

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

INDUSTRIAL ENGINEERING AND MANAGEMENT

VISION

Imparting innovation and value based education in Industrial Engineering and Management for steering organizations to global standards with an emphasis on sustainable and inclusive development.

MISSION

- To impart scientific knowledge, engineering and managerial skills for driving organizations to global excellence.
- To promote a culture of training, consultancy, research and entrepreneurship interventions among the students.
- To institute collaborative academic and research exchange programs with national and globally renowned academia, industries and other organizations.
- To establish and nurture centers of excellence in the niche areas of Industrial and Systems Engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

- PEO1. Conceive, design, implement and operate integrated systems, focus on appropriate measures of performance at strategic, tactical and operational levels.
- PEO2. Develop competency to adapt to changing roles for achieving organizational excellence.
- PEO3. Design and develop sustainable technologies and solutions for betterment of society.
- PEO4. Pursue entrepreneurial venture with a focus on creativity and innovation for developing newer products, processes and systems.

PSODescriptionPSO1Design, develop, implement and improve integrated systems that include people,
materials, information, equipment and energy.PSO2Apply statistical and simulation tools, optimization and meta heuristics techniques for
analysis of various systems leading to better decision making.PSO3Demonstrate the engineering relationships between the management tasks of planning,
organization, leadership, control, and the human element in various sectors of economy.

PROGRAM SPECIFIC OUTCOMES (PSO)

Lead Society: Institute of Industrial Engineers (IIE)

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road

Bengaluru – 560 059

Bachelor of Engineering (B.E) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

INDUSTRIAL ENGINEERING AND MANAGEMENT

Abbreviations							
SL. NO.	ABBREVIATION	MEANING					
1.	VTU	Visvesvaraya Technological University					
2.	BS	Basic Sciences					
3.	CIE	Continuous Internal Evaluation					
4.	CS	Computer Science and Engineering					
5.	CV	Civil Engineering					
6.	CHY	Chemistry					
7.	EC	Electronics and Communication Engineering					
8.	EE	Electrical and Electronics Engineering					
9.	ES	Engineering Science					
10.	HSS	Humanities and Social Sciences					
11.	ME	Mechanical Engineering					
12.	PHY	Engineering Physics					
13.	SEE	Semester End Examination					
14.	MAT	Engineering Mathematics					
15.	PCE	Professional Core Elective					
16.	GE	Global Elective					

INDEX

	V Semester								
Sl. No.	Course Code		Name of the Course	Page No.					
1.	16HEM51	Foundation	as of Management & Economics	1					
2.	16IM52	Industrial H	Ergonomics	3					
3.	16IM53	Quality and	ality and Reliability Engineering						
4.	16IM54	Simulation	nulation Modelling and Analysis						
5.	16IM55	Operations	Management	9					
	G	ROUP A: P	ROFESSIONAL CORE ELECTIVES						
6.	16IM5A1	Advanced	Manufacturing Processes	12					
7.	16IM5A2	Methodolo	gies for Quality Improvement	14					
8.	16IM5A3	Advanced	Operations Research	16					
9.	16IM5A4	Marketing	Aarketing Management & Research						
10.	16IM5A5	Software E	oftware Engineering & Testing						
		GRO	UP B: GLOBAL ELECTIVES						
Sl. No.	Course Code	Host Dept	Course Title	Page No.					
1.	16G5B01	BT	Bioinformatics	22					
2.	16G5B02	СН	Fuel Cell Technology	24					
3.	16G5B03	CV	Geoinformatics	26					
4.	16G5B04	CSE	Graph Theory	28					
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	30					
6.	16G5B06	EEE	Hybrid Electric Vehicles	32					
7.	16G5B07	IEM	Optimization Techniques	34					
8.	16G5B08	E&I	Sensors & Applications	36					
9.	16G5B09	ISE	Introduction To Management Information Systems	38					
10.	16G5B10	ME	Industrial Automation	40					
11.	16G5B11	TCE	Telecommunication Systems	42					
12.	16G5B12	MAT	Computational Advanced Numerical Methods	44					
13.	16G5B13	AE	Basics of Aerospace Engineering	46					

Sl. No. Course Name of the Course I Code 1 16HSI61 Intellectual Property Rights & Entrepreneurship	Page No. 48 51							
Code Image: Code 1. 16HSI61 Intellectual Property Rights & Entrepreneurship	48 51							
1. 16HSI61 Intellectual Property Rights & Entrepreneurship	48 51							
	51							
2. 16IM62 Enterprise Information Systems								
3. 16IM63 Facilities Planning and Design	53							
4. 16IM64 Supply Chain & Logistics Management	55							
GROUP C: PROFESSIONAL CORE ELECTIVES								
5. 16IM6C1 Digital Manufacturing	58							
6. 16IM6C2 Services Operations Management	60							
7. 16IM6C3 Reliability Engineering	62							
8. 16IM6C4 Financial Management	64							
9. 16IM6C5 Data Mining Technologies	66							
10. 16IM6C6 3-D Metrology	68							
GROUP D: PROFESSIONAL CORE ELECTIVES								
11. 16IM6D1 Systems Engineering	70							
12. 16IM6D2 Cognitive Ergonomics	72							
13. 16IM6D3 Design of Experiments	74							
14. 16IM6D4 Human Resource Management & Development	76							
15. 16IM6D5 E-Commerce	78							
16. 16IM6D6 User Interface Design	80							
GROUP E: GLOBAL ELECTIVES								
Sl. No.CourseHostCourse TitleH	Page No.							
Code Dept								
1. 16G6E01 BT Bioinspired Engineering	82							
2. 16G6E02 CH Green Technology	84							
3. 16G6E03 CV Solid Waste Management	86							
4. 16G6E04 CSE Introduction to Web Programming	88							
5. 16G6E05 ECE Automotive Electronics	90							
6. 16G6E06 EEE Industrial Electronics	92							
7. 16G6E07 IEM Project Management	94							
o. 1000E00 E&I virtual instrumentation 0 16C6E00 ISE Introduction to Mobile Application Development	90							
7. 1000E07 ISE Influenciation to Mobile Application Development 10 16G6E10 ME Automotive Engineering	90 100							
10. 1000E10 WIE Automotive Engineering	100							
12 16G6E12 MAT Applied Partial Differential Equations	102							
13. 16G6E13 AE Aircraft Systems	104							

R V College of Engineering, Bengaluru-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) Department of Industrial Engineering and Management

	FIFTH SEMESTER CREDIT SCHEME									
CI	Course			CREDIT ALLOCATION						
51. No.	Code	Course Title	BoS	L	Т	Р	S	Total Credits		
1.	16HEM51	Foundations of Management & Economics	HSS	2	0	0	0	2		
2.	16IM52	Industrial Ergonomics	IEM	3	0	1	0	4		
3.	16IM53	Quality and Reliability Engineering	IEM	3	1	0	0	4		
4.	16IM54	Simulation Modelling and Analysis	IEM	3	0	0	1	4		
5.	16IM55	Operations Management	IEM	3	0	1	0	4		
6.	16IM5AX	Elective A (PCE)	IEM	3	0	0	1	4		
7.	16G5BXX	Elective B (OE)	Respective BoS	4	0	0	0	4		
	,					26				
	Tot	al Number of Hours / Week		21	2	4	8**			

	SIXTH SEMESTER CREDIT SCHEME									
SI.	Course		BoS	CREDIT ALLOCATION						
No.	Code	Course Title		L	Т	Р	S	Total Credits		
1.	16HSI61	Intellectual Property Rights & Entrepreneurship	HSS	3	0	0	0	3		
2.	16IM62	Enterprise Information Systems	IEM	3	0	0	1	4		
3.	16IM63	Facilities Planning and Design	IEM	3	0	1	0	4		
4.	16IM64	Supply Chain & Logistics Management	IEM	3	0	1	0	4		
5.	16IM6CX	Elective C (PCE)	IEM	3	0	0	1	4		
6.	16IM6DX	Elective D (PCE)	IEM	4	0	0	0	4		
7.	16G6EXX	Elective E (OE)	Respective BOS	3	0	0	0	3		
8. 16HS68 Professional Practice-III (Employability Skills and Professional Development of Engineers)		HSS	0	0	0	0	1			
		Total number of Credits						27		
	Tot	tal Number of Hours / Week	22	0	4	8**				

**Non contact hours

V SEMESTER FOUNDATIONS OF MANAGEMENT AND ECONOMICS (Theory)								
	(Common to BT, CHE, CV, E&I, IEM, ME)							
Cou	Course Code: 16HEM51 CIE Marks: 50							
Crec	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50							
Hou	Hours: 23L SEE Duration: 02Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	1 Understand the evolution of management thought.							
2	2 Acquire knowledge of the functions of Management.							
3	Gain basic knowledge of essentials of Micro economics and Macroeconomics.							
4	Understand the concepts of macroecond	omics relevant to differ	ent organizational contexts.					

UNIT-I

Introduction to Management: Management Functions, Roles & Skills, Management History – Classical Approach: Scientific Management & Administrative Theory, Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies, Contemporary Approach: Systems & Contingency Theory. 04 Hrs Guantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies, Contemporary Approach: Systems & Contingency Theory. 02 Hrs Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate & Competitive Strategies. 03 Hrs Organizational Structure & Design: Overview of Designing Organizational Structure: Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 03 Hrs UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic Microeconomics, Decisions: some central themes, Market: Some central themes, Uses of Microeconomics: Prices and inflation, Exchange rate, Gross domestic Microeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-A	0111-1			
History – Classical Approach: Scientific Management & Administrative Theory, Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies, Contemporary Approach: Systems & Contingency Theory. UNIT-II Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate & Competitive Strategies. Organizational Structure & Design: Overview of Designing Organizational Structure: Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. UNIT-III Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model. The neo- elongical worthering Evalence are determined to the Mardel Difference model	Introduction to Management: Management Functions, Roles & Skills, Management	04 Hrs		
Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies, Contemporary Approach: Systems & Contingency Theory. 02 Hrs Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate & Competitive Strategies. 02 Hrs Organizational Structure & Design: Overview of Designing Organizational Structure: Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. 04 Hrs Evoluti(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model 04 Hrs	History - Classical Approach: Scientific Management & Administrative Theory,			
Contemporary Approach: Systems & Contingency Theory. UNIT-II Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate & Competitive Strategies. 02 Hrs Strategic Management Process, Corporate & Competitive Strategies. 03 Hrs Organizational Structure & Design: Overview of Designing Organizational Structure: 03 Hrs Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growt	Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies,			
UNIT-II Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate & Competitive Strategies. 02 Hrs Strategic Management Process, Corporate & Competitive Strategies. 03 Hrs Organizational Structure & Design: Overview of Designing Organizational Structure: 03 Hrs Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics. 04 Hrs Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, G	Contemporary Approach: Systems & Contingency Theory.			
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate & Competitive Strategies. 02 Hrs Strategic Management Process, Corporate & Competitive Strategies. 03 Hrs Organizational Structure & Design: Overview of Designing Organizational Structure: 03 Hrs Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model 04 Hrs	UNIT-II			
Strategic Management Process, Corporate & Competitive Strategies. 03 Hrs Organizational Structure & Design: Overview of Designing Organizational Structure: 03 Hrs Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, Ne As-AD-model, The complete Keynesian model. 04 Hrs	Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	02 Hrs		
Organizational Structure & Design: Overview of Designing Organizational Structure: 03 Hrs Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Work Specialization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Work Specialization & Decentralization, Formalization, Mechanistic & Organic Structures. 03 Hrs Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs 03 Hrs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, Murdel Elements and the unserins model. 04 Hrs	Strategic Management Process, Corporate & Competitive Strategies.			
Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. 0 UNIT-III Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 03 Hrs Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. 04 Hrs Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- delaceised European erate determine and the Mundell Elemine medal 04 Hrs	Organizational Structure & Design: Overview of Designing Organizational Structure:	03 Hrs		
Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. UNIT-III Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 03 Hrs Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics. 04 Hrs Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, Macroeconomic Evonomedel, The AS-AD-model, The complete Keynesian model, Mersender 04 Hrs	Work Specialization, Departmentalization, Chain of Command, Span of Control,			
UNIT-III Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs 03 Hrs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary 03 Hrs Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan 03 Hrs Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey 03 Hrs & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics. 04 Hrs UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- 04 Hrs	Centralization & Decentralization, Formalization, Mechanistic & Organic Structures.			
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs 03 Hrs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary 03 Hrs Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan 03 Hrs Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey 03 Hrs & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 04 Hrs Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics. 04 Hrs Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- 04 Hrs	UNIT-III			
Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership, Contemporary Views of Leadership: Transactional & Thtroduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic Product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, Keynesian cross	Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	03 Hrs		
Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory. 03 Hrs Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 03 Hrs WIT-IV UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. 04 Hrs Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- 04 Hrs	Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary			
Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. 03 Hrs WINT-IV UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. 04 Hrs Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-leagient unthesis. 04 Hrs	Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory.			
Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of Microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-leastical surface area datarmination and the Mundell Eleming model 04 Hrs	Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan			
& Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-	Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey			
Transformational Leadership. UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. 04 Hrs Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neopleasing and the Mundall Eleming model 04 Hrs	& Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional &			
UNIT-IV Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. 04 Hrs UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model 04 Hrs	Transformational Leadership.			
Introduction to Economics: Concept of Economy and its working, basic problems of an Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. 04 Hrs UNIT-V UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP) , components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model 04 Hrs	UNIT-IV			
Economy, Market mechanism to solve economic problems, Government and the economy, Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- placence of the Mundelly Elemine model	Introduction to Economics: Concept of Economy and its working, basic problems of an	04 Hrs		
Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-	Economy, Market mechanism to solve economic problems, Government and the economy,			
microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- placence of the Mundelly Elemina model	Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of			
Microeconomics. UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model. The neo-plassical synthesis. Exchange rate determination and the Mundell Eleming model 04 Hrs	microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of			
UNIT-V Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- plassical synthesis. Exchange rate determination and the Mundell Eleming model	Microeconomics.			
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-	UNIT-V			
product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate, Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-	Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic	04 Hrs		
Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- classical synthesis. Exchange rate determination and the Mundell Eleming model	product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate,			
model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-	Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross			
alassical symphotics. Exchange rate determination and the Mundell Eleming model	model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-			
classical synthesis, Exchange rate determination and the Munden-Fleming model	classical synthesis, Exchange rate determination and the Mundell-Fleming model			

Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the principles of management theory & recognize the characteristics of an						
	organization.						
CO2:	Demonstrate the importance of key performance areas in strategic management and design						
	appropriate organizational structures and possess an ability to conceive various organizational						
	dynamics.						
CO3:	Select & Implement the right leadership practices in organizations that would enable systems						
	orientation.						
CO4 :	Understand the basic concepts and principles of Micro economics and Macroeconomics						

ſ

Refe	erence Books
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10 th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5 th Edition, 2009, TMH Pub. Co.
	Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, (<u>www.bookboon.com</u>), Peter Jochumzen, 1 st Edition. 2010, e-
	book, ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

	V Semester						
	INDUSTR	IAL ERGONOMICS	5				
	(The	ory & Practice)					
Course Code: 16IM52 CIE Marks: 100+50							
Credits: L:T:P:S: 3:0:1:0 SEE Marks: 100+							
Hou	rs: 33L		SEE Duration: 03 + 03 Hrs				
Cou	rse Learning Objectives: The students	will be able to					
1	1 Define the scope of ergonomics in work system design for productivity improvement.						
2	2 Express the role of cognitive ergonomics in problem solving and decision making.						
3	Compile basic anthropometric data	for designing the m	an-machine systems for various				
3	applications.						

UNIT-I	
Introduction: Description of human-machine systems, ergonomics and its area of	07 Hrs
application in the work system, history of ergonomics, modern ergonomics.	
Anatomy, Posture, and Mechanics: Basic body mechanics, aspects of muscle functions,	
anatomy of the spine and pelvis related to posture, musculoskeletal problems in sitting	
and standing postures, behavioral aspects of posture.	
UNIT-II	
Anthropometric Principles in Workspace and Equipment Design: Anthropometry and	07 Hrs
its use, types of anthropometric data, principles of applied anthropometry in ergonomics,	
application of anthropometry in product design, case studies.	
UNIT-III	
Workspace Design: Contribution of ergonomics to work station design, ergonomic	07 Hrs
approach to work station design, work surface design, visual display terminals, case	
studies.	
UNIT-IV	
Cognitive Ergonomics: Problem solving and decision-making, cognitive control of	06 Hrs
systems, Modelling of human operator control strategy, user models of interactive	
systems, the human operator as a decision maker, improving human decision making and	
problem solving.	
UNIT-V	
Environment: Measurement and Design. Hearing, Sound, Noise, and Vibration.	06 Hrs
Work Organization and Work System Design: Design of human-machine system, the	
systems approach, work organization, motivation and job satisfaction, sociotechnical	
systems theory, trends in work system design, legislative trends: standards, guidelines,	
intervention programs and NPC guidelines on work organization and work system design.	

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

INDUSTRIAL ERGONOMICS LABORATORY

- Experiments on fatigue measurement using bio-medical parameter.
- Experiments on Measurement of anthropometric data.
- Experiments on evaluation workstation.
- Experiments on Measurement of local muscle activity using EMG.
- Experiments on virtual evaluation workstation.

Course	e Outcomes: After completing the course, the students will be able to
CO1.	Explain and apply the ergonomic concepts in the evaluation of existing systems and design of
	new systems.
CO2.	Demonstrate an understanding of concepts of ergonomics and human body mechanics.

CO3.	Analyze the relationship between work attributes and ergonomic risk factors.												
CO4.	Evaluate the effect of ergonomic risk factors on the physiological and bio-mechanical												
	mechanisms of human worker.												

Refe	erence Books
1.	Introduction to Ergonomics, R S Bridger, 3 rd Edition, 2008, CRC Press, ISBN: 9780849373060.
2.	Human Factors in Engineering and Design; Mark S. Sanders and Ernest J McCormick;
	7 th Edition, McGraw-Hill and Co. Singapore 1992. ISBN 0-07-112826-3.
3.	Handbook of Human Factors and Ergonomics, Gavriel. Salvendy, 3 rd Edition, 2006, Wiley,
	Hoboken, New Jersey, USA, ISBN: 0471116904.
4.	Introduction to Human Factors Engineering, Christopher D. Wickens, John D. Lee, Yili Liu,
	Sallie Gordon-Becker, 2 nd Edition, 2003, Pearson Publication, ISBN: 978-0131837362

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				1						
CO2	2	1				1						
CO3	1	2	1									
CO4		2		1								

Low-1 Miculum-2 Ingn-5

	V Semester							
	OUALITY AND RELIABILITY ENGINEERING							
	(Theory)							
Cou	urse Code: 16IM53	CIE Marks: 100						
Cre	dits: L:T:P:S: 3: 1: 0: 0	SEE Marks: 100						
Ηοι	ırs: 33L + 24T	SEE Duration: 03 Hrs						
Cou	Course Learning Objectives: The students will be able to							
1	Explain basics of quality control and quali	ty improvement.						
2	Construct control charts for variables and attributes to monitor processes, and interpret the							
4	charts.							
3	Perform process homogenization & process harmonization, & to estimate capability of various							
5	processes.							
4	Develop strategies for conducting design of experiments in process improvements							
5	Perform Reliability evaluation of Mechan	nical, Electrical, Electronics and Software Technology						
5	Systems.							

UNIT-I	
Introduction: Dimensions of Quality, Statistical Methods for Quality, Quality costs.	06 Hrs
Quality assurance, ISO 9000, 14000 standards.	
Statistical Process Control: Chance and assignable causes of variation. Statistical basis	
of control charts, Basic principles of control charts, choice of control limits, sample size	
and sampling frequency, rational sub groups, statistical basis of control charts. Analysis of	
patterns of control charts.	
UNIT-II	
Control Charts for Variable and Attribute Data: Controls charts for mean and Range,	06 Hrs
Control charts for mean and standard deviation. Brief discussion on – Pre control, Control	
charts for individual measurements, Moving-range charts, Sloping control charts, Group	
control charts.	
Controls chart for fraction non- conforming (p, np, 100p charts), Control chart for non-	
conformities (c and u charts).	
Process capability – methods of estimating process capability, Process capability indices-	
c_p and c_{pk} ,	
UNIT-III	
Acceptance Sampling: Concept of acceptance sampling, economics of inspection,	07 Hrs
Acceptance sampling plans – Single, Double and Multiple Sampling. Operating	
Characteristic curves – construction and use. Determination of Average Outgoing Quality	
(AOQ), Average Outgoing Quality Level, Average Total Inspection, Production Risk and	
Consumer Risk, Published Sampling Plans.	
UNIT-IV	
Experimental Design for Process Improvement: General model of a process, Examples	07 Hrs
of designed experiments in process improvement, Principles of experimentation,	
Guidelines for designing experiments, Completely randomized designs (CRD),	
Randomized block designs (RBD), Factorial experiments -2^2 design.	
UNIT-V	
Reliability And Life Testing: Failure models of components, definition of reliability,	07 Hrs
MTBF, Failure rate, common failure rate curve, types of failure, reliability evaluation in	
simple cases of exponential failures in series, parallel and series-parallel device	
configurations.	

Assignments: Case study, Design and Emerging Technologies to be discussed pertaining to the course, along with usage of softwares for Experimental design and Statistical Quality Control.

Course Outcomes: After completing the course, the students will be able to								
CO1.	Explain the DMAIC process and fundamentals of quality control and improvement.							
CO2.	Apply modern statistical methods for process quality control and improvement.							
CO3.	Examine the data and draw inference about the process.							
CO4.	Evaluate processes and select statistical tools and techniques for quality control and							
	improvement.							

Reference Books

1.	"Statistical Quality Control : A Modern Introduction", D C Montgomery, 6th Edition, 2009, John
	Wiley and Sons, ISBN 978-81-265-2506-5.
2.	"Statistical Quality Control", Grant and Leavenworth, 7th Edition, 2008, McGraw Hill, ISBN –
	0-07-043555-3.
3.	An Introduction to Reliability and Maintainability Engineering, Charles E. Ebeling, 1 st Edition,
	1997, McGraw-Hill International Editions, ISBN0070188521
4.	Quality Planning & Analysis, Joseph M. Juran; Gryna, Frank M., Jr., 3 rd Edition, 2009, Tata
	McGraw Hill, ISBN – 9780070331839.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	2	1				1	
CO2		2	1	1								
CO3												
CO4		2	2	3								

	V Semester							
	SIMULATION MODELLING & ANALYSIS							
	[]	Theory)						
Cou	Course Code: 16IM54 CIE Marks: 100							
Cred	Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hou	Hours: 34L SEE Duration:03 + 03 Hrs							
Course Learning Objectives: The students will be able to								
1	Define the basics of simulation modelling and replicating the practical situations in							
	organizations							
2	Generate random numbers and random variates using different techniques.							
3	Develop simulation model using heuristic methods.							
4	Analysis of Simulation models using input analyzer, and output analyzer							
5	Explain Verification and Validation of sir	nulation model.						

