book of Engineering Mathematics; Lakshmi Publications; 7th Edition; 2010; ISBN: 978-81-7008-992-6; Chapters: 6, 18, 16, 8, 26;
- **4.** Erwin Kreyszig; Advanced Engineering Mathematics; John Wiley & Sons; 9th Edition; 2007; ISBN: 978-81-265-3135-6; Chapters: 6, 10, 12;

Scheme of Continuous Internal Evaluation:

CIE consists of Two Tests each for 50 marks (20 marks for Quiz + 30 marks for descriptive questions)

Scheme of Semester End Examination:

The question paper consists of Part A and Part B. Part A will be for 20 marks covering the complete syllabus and is compulsory. Part B will be for 80 marks and shall consist of five questions (descriptive, analytical, problems or/and design) carrying 16 marks each. All five questions from Part B will have internal choice and one of the two have to be answered compulsorily.

IV- Semester			
APPLIED MATHEMATICS – IV (ASE, CH, CV, ME)			
Course Code:16MA41C		CIE Marks: 100	
Credits: L:T:P:S: 3:1:0:0		SEE Marks: 100	
Hours: 45		SEE Duration: 3Hrs	
Course Learning Objectives:			
1	Analyze the periodic phenomena using the concept of Fourier series.		
2	Compute the solution of linear partial differential equations that arise in physical situations.		
3	Evaluate the approximate solutions of partial differential equations using numerical methods.		
4	Use probability to solve random physical phenomena and implement the proper distribution model.		

UNIT-I FOURIER SERIES 09Hrs Introduction to periodic functions-even, odd functions, properties.Special wave forms-square wave, half wave rectifier, saw-tooth wave, triangular wave. Dirichlet conditions for Fourier series, Fourier series expansion of continuous and discontinuous functions. Half range-sine and cosine series. Complex Fourier series-problems. **UNIT -II** PARTIAL DIFFERENTIAL EQUATIONS - I 09Hrs Formation of partial differential equations by elimination of arbitrary constants/functions, solution of Lagrange's linear equation. Solution of partial differential equations by method of separation of variables. Solution of Wave and Heat equations in one dimension and Laplace equation in two dimensions by the method of separation of variables-problems. **UNIT -III** PARTIAL DIFFERENTIAL EQUATIONS - II **09 Hrs** Classification of second order partial differential equations-parabolic, hyperbolic, elliptic. Finite difference approximation to derivatives. Solution of Laplace equation in two dimension, Heat and wave equations in one dimension (explicit methods). **UNIT-IV PROBABILITY AND DISTRIBUTIONS** 09Hrs Baye's rule, random variables-discrete and continuous.Probability distribution function, cumulative distribution function. Binomial, Poisson, Exponential and Normal Distributions. **UNIT-V** JOINT PROBABILITY DISTRIBUTION AND MARKOV CHAIN 09Hrs Joint Distribution of random variables-Expectation, Co-variance and Correlation. Markov chain-Stochastic matrices, Regular stochastic matrices. Probability vector, Higher dimension probabilities.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand - the fundamental concepts ofperiodic phenomena, formation and							
	classification of PDEs, basics of probability.							
CO2:	Demonstrate - the concept of Dirichlet's condition to obtain Fourier series of							
	continuous and discontinuous functions, finite differences for partial derivatives,							
	random variables to describe probability functions.							
CO3:	Apply - Euler's formula to obtain half range series, method of separation of variables							
	to solve PDE's, probability and distribution to un-deterministic situations.							
CO4:	Analyze and interpret - complex Fourier series, PDEs, and various distributions							
	occurring in Engineering problems.							

Tex	Text Books							
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40 th Edition, 2007,							
	ISBN: 81-7409-195-5.							
2	B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2008, ISBN: 13-							
	978-07-063419-0; ISBN: 10-0-07-063419-X.							
3	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9 th Edition,							
	2007, ISBN: 978-81-265-3135-6.							
4	Probability, Statistics and Random Process by T.Veerarajan, 3 rd edition, ISBN: 978-0-							
	07-066925-3							

In case of a course having only theory, the following minimum guidelines may be followed.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)							
Evaluation method	Course with Assignment/ Experiential Learning						
Quiz -1	10						
Test -1	30						
Quiz -2	10						
Quiz -3	10						
Test -2	30						
Experiential Learning (EL)	10						
	Quiz 10+10+10=30						
Final Evaluation	Test 50+50=100, Reduced to						
	60, Experiential Learning 10						

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

	Semester: IV							
	ENVIRONMENTAL TECHNOLOGY							
Course Code:16ET42 CIE Marks: 50								
Cree	dits: L:T:P:S: 2:0:0:0	SEE Marks: 50						
Hou	Hours: 25 SEE Duration: 1.5 Hrs							
Cou	rse Learning Objectives: The stude	nts will be able to						
1	Understand the various components of environment and the significance of the sustainability of healthy environment.							
2	Recognize the implications of different types of the wastes produced by natural and anthropogenic activity							
3	3 Learn the strategies to recover the energy from the waste.							
4	Design the models that help mitigactivity on the environment.	gate or prevent the negative impact of proposed						

UNIT-I

UNIT-I	
INTRODUCTION: Environment - Components of environment, Ecosystem -	05 Hrs
Types and structure of ecosystem. Impact of agriculture, mining, transportation	
and anthropogenic activities on environment and their assessment in sustainable	
development. Environmental acts & regulations, Role of government, legal	
aspects, role of nongovernmental organizations (NGOs), environmental education	
& women empowerment, ISO 14000, Environmental Impact Assessment.	
UNIT-II	
ENVIRONMENTAL POLLUTION: Air, noise, land pollution, public health	06 Hrs
aspects. Global environmental issues - Population growth, urbanization, land	
management, water & waste water management. Air pollution – point and non	
point sources of air pollution, global warming, acid rain & ozone depletion and	
their controlling measures (particulate and gaseous contaminants). Solid waste	
management, e waste management & biomedical waste management - sources,	
characteristics & disposal methods. Concepts of Reduce, Reuse and Recycling of	
the wastes.	
UNIT-III	
WATER POLLUTION : Water resources – availability and quality aspects, water	05 Hrs
borne diseases & water induced diseases, heavy metals & fluoride problems in	
drinking water and ground water contamination. Eutrophication, advanced waste	
water treatment, nutrient removal. Energy - Different types of energy,	
conventional sources &non conventional sources of energy, solar energy, hydro	
electric energy, wind energy, Nuclear energy, Biomass & Biogas Fossil Fuels,	
Hydrogen as an alternative energy.	
UNIT-IV	
GREEN TECHNOLOGY: Green buildings, green materials, soilless cultivation	04 Hrs
(hydroponics), sustainable manuring technology, organic oriented farming, use of	
biofuels, carbon foot prints, Opportunities for green technology markets, carbon	
capture and storage.	
UNIT-V	1
RESOURCE RECOVERY SYSTEM: Processing techniques, materials	05 Hrs
recovery systems, biological conversion (composting and anaerobic digestion).	
Thermal conversion products (combustion, incineration, gasification, pyrolysis,	
use of Refuse Derived Fuels).	

