

R.V. College of Engineering, Bengaluru – 59

(Autonomous Institution Affiliated to VTU, Belagavi) M. Tech. Structural Engineering

Department of Civil Engineering

Vision: Excel in Education, Research and Consultancy in Civil Engineering with emphasis on sustainable Development

Mission:

1. Disseminating and integrating the knowledge of structural, transportation, environmental and geotechnical engineering

2. Enhancing Industry – Institute interaction leading to Interdisciplinary research

3. Imbibing wide range of skills in cutting edge technology for sustainable development

4. Motivate entrepreneurship and professional ethics to serve the society

Program: STRUCTURAL ENGINERING

Program Educational Objectives (PEO)

After successful completion of structural engineering program, the post graduates will be able to

PEO1: Independently analyze and design various forms of structures with sustainable materials.

PEO2:Develop professionalism in academics, structural consultancy and entrepreneurship.

PEO3:Pursue advanced research, career and participate in professional societies.

PEO4:Address societal needs through interdisciplinary approach.

Program Outcomes (PO)

M. Tech. in Structural engineering graduates will be able to:

PO1: Scholarship of Knowledge – Acquire in depth knowledge of Structural Engineering, including wider and global perspective, with an ability to distinguish, evaluate, analyze and synthesize existing and new knowledge and integration of same for enhancement of knowledge.

PO 2: Critical Thinking – Analyze complex structural engineering problems critically, apply independent judgement for synthesizing information to make intellectual and creative advances for conducting research in the areas of wider theoretical, practical and policy context.

PO3: Problem Solving – Think laterally and originally, conceptualize and solve structural engineering problems, evaluate a wide range of potential solutions for those

problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of structural engineering.

PO4: Research Skill – Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually / in groups to the development of scientific / technological knowledge in domains of structural engineering such as alternate construction materials, techniques and structural masonry.

PO5: Usage of Modern tool – Create, select, learn and apply appropriate computational tools, techniques, resources, modern engineering and structural analysis and design software for prediction and modeling of complex engineering activities with an understanding of their limitations.

PO6: Collaborative and multidisciplinary research – Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative multi-disciplinary scientific research, demonstrate capacity for self-management and team work, decision making based on open mindedness, objectivity and rational analysis in order to achieve common goals and further learning of themselves as well as others.

PO7: Project management and Finance- Demonstrate knowledge and understanding of engineering and project management principles and apply the same to one's own work as a member and leader in team, manage projects efficiently in structural engineering and multi-disciplinary environments after consideration of economic and financial factors.

PO8: Communication – Communicate with the engineering community and with society at large, regarding complex structural engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate codal provisions, make effective presentations and give and receive clear instructions.

PO9: Life Long Learning – Recognize the need for, and have the preparation and ability to engage in lifelong learning independently, with high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10: Ethical Practices and Social responsibility – Acquire intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the society for sustainable development.

PO11 Independent and reflective thinking – Observe and examine critically, outcome of one's actions and make corrective measures subsequently and learn from mistakes without depending on external feedback.

Program Specific Criteria (PSC)

Lead Society: American Society of Civil Engineers

1. Curriculum

The program prepares students for professional, teaching and research careers. Emphasis is on the acquisition of knowledge concerning to analysis, design, construction, maintenance, management and performance of structural components and structures with due consideration to public governing policies and guidelines.

2. Faculty competency

Faculties are qualified with post graduate and doctoral degrees in the stream of structural engineering. The faculties are actively publishing research papers in peer reviewed national and international journals related to structural engineering and allied fields leading to sustainable development. The faculties are also actively involved in R&D activities, patenting and associated with professional bodies.

Program Specific Outcomes (PSO)

M. Tech. in Structural engineering graduates will be able to:

- **PSO 1.** Apply knowledge of materials and analysis for design of RCC, steel and masonry structures.
- **PSO 2.** Demonstrate the use of alternate engineering materials, technologies and management for sustainable environment.

R. V. College of Engineering, Bengaluru – 59.

(An Autonomous Institution affiliated to VTU, Belagavi) Department of Civil Engineering

	FIRST SEMESTER												
Sl.	Course Code	Course Title	BoS		CREDIT	ALLOCAT	ION	Total Credits					
No				LectureTutorialPracticalExperientiaLearning									
				L	Т	Р	S						
1	16MEM11P	Project Management	IM	3	1	0	0	4					
2	16MST12	Matrix Analysis of Structures	CV	4	0	1	0	5					
3	16MST13	Advanced Design of RCC Structures	CV	4	0	0	1	5					
4	16 MST 14	Mechanics of Deformable Bodies	CV	4	0	0	0	4					
5	16 MST15X	Elective -1	CV	4	0	0	0	4					
6	16HSS16	Professional Skill Development	HSS	0	0	2	0	2					
		Total		19	1	3	1	24					

M. Tech. Structural Engineering

	Elective 1	l	
16MST151	Advanced Design of Steel Structures	16MST152	Structural Masonry

	SECOND SEMESTER												
Sl.	Course Code	Course Title	BoS		CREDIT A	ALLOCAT	ION	Total Credits					
No				Lecture	Learning								
				L	Т	Р	S						
1	16MEM21R	Research Methodology	IM	3	1	0	0	4					
2	16 MST 22	Structural Dynamics	CV	4	0	1	0	5					
3	16MST23X	Elective -2	CV	4	0	0	0	4					
4	16 MST24X	Elective -3	CV	4	0	0	0	4					
5	16 MST25X	Elective -4	CV	4	0	0	0	4					
6	16MST26	Minor Project (in-house)	CV	0	0	5	0	5					
		Total		19	1	6	0	26					

	E	lective 2								
16MST231	Structural Reliability	16MST232	Repair and Rehabilitation of Structures							
	Elective 3									
16MST241	Advanced Pre-stressed Concrete	16MST242	Design of Substructures							
		lective 4								
	E	lective 4								
16MST251	Design of Plates and Shells	16MST252	Finite Element Method of Analysis							

R. V. College of Engineering, Bengaluru – 59.

(An Autonomous Institution affiliated to VTU, Belagavi) Department of Civil Engineering M. Tech. Structural Engineering

		TH	IRD SI	EMESTER				
Sl.	Course Code	Course Title	BoS		CREDIT A	LLOCATIO	N	Total
No				Lecture Tutorial Practical Experiential Learning				Credits
				L	Т	Р	5	
1	16 MST 31	Special Concretes	CV	4	0	1	0	5
2	16 MST 32X	Elective -5	CV	4	0	0	0	4
3	16 MST 33X	Elective -6	CV	4	0	0	0	4
4	16 MST	Elective -7	CV	4	0	0	0	4
	34X/16MHT34X							
5	16MST35	Internship/ Industrial Training	CV	0	0	3	0	3
6	16MST36	Technical Seminar	CV	0	0	2	0	2
		Total		16	0	6	0	22

	Elective 5									
16MST321	Earthquake Resistant Structures	16MST322	Pre cast structures							
	Elective 6									
16MST331	Stability of structures	16MST332	Advanced Structural Analysis							
	Elective 7									
16MHT341/	Design of Bridges, flyovers and grade separators	16MHT342/	Earth Retaining structures							
16MST341		16MST342								

R. V. College of Engineering, Bengaluru – 59. (An Autonomous Institution affiliated to VTU, Belagavi) Department of Civil Engineering M. Tech. Structural Engineering

FOURTH SEMESTER												
Sl.	Course Code	Course Title	BoS		CREDIT ALLOCATION							
No				Lecture	Credits							
				L	Т	Р	S					
1	16 MST 41	Major Project	CV	0	0	26	0	26				
2	16 MST 42	Seminar	CV	0	0	2	0	2				
		Total		0	0	28	0	28				

FIRST SEMESTER

		PR	OJECT MANAGE	EMENT		
Course Code	:	16MEM11P		CIE Marks	:	100
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100
Credits	:	4		SEE Duration	:	3 Hours
Course Learn	ing	Objectives:				
Students are ab						
1. Understand	the	principles and com	ponents of project	management.		
2. Appreciate	the	integrated approach	n to managing proje	cts.		
3. Elaborate th	ne p	rocesses of managing	ng project cost and	project procurements.		
4. Apply the p	oroje	ect management too	ols and techniques.			
			Unit – I			7 Hours
				os among portfolio man		
				project management, rel		
		-		izational strategy, busin	ness	s value, role of
the project man	lage	r, project managem	ent body of knowle	edge.		0.11
0 4	1.0	· • • • • • • •	Unit – II	C · 1 · · ·	.1	8 Hours
		2 3		on of ideas, monitoring	-	
				ry screening, project rat	ing	index, sources
of positive net	pres	ent value. Project c	osting,			
Project Scope	Ma	nagement: Project	scope management	t, collect requirements d	efir	ne scope, create
		pe, control scope.				
0			oject life cycle:	Organizational influ	ence	as an project
management, p	roje	ct state holders & g		0		es on project
				team, project life cycle.		
• •			Unit – III	team, project life cycle.		7 Hours
		on Management:	Unit – III Develop project ch	team, project life cycle.	mai	7 Hours nagement plan,
	ge p	on Management:	Unit – III Develop project ch	team, project life cycle.	mai	7 Hours nagement plan,
close project of	ge p pha	on Management: roject work, monito ase.	Unit – III Develop project ch or & control project	team, project life cycle. harter, develop project t work, perform integrat	mai	7 Hours nagement plan, change control,
close project of Project Quali	ge p pha	on Management: roject work, monito ase.	Unit – III Develop project ch or & control project	team, project life cycle.	mai	7 Hours nagement plan, change control,
close project of	ge p pha	on Management: roject work, monito ase.	Unit – III Develop project ch or & control project n quality managen	team, project life cycle. harter, develop project t work, perform integrat	mai	7 Hours nagement plan, change control, urance, control
close project of Project Quali quality.	ge p pha ty	on Management: roject work, monito ase. management: Plan	Unit – III Develop project ch or & control project n quality managen Unit – IV	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality	mai æd assi	7 Hours nagement plan, change control, urance, control 7 Hours
close project of Project Quali quality. Project Risk M	ge p pha ty Ian	on Management: roject work, monito ase. management: Plan agement: Plan risk	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality	mai æd assi	7 Hours nagement plan, change control, urance, control 7 Hours
close project of Project Quali quality. Project Risk M perform quanti	ge p pha ty Ian	on Management: roject work, monito ase. management: Plan agement: Plan risk ze risk analysis, plan	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk.	mai æd assi	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis,
close project of Project Quali quality. Project Risk M perform quanti	ge p pha ty Ian	on Management: roject work, monito ase. management: Plan agement: Plan risk ze risk analysis, plan	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con t management, estin	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality	mai æd assi	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis, , cost control
close project of Project Quali quality. Project Risk M perform quanti Project Cost M	ge p pha ty Ian tativ Ian	on Management: roject work, monito ase. management: Plan agement: Plan risk ve risk analysis, plan agement: Plan cost	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con t management, estin Unit-V	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk. nate cost, determine buc	man ed assu tativ	7 Hours nagement plan, nage control, urance, control 7 Hours ve risk analysis, v, cost control 7 Hours
close project of Project Quali quality. Project Risk M perform quanti Project Cost M Network Tech	ge p pha ty Ian Ian niq	on Management: roject work, monito ase. management: Plan agement: Plan risk ve risk analysis, plan agement: Plan cost ues for Project Ma	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con t management, estin Unit-V magement: Develo	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk. nate cost, determine buc opment of project networ	man add aassi cativ	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis, ve cost control 7 Hours ve tisk analysis, ve tisk analysis, ve tisk analysis,
close project of Project Quali quality. Project Risk M perform quanti Project Cost M Network Tech estimation, det	ge p pha ty fan fan fan niq ermi	on Management: roject work, monito ase. management: Plan agement: Plan risk ve risk analysis, plan agement: Plan cost ues for Project Ma ination of the critica	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con t management, estin Unit-V magement: Develo al path, PERT Mode	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk. nate cost, determine buc	man add aassi cativ	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis, ve cost control 7 Hours ve tisk analysis, ve tisk analysis, ve tisk analysis,
close project of Project Quali quality. Project Risk M perform quantity Project Cost M Network Tech estimation, deto Scheduling who	ge p pha ty Ian tativ Ian niq ermi	on Management: roject work, monito ase. management: Plan agement: Plan risk ve risk analysis, plan agement: Plan cost ues for Project Ma ination of the critica esources are limited	Unit – III Develop project ch or & control project n quality managen <u>Unit – IV</u> management, ident n risk resources, con t management, estin <u>Unit-V</u> magement: Develo al path, PERT Mode 1.	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk. nate cost, determine buc opment of project networ	man add aassi cativ	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis, ve cost control 7 Hours ve tisk analysis, ve tisk analysis, ve tisk analysis,
close project of Project Quali quality. Project Risk M perform quanti Project Cost M Network Tech estimation, deta Scheduling what Syllabus inclusion	ge p pha ty Man tativ Man niq erm en r des	on Management: roject work, monito ase. management: Plan agement: Plan risk ve risk analysis, plan agement: Plan cost ues for Project Ma ination of the critica esources are limited tutorials for two h	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con t management, estin Unit-V magement: Develo al path, PERT Mode l.	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk. nate cost, determine buc opment of project networ	man add aassi cativ	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis, , cost control 7 Hours , cost control 7 Hours , cost control 7 Hours
close project of Project Quali quality. Project Risk M perform quanti Project Cost M Network Tech estimation, deto Scheduling who Syllabus inclue • Case d	ge p pha ty fan fan tativ fan niq erm des isc	on Management: roject work, monito ase. management: Plan agement: Plan risk ve risk analysis, plan agement: Plan cost ues for Project Ma ination of the critica esources are limited tutorials for two h ussions on proje	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con t management, estin Unit-V magement: Develo al path, PERT Mode d. our per week: ect management	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk. nate cost, determine buc opment of project networ	man add aassi cativ	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis, ve cost control 7 Hours ve tisk analysis, ve tisk analysis, ve tisk analysis,
close project of Project Quali quality. Project Risk M perform quantity Project Cost M Network Tech estimation, deta Scheduling what Syllabus inclus • Case d • Numeri	ge p pha ty pha fan fan fan niq ermi ermi ermi ermi cal j	on Management: roject work, monito ase. management: Plan agement: Plan risk ve risk analysis, plan agement: Plan cost ues for Project Ma ination of the critica esources are limited tutorials for two h ussions on proje problems on PERT	Unit – III Develop project ch or & control project n quality managen Unit – IV management, ident n risk resources, con t management, estin Unit-V magement: Develo al path, PERT Mode d. our per week: ect management & CPM	team, project life cycle. harter, develop project t work, perform integrat nent, perform quality tify risks, perform qualit ntrol risk. nate cost, determine buc opment of project networ	man add aassi cativ	7 Hours nagement plan, change control, urance, control 7 Hours ve risk analysis, ve cost control 7 Hours ve tisk analysis, ve tisk analysis, ve tisk analysis,

Course Outcomes:

After going through this course the student will be able to

CO1: Explain the process of project management and its application in delivering successful projects.

CO2: Illustrate project management process groups for various project / functional applications.

CO3: Appraise various knowledge areas in the project management framework.

CO4: Develop project plans and apply techniques to monitor, review and evaluate progress for different types of projects.