٦

S Explain Vermeation and Vandation of simulation model.					
UNIT-I					
Introduction to Simulation: Simulation, Advantages, Disadvantages, Areas of 071	Irs				
application, System environment, components of a system, Model of a system, types of					
models, steps in a simulation study.					
Simulation Examples: Simulation of Queuing systems, Simulation of Inventory System,					
Other simulation examples.					
UNIT-II					
Analysis of Simulation Data 08 1	Hrs				
Input Modelling: Data collection, Identification and distribution with data, parameter					
estimation, Goodness of fit tests, Selection of input models without data, Multivariate and					
time series analysis.					
Random Numbers: Properties, Generations methods, Tests for Random number-					
Frequency test, Runs test, Autocorrelation test.					
UNIT-III					
Random Variate Generation: Inversion transforms technique-exponential distribution. 07	Irs				
Uniform distribution, weibull distribution, continuous distribution, generating					
approximate normal variates – Erlang distribution.					
Empirical Discrete Distribution: Discrete uniform –distribution, poisson distribution –					
-acceptance –rejection technique for Poisson distribution, gamma distribution.					
UNIT-IV					
Optimisation Via Simulation : Meaning, difficulty, Robust Heuristics, Random Search, 061	Irs				
Verification and Validation of Model – Model Building, Verification, Calibration and					
Validation of Models.					
INIT-V					
Output Analysis – Types of Simulations with Respect to Output Analysis. Stochastic 06 F	Irs				
Nature of output data Measures of Performance and their estimation Output analysis of					
terminating simulation. Output analysis of steady state simulations					
Simulation Software: Selection of Simulation Software Simulation packages Trend in					
Simulation Software.					

Experiential Learning:

Г

Case study, Design and Emerging Technologies to be discussed pertaining to the course. Students will use simulation software such as Arena, Promodel, Excel, Palisade, Matlab 1 Credit: 4 Hrs / Week

Course Outcomes: After completing the course, the students will be able to				
CO1	Describe the role of important elements of discrete event simulation and modeling paradigm			
CO2	Conceptualize real world situations related to systems development decisions, originating			

	from source requirements and goals
CO3	Develop skills to apply simulation to construct and execute goal-driven system models
CO4	Interpret the model and apply the results to resolve critical issues in a real world environment

Refe	Reference Books			
1.	Discrete Event System Simulation, Jerry Banks, John S Carson, II, Berry L Nelson, David M			
	Nicol, 4 th Edition, 2007, Pearson Education, Asia, ISBN: 81-203-2832-9.			
2.	Simulation Modelling & Analysis, Averill M Law, W David Kelton, 5th Edition, 2014, McGraw			
	Hill International Editions – Industrial Engineering series, ISBN: 978-0073401324.			
3.	Systems Simulation with Digital Computer, Narsingh Deo, 3 rd Edition, 2004, PHI Publication			
	(EEE), ISBN : 0-87692-028-8.			
4.	Discrete-Event Simulation: Modeling, Programming, and Analysis, George S. Fishman,			
	1 st Edition, 2013, Springer Science & Business Media, ISBN :1475735529, 9781475735529			

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		3	2	2				1			1
CO2		2								1		1
CO3	2			2	2			1				
CO4		2		1	2				1			

Low-1 Medium-2 High-3

	V Semester					
OPERATIO	OPERATIONS MANAGEMENT					
(Theory & Practice)						
Course Code: 16IM55 CIE Marks: 100 + 50						
Credits: L:T:P:S: 3:0:1:0	SEE Marks: 100 + 50)				
Hours: 33L SEE Duration: 03 + 0.						
Course Learning Objectives: The students	will be able to					
1 Apply the various methods of forecastir	ng.					
2 Define capacity and utilization and their	r relationship to financial performance measur	es.				
3 Define the key performance measures to	o consider the need for the schedule.					
4 Design of Conversion process systems i	in manufacturing and service organizations.					
5 Illustrate the role of operations, and the	ir interaction with the other activities of a firm	: finance,				
marketing, organization, corporate gove	ernance, etc.					
	UNIT-I					
Using operations to create value: Role of op	perations in an organization, a process view,	07 Hrs				
a supply chain view, operations strategy	, competitive priorities and capabilities,					
addressing the trends and challenges in operat	Ions management, decision making models					
Propose strategy and analysis: propose of	UNII-II	07 Ung				
manufacturing process strategy decision	s strategic fit strategies for change	07 1115				
documenting and evaluating the process	s, suategic int, suategics for change,					
improvements	improvements					
UNIT-III						
Planning capacity: Planning long term capacity	Planning capacity: Planning long term capacity planning timing and sizing strategies a 07 Hrs					
systematic approach to long term capacity de	cisions, tools for capacity planning, waiting					
line models.						
Managing process constraints: the theory	y of constraints, managing bottlenecks in					
service and manufacturing processes, applying	ng the theory of constraints to product mix					
decisions, managing constraints in line proces	ses					
	UNIT-IV					
Forecasting Demand: managing demand, k	ey decisions on making forecasts, forecast	06 Hrs				
error, judgment methods, causal methods: lin	error, judgment methods, causal methods: linear regression, time series, forecasting as a					
process						
Managing Inventories: inventory tradeoffs, types of inventory, inventory reduction						
tactics, ABC Analysis, economic order quantity, continuous review system, modeling						
review system, special inventory models						
UNIT-V						
Planning and Scheduling Operations: lev	els in operations planning and scheduling,	06 Hrs				
S&OP supply options, S&OP strategies, scher	S&OP supply options, S&OP strategies, scheduling.					
childrent resource planning: Material for	equirements planning, master production					
providers	nce planning, resource planning for service					
providers.						

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

OPERATIONS MANAGEMENT LABORATORY		
Part – I		
Features of Ofbiz, Creation of sales order from E-commerce website		
Preparation of Bill of Materials		
MRP Run- Generating of Various reports for confirmed orders		
Carrying out business process cycles – Purchase		

Creating Production Run for the items

Simulation of Production/Service Operations using Simulation software

Part – II

Features of Sixth Sense ERP Package.

Sales Order Processing using Sales and Marketing Management Modules

Creating Item Master for various Engineering Designs

Preparation of Bill of Materials

Generating Purchase Order and carrying out Purchase Flows.

Development of an integrated ERP module for a product

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1.	Explain the concept and scope of operations management in a business context					
CO2.	Recognize the role of Operations management among various business functions and its role					
	in the organizations' strategic planning and gaining competitive advantage.					
CO3.	Analyze the appropriateness and applicability of a range of operations management					
	systems/models in decision making.					
CO4.	Assess a range of strategies for improving the efficiency and effectiveness of organizational					
	operations.					
CO5.	Evaluate a selection of frameworks used in the design and delivery of operations					

Refe	erence Books
1.	Operations Management – Processes and Supply Chain, Lee J Karjewski and Larry P Ritzman,
	Manoj Malhotra, 11 th Edition, 2010, Pearson Education Asia, ISBN: 0133872467,
	9780133872460
2.	Production and Operations Management, R. Paneerselvam, 2 nd Edition, 2006, PHI,
	ISBN:81-203-2767-5
3.	Operations Management – Theory and Practice, B. Mahadevan, 2 nd Edition, 2010, PHI,
	ISBN: 978 8131730706
4.	Productions & Operations Management, Adam & Ebert, 5 th Edition, 2002, Prentice Hall,
	ISBN – 013718008-X.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2		3										
CO3			3	2	2							1
CO4		1	2			1						
CO5		3	3		2							

	V Semester						
	ADVANCED MANUFACTURING PROCESSES						
	(Group A : Professional Core Elective)						
Cou	Course Code: 16IM5A1 CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1		SEE Marks: 100					
Hours: 35L		SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to						
1	Explain range of current industrial prod	cesses and practices used to manufacture products in high					
I	and low volumes.						
•	Apply the factors that control the r	rate of production and influence the quality, cost and					
4	flexibility of processes.						

3 Demonstrate the working principle of various manufacturing methods

UNIT-I		
Mechanical Machining Processes : Abrasive Jet Machining (AJM), Ultrasonic Machining	06 Hrs	
(USM), Abrasive Finishing Processes – Abrasive Flow Finishing (AFF), Magnetic		
Abrasive Finishing (MAF), Water Jet Machining (WJM), Abrasive Water Jet Machining		
(AWJM).		
UNIT-II		
Thermoelectric Machining Processes : Electric Discharge Machining (EDM), Electric	08 Hrs	
Discharge Grinding and Electric Discharge Diamond Grinding, Wire Electric Discharge		
Machining, Laser Beam Machining (LBM), Plasma Arc Machining (PAM), Electron Beam		
Machining (EBM).		
UNIT-III		
Electrochemical and Chemical Manufacturing Processes :Electrochemical Machining		
(ECM), Electromechanical Grinding (ECG), Electrochemical Drilling (ECD),		
Electrochemical Deburring (ECDe), Chemical Machining (ChM)		
UNIT-IV		
High Velocity Forming Processes: Explosive forming processes, Propellant forming,	07 Hrs	
Electro-Hydraulic forming, Electromagnetic forming, Pneumatic / Mechanical forming.		
Micro-Machining: Classification of Micromachining, Various Micromachining Processes-		
Abrasive micro machining, Ultrasonic micro machining, Micro EDM, Micro ECM, Laser		
Micromachining.		
UNIT-V		
MEMS (Micro Electro Mechanical Systems)- Development and need of MEMS, overview	06 Hrs	
of MEMS technology with relevant non conventional processes. Nano materials, Nano		
tubes and Nano wires, Nanofabrication.		

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	Course Outcomes: After completing the course, the students will be able to				
CO1.	Explain the trends in development of both traditional and nontraditional manufacturing				
	methods.				
CO2.	Make relevant process selections in the areas of Metal forming, metal cutting and non-				
	traditional manufacturing methods in a product life cycle development.				
CO3.	Describe the specific process characteristics of various advanced manufacturing technologies				
	and identify their possible applications.				
CO4.	Analyse and evaluate the benefits of advanced manufacturing processes and discuss their				
	limitations.				

Reference Books

1.	Advanced Machining Processes, V.K.Jain, 1st Edition, 2007, Allied Publishers Pvt. Limited,
	ISBN: 8177642944
2.	Modern Machining Process, Pandey P C and Shah H S, 1 st Edition, 2007, TMH Publication,
	ISBN – 9780070965539
3.	Micromachining of Engineering Materials, Joseph McGeough, Marcel Dekker, 1 st Edition,
	2001, ISBN-10: 0849327857.
4	Eurodomental of Modern Manufacturing, Materiala Processes and Systems, Mikall D.Croover

4. Fundamental of Modern Manufacturing: Materials, Processes and Systems, Mikell P.Groover, 2nd Edition, 2002, Willey India, ISBN-10 81-265-1266-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		L							

Low-1	Medium-2	High-3

	V Semester						
	Elective - A						
	METHODOLOGIES FOR QUALITY IMPROVEMENT						
	(Group A : P	rofessional Core Elective)					
Cou	Course Code: 16IM5A2 CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hours: 33L SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to						
1	Develop an understanding on the necessary information and skills needed to manage, control						
1	and improve quality practices in the organizations through TQM philosophy.						
2	Explain the four revolutions in management thought processes.						
2	Apply the reactive and proactive	improvement methodologies for problem solving in					
organizations.							
4	Demonstrate the importance of team w	ork in problem solving processes.					
5	Evaluate the business excellence mode	ls implemented in various organizations.					

UNIT-I	
Quality Pioneers: Deming's approach, Juran's quality trilogy, Crosby and quality	07 Hrs
treatment, Imai's Kaizen, Ishikawa's company-wide quality control, and Feigenbaum's	1
theory of TQC.	1
Evolution of Quality Concepts and Methods: Quality concepts, Development of four	1
fitness's, evolution of methodology, evolution of company integration.	L
UNIT-II	
Four Revolutions in Management thinking, Focus on customers: Change in work	06 Hrs
concept, market-in, and customers. Continuous Improvement: Improvement as problem	1
solving process: Management by process, WV model of continuous improvement.	I
Reactive Improvement: Identifying the problem, standard steps, seven steps case study,	1
General guidelines for managers diagnosing a QI story.	I
Proactive Improvement: Introduction to proactive improvement, standard steps for	I
proactive improvement, semantics, Seven Management and Planning Tools.	L
UNIT-III	
Total Participation; Teamwork skill, Dual function of work, teams and teamwork,	07 Hrs
principles for activating teamwork, creativity in team processes, Initiation strategies	1
Hoshin Management: Definition, Concepts, Phases in Hoshin Management – overview.	1
Societal Networking: Networking and societal diffusion, infrastructure for networking.	1
TQM as learning system, a TQM model for skill development.	L
UNIT-IV	
Introduction to Six Sigma: Benefits, fundamentals, myths, essentials and costs of Six	07 Hrs
Sigma. Assessing readiness for Six Sigma, five key players, Planning for the Six Sigma	1
initiative. Case discussions.	1
Statistical Foundation: Variation & causes, normal distribution, process capability,	1
rolled throughput yield, Cost of poor quality. Metrics for Six Sigma: The critical-to-	1
quality concept, criteria to metrics, universal standard, baselines, benchmarking,	1
guidelines for metrics.	1
UNIT-V	
Project Selection: Project selection process, evaluating projects. Project selection matrix,	06 Hrs
project review. DMAIC phases.	l
Design for Six Sigma: Overview of DFSS, DMADV Method.	1
Beyond Six sigma: Supply chain management using Lean and Six Sigma, Knowledge	1
management and Six Sigma, Growth Management System - building blocks and	1
architecture.	1

Self Study: Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course Outcomes: After completing the course, the students will be able to			
CO1.	Explain the TQM & Six Sigma principles and concepts for organizations		
CO2.	Compare TQM and Six Sigma methodologies.		
CO3.	Evaluate and select the appropriate framework for continuous improvement.		
CO4 .	Design & implement TQM & Six Sigma projects in organizational situations.		

Reference Books

1.	A New American TQM – Four Practical Revolutions in Management, Shoji Shiba, Alan
	Graham and David Walden, 2 nd Edition, 1993, Productivity Press, Portland (USA), ISBN:
	9781563270321
2.	Six Sigma, Greg Brue and Rod Howes, 1 st Edition, 2006, TATA McGraw- Hill Edition, ISBN:
	0-07-063468-8
3.	Managing for Total Quality: from Deming to Taguchi and SPC, N Logothetis, 1 st Edition, 1993,
	Prentice Hall of India, ISBN: 0135535123
4.	Total Quality Management, Dale H. Besterfield, Carol Besterfield-Michna, Glen Besterfield,
	Mary Besterfield – Sacre, 3 rd Edition, 2002, Pearson Education, ISBN-81-297-0260-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2				2		3	2	1	
CO2	2	3	2				2		2	2	1	
CO3		3	2				2		2	2	1	
CO4	2	3	2				2		2	2	1	

	V Semester					
	ADVANCED OPERATIONS RESEARCH					
	(Group A : Professional Core Elective)					
Cou	Course Code: 16IM5A3 CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:1		SEE Marks: 100				
Hours: 34L		SEE Duration: 3Hrs				
Cou	Course Learning Objectives: The students will be able to					
1 Develop the skills in the application of		f advanced constructs of operations research models for				
1	complex decision making situations.					
2	Implement the advanced methodology and tools of operations research to assist decision-					
4	making.					

UNIT-I	
Linear Programming: Two phase simplex techniques, revised simplex techniques,	07 Hrs
Sensitivity analysis, Integer Programming, Gomory's techniques, branch & Bound	
technique - two variables only, solutions of Assignment and Travelling salesman	
problems using Branch and Bound Approach.	
UNIT-II	
Goal Programming: Introduction and simple formulation.	07 Hrs
Non-Linear Programming: Kuhn – Tucker conditions, Quadratic Programming-Wolfe's	
Method, Convex Programming.	
UNIT-III	
Dynamic Programming: Characteristics and Dynamic Programming model,	07 Hrs
Computational procedure (no problem solving, only formulation).	
Network Optimization Models: The Shortest-Path Problem, The Minimum Spanning	
Tree Problem, The Maximum Flow Problem, The Minimum Cost Flow Problem.	
UNIT-IV	
Queuing Theory: Prototype, Basic Structure, Real Queuing systems, Role of	06 Hrs
Exponential distribution, Birth-Death Process, Models, Non exponential distributions,	
Priority discipline queuing model, queuing networks.	
UNIT-V	
Markov Chains: Discrete Stochastic Process, Markovian process, Stationary Markov	07 Hrs
chains, Markov diagrams, Ergodic and Absorbing Markov chains, Steady State	
probabilities, stochastic matrix, transition, matrix and their applications.	

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course, along with usage of optimization softwares such as GAMS, Matlab, Excel. 1 Credit: 4 Hrs / Week

Cours	e Outcomes: After completing the course, the students will be able to
CO1.	Incorporate a range of ideas concerning Statistics and Operational Research including
	methods appropriate in specialized applications.
CO2.	Analyze and interpret information in a manner that can be communicated effectively to non-
	specialists.
CO3.	Carry out analyses of complex data sets, design experiments & analyze practical OR problems
	using computer programmes and/or packages

	a chee Doons
1.	Operation Research, Taha H A, 9 th Edition, 2014, Macmillan, ISBN – 978-93-325-1822-3.
2.	Operations Research: Principles and Practice, Ravindran, Phillips and Solberg, 2 nd Edition,
	2007, Wiley International, ISBN – 8126512563.
3.	Introduction to Operation Research, Hiller, Leiberman, 8 th Edition, 2004, Mc Graw Hill
	Publication, ISBN – 0073017795.
4.	Operation Research Methods and Problems, M N Sasieni, A. Yaspan and L. Friedman,
	1 st Edition, 2013, Literary Licensing, LLC, ISBN: 978-1258819453.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				1						
CO2	2	1				1						
CO3	1	2	1									

	V Semester					
	MARKETING MANAGEMENT & RESEARCH					
	(Group A : Professional Core Elective)					
Cou	rse Code: 16IM5A4	CIE Marks: 100				
Cree	Credits:L:T:P:S: 3: 0: 0:1 SEE Marks: 100					
Hou	Hours: 33L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	To understand and analyze the opportun	nities and challenges of marketing in a global market.				
2	To develop an effective marketing strategy, and marketing plan, using holistic marketing					
4	² orientation.					
3	To understand the need and importance	of marketing research to maintain the competitive edge.				
4	To analyze the effectiveness of modern	modes of delivering value to customers.				

Understanding Marketing Management-Challenges in Defining Marketing Management for 21st Century: The Importance of Marketing, the Scope of Marketing, Core Marketing Concepts, The New Marketing Realities, Company Orientation Toward the Market Place, Updating the Four Ps, Marketing Management Tasks, Importance of Digital Marketing.06 HrsUNIT-IIDeveloping Marketing Strategies and Plans: Marketing and Customer Value, The Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing.07 HrsMITI-IIIAssessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research.07 HrsWINT-IVMeasurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsManaging Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling-Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	UNIT-I		
Management for 21 st Century: The Importance of Marketing, the Scope of Marketing, Core Marketing Concepts, The New Marketing Realities, Company Orientation Toward the Market Place, Updating the Four Ps, Marketing Management Tasks, Importance of Digital Marketing. UNIT-II Developing Marketing Strategies and Plans: Marketing and Customer Value, The Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing. 07 Hrs UNIT-III Assessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research. 07 Hrs WINT-IV Measurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. 07 Hrs Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.	Understanding Marketing Management-Challenges in Defining Marketing	06 Hrs	
Core Marketing Concepts, The New Marketing Realities, Company Orientation Toward the Market Place, Updating the Four Ps, Marketing Management Tasks, Importance of Digital Marketing. 0 UNIT-II Developing Marketing Strategies and Plans: Marketing and Customer Value, The Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing. 07 Hrs Marketing. UNIT-III Assessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research. 07 Hrs WINT-IV Measurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. 07 Hrs Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	Management for 21 st Century: The Importance of Marketing, the Scope of Marketing,		
the Market Place, Updating the Four Ps, Marketing Management Tasks, Importance of Digital Marketing. UNIT-II Developing Marketing Strategies and Plans: Marketing and Customer Value, The Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing. UNIT-III Assessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research. Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research. UNIT-IV Measurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. UNIT-V Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.	Core Marketing Concepts, The New Marketing Realities, Company Orientation Toward		
Digital Marketing. UNIT-II Developing Marketing Strategies and Plans: Marketing and Customer Value, The Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing. 07 Hrs Marketing. UNIT-III 07 Hrs Assessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research. 07 Hrs WINT-IV Weasurement Techniques in Marketing Research: Concept of measurement in Marketing Research: Observation and Physiological Measures, Case studies. 07 Hrs UNIT-V Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	the Market Place, Updating the Four Ps, Marketing Management Tasks, Importance of		
UNIT-IIDeveloping Marketing Strategies and Plans: Marketing and Customer Value, The Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing.07 HrsUNIT-IIIAssessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research. UNIT-IV07 HrsWordensurement Techniques in Marketing Research: UNIT-IV07 HrsMarketing Research: UNIT-IVMarketing Research: UNIT-IVManaging Retailing, Wholesaling, And Market Logistics: Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling-Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	Digital Marketing.		
Developing Marketing Strategies and Plans: Marketing and Customer Value, The Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing.07 HrsMUNIT-IIIAssessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Research Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research. UNIT-IV07 HrsMeasurement Techniques in Marketing Research: of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsManaging Retailing, Wholesaling, And Market Logistics: Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	UNIT-II		
Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing.Image: Content of Marketing Plan to Marketing Research: O7 HrsAssessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research. Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research. UNIT-IVO7 HrsMeasurement Techniques in Marketing Research: of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.O7 HrsManaging Retailing, Wholesaling, And Market Logistics: Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	Developing Marketing Strategies and Plans: Marketing and Customer Value, The	07 Hrs	
Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing. UNIT-III Assessing the Marketing Opportunities and Conducting Marketing Research: 07 Hrs Components of Modern Marketing Information System, Marketing Intelligence, 07 Hrs Analyzing the Microenvironment, The Market Research System, Marketing Research 07 Hrs Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research. 07 Hrs UNIT-IV Measurement Techniques in Marketing Research: 07 Hrs Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure 07 Hrs of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative 07 Hrs Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of 06 Hrs Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, 06 Hrs Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit		
Role of Research in marketing, The Role of Relationships from Marketing Plan to Marketing. UNIT-III Assessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research. UNIT-IV Measurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. 07 Hrs UNIT-V Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The		
Marketing. UNIT-III Assessing the Marketing Opportunities and Conducting Marketing Research: 07 Hrs Components of Modern Marketing Information System, Marketing Intelligence, 07 Hrs Analyzing the Microenvironment, The Market Research System, Marketing Research 07 Hrs Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research. 07 Hrs UNIT-IV Measurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. 07 Hrs Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	Role of Research in marketing, The Role of Relationships from Marketing Plan to		
UNIT-IIIAssessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research.07 HrsWeasurement Techniques in Marketing Research: Of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsUNIT-VUNIT-V06 HrsManaging Retailing, Wholesaling, And Market Logistics: Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	Marketing.		
Assessing the Marketing Opportunities and Conducting Marketing Research: Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research.07 HrsProcess, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research.07 HrsMeasurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsManaging Retailing, Wholesaling, And Market Logistics: Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	UNIT-III		
Components of Modern Marketing Information System, Marketing Intelligence, Analyzing the Microenvironment, The Market Research System, Marketing Research Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research.Image: Component System, Marketing ResearchUNIT-IVMeasurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsUNIT-VManaging Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	Assessing the Marketing Opportunities and Conducting Marketing Research:	07 Hrs	
Analyzing the Microenvironment, The Market Research System, Marketing Research Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research.Of Marketing Research.UNIT-IVUNIT-IVMeasurement Techniques in Marketing Research: Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsUNIT-VUNIT-VManaging Retailing, Wholesaling, And Market Logistics: Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling-Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	Components of Modern Marketing Information System, Marketing Intelligence,		
Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research. UNIT-IV Measurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. 07 Hrs UNIT-V UNIT-V Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	Analyzing the Microenvironment, The Market Research System, Marketing Research		
UNIT-IVMeasurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsUNIT-VManaging Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research.		
Measurement Techniques in Marketing Research: Concept of measurement in Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies.07 HrsUNIT-VManaging Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	UNIT-IV		
Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. UNIT-V Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	Measurement Techniques in Marketing Research: Concept of measurement in	07 Hrs	
of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative Research, Observation and Physiological Measures, Case studies. UNIT-V Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.	Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure		
Research, Observation and Physiological Measures, Case studies. UNIT-V Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons. 06 Hrs	of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative		
UNIT-VManaging Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	Research, Observation and Physiological Measures, Case studies.		
Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.06 Hrs	UNIT-V		
Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor, Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.	Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of	06 Hrs	
Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems, Marketing-Logistics Objectives and Decisions, Organizational Lessons.	Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor,		
Marketing-Logistics Objectives and Decisions, Organizational Lessons.	Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems,		
	Marketing-Logistics Objectives and Decisions, Organizational Lessons.		