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Identify the components of environment and exemplify the detrimental impact of							
	anthropogenic activities on the environment.							
CO2:	Differentiate the various types of wastes and suggest appropriate safe technological							
	methods to manage the waste.							
CO3:	Aware of different renewable energy resources and can analyse the nature of waste							
	and propose methods to extract clean energy.							
CO4:	Adopt the appropriate recovering methods to recover the essential resources from the							
	wastes for reuse or recycling.							

Reference Books

erence books
Gilbert, M.M. 2004. Introduction to environmental engineering and science. 2 nd
Edition, Pearson Education. ISBN: 8129072770
Howard S. Peavy, Donald R. Rowe and George Tchobanoglous. 2000. Environmental
Engineering, McGraw Hill Series in water resources and Environmental Engg. ISBN:
0070491348
G. Tyler Miller (Author), Scott Spoolman (Author), (2012) Environmental Science –
15th edition, Publisher: Brooks Cole, ISBN-13: 978-1305090446 ISBN-
10: 130509044
Vijay Kulkarni and T. V. Ramachandra 2009. Environment Management. TERI Press;
ISBN: 8179931846, 9788179931844
Sven Erik Jørgensen 2002. Integration of Ecosystem Theories: A Pattern Ecology &
Environment; Edition 3, Springer; ISBN: 1402007558, 9781402007552
Gerald Kiely 1997. Environmental Engineering. McGraw-Hill; ISBN:
9780077091279
Linvil Gene Rich 2003. Environmental Systems Engineering, McGraw-Hill; ISBN:
9780070522503
Larry Canter 1995. "Environmental Impact Assessment", McGraw-Hill. ISBN:
0070097674

In case of a course having only theory, the following minimum guidelines may be followed.

Continuous Internal Evaluation (CIE)								
(Theory – 100 Marks)								
Evaluation method	Course with Assignment/							
	Experiential Learning							
Quiz -1	05							
Test -1	30							
Quiz -2	05							
Quiz -3	05							
Test -2	30							
Experiential Learning (EL)	10							
	Quiz 05+05+05=15							
Final Evaluation	Test $30+30=60$, Reduced to							
	30, Experiential Learning 05							

Semester End Evaluation	
Theory (50)	
Part- –A	10
Objective type questions	10
Part –B	
There should be five questions from five units. Each question should be for maximum of 08 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	40
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.	
Total	50

Note: The faculty teaching the course may adapt additional methods for evaluation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	-	3	-	2	-	-	-
CO2	2	3	3	2	1	-	3	3	2	-	2	1
CO3	-	3	1	3	-	2	3	3	2	-	1	2
CO4	1	-	2	1	3	-	2	-	2	-	-	2

	Sem	nester: IV						
	Course Title: THEORY OF STRUCTURES							
Course Code:16CV43 CIE Marks: 100								
Cred	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hou	rs: 36	SEE Duration: 3Hr	S					
Cour	rse Learning Objectives: The student	s will be able to						
1	Identify and Distinguish different form	ns of structures.						
2	Understand the basic concepts of static	c and dynamic behaviour of structural sy	stem.					
3	Analyse determinate and indeterminate	e structures for unknown forces and defe	ormation.					
4	Evaluate the behaviour of beams the	russ arches and cables under differen	t loading					
4	condition using force or deformation n	nethods.	-					
	-							
-	τ	J NIT-I						
Strue	ctural Systems: Forms of Structures,	Conditions of equilibrium, Degrees of	08 Hrs					
		tures, 1D, 2D and 3D, Structures.						
Deter	rminate & Indeterminate Structures, Sta	atic and Kinematical indeterminacy.						
Conc	cept of Vibration & Simple Harmon	ic Motion: Derivation of Equation of						
motio	on for SDOF (Single Degree of Freedo	om) –Undammed.Numerical examples						
on SDOF.								
Analysis of Plane Trusses: Introduction, Assumptions, Analysis by Method of								
Joint	s, Analysis by Method of sections.							
		NIT-II						
		Iethod – Simply supported beams,	07 Hrs					
		gate beam Method – Simply supported						
beam	s, Cantilever Beam, and Over hanging							
		NIT-III						
	e Hinged Arches: Introduction, Three		07 Hrs					
	s and different levels, Determination	,						
	ing moment (parabolic arches only) - P							
-	-	at Same levels and different levels -						
Num	erical problems.							
UNIT-IV								
		n energy in linear elastic system,	07 Hrs					
		d, Bending moment and shear force –						
Castı	gliano's first theorem- Deflection of sin							
		INIT-V	0					
	ysis of Beams:		07 Hrs					
Consistent deformation method: Introduction, Analysis of Propped Cantilever,								

Analysis of Fixed Beams. Slope Deflection Method: Introduction; Derivation of Slope-Deflection equations for beams. Analysis of Continuous beam by Slope –Deflection Equations (for beams only)

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Classify different forms of structures and illustrate their basic structural properties.							
CO2:	Apply the basic concepts of analysis methods in determining unknown forces in the							
	structures.							
CO3:	Analyze the different forms of structural elements by suitable methods of analysis.							
CO4:	Evaluate the behavior of structure under various loading conditions.							