Reference Books:

- 1. Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Harold Kerzner, "Project Management A System approach to Planning Scheduling & Controlling", John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
- 3. Prasanna Chandra, "Project Planning Analysis Selection Financing Implementation & Review", Tata McGraw Hill Publication, 7th Edition, 2010, ISBN 0-07-007793-2.
- **4.** Rory Burke, "Project Management Planning and Controlling Techniques", John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η	М	Μ		Μ	Н	Н	Η		Н	
CO2		М			Μ	Н	Н	Н	L	Н	
CO3		М	Н		Μ	Н	Н	Н	Н	Н	М
CO4	Μ	Н	Μ	L	Н	Н	Н	Н		Н	Н

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	-	М
CO2	-	М
CO3	-	L
CO4	-	Н

Hrs/Week : L: T: P: S 4:0:2:0 SEE Marks : 100+50 Credits : 05 SEE Duration : 3Hrs+3Hrs Course Learning Objectives (CLO): Sudent will be able to . SEE Duration : 3Hrs+3Hrs Student will be able to 1. Apply the knowledge of different types of structures, to assess their degrees of freedom an indeterminacy. 2. Utilize concepts of matrix methods to model structural component. 3. Analyze the behavior of different types of structures. 4. Evaluate and compare beams, frames and trusses with different degrees of freedom. Introduction to matrix, Types of matrices, Solution techniques including numerical problems fo simultaneous equation, Gauss elimination and Cholesky method, Band width consideration. 09Hr Static and Kinematic indeterminacy of rigid jointed frames, trusses and grids. Concepts of stiffness and flexibility, development of structures stiffness matrices for two dimensional rigid jointed structures. 10Hr Displacement-transformation matrix using Stiffness Method, Development of global stiffnes matrix for continuous beams, plane trusses and rigid plane frames (having not more than si degrees of freedom – 6x6 stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by stiffness method (having not more than 3 degrees of freedom – 3x3 stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix, global stiffness matrix), A		M	ATRIX ANALYSIS	OF STRUCTURE	ES (Theory & Pract	ice)		
Credits : 05 SEE Duration : 3Hrs+3Hrs Course Learning Objectives (CLO): Student will be able to 1. Apply the knowledge of different types of structures, to assess their degrees of freedom an indeterminacy. 2. Utilize concepts of matrix methods to model structural component. 3. Analyze the behavior of different types of structures. 4. Evaluate and compare beams, frames and trusses with different degrees of freedom. Unit - I 09Hr Introduction to matrix, Types of matrices, Solution techniques including numerical problems for simultaneous equation, Gauss elimination and Cholesky method, Band width consideration. Unit - II 10Hr Static and Kinematic indeterminacy of rigid jointed frames, trusses and grids. Concepts of stiffness and flexibility, development of structures tiffness matrices for two dimensional rigid jointed structures. Unit - III 10Hr Displacement-transformation matrix using Stiffness Method, Development of global stiffness matrix for continuous beams, plane trusses and rigid plane frames (having not more than 3 degrees of freedom - 6x6 stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by stiffness method (having not more than 3 degrees of freedom - 3x3 stiffness matrix). Analysis of continuous beams, frames matrix, and studentes and rotationa springs. Unit - IV 9Hr	Course Code	:	16MST12		CIE Marks	:	100+5	0
Course Learning Objectives (CLO): Student will be able to 1. Apply the knowledge of different types of structures, to assess their degrees of freedom an indeterminacy. 2. Utilize concepts of matrix methods to model structural component. 3. Analyze the behavior of different types of structures. 4. Evaluate and compare beams, frames and trusses with different degrees of freedom. Unit – I OPHR Introduction to matrix, Types of matrices, Solution techniques including numerical problems for simultaneous equation, Gauss elimination and Cholesky method, Band width consideration. Unit – II IOHR Static and Kinematic indeterminacy of rigid jointed frames, trusses and grids. Concepts of stiffness and flexibility, development of structure stiffness matrices for two dimensional rigid jointed structures using basic fundamental approach, development of flexibility matrix for two dimensional determinate rigid jointed structures. Unit – III IOHR Unit – III IOHR IOHR Unit – III IOHR IOHR IOHR IOHR IOHR <	Hrs/Week	:	L: T: P: S	4:0:2:0	SEE Marks	:	100+5	0
Student will be able to 1. Apply the knowledge of different types of structures, to assess their degrees of freedom an indeterminacy. 2. Utilize concepts of matrix methods to model structural component. 3. Analyze the behavior of different types of structures. 4. Evaluate and compare beams, frames and trusses with different degrees of freedom. Unit – I OPHT Introduction to matrix, Types of matrices, Solution techniques including numerical problems fo simultaneous equation, Gauss elimination and Cholesky method, Band width consideration. Unit – II Unit – II Static and Kinematic indeterminacy of rigid jointed frames, trusses and grids. Concepts of stiffness and flexibility, development of structures stiffness matrices for two dimensional rigid jointed structures using basic fundamental approach, development of flexibility matrix for two dimensional determinate rigid jointed structures. Unit – III 10HT Displacement-transformation matrix using Stiffness Method, Development of global stiffness matrix for continuous beams, plane trusses and rigid plane frames (having not more than si degrees of freedom – 6x6 stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by stiffness method (having not more than 3 degrees of freedom – 5x3 stiffness matrix). Analysis of continuous beams, plane trusses method for two dimensional beams, frames and trussee (having not more than six degrees of freedom – 6x stiffness m	Credits	:	05		SEE Duration	:	3Hrs+	-3Hrs
Unit – II 10Hr Static and Kinematic indeterminacy of rigid jointed frames, trusses and grids. Concepts of stiffness and flexibility, development of structure stiffness matrices for two dimensional rigid jointed structures using basic fundamental approach, development of flexibility matrix for two dimensional determinate rigid jointed structures. 10Hr Unit – III 10Hr Displacement-transformation matrix using Stiffness Method, Development of global stiffness matrix for continuous beams, plane trusses and rigid plane frames (having not more than si degrees of freedom – 6x6 stiffness matrix). Analysis of continuous beams, plane trusses and rigid plane frames by stiffness method (having not more than 3 degrees of freedom – 3x3 stiffness matrix). Analysis considering effect of sinking of supports, temperature, linear and rotationa springs. Unit – IV 9Hr Development of element stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x, stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x, stiffness matrix). Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix). Unit – IV PHr Development of element stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x, stiffness matrix), Analysis of conti	Student will be 1. Apply th indeterm 2. Utilize of 3. Analyze 4. Evaluato Introduction to	ab ne l nin con e th e ar ma	le to knowledge of differer acy. cepts of matrix metho e behavior of differen nd compare beams, fr	ods to model structure at types of structure ames and trusses w Unit – I ces, Solution techn	ural component. s. ith different degrees iques including num	of fre	eedom.	09Hrs
Static and Kinematic indeterminacy of rigid jointed frames, trusses and grids. Concepts of stiffness and flexibility, development of structure stiffness matrices for two dimensional rigid jointed structures using basic fundamental approach, development of flexibility matrix for two dimensional determinate rigid jointed structures. Unit – III 10Hr Displacement-transformation matrix using Stiffness Method, Development of global stiffness matrix for continuous beams, plane trusses and rigid plane frames (having not more than si: degrees of freedom – 6x6 stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by stiffness method (having not more than 3 degrees of freedom – 3x3 stiffness matrix). Analysis considering effect of sinking of supports, temperature, linear and rotationa springs. Unit – IV 9Hr Development of element stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix). Unit – IV Unit – IV Development of element stiffness matrix, global stiffness matrix by direct stiffness matrix). Unit – V	simultaneous eo	qua	tion, Gauss elimination	on and Cholesky m	ethod, Band width co	onside	eration.	
Unit – III 10Hr Displacement of elevibility matrix for two dimensional rigid jointed structures using basic fundamental approach, development of flexibility matrix for two dimensional determinate rigid jointed structures. Unit – III 10Hr Displacement-transformation matrix using Stiffness Method, Development of global stiffness matrix for continuous beams, plane trusses and rigid plane frames (having not more than siz degrees of freedom – 6x6 stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by stiffness method (having not more than 3 degrees of freedom – 3x3 stiffness matrix). Analysis considering effect of sinking of supports, temperature, linear and rotationa springs. 9Hr Development of element stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x stiffness matrix). Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix). Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix). Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix). Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix). Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness matrix). Analysis of three dimensional space truss, grid structures using direct stiffness method- development of structure stiffness matrix. Numerical problems restricted to three degree of freedom.				Unit – II				10Hrs
Development of element stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness method (having not more than 3 degrees of freedom – 3x3 stiffness matrix).Unit – V10HrPrinciples of analysis of three dimensional space truss, grid structures using direct stiffness method- development of structure stiffness matrix. Numerical problems restricted to three degree of freedom.	matrix for con degrees of free plane frames b	tinı dor y s	sformation matrix u lous beams, plane ti n – 6x6 stiffness mat stiffness method (hav	sing Stiffness Me russes and rigid pl rix) ,Analysis of co ving not more than	ane frames (having ontinuous beams, pla 1 3 degrees of freed	not in no	lobal st more th isses and - 3x3 st	an six d rigic iffness
Development of element stiffness matrix, global stiffness matrix by direct stiffness method for two dimensional beams, frames and trusses (having not more than six degrees of freedom – 6x stiffness matrix), Analysis of continuous beams, plane trusses and rigid plane frames by direct stiffness method (having not more than 3 degrees of freedom – 3x3 stiffness matrix).Unit – V10HrPrinciples of analysis of three dimensional space truss, grid structures using direct stiffness method- development of structure stiffness matrix. Numerical problems restricted to three degree of freedom.								
Principles of analysis of three dimensional space truss, grid structures using direct stiffness method- development of structure stiffness matrix. Numerical problems restricted to three degree of freedom.	dimensional be stiffness matrix	eam x),	ement stiffness matri s, frames and trusse Analysis of continuc	x, global stiffness r es (having not mo ous beams, plane tr	re than six degrees russes and rigid plar	of fi ne fra	reedom imes by	- 6x6
method- development of structure stiffness matrix. Numerical problems restricted to three degree of freedom.				Unit – V				10Hrs
Unit – VI (Lab Component)								
			Unit	- VI (Lab Compo	nent)			

Analysis using MATLAB Software

- 1) Analysis of plane trusses by displacement transformation stiffness method.
- 2) Analysis of rigid plane frames by displacement transformation stiffness method
- 3) Analysis of plane trusses by direct stiffness method
- 4) Analysis rigid plane frames by direct stiffness method Analysis using Stood Pro Software

Analysis using Staad Pro Software

- 7) Analysis of two dimensional structures, plane trusses and rigid plane frames
- 8) Analysis of space structures, trusses, grids

Expected Course Outcomes:

After successful completion of this course the student will be able to:

- CO1. Apply the concepts of matrix methods to model trusses, beams, and frames.
- CO2. Analyze structures using matrix methods by analytical methods and software tools with different degrees of freedom
- CO3. Evaluate and compare behaviour of structural elements under different boundary conditions.

CO4. Estimate stress resultants using displacement approach

Reference Books:

- 1. S.Rajasekaran, <u>G. Sankarasubramanian</u> "Computational Structural Mechanics", Prentice-Hall of India Pvt Ltd, 7th Edition, 2015, NewDelhi-110092.ISBN-13: 978-8120317345,ISBN-10:8120317343.
- 2. Damodar Maity, "Computer Analysis of Framed Structures" I K International Publishing House Pvt. Ltd., 2007, ISBN-13: 978-8189866198.
- 3. Rudra Pratap, "Getting started with MatLab" Oxford University Press,2010 ISBN: -13:978-0-19-806919-5
- 4. Amos Gilat, 'Matlab An introduction with applications', Wiley Publications, 4th edition 2012, ISBN-13: 978-8126537204.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

Mapping of COs with POs

-		-				-	-				
CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
PO											
CO1	Н	L	Μ	L	Н	-	-	-	L	-	-
CO2	Н	Н	Μ	L	Н	-	-	-	L	-	-
CO3	Н	Н	Н	Μ	Н	-	-	-	-	L	-
CO4	Н	L	L	L	Н	-	-	-	-	-	-

	PSO1	PSO2
CO1	М	-
CO2	Н	-
CO3	Н	-
CO4	Н	-

		ADVANCED	DESIGN OF RCC	C STRUCTURES		
Course Code	:	16MST13		CIE Marks	:	100
Hrs/Week	:	L:T:P:S	4:0:0:1	SEE Marks	:	100
Credits	:	5		SEE Duration	:	3 Hours
	-	Objectives (CLO)	:			
Student will be						
		design concepts of				
		ciples of RCC desig				
•		ces and stresses in l	RCC structures.			
4. Design RCC	stı	ructural elements.				
			Unit – I			09 Hr
	-			s of slabs: Equilibriu		
	-	_	bs and triangular sl	abs with various edge	e con	ditions – yield
line patterns, C	IICU	ular slabs.	T T •4 T T			10 11
<u></u>	1.0		Unit – II		6	10 Hrs
				approximate methods flat slabs including u		
moments.	Л	gilu noois. Design	i and detaining of	that shabs including t	indai	
moments.			Unit – III			10 Hr
Watar ratainin	x 0	tructuros: Docion o		ctangular and circular	aro	
	-	_	-	langulai and circulai	, gio	und level and
underground su	ш) tanks with fixed al	nd flexible base.			
underground st	шĻ	tanks with fixed a	nd flexible base. Unit – IV			09 Hr
			Unit – IV	g of side walls, hopper	bott	
			Unit – IV	g of side walls, hopper	: bott	oms.
Silos (circular) Concept of Ea	and	d bunkers; analysis, quake resistant des	Unit – IV design and detailin Unit – V	g of side walls, hopper res, Ductile detailing		oms. 10 Hr
Silos (circular)	and	d bunkers; analysis, quake resistant des	Unit – IV design and detailin Unit – V			10 Hrs
Silos (circular) Concept of Ea	and rtho	d bunkers; analysis, quake resistant des ntraction joints.	Unit – IV design and detailin Unit – V			oms. 10 Hr
Silos (circular) Concept of Ea Expansion and Course Outco	and rtho con	d bunkers; analysis, quake resistant des ntraction joints.	Unit – IV design and detailin Unit – V	rres, Ductile detailing		oms. 10 Hr
Silos (circular) Concept of Ea Expansion and Course Outco After successfu	and rtho cor ne s 1 co	d bunkers; analysis, quake resistant des ntraction joints. s: ompletion of this co	Unit – IV design and detailin Unit – V ign of RCC structu	rres, Ductile detailing		oms. 10 Hr
Silos (circular) Concept of Ea Expansion and Course Outco After successfu CO1: Apply pr	and con nes	d bunkers; analysis, quake resistant des ntraction joints. s: ompletion of this co iples of RCC to des	Unit – IV design and detailin Unit – V ign of RCC structu ourse the student wil ign slabs and walls.	rres, Ductile detailing	of F	oms. 10 Hr RCC elements
Silos (circular) Concept of Ea Expansion and Course Outco After successfu CO1: Apply pr CO2: Analyze	and cor nes l co inci ihe	d bunkers; analysis, quake resistant des ntraction joints. s: ompletion of this co iples of RCC to des loads to assess criti	Unit – IV design and detailin Unit – V ign of RCC structu ourse the student wil ign slabs and walls.	rres, Ductile detailing l be able to: ts, shear forces and to	of F	oms. 10 Hr RCC elements
Silos (circular) Concept of Ea Expansion and Course Outco After successfu CO1: Apply pr CO2: Analyze CO3: Design R	and rtho con ne s 1 co inci the CC	d bunkers; analysis, quake resistant des ntraction joints. s: ompletion of this co iples of RCC to des loads to assess criti c walls, slabs and fo	Unit – IV design and detailin Unit – V ign of RCC structu ourse the student wil ign slabs and walls.	res, Ductile detailing l be able to: ts, shear forces and to rent loading condition	of F	oms. 10 Hr RCC elements
Silos (circular) Concept of Ea Expansion and Course Outco After successfu CO1: Apply pr CO2: Analyze CO3: Design R	and rtho con nes 1 co inci inci ihe CC det	d bunkers; analysis, quake resistant des ntraction joints. s: ompletion of this co iples of RCC to des loads to assess criti C walls, slabs and fo ailing of reinforcem	Unit – IV design and detailin Unit – V ign of RCC structu ourse the student wil ign slabs and walls. ical bending momen	res, Ductile detailing l be able to: ts, shear forces and to rent loading condition	of F	oms. 10 Hr RCC elements
Silos (circular) Concept of Ea Expansion and Course Outcon After successfu CO1: Apply pr CO2: Analyze CO3: Design R CO4: Develop Reference Boo 1. R Park ar	and rtho con nes 1 co inci inci the CC det ks :	d bunkers; analysis, quake resistant des ntraction joints. s: ompletion of this co iples of RCC to des loads to assess criti c walls, slabs and fo ailing of reinforcem T Paulay, "Reinfor	Unit – IV design and detailin Unit – V ign of RCC structu ourse the student wil ign slabs and walls. ical bending momen ormwork under diffe nent for RCC walls a rced Concrete Structu	res, Ductile detailing l be able to: ts, shear forces and to rent loading condition	of F rsion s.	oms. 10 Hr RCC elements
Silos (circular) Concept of Ea Expansion and Course Outcon After successfu CO1: Apply pr CO2: Analyze CO3: Design R CO4: Develop Reference Boo 1. R Park ar Edition, 20 2. S. Ramar	and rtho con nes l co inci ihe CC det ks : d '	d bunkers; analysis, quake resistant des ntraction joints. s: ompletion of this co iples of RCC to des loads to assess criti 2 walls, slabs and fo ailing of reinforcem 5 T Paulay, "Reinfor 5. ISBN: 978047165	Unit – IV design and detailin Unit – V ign of RCC structu ourse the student will ign slabs and walls. ical bending moment ormwork under diffe nent for RCC walls a rced Concrete Structo 9174.	ures, Ductile detailing l be able to: ts, shear forces and to rent loading condition and slabs.	of F rsion s. & So	ns, USA, 2n