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	Course Outcomes: After completing the course, the students will be able to				
CO1.	Differentiate the benefits drawn by updated marketing mix from traditional marketing mix for				
	effective marketing management there by to stay competitive in today's global market-place.				
CO2.	Develop an effective holistic marketing atmosphere to efficiently face the challenges in				
	dynamically changing market.				
CO3.	Formulate a potential marketing plan to effectively reach the targeted market segments, by				
	delivering the value to targeted customers through practicing sound marketing research.				

CO4. Create new channels to improvise marketing to achieve and maintain competitive position in globalized market-place.

Reference Books

1.	Marketing Management- A South Asian Perspective, Philip Kotler, Kevin Lane Keller, Abrahan
	Koshy, Mithileshwar Jha, 14 th Edition, 2013, Pearson, ISBN –978-81-317-6716-0
2.	Marketing Research, Donald S Tull, Del I Hawkins, 6 th Edition, 1995, Prentice Hall India,
	ISBN: 8120309618
3.	Marketing Management, Philip Kotler, Kevin Lane Keller, 15 Edition, e-book – 2015 (Kindle
	Edition), ASIN: B07C9BDWSM.
4.	Marketing Research, Aaker, Kumar, Day, 9 th Edition, 2007, Wiley India, ISBN: 978-265-1791-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2				2	2		
CO2	2	3		3		1	1	2		2		
CO3		2	2	3	3	1		1			1	
CO4			1			1	2					

	V Semester					
	SOFTWARE ENGINEERING & TESTING					
	(Group A : Professional Core Elective)					
Cou	Course Code: 16IM5A5 CIE Marks: 100					
Crec	Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100					
Hou	Hours: 33L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Understand the software development tasks and different approaches to software development					
2	2 Define and analyze information-gathering techniques to document the requirements for an					
4	² information system solution.					
3	3 Solve the software testing issues through test case designs and test bed design.					
4	Design and develop project plans, and understand how to organize, direct, and control a project					
⁴ for software development or implementation.						

TINITE T				
UNII-I				
Introduction: Software development, software process models, Agile software	06 Hrs			
development, Requirements engineering.				
UNIT-II				
System Modelling-Context models, Interaction models, Structural models, Architectural	08 Hrs			
design decisions, Application architectures.				
UNIT-III				
Software testing-Development test cases, Test-driven development, Release testing, User				
testing, Availability and reliability				
UNIT-IV				
Advanced Software Engineering-Software reuse, The reuse landscape, Client-server	06 Hrs			
computing, Architectural patterns for distributed systems.				
UNIT-V				
Software Management- Project management, Project planning, Quality management	05 Hrs			
Configuration management				

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	Course Outcomes: After completing the course, the students will be able to					
CO1.	Understand the body of knowledge relating to Software Engineering and maintenance, the					
	principles of large scale software systems, and the processes that are used to build them.					
CO2.	Demonstrate the ability to manage a project including planning, scheduling and risk					
	assessment/management					
CO3.	Execute specific software tests with well-defined objectives and targets					
CO4 .	Apply various testing techniques, including domain, code, fault, usage and model-based.					
CO5.	Create an integrated facilities plan for various applications.					

Refe	erence Books
1.	Software Engineering, Ian Sommerville 9 th Edition, 2009, Pearson Includes index.ISBN-13:
	978-0-13-703515-1,ISBN-10: 0-13-703515-2,QA76.758.S657
2.	Software Engineering Handbook, Jessica Keyes, 1 st Edition, 2003, Auerbach Publications,
	(CRC Press), ISBN: 0-8493-1749-8
3.	Software Engineering: A Practioner's Approach, Roger S. Pressman, 6 th Edition, 2005,
	International Edition). McGraw-Hill, ISBN 0-07-337597-7
4.	Hans van Vliet. Software Engineering: Principles and Practice (Second Edition). Wiley, 1999
	ISBN-10: 047003146

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1						
CO2			2				2			1	2	
CO3		3	2		2		1			2	2	
CO4			3	2	2			1		1	2	
CO5				2	2							

V Semester								
BIOINFORMATICS								
	(Group B: G	lobal Elective)						
Cou	rse Code: 16G5B01	CIE Marks: 100						
Cre	dits :L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hou	rs: 45L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives:							
1	Understand the underlying technologies of I	Bioinformatics and Programming						
2	Explore the various algorithms behind the c	omputational genomics and proteomic structural						
	bioinformatics, modeling and simulation of	molecular systems.						
3	Apply the tools and techniques that are excl	usively designed as data analytics to investigate the						
	significant meaning hidden behind the high	throughput biological data.						
4	4 Analyze and evaluate the outcome of tools and techniques employed in the processes of							
biological data preprocessing and data mining.								
	U	nit-I						

Unit-I

Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of	09 Hrs
Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy,	
Genes and Genomes. Bioinformatics & Biological Databases: Introduction to	
Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological	
databases – Sequence, structure, Special Databases and applications - Genome,	
Microarray, Metabolic pathway, motif, and domain databases. Mapping databases –	
genome wide maps. Chromosome specific human maps.	
Unit – II	
Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and	09 Hrs
Multiple sequence alignment, Alignment algorithms (Needleman & Wunch, Smith &	
Waterman and Progressive global alignment). Database Similarity Searching- Scoring	
matrices - BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and	
FASTA. Next Generation Sequencing - Alignment and Assembly. Molecular	
Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic	
Tree Construction Methods - Distance-Based & Character-Based Methods and	
Phylogenetic Tree evaluation.	
Unit -III	
Predictive methods: Predicting secondary structure of RNA, Protein and Genes -	09 Hrs
algorithms to predict secondary structure of RNA, Protein and Gene. Prediction of	
Tertiary structure of Protein, Protein identity and Physical properties of protein.	
Molecular Modeling and Drug Designing: Introduction to Molecular Modeling.	
Methods of Molecular Modeling and Force Fields used in Molecular Modeling. Drug	
designing process - deriving Pharmacophore, Receptor Mapping, Estimating Receptor-	
Ligand interactions and Molecular Docking.	
Unit –IV	
Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and	09 Hrs
Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions	
(REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.	
Subroutines – types of functions, defining and calling functions in Perl, calling function -	
call by value and call by reference. Object Oriented Programming in Perl-Class and	
object, Polymorphism, inheritance and encapsulation. Perl Package - writing and calling	
package. Perl Module – writing and calling module.	
Unit –V	
BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl - Sequence	09 Hrs
retrieval from Database and submission of sequence to online Database, Indexing and	
accessing local databases, Transforming formats of database record, Sequence alignments	
BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Restriction	
mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and	

other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the Architecture and Schema of online databases including structure of records in
	these databases.
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in Biology,
	Chemical Engineering, and Medicine.
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to process
	simulation and process engineering in Biological system.
CO4:	Use Bioinformatics tools and Next Generation Technologies to model and simulate biological
	phenomenon.

Reference Books

1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text
	processing and scripting, O'Reilly Media, Inc., 4th edition, 2012, ISBN-13: 978-0596004927
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach, new
	age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624
3	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and
	MySQL, Oxford University Press, 1st edition, 2009, ISBN
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal

Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

High-3 : Medium-2 : Low-1

	V Semester							
	FUEL CELL TECHNOLOGY							
	(Group l	B: Global Elective)						
Course Code: 16G5B02 CIE Marks: 100								
Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100								
Hou	Hours: 45L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	Recall the concept of fuel cells							
2	2 Distinguish various types of fuel cells and their functionalities							
3	3 Know the applications of fuel cells in various domains							
4	Understand the characterization of fuel	cells						

UNIT-I

Introduction: Fuel cell definition, historical developments, working principle of fuel cell, **09 Hrs** components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties.

UNIT-II

Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, **09 Hrs** phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each .

UNIT-III

Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum **09 Hrs** efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation.

UNIT-IV

Fuel Cell Characterization: current – voltage curve, in-situ characterization, current –
voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical
impedance spectroscopy and ex-situ characterization techniques.09 Hrs

UNIT-V

Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen **09 Hrs** production, storage, handling and safety issues.

Cou	Course Outcomes: After completing the course, the students will be able to						
1	Understand the fundamentals and characteristics of fuel cells						
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems						
3	Analyze the performance of fuel cells using different characterization techniques						
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems						

Re	ference Books
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

High-3 : Medium-2 : Low-1

	V Semester							
	GEOINFORMATICS							
	(Group]	B: Global Elective)						
Course Code:16G5B03 CIE Marks: 100								
Hrs/Week: L:T:P:S: 4:0:0:0 SEE Marks: 100								
Crec	Credits: 48L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	To understand concept of using photogram	raphic data to determine relative positions of points						
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative la							
4	² information							
3	3 To analyze the data gathered from various sensors and interpret for various applications							
4	To understand the various applications	of RS, GIS and GPS						

UNIT-I	
Remote Sensing- Definition, types of remote sensing, components of remote sensing, Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition elements. Fundamentals of image rectification. Digital Image classification - supervised and unsupervised	10 Hrs
UNII-II Dhata anonym aturn. Intercheation ternas of Dhata anonym aturn. A decenta ano of	10 11
Photogrammetry: Introduction types of Photogrammetry, Advantages of Photogrammetry, Introduction to digital Photogrammetry. Locating points from two phases determination of focal length. Aerial Photogrammetry: Advantages over ground survey methods - geometry of vertical phographs, scales of vertical photograph. Ground coordination- relief displacement, scale ground coordinates – flight planning	10 Hrs
UNIT-III	
Geographic Information System- Introduction, Functions and advantages, sources of data for GIS. Database – Types, advantages and disadvantages. Data Management – Transformation, Projection and Coordinate systems. Data input methods, Data Analysis overlay operations, network analysis, spatial analysis. Outputs and map generation Introduction to GPS- components and working principles	10 Hrs
UNIT-IV	
Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources engineering and management (prioritization of river basins, water perspective zones and its mapping), Case studies on applications of GIS and RS in highway alignment, Optimization of routes, accident analysis, Environmental related studies. Case studies on applications of GIS and RS in Disaster Management (Case studies on post disaster management - Earthquake and tsunami and pre disaster management - Landslides and floods) Urban Planning & Management - mapping of zones, layouts and infrastructures.	09 Hrs
UNIT-V	
Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping. Case studies on infrastructure planning and management- Case studies on urban sprawl. Change detection studies – case studies on forests and urban area. Case studies on agriculture. Applications of geo-informatics in natural resources management: Geo Technical case Studies, site suitability analysis for various applications.	09 Hrs

Course Outcomes: After completing the course, the students will be able to

1 Understand the principle of Remote Sensing (RS) and Geographical Information Systems (GIS) data acquisition and its applications.

2 Apply RS and GIS technologies in various fields of engineering and social needs.

3	Analyze and evaluate the information obtained by applying RS and GIS technologies.
4	Create a feasible solution in the different fields of application of RS and GIS.

Refe	erence Books
1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3 rd Edition, Wiley India
	Pvt. Ltd. New Delhi, 2009.
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5 th Edition, John
	Wiley Publishers, New Delhi, 2007.
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi, 2009

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	V Semester						
	GRAPH THEORY						
	(Group]	B: Global Elective)					
Cou	Course Code:16G5B04 CIE Marks: 100						
Crec	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hou	Hours: 45L SEE Duration: 3 Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Understand the basics of graph theory and their various properties.						
2	Model problems using graphs and to solve these problems algorithmically.						
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control						
3	⁵ etc.						
4	Optimize the solutions to real problems	like transport problem	s etc.,				

4	Optimize the solutions to real	problems like transport	problems etc.,

Introduction to graph theory09 HrsIntroduction, Mathematical preliminaries, definitions and examples of graphs, degrees and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs. Basic concepts in graph theory84Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs.91TorneUNIT-IICraph representations, Trees, Forests91Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees of complete graphs, An application to electrical graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. Phanar graphs, Connectivity and Flows Bipartite graphs, Connectivity and Flows Imbedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Jual of a planar graphs. Coloring of graphs At theorem, Independent sets and covers, Dominating sets, maximum bipartit a graph, Basic properties of chromatic polynomial, chorad graphs, planes, planes, electrical polynomial, chorad graphs, planes, electrical polynomial or a graph, Results for general graphs, planes, planes, electrical polynomial, chorad graphs, planes, electrical polynomial or a graph, Basic properties of chromatic polynomial, chorad graphs, planes, planes, electrical polynomial or a graph, Basic properties of chromatic polynomial, chorad graphs, maximum bipartit a graph, Basic properties of chromatic polynomial, chorad graphs, planes, planes, electrical polynomial, chorad graphs, planes,	UNIT-I	
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs. Basic concepts in graph theory Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs. 09 Hrs Graph representations, Trees, Forests 09 Hrs Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees. 09 Hrs Fundamental properties of graphs and digraphs 09 Hrs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. 09 Hrs Planar graphs, Connectivity and Flows 09 Hrs Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Jual of a planar graphs. 09 Hrs Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. 09 Hrs Coloring of graphs Mealust for general graphs, powers of graphs, Edge coloring of graphs. 09 Hrs Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. 09 Hrs 09 Hrs Coloring of graphs Graph Agorithms 09 Hrs 09 Hrs <	Introduction to graph theory	09 Hrs
regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.Basic concepts in graph theoryPaths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs.OPUNIT-IIGraph representations, Trees, Forests09 HrsAdjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees.09 HrsFundamental properties of graphs and digraphs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.09 HrsPlanar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.09 HrsMin-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs09 HrsGraph algorithms Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijkstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and	
Basic concepts in graph theory Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs. Graph representations, Trees, Forests 09 Hrs Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees. 09 Hrs Fundamental properties of graphs and digraphs 09 Hrs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. 09 Hrs Planar graphs, Connectivity and Flows 09 Hrs Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. 09 Hrs Coloring of graphs 09 Hrs Min-Max theorem, Independent sets of corpanal graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs 09 Hrs Graph algorithms UNIT-V 09 Hrs Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's. 09 Hrs	regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs. 09 Hrs Graph representations, Trees, Forests 09 Hrs Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees. 09 Hrs Fundamental properties of graphs and digraphs 09 Hrs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. 09 Hrs Planar graphs, Connectivity and Flows 09 Hrs Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs. 09 Hrs Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. 09 Hrs Coloring of graphs 09 Hrs The chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs 09 Hrs Graph algorithms 09 Hrs Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Algorithm of Kruskal's and Prim's. 09 Hrs	Basic concepts in graph theory	
digraphs. 09 Hrs Graph representations, Trees, Forests 09 Hrs Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees. 09 Hrs Fundamental properties of graphs and digraphs 09 Hrs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. 09 Hrs Planar graphs, Connectivity and Flows 09 Hrs Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs. 09 Hrs Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. 09 Hrs Coloring of graphs 09 Hrs The chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs 09 Hrs The chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs 09 Hrs Graph algorithms Graph algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's. 09 Hrs	Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in	
UNIT-IIGraph representations, Trees, Forests09 HrsAdjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees.09 Hrs UNIT-III Fundamental properties of graphs and digraphs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.09 HrsPlanar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.00 HrsMatchings and Factors Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs09 HrsThe chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs09 HrsGraph algorithms Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	digraphs.	
Graph representations, Trees, Forests09 HrsAdjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees of graphs and digraphs09 HrsFundamental properties of graphs and digraphs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.09 HrsPlanar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.09 HrsMatchings and Factors Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs09 HrsThe chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs09 HrsGraph algorithms a graph lagorithms, Breadth first search and Depth first search, Shortest path algorithm of Kruskal's and Prim's.09 Hrs	UNIT-II	
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees. Fundamental properties of graphs and digraphs 09 Hrs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. 09 Hrs Planar graphs, Connectivity and Flows 09 Hrs Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs. 09 Hrs Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. 09 Hrs Coloring of graphs 09 Hrs The chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs 09 Hrs Graph algorithms 09 Hrs Graph algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's. 09 Hrs	Graph representations, Trees, Forests	09 Hrs
properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees.09 Hrs Fundamental properties of graphs and digraphs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.09 HrsPlanar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.09 Hrs Matchings and Factors Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphsUNIT-IV O9 Hrs Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.Coloring of graphsThe chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphsThe chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphsGraph algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.	Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	
Spanning trees and forests, Spanning trees of complete graphs, An application to electrical networks, Minimum cost spanning trees. 99 Hrs Fundamental properties of graphs and digraphs 09 Hrs Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs. 99 Hrs Planar graphs, Connectivity and Flows 99 Hrs Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs. 99 Hrs Matchings and Factors 09 Hrs Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching. 09 Hrs Coloring of graphs 99 Hrs The chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs 99 Hrs Graph algorithms 09 Hrs Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's. 99 Hrs	properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes,	
networks, Minimum cost spanning trees.Image: constant of the spanning trees in the spanning tree spanning tree spanning trees in the spanning tree spanning tree spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs09 Hrs09 Hrs09 Hrs	Spanning trees and forests, Spanning trees of complete graphs, An application to electrical	
UNIT-IIIFundamental properties of graphs and digraphs09 HrsBipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.99 HrsPlanar graphs, Connectivity and Flows4Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.99 HrsMatchings and Factors09 HrsMin-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs99 HrsThe chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs99 HrsThe chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs99 HrsGraph algorithms99 HrsGraph algorithms99 HrsAlgorithm of Kruskal's and Prim's.99 Hrs	networks, Minimum cost spanning trees.	
Fundamental properties of graphs and digraphs09 HrsBipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.6Planar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.6Matchings and Factors09 HrsMin-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs99 HrsThe chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs99 HrsFunctoria of graphs99 HrsGraph algorithms99 HrsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.99 Hrs	UNIT-III	
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.Hamiltonian graphs, Hamiltonian cycles in weighted graphs, Eulerian digraphs.Planar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.Home of planar graphs, Kuratowski'sMatchings and Factors Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs The chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphsOuntr-vGraph algorithms Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	Fundamental properties of graphs and digraphs	09 Hrs
graphs, Eulerian digraphs.Image: Planar graphs, Connectivity and FlowsImage: Planar graphs, Connectivity and FlowsEmbedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.09 HrsMatchings and Factors09 HrsMin-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphsImage: Planar graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs09 HrsThe chromatic number of a graph, Results for general graphs, powers of graphs, Edge coloring of graphs09 HrsGraph algorithms09 HrsGraph algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted	
Planar graphs, Connectivity and Flows Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.Image: Coloring of graphsMatchings and Factors Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs09 HrsCraph algorithms Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	graphs, Eulerian digraphs.	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's theorem, Dual of a planar graphs.09 HrsMatchings and Factors Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs09 HrsUNIT-V09 HrsGraph algorithms Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	Planar graphs, Connectivity and Flows	
theorem, Dual of a planar graphs.Image: Clip Clip Clip Clip Clip Clip Clip Clip	Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	
UNIT-IVMatchings and Factors09 HrsMin-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs1The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs09 HrsUNIT-VGraph algorithms09 HrsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	theorem, Dual of a planar graphs.	
Matchings and Factors09 HrsMin-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.09 HrsColoring of graphs1The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs1UNIT-V09 HrsGraph algorithms09 HrsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	UNIT-IV	
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite matching.Image: Coloring of graphsColoring of graphsImage: Coloring of graphsThe chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphsUNIT-VOf Graph algorithmsGraph algorithmsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.	Matchings and Factors	09 Hrs
matching.Image: Coloring of graphsImage:	Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite	
Coloring of graphsImage: Coloring of graphsThe chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphsImage: Coloring of graphs, EdgeUNIT-VGraph algorithms09 HrsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	matching.	
The chromatic number of a graph, Results for general graphs, The chromatic polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs Image: Coloring of graphs, Edge coloring of graphs, Edge coloring of graphs UNIT-V Graph algorithms 09 Hrs Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's. 09 Hrs	Coloring of graphs	
a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs UNIT-V Graph algorithms Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.	The chromatic number of a graph, Results for general graphs, The chromatic polynomial of	
coloring of graphsUNIT-VGraph algorithms09 HrsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge	
UNIT-VGraph algorithms09 HrsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	coloring of graphs	
Graph algorithms09 HrsGraph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.09 Hrs	UNIT-V	
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.	Graph algorithms	09 Hrs
algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of Kruskal's and Prim's.	Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path	
Algorithm of Kruskal's and Prim's.	algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms,	
	Algorithm of Kruskal's and Prim's.	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1.	Understand and explore the basics of graph theory.					
CO2.	Analyse the significance of graph theory in different engineering disciplines					
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.					
CO4.	Evaluate or synthesize any real world applications using graph theory.					