Ref	erence Books
1.	R C Hibbler "Structural Analysis" Pearson Publications; 8 th edition, ISBN-13: 978-
	0132570534
2.	Norris C.H., Wilbur J.B., "Elementary Structural Analysis", International Student
	Edition, McGraw Hill International Book Edition.2005, ISBN 0-07-462304-4
3.	S. Ramamrutham, "Theory of Structures", DhanpatRai Publishing Company Private
	Limited-New Delhi; Ninth edition (2014), ISBN-13: 978-9384378103
4.	Reddy C.S., "Basic Structural Analysis", Tata McGraw Hill Publication Company
	Ltd., New Delhi , Second Edition , 2005, ISBN 9780070702769

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)					
Evaluation method	Course with Experiential				
	Learning				
Quiz -1	10				
Test -1	25				
Quiz -2	10				
Quiz -3	10				
Test -2	25				
Experiential Learning	20				
	Quiz 10+10+10=30				
Final Evaluation	Test 50+50=100, Reduced to				
	50, Experiential Learning 20				

Semester End Evaluation	
Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	
Total	100

		What	To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
ls	Quiz			Three	30	Answer			
hoc	CIE	Test		Two	50	Scripts	80%		
Direct Assessment Methods	CIL	Experiential Learning		2 phases	20	Reports	0070	100%	90%
	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	-	2	1	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	-	-	-	-	-	-	-	-

Semester: IV							
Course Title: BUILDING CONSTRUCTION AND PLANNING							
Course Code:16CV44 CIE Marks: 100+50							
Cree	dits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50					
Hou	rs: 36	SEE Duration: 3Hrs + 3Hrs					
Cou	rse Learning Objectives: The stude	nts will be able to					
1	01	anning and drawing principles and components of a					
1	civil engineering structure						
2	Distinguish between different forms and types of masonry						
3	Relate the concepts of shoring, underpinning and scaffolding and design of types of						
5	staircases						
4	To gain insights into types of roof, plastering, pointing and painting						
5		en building construction and construction equipment					
3	and their application						

UNIT-I

UNIT-I	
 Building Planning: Building Bye-laws, drawing requirements, principles of planning, FAR, Carpet Area, Plinth Area (only concepts) Foundation: Bearing Capacity of Soil, Safe Bearing Capacity of Soil, Allowable Bearing Capacity of Soil. Classification of Foundation, Masonry footings, Isolated footings, Combined and strap RCC footings, Raft footing, Grillage foundation, Pile foundations (Friction and Load bearing piles), Foundation in black cotton soils 	08 Hrs
UNIT-II	
Masonry: Load Bearing and partition walls, Stone-Rubble Masonry, Coursed Rubble Masonry, Un-coursed rubble masonry Random rubble masonry, Ashlar Masonry Bricks-Bonds in Brickwork, English Bond, Flemish Bond, Damp Proof construction, Arches, Classification, Functions. Lintel and Chajja: Functions and types Stairs: Components, Types-Dog legged and open well stairs, Geometrical design of stairs. UNIT-III Shoring: Raking Shores, Flying Shores, Dead Shores, Underpinning- Pit method, Pile method,	07 Hrs 07 Hrs
Scaffolding- Components, Types of Scaffolding.	
Form work : Form work Details, RCC columns, Beams, floors, Slip forming	
Roofs: Flat Roof (RCC) Sloped roof (R.C.C. and tile roof), Lean to roof, Wooden truss (King post and queen post trusses.	
UNIT-IV	
 Types of flooring: (Materials and method of laying), Granolithic, Mosaic Ceramic, Marble, Polished Granite types and applications, Industrial flooring. Plastering and Pointing: Purpose, materials and methods of plastering and pointing, defects in plastering-Stucco plastering, lathe plastering. Painting :Purpose, Types, Application of paints to new and old surfaces, Distemper Plastic emulsion, Enamel, painting to walls and iron and steel surfaces, polishing wood surface. 	07 Hrs

UNIT-V	
Construction equipment: Factors for selecting equipment, Introduction, various	07 Hrs
earth moving equipment's, Hoisting equipment's Concrete mixer and plants,	
Conveyors and rollers, Trenching machines.	
Green building concepts: Site selection, design concepts, , materials and different	
certifications programs (IGBC AND LEED)	
PART –B	
Using Auto CAD software: Prepare working drawing of components of building lik	e
(i) Stepped Wall footing	
(ii) Fully Paneled and flush doors	
(iii) Partly Paneled and Partly glazed window.	
(iv) Doglegged & open well stairs	
 positioning of various components of buildings- Building standards – Bye laws- distances- calculation of carpet area, plinth area and FAR. Using Auto-CAD software: Development of Plan, Elevation, section, North Schedule of Openings from the given Line diagram of Residential buildings. (i) Single storey building. (ii) Two Storey building. (iii) Residential Building with Pitched roof. 	Line and
 Functional design of building using inter connectivity diagrams (bubble development of line diagram only for following buildings (i) primary health of primary school building (iii)college canteen (iv) office building. Using AUTO-CAD software, Preparation of Plumbing, sanitary and electrical lay simple residential building (plan being given). 	centre (ii)

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the fundamental of building Planning and construction							
CO2:	Apply the various techniques and principles of building construction in Civil engineering							
CO3:	Analysis different forms types methods of building construction for various building component							
CO4:	Use of modern tools like AutoCad for building planning and drawing							

Reference Books

IUI	CITCHEE DOOKS
1.	Sushil Kumar, "Building Construction", Standard Publication & Distributors,2006,
	ISBN8186308024
2.	Punmia B.C., "Building Construction", Lakshmi Publications, New Delhi, 2005,
	ISBN8170080533
3.	S.G. Rangwala, "Building Construction", Charotar Publishing House Pvt Ltd, India,
	2009, ISBN8185594872
4.	Shah.M.H and Kale. C.M "Building Drawing " Tata McGraw Hill Publishing co.
	Ltd., New Delhi-2011 ISBN-13: 978-0071077873
5.	National Building Code, BIS, New Delhi

6.	Building Planning and Drawing – Import, 30 Jun 2014 by S. S. Bhavikatti I K]
	International Publishing House Pvt. Ltd ISBN-13: 978-9382332565	

	Continuous Internal Evaluation (CIE)									
(Theory – 1	00 Marks)	(Laboratory- 50 Marks))	Total						
Evaluation method Course with				(150)						
	Experiential									
	Learning									
Quiz -1	10	Performance of the student in								
Test -1	50	the laboratory, every week	40							
Quiz -2	10									
Quiz -3	10	Test at the end of the semester	10							
Test -2	50		10							
Experiential Learning	20									
	Quiz									
	10+10+10=30									
Final Evolution	Test 50+50=100,									
Final Evaluation	Reduced to 50,	Total	50							
	Experiential									
	Learning 20			150						

Semester End Ev	aluatio	n (SEE)		
Theory (100 Marks)	Laboratory(50 M	arks)	Total (150)	
Part- –A Objective type questions	20	Experiment Conduction with	40	
Part –B There should be five questions from five units. Each question should be for maximum of 16 Marks.		proper results Viva	10	-
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80			
The UNIT-2 and UNIT-3 should have an internal choice. Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