4. Pankaj Agarwal and Manish Shrikhande, "Earthquake resistant design of structures", PHI learning Private Ltd, 3rd Edition, 2013. ISBN 9788120328921.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	L	М	-	-	-	-	-	-	-	-
CO2	Н	L	М	-	-	-	-	-	L	-	-
CO3	Н	L	Μ	-	-	-	-	-	-	Μ	-
CO4	Н	L	М	-	-	-	-	-	L	М	-

	PSO1	PSO2
CO1	Н	-
CO2	Н	-
CO3	Н	-
CO4	L	-

		MECHANICS O	F DEFORMA	BLE BODIES		
Course Code	:	16MST14		CIE Marks	:	100
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100
Credits	:	04		SEE Duration	:	3Hrs
Student will be 1. Underst elastic a 2. Explain 3. Analyze 4. Develop Stress and Stra Introduction: D a point of Car conditions. Stra	able and nd p the the ma o ma o ma o ma o ma cin i	the theoretical concepts plastic properties. behaviour of bodies sub behavior of elastic solid thematical model to asse	jected to tensile ls under differen ess the behavior it – I es and strain at a rium equations, ransformation,	and torsional loading nt loading conditions of two dimensional point, components o , compatibility equa Principal stresses ar	g. elasti f stre tions id pr	ic solids. 10Hr ess and strain a and boundar; fincipal strains
Strain Rossette.			it – II			9Hr
Plane stress and stress for plane	i pla stre	oroblems in Cartesian of ane strain problems, Con ess and plane strain. Air oblems of elasticity, simp Uni	nstitutive relationsy's stress funct	ons, Compatability edition, Polynomials, A		
Equations of Ec	quili ar co	Problems in Polar Coordinates, Solution of a neurated force at a point of	tes, Strain comp xi-symmetric p	roblems, Effect of ci		
			t - IV			9Hr
(Prandtl's stress noncircular (Ell	on o s fi iptio	of the problem by dis inction) approaches, M c, triangular and rectang thin walled single and m	Iembrane analoular) cross section	ogy, Torsion of sha	fts c	of circular and hin rectangula
T (1 (1)	D		it – V			10Hr
hardening, Elas	diag stic	asticity gram in simple tension, Perfectly plastic, Elast g, Rankine's theory, S	ic Linear work	k hardening material	s. F	ailure theories

Expected Course Outcomes:

After successful completion of this course the student will be able to:

CO1: Apply the classical theory of Elasticity and plasticity in two and three dimensional state of stress

CO2: Analyse the behavior of solids under different loads

CO3: Evaluate the stress and strain in two and three dimensional problems.

CO4: Formulate equations governing the behavior of two dimensional solids.

Reference Books:

- 1. Timoshenko & Goodier, "Theory of Elasticity", Tata McGraw-Hill Publishing Company; 3rd edition ISBN-10: 0070702608 ISBN-13: 978-0070070268
- 2. Mohammed Ameen, "Computational Elasticity" Revised Edition 2011, Alpha Science International Limited, ISBN-10: 1842654497, ISBN – 13: 978-1842654491
- 3. Srinath L.S., Advanced Mechanics of Solids, TataMcGraw Hill Publishing company, 3rd edition,2010, ISBN-10: 0070858055 ISBN-13: 978-0070858053
- 4. Chakrabarthy.T "Theory of Plasticity", Tata Mc. Graw Hill Book Co, 3rd edition,ISBN-10:9380931719 ISBN-13: 9789380931715.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Course		Programme outcomes											
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		
CO1	Μ	Μ	L	-	-	-	-	-	L	-	-		
CO2	Μ	Н	L	-	-	-	-	-	-	-	-		
CO3	Н	Н	Μ	-	-	-	-	-	-	-	-		
CO4	Н	Н	Μ	-	-	-	-	-	L	-	-		

	PSO1	PSO2
CO1	М	-
CO2	Н	-
CO3	Н	_
CO4	Н	-

			(ELECTIVE - 1)			
Course Code	:	16MST151		CIE Marks	:	100
Hrs/Week	:	L: T: P: S	4:0:0:0	SEE Marks	:	100
Credits	:	04		SEE Duration	:	3Hrs
Student will be 1. Develop 2. Apply t 3. Design	able a lo he pr steel	bading model on di rinciples of behavio components in acc	fferent types of steel or of steel members to cordance with standar Unit – I	o analyze steel comp rds and guidelines.		10Hr
1			sessment of dead loa ee brace, column and		1110 10	
			Unit – II			9Hr
Analysis and d moment and sh	-		ubjected to single an	d two wheel loads, s	Splice	es for bendin
			Unit – III			9Hr
1			nneys, assessment of and Design of self su			ase, mneys.
Forms of light stiffened comp thin elements.	eism gua ressi Lim mbe	age sections, Effect on elements of col- iting width to thick ors of cold formed	nneys, assessment of	pporting circular ste tion of unstiffened, e sections. Concept of ckling strength. Desi	stiffe	ase, mneys. 10Hr ened, multipl al buckling of f compressio
Forms of light stiffened comp thin elements. and tension me	eism gua ressi Lim mbe	age sections, Effect on elements of col- iting width to thick ors of cold formed	nneys, assessment of and Design of self su Unit – IV tive width computat d formed light guage kness ratio. Post buc	pporting circular ste tion of unstiffened, e sections. Concept of ckling strength. Desi	stiffe	ase, mneys. 10Hr ened, multipl al buckling of f compressio
assessment of s Forms of light stiffened comp thin elements. and tension me restrained / late Design of open buildings.	gua ressi Lim mbe rally	nic loads. Analysis and a sections, Effection on elements of col- iting width to thick of cold formed and a section of cold formed and a section of the sect	nneys, assessment of and Design of self su Unit – IV etive width computat d formed light guage kness ratio. Post buc light guage sections,	pporting circular ste tion of unstiffened, e sections. Concept o ckling strength. Desi Design of flexural r	el chi stiffe of loc ign o nemt	ase, mneys. 10Hr ened, multipl al buckling of f compressio pers (Laterall 10Hr

- 1. Bureau of Indian Standards, IS800-2007, IS875-1987, IS-801-1975. Steel Tables, SP 6 (1) 1984, IS6533(Part 1 and 2),IS1893(part 4):2005.
- ^{2.} N Subramanian- "Design of Steel Structure" Oxford University Press, ISBN:0-19-567681-5.
- 3. Ramchandra and Virendra Gehlot " Design of Steel Structures " Vol 1 and Vol.2, Scientific Publishers, Jodhpur, 2010
- 4. Duggal S K "Limit State Design of Steel Structures" TMH publication, New Dehli, ISBN (13):978-0-07-070023-9. 2009

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

Course		Programme outcomes												
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			
CO1	Μ	L	L	L	-	-	-	-	L	-	-			
CO2	Η	Н	Н	Μ	-	-	-	-		L	Μ			
CO3	Н	Н	Н	М	-	-	-	-	Н	Н	Н			
CO4	Η	Н	Н	М	-	-	-	-	Η	Н	Н			

	PSO1	PSO2
CO1	L	-
CO2	Н	-
CO3	Н	-
CO4	Н	-

			FURAL MASC	ONRY		
Course Code	:	(E 16MST152	CLECTIVE-1)	CIE Marks	:	100
Hrs/Week	:	L: T: P: S	4:0:0:0	SEE Marks	•	100
Credits	•	04	1.0.0.0	SEE Duration	•	3 hours
	ng	Objectives (CLO):		SEL Duration	•	J Hours
Student will be 1. Underst 2. Analyze 3. Demonst	abl and the stra	e to I masonry materials and i e behavior of structural n te testing, analysis and de	nasonry esign methodolo	ogies		
4. Summa	rize	construction practices, s	-	nd inspection of maso	onry ł	
			nit — I			8 Hrs
		sonry units, materials omes and vaults: Compo				
		Un	it — II			10 Hrs
, .	d v		ry mortars – C	•		es of mortars,
			it – III			10 Hrs
elastic properti eccentricity, w	es, vate	party in Compression: E factors influencing of co r absorption, curing, a gth of masonry in Indian	mpressive stren ageing and wo context.	gth masonry, Effects	of sl	enderness and sive strength.
		-	it – IV			10 Hrs
for determining strength, factor	g fle s af	e Behavior of Masonry exural and shear bond stre- ffecting bond strength, ex of masonry. Concept of 1	engths, test proc ffect of bond st	cedures for evaluating rength on compressi	g flex ve sti	ural and shear
		Un	it – V			10 Hrs
compressive st lateral loads, pe in walls, effec arching action, wall with open storeys using B	ress erm tive lin ing IS o	earing masonry buildings, reduction factors. Increasible tensile and shear see length, effective thick tels; Wall carrying axial s, freestanding wall; Descodal provisions.	rease in permiss stresses, Effectiv mess, slenderne l load, eccentric	sible stresses for eco ve height of walls an ess ratio, eccentricit c load with different	centri d col ¹ y, lo ecce	c vertical and umns, opening ad dispersion, ntricity ratios,
CO1: Select ap CO2: Distingut optimal solutio	l co pro ish ns f	Outcomes: ompletion of this course to priate masonry unit and from a wide range of for masonry constructions fieldge of structural mason	mortar mixes fo materials for th s.	or masonry constructineir suitability to arr	ive a	

CO4: Justify the design of masonry buildings for sustainable development.

Reference Books:

- 1. Hendry A.W., "Structural masonry"- Palgrave Macmillan Macmillan Education Ltd., 2nd edition, ISBN 10: 0333733096 ISBN 13:9780333733097.
- Robert G Drysdale; Ahmad A Hamid, Masonry structures: Behavior and Design. Boulder, CO : Masonry Society, 2008. 3rd ed, ISBN 1929081332 9781929081332
- 3. Jagadish K S, Structural Masonry, I K International Publishing House Pvt Ltd, 2015, ISBN 10: 9384588660, ISBN 13: 978-9384588663.
- 4. Sven Sahlin, "Structural Masonry"- Prentice Hall Publisher: Prentice Hall, 1971, ISBN-10: 0138539375, ISBN-13: 978-0138539375

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

mappin	ig of CO		03								
CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
PO											
CO1	Н	-	Μ	Н	-	-	-	-	-	L	-
CO2	Н	-	Μ	Н	-	-	-	L	-	L	L
CO3	М	Μ	-	Μ	-	-	-	L	-	-	-
CO4	М	-	Μ	L	-	-	-	-	-	L	-

	PSO1	PSO2
CO1	Н	L
CO2	М	-
CO3	Н	-
CO4	М	Н

		PROFESSIO	ONAL SKILL DEV	ELOPMENT		
Course Code	:	16HSS16		CIE Marks	:	50
Hrs/Week	:	L:T:P:S	0:0:4:0	Credits	:	02
Course Learni	ing	Objectives:				
Students are ab	le t	0				
1. Understa	nd t	he importance of ve	rbal and written com	munication		
1	-	1	tive problem solving			
			process to specific pre-	oblems		
4. Manage s	stre	ss by applying stress				
			UNIT 1			5 Hours
			Communication, P		Presen	tation Skills,
		1	ence, SWOC analysis			
	0	U	asic essentials for a	resume, Resume wi	riting ti	ps Guidelines
for better prese	ntat	ion of facts.				
<u> </u>			UNIT 2	~		6 Hours
-	_		Analysis: Number			•
			and Logical Aptitud			
			gument, common fla			
-			question types – and	-	-	
	iton	yms/synonyms, vo	cabulary building e	tc. Reading Comp	orenensi	ion, Problem
Solving			UNIT 3			4 Hours
Intorviou Skil	I a•	Quartians asked &	how to handle them,	Rody language in	intorvio	
			nd technical interviev			
			s Interviews, Techn			
	and	is. I factice of Stres	UNIT 4			5 Hours
Internersonal	ar	d Managerial SI	kills : Optimal co-e	existence cultural	sensiti	
-		e	del, decision making			
						ain storming.
	on a			g admity and analysi		ain storming;
	on a	and presentation skil	ls;			
Group discussi		and presentation skil	ls; UNIT 5			4 Hours
Group discussi Motivation ar	nd	and presentation skil	ls; UNIT 5 nt: Self motivation,	group motivation,	leader	4 Hours ship abilities
Group discussion Motivation ar Stress clauses	n d and	Stress Managements stress busters to have	ls; UNIT 5 nt: Self motivation, andle stress and de-	group motivation, stress; professional	leader ethics,	4 Hours ship abilities values to be
Group discussion Motivation ar Stress clauses practiced, stand	n d and	Stress Managements stress busters to have	ls; UNIT 5 nt: Self motivation,	group motivation, stress; professional	leader ethics,	4 Hours ship abilities values to be
Group discussion Motivation ar Stress clauses practiced, stand projects.	nd and and darc	Stress Managements stress busters to have a stress busters to be a	ls; UNIT 5 nt: Self motivation, andle stress and de- adopted as profession	group motivation, stress; professional nal engineers in the	leader ethics, e societ	4 Hours ship abilities values to be y for various
Group discussion Motivation ar Stress clauses practiced, stand projects.	nd and and darc	Stress Managements stress busters to have a stress busters to be a	ls; UNIT 5 nt: Self motivation, andle stress and de-	group motivation, stress; professional nal engineers in the	leader ethics, e societ	4 Hours ship abilities values to be y for various
Group discussion Motivation ar Stress clauses practiced, stand projects. Note: The resp	nd and darc	Stress Managemer stress busters to have a stress busters to be a stress to be a stress to be a stress busters to be a stress buster a stress buster buster busters bus	ls; UNIT 5 nt: Self motivation, andle stress and de- adopted as profession	group motivation, stress; professional nal engineers in the	leader ethics, e societ	4 Hours ship abilities values to be y for various
Group discussion Motivation ar Stress clauses practiced, stand projects. Note: The resp domain Course Outcom	nd and darc pect me:	Stress Management stress busters to have a stress busters to be a stress to be a stress to be a stress to be a stress buster buster buster busters bus	ls; UNIT 5 nt: Self motivation, andle stress and de- adopted as profession	group motivation, stress; professional nal engineers in the udies and standard	leader ethics, e societ	4 Hours ship abilities values to be y for various
Group discussion Motivation ar Stress clauses practiced, stand projects. Note: The resp domain Course Outcon After going thr	nd and and arc	Stress Management stress busters to have a stress busters to be a stress to be a stress to be a stress buster bust	ls; UNIT 5 nt: Self motivation, andle stress and de- adopted as profession ould discuss case st	group motivation, stress; professional nal engineers in the udies and standard	leader ethics, e societ	4 Hours ship abilities values to be y for various
Group discussion Motivation ar Stress clauses practiced, stand projects. Note: The resp domain Course Outcom After going thr CO1: Develop	nd and darc	Stress Managemer stress busters to have be stress busters to be a ive departments sho h this course the stu fessional skill to sui	ls; UNIT 5 nt: Self motivation, andle stress and de- adopted as profession ould discuss case st dents will be able to	group motivation, stress; professional nal engineers in the udies and standard ement	leader ethics, e societ	4 Hours ship abilities values to be y for various
Group discussion Motivation arr Stress clauses practiced, stand projects. Note: The resp domain Course Outcon After going thr CO1: Develop CO2: Analyze CO3: Develop	nd and darce	Stress Management stress busters to have a stress busters to be a stress busters to be a stress of the stress of t	ls; UNIT 5 nt: Self motivation, andle stress and de- adopted as profession ould discuss case st dents will be able to it the industry require	group motivation, stress; professional nal engineers in the udies and standard ement skills	leader ethics, e societ s perta	4 Hours ship abilities values to be y for various