Refe	erence Books
1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition,2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3 rd Edition,
	2010,PHI, ISBN:9780262033848

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

	V Semester						
	ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING						
		(Group B: Global Elective)					
Cou	rse Code: 16G5B05		CIE Marks: 100				
Cree	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100				
Hou	rs: 46L		SEE Duration: 3Hrs				
Cou	rse Learning Objectives: [The students will be able to					
1	Define what is Neural N	etwork and model a Neuron and E	xpress both Artificial Intelligence				
1	and Neural Network						
2	Analyze ANN learning, l	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning,					
4	Competitive learning and Boltzmann learning						
	Implement Simple perce	ption, Perception learning algorith	m, Modified Perception learning				
3	3 algorithm, and Adaptive linear combiner, Continuous perception, learning in continuou						
	perception.						
	Analyze the limitation o	f Single layer Perceptron and Dev	velop MLP with 2 hidden layers,				
4	Develop Delta learning r	rule of the output layer and Multil	ayer feed forward neural network				
	with continuous perception	ons,					

UNIT-I

Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical
notes.08 Hrs

UNIT-II

Learning Processes:Introduction, Error correction learning, Memory-based learning,
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,
learning with and without teacher, learning tasks, Memory and Adaptation.10 Hrs

UNIT-III

Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple
perception, Perception learning algorithm, Modified Perception learning algorithm,
Adaptive linear combiner, Continuous perception, Learning in continuous perception.10 HrsLimitation of Perception.10 Hrs

UNIT-IV

Multi-Layer Perceptron Networks:Introduction, MLP with 2 hidden layers, Simple layer10 Hrsof a MLP, Delta learning rule of the output layer, Multilayer feed forward neural networkwith continuous perceptions, Generalized delta learning rule, Back propagation algorithm10 Hrs

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks, Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and examples (Google, image/speech recognition)

Course Outcomes: After completing the course, the students will be able to					
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.				
CO2:	Perform Pattern Recognition, Linear classification.				
CO3:	Develop different single layer/multiple layer Perception learning algorithms				
CO4:	Design of another class of layered networks using deep learning principles.				
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson				
----	---				
	Prentice Hall, ISBN-13: 978-0-13-147139-9				
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing				
	Company, ISBN: 9780534954604				
3.	Learning & Soft Computing, Vojislav Kecman, 1 st Edition, 2004, Pearson Education, ISBN:0-				
	262-11255-8				
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,				
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7				

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

Low-1	Medium-2	High-3
-------	----------	--------

V Semester								
HYBRID ELECTRIC VEHICLES								
C		(Group B: Global Elective)						
Cou	rse Code : 1665806		CIE Marks : 100					
Ure	ns : 1:1:1:5 4:0:0:0		SEE Marks : 100	Urc				
	15 . 432 rse Learning Ohiectives: 7	The students will be able to	SEE Duration, 5	1115				
Cou	Explain the basics of elec	tric and hybrid electric vehicles their	architecture_technol	ogies and				
1	fundamentals.							
2	Explain plug – in hybrid power electronics devices	electric vehicle architecture, design a used in hybrid electric vehicles.	nd component sizing	g and the				
3	Analyze various electric da	rives suitable for hybrid electric vehicle	s and Different energ	gy storage				
5	technologies used for hybr	id electric vehicles and their control.						
	Demonstrate different con	figurations of electric vehicles and it	s components, hybri	d vehicle				
4	configuration by different	techniques, sizing of components and c	esign optimization a	nd energy				
	management.							
		I]nit-I						
Intr	duction: Sustainable Tran	sportation. A Brief History of HEVs.	Why EVs Emerged	07 Hrs				
and	Failed. Architectures of HE	Vs. Interdisciplinary Nature of HEVs.	State of the Art of	•••				
HEV	s, Challenges and Key Tech	nology of HEVs.						
Hyb	ridization of the Automob	ile: Vehicle Basics, Basics of the EV,	Basics of the HEV,					
Basi	cs of Plug-In Hybrid Electri	c Vehicle (PHEV), Basics of Fuel Cell	Vehicles (FCVs).					
		Unit-II						
HEV Fundamentals: Introduction, Vehicle Model, Vehicle Performance, EV Powertrain								
Com	ponent Sizing, Series Hybri	d Vehicle, Parallel Hybrid Vehicle, Wh	eel Slip Dynamics.					
Plug-in Hybrid Electric Vehicles: Introduction to PHEVs, PHEV Architectures,								
Equi	valent Electric Range of	Blended PHEVs, Fuel Economy	of PHEVs, Power					
Man	agement of PHEVs, Comp	onent Sizing of EREVs, Component	Sizing of Blended					
PHE	Vs, Vehicle-to-Grid Techno	logy.						
D				10.11				
Pow	er Electronics in HEVs:	Power electronics including switching	g, AC-DC, DC-AC	10 Hrs				
conv	Thermal Management of	LIEV Derver Electronics	ribution of electric					
pow Dott	er, Therman Management of	I Calla and Controla: Introduction D	ifferent betteries for					
	Battery Characterization	Somparison of Different Energy Stored	Tachnologies for					
	S Battery Charging Cont	rol Charge Management of Storage	Devices Flywheel					
Ener	s, Battery Charging Cont	lic Energy Storage System Fuel Cel	ls and Hybrid Fuel					
Cell	Energy Storage System, Hydra	Battery Management System, 1 der Cer	is and Hybrid Fuci					
con	Energy Storage System and	Unit-IV						
Elec	tric Machines and Drives	in HEVs: Introduction BI DC motor	rs Induction Motor	10 Hrs				
Driv	es Permanent Magnet Mo	tor Drives Switched Reluctance Mot	ors Doubly Salient	10 1115				
Pern	anent Magnet Machines I	Design and Sizing of Traction Motors	Thermal Analysis					
and Modelling of Traction Motors (only functional treatment to be given)								
Unit-V								
Integration of Subsystems: Matching the electric machine and the internal combustion								
engine (ICE) Sizing the propulsion motor sizing the power electronics selecting the								
ener	gy storage technology. Com	munications, supporting subsystems.	,					
Ene	rgy Management Strategi	es: Introduction to energy managemer	t strategies used in					
hybr	id and electric vehicle. c	lassification of different energy man	agement strategies.					
com	parison of different energy	management strategies, implementation	on issues of energy					
strat	egies.							

Cou	Course Outcomes: After completing the course, the students will be able to								
1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and								
	fundamentals.								
2	Evaluate the performance of electrical machines and power electronics converters in HEVs.								
3	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies								
	and control and select appropriate technology								
4	Design and evaluate the sizing of subsystem components and Energy Management strategies in								
	HEVs.								

Reference Books:

1.	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris,
	Masrur A.and Gao D.W. Wiley Publisher, 1 st Edition, 2011, ISBN:0-824-77653-5
2.	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E.
	Gay Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.
3.	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press,
	2001, ISBN 0 19 850416 0.
4.	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao,
	Giorgio Rizzoni, ISBN: 978-1-4471-6779-2.

Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3 : Medium-2 : Low-1

V Semester									
OPTIMIZATION TECHNIQUES									
(Group B: Global Elective)									
Course Code : 16G5B07	CIE Mar	ks : 100							
Credits : L: T: P: S:4:0:0:0	SEE Mar	ks : 100							
Hours: 44L	SEE Dura	ation : 03 Hrs							
Course Learning Objectives: The st	udents will be able to								
1. To understand the concepts behind	optimization techniques.	. 1 *							
2. To explain the modeling framewor	ks for solving problems using optimizati	on techniques.							
3. To design and develop optimizatio	n models for real life situations.								
4. To analyze solutions obtained using	g optimization methods.								
5. To compare models developed usin	g various techniques for optimization.								
	UNIT – I								
Introduction: OR Methodology, Def	nition of OR, Application of OR to En	gineering and 09 H	rs						
Managerial problems, Features of OR	models, Limitations of OR.								
Linear Programming: Definition, N	Aathematical Formulation, Standard Fo	orm, Solution							
Space, Types of solution - Feasib	le, Basic Feasible, Degenerate, Solu	tion through							
Graphical Method. Problems on Proc	luct Mix, Blending, Marketing, Finance	e, Agriculture							
and Personnel.									
Simplex methods: Variants of Simple	ex Algorithm – Use of Artificial Variable	ès.							
	UNIT – II								
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity									
analysis - changes in RHS, Changes in objectives, Primal-Dual relationships, Economic									
interpretation of duality, Post opti	mal analysis - changes affecting fe	asibility and							
optimality, Revised simplex method									
	UNIT – III								
Transportation Problem: Formulati	on of Transportation Model, Basic Feas	sible Solution 08 H	rs						
using North-West corner, Least Cost,	Vogel's Approximation Method, Optima	lity Methods,							
Unbalanced Transportation Problem,	Degeneracy in Transportation Problems	, Variants in							
Transportation Problems									
Assignment Problem: Formulation	of the Assignment problem, solutio	n method of							
assignment problem-Hungarian Me	hod, Variants in assignment probler	n, Travelling							
Salesman Problem (1SP).									
Quanting Theorem Quanting system a	UNII = IV	ouina austam 0011	-						
Steady state performance analyzing or	In their characteristics, The M/M/I Que $E M/M/I$, queuing models. Introduction t	$\sim M/M/C$ and	rs						
Steady state performance analyzing of $\frac{1}{1}$ queuing models. Introduction to M/M/C and M/Ek/1 queuing models.									
Came Theory: Introduction Two person Zero Sum game Pure strategies. Games without									
saddle point - Arithmetic method, Graphical Method, The rules of dominance									
UNIT – V									
Mankay chainer Definition About	and n stan transition probabilities. (1)	varification of							
the states Steady state probabilities of	and n-step transition probabilities, Cland mean return times of ergodic chains	First nassage							
times Absorbing states Applications	n weather prediction and inventory man	agement							
Over view of OR software's used in n	actice	agement.							
over view of OK software's used in p									

Cours	Course Outcomes: After going through this course the student will be able to							
CO1	Understand the various optimization models and their areas of application.							
CO2	Explain the process of formulating and solving problems using optimization methods.							
CO3	Develop models for real life problems using optimization techniques.							
CO4	Analyze solutions obtained through optimization techniques.							
CO5	Create designs for engineering systems using optimization approaches.							

Reference Books:

1.	Operation Research An Introduction, Taha H A, 8 th Edition, 2009, PHI, ISBN: 0130488089.
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw
	Hill, ISBN 13: 978-0-07-133346-7
4.	Operations Research Theory and Application, J K Sharma, 4 th Edition, 2009, Pearson Education
	Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

Low-1	Medium-2	High-3
		ingn v

	V Semester						
	SENSORS & APPLICATIONS						
	(G	roup B: Global Elective)					
Co	urse Code:16G5B08	CIE Marks: 100					
Cr	Credits/Week: L:T:P:S:4:0:0:0 SEE Marks: 100						
Ho	Hours:44L SEE Duration: 3Hrs						
Co	Course Learning Objectives: The students will be able to						
1	1 Impart the principles and working modes of various types of Resistive, Inductive, Capacitive,						
	Piezoelectric and Special transducers.						
2	Give an idea about the applications of various transducers and selection criteria of a transducer						
	for a particular application.						
3	Give an insight into the static and d	lynamic characteristics of different orders of instruments.					
4	Describe different data conversion	techniques and their applications.					

4 Describe different data conversion techniques and their applications.

UNIT-I					
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs				
Advantages of Electrical transducers.					
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.					
Strain gauge: Theory, Types, applications and problems.					
Thermistor, RTD: Theory, Applications and Problems.					
UNIT-II					
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs				
compensation, advantages and disadvantages of thermocouple.					
LVDT: Characteristics, Practical applications and problems.					
Capacitive Transducers: Capacitive transducers using change in area of plates, distance					
between plates and change of dielectric constants, Applications of Capacitive Transducers					
and problems.					
UNIT-III					
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs				
electric materials, equivalent circuit, loading effect, and Problems.					
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:					
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic					
of the design of sensor, applications.					
UNIT-IV					
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs				
potential sensor.					
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled					
device.					
Tactile sensors: Construction and operation, types.					
UNIT-V					
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary	07 Hrs				
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and					
Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain					
Amplifier.					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and understand the basic principles of transducers and smart sensors.						
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation						
	systems.						
CO3:	Analyze and evaluate the performance of different sensors for various applications.						
CO4:	Design and create a system using appropriate sensors for a particular application						

Refe	rence Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3 rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

		V Semester			
INTRO	DUCTION TO	MANAGEMENT IN	FORMATION SYSTEMS		
	(Group B: Global Elec	tive)		
Course Code: 16G5	B09		CIE Marks: 100		
Credits: L:T:P:S: 4	:0:0:0		SEE Marks: 100		
Hours: 45L			SEE Duration: 3Hrs		
Course Learning O	ojectives: The s	tudents will be able to			
1 To understand th	e basic principle	es and working of inform	nation technology.		
2 Describe the role	of information	technology and informa	tion systems in business.		
3 To contrast and	compare how	internet and other inf	ormation technologies support	business	
processes.					
4 To give an over	rall perspective	of the importance of	application of internet techno	logies in	
business adminis	tration.				
		UNIT I			
Information System	ns in Global B	usiness Today: The re	ole of information systems in	09 Hrs	
business today, Per	spectives on i	nformation systems,	Contemporary approaches to		
information systems,	Hands-on MIS	5 projects. Global E-B	Business and Collaboration :		
Business process an	nd information	systems, Types of b	usiness information systems,		
Systems for collaboration	ation and team w	vork, The information s	ystems function in business. A		
Case study on E busin	ness.				
		UNIT II			
Information System	ns, Organizatio	ons and Strategy: O	rganizations and information	09 Hrs	
systems, How infor	mation system	s impact organization	and business firms, Using		
information systems	to gain compe	etitive advantage, man	agement issues, Ethical and		
Social issues in Info	rmation System	ns: Understanding ethic	cal and Social issues related to		
Information System	s, Ethics in a	n information society	, The moral dimensions of		
information society.	A Case study on	business planning.			
IT Infra stress stress	and Emandin	UNII III - Technologica - IT	information Information	00 II	
11 Infrastructure	and Emerging	g lechnologies : 11	initrastructure, initrastructure	09 Hrs	
tranda Managamant	iporary naruwar	e platform trends, Co	memporary software platform		
abuse Rusiness velu	issues. Security a	nd control Establishin	a framework for security and		
control Technology	and tools for	protecting information	resources A case study on		
cybercrime	and tools for	protecting information	resources. A case study on		
cyberennie.					
Achieving Oneratio	nal Excellence	and Customer Intima	v: Enterprise systems Supply	09 Hrc	
Chain Management (SCM) systems	Customer relationship	management (CRM) systems	071115	
Enterprise applicatio	n E-commerce	• Digital Markets Dig	vital Goods: E-commerce and		
the internet E-commerce-business and technology. The mobile digital platform and mobile					
E-commerce, Building and E-commerce web site. A Case study on ERP.					
L-commerce, Dunding and L-commerce web site. A Case study on EKL.					
Managing Knowle	dge: The kno	owledge management	landscape. Enterprise-wide	09 Hrs	
knowledge manager	nent system.	Knowledge work svs	tems, Intelligent techniques.		
Enhancing Decision	n Making: De	cision making and ir	formation systems, Business		
intelligence in the er	terprise. Busine	ess intelligence constitu	encies. Building Information		
Systems: Systems as	planned organiz	ational change, Overvie	ew of systems development.		
<u> </u>	. 0				
Course Outcomes: A	After completin	g the course, the stude	nts will be able to		

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand and apply the fundamental concepts of information systems.
CO2:	Develop the knowledge about management of information systems.
CO3:	Interpret and recommend the use information technology to solve business problems.
CO4:	Apply a framework and process for aligning organization's IT objectives with business
	strategy.

Ref	erence Books
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane P.
	Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10 th Edition, 2011,
	Global McGraw Hill, ISBN: 978-0072823110
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson
	Education, ISBN:978-0130617736
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:
	9780070616349

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

	V. Somooton		
	V Semester		
	(Croup B: Clobal Elective)		
Соц	rse Code: 16G5B10		
Cree	lits: L.T.P.S · 4.0.0.0 SEE Marks: 100		
Hou	rs: 44L SEE Duration: 3 Hrs		
Con	rse Learning Objectives: The students should be able to:		
1	Identify types of actuators, sensors and switching devices for industrial automation		
2	Explain operation and controls of Hydraulic and Pneumatic systems		
3	Understand fundamentals of CNC, PLC and Industrial robots		
4	Define switching elements and sensors which are interfaced in an automation system		
5	Describe functions of Industrial switching elements and Inspection technologies for automation	n	
6	Select sensors to automatically detect motion of actuators		
7	Develop manual part programs for CNC and Ladder logic for PLC		
8	Develop suitable industrial automation systems using all the above concepts		
	UNIT-I		
Auto	omation in Production Systems:	08 Hrs	
Man	ufacturing support systems, Automation principles and strategies, Levels of Automation,		
Production Concepts and Mathematical models, Numericals			
Auto	omated Production Lines:		
Func	lamentals, Applications, Analysis with no storage, Analysis with storage buffer, Numericals		
	UNIT-II		
Swit	ching theory and Industrial switching elements	08 Hrs	
Bina	ry elements, binary variables, Basic logic gates, Theorems of switching algebra, Algebraic		
simp	lification of binary function, Karnough maps, Logic circuit design, problems.		
Elec	romechanical relays, Moving part logic elements, Fluidic elements, Timers, Comparisons		
betw	een switching elements, Numericals		
Indu	Istrial Detection Sensors and Actuators:		
intro	duction, Limit switches, Reed switches, Photoelectric sensors- methods of detection, Hall		
proc	wre sensors. Absolute encoder Incremental encoder Pressure switches and temperature		
swite	where sensors, Absolute encoder, incremental encoder, ressure swheres and emperature where their working principles and applications. Brushless DC motors. Stepper motors and		
Serv	o motors		
Derv	UNIT-III		
Hvd	raulic Control circuits	10 Hrs	
Com	ponents. Symbolic representations. Control of Single and Double Acting Cylinder.	10 1115	
Rege	enerative Circuit application, Pump unloading circuit, Double Pump Hydraulic System, speed		
cont	rol circuits, accumulator circuits		
Pne	imatic Control circuits		
Com	ponents, Symbolic representations as per ISO 5599, Indirect control of double acting		
cylin	ders, memory control circuit, cascading design, automatic return motion, quick exhaust valve		

circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits.	
UNIT-IV	
Introduction to CNC	08 Hrs
Numerical control, components of CNC, classification, coordinate systems, motion control	
strategies, interpolation, programming concepts	
Industrial Robotics	
Components of Robots, base types, classification of robots, end of arm tooling, robot precision of	
movement, programming, justifying the use of a robot, simple numericals	
UNIT-V	
Programmable logic control systems	10 Hrs
Difference between relay and PLC circuits, PLC construction, principles of operation, latching,	
ladder diagrams, programming instructions, types of timers, forms of counters, writing simple	

ladder diagrams from narrative description and Boolean logic.

Programming exercises on PLC with Allen Bradley controller

Programming exercises on motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Illustrate applications of sensors actuators, switching elements and inspection technologies in							
	industrial automation							
CO2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its							
	application areas							
CO3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres							
	interfaced with Robots							
CO4	Develop suitable industrial automated system integrating all of the above advanced automation							
	concepts							

Reference Books

1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls, Joji P, 1 st Edition, Wiley India, ISBN – 978–81–265–1542–4
3.	Fluid Power with Applications, Anthony Esposito, 7 th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

	V Semester						
TELECOMMUNICATION SYSTEMS							
	(Group	B: Global Elective)					
Cou	rse Code: 16G5B11	CIE Marks: 100					
Cree	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hou	rs: 46L	SEE Duration: 03Hrs					
Cou	rse Learning Objectives: The student	s will be able to					
1	Represent schematic of communicatio	n system and identify its components.					
2 Classify satellite orbits and sub-systems for communication.							
3 Analyze different telecommunication services, systems and principles.							
4	Explain the role of optical communica	tion system and its components.					
5	Describe the features of wireless techn	ologies and standards.					
		UNIT-I					
Intr	oduction to Electronic Commu	nication: The Significance of Human	09 Hrs				
Com	munication, Communication System	ns, Types of Electronic Communication,					
Mod	ulation and Multiplexing, Electroma	gnetic Spectrum, Bandwidth, A Survey of					
Communication Applications.							
The	Fundamentals of Electronics: Gain, A	ttenuation, and Decibels.					
		UNIT-II					
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.							
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.							
Wideband Modulation: Spread spectrum, FHSS, DSSS.							
Mul	tiplexing and Multiple Access Techn	iques: Frequency division multiplexing, Time					
divis	tion multiplexing						
Mul	tiple Access: FDMA, TDMA, CDMA, I	Duplexing.					
G (UNIT-III	00 11				
Sate	llite Communication:		09 Hrs				
Sate	lite Orbits, Satellite Communication S	ystems, Satellite Subsystems, Ground Stations,					
Sate	lifte Applications, Global Positioning Sy	/stem.					
			00.11				
Opt	cal Communication: Optical Princip	les, Optical Communication Systems, Fiber-	09 Hrs				
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division							
INIT V							
UNIT-V							
Advanced Mobile Dhone System (AMDS)							
Digital Cell Phone Systems: 2G, 2 5G, 3G and 4G cell phone systems. Advanced Cell							
Phones							
Wireless Technologies: Wireless I AN PANs and Rhietooth ZigRee and Mesh Wireless							
Note	works WiMAY and Wireless Matropolis	and Diuctoour, Zigdee and Mesh willeless					
INCLV	volks, white AA and where ss well opon	all-Alea Includiks.					
Car	na Outcomos. After completing the a	ourse the students will be able to					
	rse Outcomes: After completing the c	ourse, the students will be able to					

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basics of communication systems.						
CO2	Analyze the importance of modulation and multiple access schemes for communication						
	systems.						
CO3	Compare different telecommunication generations, wired and wireless communication.						
CO4	Justify the use of different components and sub-system in advanced communication systems.						

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata
	McGraw Hill, ISBN: 978-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

	V Semester							
COMPUTATIONAL ADVANCED NUMERICAL METHODS								
	(Group B: Global Elective)							
Cou	rse Code:16G5B12	CIE Marks: 100						
Crea	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hou	rs: 44L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives:							
1	Adequate exposure to lear determine the suitable numer	n alternative methods and analyze mathematical pro- ical techniques.	blems to					
2	Use the concepts of interpol	ation, eigen value problem techniques for mathematical	problems					
	arising in various fields.							
3	Solve initial value and bound	lary value problems which have great significance in en	gineering					
	practice using ordinary differential equations.							
4	Demonstrate elementary pro	gramming language, implementation of algorithms and	computer					
	programs to solve mathemati	cal problems.						
		Unit-I						
Alge	braic and Transcendental eq	uations:	08 Hrs					
Root	s of equations in engineering p	ractice, Polynomials and roots of equations, Fixed point						
itera	tive method, Aitken's process,	Muller's method, Chebychev method.						
		Unit – II	r					
Interpolation: 08								
Intro	duction to finite differences, l	Finite differences of a polynomial, Divided differences						
and	Newton's divided difference	interpolation formula, Hermite interpolation, Spline						
inter	polation–linear, quadratic and o	cubic spline interpolation.						
		Unit -III						
Ord	inary Differential Equations:		09 Hrs					
Solu	tion of second order initial v	alue problems–Runge-Kutta method, Milne's method,						
Bour	idary value problems (BVP's)	-Shooting method, Finite difference method for linear						
and 1	nonlinear problems, Rayleigh-F	Ritz method.						
D •		Unit –IV	0.0 11					
Eige	n value problems:		09 Hrs					
Eige	n values and Eigen vectors, Po	Josephi method, Inverse Power method, Bounds on Eigen						
value	values, Greschgorin circle theorem, Jacobi method for symmetric matrices, Givens method.							
Unit –V								
	Computational Techniques: 10 Hrs							
Mull	Augurumins and Mattao programs for Fixed point iterative method, Altken s-process, Mullar's method Chabyahay method Newton's divided difference method Hermite							
inter	interpolation Spline interpolation Power method Inverse Power method Runge-Kutta							
meth	method Milne's method Shooting method Rayleigh-Ritz method Jacobi method and							
Give	Givens method							
Give	no memou.		<u>I</u>					
Соп	rse Outcomes: After completi	ng the course, the students will be able to						
CO1	Identify and interpret the fu	indamental concepts of polynomial equations. Interpolati	on Figen					
	CO1: Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen							

Course	e Outcomes. After completing the course, the students will be able to						
CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen						
	value problems, Differential equations and corresponding computational techniques.						
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and						
	transcendental equations, Ordinary differential equations and eigen value problems.						
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,						
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems						
	numerically using computational techniques.						
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the						
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value						
	problems arising in engineering practice.						