		What		Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
		Quiz		Three	30	Answer			
		Test		Two	50	Scripts			
pods	CIE	Experiential Learning		2 phases	20	Reports / Record	80%		
letl		Laboratory		Weekly	50	Books			
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer 209 Scripts		100%	90%
Dire		Semester End Laboratory		End of every semester laboratory	50				
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

Note: Individual faculty may adopt various methods for conducting effective quizzes and evaluate the same. The frequency of quizzes may be more than three also.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	1	-	-	-	-	-	-	-	-	-	-
CO3	2	1	-	-	-	-	1	-	-	-	-	-
CO4	-	1	-	-	3	-	-	-	-	-	-	1

	Semester: IV							
	Course Title: SURVEYING							
Cou	Course Code:16CV45 CIE Marks: 100+50							
Credits: L:T:P:S: 3:0:1:0 SEE Marks: 100+50								
Hou	Hours: 36 SEE Duration: 3Hrs + 3 Hrs							
Cou	rse Learning Objectives: The students will	be able to						
1	Understand the concepts of surveying and le	velling.						
2	2 Identify the components of surveying and levelling.							
3	3 Interpret the different measurement techniques for various applications.							
4	Apply principles of surveying for solving relevant engineering problems.							

PART A	
UNIT-I	
History of Surveying: Definition of Surveying, Uses of Surveying, Basic principles of surveying, Classification of Surveys, Chain surveying, Compass surveying, Plane table surveying - Accessories required, booking of chain survey work- Field book entries, conventional symbols. Fundamentals of Maps: Maps - types; scales-types; measuring distance; finding direction and use of symbols. Map projection - Latitude, Longitude and time, Topographical survey. Principles of toposheet numbering, Analysis of landforms. UNIT-II	07 Hrs
Leveling: Principles and basic definitions, Fundamental axes and parts of a	07 Hrs
Levening: Frinciples and basic definitions, Fundamental axes and parts of a dumpy level, types of adjustments and objectives, temporary adjustments of a dumpy level, Types of leveling – Simple leveling, Profile leveling, cross sectioning – fly leveling, Booking of levels – Rise and fall method and height of instrument method – comparison, Arithmetic checks. Contour Survey: Contoursand their characteristics, Methods of contouring – direct and indirect methods, Uses of contours.	
UNIT-III	
 Total Station: Parts of a Total Station – Accessories – Advantages and Applications, Field Procedure for total station survey, data transfer, preparation of maps. TrignometricLevelling: Determination of elevation of objects when the base is accessible and inaccessible by single plane and double plane methods. 	07 Hrs
UNIT-IV	
Curve Setting :Curves- Necessity – types, simple curves – elements – Designation of curves- Methods of setting out simple curves by linear methods and method of Rankine's deflection angle, Compound curve, Reverse Curve. UNIT-V	08 Hrs
	07 Hrs
 Areas and Volumes: Calculations of area from cross staff surveying. Area calculation by trapezoidal rule and simpsons rules. Computations of volumes by trapezoidal rule and prismoidal rule. Remote Sensing, GIS & GPS: Introduction, Principles, Geographical Information System- Definition of GIS, Key Components of GIS, Functions of GIS, Global Positioning system, Applications of Remote Sensing GIS & GPS in Civil Engineering. 	<i>97</i> 111 9

PART B (Laboratory)

I. Chain Surveying

1. To measure distance between two points using direct ranging and setting out perpendiculars.

2. Marking central line of a building using grid plan using chain and its accessories.

II. Levelling

- 3. To determine difference in elevation between two points using differential levelling technique, using height of the instrument method and rise and fall methods.
- 4. To conduct profile levelling and to draw the longitudinal section and cross section to determine the depth of cut and height of filling for a given formation level using total station.

III. Total station

- 5. Contour surveying using total station.
- 6. To determine the elevation of an object.
- 7. Distance, gradient between two inaccessible points using total station.
- 8. Traversing using total station.

IV. Curves

9. To set out simple curves using linear methods-perpendicular offsets from long chord and offsets from chord produced methods.

10. To set out compound curves using Rankine's deflection angles method.

11. To set out compound curve by angular method.

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe fundamental concepts of Surveying, Levelling, total station and application								
	of remote sensing and GIS.								
CO2:	Discuss components of all types of surveying.								
CO3:	Apply the concepts of measurements in engineering problems.								
CO4:	Demonstrate the applications of remote sensing and GIS for solving engineering								
	problems.								

Reference Books 1. Punmia B.C, "Surveying" Vol.I and Vol.II, Laxmi Publications, (P) Ltd, New Delhi 2010. ISBN 81-7008-853-4 2. Chandra A.M, "Plane surveying", Newage International (P) Ltd., 2009. ISBN 81-224-1902-X 3. Remote Sensing and GIS by B Bhatia, Oxford University Press, New Delhi. 4. Duggal S.K, "Surveying", Vol.I& II, Tata Mc Graw Hill Publishing Co., 2009, ISBN 978-0-07-015137-6: ISBN 0-07-015137-7. 5. Arora K.R, "Surveying", Vol.I& II, Standard Book House, 2009. ISBN 81-89401-23-8

Continuous Internal Evaluation (CIE)									
(Theory – 1	00 Marks)	(Laboratory- 50 Marks))	Total					
Evaluation method Course with				(150)					
	assignment								
Quiz -1	10	Performance of the student in							
Test -1	50	the laboratory, every week							
Quiz -2	10								
Quiz -3	10	Test at the end of the semester	10						
Test -2	50		10						
Assignments	10								
	Quiz								
	10+10+10=30								
Final Evaluation	Test 50+50=100,	Total 50							
	Reduced to 60,	10181	30						
	Assignment 10			150					

Semester End Ev	Semester End Evaluation (SEE)							
Theory (100 Marks)	Laboratory(50 M	arks)	Total (150)					
Part- –A	20	Experiment						
Objective type questions		Conduction with	40					
Part –B		proper results						
There should be five questions from five units.		Viva	10					
Each question should be for maximum of 16								
Marks.								
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80							
The UNIT-2 and UNIT-3 should have an internal choice.								
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.								
Total	100	Total	50	150				

		What		Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
		Quiz		Three	30	Answer			
		Test		Two	60	Scripts			
ds	CIE	Assignment		2 phases	10	Reports /	80%		
letho		Laboratory		Weekly	50	Record Books			
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%	100%	90%
Dire		Semester End Laboratory		End of every semester laboratory	50		_0,0		
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	1	-	-	-	-	-	-
CO2	2	2	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	1	-	1	1	-	-	-	-	1
CO4	1	2	1	-	3	1	1	-	-	-	1	1

	Semester: IV							
	Course Title: WASTEWATER ENGINEERING							
Cou	rse Code:16CV46	CIE Marks: 100+50						
Cree	dits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50						
HOu	ırs: 36	SEE Duration: 3Hrs + 3 Hrs						
Cou	rse Learning Objectives: Students	will be able to						
1	To understand the importance an	nd necessity of scientific collection and disposal						
L	systems for wastewater.							
2	To analyze flow variation of sewage	e and storm water and to estimate design flows for a						
2	community.							
3	3 To design suitable conveyance systems for sewage and storm water.							
4	To study physical, chemical and biological characteristics and treatment methods t							
4	4 ensure safe disposal of wastewater.							