References

- 1. Stephen R Covey, "The 7 Habits of Highly Effective People", Free Press, 2004 Edition, ISBN: 0743272455
- 2. Dale Carnegie, "How to win friends and influence people", General Press, 1st Edition, 2016, ISBN: 9789380914787
- 3. Kerry Patterson, Joseph Grenny, Ron Mcmillan, "Crucial Conversation: Tools for Talking When Stakes are High", McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
- 4. Ethnus, "Aptimithra: Best Aptitude Book", Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE) Evaluation will be carried out in TWO Phases

Phase	Activity	Weightage
Ι	After 7 weeks - Unit 1, 2 & Part of Unit 3	50%
II	After 12 weeks – Unit 3, 4, 5	50%

CIE Evaluation shall be done with weightage as follows:

Writing skills	10%
Logical Thinking	25%
Verbal Communication & Body Language	35%
Leadership and Interpersonal Skills	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н		L			Н		Н	Н	Н	М
CO2	Н	Μ	Н						Μ	Н	М
CO3			L			Н		Η	Н	Н	Н
CO4			Н			Η	L	Η	Н	Н	Н

	PSO1	PSO2
CO1	-	М
CO2	-	L
CO3	-	М
CO4	-	М

SEMESTER II

		RESI	EARCH METHOD	OLOGY		
Course Code	:	16MEM21R		CIE Marks	:	100
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100
Credits	:	04		SEE Duration	:	3 Hours
Course Learni	ing	Objectives:				
Students are ab	le to)				
				and qualitative research		
	U I	2	- 1	ss of designing a resear		•
				address a particular rese		
-	nge	of quantitative and	d qualitative approa	ches to analyze data an	id si	uggest possible
solutions.			TI 14 T			7 11
Organization of D	000	anah	Unit – I			7 Hours
Overview of R Meaning of Rev			rch Research and S	cientific Method, Defin	ina	the Research
-		Design, Different l			ing	the research
	uun	Design, Different i	Unit – II			7 Hour
Methods of Da	nta (Collection				7 Hou i
			tion Method Interv	iew Method, Collectio	n o	f Data through
		•	,	,		U
Oucononnanco.	. UC	ollection of Data the	rough Schedules. C	ollection of Secondary	Dai	ta. Selection o
-			•	ollection of Secondary	Da	ta, Selection o
-		ollection of Data th d for Data Collection	•	ollection of Secondary	Da	
Appropriate M	etho	od for Data Collection	on.	ollection of Secondary	Da	
Appropriate Mo	etho hod	d for Data Collection	on. Unit – III	ity sampling: simple		8 Hour
Appropriate Mo Sampling Met Sampling proc	etho hod	s Non-probability	on. Unit – III sampling, probabili		rano	8 Hour
Appropriate Me Sampling Met Sampling proc stratified samp	etho hod cess, ling	d for Data Collections s Non-probability , cluster sampling	on. Unit – III sampling, probabili systematic random	ity sampling: simple	rano	8 Hour dom sampling of sample size
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric	hod ess, ling	d for Data Collections s Non-probability , cluster sampling roblems.	on. Unit – III sampling, probabili	ity sampling: simple	rano	8 Hours dom sampling of sample size
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing and	hod esss, ling al p	s Non-probability cluster sampling problems.	on. Unit – III sampling, probabili systematic random Unit – IV	ity sampling: simple sampling, Determinati	rano on o	8 Hours dom sampling of sample size 7 Hours
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope	hod ess, ling al p d an	s Non-probability , cluster sampling problems. alysis of Data ons, Types of Ana	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R	ity sampling: simple sampling, Determination	rand on o	8 Hours dom sampling of sample size 7 Hours ntral Tendency
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope Dispersion, As	hod esss, ling al p l an erati ymi	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana metry and Relation	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar	ity sampling: simple sampling, Determination desearch, Measures of: ad regression, Testing	rand on of	8 Hour dom sampling of sample size 7 Hour ntral Tendency Hypotheses fo
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope Dispersion, As single sampling	hod esss, ling al p l an erati ymi	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana metry and Relation	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar	ity sampling: simple sampling, Determination	rand on of	8 Hours dom sampling of sample size 7 Hours ntral Tendency Hypotheses fo
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope Dispersion, As	hod esss, ling al p l an erati ymi	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana metry and Relation	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC	ity sampling: simple sampling, Determination desearch, Measures of: ad regression, Testing	rand on of	8 Hours dom sampling of sample size 7 Hours ntral Tendency Hypotheses for tests, numerica
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing Ope Dispersion, As single sampling problems.	etho hod cess, ling cal p d an erati ymi g: Pa	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana metry and Relation arametric (t, z and 2	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC Unit-V	ity sampling: simple sampling, Determination desearch, Measures of: ad regression, Testing	rand on of	8 Hours dom sampling of sample size 7 Hours ntral Tendency Hypotheses fo
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing ope Dispersion, As single sampling problems.	etho hod cess, ling cal p d an erati ymi g: Pa epon	s Non-probability , cluster sampling problems. aalysis of Data ons, Types of Ana netry and Relation arametric (t, z and 1 rt writing and Eth	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC <u>Unit-V</u> ical issues :	ity sampling: simple sampling, Determination desearch, Measures of: nd regression, Testing DVA, and non-parametr	rand on (Cer of] ric t	8 Hour dom sampling of sample size 7 Hour htral Tendency Hypotheses fo tests, numerica 7 Hour
Appropriate Ma Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope Dispersion, As single sampling problems. Essential of Re	etho hod cess, ling cal p l an erati ymi g: P c epoi	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana metry and Relation arametric (t, z and content rt writing and Ethe port Writing, Differ	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC Unit-V ical issues: rent Steps in Writing	ity sampling: simple sampling, Determination desearch, Measures of: ad regression, Testing	rand on (Cer of] ric t	8 Hours dom sampling of sample size 7 Hours htral Tendency Hypotheses fo tests, numerica 7 Hours
Appropriate Ma Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope Dispersion, As single sampling problems. Essential of Re	etho hod cess, ling cal p l an erati ymi g: P c epoi	s Non-probability , cluster sampling problems. aalysis of Data ons, Types of Ana netry and Relation arametric (t, z and 1 rt writing and Eth	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC Unit-V ical issues: rent Steps in Writing	ity sampling: simple sampling, Determination desearch, Measures of: nd regression, Testing DVA, and non-parametr	rand on (Cer of] ric t	8 Hour dom sampling of sample size 7 Hour htral Tendency Hypotheses fo tests, numerica 7 Hour
Appropriate Ma Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope Dispersion, As single sampling problems. Essential of Re Significance of Precautions for	etho hod cess, ling cal p d an erati ymi g: P: cepoi Rep Wr	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana metry and Relation arametric (t, z and content rt writing and Ethe port Writing, Differ	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC Unit-V ical issues: rent Steps in Writing orts.	ity sampling: simple sampling, Determination desearch, Measures of: nd regression, Testing DVA, and non-parametr	rand on (Cer of] ric t	8 Hour dom sampling of sample size 7 Hour htral Tendency Hypotheses fo tests, numerica 7 Hour
Appropriate Me Sampling Met Sampling proc stratified samp simple numeric Processing Ope Dispersion, As single sampling problems. Essential of Re Significance of Precautions for	etho hod cess, ling cal p d an erati ymi g: Pa epon Rej Wr	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana metry and Relation arametric (t, z and the port Writing, Differ iting Research Rep 12 hours of tutoria	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC Unit-V ical issues: rent Steps in Writing orts. als in which:	ity sampling: simple sampling, Determination desearch, Measures of: nd regression, Testing DVA, and non-parameter g Report, Layout of the	rand on of of 1 ric t	8 Hour dom sampling of sample size 7 Hour ntral Tendency Hypotheses fo tests, numerica 7 Hour tearch Report,
Appropriate Ma Sampling Met Sampling proc stratified samp simple numeric Processing Ope Dispersion, As single sampling problems. Essential of Re Significance of Precautions for Syllabus inclue • Faculty	etho hod cess, ling cal p l an erati ymi g: P epoi Rej Wr des is e	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana netry and Relation arametric (t, z and the port Writing, Differ iting Research Rep 12 hours of tutoria xpected to discuss	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC Unit-V ical issues: rent Steps in Writing orts. als in which: research methodolog	ity sampling: simple sampling, Determination desearch, Measures of: nd regression, Testing DVA, and non-parameter g Report, Layout of the	rand on of Cer of I ric t Res	8 Hour dom sampling of sample size 7 Hour ntral Tendency Hypotheses fo tests, numerica 7 Hour tearch Report, r consideration
Appropriate Ma Sampling Met Sampling proc stratified samp simple numeric Processing and Processing Ope Dispersion, As single sampling problems. Essential of Re Significance of Precautions for Syllabus inclue • Faculty • Numeri	etho hod cess, ling cal p d an erati ymi g: P epor Rep Wr des is e cal j	s Non-probability , cluster sampling roblems. alysis of Data ons, Types of Ana netry and Relation arametric (t, z and the port Writing, Differ iting Research Rep 12 hours of tutoria xpected to discuss	on. Unit – III sampling, probabili systematic random Unit – IV lysis, Statistics in R aship, correlation ar F) Chi Square, ANC Unit-V ical issues: rent Steps in Writing orts. als in which: research methodolog	ity sampling: simple sampling, Determination desearch, Measures of: nd regression, Testing DVA, and non-parameter g Report, Layout of the	rand on of Cer of I ric t Res	8 Hour dom sampling of sample size 7 Hour htral Tendency Hypotheses fo tests, numerica 7 Hour search Report, r consideration

Course Outcomes:

After going through this course the students will be able to

- CO 1. Explain various principles and concepts of research methodology.
- CO 2. Apply appropriate method of data collection and analyze using statistical methods.
- CO 3. Analyze research outputs in a structured manner and prepare report as per the technical and ethical standards.
- CO 4. Formulate research methodology for a given engineering and management problem situation.

Reference Books:

- 1. Kothari C.R., "Research Methodology Methods and techniques", New Age International, 2004, ISBN: 9788122415223
- 2. Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., "Management Research Methodology", Pearson Education India, 2009 Edition, ISBN:9788177585636
- **3.** Levin, R.I. and Rubin, D.S., "Statistics for Management", 7th Edition, Pearson Education: New Delhi, ISBN-13: 978-8177585841

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ			Μ				Н		Н	
CO2		L	Н	Η	М	Μ	L	L		Μ	L
CO3	L	М	Μ	Μ	Н	Μ	L	Μ			М
CO4	Η	Н	Н	Н		L	L	Μ	Н		Н