Refere	ence Books
	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar
I	and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224- 2001-2
	Numerical Analysis Richard I. Burden and I. Douglas Faires. Cengage Learning 9 th Edition
2	2012, ISBN-13: 978-81-315-1654-6.
2	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
3	Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
4	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

V Semester							
BASICS OF AEROSPACE ENGINEERING							
(Group B: Global Elective)							
Course Code: 16GE5B13	CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 44L	SEE Duration: 3Hours						

Course Learning Objectives:

To enable the students to:

- 1 Understand the history and basic principles of aviation
- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I			
Introduction to Aircraft : History of aviation, International Standard atmosphere,	08 Hrs		
Atmosphere and its properties, Temperature, pressure and altitude relationships,			
Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and			
their functions, Introduction to Unconventional and Autonomous Air vehicles.			
Unit – II			
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an	08 Hrs		
Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance,			
Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil			
nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on			
lift and drag.			
Unit -III	07.11		
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types	07 Hrs		
of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan			
engines, Introduction to ramjets and scramjets, Comparative merits and demerits of			
different types Engines.			
Unit -IV			
Introduction to Space Flight : History of space flight, Evolution of Indian Space	08 Hrs		
Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic			
concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories.			
Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets,			
Types of rockets.			
Unit -V			
Aerospace Structures and Materials : Introduction, General types of construction,	07 Hrs		
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage			
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum			
alloy, titanium, stainless steel and composite materials, Low temperature and high			
temperature materials.			

Cours	se Outcomes:
At the	end of this course the student will be able to :
CO1	Appreciate and apply the basic principles of aviation
CO2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and aircraft materials during the development of an aircraft
CO3	Comprehend the complexities involved during development of flight vehicles.
CO4	Evaluate and criticize the design strategy involved in the development of airplanes

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York, ISBN:1118174208, 9781118174203.
3	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

High-3 : Medium-2 : Low-1

·	VI Semester					
INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP						
	(Theory)					
(Common to B1, Course Codes 16USI51/61	CHE, CV, E&I, IEM, ME)					
Course Code: 10H5151/01	CIE Marks: 100					
Ureuns: L: 1:1':5: 5:0:0:0 SEE Marks: 100 Houng: 261 SEE Duration: 0211-2						
Course Learning Objectives: The students	will be able to					
To build awareness on the various for	ms of IPR and to build the perspectives on the	concents				
1 and to develop the linkages in technolog	gy innovation and IPR.	concepts				
2 To equip students on the need to prostandards governing ethical works.	otect their own intellectual works and develo	p ethical				
3 To motivate towards entrepreneurial starting, building and growing a viable	careers and build strong foundations skills t as well as sustainable venture.	o enable				
Develop an entrepreneurial outlook an	nd mind set along with critical skills and know	vledge to				
4 manage risks associated with entreprener	eurs.					
	UNIT-I					
Introduction: Types of Intellectual Property,	WIPO, WTO, TRIPS.	07 Hrs				
Patents: Introduction, Scope and salient feat	tures of patent; patentable and non-patentable					
inventions, Patent Procedure - Overview, Ira	nster of Patent Rights; Biotechnology patents,					
Trade Secrets: Definition Significance Tee	le to protoct Trade socrete in India					
Trade Secrets. Definition, Significance, 100.	UNIT_II					
Trade Marks: Concept function and di	fferent kinds and forms of Trade marks	04 Hrs				
Registrable and non- registrable marks Reg	istration of trade mark. Decentive similarity:	04 1115				
Assignment and transmission ECO Lab	el Passing off Offences and penalties					
Infringement of trade mark with Case studies	or, russing on, onenees and penalties.					
	UNIT-III					
Industrial Design: Introduction. Protection	on of Industrial Designs. Protection and	09 Hrs				
Requirements for Industrial Design. Pro	ocedure for obtaining Design Protection.	07 110				
Revocation. Infringement and Remedies. Case	e studies					
Copy Right: Introduction, Nature and scope	e, Rights conferred by copy right, Copy right					
protection, transfer of copy rights, right of	broad casting organizations and performer's					
rights, Case Studies.						
Intellectual property and cyberspace: Emergence of cyber-crime: Grant in software						
patent and Copyright in software; Software piracy: Data protection in cyberspace						
	UNIT-IV					
Introduction to Entrepreneurship – Learn	how entrepreneurship has changed the world.	08 Hrs				
Identify six entrepreneurial myths and uncove	er the true facts. Explore E-cells on Campus					
Listen to Some Success Stories: - Global leg	ends Understand how ordinary people become					
successful global entrepreneurs, their journey	ys, their challenges, and their success stories.					
Understand how ordinary people from the	eir own countries have become successful					
entrepreneurs.						
Characteristics of a Successful Entreprener	ur Understand the entrepreneurial journey and					
learn the concept of different entrepreneuria	al styles. Identify your own entrepreneurship					
style based on your personality traits, stren	ngths, and weaknesses. Learn about the $5\hat{M}$					
Model, each of the five entrepreneurial styles	Model, each of the five entrepreneurial styles in the model, and how they differ from each					
other. Communicate Effectively: Learn h	ow incorrect assumptions and limiting our					
opinions about people can negatively impa	ct our communication. Identify the barriers					
which cause communication breakdown, such	as miscommunication and poor listening, and					
learn how to overcome them.						
Communication Best Practices. Understand	the importance of listening in communication					
and learn to listen actively. Learn a few b	ody language cues such as eye contact and					
handshakes to strengthen communication. (Pr	actical Application)					

UNIT-V	
Design Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs
solving process. Describe the principles of Design Thinking. Describe the Design Thinking	
process.	
Sales Skills to Become an Effective Entrepreneur: - Understand what is customer focus	
and how all selling effort should be customer-centric. Use the skills/techniques of personal	
selling, Show and Tell, and Elevator Pitch to sell effectively.	
Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits.	
Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical	
Application) Appreciate the role of failure on the road to success, and understand when to	
give up. Learn about some entrepreneurs/risk-takers. (Practical Application).	
Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real	
picture of the benefits and challenges of being an entrepreneur. Identify the reasons why	
people want to become entrepreneurs. Help participants identify why they would want to	

become entrepreneurs.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the
	purview of engineering domain.
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to
	Intellectual Property Rights with the utility in engineering perspectives.
CO3:	Enable the students to have a direct experience of venture creation through a facilitated
	learning environment.
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that
	entrepreneurs use to succeed in real life.
<u> </u>	

Ref	erence Books
1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co.
	LtdDelhi, ISBN: 9789350350300
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 st Edition,
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN:
	8180380025, 9788180380020.
4.	Entrepreneurship, Rajeev Roy, 1 st Edition, 2012, Oxford University Press, New Delhi, ISBN:
	9780198072638.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

	VI Semester					
	ENTERPRISE INFORMATION SYSTEMS					
	(Theory)					
Cou	rse Code: 16IM62	CIE Marks: 100				
Cree	dits:L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	Hours: 33L SEE Duration: 03 Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Understand the importance of information syst	tems for business and management;.				
2 Define various workflow, information architecture and information systems. To enterp						
4	² business.					
2	Analyze the techniques and approaches of	Analyze the techniques and approaches of enterprise information system planning, design,				
3	implementation and management.					
4	Design and develop Dusiness information and	and for waring Industrial Applications				

4 Design and develop Business information systems for various Industrial Applications

UNIT-I	
Enterprise Information System: Historical background, The manufacturing Roots of	06 Hrs
ERP, comparative coverage between MRP, ERP, EIS. Concepts of EIS, EIS	
Characteristics, EIS As per Garter View.	
UNIT-II	
Business Process Reengineering and Best Practices- Business process, Typical	08 Hrs
Business process. Reengineering, Business Process Reengineering, Business Process	
management, BPR with respect to EIS.	
UNIT-III	
Enterprise Information Systems Development – Data storage systems, Data	08 Hrs
warehousing, Data marts, Online analytical processing, Data mining, Customer	
relationship Management, Business intelligent system.	
UNIT-IV	
Enterprise Information Systems and Supply chain: Magnitude of EIS in SCM, Web	06 Hrs
enable EIS/ERP and its impact on SCM, Eis Vs SCM, product Life cycle management.	
UNIT-V	
Trends in Enterprise Systems-MRPIII (Money Resource Planning), Next Generation Of	05 Hrs
Entermise software Expanditure trands Deduction In implementation time	

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	e Outcomes: After completing the course, the students will be able to
CO1	Understand the role of enterprise information system analytics in decision making.
CO2	Understand the technologies for data warehousing data mining and data visualization. And its
	use in organizations.
CO3	Apply information-gathering techniques to document the requirements for an information
	system solution
CO4	Develop an understanding of investigative methods for building and designing computer
	based information systems.
CO5	Realize the trends in enterprise system and the supportive technologies.

Refe	erence Books
1.	Enterprise Information Systems: Contemporary Trends and Issues, David L. Olson and Subodh
	Kesharwani, 2009 Retrieved 20 August 20, New York: World Scientific, ISBN 9814273163.
2.	Enterprise Information Systems: Concepts, Methodologies, Tools and Applications, Information
	Resources Management Association (USA), 1 st Edition, 2011, Idea Group Inc. ISBN 978-1-
	61692852-0.

- Enterprise Information Systems: A Pattern Based Approach, Cheryl L. Dunn, 3rd Edition, 2005, McGraw-Hill, ISBN: 9780071111201
 Software Project Management, Hughes, B. and Mike Cotterell, M. 5th Edition, 2009, McGraw-
- 4. Software Project Management, Hughes, B. and Mike Cotterell, M. 5th Edition, 2009, McGraw-Hill, ISBN:1070-1389

CIE is executed by way of quizzes (Q), tests (T) and Self-study (S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1									
CO2	1	1	2	1								
CO3			2	1	2				2	1		
CO4			1	2	2				2	1	2	
CO5				2		1	2	2	2		2	

	VI Semester					
	FACILITIES PLANNING	AND DESIG	N			
	(Theory & Pra	ctice)				
Cot	Irse Code: 16IM63		CIE Marks: 100 + 50			
Credits:L:T:P:S: 3: 0: 1: 0 SEE Marks: 100 + 5			SEE Marks: 100 + 50			
Ηοι	ırs: 35L		SEE Duration: 03 + 03 Hrs			
Cot	Course Learning Objectives: The students will be able to					
1	Understand the importance of Facilities Planning P	rocess & Mater	ial handling Systems.			
2	2 Define various types of layouts and their linkages to design of product, process and layout.					
2	Solve various facility design problems through	computer ai	ded layout design and flow			
3	processes.		-			

TIS INCO Y	·
UNIT-I	
Introduction: Facilities planning defined, significance of facilities planning, objectives of	08 Hrs
facilities planning, facilities planning process, strategic planning process, developing	
facilities planning strategies, examples of inadequate planning.	
Plant Location And Layout: Factors influencing plant location, Theories of plant location.	
Objectives of plant layout, Principles of plant layout, types of plant layout, their merits and	
demerits, numerical on plant location.	
UNIT-II	
Materials Handling: Introduction, scope and definition of material handling, material	06 Hrs
handling principle, designing material handling systems, unit load design, material handling	
equipment, estimating material handling costs, safety considerations.	
UNIT-III	
Computer Aided Layout: Introduction, CRAFT, COFAD, PLANET, CORELAP, ALDEP.	08 Hrs
Numerical on CRAFT / ALDEP.	
Warehouse Operations: Introduction, Mission of a warehouse, functions in the warehouse,	
receiving & shipping operations, dock locations, storage operations, order picking	
operations.	
UNIT-IV	
Designing of Material flow: Factors for consideration in planning material flow. Designing	06 Hrs
of Layout corresponding to typical types of Flow: Straight Line Flow / U Flow / S flow,	
Numerical on material flow. Examples on hospitals, super & hyper markets, airports, petrol	
stations, hotels, IT & Ites sector.	
UNIT-V	
Facilities Design for Manufacturing Systems: Introduction, fixed automation systems.	07 Hrs
flexible manufacturing systems, single-stage multi-machine systems, reduction of work-in-	
process, Just-In-Time Manufacturing, facilities planning trends.	

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

	FACILITIES PLANNING AND DESIGN LAB
1.	Redesigning of Material Flow using Charts, Diagrams and Models.
2.	Designing of Product Layout using Line Balancing techniques.
3.	Development of Layout plans using Systematic Layout Planning technique.
4.	Evaluating alternative layout proposals using simulation.
5.	Designing Cellular Layouts using Rank Order Clustering algorithm.
6.	Designing of Layout corresponding to typical types of Flow – Straight Line Flow / U Flow / S
	flow.
7.	Assessing Layout performance using efficiency indices.
8.	Preparation and Presentation of Actual Layout for an organization.

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Understand the factors influencing decisions related to plant locations, layout and material
	handling.
CO2	Recognize the influence of planning process and strategies and their effect on facility location
	planning.
CO3	Develop different layout plans and their operations on warehouse.
CO4	Evaluate different flow systems of a facility.

Reference Books

1.	Facilities Planning, James A Tompkins, John A White, Yavuz A Bozer, J M A Tanchoco,
	4 th Edition, 2010, John Wiley & Sons INC, ISBN- 978-0-470-44404-7.
2.	Plant Layout and Material Handling, James M Apple, 3 rd Edition, January 1991, Krieger Pub
	Co., ISBN-13: 978-0894645457.
3.	Facility layout and Location, Francies, R.L. and White, J.A, 2 nd Edition, 1998, Prentice Hall of
	India, ISBN: 8120314603.
4.	Facilities Design, Sunderesh Heragu, 4 th edition, 2016, CRC Press, ISBN: 978-1-4987-3290-1

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2		3					1					
CO3			2		1							
CO4				2						1		

	VI Semester					
	SUPPLY CHAIN ANI	D LOGISTICS MANAGEMENT				
	(The	eory & Practice)				
Cou	rse Code: 16IM64	CIE Marks: 100 + 50				
Credits:L:T:P:S: 3: 0: 1: 0 SEE Marks: 100 + 50						
Hou	rs: 33L	SEE Duration: 03 + 03Hrs				
Cou	rse Learning Objectives: The students	will be able to				
1	To Understand the Building Blocks, M	Major Functions, Business Processes, and their relevance				
	to Decisions in a Supply Chain Manage	ement.				
2	2 To design and analyze the linkages between Supply Chain Structures and Logistical					
	Capabilities of a firm or supply chain.					
3	To develop Quantitative models to ens	sure effective Decision Making by analyzing the supply				
	chain issues.					

UNIT-I

Building a Strategic Frame Work to Analyse Supply Chains:	06 Hrs
Definition and Objective of Supply Chain, The importance of Supply Chain Decisions,	
Decision Phases in a Supply Chain, Process View of Supply Chains. Competitive and	
Supply Chain Strategies, Achieving Strategic fit, Expanding Strategic Scope. Drivers of	
Supply Chain Performance, Frame work for Structuring Drivers, Facilities, Inventory,	
Transportation, Information, Sourcing, Pricing, Obstacles to Achieving Fit.	
UNIT-II	
Designing The Supply Chain Network: The Role of Distribution in the Supply Chains,	07 Hrs
Factors influencing Distribution Network design, Design Options for a Distribution	
Network, e-Business and the Distribution network, Distribution Networks in practice.	
Factors influencing network design decisions, Framework for Network design decisions,	
Models for Facility location and Capacity allocation, The role of IT in Network design.	
The impact of uncertainty on network design, Discounted cash flow analysis,	
Representations of Uncertainty, Evaluating Network Design Decisions Using Decisions	
Trees, Risk Management and Network Design, Mumbai Dabbawalla Case Study,	
Problems.	
UNIT-III	
Planning and Managing Inventories in a Supply Chain: The Role of Cycle inventory in	07 Hrs
a Supply Chain, Economies of Scale to Exploit Fixed costs, Economies of Scale to Exploit	
Quantity Discounts, Short-Term Discounting, Trade Promotions, Managing Multi-echelon	
Cycle Inventory. The Role of Safety Inventory in a Supply Chain, Determining appropriate	
level of Safety inventory, Impact of supply Uncertainty on Safety inventory, Impact of	
aggregation on safety inventory, impact of replenishment policies on safety inventory,	
Managing Safety Inventory in a Multi-echelon Supply Chain, The Role of IT in inventory	
management. The importance of the level of product Availability, Factors affecting	
optimal level of Product Availability, Managerial levers to improve supply chain	
Profitability, Problems.	
LINIT-IV	
Designing And Planning Transportation Networks: The role of transportation in a	07 Hrs
Supply chain Modes of transportation and their performance characteristics	07 1115
Transportation infrastructure and policies. Design options for a transportation network.	
Trade-offs in transportation design. Tailored transportation. The role of IT in	
transportation. Problems.	
Managing Cross-Functional Drivers In A Supply Chain: The role of sourcing in a	
supply chain, in-house or outsource. Third-and Fourth-party logistics providers. Supplier	
scoring and assessment. Supplier selection-Auctions and Negotiations. Contracts and	
supply chain performance. Design Collaboration. The procurement process sourcing	
Tr , Friend, Friedrich, Friedrich, Soutening	

Γ

UNIT-V	
Managing Cross-Functional Drivers In A Supply Chain: The role of IT in a supply	06 Hrs
chain, The supply chain in IT framework, The supply chain macro processes, Lack of	
Supply Chain co-ordination and the Bullwhip effect, managerial levers to achieve	
coordination, continuous replenishment and vendor-managed inventories, collaborative	
planning, forecasting and replenishment (CPFR), Problems	

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

	SUPPLY CHAIN AND LOCISTICS MANAGEMENT LABORATORY
	Part _ I
-	
1.	Exercises on designing supply chain networks: Facility location models, Network optimization
	models.
2.	Planning supply chain inventory and sensitivity analysis: Cycle inventory, Safety inventory and
	Product availability, Inventory aggregation.
	Part – II
3.	Exercises on transportation design: Transportation cost and inventory cost trade off, Customer
	response and transportation cost trade off, Routing and scheduling.
4.	Exercises on Designing Marketing Campaign, Customer Service and Customer Order
	Processing.
5.	Demonstration Exercises on the beer game, illustrating bullwhip effect; Risk Pool Game;
	Auctions

6. Demonstration Exercises using SCM Simulator.

Course	e Outcomes: After completing the course, the students will be able to
CO1	Understand supply chain concepts, systemic and strategic role of SCM in global competitive
	environment.
CO2	Evaluate alternative supply and distribution network structures using optimization models.
CO3	Develop optimal sourcing and inventory policies in the supply chain context.
CO4	Select appropriate information technology frameworks for managing supply chain processes.

Reference Books

1.	Supply Chain Management – Strategy, Planning & Operation, Sunil Chopra, Peter Meindl & D V
	Kalra, 6 th Edition, 2016, Pearson Education Asia; ISBN: 978-0-13-274395-2.
2.	Supply Chain Management – Creating Linkages for Faster Business Turnaround, Sarika Kulkarni
	& Ashok Sharma, 1 st Edition, 2004, TATA Mc Graw Hill, ISBN: 0-07-058135–5
3.	Designing & Managing the Supply Chain – Concepts Strategies and Case Studies, David Simchi
	Levi, Philip Kaminsky, Edith Simchi Levi & Ravi Shankar, 3rd Edition, 2008, Mc Graw Hill,
	ISBN: 978- 0-07-066698-6
4.	Modelling the Supply Chain, Jeremy F Shapiro, 2 nd Edition, 2009, Cengage Learning, ISBN 0-
	495-12609-8

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											1
CO2		3	2	2	2		3					
CO3		3	2		2							1
CO4			2		2					1		

	VI Semester			
DIGITAL MANUFACTURING				
(Group C : P	rofessional Core Elective)			
Course Code: 16IM6C1	CIE Marks: 100			
Credits:L:T:P:S: 3:0:0:1	SEE Marks: 100			
Hours: 34L	SEE Duration: 3Hrs			
Course Learning Objectives: The students	s will be able to			
1 Understand the concepts of digital mat	nufacturing systems			
Explain the manufacturing informatic	s, intelligent manufacturing, managing key tech	nology of		
² digital manufacturing.				
3 Recognize digital technology with inte	egration in product.			
	UNIT-I			
Introduction: Concept and research and	development status of Digital Manufacturing	07 Hrs		
(DM).				
Theory system of DM, modelling theory	and method of Digital manufacturing science,			
basic architecture model of DM system.				
	UNIT-II			
Computing manufacturing; manufacturing	ng computational model, theoretical units in	07 Hrs		
manufacturing computing.				
Manufacturing Informatics; Principal	properties of manufacturing information-			
characteristics, activities, principles; Measurement, synthesis and materialization;				
Integration, Sharing and security of manufac	cturing information.			
UNIT-III				
Intelligent manufacturing: Intelligent mul	ti information sensing, knowledge engineering	08 Hrs		
in the 'Whole Life Cycle', Anatomy, Self-	Learning, Adapting of manufacturing system;			
Intelligent manufacturing system,				
Management of Technology in DM; R&	D system framework and management mode,			
technological strategies management	& technological venture, Human-machine			
engineering on DM processes and produc	ction patterns. MOT mode based on cultural			
differences.	1			
	UNIT-IV			
Key technology of DM: Digital technology	ologies in product lifecycle. Resource and	06 Hrs		
Environment technology. Management tech	nology. Control technology. Digital recognition			
and Integration technology in product.				
	UNIT-V			
Future development: Precision of digital m	nanufacturing- Micro Nano Electro Mechanical	06 Hrs		
System Micro Nano Equipment External	ization and Environment protection of digital			
manufacturing	Leader and Environment protection of digital			
indiana turturing.				

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the System of modelling theory and method of digital manufacturing science.					
CO2	Explain the basic principles and methodology of digital manufacturing system					
CO3	Apply concepts of manufacturing informatics in measuring, synthesizing and integration of					
	manufacturing information system.					

Reference Books

1.	Fundamentals of Digital Manufacturing Science, Zude Zhou, Shane Shengquan Xie, Dejun
	Chen, 2012, Springer publishers, ISBN: 978-0-85729-563-7, e-ISBN 978-0-85729-564-4.

 Cloud Manufacturing –Distributed Computing Technologies for Global and Sustainable Manufacturing, Weidong Li, Jörn Mehnen, 1st Edition, 2013, Springer series in Advanced Manufacturing, ISBN 978-1-4471-4934-7
 Collaborative Design and Planning for Digital Manufacturing , Lihui Wang, Andrew Yeh Ching Nee, 2009, Springer publications, ISBN: 978-1-84882-286-3
 Digital Manufacturing: Prospects and Challenges, Christoph Haag, Torsten Niechoj, 1st Edition, 2016, Metropolis Verlag, ISBN: 3731611562, 9783731611561

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2		2								1		
CO3		2	1		1						2	

	VI Semester					
	SERVICE OPER	RATIONS MANAGEMENT				
	(Group C : Pr	ofessional Core Elective)				
Cou	rse Code: 16IM6C2	CIE Marks: 100				
Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100		SEE Marks: 100				
Hours: 36L SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students	will be able to				
1	To obtain an overview of the successful Service Operations Management (SOM) function through the					
1	introduction of the topics traditionally associated with the study of Service Operations Management.					
2	To develop an understanding of the terminology and responsibilities that relate to Service Operations					
2	Management.					
2	To formulate and describe the function of	of the Service Operations Management discipline in various				
sectors of the economy through case study.						
1	To obtain a set of basic tools and skills us	ed in solving problems traditionally associated with operating				
4	the service operations system					

UNIT-I

Introduction to service operations management: Introduction, what is service operations	07 Hrs	
management?, The challenges facing service operations managers, different types of		
services, different types of service processes, judging the success of a service operation		
UNIT-II		
The service concept: the service concept, the service concept defined, the service concept	07 Hrs	
as a strategic tool, focused and unfocussed service operations		
Customers and relationships: customers and customer segmentation, customer retention,		
managing customer relationships, managing customer relationships.		
UNIT-III		
Customer expectations and satisfaction: customer satisfaction, service quality and	08 Hrs	
confidence, customer expectations, defining expectations-service quality factors, finding		
expectations and assessing satisfaction, managing perceptions		
Managing supply relationships: types of supply relationships, managing service supply		
chains, managing through intermediaries, supply partnerships, service level agreements		
UNIT-IV		
Service processes: service processes and their importance, understanding the nature of	07 Hrs	
service processes, engineering service processes, controlling service processes,		
repositioning service processes		
Service people: understanding the pressures on service providers, managing and		
motivating service providers, managing customers		
UNIT-V		
Resource utilization: capacity management, operations planning and control, managing	07 Hrs	
bottlenecks and queues, managing the coping zone, improving resource utilization		
Performance measurement: the purpose of Performance measurement, a balance of		
measures, Interlinking, targets and rewards, benchmarking		

Self Study:

ſ

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Develop an understanding of the terminology and responsibilities that relate to Service
	Operations Management.
CO2	Formulate and describe the function of the Service Operations Management discipline in
	various sectors of the economy through case study.
CO3	Obtain a set of basic tools and skills used in solving problems traditionally associated with
	operating the service operations system.