PART – A	
UNIT-I	
Introduction: -Necessity of sanitation, types of sewerage systems and their	07 Hrs
suitability.	
Quantity of Sewage: dry weather flow, factors affecting dryweather	
flow.Flowvariations and their effects on design of sewerage system; computation	
of design flow, estimation of storm flow, rational method and empirical formulae	
for design of storm water drain; Time of concentration, Numerical problems.	
UNIT-II	
Design of Sewers. Hydraulic formulae for velocity, effects of flow variations on	06 Hrs
velocity, self cleansing and nonscouring velocities, Design of hydraulic elements	
for circular sewers flowing full and partially full conditions. Numerical problems.	
Sewer Appurtenances: Inlets, catch basins, manholes, storm water regulator, oil	
and grease traps.	
UNIT-III	
Analysis of Sewage: Physical, Chemical and Biological characteristics, concepts	08 Hrs
of aerobic and anaerobic activity, BOD and COD. Sampling - significance,	
techniques and frequency.	
Numerical problems.	
Treatment of Sewage. Flow diagram of municipal sewage treatment plant -	
Importance of each unit.	
Primary treatment-Screening, Grit chambers, Primary sedimentation tanks –	
concepts and Design.	
UNIT-IV	00 II
Secondary treatment: Trickling filter -theory and operation, types and design.	08 Hrs
Activated sludge process -principle and flow diagram, methods of aeration,	
modifications, <i>F/M</i> ratio, design of ASP	
UNIT-V	
Disposal of Effluents. By dilution, self-purification.phenomenon, oxygen sag	07 Hrs
curve, zones of purification, sewage farming, sewage sickness, Disposal standards	
on land and water body.	
Anaerobic sludge digestion- Principles, digestion tanks, Sludge drying	

bed	s.Design.
Mis	scellaneous Treatment Methods: Septic tanks and Oxidation Pond –Concept
and	Design.
	PART – B
1	Determination of Alkalinity, Acidity and pH.
2	Determination of Calcium, Magnesium and Total Hardness.
3	Determination of Chlorides and Sulphates.
4	Determination of percentage of available chlorine in bleaching powder, Residual
	Chlorine and Chlorine Demand.
5	Removal of turbidity by Jar test.
6	Determination of Iron.
7	Determination of Fluorides.
8	Determination of Solids in Sewage: Total Solids, Suspended Solids, Dissolved Solids,
	Volatile Solids, Fixed Solids, Settleable Solids.
9	Determination of DO

- **10** Determination of BOD and COD.
- **11** Total Count Test & MPN Determination.

Course Outcomes: After completing the course, students will be able to

	· · · · · · · · · · · · · · · · · · ·
CO1:	Estimate average and peak wastewater from a community and design suitable
	conveyance system for sewage and storm water.
CO2:	Design a comprehensive wastewater treatment system to achieve required quality
	standards for safe disposal and reuse of wastewater.
CO3:	Evaluate wastewater quality, suitable small scale treatment option and sludge
	disposal.
CO4:	Design an effective and efficient waste water disposal system.

Ref	erei	nce l	Book	s
4	2		0	

1.	S. K. Garg "Environmental Engineering: Sewage Disposal and Air Pollution
	Engineering (Volume - 2), 33 Edition, 2015, Khanna Publishers, ISBN:
	9788174092304, 8174092307.
2.	B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain "Wastewater Engineering (
	Including Air Pollution)"(Environmental Engineering II, Laxmi Publications; Second
	edition (2016), ISBN-10: 8131805964, ISBN-13: 978-8131805961
3.	Water and Waste water Engineering Vol-II -Fair, Gayer and Okun, Willey publishers,
	New York.2008, ISBN-10: 0470411929, ISBN-13: 978-0470411926
4	Waste Water Treatment, Disposal and Reuse -Metcalf and Eddy inc, Tata McGraw
-10	Hill Publications (2008 Edition), ISBN-10: 0071008241, ISBN-13: 978-0071008242
_	
5.	CPHEEO Manual on "Wastewater Collection, Treatment and Disposal", Ministry of
	Urban Development, Government of India, New Delhi.

	Continuous Inter	rnal Evaluation (CIE)		
(Theory – 1	00 Marks)	(Laboratory- 50 Marks))	Total
Evaluation method	Course with			(150)
	Experiential			
	Learning			
Quiz -1	10	Performance of the student in		
Test -1	50	the laboratory, every week	40	
Quiz -2	10			
Quiz -3	10	Test at the end of the semester	10	
Test -2	50		10	
Experiential Learning	20			
	Quiz			
	10+10+10=30			
Final Evaluation	Test 50+50=100,			
Final Evaluation	Reduced to 50,	Total	50	
	Experiential			
	Learning 20			150

Semester End Ev	aluatio	n (SEE)		
Theory (100 Marks)		Laboratory(50 Marks)		
Part- –A Objective type questions	20	Experiment Conduction with	40	
Part –B There should be five questions from five units. Each question should be for maximum of 16		proper results Viva	10	-
Marks. The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80			
The UNIT-2 and UNIT-3 should have an internal choice. Both the questions should be of the same complexity in terms of COs and Bloom's				
taxonomy level. Total	100	Total	50	150

		What	To whom	Frequency of conduction	Max Marks	Evidence	Contribution to Course Outcome		
		Quiz		Three	30	Answer			
		Test		Two	50	Scripts			
pods	CIE	Experiential Learning		2 phases	20	Reports / Record	80%		
letl		Laboratory		Weekly	50	Books			
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		90%
Dire		Semester End Laboratory		End of every semester laboratory	50				
Indirect Assessment methods	Cou	rse End Survey	Students	End of course	Questionnaire Based on 109 COs		10%		