	PSO1	PSO2
CO1	-	L
CO2	-	М
CO3	-	L
CO4	-	М

Course Code : 16MST22 CIE Marks : 100+50 Hrs/Week : L:T:P:S 4:0:1:0 SEE Marks : 100+50 Credits : 05 SEE Duration : 3 Hrs+3Hrs Course Learning Objectives (CLO): Stee Duration : 3 Hrs+3Hrs Student will be able to 1. Understand principles of structural dynamics. . 2. Describe the dynamics of single, multi degree and responses of shear buildings. 3. Evaluate the responses of various systems using different approaches. 4. Develop mathematical models to predict the system responses. 4. Develop mathematical models to predict the system responses. 10 Hr Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration o damped and undamped systems. 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. 09 Hr Dynamics of multi-Degree of freedom system, Natural F		S	TRUCTURAL DYN	NAMICS (Th	eory and Practic	e)	
Credits : 05 SEE Duration : 3 Hrs+3Hrs Course Learning Objectives (CLO): Student will be able to 1. Understand principles of structural dynamics. 2. Describe the dynamics of single, multi degree and responses of shear buildings. 3. Evaluate the responses of various systems using different approaches. 4. Develop mathematical models to predict the system responses. 10 Hr 10 Hr Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration o damped and undamped systems. 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportion adamping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Continuous systems, Elexural vibration of beams, Simply supported and cantilever beams Longitudinal wibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix for	Course Code	1				:	100+50
Course Learning Objectives (CLO): Student will be able to 1. Understand principles of structural dynamics. 2. Describe the dynamics of single, multi degree and responses of shear buildings. 3. Evaluate the responses of various systems using different approaches. 4. Develop mathematical models to predict the system responses. Unit – I Io Hr Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees o of freedom systems principle, Principle of virtual displacement and energy, Single degree o Introduction: Introduction to dynamic problems of Civil Engineering, Free vibration o damped and undamped systems. Unit – II Iot Hr Single degree of freedom systems in Engineering, Free vibration o damped and undamped systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. Unit – III	Hrs/Week	:	L:T:P:S	4:0:1:0	SEE Marks	:	100+50
Student will be able to 1. Understand principles of structural dynamics. 2. Describe the dynamics of single, multi degree and responses of shear buildings. 3. Evaluate the responses of various systems using different approaches. 4. Develop mathematical models to predict the system responses. 10 Hr Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration od damped and undamped systems. 10 Hr Single degree of freedom systems in Engineering, Free vibration od damped and undamped systems. Unit – II Single degree of freedom systems to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response to suddenly applied load and triangular pulse loading, Principles ovibration measuring instruments. 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Cunit – IV Orthogonality of modal vectors, Shear building model without damping and with proportion adamping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Cunit – IV 09 Hr	Credits	:	05		SEE Duration	:	3 Hrs+3Hrs
1. Understand principles of structural dynamics. 2. Describe the dynamics of single, multi degree and responses of shear buildings. 3. Evaluate the responses of various systems using different approaches. 4. Develop mathematical models to predict the system responses. Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration od damped and undamped systems. Unit – II Other II Single degree of freedom systems in Engineering, Free vibration od damped and undamped systems. Unit – II Interplate degree of freedom systems in Engineering, Free vibration od damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles ovibration measuring instruments. Unit – II 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes. Orthogonality of modal vectors, Shear building model without damping and with proportion damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Continuous sy	Course Learni	ng	Objectives (CLO):	•			·
 Describe the dynamics of single, multi degree and responses of shear buildings. Evaluate the responses of various systems using different approaches. Develop mathematical models to predict the system responses. Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration o damped and undamped systems. Unit – II 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. Unit – III Op Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes. Unit – IV (09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V (10 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped mases. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. 2. Demonstration of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. 							
 3. Evaluate the responses of various systems using different approaches. 4. Develop mathematical models to predict the system responses. Unit - I 10 Hr Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees o freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration o damped and undamped systems. Unit – II 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. Unit – III 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V 10 Hr Continuous systems, Elexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses.<!--</td--><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td>				•			
 4. Develop mathematical models to predict the system responses. Unit – I Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration odamped and undamped systems. Unit – II 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. Unit – III OP Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes. Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV OP Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V I0 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. 2. Demonstration of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. 2. Demonstration of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. 				•	1	ilding	gs.
Unit – I 10 Hr Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration of damped and undamped systems. 10 Hr Imit – II 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes of rhequency analysis, Rayleigh's method and matrix iteration methods. 09 Hr Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. 10 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. 2 2 2 10 Hr State building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. 10 Hr			1 .		11		
Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree of freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration of damped and undamped systems. Unit – II 10 Hr Single degree of freedom systems in Engineering, Free vibration of damped and undamped systems. Unit – II Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles of vibration measuring instruments. Unit – III OP Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes OP Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – IV Of the Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-stor	4. Develo	<u>) II</u>			r responses.		10 Hr
freedom, D'Alemberts principle, Principle of virtual displacement and energy, Single degree o freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration o damped and undamped systems. Unit – II 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. Unit – III 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportion damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V 10H r Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	Introduction	Int	-	-	vil Engineering Con	cont	
freedom systems, Examples of Single degree of freedom systems in Engineering, Free vibration of damped and undamped systems. Unit – II Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. Unit – III Og Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportion adamping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV OP Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – IV Orthogonality of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. Dimit – VI (Lab Component						-	-
Init – II 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. 09 Hr Unit – III 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – IV 09 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – V (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom system. Suingle degree of freedom systems and multi-degree of freedom system. Louti – VI (L				-			
Unit – II 10 Hr Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes 09 Hr Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. 09 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. 10 Hr III Unit – VI (Lab Component) 1 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation. 2	•		1 0 0		ystems in Engineerin	g, 1 1	
Single degree of freedom systems subjected to sinusoidal loading, Resonance andits resonance diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles o vibration measuring instruments. Unit – III 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV Og Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V Other Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	damped and un	uai	1 2	nit _ II			10 Hr
diagram – support motion, Vibration isolation, transmissibility, Methods of damping measurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles of vibration measuring instruments. Unit – III 09 Hr. Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes. Orthogonality of modal vectors, Shear building model without damping and with proportion adamping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr. Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. 09 Hr. Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom system. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	Single degree	of			al loading Resonand	re an	
uneasurements, Response of Single degree of freedom systems to arbitrary excitation, Duhame integral solution, Response to suddenly applied load and triangular pulse loading, Principles of vibration measuring instruments. OP Hr. Unit – III OP Hr. Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes. Orthogonality of modal vectors, Shear building model without damping and with proportional damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr. Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. 10 Hr. Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.					-		
Unit – III 09 Hr Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. 10 Hr Unit – V 10 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	-				•		
Unit – III 09 Hr. Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. 09 Hr. Unit – IV 09 Hr. Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – IV 09 Hr. Continuous systems , Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom system using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.				-			
Unit – III09 Hr.Dynamics of multi-Degree of freedom system, Natural Frequency and normal modesOrthogonality of modal vectors, Shear building model without damping and with proportionadamping, Approximate methods of frequency analysis, Rayleigh's method and matrix iterationmethods.Unit – IV09 Hr.Response of shear building with proportion damping, Superposition of normal modes, Exampleof a 3-storeyed frame subjected to ground motion.Unit – V10 Hr.Continuous systems, Flexural vibration of beams, Simply supported and cantilever beamsLongitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response osimply supported beams under uniformly distributed triangular pulse loading, Matrix formulationof beams with lumped masses.Unit – VI (Lab Component)1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systemsaugust colspan="2">august colspan="2">degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	-			ppnea loud and	i unungunur puise iot	amg	, i interprets o
Dynamics of multi-Degree of freedom system, Natural Frequency and normal modes Orthogonality of modal vectors, Shear building model without damping and with proportiona damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr. Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V 10 Hr. Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	, loi ui on meus	<i></i>	-	it – III			09 Hr
Orthogonality of modal vectors, Shear building model without damping and with proportional damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. 09 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams 10 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams 10 stributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	Dynamics of	m		-	atural Frequency ar	d n	
damping, Approximate methods of frequency analysis, Rayleigh's method and matrix iteration methods. Unit – IV 09 Hr. Methods. Unit – IV 09 Hr. Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V 10 Hr. Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	-			-			
Unit – IV 09 Hr Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V 10 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	••••			U	10		
Response of shear building with proportion damping, Superposition of normal modes, Example of a 3-storeyed frame subjected to ground motion. Unit – V 10 Hr. Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	methods.		1	5 5 ,	<i>y c</i>		
of a 3-storeyed frame subjected to ground motion. Unit – V 10 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.			Un	it – IV			09 Hr s
Unit – V 10 Hr Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	Response of sh	iea	r building with proportion	on damping, Sup	perposition of normal	mod	es, Example
Continuous systems, Flexural vibration of beams, Simply supported and cantilever beams Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response o simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	of a 3-storeyed	fra	me subjected to ground 1	motion.			
Longitudinal vibrations of bars, Longitudinal waves in bars, Waves and vibration response of simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.			Ur	nit — V			10 Hrs
simply supported beams under uniformly distributed triangular pulse loading, Matrix formulation of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	Continuous s	yste	ems, Flexural vibration	of beams, Sir	nply supported and	cant	tilever beams
of beams with lumped masses. Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	Longitudinal v	ibr	ations of bars, Longitud	linal waves in	bars, Waves and vit	oratio	n response of
Unit – VI (Lab Component) 1. Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. 2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	simply support	ed	beams under uniformly	distributed trian	gular pulse loading,	Matr	ix formulation
 Dynamic models of Single degree of freedom systems and multi-degree of freedom systems using poly carbonate bars. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation. 	of beams with	um	ped masses.				
using poly carbonate bars.2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.			Unit – VI (L	ab Component	t)		
2. Demonstration of Single degree of freedom systems with base excitation low frequency Resonant and high frequency excitation.	1. Dynamic n	od	els of Single degree of	freedom system	s and multi-degree of	of fre	edom systems
Resonant and high frequency excitation.	using poly ca	rbo	nate bars.				
	2. Demonstrat	ion	of Single degree of f	reedom system	s with base excitati	on le	ow frequency
3. Cantilever beam (Poly carbonate or Meter Scale), Vibration by hand tapping, Demonstration o	Resonant and	hi	gh frequency excitation.				
	3. Cantilever	าคล	m (Poly carbonate or Me	eter Scale) Vibr		р	

second mode with nodal point, Frequency measurement using Accelerometer.

- 4. 3-Storeyed frame with and without soft first story (Polycarbonate).
- 5. Vibration of multi-Storeyed modal (Aluminium) with sinusoidal base excitation, Frequency and mode shapes.

Expected Course Outcomes:

After successful completion of this course the student will be able to:

CO1: Determine the response of single and multi degree freedom systems.

CO2: Apply appropriate techniques to analyze and interpret data for solving problems related to single and multi-degree freedom systems and shear buildings

CO3: Demonstrate the knowledge and understanding of principles of dynamics under varying loading conditions.

CO4: Develop mathematical solutions to predict system response subjected to dynamic loads.

Reference Books:

- 1. Structural Dynamics : Vibrations and Systems, Madhujit Mukophadhyay, Publisher: ANE Books ISBN: 9788180520907, 8180520900 Edition: 01, 2008
- 2. Structural Dynamics: Theory and Computation, 2nd Edition, Mario Paz, CBS Publisher ISBN: 9788123909783, 8123909780
- 3. Dynamics of Structures, R,W.clough and J.Penzien, McGraw Hill Education, 2nd revised Edition, 1993, ISBN -10: 0071132414, ISBN -13: 978-0071132411.
- 4. Theory of vibration with applications, Willaim Thomson, CRC Press; 4th edition, 1996, ISBN -10: 0748743804, ISBN -13: 978-0748743803.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

Mapping of COs with POs:

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO	6 PO7	PO8	PO9	PO10	PO11
CO1	Н	-	-	-	-	-	-	-	L	-	-
CO2	L	Μ	-	-	-	-	-	-	-	-	-
CO3	-	-	Н	-	-	-	-	L	-	-	-
CO4	_	-	Н	-	-	-	_	L	L	-	-
					PS	01	PSO2				
				CO	1 I	_	-				
				CO2	2 H	H	-				
				CO	3 I	_	L				
				CO4	4 N	Λ	-				

		STRUCTURAL R	ELIABILITY ()	ELECTIVE - 2)		
Course code	:	14MST231		CIE marks	:	100
Hrs/week	:	L: T: P: S	4:0:0:0	SEE marks	:	100
Credits	:	4		SEE duration	:	3 Hrs
Course learnin	ig o	bjectives (CLO):	1		1	I
Student will be	abl	e to				
1. To understa	nd	the concept of structural	l reliability and it	s definitions in the c	onte	xt of structural
engineering						
2. To apply th	e c	oncepts of structural rel	iability and statis	stics to understand th	ne qu	antification of
structural re	lial	oility due to structure un	certainties in ass	essment of structural	beh	avior,
3. To be able	to	perform computations	of structural reli	ability using alternation	ative	methods as a
function of	the	nature of the mathemati	ical model associ	ated with the problem	n.	
4. To apply sa	fety	assessment methodolog	gies for different	forms of structures		
		U	nit – I			8 Hrs
Preliminary D	ata	Analysis: Graphical r	epresentation- hi	stogram, frequency	poly	gon, measures
of central tende	ncy	- grouped and ungroupe	ed data, measures	s of dispersion, meas	ures	of asymmetry.
Curve fitting a	nd	correlation: fitting a st	raight line, curv	e of the form $y = a$	ab^{x} ,	and parabola,
coefficient of co	orre	elation.				
			nit — II			10 Hrs
Probability Co	-	epts: Random events-sa	man la sur sa sur d	avanta Vann diagra		d arrant analas
-		-		-		-
measures of p	rob	ability interpretation, p	probability axior	ns, addition rule, r	nulti	plication rule,
measures of p conditional pro	rob oba	ability interpretation, p bility, probability tree	probability axior	ns, addition rule, r	nulti	plication rule,
measures of p	rob oba	ability interpretation, p bility, probability tree -'s theorem.	probability axior diagram, statis	ns, addition rule, r	nulti	plication rule, al probability
measures of p conditional pro theorem and Ba	rob oba iyei	ability interpretation, p bility, probability tree s's theorem. Un	probability axior diagram, statis hit – III	ns, addition rule, r stical independence	nulti , tot	plication rule, al probability 10 Hrs
measures of p conditional pro theorem and Ba Random Vari	rob oba iyei ab l	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass	probability axior diagram, statis it – III function, proba	ns, addition rule, r stical independence bility density funct	nulti , tot	plication rule, al probability 10 Hrs mathematical
measures of p conditional pro theorem and Ba Random Vari expectation, Ch	rob oba iyei abl neb	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba	probability axior diagram, statis hit – III function, probability distribution	ns, addition rule, r stical independence bility density funct	nulti , tot	plication rule, al probability 10 Hrs mathematical
measures of p conditional pro theorem and Ba Random Vari expectation, Ch	rob oba iyei abl neb	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution	probability axior diagram, statis hit – III function, probability distribution	ns, addition rule, r stical independence bility density funct	nulti , tot	plication rule, al probability 10 Hrs mathematical
measures of p conditional pro theorem and Ba Random Vari expectation, Ch poison distribut	rob bba yer ab l neby ion	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un	probability axior diagram, statis hit – III function, probability distribution ons- normal, logn hit – IV	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions.	nultij , tot ion, ions-	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs
measures of p conditional pro theorem and Ba Random Vari expectation, Ch poison distribut Reliability An	rob bba yen ab l neby ion aly	ability interpretation, p bility, probability tree s' theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un sis: measures of reliab	probability axior diagram, statis hit – III function, probability distribution ons- normal, logn hit – IV pility-factor of sa	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions.	nultij , tot ion, ions-	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs iability index,
measures of p conditional pro theorem and Ba Random Vari expectation, Ch poison distribut Reliability An performance fu	rob bba yei ab ion aly nct	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un	probability axior diagram, statis $\mathbf{hit} - \mathbf{III}$ function, proba- bility distribution ons- normal, logn $\mathbf{hit} - \mathbf{IV}$ pility-factor of sa Reliability metho	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions. afety, safety margin ods-first order secor	ion, , rel	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs iability index, oment method
measures of p conditional pro theorem and Ba Random Vari expectation, Ch poison distribut Reliability An performance fu	rob bba yen ab l neby ion aly nct	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un sis: measures of reliab ion and limiting state. stimate method (PEM)	probability axior diagram, statis $\mathbf{hit} - \mathbf{III}$ function, proba- bility distribution ons- normal, logn $\mathbf{hit} - \mathbf{IV}$ pility-factor of sa Reliability metho	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions. afety, safety margin ods-first order secor	ion, , rel	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs iability index, oment method
measures of p conditional pro- theorem and Ba Random Vari expectation, Ch poison distribut Reliability An performance fu (FOSM), point	rob bba yen ab l neby ion aly nct	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un sis: measures of reliabi ion and limiting state. stimate method (PEM) ethod).	probability axior diagram, statis $\mathbf{hit} - \mathbf{III}$ function, proba- bility distribution ons- normal, logn $\mathbf{hit} - \mathbf{IV}$ pility-factor of sa Reliability metho	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions. afety, safety margin ods-first order secor	ion, , rel	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs iability index, oment method
measures of p conditional pro theorem and Ba Random Vari expectation, Ch poison distribut Reliability An performance fu (FOSM), point (Hasofer-Lind's	rob oba yer ab ion ab ion aly nct	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un sis: measures of reliabi ion and limiting state. stimate method (PEM) ethod).	probability axior diagram, statis $\mathbf{it} - \mathbf{III}$ function, probability distribution ons- normal, logn $\mathbf{it} - \mathbf{IV}$ wility-factor of sat Reliability metho), and advanced $\mathbf{nit} - \mathbf{V}$	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions. afety, safety margin ods-first order second	ion, ions- i, rel d mo	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs iability index, oment method oment method
measures of p conditional pro- theorem and Ba Random Vari expectation, Ch poison distribut Reliability An performance fu (FOSM), point (Hasofer-Lind's System Reliab	abl abl abl abl aly nct s m	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un sis: measures of reliab ion and limiting state. stimate method (PEM) ethod). Un	probability axior diagram, statis $\mathbf{it} - \mathbf{III}$ function, proba- bility distribution ons- normal, logn $\mathbf{hit} - \mathbf{IV}$ oility-factor of sa Reliability metho), and advanced $\mathbf{nit} - \mathbf{V}$ dundant systems	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions. afety, safety margin ods-first order second first order second	ion, ions- i, rel d mo l mo	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs iability index, oment method 10 Hrs oment method 10 Hrs oment method 10 Hrs onent method 10 Hrs onent systems,
measures of p conditional pro theorem and Ba Random Vari expectation, Ch poison distribut Reliability An performance fu (FOSM), point (Hasofer-Lind's System Reliab Simulation Tec	rob bba yer ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ion ab ab abab ab ab ab ab	ability interpretation, p bility, probability tree s's theorem. Un les: probability mass yshev's theorem. Proba s, continuous distribution Un sis: measures of reliabi ion and limiting state. stimate method (PEM) ethod). Un y: redundant and non-re	probability axior diagram, statis $\mathbf{it} - \mathbf{III}$ function, probability distribution ons- normal, logn $\mathbf{it} - \mathbf{IV}$ wility-factor of sat Reliability metho), and advanced $\mathbf{nit} - \mathbf{V}$ dundant systems lation- statistical	ns, addition rule, r stical independence bility density funct ns: discrete distribut ormal distributions. afety, safety margin ods-first order second first order second -series, parallel and experiments, confid	ion, ions- i, rel d mo coml ence	plication rule, al probability 10 Hrs mathematical binomial and 10 Hrs iability index, oment method oment method 10 Hrs pined systems, limits, sample

	Expected course outcomes:											
	After successful completion of this course the student will be able to:											_
	CO1: Apply the concepts of statistics for probabilistic analysis and importance of											
	uncertainty (randomness) in structural analysis and design.											
	CO2: Apply the theoretical principles through density functions.											
	CO3: Analyze components of structure using concepts related to structural reliability.											
	CO4: Evaluate the safety reliability index of component and system by various methods.									ethods.		
			ce books									
1.	Ra	inganath	ian, R.	(1999).	"Struct	ural Re	liabili	ty Analys	sis and	Design"	- Jaico P	ublishing
	Ho	ouse, Mi	umbai, I	ndia.								
2.	Aı	ng, A. H	. S., An	d Tang,	W. H. (1984). '	"Proba	bility Co	ncepts in	Engine	ering Plai	nning and
	De	esign"- V	Volume	–I & II,	John W	iley and	l Sons,	Inc, New	VYork.			
3.	A	chintya 1	Haldar, I	And Sai	nkaran N	/lahadev	van (2	000). "Pro	obability	, Reliab	ility and S	Statistical
	Μ	ethods in	n Engine	eering D	esign"-	John W	iley ai	nd Sons. I	nc.			
4.	Na	athabdno	lu, T., K	ottegod	a, And F	Renzo R	Losso (1998). Sta	atistics, '	'Probabi	lity and F	Reliability
	fo	r Civil a	nd Envi	ronment	al Engir	eers"-]	Mc Gr	aw Hill Ir	iternatio	nal Editi	on, Singa	pore.
Map	pin	g of CC	s with l	POs								
		PO1	PO2	PO3	PO4	PO5	POe	5 PO7	PO8	PO9	PO10	PO11
CC	D1	Н	-	-	-	-	-	-	-	М	-	М
CC	02	Н	Н	М	-	-	-	-	-	M	-	М
CC)3	Н	Н	L	-	-	-	-	-	M	-	М
CC)4	Н	Н	Η	М	-	-	-	-	М	-	М
Map	Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)											
	PSO1 PSO2											
					CO		L	-	4			
					CO		M	-	4			
					CO		M	-	4			
					CO	4	H	-				