CO4	Explore the interface of Service Operations Management with the other management
	functions, such as marketing, procurement & sourcing, outsourced good & services and
	customers.
CO5	Deploy technology in the improvement of service, customer relationships and globalization.

Refe	erence Books
1.	Service Operations Management, Improving Service Delivery, Robert Johnston, Graham Clark,
	2 nd Edition, 2008, Pearson, ISBN:8131715205
2.	Service Operations Management, Richard Metters, King-Metters, Steve Walton, 13th Edition,
	2002, South-Western, ISBN: 978-0324135565
3.	Service Operations Management: The Total Experience, David W. Parker, 13 th Edition, 2012,
	Edward Elgar Pub, ISBN-978-1781007860
4.	

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1						
CO2		2								2		
CO3			2	2	2				1	1		
CO4				2			2				2	
CO5					2		2	1				2

VI	Someeter						
	TV ENCINEEDING						
KELIADILIII EINGINEEKING (Choun C., Drofoggional Care Elective)							
Course Code: 16IM6C3							
Crodits: L.T.P.S. 3.0.0.1	SFF Marks: 100						
Hours: 331	SEE Marks. 100 SEE Duration: 03Hrs						
Course Learning Objectives: The students w	ill be able to						
1 Provide an insight into various tools and t	techniques of Reliability Engineering						
I Flovide an insight into various tools and techniques of Kendolinty Englishering.							
2 Review the various mathematical, physical evaluation of component and system lave	al reliability	uion anu					
Appraise failure phenomena and there by	y provide valuable inputs for product design to	achieve					
3 Appraise failure phenomena and there by higher levels of reliability standards	provide valuable inputs for product design to	Jacineve					
A Assessment and evaluation of reliability of	goals and their improvements						
4 Assessment and evaluation of reliability §	goals and then improvements.						
	LINIT I						
Introduction: Introduction to reliability and	ingering Scope of reliability engineering	07 Urs					
Reasons for engineering items to fail Pro	babilistic reliability Repairable and non	07 1115					
repairable items Reliability Program activities	s Reliability Economics and Management						
The development of reliability engineering Ord	ganizations involved in reliability work. The						
study of reliability and maintainability. Concern	ts terms and definitions Applications						
study of renability and maintainability, concep	INIT-II						
Rosic Reliability Models		07 Hrs					
Failure distribution: The reliability function. Mean time to failure. Hazard rate function							
Hazard rate function. Bathtub curve, Conditional reliability							
Time dependent failure models: The Weibul	l distribution Normal distribution The Log						
Normal distribution	abilibution, Horman distribution, The Log						
T	INIT-III						
Basic Reliability Models		06 Hrs					
Constant failure rate model: The expone	ential reliability function Failure modes	00 1115					
Applications The Two Parameter Exponential	distribution Poisson process Redundancy						
and CFR model exercises	aistribution, roisson process, redundancy						
INIT-IV							
Reliability of Systems: Serial Configuration Parallel Configuration Combined Series 07 U							
Parallel system System structure function Minimal cuts and Minimal paths Common							
mode failure. Three state devices. State space analysis (Markov analysis). Load sharing							
systems, Standby systems, Graded systems, Fault Tree Analysis, Failure Modes and Effects							
Analysis.							
UNIT-V							
Failure Data Analysis: Data Collection, Empirical Methods, Static Life Estimation,							
Product Testing, Reliability Life Testing, 7	Test Time Calculations. Burn-In Testing.						
Acceptance Testing, Accelerated Life Testing	. Experimental Design, Competing Failure						
Modes							
Self Study:							
Case study, Design and Emerging Technologies	s to be discussed pertaining to the course.						
1 Credit: 4 Hrs / Week							

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Explain basic terminologies as applied to reliability engineering.							
CO2	Develop the capability to design systems and process for reliability improvement.							
CO3	Analyze failure phenomenon of components and systems so as to develop strategies for							
	eliminating/ minimizing product failures.							
CO4	Generate estimates for reliability through different modelling approaches for component and							
	system level reliability in real life contexts.							

Refe	erence Books
1.	An Introduction to Reliability and Maintainability Engineering, Charles E. Ebling, 1 st Edition,
	2000, Tata McGraw Hill, ISBN: 0-07-042138-2.
2.	Practical Reliability Engineering, Patrick D.T. Oconnor, et al, 4 th Edition, 2002, John Wiley and
	Sons, ISBN: 9812-53-045-2.
3.	Reliability Engineering, Dr. E. Balaguruswamy, 1 st Edition, 2003, McGraw Hill, ISBN: 978-
	0070483392
4.	Reliability Engineering, L.S. Srinath, 3 rd Edition, 1991, Affiliated East West Press Pvt Ltd,
	ISBN: 81 85336393

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2			2		1							
CO3		2		2			1					
CO4		2		2		1						1

	VI Semester					
		FINANCIAL MANAGEMENT				
	(G	roup C : Professional Core Elect	ive)			
Cou	Course Code: 16IM6C4 CIE Marks: 100					
Credits:L:T:P:S : 3:0:0:1 SEE Marks: 100						
Hou	Hours: 33L SEE : 3 Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Explain the nature of finance and its interaction with other management functions.					
2	Highlight the use of present value technique in financial decisions.					
3	3 Discuss the pros and cons of various source of long term finance.					
4	Recognize the diagnostic re	ole of financial ratios and elaborate	the concept of working capital.			

UNIT-I				
Introduction: scope of finance, finance function, financial manager's role, financial goal:	07 Hrs			
profit maximization v/s wealth maximization.				
Value and return: time preference for money, future value, future value of a single cash				
flow, future value of annuity, present value, present value of a single cash flow, present				
value of annuity				
UNIT-II				
Valuation of bonds and share: concept of value, features of bond, present value of bond,	07 Hrs			
bond value and interest rate, valuation of preference shares, valuation of ordinary shares,				
Risk and return: return on a single assets, risk of rate of return: variance and standard				
deviation, problems only on single assets.				
Capital budget decisions: nature of investment decision, types of investment decision,				
investment evaluation criteria, net present value, internal rate of return(simple problems on				
NPV and IRR)				
UNIT-III				
Financial statement analysis: users of financial analysis, nature of ratio analysis, liquidity	07 Hrs			
ratios, leverage ratios, activity ratios, profitability ratios, trend analysis, inter-firm analysis,				
utility and limitations of ratio analysis				
UNIT-IV				
Long term finance: ordinary shares, rights issue of equity shares, preference share,	06 Hrs			
debentures, lease financing, hire purchase financing.				
Venture capital financing: notion of venture capital, the process of venture capital				
financing, methods of venture capital financing, disinvestment mechanisms, development of				
venture capital in India.				
UNIT-V				
Working capital management: concept of working capital, operating and cash conversion	06 Hrs			
cycle, permanent and variable working capital, determinants of working capital, issues in				
working capital management, estimating working capital needs, policies for financing				
current assets.				

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course Outcomes: After completing the course, the students will be able to						
CO1	Explain the basic concepts in financial management.					
CO2	Discuss the financial requirement of individual corporations.					
CO3	Demonstrate the understanding of the nature of finance management.					
CO4	Apply the concepts of financial management to contemporary financial events.					

Refe	erence Books
1.	Financial Management, I M Pandey, 11 th Edition, 2015, Vikas Publishing House, ISBN:
	9789325982291
2.	Basic Financial Management, Khan & Jain, 2 nd Edition, 2005, Tata McGraw-Hill Education,
	ISBN, 0070599432
3.	Financial Management: Theory and Practice, Prasanna Chandra, 9th Edition, 2015, Mcgraw
	Higher Education, ISBN: 9789339222574, 9339222571
4.	Fundamentals of Financial Management, James C. Van Horne, 13th Edition, 2008, Prentice Hall,
	ISBN: 978-0273713630

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1	2	
CO2										2	2	
CO3											2	
CO4				1				1			2	

	VI Semester					
	DATA MINI	NG TECHNOLOGIES				
	(Group C : Pr	ofessional Core Elective)				
Cou	urse Code: 16IM6C5 CIE Marks: 100					
Cred	Credits:L:T:P:S: 3: 0: 0:1 SEE Marks: 100					
Hou	Hours: 35L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Recognize the importance of data, their managerial issues, and their life cycle.					
2	Describe the sources of data, their collection, and quality issues.					
3	Apply data mining solutions to real time	e data using common data mining techniques.				

4 Identify research opportunities in the area of data mining and related applications

UNIT-I		
Introduction: Data mining, Type of data used for mining, Type of pattern used for	07 Hrs	
mining, Related technologies, Major issues in data mining, Applications of data mining.		
Getting to know your data: Data objects and attribute types, Basic statistical description		
of data, Data visualization, Measuring data similarity and dissimilarity.		
UNIT-II		
Data Preprocessing: Data Preprocessing, Data cleaning, Data Integration, Data	07 Hrs	
reduction, Data Transformation and data discretization.		
Mining Frequent Patterns, Associations, and Correlation: Basic concepts and Methods.		
UNIT-III		
Classification: Basic concepts, Decision tree induction, Bayes classification methods,	07 Hrs	
Rule based classification		
UNIT-IV		
Classification (Advanced methods): Bayesian belief Networks, Classification by back	07 Hrs	
propagation, Classification using frequent patterns, Lazy learners, Other classification		
methods.		
UNIT-V		
Cluster analysis: Cluster analysis, Partitioning methods, Hierarchical methods, Density	07 Hrs	
based methods.		
Data Mining Trends and Research Frontiers: Mining complex data types, Data mining		
application, Data mining and society.		

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course Outcomes: After completing the course, the students will be able to		
CO1	Examine the types of the data to be mined and present a general classification of tasks and	
	primitives to integrate a data mining system.	
CO2	Apply preprocessing statistical methods for any given raw data.	
CO3	Discover interestingness patterns from large amounts of data to analyze and extract patterns	
	to solve problems, make prediction of outcomes.	
CO4	Select and apply proper data mining algorithms to build analytical applications.	

Reference Books

1.	Data Mining – Concepts and Techniques, Jiawei Han and Micheline Kamber, 3 rd Edition, 2011,
	Morgan Kaufmann Publishers Inc, ISBN - 9789380931913.
2.	Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbach, 2 nd Edition,
	2013, Pearson Education Inc., ISBN: 9780133128901
3.	Data Mining and Analysis, Mohammed J Zaki, Wagner Meira JR, 1 st edition, 2014, Cambridge
	University Press, ISBN 978-0-521-76633-3.
4. Data Mining, Sushmita Mitra, Tinku Acharya, 1st Edition, 2003, John Wiley and Sons, ISBN 0-471-46054-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1		1							
CO2		3		2								
CO3		3		3								
CO4		3						1				

Low-1 Medium-2 High-3

	VI Semester						
	3-D METROLOGY						
	(Group C : Professional Core Elective)						
Cou	ourse Code: 16IM6C6 CIE Marks: 100						
Cred	Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100						
Hou	Hours: 34L SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students	will be able to					
1	Explain the concepts of GD&T.						
2	Define the relevance of metrology concepts in Advanced measuring machines.						
3	Apply the principles of metrology and measurements in manufacturing industries.						

UNIT-I				
Geometrical Dimensioning and Tolerancing: Dimensioning and tolerancing rules and	07 Hrs			
practices: MMC & LMC. Feature control frame. Geometric characteristic symbols, 1982				
ANSI Symbols Versus 1994 ASME including 2009 upgrades. Datums, datum reference				
frame, datum targets, establishing setups for datums. Form and Profile tolerances:				
straightness, flatness, circularity and cylindricity. Profile of a line and profile of a surface.				
Orientation. Parallelism, perpendicularity, run out, Location tolerances: position,				
concentricity.				
UNIT-II				
Advanced Metrology : Advanced measuring machines, CNC systems, Laser vision, In-	07 Hrs			
process gauging, 3D metrology, metrology softwares. Nano technology instrumentation.				
stage position metrology, testing and certification services, optical system design, lens				
design, coating design, precision lens assembly techniques, complex opto mechanical				
assemblies, contact bonding and other joining technologies.				
UNIT-III				
Co-ordinate Measuring Machines: Introduction: Structure of CMM:, a) Cantilever, b)				
Bridge, c) Column, d)Horizontal arm, and e) Gantry types. Advantages and Limitations,				
Probes (Contact/Non-contact)-Touch trigger & Scanning (Active & Passive), Styli,				
Calibration. Geometry & its interpretation. Construction of features. Interpretation of				
results.				
UNIT-IV				
Automated Inspection: Automated inspection and sensors, Probes and probing systems,	07 Hrs			
Construction and operating principles of typical probes for dimensional and geometrical me				
asurements, Softwares. Processing data from probing.				
Nano-Measurements: Introduction to nanometric measurement systems. requirements and				
equipment, Clean rooms. Applications of nanometric technology in mechanical engineering.				
UNIT-V				
CAD Interfaces: Working with CAD models for coordinate measuring, Programming with	06 Hrs			
CAD, Simulation, measurement and interpretation of results like detailed printout, custom				
printout and form & position plots. Applications of CMMs.				

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week. *Plant visits will be a part of this course.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Select the appropriate CMM and accessories for a given application.							
CO2	Use a standard CMM and software interface to simulate inspection of gears, splines, 2D and							
	3D surfaces.							
CO3	Compare the production process, the product function and the product design, and to select							
	appropriate Techniques and tools for these purposes.							

Refe	erence Books
1.	Engineering Metrology and Measurements N.V. Raghavendra and L. Krishnamurthy, 1st
	Edition, 2013 Oxford University Press, ISBN 13: 9780198085492
2.	Optical Imaging and Metrology: Advanced Technologies Wolfgang Osten, Nadya Reingand, 1st
	Edition, 2012, John Wiley and Sons, ISBN: 978-3-527-41064-4
3.	Applied Metrology for Manufacturing, Ammar Grous, 1 st Edition, 2013, Print ISBN:
	9781848211889
4.	Engineering Metrology, IC Gupta, 7 th Edition, 2012, Dhanpat Rai Publications, ISBN-
	108189928457

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	2		1					
CO2	2	3	2	2	3		1					
CO3	3	2	2	3	2		1					

VI Semester					
SYSTEMS ENGINEERING					
(Group D : Professional Core Elective)					
Course Code : 16IM6D1	CIE Marks : 100				
Credits : L: T: P: S: 4:0:0:0	SEE Marks : 100				
Hours : 44L SEE Duration : 03 Hrs					

Course Learning Objectives:

- 1. Develop an appreciation and understanding of the role of systems engineering processes and systems management in producing products and services.
- 2. Document systematic measurement approaches for generally cross disciplinary development effort.
- 3. Discuss capability assessment models to evaluate and improve organizational systems engineering capabilities.

UNIT – I	
 System Engineering and the World of Modem System: What is System Engineering?, Origins of System Engineering, Examples of Systems Requiring Systems Engineering, System Engineering viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems. Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions. The System Development Process: Systems Engineering through the system Life Cycle, Evolutionary Characteristics of the development process, The system engineering method, Testing throughout system development problems. 	09 Hrs
UNIT – II	1
Systems Engineering Management: Managing systems development and risks, Work breakdown structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization of Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineering standards, Problem. Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems. Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems. UNIT – III Concept Definition: Selecting the system concept, Performance requirements analysis, Functional analysis, Functional analysis and formulation, Concept selection, Concept validation, System Development planning, System Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems	09 Hrs 09 Hrs
Unit – IV	<u> </u>
Engineering Design: Implementing the System Building blocks, requirements analysis, Functional analysis and design, Component design, Design validation, Configuration Management, problems. Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and preparation, System integration, Developmental system testing, Operational test and evaluation, problems.	09 Hrs
UNIT – V	00.77
Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.	08 Hrs

Operations and support: Installing, maintenance and upgrading the system, Installation and test, In-service support, Major system upgrades: Modernization, Operational factors in system development, problems.

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Cours	Course Outcomes: After completion of course student will be able to					
CO1	Understand the Life Cycle of Systems.					
CO2	Explain the role of Stake holders and their needs in organizational systems.					
CO3	Develop and Document the knowledge base for effective systems engineering processes.					
CO4	Apply available tools, methods and technologies to support complex high technology systems.					
CO5	Create the frameworks for quality processes to ensure high reliability of systems.					

Reference Books

1	Systems Engineering – Principles and Practice, Alexander Kossiakoff, William N Sweet, 2 nd Edition, 2011, John Wiley & Sons, Inc, ISBN: 978-0470405482
2	Handbook of Systems Engineering And Management, Andrew P. Sage, William B. Rouse, 2 nd Edition, 2014, John Wiley & Sons, Inc., ISBN 978-0-470-08353-6

- **3** General System Theory: Foundations, Development, Applications, Ludwig Von Bertalanffy, Revised edition 2015, George Braziller Inc. ISBN-13: 9780807600153
- **4** Systems Engineering and Analysis, Blanchard, B and Fabrycky, W. 5th Edition, 2010, Saddle River, NJ, USA: Prentice Hall.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1						
CO2			2									
CO3					2							
CO4			2									
CO5	2					2				2		

	VI Semester					
	COGNITIVE ERGONOMICS					
(Group D : Professional Core Elective)						
Cou	Course Code: 16IM6D2 CIE Marks: 100					
Crec	Credits:L:T:P:S: 4:0:0:0 SEE Marks: 100					
Hou	Hours: 44L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Define the scope of cognitive ergonomics in work system design for productivity improvement.					
2	Express the role of cognitive ergonomics	in problem solving and decision making.				

UNIT-I	
Cognition: information processing models, perception, working memory, long-term	09 Hrs
memory, situation awareness, problem solving and troubleshooting, met cognition and	
effort.	
UNIT-II	
Decision making: definition, decision making models, heuristics and biases, dependency	09 Hrs
of decision making on the decision context, factors affecting decision making, improving	
human decision making.	
UNIT-III	
Stress and work load: environmental stressors, psychological stressors, life stress,	09 Hrs
workload overload, fatigue and sleep disruption.	
UNIT-IV	
Human- computer interaction: the troubles with computer and software design,	09 Hrs
software design cycle, understand system and user characteristics, design using theories	
and models, design to support mental models with conceptual models, design using	
principles and guidelines, design of user support, evaluate with usability test and metrics,	
information technology.	
UNIT-V	
Selection and training: personnel selection, performance support and job aids,	08 Hrs
supporting people with disabilities, training program design.	

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Recognize the role of cognitive ergonomics and its areas of application in the work system.				
CO2	Explain and apply the cognitive ergonomic concepts in the evaluation of existing systems and				
	design of new systems.				
CO3	Demonstrate an understanding of concepts of cognitive ergonomics.				

Reference Books

1101	
1.	An Introduction To Human Factors Engineering, Christopher. D. Wickens, John D Lee, Yili Liu,
	Sallie E Gordon Becker, 2 nd Edition, 2011, Pearson, ISBN 978-81-203-4371-9
2.	Introduction to Ergonomics, R S Bridger, 2 nd Edition, 2003, Taylor & Francis, ISBN:
	0415273781.
3.	Human Factors in Engineering and Design, Mark S. Sanders and Ernest J McCormick,
	7 th Edition, 1992, McGraw-Hill and Co., Singapore, ISBN 0-07-112826-3.
4.	Handbook of Human Factors and Ergonomics, Gavriel, Salvendy, 3 rd Edition, 2006, Wiley,
	Hoboken, New Jersey, USA, ISBN: 0471116904.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				1						
CO2	2	1				1						
CO3	1	2	1									

Low-1 Medium-2 High-3

	l l l l l l l l l l l l l l l l l l l	/I Semester				
	DESIGN OF EXPERIMENTS					
	(Group D : Professional Core Elective)					
Cou	rse Code: 16IM6D3	CIE Marks: 100				
Cree	lits:L:T:P:S: 4: 0: 0:0	SEE Marks: 100				
Hou	rs: 44L	SEE Duration: 3Hrs				
Cou	rse Learning Objectives: The students	will be able to				
1	Explain the terminology and basic princ	ciples of design of experiments.				
2	Use ANOVA and effect plots to compu	te significance of factors and reach conclusions	about			
4	effect of factors involved.					
3	Develop factorial and fractional factoria	al designs for product and process optimization				
4	Use signal to noise ratios to illustrate ro	bust design concepts in process optimization.				
5	Select suitable experimental design for	engineering applications using orthogonal array	'S.			
		UNIT-I				
Intr	oduction: Strategy of experimentation,	applications, Basic principles, Terminology,	08 Hrs			
Guid	elines, History of statistical design.					
Prin	ciples of quality engineering – Tool	s used in robust design, Applications and				
bene	fits, Quality loss function, Quadratic	loss function, Noise factors, P diagram,				
Opti	mization of product & process design, Ro	ble of various quality control activities.				
		UNIT-II				
Fact	orial Experimentation- The 2 ² design, 7	The 2^3 design, The general 2^k design, A single	09 Hrs			
repli	cate of the 2^{κ} design, The 3^2 design. Prob	lems.				
		UNIT-III				
Bloc	king and Confounding in the 2 ^k Factor	rial Design: Blocking a replicated 2 ^k factorial	09 Hrs			
desig	design, Confounding in the 2^k factorial design, Confounding the 2^k factorial design in 2 & 4					
bloc	blocks. Problems.					
Frac	Fractional Factorial Designs: The one – half fraction & one – quarter fraction of the 2^k					
desig	design, Resolution III, IV & V designs. Problems.					
		UNIT-IV				
Con	structing Orthogonal Arrays: Countin	ng degrees or freedom, selecting a standard	09 Hrs			
ortho	ogonal array, dummy level technique, and	d compound factor method. Linear graphs and				
inter	action assignment, modification of linea	r graphs, column merging method, branching				
desig	gn. Strategy for constructing an orthogona	al array. Problems.				
1						

Steps In Robust Design Case study discussion illustrating steps in Robust Design.	09 Hrs
Signal-To-Noise Ratio: Evaluation of sensitivity to noise. S/N ratios for static problems,	
S/N ratios for dynamic problems. Analysis of ordered categorical data. Minimizing	
variability and optimizing averages.	
Advanced Techniques: Taguchi Inner and Outer Arrays. Grey Taguchi Methods, Shainin	
Techniques, Software packages for design of Experiments.	

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Explain principles and concepts of design of experiments and quality engineering.
CO2	Illustrate quality engineering and robust design concepts.
CO3	Develop factorial, fractional factorial and orthogonal array designs for product and process
	optimization
CO4	Conduct experiments and analyse data for product and process improvements.