					CO-F	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	-	2	2	2	-	-	-	1
CO2	3	1	3	-	-	2	2	2	-	-	-	-
CO3	2	2	2	2	-	2	2	2	-	-	-	1
CO4	3	-	3	-	-	2	2	2	-	-	-	-

		Communication	Skills and Professional Ethics		
Course Code	:	16HS47	CIE Marks	:	50
Hrs/Sem	:	18 hrs/ Semester	Credits	:	01
Course Learni	ing	Objectives:			
Students are ab	ole to	0			
communi 2. Manage s 3. Ability to	icate stres o giv	e effectively. s by applying stress mar	nning and coordinate Team work. sions related to ethics.	n and	confidence t
				Rasia	
		Skills: Basics, Method, Vritten & Oral Commun	Means, Process and Purpose, ication, Listening.	DUSICS	s oj Busines
			ty- Interaction with people, the n g politically correct language, De		
memous, geun	ig p		IT 2		6 Hours
Presentation S & GK, How to	skill ma	s- Discussing the basic	rds, being assertive. concepts of presentation skills, Ai s, body language & Dress code in		
Presentation S & GK, How to	skill ma	s- Discussing the basic ke effective presentation	concepts of presentation skills, A		ntation, medi
Presentation S & GK, How to of presentation Team Work- Te team work United	kill ma 1. eam ders	s- Discussing the basic ke effective presentation UNI Work and its important	concepts of presentation skills, A s, body language & Dress code in T 3.A elements Clarifying the advantag m building Defining behavior to	e presen	ntation, medi 6 Hour challenges of
Presentation S & GK, How to of presentation Team Work- Te team work United	kill ma 1. eam ders	s- Discussing the basic ke effective presentation UNI Work and its important tanding bargains in tea	concepts of presentation skills, A s, body language & Dress code in T 3.A elements Clarifying the advantag m building Defining behavior to essful teams.	e presen	ntation, medi 6 Hour challenges o
Presentation S & GK, How to of presentation Team Work- Te team work Unit Stages of Team IV Semester Body Languag	Skill. ma 1. eam ders 1 Bu ge & diffe	s- Discussing the basic ke effective presentation UNI Work and its important standing bargains in tea wilding Features of succes UNIT Proxemics - Rapport B erent situations, Importa	concepts of presentation skills, Air s, body language & Dress code in T 3.A elements Clarifying the advantag m building Defining behavior to essful teams. T 3.B uilding - Gestures, postures, facial nee of Proxemics, right personal sp	es and sync w	6 Hour challenges of ith team wor 6 Hour
Presentation S & GK, How to of presentation Team Work- Te team work Unit Stages of Team IV Semester Body Languag movements in o	Skill. ma 1. eam ders 1 Bu ge & diffe	s- Discussing the basic ke effective presentation UNI Work and its important standing bargains in tea wilding Features of succes UNIT Proxemics - Rapport B erent situations, Importa	concepts of presentation skills, Ai s, body language & Dress code in T 3.A elements Clarifying the advantag m building Defining behavior to essful teams.	es and sync w	6 Hour challenges of ith team wor 6 Hour
Presentation S & GK, How to of presentation Team Work- Te team work Unit Stages of Team IV Semester Body Languag movements in a different people Motivation ar Stress clauses a sound body an	eam derss n Bu diffe e.	s- Discussing the basic ke effective presentation UNI Work and its important standing bargains in tea wilding Features of succes UNIT Proxemics - Rapport B erent situations, Importat UN Stress Management: S stress busters to handle mind, Dealing with an	concepts of presentation skills, Air s, body language & Dress code in T 3.A elements Clarifying the advantag m building Defining behavior to essful teams. T 3.B uilding - Gestures, postures, facial nee of Proxemics, right personal sp	expression of the sync with th	6 Hour 6 Hour challenges of ith team wor 6 Hour ssion and bod maintain wit 6 Hours rship abilities s - Concept of es. Individual

Professional Practice - Professional Dress Code, Time Sense, Respecting People & their Space, Relevant Behavior at different Hierarchical Levels. Positive Attitude, Self-Analysis and Self-Management.

Professional Ethics - values to be practiced, standards and codes to be adopted as professional engineers in the society for various projects. *Balancing Personal & Professional Life*

Course Outcome:

After going through this course, the students will be able to

CO1: Inculcate skills for life, such as problem solving, decision making, stress management

CO2: Develop leadership and interpersonal working skills and professional ethics.

CO3: Apply verbal communication skills with appropriate body language.

CO4: Develop their potential and become self-confident to acquire a high degree of self-awareness

References

- 1. Stephen R Covey, "The 7 Habits of Highly Effective People", Free Press, 2004 Edition, ISBN: 0743272455
- Dale Carnegie, "How to win friends and influence people", General Press, 1st Edition, 2016, ISBN: 9789380914787
- 3. Kerry Patterson, Joseph Grenny, Ron Mcmillan, "Crucial Conversation: Tools for Talking When Stakes are High", McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
- 4. Ethnus, "Aptimithra: Best Aptitude Book", Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	Test 1 is conducted in III Sem for 50 marks (15 Marks Quiz and 35 Marks Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18 hours of training sessions.	50%
II	Test 2 is conducted in IV Sem for 50 marks ((15 Marks Quiz and 35 Marks Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18 hours of training sessions.	50%
	At the end of the IV sem Marks of Test 1 and Test 2 is consolidated for 5 grading is done. The final CIE marks is scrutinized by the committee constrained HSS- Chairman, Training Co-ordinator, respective department Staff Pl ordinator before submitting to CoE.	omprising of

Mapping of Course Outcomes (CO) to Program Outcomes (PO)
--

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н					Н		Н	Н	Н	М
CO2	Н	М	М					Н	М	Н	М
CO3			L			Н		М	Н	М	Н
CO4						Н	L	Н	Н	Н	Н

	Semester: IV							
	Course Title: BRIDGE COURSE C PROGRAMMING							
Cou	Course Code:16DCS48 CIE Marks: 100							
Credits: L:T:P:S: 2:0:0:0 SEE Marks: 100								
Hou	Hours: 24 (Audit Course) SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	Develop arithmetic reasoning and analytical skills to apply knowledge of basic concept							
1	of programming in C.							
2	Learn basic principles of problem solving through programming.							
3	Write C programs using appropriate programming constructs adopted in programming.							
4	Solve complex problems using C programming.							