1	AI	R AND REHABILITAT	TION OF STR	RUCTURES (ELECT	TVE	- 2)
Course Code	:	16MST232		CIE Marks	:	100
Hrs/Week	:	4:0:0:0	4	SEE Marks	:	100
Credits	:	04	4	SEE Duration	:	3 hours
 2. Ana 3. Eva 4. Dev Deterioration: analysis, prelin mapping, core Influence on s	e ab crit llyz llua zelo : Int nina dril erv	le: be Causes of deterioration e failures of concrete stru- te failures and deterioration p repair techniques for deter Un troduction cause of deter ary investigation, experim- ling and other instrument Un ticeability and durabilit	ictures on in concrete eteriorated con $\mathbf{nit} - \mathbf{I}$ ioration of con nental investiga tal methods. $\mathbf{nit} - \mathbf{II}$ y: effects due	structures crete structures ncrete structures, diag ations using NDT, loa to climate, temperatu	nd test	ting, corrosion 10Hrs nemicals, wear
	ods					
Maintenance a	and	repair strategies: Defi		enance, repair and reh	abilita	
maintenance in	npo sess	rtance of maintenance, particular procedure for evaluation of the second se	reventive meas	sures on various aspec	ts.	
					5 01	deterioration_
		Un	it – IV			09Hrs
concrete, mort	ar a	Un pair: rust eliminators a and dry pack, vaccum o noring and underpinning.	and polymers	coating for rebar du	ring	09Hrs repair foamed
concrete, mort	ar a	pair: rust eliminators and dry pack, vaccum on oring and underpinning.	and polymers	coating for rebar du	ring	09Hrs repair foamed
concrete, mort repair for crack Repair of to s disruption, wea dilapidated stru	ar a ts sl tru athe	epair: rust eliminators a and dry pack, vaccum o noring and underpinning. Un ctures: repairs to overco ring wear fire, leakage, res .Case Studies	and polymers concrete, gunit it – V me low memb	coating for rebar du te and shotcrete epoy er strength deflection	ring to the second seco	09Hrs repair foamed jection mortar 10Hrs king chemical
concrete, mort repair for crack Repair of to s disruption, wea dilapidated stru Expected Cou After succo CO1: Ident CO 2: Anal CO 3: Eva	ar a ar a athe	pair: rust eliminators a and dry pack, vaccum of noring and underpinning. Un ctures: repairs to overco ring wear fire, leakage, res .Case Studies Outcomes: ful completion of this cou the causes of failures in con failures in concrete structu e causes for failures in de p simple and comprehens	and polymers concrete, gunit $\mathbf{hit} - \mathbf{V}$ me low memb marine exposu urse the student nerete structures res eteriorated con	coating for rebar du te and shotcrete epor er strength deflection are, engineered demol t will be able to:	ring ky in , crac ition	09Hrsrepair foamedjection mortar10Hrsking chemicaltechniques for

- 3. Raiker R.N Learning for failure from deficiencies in design construction and service" R & D Center (SDCPL), 2008.ISBN:12657-764-853-2318
- 4. B Vedivelli, "Rehabilitation of concrete structures", Standard publishers and distributors 2013, ISBN: 978-8180141102

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

wappin	Mapping of COs with 1 Os										
CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
PO											
CO1	L	-	Μ	Μ	Μ	-	-	-	-	Μ	М
CO2	-	-	Μ	Μ	Μ	-	-	-	-	-	-
CO3	L	-	L	L	-	-	-	-	-	-	-
CO4	L	L	-	-	-	-	-	-	-	L	-

	PSO1	PSO2
CO1	L	-
CO2	Н	-
CO3	L	-
CO4	Н	L

AD	V	ANCED PRE-STRE	SSED CON	CRETE (ELECT	IVE	3)		
Course Code	:	16MST241		CIE Marks	:	100		
Hrs/Week	:	4:0:0:0	4	SEE Marks	:	100		
Credits	:	04	4	SEE Duration	: 3 hours			
Student will b 1. Underst 2. Analyze 3. Apply k 4. Design Design of Sec rectangular and Sections for S prestressing Te and 1-beam - D	e al ance ance ance ance tion tion d I hea chi Desi	l various types prestresse ad determine loads and str wledge of analytical solu <u>I detailing of Prestressed</u> UT n for Flexure : Allowat -section for flexure - ke ar : Shear and Principa niques - horizontal, slop gn of shear reinforcemer essing tendons, failures o	resses in PSC M tion in problem structural elem nit - I ble stresses - 1 ern lines - cat al stresses - In ing and vertica nt - Indian cod	Members a solving ents. Elastic design of sir ble profile and cable mproving shear resi al prestressing - Ana le provisions, Import	layo layo layo lysis	out. Design of e by different of rectangular		
Shear and Tor	sio	nal resistance- ultimate		nce- Design of shea	r rei			
torsion.								
		Uni	it – III			09 Hrs		
	ink	as of prestressed concret age deflections Flexural S.						
		Uni	it – IV			10 Hrs		
Transmission le tensioned men Magnel method	eng iber ls -		s - IS code pro n End block - ement. iit – V	visions - Anchorage z Analysis by appro	zone s ximat	stresses in post e, Guyon and 10 Hrs		
- Primary and	sec le p	ninate Structures : Advan ondary moments - P and profiles -Analysis of cont	d C lines - Lin	ear transformation c	oncoi	dant and non-		
After successfu CO1: Ider CO2: App CO3: Ana	l co tify ly a lyz	ompletion of this course to y various prestressed stru analytical skills to evalua e prestressed structural en- and detail prestressed str	ctural elements te performance lements with v	a. e of prestressed struct various considerations				

Reference Books:

- 1. N Krishnaraju "Prestressed Concrete", Tata McGraw-Hill Education, 2008,ISBN0070634440,9780070634442
- 2. Lin T. Y and H. Burns "Prestressed Concrete structures", Wiley Publication, 2009, ISBN: 978-0-471-01898-8
- 3. N. Rajagopalan, "Prestressed Concrete", Narosa Publishing House.2nd edition,ISBN 2053 2005.
- 4. A. Nilson, "Design of Prestressed Concrete", John Willey & Sons.2nd edition, ISBN 1765 1997.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

mappin	0	I		-	1	1	1		-	1	
CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
PO											
CO1	Н	Μ	Μ	Μ	-	Μ	-	L	-	L	М
CO2	Н	L	-	-	-	-	-	Μ	-	L	-
CO3	М	-	Μ	L	-	-	-	Μ	-	-	L
CO4	L	М	L	Μ	-	L	-	М	-	-	-

	PSO1	PSO2
CO1	L	-
CO2	L	-
CO3	Н	-
CO4	L	-

		DESIGN OF SUBS	STRUCTURES	5 (ELECTIVE 3)		
Course Code	:	16MST242		CIE Marks	:	100
Hrs/Week	:	L: T: P: S	4:0:0:0	SEE Marks	:	100
Credits	:	04		SEE Duration	:	3 hours
 Develo Evalua Evalua Design Introduction, S foundations sys of Loads, Desig Concept of soil	e ab tan p a te the the sten gn c	le to: d principles of subsoil ex- nalytical skills in solving he soil shear strength par e sub structures. Un investigation, In-situ to ns. General requirement concepts. Un ear strength parameters, S	s complex problem ameters. nit – I esting of soils, of foundations, nit – II Settlement analy	Subsoil exploration Selection of foundat ysis of footings, Shall	ions, low f	Computations 10Hrs oundations in
clay, Shallow f	oun	dation in sand & C- Φ so the formula of the second secon				
methods, soil-s (rectangular &	truc trap	ring capacity & settleme cture interaction, difference bezoidal), strap footings concepts of structural des	t methods of me & wall footings	odeling the soil. Com , Raft – super structu	bine	d footings
0			it – IV			09Hrs
bearing capacit tension piles &	y o bat	: Load Transfer in Deep f different types of piles ter piles, Pile groups: Be en piles, Proportioning an	in different soil earing capacity, nd design conce	conditions, Laterally settlement, uplift cap	load	ed piles, , load
			nit – V			10Hrs
Foundations for foundation type IMPORTANT be covered, des Expected Cou After successfur CO1: Explain	or x, S NO ign rse l co des	ompletion of this course tign parameters of substr	duction, Forces derations, Ring les of all type for t be covered. the student will ucture	s on tower foundat foundations – genera potings as per relevan	ions, l con	Selection of cepts.
CO3: Assess se	ttle	bil shear strength parameter ment depending on grou allow and deep foundation	nd condition.			

Reference Books:

- 1. Swami Saran "Analysis & Design of Substructures"- Oxford & IBH Pub. Co. Pvt. Ltd., 1998. ISBN:434-238-1343.
- 2. W.C. Teng "Foundation Design"- Prentice Hall of India Pvt. Ltd., 2003. ISBN:234-456-12343.
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn "Foundation Engineering"- Wiley Eastern Ltd., Second Edition, 1984. ISBN:2285-064-12328.
- 4. J.E. Bowles "Foundation Analysis and Design"- McGraw-Hill Int. Editions, Fifth Ed., 1996. ISBN:745-873-12854.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

mappin	Mapping of COs with 1 Os										
CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
PO											
CO1	Н	-	L	Μ	-	-	-	-	-	-	-
CO2	-	-	Μ	-	-	-	-	-	-	Μ	-
CO3	L	-	-	Μ	-	-	-	-	-	L	М
CO4	Н	-	Μ	Н	-	-	-	-	-	Н	Η

	PSO1	PSO2
CO1	L	-
CO2	L	-
CO3	L	L
CO4	Н	-

		DESIGN OF PLATE	ES AND SHELI	LS (ELECTIVE 4)		
Course Code	:	16MST251		CIE Marks	:	100
Hrs/Week	:	L:P:T:S	4:0:0:0	SEE Marks	:	100
Credits	:	04		SEE Duration	:	3 hours
 Analyze Apply k 	anc anc sp	le: I various types of Spatial patial structures by variou wledge of analytical solu I detailing of spatial struc	is methods ition in problem	solving		9 Hr
Introduction to	nl	ate theory, Small deflec		loaded thin rectan	nular	
		solution for various later				
6			nit – II			10Hr
Levy's solution	n fo	or various lateral loading	g and boundary	conditions (No deri	vatior	ns), Numerica
examples. Ener	gy	methods for rectangular	1	nped edges.		
			it – III			10Hr
Bending of circ	ula	r plates with various edg	e conditions for	both solid and annu	lar pla	ates.
			it – IV		-	09Hr
		rved surfaces and classi Hyperbolic paraboloid, E			of sp	pherical shells
			nit – V			10Hr
		ng of cylindrical shells.	Introduction to	folded plates, analy	vsis o	f folded plate
Expected Court		Simpson's method.				
-		ful completion of this co	ourse the student	t will be able to:		
1		n principles of analysis fo	1			
	-	analytical skills to evalua	-	-		
	-	e spatial structures using e Design and detailing fo				
Reference Boo			<u>- spana structu</u>			
		and Woinowsky-Krieg				
2. J E Gibson	n B	Co., New York, 1959, IS G Neal, Linear Elastic t				
-	. C	. "Stresses in Plates and ISBN 13: 978007065730		edition, McGraw-Hi	11, 19	999, ISBN 10
4. R. Szilard,	"Τ	Theory and analysis of pla BN-13: 9780139134265	ates - classical a		ds", P	rentice
,//T,		uous Internal Evaluati				

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

Mapping of COs with POs										
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
Н	-	L	-	-	-	-	-	-	-	-
L	Μ		-	-	-	-	-	-	-	-
-	Μ	Μ	-	-	-	-	-	-	-	-
L	-	Н	-	-	-	-	-	L	-	-
	PO1	PO1 PO2 H - L M	PO1 PO2 PO3 H - L L M -	PO1 PO2 PO3 PO4 H - L - L M - -	PO1 PO2 PO3 PO4 PO5 H - L - - L M - -	PO1 PO2 PO3 PO4 PO5 PO6 H - L - - - L M - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 H - L - - - - - L M - - - - - - - M M - - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 H - L - - - - - L M - - - - - - - M M - - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 H - L -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 H - L -

	PSO1	PSO2
CO1	М	-
CO2	Н	-
CO3	М	-
CO4	М	L

Course Code	1	16MST252		NALYSIS (ELECTIVE		100
	:				:	
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100
Credits	:	4 Objectives (CLO):		SEE Duration	:	3 Hours
 Student will be 1. Underst 2. Apply t element 3. Analyse 4. Explain 	abl tanc he ts. e the the	e to numerical analysis concepts of shape fu e complex structures e concept of conder	techniques availa inction construction susing finite elem	ble in structural analys on, and derivation of s ents. nization of matrix ban	tiffnes	
memory	y sa	vings in computers.				I
			Unit – I	variables for various		10 Hr
between Finite minimization o advantages &	e E of ei disa	Difference Method nergy approach for e	and Finite Elen element formulati element procedur	is – Rayleigh-Ritz m nent Method – varia on – principles of finit re – finite elements bo problems.	tional e eler	method and nent method
Nadal diamlaga		t nonomatana aon		aamnatihility nagyin		
invariance - sh	ape		nial form of displa	 – compatibility requir acement function – gen 		
			Unit – III			10 Hrs
dimensional fin Numerical pro dimensional ba	rst blei ar e	and second order el ns to interpolate no	lements – Hermit odal variables us hree-noded using	shape functions for c te shape function for sing shape function. F Lagrangian shape fur	beam Formu	formulation - lation of one
			Unit – IV			10 Hrs
Two noded beam element formulation using Hermite shape function – Jacobian transformation matrix – strain-displacement matrix – stiffness matrix – consistent load vector – Gauss quadrature for numerical integration – numerical analysis of simple beams. Iso-parametric elements – sub-parametric and super-parametric elements – Formulation of two-dimensional three-noded triangular (CST)						
matrix – strain- for numerical i parametric and	d s	uper-parametric el				
matrix – strain- for numerical i parametric and	d s	uper-parametric el	Unit – V			9 Hrs

linear analysis – geometric and material non-linearity with examples.

Expected Course Outcomes:

After successful completion of this course the student will be able to:

- CO1: Identify principles of various numerical methods.
- CO2: Apply the knowledge of shape functions to analyze truss, beam and plate elements and to conduct research in addressing complex structures.
- CO3: Analyze and interpret solutions of engineering problems with different loading and boundary conditions.

CO4: Formulate higher order elements for numerical analysis.