Refe	erence Books
1.	Design and Analysis of Experiments, D.C. Montgomery, 5 th Edition, 2006, Wiley India, ISBN –
	812651048-X.
2.	Quality Engineering Using Robust Design, Madhav S. Phadke, 1989, Prentice Hall PTR,
	Englewood Cliffs, New Jersey 07632, ISBN: 0137451679.
3.	Designing for Quality – an Introduction Best of Taghuchi and Western Methods or Statistical
	Experimental Design, Robert H. Lochner, Joseph E. Matar, 1 st Edition, 1990, Chapman and
	Hall, ISBN – 0412400200
4.	Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments,
	Parameter and Tolerance Design, Philip J. Ross, 2 nd Edition, 1996, McGraw-Hill, ISBN:
	0070539588

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		2	2		1					
CO2	3	2	3	2								
CO3	2	3	2	2								
CO4		2	2	3								

	l l l l l l l l l l l l l l l l l l l	/I Semester					
HUMAN RESOURCE MANAGEMENT & DEVELOPMENT							
	(Group D : Professional Core Elective)						
Cou	rse Code: 16IM6D4	CIE Marks: 100					
Cre	dits:L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hou	rs: 44L	SEE Duration: 3Hrs					
Cou	rse Learning Objectives: The students	will be able to					
1	Understand the importance of human re	source management in present day organization	IS.				
2	Demonstrate the various techniques employees.	of recruiting, selecting, developing & a	ppraising				
3	Analyze the emerging trends in managing	ng human resources in various organizational co	ontexts.				
		UNIT-I					
Intr	oduction to Human Resource Manage	ement: Objectives of HRM, Importance of	09 Hrs				
HRN	A, Line & Staff aspects of HRM, Duties &	& Responsibilities of HRM and Competencies					
of H	RM.						
Hun	nan Resource Management Strategy:	Strategic Planning & Management Process,					
Ove	rview of Corporate, Competitive & Fund	ctional Strategy and Introduction to Strategic					
HRN	HRM.						
UNIT-II							
Job	Analysis & Talent Management: 1	alent Management Process, Basics of Job	09 Hrs				
Analysis, Methods for collecting Job Analysis Information and Writing Job Descriptions & Specifications.							
Personnel Planning & Recruiting: Workforce Planning & Forecasting, Recruitment							
Process and Internal & External Sources of Candidates.							
UNIT-III							
Employee Testing, Selection & Interviewing: Basics of Testing & Selecting Employees,							
Types of Tests, Work Samples & Simulations, Background Investigation & Other							
Sele	Selection Methods, Basic Types of Interviews and Design & Conduction of An Effective						
Inter	Interview.						
	UNIT-IV						
Training & Development: Orienting & Onboarding New Employees, Training Process,							
Imp	Implementing Training Program, Implementing Management Development Programs and						
Eval	uating Training Process.						
	UNIT-V						
Performance Management & Appraisal: Basics of Performance Management &							
App	raisal, Techniques for Appraising Perform	mance, Managing Appraisal Interview, Talent					
Man	agement & Employee Appraisal and C	Overview of Managing Employee Turnover,					
Rete	ntion & Engagement.						

Assignment:

Topics such as Employee Relations & Welfare, Labor Relations & Unions, Employee Safety & Health, HR Audit & Accounting, International HRM, Emerging Trends & Challenges in Human Resource Management & Development and other such related areas.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Recognize the basic functions, strategy & practices of human resource management.				
CO2	Understand the processes of planning & recruitment of employees in organizations.				
CO3	Demonstrate the employee selection & interviewing techniques in organizations.				
CO4	Analyze the techniques of training & developing human resources in organizations.				
CO5	Evaluate the performance appraisal measures prevailing in present day organizations				

Reference Books

-	
1.	Human Resource Management, Gary Dessler & Biju Varkkey, 14th Edition, 2015, Pearson,
	ISBN: 978-93-325-4219-8.
2.	Human Resources Management, Dr. K Ashwathappa, 5 th Edition, 2007, Tata McGraw Hill,
	ISBN: 0070660204.
3.	Fundamentals of Human Resources Management, David A. Decenzo & Stephen P. Robbins,
	8 th Edition, 2004, John Wiley India Pvt. Ltd, ISBN: 0471656801.
4.	A Handbook of Human Resource Management Practice, Michael Armstrong, 10 th Edition, 2006,
	Kogan Page, ISBN: 0-7494-4851-2.

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					3	2	1	1			2
CO2		1	1		3	3						
CO3		1	1		3				1	3	2	1
CO4	1	2	2		2							
CO5		2	2		2			1	1	1	2	

	V	/I Semester				
E-COMMERCE						
G	(Group D : Pro	ofessional Core Elective)				
Cou	rse Code: 16IM6D5	CIE Marks: 100				
Cree	lits:L:T:P:S: 4: 0: 0:0	SEE Marks: 100				
Hours: 44L SEE Duration: 3Hrs						
Cou	se Learning Objectives: The students	will be able to	1			
1	Discuss electronic commerce and the s	stakeholders and their capabilities and limitation	ns in the			
	strategic convergence of technology and	d business.				
2	Appreciate the global nature and issues	of electronic commerce as well as understand	the rapid			
	technological changes taking place.					
3	Identify advantages and disadvantages	of technology choices such as merchant server	software			
	and electronic payment options					
4 Demonstrate awareness of ethical, social and legal aspects of e-commerce						
UNIT-I						
Introduction to Electronic Commerce: learning objectives, dot-com era, Amazon.com :						
Synonymous with E-commerce, Dell: An evolutionary E-commerce, The changing times in						
E-commerce, Present scenario, Future of E-commerce, Constituents of E-commerce, E-						
com	nerce web design, E-business and E-com	merce web portals, Case studies.				
		UNIT-II				
Tech	nologies for E-commerce: learning	objectives, Basic architecture of Internet,	08 Hrs			
TCP	IP, Ipv4 versus Ipv6, Evolution of In	ternet, Uniform resource locator, Hypertext				
Tran	sfer Protocol, Cookies, Client side on	r web programming, HTML programming				
techniques, Links, Images, Tables, Frames, Form, Style sheets, Javascript, Case studies.						
UNIT-III						
Con	cepts in E-commerce: learning objective	es, concepts and definitions, Different types of	09 Hrs			
E-co	mmerce, Understanding M-commerce,	Factors affecting E-commerce, E-commerce				
components, E-commerce and consumers, Business transaction through E-commerce, E-						
commerce applications, E-commerce in developing countries, Role of Govt in development						
of E-commerce, Regulatory monitoring for E-commerce, Policies for SME's for E-						
commerce adoption, Case studies.						
	<u>^</u>	UNIT-IV				
Und	erstanding E-commerce product desig	n strategy : learning objectives, Benefits of	10 Hrs			
web	enabled channels, E-commerce considera	ations, Case study of dell computers. strategic				

initiatives by Indian railways, Brand equity through E-commerce. **Channels in E-commerce :** learning objectives, Importance of E-commerce in multichannel marketing, Automation in E-commerce portals, Using E-commerce for order fulfilling in supply chain management, case studies. **UNIT-V**

Future trends: Social commerce : learning objectives, social power and civilization, understanding social commerce, advantages of social commerce, pitfalls, future of social commerce, social commerce challenges in India, case studies.
 Drivers of on line-selling diffusion : Drivers of on line selling B2C, Internet community, technology and legal frame work, business strategy, design of a secure value proposition, empirical study, Interpolation study and trend analysis.

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Appreciate the basic terminologies, methods and procedures used in electronic market and								
	market place.								
CO2	Explain Internet trading relationships including Business to Consumer, Business-to-Business,								
	Intra-organizational.								
CO3	Analyze features of existing e-commerce businesses, and propose future directions or								
	innovations for specific businesses								
CO4	Recognize and discuss global E-commerce issues								

Reference Books

1.	E-commerce Startegy, Sanjay Mahapatra, 1 st Edition, 2013, Springer, ISBN: 978-1-4614-4142.
2.	The E-commerce book, Steffano Korper, 2 nd Edition, 2000, Academic press,
	ISBN: 0-12-421161-5,
3.	E-commerce, Kenneth C Laudon, 12 th Edition, 2016, Pearson Education, ISBN: 9780133938951
4.	The Economic and Social Impacts of e-commerce, Sam Lubbe, 1 st Edition, 2003, Idea Group
	Publishing, ISBN: 1591400775

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				3					1		
CO2					3							
CO3		3										
CO4										1		

	VI Semester							
	USER INTERFACE DESIGN							
(Group D : Professional Core Elective)								
Cou	Course Code: 16IM6D6 CIE Marks: 100							
Credits:L:T:P:S: 4:0:0:0 SEE Marks: 100								
Hou	Hours: 44L SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	Develop an appreciation for concepts and sensibilities of user interface design							
2	Develop skills in the use and application of specific methods in user interface design.							
3	Improve individual and collaborative skills in design problem solving.							

UNIT-I						
The User Interface—an Introduction and Overview: The Importance of the User	er 08 Hrs					
Interface, Defining the User Interface, the Importance of Good Design, the Benefits	of					
Good Design, a Brief History of the Human-Computer Interface, Introduction of the						
Graphical User Interface, A Brief History of Screen Design. Case study: The Blossoming						
of the World Wide Web.						
UNIT-II						
The User Interface Design Process: Obstacles and Pitfalls in the Development Pa	th, 08 Hrs					
Designing for People: The Five Commandments, Usability, Usability Assessment in t	he					
Design Process, Common Usability Problems, Some Practical Measures of Usability, Son	ne					
Objective Measures of Usability, The Design Team.						
UNIT-II	.					
Human Considerations in Design: The User's Knowledge and Experience, the Use	r's 08 Hrs					
Tasks and Needs, The User's Psychological Characteristics, The User's Physic	al					
Characteristics. Case studies.						
Human Interaction Speeds: Performance versus Preference, Methods for Gaining an						
Understanding of Users. Case studies.						
UNIT-IV						
The Psychopathology of Everyday Things: The Complexity of Modern Devices, Huma	n- 10 Hrs					
Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox	of					
Technology, The Design Challenge.						
The Psychology of Everyday Actions: How People Do Things: The Gulfs of Executi	on					
and Evaluation, The Seven Stages of Action, Human Thought: Mostly Subconscion	18,					
Human Cognition and Emotion, The Seven Stages of Action and the Three Levels	of					
Processing, People as Storytellers, Blaming the Wrong Things, Falsely Blaming Yourse	lf,					
The Seven Stages of Action: Seven Fundamental Design Principles						
UNIT-V						
Knowing What to Do: Constraints, Discoverability, and Feedback: Four Kinds	of 10 Hrs					
Constraints: Physical, Cultural, Semantic, and Logical, Applying Affordances, Signifie	rs,					
and Constraints to Everyday Objects, Constraints That Force the Desired Behavior,						
Conventions, Constraints, and Affordances, The Faucet: A Case History of Design, Using						
Sound as Signifiers.						
Human Error? No, Bad Design: Understanding Why There Is Error, Deliberation	ıte					
Violations, Two Types of Errors: Slips and Mistakes, The Classification of Slips, T	he					
Classification of Mistakes, Social and Institutional Pressures, Reporting Error, Detecti	ng					
Error, Designing for Error, When Good Design Isn't Enough, Resilience Engineering, T	he					
Paradox of Automation, Design Principles for Dealing with Error.						

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Appreciate the importance and benefits of a good design.							
CO2	Identify the shortcomings in any design development process and suggest measures to							
	control.							
CO3	Understand the differences between usability and user experience							
CO4	Explain the need for human factors in design.							
CO5	Analyze an interaction design problem and propose a user-centered process, justifying the							
	process and identifying the trade-offs.							

Reference Books

1.	The Essential Guide to User Interface Design, Wilbert O. Galitz, 3 rd Edition, 2007, John Wiley					
	& Sons, Inc., ISBN: 0470146222. (first three units)					
2.	The design of Everyday Things, Don Norman, 2013, Basic Books Publication, ISBN 978-0-465-					
	00394-5.					
3.	Sketching User Experiences: Getting the Design Right and the Right Design, Buxton, B., 1st					
	Edition, 2007, Morgan Kaufmann, eBook ISBN: 9780080552903, Paperback ISBN:					
	9780123740373					
4.	Sketching User Experiences: The Workbook, Greenberg, S., Carpendale, S., Marquart, N., and					
	Buxton B, 1 st Edition, 2012, Morgan Kaufmann, ISBN: 978-0-12-381959-8					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						2	1		1			1
CO2		3	1	2	2			1	1	1		2
CO3						2			1	1		1
CO4			3			2	1					
CO5		2	1	2		2	2	1			2	

Low-1	Medium-2	High-3
-------	----------	--------

	VI Semester	
E	SIOINSPIRED ENGINEERING	
	(Group E: Global Elective)	
Course Code: 16G6E01	CIE Marks: 100	1
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 10)
Hours: 36L	SEE Duration: .	3Hrs
Course Learning Objectives:		
1 To familiarize engineering st	tudents with basic biological concepts	
2 Utilize the similarities note designer.	ed in nature for a particular problem to bring in	spiration to the
3 Explain applications such a their bio logical analogs	as smart structures, self-healing materials, and rob	otics relative to
4 To gain an understanding t devices and structures and human design	hat the design principles from nature can be trans an appreciation for how biological systems can be	lated into novel e engineered by
	TT */ T	
Unit-IIntroduction to Biology: Biomolecules-Proteins, carbohydrates, lipids and Nucleic acids.06 HrsCell types- Microbial, plant, animal.Organ system- Circulatory, digestive, respiratory, excretory and nervous system. Sense organs. Plant process- Photosynthesis.06 Hrs		
	Unit – II	
Introduction to Biomimetics: Wealth of invention in nature as inspiration for human innovation: Mimicking and inspiration of nature- synthetic life. Nature as a model for structure and tools: Biological clock, honey comb as strong light weight structure. Materials and processes in biology- Spider web, honey bee as a multi-material producer, fluorescent materials in fire flies. Bird and insect as source of inspiring flight. Robotics as beneficiary for biomimetic technologies.		
	Unit -III	
Biological materials in Engineering mechanisms: Introduction, Comparison of biological and synthetic materials: Silk processing and assembly by insects and spiders- High performance fibers from nature, Seashells- High performance organic and inorganic composites from nature. Shark skin- Biological approaches to efficient swimming via control of fluid dynamics, Muscles- Efficient biological conversion from chemical to mechanical engineering.		
	Unit –IV	
Biological inspired process and p medical devices. Biosensors. Plant hydrophobic surfaces- lotus leaf ef	products: Artificial neural networks, genetic algori as Bioinspirations: Energy efficiency, Biomimetic fect. Bionic leaf and Photovoltaic cells.	thms, 08 Hrs super
	Unit –V	
Implants in Practice: Artificial Support and replacement of human organs-Introduction, Artificial kidney, liver, blood, lung, heart, skin and pancreas. Total joint replacements- Visual prosthesis -artificial eye. Sense and sensors: Artificial tongue and nose, Biomimetic echolation. Limitations of organ replacement systems.07 Hrs		
Comme Ontoom After	ing the course the students will be able t	
CO1: Remember and explain the	fundamentals of Biology	

		1	
CO2:	Describe the basic	e principles of design in biological systems.	
CO3:	Differentiate biolo	ogical phenomena to support inspiration for visual and conceptual de	esign

problemsCO4:Create engineered solutions to customer needs utilizing a variety of bio-inspiration
techniques.

Refere	ence Books
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: <u>8123928726</u> /
-	ISBN 13: <u>9788123928722</u>
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press,
5	ISBN: 9780849331633
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version.
4	Wiley John and Sons, 2012. ISBN: 1118092449.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3 : Medium-2 : Low-1

	VI Semester				
	GREEN TECHNOLOGY				
	(Group E: Global Elective	e)			
Cou	se Code: 16G6E02	CIE Marks: 100			
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hou	rs: 36L	SEE Duration: 3Hrs			
Cou	se Learning Objectives:				
1	Learn the tools of green technology				
2	2 Know various forms of renewable energy				
3	Study the environmental consequences of energy conversa	ation			
4	Understand energy audits and residential energy audit				
5	Understand the application of green technology in various	industries			

Unit-I

Omt-1	
Current Practices and Future Sustainability: Need for green technology, fundamentals	07 Hrs
of energy and its impact on society and the environment, the mechanics, advantages and	
disadvantages of renewable energy sources, energy conservation and audits, zero waste	
technology, life cycle assessment, extended product responsibility, concept of atom	
economy, tools of Green technology	
Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner	
production, cleaner production technologies.	
Unit – II	
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's	08 Hrs
surface, solar radiation geometry, solar radiation measurements	
Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar	
heating of buildings), space cooling (or solar cooling of building), solar thermal electric	
conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar	
cooking	
Geothermal Energy: Resource identification and development, geothermal power	
generation systems, geothermal power plants case studies and environmental impact	
assessment.	
Unit -III	
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet	07 Hrs
Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas	
plants (KVIC model & Janata model), selection of site for biogas plant	
Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal	
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification	
process, applications of the gasifiers.	
Unit –IV	
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion	07 Hrs
system), classification of WEC systems, types of wind machines (Wind Energy Collectors),	
horizontal-axial machines and vertical axis machines.	
Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC),	
methods of ocean thermal electric power generation, open cycle OTEC system, the closed	
methods of ocean thermal electric power generation, open cycle OTEC system, the closed or Anderson, OTEC cycle, Hybrid cycle	
methods of ocean thermal electric power generation, open cycle OTEC system, the closed or Anderson, OTEC cycle, Hybrid cycle Energy from Tides : Basic principles of tidal power, components of tidal power plants,	
methods of ocean thermal electric power generation, open cycle OTEC system, the closed or Anderson, OTEC cycle, Hybrid cycle Energy from Tides : Basic principles of tidal power, components of tidal power plants, operation methods of utilization of tidal energy, advantages and limitations of tidal power	

Unit –V	
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles	07 Hrs
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for	
motor vehicle, safety and management, hydrogen technology development in India	
Application of Green Technology: Electronic waste management, bioprocesses, green	
composite materials, green construction technology	
Sustainability of industrial waste management: Case studies on cement industry, iron	
and steel industry, petroleum sectors, marble and granite industry, sugar industry	

Course Outcomes: After completing the course, the students will be able to

CO1: Recall the fundamentals of various forms of energy

CO2: Explain the principles of various forms of renewable energy

CO3: Apply the concept of zero waste, atom economy for waste management

CO4: Create a waste management plan incorporating tools of green technology in various industries

Reference Books

MULTU	IICC DOOKS
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	VI Semester			
SOLID WA	STE MANAGEMENT			
(Group	E: Global Elective)			
Course Code:16GE6E03	CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hours: 36L	SEE Duration: 3Hrs			
Course Learning Objectives: The students	will be able to			
1 Impart the knowledge of present method drawbacks.	is of solid waste management system and to a	inalyze the		
2 Understand various waste management s	tatutory rules.			
Analyze different elements of solid wast	e management, design and develop recycling	options for		
biodegradable waste by composting.				
4 Identify hazardous waste, e-waste, plas systems.	tic waste and bio medical waste and their m	anagement		
	UNIT-I			
Introduction: Land Pollution. Scope and	d importance of solid waste management.	08 Hrs		
Present solid waste disposal methods. Merit	s and demerits of open dumping, feeding to			
hogs, incineration, pyrolysis, composting,	sanitary landfill. Definition and functional			
elements of solid waste management.				
Sources: Sources of Solid waste, types of	solid waste, composition of municipal solid			
waste, generation rate, Numerical Problems.				
Collection and transportation of municip	pal solid waste: Collection of solid waste-			
services and systems, Municipal Solid waste	(Management and Handling) 2000 rules with			
2016 amendments. Site visit to collection sys	tem.			
	UNIT-II	00.11		
Composting Aerobic and anaerobic co	mposting - process description, process	08 Hrs		
Senitory land filling: Definition advantage	s and disadvantages, site selection, methods			
reaction occurring in landfill Gas and Lea	s and disadvantages, she selection, methods,			
movement. Site visit to landfill site				
	UNIT-III			
Hazardous waste management [.] Defin	itions Identification of hazardous waste	06 Hrs		
Classification of hazardous waste onsite	storage collection transfer and transport	00 1115		
processing, disposal, hazardous waste (Ma	inagement and handling) rules 2008 with			
amendments. Site visit to hazardous landfill s	site			
	UNIT-IV			
Bio medical waste management: Classi	fication of bio medical waste, collection,	06 Hrs		
transportation, disposal of bio medical wa	aste, Bio medical waste (Management and			
Handling) rules 1998 with amendments. Si	te visit to hospital to see the collection and			
transportation system and visit to biomedical	waste incineration plant.			
	UNIT-V			
E-waste management: Definition, Com	ponents, Materials used in manufacturing	06 Hrs		
electronic goods, Recycling and recovery inte	egrated approach. E- waste (management and			
handling) rules 2011.Site visit to e- waste pro	ocessing facility.			
Plastic waste management: Manufacturi	ng of plastic with norms. Plastic waste			
management. Plastic manufacture, sale & usa	age rules 2009 with amendments.			
Course Outcomes: After completing the co	nurse, the students will be able to			

	1	Understand the existing solid waste management system and to identify their drawbacks.
	2	Analyze drawbacks in the present system and provide recycling and disposal options for each
		type of waste.
ľ	3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management
		system.

4 Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal waste management as per the rules laid by Ministry of Environment & Forest.

Te	xt Books						
1.	Integrated Solid Waste Management : Engineering principles and management issues George						
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.						
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243						
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous,						
	Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.						
3.	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC						
	Publication, 2009, ISBN 9780854041121						

Reference Books

-	
1.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
2.	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.
3.	Biomedical waste (Management & Handling) rules, 1998. Ministry of Environment and Forest
	Notification, New Delhi, 20thJuly 1998, and amendment.
4.	E- waste (management and handling) rules 2011. Ministry of Environment and Forest
	Notification, New Delhi, 12th May 2011.
_	

5. The Plastic Manufacture, Sale and usage Rules2009. Ministry of Environment and Forest Notification, New Delhi, amendment on February 4, 2011

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-1 O Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	3	1	2	2	2	-	-	-	2
CO2	2	3	1	2	1	2	2	2	1	-	-	2
CO3	2	1	-	2	1	1	2	2	-	-	-	-
CO4	3	-	1	1	-	2	2	2	-	-	-	1

CO-PO Mapping

VI Semester								
INTRODUCTION TO WEB PROGRAMMING								
(Group E: Global Elective)								
Course Code:16G6E04	CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100							
Hours: 36L	SEE Duration: 3 Hrs							

Cou	Course Learning Objectives: The students will be able to									
1	Understand the basic concepts used in web programming.									
2	Learn the definitions and syntax of different web technologies.									
3	Utilize the concepts of JavaScripts, XML and PHP.									
4	Design and develop web pages which are quick, easy and well-presented using different									
4	techniques such as CSS,XML and JavaScripts.									