UNIT-I	
Introduction to Reasoning, Algorithms and Flowcharts	02 Hrs
Skill development – Examples related to Arithmetical Reasoning and Analytical	
Reasoning. Fundamentals of algorithms and flowcharts.	
Introduction to C programming	01 Hrs
Basic structure of C program, Features of C language, Character set, C tokens,	
Keywords and Identifiers, Constants, Variables, Data types.	
Handling Input and Output operations	02 Hrs
Reading a character, Writing a character, Formatted input/output functions,	
Unformatted input/output functions.	
UNIT-II	
Operators and Expressions	02 Hrs
Arithmetic operators, Relational operators, Logical Operators, Assignment	
operators, Increment and decrement operators, Conditional operators, Bit-wise	
operators, Arithmetic expressions, evaluation of expressions, Precedence of	
arithmetic operators, Type conversion in expressions, Operator precedence and	
associativity.	
Programming Constructs	03 Hrs
Decision Making and Branching	
Decision making with 'if' statement, Simple 'if' statement, the 'ifelse'	
statement, nesting of 'ifelse' statements, The 'else if' ladder, The 'switch'	
statement, The '?:' operator, The 'goto' statement.	
Decision making and looping The while statement, the do statement, The 'for'	
statement, Jumps in loops.	
UNIT-III	0 0 II
Arrays	02 Hrs
One dimensional arrays, Declaration of one dimensional arrays. Initialization of	
one dimensional arrays, Two dimensional arrays, Initializing two dimensional	
arrays.	0.2 11
Character Arrays and Strings	02 Hrs
Declaring and Initializing String Variables, Reading Strings from Terminal,	
Writing strings to screen, Arithmetic Operations on characters, String operations	
using with and without String handling functions.	
UNIT-IV	
User-defined functions	03 Hrs
	Je 110

Need for User Defined Functions, Definition of functions, Return values and their				
types, Function calls, Function declaration, Category of functions, Nesting of				
functions, Functions with arrays, Storage classes.				
Structures and Unions	03 Hrs			
Introduction, Structure definition, Declaring structure variables, Accessing				
structure members, Structure initialization, Copying and comparing structure				
variables, Arrays of structure, Arrays within structures, Structures and functions,				
Unions.				
UNIT – V				
Pointers	03 Hrs			
Introduction, Accessing the address of a variable, Declaring and initializing of				
pointer variables, Accessing a variable using pointers, Chain of pointers, Pointer				
expressions, Pointer increments and scale factor, Pointers and arrays, Pointers and				
character strings.				
File Managements in C	01 Hrs			
Basic concepts of files, Defining and opening a file, closing of a file, Input/Output				
operations on files.				

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and explore the fundamental computer concepts and basic programming							
	principles like data types, input/output functions, operators, programming constructs							
	and user defined functions.							
CO2:	Analyze and Develop algorithmic solutions to problems.							
CO3:	Implement and Demonstrate capabilities of writing 'C' programs in optimized, robust							
	and reusable code.							
CO4:	Apply appropriate concepts of data structures like arrays, structures, and files to							
	implement programs for various applications.							

Reference Books:

1.	P. Dey, M. Ghosh, "Programming in C", Oxford University press, 1 st Edition, 2007, ISBN -13: 9780195687910.
2.	Kernighan B.W and Dennis M. Ritchie, "The C Programming Language", 2 nd Edition, Prentice
	Hall, 2005, ISBN -13: 9780131101630.
3.	H. Schildt, Turbo C: The Complete Reference, Mcgraw Hill Education, 4th Edition, 2000, ISBN-
	13: 9780070411838.
4.	Yashavant P. Kanetkar, "Understanding Pointers in C", BPB publications, 4 th Edition,
	2003,ISBN-13: 978-8176563581.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)						
Evaluation method	Course with Assignment					
Quiz – 1	10					
Test – 1	50					
Quiz – 2	10					
Quiz – 3	10					
Test – 2	50					
Assignments	10					
Final Evaluation	Quiz 10+10+10=30					

Test 50+50=100, Reduced to
60, Assignments 10

Semester End Evaluation				
Theory (100)				
Part- –A	20			
Objective type questions	20			
Part –B				
There should be five questions from five units. Each question should be for maximum				
of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice.				
Both the questions should be of the same complexity in terms of COs and Bloom's				
taxonomy level.				
Total	100			

Note: The faculty teaching the course may adapt additional methods for evaluation within the total maximum marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Μ	Μ	Μ	L	-	-	-	-	Μ	-	L
CO2	Н	Μ	М	М	Μ	-	-	-	М	L	-	L
CO3	Н	Μ	Μ	М	Μ	L	L	-	Μ	Μ	L	Μ
CO4	Н	Н	Н	Μ	Μ	L	L	-	Μ	Μ	L	Μ

	Course - PO Mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	H	Μ	Μ	Μ	Μ	L	L	-	Μ	Μ	L	Μ

	Semester: IV						
	Course Title: WATER RESOURCES ENGINEERING						
Cou	rse Code:16CV49	CIE Marks: 100					
Cree	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hou	rs: 36	SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to						
1	Understand the knowledge of earth science and circulation of water on earth through Hydrologic cycle.						
2	Analyze the hydrologic data's such as precipitation and its abstraction through evaporation, infiltration and evapotranspiration, runoff.						
3	Analysis of stream flow data and estimation of design flood using Hydrograph theory.						
4	Study of Ground water potential, conservation	of water through rain water harvesting					
4	4 and artificial recharge.						