Reference Books:

- 1. CS Krishnamoorthy, (1994) "Finite Element Analysis Theory and Programming", Tata McGraw-Hill, ISBN 0-07-462210-2
- 2. RD Cook, DS Malkus, ME Plesha and RJ Witt, (2002) "Concepts and applications of finite element analysis", Wiley
- 3. OC Zienkiewicz and RL Taylor, (2005) "The Finite Element Method: Its Basis and Fundamentals", Butterwoth
- 4. KJ Bathe, (2002), "Finite Element Procedures", Prentice Hall, ISBN 978-546-439-982

5. DV Hutton, (2004) "Fundamentals of Finite Element Analysis", Tata McGraw

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with Pos

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	М	-	-	-	-	-	-	-	-	-
CO2	М	Н	М	L	L	-	-	-	-	-	-
CO3	L	Н	Н	Н	-	М	-	-	L	-	-
CO4	Μ	Н	М	М	_	_	_	-	L	-	_

	PSO1	PSO2
CO1	L	-
CO2	Н	-
CO3	Н	-
CO4	М	-

		MIN	NOR PROJEC	CT		
Course Code	:	16 MST 26		CIE Marks	:	100
Hrs/Week	:	L:T:P:S	0:0:10:0	SEE Marks	:	100
Credits	:	05		SEE Duration	:	3 Hours
Course Learni	ng	Objectives:		·		
Students are ab	le t	0				
1. Understand	the	e method of applying eng	gineering know	ledge to solve specific	proł	olems.
2. Apply engin	nee	ring and management pri	inciples while	executing the project		
3. Demonstrat	e tł	ne skills for good present	ation and tech	nical report writing ski	lls.	
4. Identify and	l sc	lve complex engineering	g problems usir	ng professionally prese	ribed	d standards.
		G	GUIDELINES			
1. Each proj	ect	group will consist of ma	aximum of two	students.		
2. Each stu	der	nt / group has to selec	ct a contempo	orary topic that will	use	the technica
knowledg	ge c	of their program of study	after intensive	literature survey.		
3. Allocatio	n o	f the guides preferably in	accordance w	ith the expertise of the	facu	ılty.
4. The num	ber	of projects that a faculty	can guide wou	ald be limited to four.		
5. The mino	r p	roject would be performe	ed in-house.			
6. The imp	lem	entation of the project	must be pre-	ferably carried out u	sing	the resources
available	in	the department/college.				
Course Outco	nes	s:				
After going three	oug	h this course the students	s will be able t	0		
CO1: Concep	otua	lize, design and impleme	ent solutions fo	or specific problems.		
CO2: Comm	uni	cate the solutions through	h presentations	and technical reports.		
CO3: Apply	rese	ource managements skills	s for projects			
CO4: Synthe	size	e self-learning, team worl	k and ethics.			

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members : guide, two senior faculty members and Head of the Department.

Phase	Activity	Weightage
Ι	Synopsis submission, Preliminary seminar for the approval of	20%
	selected topic and Objectives formulation	
II	Mid-term seminar to review the progress of the work and	40%
	documentation	
III	Oral presentation, demonstration and submission of project report	40%

****Phase wise rubrics to be prepared by the respective departments**

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
• Demonstration & Presentation	15%
• Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Presentation / Demonstration of the project	20%
3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	М	М	Н	Н	Н			М		Н	Н
CO2					Н			Н	Н	Н	
CO3	Н	Н	М		М	М	Н	Н		М	Н
CO4		Н				Н	М	М	М	Н	

	PSO1	PSO2
CO1	Н	-
CO2	М	L
CO3	-	М
CO4	-	Н

Rashtreeya Sikshana Samithi Trust

R.V. College of Engineering

(Autonomous Institution Affiliated to VTU, Belagavi)

Department of Civil Engineering

Master of Technology (M. Tech.)

STRUCTURAL ENGINEERING

III and IV Semester Scheme and Syllabus of Autonomous System w.e.f 2016

R.V. College of Engineering, Bengaluru – 59 (Autonomous Institution Affiliated to VTU, Belagavi) M. Tech. Structural Engineering Department of Civil Engineering

Vision: Excel in Education, Research and Consultancy in Civil Engineering with emphasis on sustainable Development

Mission:

1. Disseminating and integrating the knowledge of structural, transportation, environmental and geotechnical engineering

- 2. Enhancing Industry Institute interaction leading to Interdisciplinary research
- 3. Imbibing wide range of skills in cutting edge technology for sustainable development
- 4. Motivate entrepreneurship and professional ethics to serve the society

Program: STRUCTURAL ENGINERING

Program Educational Objectives (PEO)

After successful completion of structural engineering program, the post graduates will be able to

- 1. Independently analyze and design various forms of structures with sustainable materials.
- 2. Develop professionalism in academics, structural consultancy and entrepreneurship.
- 3. Pursue advanced research, career and participate in professional societies.
- 4. Address societal needs through interdisciplinary approach.

Program Outcomes (PO)

M. Tech. in Structural engineering graduates will be able to:

PO1: Scholarship of Knowledge – Acquire in depth knowledge of Structural Engineering, including wider and global perspective, with an ability to distinguish, evaluate, analyze and synthesize existing and new knowledge and integration of same for enhancement of knowledge.

PO 2: Critical Thinking – Analyze complex structural engineering problems critically, apply independent judgement for synthesizing information to make intellectual and creative advances for conducting research in the areas of wider theoretical, practical and policy context.

PO3: Problem Solving – Think laterally and originally, conceptualize and solve structural engineering problems, evaluate a wide range of potential solutions for those problems and arrive

at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of structural engineering.

PO4: Research Skill – Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually / in groups to the development of scientific / technological knowledge in domains of structural engineering such as alternate construction materials, techniques and structural masonry.

PO5: Usage of Modern tool – Create, select, learn and apply appropriate computational tools, techniques, resources, modern engineering and structural analysis and design software for prediction and modeling of complex engineering activities with an understanding of their limitations.

PO6: Collaborative and multidisciplinary research – Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative multidisciplinary scientific research, demonstrate capacity for self-management and team work, decision making based on open mindedness, objectivity and rational analysis in order to achieve common goals and further learning of themselves as well as others.

PO7: Project management and Finance- Demonstrate knowledge and understanding of engineering and project management principles and apply the same to one's own work as a member and leader in team, manage projects efficiently in structural engineering and multi-disciplinary environments after consideration of economic and financial factors.

PO8: Communication – Communicate with the engineering community and with society at large, regarding complex structural engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate codal provisions, make effective presentations and give and receive clear instructions.

PO9: Life Long Learning – Recognize the need for, and have the preparation and ability to engage in lifelong learning independently, with high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10: Ethical Practices and Social responsibility – Acquire intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the society for sustainable development.

PO11 Independent and reflective thinking – Observe and examine critically, outcome of one's actions and make corrective measures subsequently and learn from mistakes without depending on external feedback.

Program Specific Criteria (PSC)

Lead Society: American Society of Civil Engineers

1. Curriculum

The program prepares students for professional, teaching and research careers. Emphasis is on the acquisition of knowledge concerning to analysis, design, construction, maintenance, management and performance of structural components and structures with due consideration to public governing policies and guidelines.

2. Faculty competency

Faculties are qualified with post graduate and doctoral degrees in the stream of structural engineering. The faculties are actively publishing research papers in peer reviewed national and international journals related to structural engineering and allied fields leading to sustainable development. The faculties are also actively involved in R&D activities, patenting and associated with professional bodies.

Program Specific Outcomes (PSO)

M. Tech. in Structural engineering graduates will be able to:

- **PSO 1.** Apply knowledge of materials and analysis for design of RCC, steel and masonry structures.
- **PSO 2.** Demonstrate the use of alternate engineering materials, technologies and management for sustainable environment.

R. V. College of Engineering, Bengaluru – 59.

(An Autonomous Institution affiliated to VTU, Belagavi)

Department of Civil Engineering

M. Tech. Structural H	Engineering
-----------------------	-------------

			THIRI	SEMESTER				
Sl. No	Course Code	Course Title	BoS		Total			
				Lecture	Tutorial	Practical	Experiential Learning	Credits
				L	Т	Р	S	
1	16 MST 31	Special Construction Materials	CV	4	0	1	0	5
		And Concrete						
2	16 MST 32X	Elective -5	CV	4	0	0	0	4
3	16 MST 33X	Elective -6	CV	4	0	0	0	4
4	16 MST34X/	Elective -7	CV	4	0	0	0	4
	16MHT34X							
5	16MST35	Internship/ Industrial Training	CV	0	0	3	0	3
6	16MST36	Technical Seminar	CV	0	0	2	0	2
		Total		16	0	6	0	22

	Elective 5								
16MST321	Earthquake Resistant Structures	16MST322	Precast Concrete Structures						
	Elective 6								
16MST331	16MST331Stability of Structures16MST332Advanced Structural Analysis								
	Elective	7							
16MHT341/	Earth Retaining structures								
16MST341									

SI.	Course Code	Course Title	BoS		Total Credits			
No				Lecture L	Tutorial T	Practical P	Experiential Learning S	
1	16MST41	Major Project	CV	0	0	26	0	26
2	16MST42	Seminar	CV	0	0	2	0	2
		Total		0	0	28	0	28

	D	ECIAL CONS	TRUCTION MATERI	ALS AND CONCRE	TE	
Course Code	:	16MST31		CIE Marks	:	100+50
Hrs/Week	:	L: T: P: S	4:0:2:0	SEE Marks	:	100+50
Credits	:	5		SEE Duration	: 3 +3 Hours	
Course Learni	ng O	bjectives: Studer	nts are able to			
1 Understan	d va	rious modern cons	struction materials and me	thods		
2 Apply the	knov	wledge of differen	nt materials to modify the p	properties		
3 Select app	ropri	iate materials for	particular application			
4 Proportion	and	estimate material	ls for different mixes			
I			UNIT – I			8 Hours
Review of con	vent	ional concrete.	Non-destructive methods	of testing - Rebound	har	nmer test, Pulse
velocity method	l, Pu	llout test, Electric	al methods, Penetration re	sistance techniques.		
Importance of s	teel	reinforcement in I	RCC, Types, testing metho	ods.		
			UNIT – II			7 Hours
Geopolymers -	- Pa	aste, mortar, co	ncrete and masonry un	its. Concept, advanta	ages	, Proportioning,
Geopolymer m	ason	ry, Applications.	Ready Mixed Concrete	e, Advantages, Compon	ents	of RMC Plant,
Quality aspects	of R	MC.				
			UNIT – III			7 Hours
Fibre reinforced	1 cor	ncrete, Behaviour	in compression and flexu	re. Types of fibres, Act	ion	of fibres, Failure
of fibres, Simpl	e De	sign and Applicat	tion.			
Light weight co						
	ncre	te, types, Material	ls used, Design of light we	eight concrete, Properties	and	l Applications.
	ncre	te, types, Material	ls used, Design of light we Unit – IV	eight concrete, Properties	anc	Applications.
						7 Hours
Ferro cement- (Conc	ept, materials, co	Unit – IV	viour in tension, Simple	desi	7 Hours
Ferro cement- (Conc	ept, materials, co	Unit – IV nstruction methods, Behav	viour in tension, Simple	desi	7 Hours
Ferro cement- (High Density co	Conc	ept, materials, con ete- Necessity, Ra	Unit – IV nstruction methods, Behav diation shielding, material	viour in tension, Simple of s, methods of placement	desiį	7 Hours gn, Applications. 7 Hours
Ferro cement- (High Density co Nanotechnolog	Conc oncre y an	ept, materials, con ete- Necessity, Ra d Concrete – Ne	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V	viour in tension, Simple of s, methods of placement lation of materials at 1	desia nanc	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- (High Density co Nanotechnolog hybridization, r	Conc oncre y an	ept, materials, con ete- Necessity, Ra d Concrete – Ne	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu ccrete – Nano SiO ₂ , Nano'	viour in tension, Simple of s, methods of placement lation of materials at 1	desia nanc	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- (High Density co Nanotechnolog hybridization, r tubes, nanofibre	Conc oncre y an hano es, Pi	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu crete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment)	desig nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- (High Density co Nanotechnolog hybridization, r tubes, nanofibro 1) Proport	Conconcre oncre y an aano es, Pr ion c	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using	Unit – IV Instruction methods, Behave diation shielding, material UNIT-V ono-Engineering, Manipu acrete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment)	desig nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- (High Density co Nanotechnolog hybridization, r tubes, nanofibro 1) Proport	Conconcre oncre y an aano es, Pr ion c	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl	Unit – IV Instruction methods, Behave diation shielding, material UNIT-V ono-Engineering, Manipu acrete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment)	desig nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- (High Density co Nanotechnology hybridization, r tubes, nanofibro 1) Proport 2) Testing 3) Testing	Conc oncre y an aano es, Pi ion c of c	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse	Unit – IV Instruction methods, Behave diation shielding, material UNIT-V ono-Engineering, Manipu acrete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Composed g BIS and ACI method and dt's hammer. velocity method.	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment)	desig nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- (High Density co Nanotechnolog hybridization, r tubes, nanofibre 1) Proport 2) Testing 3) Testing 4) Locatio	Conc oncre y an aano es, Pr of c of c of c of c	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse v rebars using profe	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu crete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and dt's hammer. velocity method. ometer	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment)	desig nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- C High Density co Nanotechnology hybridization, r tubes, nanofibre 1) Proport 2) Testing 3) Testing 4) Locatio 5) Modulu	Conc oncre y an aano es, Pr of c of c of c of c of c s of	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse rebars using profe elasticity of concre	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu crete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and dt's hammer. velocity method. ometer rete cylinder	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment)	desig nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- C High Density co Nanotechnolog hybridization, r tubes, nanofibro 1) Proport 2) Testing 3) Testing 4) Locatio 5) Modulu 6) Flexura	Concre oncre y an aano es, Pi ion c of c of c of c of c r of c s of l stre	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schimo oncrete by Pulse v rebars using profe elasticity of concrete.	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu crete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and dt's hammer. velocity method. ometer rete cylinder	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment)	desig nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate-
Ferro cement- (High Density co Nanotechnolog hybridization, r tubes, nanofibre 1) Proport 2) Testing 3) Testing 4) Locatio 5) Modul 6) Flexura 7) Deflect	Conce oncreation y an aano of c of c of c of c of c of c of c of	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse rebars using profe elasticity of concrete. of RCC beam	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu crete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and dt's hammer. velocity method. ometer rete cylinder	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment) l compare the properties	desi; nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate- ay, Carbon nano
Ferro cement- C High Density co Nanotechnolog hybridization, r tubes, nanofibre 1) Proport 2) Testing 3) Testing 4) Locatio 5) Modulu 6) Flexura 7) Deflect 8) Prepara	Concre oncre y an ano of c of c of c of c of c l stre ion c tion c	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse rebars using profe elasticity of concrete. of RCC beam	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu crete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and dt's hammer. velocity method. ometer rete cylinder	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment) l compare the properties	desi; nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate- ay, Carbon nano
Ferro cement- C High Density co Nanotechnolog hybridization, r tubes, nanofibre 1) Proport 2) Testing 3) Testing 4) Locatio 5) Modulu 6) Flexura 7) Deflect 8) Prepara	Conce oncreation y an aano of c of c of c of c of c of c of c of	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse rebars using profe elasticity of concrete. of RCC beam of alkaline solution	Unit – IV nstruction methods, Behav diation shielding, material UNIT-V ono-Engineering, Manipu crete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Compo g BIS and ACI method and dt's hammer. velocity method. ometer rete cylinder on and Casting of geopolym	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano ment) l compare the properties	desi; nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate- ay, Carbon nano
Ferro cement- C High Density co Nanotechnology hybridization, r tubes, nanofibro 1) Proport 2) Testing 3) Testing 4) Locatio 5) Modulu 6) Flexura 7) Deflect 8) Prepara Course Outcor	Conc oncre y an ano es, Pi ion c of c of c of c of c of c ion of l stre ion c tion c tion c	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse rebars using profe elasticity of concre ength of concrete. of RCC beam of alkaline solution	Unit – IV Instruction methods, Behave diation shielding, material UNIT-V ono-Engineering, Manipu acrete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Composed g BIS and ACI method and dt's hammer. velocity method. ometer rete cylinder on and Casting of geopolymatic udent will be able to	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano onent) d compare the properties	desi; nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate- ay, Carbon nano
Ferro cement- C High Density co Nanotechnolog hybridization, r tubes, nanofibra 1) Proport 2) Testing 3) Testing 3) Testing 4) Locatio 5) Modulu 6) Flexura 7) Deflect 8) Prepara Course Outcor After going thro	Conception of conception conceptio	ept, materials, con ete- Necessity, Ra d Concrete – Ne materials in con roperties and appl concrete mix using oncrete by Schim- oncrete by Pulse rebars using profe elasticity of concre ength of concrete. of RCC beam of alkaline solution	Unit – IV Instruction methods, Behave diation shielding, material UNIT-V ono-Engineering, Manipule Interete – Nano SiO ₂ , Nano' ications. UNIT-VI (Lab Composed g BIS and ACI method and dt's hammer. velocity method. ometer rete cylinder on and Casting of geopolymetric udent will be able to modern construction material	viour in tension, Simple of s, methods of placement lation of materials at r TiO ₂ , Nano Al ₂ O ₃ , Nano onent) d compare the properties	desi; nanc o cla	7 Hours gn, Applications. 7 Hours o scale, hydrate- ay, Carbon nano

CC	D3: Identity suitable materials for specific application.
CC	D4: Design and conceptualize mixes for structural components.
Re	ference Books:
1	P. Kumar Mehta, Paulo J. M. Monteiro, Concrete Microstructure, properties and Materials, McGraw
	Hill Education India Private Limited, New Delhi, Fourth Edition, 2015. ISBN-13: 978-93-393-0476-1.
2	A R Santhakumar, Concrete Technology ,Oxford University Press, 2012,ISBN-13:978-0-19-567153-7.
3	Neville. A.M, Properties of concrete IV Edition, Pearson Education, Inc, and Dorling Kindersley
	Publishing Inc. 1995.
4	Shetty. M.S., Concrete Technology Theory and Practice, S.Chand & Co Ltd., New Delhi, 2007.
Co	ode Books:
1	IS 10262 : 2009, Concrete Mix proportioning guidelines, First Revision.2009.
	ACI Committee 211, Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass
	Concrete, ACI 211.1-91, American Concrete Institute, Farmington Hills, Michigan, 1991
Sch	neme of Continuous Internal Evaluation (CIE)
CII	E will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and
the	quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be
100) marks.
Scł	neme of Continuous Internal Evaluation (CIE) for Practical
CIE	E for the practical courses will be based on the performance of the student in the laboratory, every week.