UNIT-I

Introduction to Web Concepts	07 Hrs
Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and breaks,	
divisions and centering, quotations, preformatted text, lists, horizontal rules, block-level	
elements, text-level elements, XHTML – 1: Internet, WWW, Web Browsers and Web	
Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox, XHTML: Basic	
syntax. Standard structure. Basic text markup. Images. Hypertext Links.XHTML	
(continued): Lists, Tables, Forms, Frames,	
UNIT-II	
Cascading Style Sheets (CSS):	09 Hrs
Introduction. Levels of style sheets. Style specification formats. Selector forms. Property	
value forms. Font properties, List properties, Color, Alignment of text, The box model,	
Background images. The and <div> tags. Conflict resolution.</div>	
The Basics of JavaScript:	
Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics;	
Primitives, operations, and expressions; Screen output and keyboard input; Control	
statements	
UNIT-III	
JavaScript (continued):	09 Hrs
Object creation and modification; Arrays; Functions; Constructor; Pattern matching using	
regular expressions; Errors in scripts.	
JavaScript and HTML Documents:	
The JavaScript execution environment; The Document Object Model; Element access in	
JavaScript; Events and event handling; Handling events from the Body elements, Button	
elements, Text box and Password elements; The DOM 2 event model; The navigator object;	
DOM tree traversal and modification.	
UNIT-IV	
Dynamic Documents with JavaScript:	06 Hrs
Introduction to dynamic documents; Positioning elements; Moving elements; Element	
visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging	
and dropping elements.	
Introduction to PHP:	
Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives,	
Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern	
Matching; Form Handling; Files; Cookies; Session Tracking.	

UNIT-V						
XML:	05 Hrs					
Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML						
schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT						
Style sheets; XML processors; Web services.						

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1.	Understand and explore internet related concepts that are vital for web development.								
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.								
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.								
CO4.	Design and develop web based applications using JavaScripts CSS XHTML PHP and XML								

Reference Books

1.	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications, Chris Bates, 3 rd Edition, 2006, Wiley India,
	ISBN : 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4 th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

	VI Semester									
	AUTOMOTIVE ELECTRONICS									
	(Group]	E: Global Elective)								
Course Code: 16G6E05 CIE Marks: 100										
Crec	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100							
Hou	Hours:36L SEE Duration: 3Hrs									
Cou	rse Learning Objectives: The students	will be able to								
1	1 Understand the application of principles of sensing technology in automotive field									
2	Apply control systems in the automotive domain									
3	Understand automotive specific commu	inication protocols / te	chniques							
4	Analyze fault tolerant real time embedd	led systems	-							

UNIT-I

Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol,	08 Hrs
diesel and gas engines, electric motors and control systems. Basic Automotive System,	l
System Components, Evolution of Electronics in Automotive. Alternators and charging,	l
battery technology, Ignition systems. Working principles of various electronic components	l
and accessories used in Automotive. Developments in existing engine forms and	l
alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic	l
Transmission systems.	l
UNIT-II	
Sensor Technologies in Automotive: In-vehicle sensors: Working principles,	07 Hrs
Characteristics, limitations and use within the automotive context of the following:	l
Temperature sensing e g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate.	l
Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-	l
Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic	l
transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel	l
injection. Interfacing principles: Operation, topologies and limitations of all sensors	l
covered in the above to in-vehicle processing or communications nodes. Use of Actuators:	l
Types, working principle, Characteristics, limitations and use within the automotive context	l
of each type.	l
UNIT-III	
Automotive Control Systems: Control system approach in Automotive: Analog and	07 Hrs
Digital control methods, stability augmentation, control augmentation. Transmission	l
control, System components and functions. Cruise control, traction control, actuator	l
limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle	l
braking fundamentals, Antilock systems. Variable assist steering and steering control.	l
Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Anti-	l
theft System, Emission Course-system control. Control techniques used in hybrid system.	l
Electronic Engine control: Motion equations, modeling of linear and non-linear systems,	l
numerical methods, system responses Objective of Electronic Engine control. Spark	l
Ignition and Compression Ignition Engines and their electronic controls. Engine	l
management testing: Engine management system strategies and implementation.	l
Simulation and implementation methods. Methods of improving engine performance and	l
efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and	l
Architecture.	
UNIT-IV	
Automotive Communication Systems: Communication interface with ECU's: Interfacing	07 Hrs

techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS), for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

Course Outcomes: After completing the course, the students will be able to

CO1:	Acquire	the	knowledge	of	automotive	domain	fundamentals	and	need	of	electronics	in
	Automot	tive s	systems									

CO2: Apply various sensors and actuators for Automotive applications

CO3: Analyze different control systems and communication interfaces used in automotive systems.

CO4: Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6 th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial
	Information Technology Series, CRC press.
4.	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,
	Springer, 2 nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

	VI Semester						
		INDUSTRIAL ELECTRONICS (Group F: Global Flective)	8				
Cours	se Code: 16G6E06	(Group E. Global Elective)	CIE Marks: 100				
Credi	its: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hour	s: 36L						
Cours	se Learning Objectives: '	The students will be able to					
1	Explain the working of	the devices used in power electron	ic circuits in industrial a	pplications			
2	Analysing and designing and economically and Id	power electronic circuits which han entify the typical practical problems	dle the electrical energy with industrial exposure	efficiently acquired			
3	Use basic concepts of design and working of electronic circuits for conversion and control of electrical energy.						
4	Apply the knowledge to work as part of teams on multidisciplinary projects and to discuss industrial problems with regard to application of Power Electronics.						
		Unit-I					
Power semi-conductor Devices and static characteristics: Construction, working & characteristics of MOSFET, SCR, IGBT. Comparison of Power BJT, MOSFET, SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design of R, R- C, and UJT (pulse train) Gate triggering methods of SCR.08							
				07.11			
Gate for S protec	characteristics of SCR, D CR, Line Commutation ction & overvoltage protec	ynamic characteristics of SCR. Des and Forced Commutation circuit tion of SCR.	ign of Snubber circuit s with design, Gate				
Conv	erters	0111		06 Hrs			
Single bridge Six p Freew Conv Indust	Converters:06 ISingle Phase Controlled Convertor- Full wave Half and Fully controlled line commutated bridge converters, Derivation of average load voltage and current. Three phase converters – Six pulse converters- with R load- Active inputs to the convertors with and without Freewheeling diode, Derivation of average load voltage and current.06 IConverter applications: Industrial Applications of Half and Fully controlled converters to DC drives (Control of06 I						
Deal	11003)	I Init-IV					
Chopy Curre down Appli	Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and Current limit control strategies –Derivation of load voltage and currents with R, RL of Step down, Step up Chopper, Step up/Down Chopper – load voltage expression. Application of choppers to subway cars, Industrial drives , battery operated vehicles.						
Class	ification of Choppers and	Applications:		08 Hrs			
Type Chopj Invert bridge modu	Type A, Type B, Type C, Type D, Type E choppers and their industrial Applications, AC Chopper –phase control type. Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter, bridge inverter(single phase) – Voltage control techniques for inverters Pulse width modulation techniques. – UPS-online, offline (Principle of operation only						
Cours	se Outcomes: After com	pleting the course, the students will	be able to				
CO1: Understand the comprehensive working of different devices and their applications							
CO2:	Analyze the application	of skills in controlling and conversion	on of electrical energy.				
CO3:	Evaluate and distinguis	h the performance of converters and	inverters.				

CO4:	Ability to implement their knowledge and skills in design of applications.

Refe	erence Books
1.	"Power Electronics", M. D. Singh & K. B. Kanchandhani, Tata Mc Graw - Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
2.	"Power Electronics : Circuits, Devices and Applications", M. H. Rashid, Prentice Hall of India,
	2 nd Edition, ISBN : 0131228153, 9780131228153, 2004
3.	"Power Electronics", P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	"Power Electronics" P S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th
	Edition.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12
CO1	3	2	2	2	1	2	2	1	1	2		1
CO2	3	2	2	3	3		1				2	1
CO3	3	2	2	3	2	2		1			1	2
CO4	3	3	3	3	2	3	2		1			1

High-3: Medium-2: Low-1

	VI Semester					
PI	ROJECT MANAGEMENT					
(Group E: Global Elective)						
Course Code : 16G6E07	CIE Marks : 100					
Credits : L: T: P: S:3:0:0:0	SEE Marks : 100					
Hours: 33L	SEE Duration : 03 H	rs				
Course Learning Objectives: The st	udents will be able to					
1. To understand the principles and co	omponents of project management.					
2. To appreciate the integrated approa	ach to managing projects.					
3. To explain the processes of manage	ing project cost and project procurements.					
	Unit – I					
Introduction: What is project, what	is project management, relationships among portfol	io 06 Hrs				
management, program management	t, project management, and organizational project	ct				
management, relationship between	project management, operations management a	nd				
organizational strategy, business value	ue, role of the project manager, project manageme	nt				
body of knowledge.						
	UNIT – II					
Organizational influences & Proj	ect life cycle: Organizational influences on proje	ct 08 Hrs				
management, project state holders & g	governance, project team, project life cycle.					
Project Integration Management:	Develop project charter, develop project manageme	nt				
plan, direct & manage project work,	monitor & control project work, perform integrat	ed				
change control, close project or phase						
	UNIT – III					
Project Scope Management: Proje	ect scope management, collect requirements defi	ne 07 Hrs				
scope, create WBS, validate scope, co	ntrol scope.					
Project Time Management: Plan	schedule management, define activities, sequen	ce				
activities, estimate activity resources,	estimate activity durations, develop schedule, contr	ol				
schedule.						
	LINIT _ IV					
Project Cost management: Project	Cost management estimate cost determine hudg	ot 06 Hrs				
control costs	cost management, estimate cost, determine budg					
Project Quality management: Pla	on quality management perform quality assurance					
control quality						
control quanty.	LINIT – V					
UNII – v Project Risk Management: Plan risk management identify risks perform qualitative risk						
analysis perform quantitative risk and	ilvsis nlan risk resources control risk					
Project Procurement Manageme	ent: Project Procurement Management condu	ct				
procurements control procurements of	close procurement					
processements, control processements, c	production in the second s					

Course Outcomes: After going through this course the student will be able to

CO1 Understand the concepts, tools and techniques for managing large projects.

CO2 Explain various sub processes in the project management frameworks.

CO3 Analyze and evaluate risks in large and complex project environments.

CO4 Develop project plans for various types of organizations.

Reference Books:

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.

- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

	VI Semester						
	VIRTUAL INSTRUMENTATION						
	(Group E: Global El	ective)					
Cours	se Code:16G6E08	CIE Marks: 100					
Credi	ts/Week: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hours	s:35L	SEE Duration: 3Hrs					
Cours	se Learning Objectives: The students will be able	to					
1	Understand the difference between conventional	and graphical programming, basic data					
	acquisition concepts.						
2	Differentiate the real time and virtual instrument.						
3	3 Develop ability for programming in LabVIEW using various data structures and program						
	structures.						
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with						
	LabVIEW.						

UNIT-I			
Graphical Programming Environment:	06 Hrs		
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction			
to LabVIEW, Components of LabVIEW and Labels.			
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code			
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch			
actions, String data types, enum, ring, Dynamics.			
UNIT-II			
Fundamentals of Virtual Instrumentation Programming:0	09 Hrs		
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.			
Timing function: Timing VI, elapsed time, wait function.			
Case structures, formula node, Sequence structures, Arrays and clusters, visual display			
types- graphs, charts, XY graph. Local and Global variables.			
UNIT-III			
Error Handling- error and warning, default error node, error node cluster, automatic and 0	08 Hrs		
manual error handling.			
String Handling: Introduction, String Functions, LabVIEW String Formats.			
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.			
Design patterns: Producer/consumer, event handler, derived design pattern, Queued			
message handler, Producer/consumer (events), Producer/consumer (state machine).			
UNIT-IV			
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal 0	06 Hrs		
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.			
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,			
DAQ Assistants, Analysis Assistants.			
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,			
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.			
UNIT-V			
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier 0)6 Hrs		
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process			
Communication, Notifier, Semaphore, Data Sockets.			
Simulation of systems using VI: Development of Control system, Image acquisition and			
processing.			

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.					
CO2:	Apply the theoretical concepts to realize practical systems.					
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.					
CO4:	Create a VI system to solve real time problems using data acquisition.					

Refer	ence Books
1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3 rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1 st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

	VI Semester							
	INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT							
	(Group E: G	lobal Elective)						
Co	urse Code: 16G6E09	CIE Marks: 100						
Cr	edits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Ho	urs : 36L	SEE Duration: 3Hrs						
Co	Course Learning Objectives: The students will be able to							
1	Learn Android application development platf	orm for mobile devices and use it.						
2	Understand mobile application architecture a	nd its components.						
3	Define Android specific programming concepts such as activities, intents, fragments, services,							
	broadcast receivers and content providers.							
4	4 Describe sensors like motion sensors, environmental sensors, and positional sensors; most							
	commonly embedded in Android devices along with their application programming interface.							

UNITI					
Overview of Software platforms and Development: Mobile OS: Android development	07 Hrs				
platform and tools, Programming language, Emulator, SDK and Development					
Environments					
Creating Applications and Activities: Introducing the Application Manifest File:					
Creating Applications and Activities: Architecture Patterns (MVC): Android Application					
Lifecycle					
UNIT II					
User Interface Design: Fundamental Android UI Design; Introducing Layouts;	07 Hrs				
Introducing Fragments.					
Intents and Broadcasts: Introducing Intents; Creating Intent Filters and Broadcast					
Receivers.					
UNIT III					
Database and Content Providers: Introducing Android Databases; Introducing SQLite;					
Content Values and Cursors; Working with SQLite Databases; Creating Content					
Providers; Using Content Providers; Case Study: Native Android Content Providers.					
UNIT IV					
Location Based Services, Telephony and SMS: Using Location-Based Services; Using	08 Hrs				
the Emulator with Location-Based Services: Selecting a Location Provider: Using					
Proximity Alerts: Using the Geocoder: Example: Map-based activity: Hardware Support					
for Telephony: Using Telephony: Introducing SMS and MMS					
Tor receptiony, comig receptiony, introducing onto and tritto.					
UNIT V					
Hardware Support and Devices (AUDIO, VIDEO, AND USING THE CAMERA):	07 Hrs				
Using Sensors and the Sensor Manager; Monitoring a Device's Movement and					
Orientation; Introducing the Environmental Sensors; Playing Audio and Video; Using					
Audio Effects; Using the Camera; Recording Video					

Course Outcomes: After completing the course, the students will be able to								
CO1:	Assess the basic framework and usage of SDK to build GUI and apply advanced							
	technologies in developing Android mobile applications.							
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file							
	systems (internal and external storage), and SQLite database							
CO3:	Articulate the communication programming features and capabilities of Android platforms.							
CO4:	Design and create innovative, sophisticated mobile applications using Android platform.							

1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3 rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace
	Independent Publishing Platform, ISBN: 9781519722089

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

	VI Semester							
	A	UTOMOTIVE ENGINEERING (Group F: Clobal Electiva)						
Course Code: 16G6E10 CIE Marks: 100								
Cred	lits: L:T:P:S 3:0:0:0	SEE Marks: 100)					
Hou	rs: 36L	SEE Duration: 3	Hrs					
Cou	rse Learning Objectives: Th	e students will be able to						
1	Identify the different sub-sys	stems in automobiles.						
2	Describe the functions of eac	ch of the sub-systems and its effect.						
3	Discuss fuel injection, transr systems.	nission, braking, steering, suspension, air intake and e	khaust					
4	Explain the importance of se requirement.	lection of suitable sub-system for a given performance	;					
		UNIT-I						
Auto	omobile Engines		06 Hrs					
Class	sifications of Internal Combus	stion Engines based on no. of cylinders, Arrangement	of					
cylin	ders, Type of fuel and no. of s	strokes. Engine construction and nomenclature.						
Ther	modynamic principles of Otto	and Diesel cycle. Operation in a 4 stroke engine. Dir	ect					
and	indirect injection. Combustion	n stages in engines. Fuels: Gasoline, Diesel, LPG a	nd					
Natural Gas For automotive applications. Fuel properties- Octane number and Cetane								
number. Pollutants and Emission norms- Regulated pollutants and its effects, Regulations								
as pe		UNIT-II						
Engi	ne Auxiliary Systems	011111	08 Hrs					
AirIr	take and Exhaust Systems.	Working principle of Air filters Intake manifo	ld					
Turbocharger Intercooler Exhaust manifold Catalytic convertor Exhaust Gas								
Reci	rculation system, Muffler.							
Cool	ing system- Components, wor	king principle, Coolant.						
Lubr	ication system- Components,	Properties of lubricating oil, Viscosity numbers.						
Fuel	system- Working principle	of Fuel Injection Pump, Injector, Nozzle, Fuel filt	er.					
Wor	king of ignition system, Batter	y, Immobilizer.						
T	• •	UNIT-III	0.0 11					
Transmission:								
Cluto	bromach transmission Auton	g, Gear box- Classification, working of sliding mesh a	na					
Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly								
of tyres. Radial. Tubeless.								
UNIT-IV								
Vehi	cular Auxiliary Systems:		06 Hrs					
Susp	ension- Front and rear suspens	sion working, Types of springs.						
Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake,								
Front and rear wheel brakes. Antilock Braking Systems.								
Steering- components and operation of power steering.								
Vehicle trame and body classification- Hatchback, Sedan, SUV.								
Safety systems- Passive safety systems, Active safety systems- Principle of Electronic								
Stabl	inty Flogram, All Dags, Clash	UNIT.V						
Dem	onstrations of Automobile	Systems: Engine performance measurement in terms	of 06 Hrs					
Brak	e power. Emission measurem	ent and principle. Drawing Valve Timing Diagram	for					
mult	i-cylinder engine, Production	and properties of biodiesel.						

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the different types of automotive systems. (L1-L2)						
CO2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)						
CO3	Detect the automotive exhaust pollutants using gas analyzer. (L4)						
CO4	Evaluate the performance of engines by determining Brake Power. (L6)						

Reference Books

1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,
	SAE International, ISBN: 0768009871
2.	Bosch Automotive Handbook, Robert Bosch, 9 th Edition, 2004, ISBN: 9780768081527.

3. Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann, 1st Edition, 2009, ISBN: 9781856175784.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

	VI Semester							
	MOBILE NETWORK SYSTEMS AND STANDARDS							
	(Group E: Global Elective)							
Cou	Course Code: 16G6E11 CIE Marks: 100							
Cree	dits: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hou	Hours: 34L SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The student	s will be able to						
1	Understand land mobile concepts, radio link design and cellular network.							
2	Compare the standards of WPAN, WLAN and WMAN.							
3	Analyze WPAN, WLAN and WMAN standards and their architecture.							
4	Design and demonstrate wireless netw	vorks for various applie	cations					

UNIT-I		
Cellular Wireless Networks: Principles of cellular Networks, cellular system components	06 Hrs	
and Operations, channel assignment, Attributes of CDMA in cellular system.		
UNIT-II		
Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE.	08 Hrs	
UNIT-III		
Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in the	06 Hrs	
network.		
UNIT-IV		
Wireless Personal Area Networks: Network architecture, components, Applications,	08 Hrs	
Zigbee, Bluetooth.		
Wireless Local Area networks: Network Architecture, Standards, Applications.		
UNIT-V		
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN	06 Hrs	
Network architecture, Protocols, Applications.		

Course Outcomes: After completing the course, the students will be able to		
CO1	Describe the architectures and characteristics of different mobile networks. (L1-L2)	
CO2	Apply the Network standards to a suitable application (L3)	
CO3	Analyze the operation of various network technologies and standards (L4)	
CO4	Evaluate the performance of various network technologies (L5)	

Reference Books		
1	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,	
	ISBN-13:978-0-19-806066-6.	
2	Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010,	
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.	
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,	
	Pearson, ISBN 97881-317-3186-4.	

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.
Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

Low-1 Medium-2 High-3

VI Semester								
PARTIAL DIFFERENTIAL EQUATIONS								
(Group E: Global Elective)								
Cou	rse Code:16G6E12	CIE Marks: 100						
Cree	<u>hts: L:T:P:S: 3:0:0:0</u>	SEE Marks: 100						
Hours: 55L SEE Duration: 5Hrs								
	A dequate exposure to learn	having of nontial differential equations and analyze mot	homotical					
I	roblems to determine the sur	basics of partial differential equations and analyze that	nematical					
2	Use analytical techniques and	I finite element technique for the solution of elliptic para	bolic and					
4	hyperbolic differential equation	ons	Joine and					
3	Solve initial value and bound	dary value problems which have great significance in en	gineering					
	practice using partial differen	tial equations.	Sincering					
4 Identify and explain the basics of partial differential equations and use the same to analy								
behavior of the system.								
Unit-I								
Partial Differential Equations of first order:								
Introduction to formation of partial differential equations, Cauchy problem, Orthogonal								
surfaces, First order non-linear partial differential equations-Charpit's method,								
Classification and canonical forms of partial differential equations.								
		Unit – II						
Ellip	tic Differential Equations:		07 Hrs					
Deri	vation of Laplace and Poisso	n equation, Separation of variable method, Direchlet						
prob	lem, Neumann problem, Solu	tion of Laplace equation in cylindrical and spherical						
coordinates.								
Done	halia Differential Equations	Unit -III	07 II.ma					
Fara	pation and solution of Diffusion	n equation Dirac Delta function Separation of variable	U/ H (S					
Formation and solution of Diffusion equation, Dirac-Delta function, Separation of Variable								
Include, Solution of Diffusion equation in cynnerical and spherical coordinates.								
Unit –1 v Hyperbolic Differential Equations:								
Formation and solution of one dimensional wave equation D'Alembert's solution								
vibrating string. Forced vibration. Periodic solution of one dimensional wave equation in								
cylin	drical and spherical coordinate	s, Vibration of Circular membrane.						
	<u>*</u>	Unit –V						
Num	erical solutions of Partial Dif	fferential Equations:	07 Hrs					
Finite difference method for Elliptic. Parabolic and Hyperbolic partial differential								

Finite difference method for Elliptic, Parabolic and Hyperbolic partial differential equations, Introduction to the finite element method-simple problems.

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,										
	hyperbolic and elliptic differential equations using analytical and numerical methods.										
CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,										
	hyperbolic and elliptic differential equations arising in the field of science and engineering.										
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to										
	solve and optimize the solution using the appropriate governing equations.										
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of										
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.										

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012,
1	ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978-
4	81-265-5423-2.
	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar,
3	R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-
	2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005,
4	ISBN 13: 9780072466850.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	VI Semester									
	AIRCRAFT SYSTEMS									
(Group E: Global Elective)										
Cou	Course Code: 16GE6B13 CIE Marks: 100									
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs									
Cou	Course Learning Objectives: To enable the students to									
1	1 List the various systems involved in the design of an aircraft									
2	Demonstrate the technical attributes of all the subsystems of an aircraft									
3	Explain the significance of each systems and its subsystems for developing an airplane									
4	Demonstrate the integration of	of the systems with the airplane								

Unit-I						
Flight Control Systems : Primary and secondary flight controls, Flight control linkage system, Conventional Systems, Power assisted and fully powered flight controls.	07 Hrs					
Unit – II						
Aircraft Hydraulic & Pneumatic Systems : Components of a typical Hydraulic system,						
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and						
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction	00 1115					
mechanism.						
Unit -III						
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its						
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel	07 Hrs					
control unit.						
Unit -IV						
Environmental Control Systems : Air-conditioning system, vapour cycle system, de-						
icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids.						
Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils						
and a typical lubricating system.						
Unit -V						
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation						
grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments.						
Air Data Instruments : Basic air data system and probes, Mach meter, Air speed	07 II.ma					
indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data	0/ 115					
alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting						
system.						

Cours	se Outcomes:
At the	end of this course the student will be able to :
CO1	Categorise the various systems required for designing a complete airplane
CO2	Comprehend the complexities involved during development of flight vehicles.
CO3	Explain the role and importance of each systems for designing a safe and efficient flight
COS	vehicle
CO4	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

High-3 : Medium-2 : Low-1

Curriculum Design Process

Academic Planning and Implementation

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (PO)

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.