UNIT-I

Engineering Representation), water budget equation, Applications in engineering, sources of Data, numerical problems. Precipitation: Forms and types of precipitation, Measurement of rain fall using Symon's and Syphon type of rain gauges, Optimum number of rain gauge stations, Consistency of rainfall data (double mass curve method), Computation of mean rainfall, Estimation of missing data, presentation of precipitation data, numerical problems. UNIT-II Abstractions from Precipitation: Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.	UNIT-I	
sources of Data, numerical problems. Precipitation: Forms and types of precipitation, Measurement of rain fall using Symon's and Syphon type of rain gauges, Optimum number of rain gauge stations, Consistency of rainfall data (double mass curve method), Computation of mean rainfall, Estimation of missing data, presentation of precipitation data, numerical problems. UNIT-II Abstractions from Precipitation: Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using attage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.		08 Hrs
Precipitation: Forms and types of precipitation, Measurement of rain fall using Symon's and Syphon type of rain gauges, Optimum number of rain gauge stations, Consistency of rainfall data (double mass curve method), Computation of mean rainfall, Estimation of missing data, presentation of precipitation data, numerical problems. UNIT-II Abstractions from Precipitation: UNIT-II Abstractions from Precipitation: Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. 07 Hrs UNIT-II Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs		
Symon's and Syphon type of rain gauges, Optimum number of rain gauge stations, Consistency of rainfall data (double mass curve method), Computation of mean rainfall, Estimation of missing data, presentation of precipitation data, numerical problems. UNIT-II O7 Hrs O7 Hrs O7 Hrs D7 Hrs D7 Hrs O7 Hrs D7 Hrs UNIT-II D8 UNIT-III D8 UNIT-III CUNIT-III D8 UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. D7 Hrs Stream Flow Measurement: Measurement of stage, Measurement of ve	sources of Data, numerical problems.	
stations, Consistency of rainfall data (double mass curve method), Computation of mean rainfall, Estimation of missing data, presentation of precipitation data, numerical problems. UNIT-II Abstractions from Precipitation: Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.		
mean rainfall, Estimation of missing data, presentation of precipitation data, numerical problems. UNIT-II Abstractions from Precipitation: 07 Hrs Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. 07 Hrs Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. 07 Hrs Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs		
numerical problems. UNIT-II Abstractions from Precipitation: 07 Hrs Evaporation: Process, Factors affecting, measurement using ISI standard Pan, 107 Hrs Estimation of evaporation using Empirical formulae, numerical problems. 107 Hrs Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. 07 Hrs Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs		
UNIT-II Abstractions from Precipitation: Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs		
Abstractions from Precipitation: 07 Hrs Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. 07 Hrs Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. 07 Hrs WNIT-III UNIT-III 07 Hrs Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs	numerical problems.	
Evaporation: Process, Factors affecting, measurement using ISI standard Pan, Estimation of evaporation using Empirical formulae, numerical problems. Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs (Snyder's Method), Numerical problems. 07 Hrs	UNIT-II	
Estimation of evaporation using Empirical formulae, numerical problems. Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs (Snyder's Method), Numerical problems. 07 Hrs	Abstractions from Precipitation:	07 Hrs
Infiltration: Factors affecting infiltration capacity, measurement (double ring infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs	Evaporation: Process, Factors affecting, measurement using ISI standard Pan,	
infiltrometer), Horton's infiltration equation, infiltration indices, numerical problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs	Estimation of evaporation using Empirical formulae, numerical problems.	
problems. UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs WNIT-IV UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs	Infiltration: Factors affecting infiltration capacity, measurement (double ring	
UNIT-III Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs		
Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems. 07 Hrs Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. 07 Hrs WNIT-IV UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs	problems.	
rational and empirical methods, numerical problems. Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.		
Stream Flow Measurement: Measurement of stage, Measurement of velocity by current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. VIIT-IV WNIT-IV UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs	Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using	07 Hrs
current meters, Measurement of discharge by Area – Velocity method, Simple stage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.	rational and empirical methods, numerical problems.	
stage discharge relation. UNIT-IV Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems. 07 Hrs	Stream Flow Measurement: Measurement of stage, Measurement of velocity by	
UNIT-IVHydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.07 Hrs	current meters, Measurement of discharge by Area - Velocity method, Simple	
Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.	stage discharge relation.	
from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.	UNIT-IV	
hydrographs – from isolated storms, method of superposition, Synthetic Unit Hydrographs (Snyder's Method), Numerical problems.	Hydrographs: Components of hydrographs, unit hydrograph and its derivation	07 Hrs
Hydrographs (Snyder's Method), Numerical problems.	from simple storm hydrograph, base flow separation, preparation of unit	
	hydrographs – from isolated storms, method of superposition, Synthetic Unit	
TINIT X7	Hydrographs (Snyder's Method), Numerical problems.	
UNII-V	UNIT-V	
Ground Water Hydrology: Scope and importance, Aquifers, Steady radial flow 07 Hrs	Ground Water Hydrology: Scope and importance, Aquifers, Steady radial flow	07 Hrs
	into wells in unconfined and confined aquifers.	
Rainwater Harvesting: Introduction, small tank rain harvesting, urban rainwater	Rainwater Harvesting: Introduction, small tank rain harvesting, urban rainwater	
harvesting, methods of ground water recharge.	harvesting, methods of ground water recharge.	

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe various hydrological parameters for design of water resources projects.								
CO2:	Understand the hydrological aspects of surface and ground water, techniques of stream flow measurement and methods of conservation of water.								
CO3:	Determine various hydrological parameters over a catchment and ground water potential.								
CO4:	Analyse the hydrological data, stream flow data for design hydraulic structures.								

Ref	erence Books										
1.	Subramanya K., 'Engineering Hydrology', Tata McGraw Hill, New Delhi, 4th Edition,										
	2013, ISBN-10: 1259029972, ISBN-13: 978-1259029974.										
2.	K.C. Patra "Hydrology and Water Resources Engineering", Alpha Science										
	International Ltd, 2 nd Revised edition, ISBN-10: 1842654217, ISBN-13: 978-										
	1842654217.										
3.	VenTe Chow, Applied Hydrology Tata McGraw Hill Edition, 2010, ISBN-										
	13:9780070702424,										
	ISBN-10:007070242X.										
4.	Todd, "Ground Water Hydrology", Wiley Eastern Publication, New Delhi, Second edition,										
	reprint 2014, ISBN: 9788126508365.										

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)								
Evaluation method	Course with Assignment							
Quiz -1	10							
Test -1	50							
Quiz -2	10							
Quiz -3	10							
Test -2	50							
Assignment	10							
	Quiz 10+10+10=30							
Final Evaluation	Test 50+50=100, Reduced to							
	60, Assignment 10							

Semester End Evaluation Theory (100)						
Part- –A	20					
Objective type questions	20					
Part –B						
There should be five questions from five units. Each question should be for maximum						
of 16 Marks.						
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.						
The UNIT-2 and UNIT-3 should have an internal choice.						
Both the questions should be of the same complexity in terms of COs and Bloom's	80					
taxonomy level.						
Total	100					

		What	To whom	Frequency of conduction	Max Marks	Evidence	Contribution to Course Outcome		
s		Quiz		Three	30	Answer			
hoc	CIE	Test		Two	60	Scripts	80%	100%	90%
Direct Assessment Methods		Assignment		2 phases	10	Reports	0070		
	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		
Indirect Assessment methods	Cou	Course End Survey Stude		End of course		Questionnaire Based on COs	10%		

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	2	2	1	1	-	-	2
CO2	2	2	-	-	-	1	-	-	1	-	-	1
CO3	2	1	1	-	2	2	2	-	1	-	-	2
CO4	2	2	1	-	-	2	-	-	1	-	-	1