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

P													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
	CO1	L	L	-	L	-	-	-	-	L	-	-	
	CO2	L	L	-	L	-	Μ	-	-	-	-	-	
	CO3	L	L	-	L	-	L	-	-	Н	-	-	
	CO4	L	Н	L	-	-	-	-	М	-	М	-	

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	М	Н
CO2	Н	Н
CO3	М	М
CO4	Н	L

Coi]	EARTHQUAKE RESISTANT		5)	
Course Code		:	16MST321	CIE Marks	:	100
Hrs	s/Week	:	L:T:P:S :: 4:0:0:0	SEE Marks	:	100
Cre	edits	:	04	SEE Duration	:	3 Hrs
Co	urse Learnin	ig C	Objectives (CLO):			
1	Discuss the	co	ncepts in Engineering Seismolo	ogy, response spectrum, str	uctu	ral configuration
	•		ismic analysis			
2			load resisting structural systems			
3			elop earthquake resistant structu			
4	Test the stru	ıctu	ral response of building under se	eismic loads		1
			UNIT – I ngineering seismology: Geolog			09Hr
Mit syst	igation. Stru tems, Requir	ctui eme	smic instruments. Earthquake H cal behavior under gravity and ents of efficient earthquake res	seismic loads, Lateral loa	d r	esisting structura
isol	ation systems	5				
			UNIT – II ry and strong motion character			10Hrs
resi	stant design.	C	ipartite (D-V-A) response spec omputation of seismic forces orce and dynamic analysis) as pe	in multistoreyed buildings		=
			UNIT – III			10Hrs
Stru	gularities, So	ft st	ation for earthquake resistant de torey, Torsion in buildings. Desi		-18	
irre mas duri	ing earthquak	æs,	ames, modeling concepts of infi failure patterns, strength of mas epts for earthquake resistant ma	-	lenc	nasonry buildings lerness concept of
irre mas duri	ing earthquak	æs,	failure patterns, strength of mas	onry in shear and flexure, S	lenc	nasonry buildings lerness concept of
irre mas duri mas Des ene: for	ing earthquak sonry walls, c sign of Reinfo rgy absorptio	tes, conc orce on in ctile	failure patterns, strength of mas repts for earthquake resistant ma UNIT – IV ed concrete buildings for earthque n buildings. Confinement of con- e detailing provisions as per Ia alls.	onry in shear and flexure, S sonry buildings – Codal pro uake resistance-Load combi acrete for ductility, design o	lenc visi nati f co	nasonry building lerness concept o ons 10Hr ons, Ductility and lumns and beam
irre mas duri mas Des ene for deta	ing earthquak sonry walls, c sign of Reinfo rgy absorptio ductility, du ailing of shea	ces, conc orce on in ctile r wa	failure patterns, strength of mas repts for earthquake resistant ma UNIT – IV ed concrete buildings for earthque n buildings. Confinement of com e detailing provisions as per I alls. UNIT – V	onry in shear and flexure, S sonry buildings – Codal pro uake resistance-Load combinerete for ductility, design o S-1893. Structural behavio	lenc visi nati f co r, d	nasonry buildings lerness concept o ons 10Hr ons, Ductility and lumns and beams esign and ductile 09Hr
irre mas duri mas Des ene for deta Seis non	ing earthquak sonry walls, c sign of Reinfo rgy absorptio ductility, du ailing of shea smic response llinear proced	ces, conce orce on in cetile r wa e co	failure patterns, strength of mas repts for earthquake resistant ma UNIT – IV ed concrete buildings for earthque n buildings. Confinement of con- e detailing provisions as per Ia alls.	onry in shear and flexure, S sonry buildings – Codal pro uake resistance-Load combinerete for ductility, design o S-1893. Structural behavio	lenc visi nati f co r, d	nasonry building lerness concept o ons 10Hr ons, Ductility and lumns and beam esign and ductile 09Hr f linear and
irre mas dur mas Des ene for deta Seis non Seis	ing earthquak sonry walls, c sign of Reinfo rgy absorptio ductility, du ailing of shea smic response llinear proced	es, conce porce on in ctile r wa e co lure on a	failure patterns, strength of mass repts for earthquake resistant mass UNIT – IV ed concrete buildings for earthque in buildings. Confinement of con- e detailing provisions as per I alls. UNIT – V introl concepts – Seismic demand s of seismic analysis. Performan and retrofitting of structures	onry in shear and flexure, S sonry buildings – Codal pro uake resistance-Load combinerete for ductility, design o S-1893. Structural behavio	lenc visi nati f co r, d	nasonry building lerness concept o ons 10Hr ons, Ductility an lumns and beam esign and ductil 09Hr f linear and

PSO1 PSO2											
Mappi	ng of Co	urse Ou	tcomes	(CO) to	Progra	m Speci	fic Outc	omes (P	SO)		
CO4	Н	Н	М	Н	-	-	-	L	Н	-	Н
CO3	Н	Н	-	-	-	-	-	-	Н	-	-
CO2	Н	Н	М	-	L	-	-	L	-	-	-
CO1	Н	Н	М	-	-	-	-	-	-	-	-
РО											
CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
Mappi	ng of CC	s with I	Pos								
(Theory	y) will be	100 ma	rks.								
_	0 marks.			_						_	
	estion pa				. ,	th intern	al choice	e from e	ach unit.	. Each ou	lestion w
•	e of Sem			ination	(SEE)						
	d the quive of the design of t			each. Th	e assign	iment wi	in be for	20 mar	ks. The	total mai	the stor C
	ll consist						-				
	e of Con										20
	hn Wiley										
	ismic De	0					y Buildir	igs, T Pa	aulay and	d M J N I	Priestley
4 IS	- 1893 (Part I): 2	002, IS	- 13920	: 1993, 1	(S - 432)	5: 1993,	IS-1382	8: 1993		
	06, ISBI										
	rthquake				ures – P	ankaj A	garwal, N	Manish S	Shrikand	e - PHI I	ndia,
	BN 13, :		U					, "		,, _ 0	-,
	rthquake										
-	namics o opra, Pea			-			-	-	-		
Reference Books: 1 Dynamics of Structures – Theory and Application to Earthquake Engineering- 2nd ed. – Anil K.											
CO 4			ictural re	esponse	of build	ing unde	r seismic	c loads			
CO 3				-		nt structi					
	seismic	response	e control	concept	ts.	-	•		-	-	
CO 2							ctural sy	stems u	ising co	dal prov	visions a
	configu	ration d	nctility a	ind seisr	nic anal	VS1S					

	_ ~ ~ ~ _	
CO1	М	-
CO2	М	-
CO3	Н	-
CO4	Н	-

]	PRECAST CONCR	ETE STRUC	TURES(Elective	5)	
Cou	rse Code	:	16MST322		CIE Marks	:	100
Hrs	/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100
Cre	dits	:	04		SEE Duration	:	3 Hrs
Cou	rse Learnin	g C	bjectives (CLO):				•
	2		stand precast technologi				
2	Ability to un	Ider	stand the manufacturing	process and its	transportation.		
3	Ability to de	sig	n precast concrete eleme				
				IT – I			09Hrs
	1 1		st, precast products, s odologies, equipments ar				• • •
cons				T – II		1501	10Hrs
Prec	ast and pre-	stre	ss plant setup production		systems batching n	lant	
	sportation sy			on and storage	systems, sutening p	iuiit	setup, logistic of
	<u> </u>			Γ–III			10Hrs
Type	es of pre-stre	ess 1	nollow core slabs, manuf		lology, load chart a	nd c	
• •			t, loading sequence, pro	U			· I I
	ntenance.		,	6	<u>I</u>		,
			UNI	$\Gamma - IV$			10Hrs
Pre	stress beams	, T	T slabs, manufacturing	methods, produc	ction, loading transp	oort	ation and erection
	ications.						
			UNI	T - V			09Hrs
Mod	lular constru	ctic	on, types of precast elem	nents, typical lay	yout, joint details, s	hop	drawings, design
-			beams, panel, stairs an				-
			nd loading, transportation	on, site preparat	ion and erection, fi	nisł	ning and handling
	service and						
-			outcomes(CO):				
			npletion of this course th				
CO1	Demons	trat	e the precast concrete co	oncepts, types of	precast construction	n an	d its advantages
CO2	2: Identify	pre	ecast plant set up for pl	roduction and st	torage systems, pla	n lo	gistics of precast
	elements	-					C 1
CO3	B: Examine	e di	fferent types of pre-cast	elements.			
CO4	E: Design of	of p	recast elements, manufa	cturing methods			
Refe	erence Book	s:					
1			Precast Concrete Structu	ires, Butterworth	n-Heinemann, An in	npri	nt of Elsevier
	Science,200	2.					

Hubert Bachmann and Alfred Steinle' Precast concrete structures' First edition,2011, Ernst
2 & Sohn, GmbH & Co., ISBN 978-3-433-60096-2.

- 3 Kim.S.Elliot and Colin K Jolly, 'Multi –Storey Precast Concrete Framed Structures', 2nd Edition November 2013, Wiley-Blackwell, ISBN: 978-1-4051-0614-6
- 4 Prestressed Concrete Institute ,PCI Journal– Proposed Design Requirements for Precast Concrete, PCI Committee on Building Code and PCI Technical Activities Committee

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with Pos

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
PO											
CO1	Η	-	L	Н	-	-	L	-	Н	-	L
CO2	Н	M	-	Н	-	-	М	-	M	Н	L
CO3	Н	-	Μ	-	-	-	-	-	Н	L	L
CO4	Н	Н	Μ	M	-	-	-	-	Н	Н	L

	PSO1	PSO2
CO1	-	L
CO2	-	М
CO3	-	Н
CO4	Н	-

			STABILITY OF	STRUCTURE	ES (Elective 6)			
Course Code	:	:	16MST331		CIE Marks	:	100	
Hrs/Week		:	L:T:P:S	4:0:0:0	SEE Marks	:	100	
Credits		:	04		SEE Duration	:	3Hr	'S
Course Lear	nin	Ig (Objectives (CLO): Gra	duates shall be a	able to			
1 Learn pr	inc	ipl	es of stability of structur	res				
2 Study th	e co	one	cept of buckling					
3 Analyse	the	e st	ructural elements for sta	bility.				
4 Evaluate	the	e u	se of strain energy in pla	ate bending and	stability.			
			UN	IT – I				9Hrs
Buckling of	col	un	nns: Eulers equation for	buckling of ela	astic column, Buckli	ng c	of colu	nns with
various bound	lar	y c	conditions, Deflection sh	napes of buckled	d columns. Energy m	eth	od, Co	ncepts of
stable and u	inst	tab	le equilibrium of syst	tems. Simple	column model with	a	latera	spring,
Approximate	cal	lcu	lation of critical loads by	y energy method	1.			
			UN	IT – II				10Hrs
Inelastic Bud	kli	ng	: Effect of shear force o	n the critical loa	ad of column. Applic	atio	n to bu	ckling of
built up colu	nn	s , 1	Inelastic buckling. Limi	tations of Euler	's theory, Reduced r	nod	ulus th	eory and
shenley's tan	gen	t n	nodulus theory, compari	son with experin	mental results.			
			UN	IT – III				10Hrs
Buckling of	Ec	cce	ntrically loaded colur	nns: Effect of	initial imperfection	s, p	erry R	obertson
approach to	co	lur	nn failure. Influence o	of eccentricity	and secant formula	. M	ultiple	column
formulas. M	ılti	ple	e column curves of IS	code for varie	ous imperfection fa	ctor	s. Sele	ection of
sections for c	om	pre	ession members.					
			UN	IT – IV				9Hrs
Lateral buck	klir	ıg	of beams: Lateral buck	kling of beams	in pure bending, L	ater	al buo	ckling of
cantilever bea	ım	an	d narrow rectangular be	eams. Pure Tors	sion of thin – walled	bar	s of op	ben cross
section. Non	- u	nif	form Torsion of thin – w	alled bars of ope	en cross section			
			UN	$\mathbf{T}\mathbf{T} - \mathbf{V}$		_		10Hrs
-			Plates: Simply support				-	
direction. Bu	kli	ing	of rectangular plates un	der the action o	f shearing stresses. P	ract	ical im	plication
in the design	of o	coi	npression members and	beams				
Expected Co	11100	70.1	Outcomos:					
•			mpletion of this course	the student will	be able to:			
			the principles of strength			ina		
	-		e principles of stability			mg		
-					-		d plat	Ac licino
			e the buckling load or and approximate metho		n – column, frame	s af	iu pial	es using
			analytical skills.	us.				
CO4. De	vel	υþ	anaryucai skiiis.					

Ref	erence Books:
1.	Stephen P.Timoshenko, James M Gere, "Theory of Elastic Stability"-2nd Edition, Tata
	McGraw Hill, New Delhi,2010, ISBN-10 0-07-070241-1 ISBN-13 978-0-07-070241-7
2.	F.Bleich Buckling strength of Metal structures, Tata McGraw Hill,1952
3.	N.Subramanian, Design of steel structures, Oxford University Press,2011, ISBN:
	9780198068815.
4.	T.V.Galambos, Guide to stability design criteria for metal structures,5 th Edition, John
	Wiley&Sons,Newyork,1998. ISBN 1-4196-5207-9.

5. F.R.Shanley, Strength of Materials, Tata McGraw Hill, 1957, ISBN-0-471-46890-8

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

		Programme outcomes									
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	М	L	М	L	-	-	-	L	L	-	-
CO2	Н	Н	Н	L	-	-	-	М	L	-	-
CO3	Μ	Н	Η	М	L	-	-	М	L	-	-
CO4	М	Н	Н	М	L	-	-	L	L	-	-

	PSO1	PSO2
CO1	L	-
CO2	М	-
CO3	Н	-
CO4	Н	-

			ADVANCED STRU	UIUKAL ANA	LYSIS (Elective 6)			
Cou	rse Code	:	16MST332		CIE Marks	:	100	
Hrs/	/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	: 100	
Cre	dits	s : 04 SEE Duration : 3		3 Hrs				
Cou	rse Learnin	g C	bjectives (CLO): Stude	ent shall be able to)			
1	Discuss con	cep	ts of stresses, moments,	deformation and	d pressure in beams	and	colum	ıs
2	Interpret the	e inf	luence of stresses, mom	ents, deformation	on and pressure on b	eam	is and co	olumns
3	Apply conc	epts	of mathematics to solv	e problems relate	ed to beams and colu	umn	IS	
4	Calculate st	ress	es, moments, deformati	on and pressure	in beams and colum	ns		
			UN	IT – I				09Hrs
Bear	ms on elast	ic f	oundations: Differentia	al equations of	elastic line interpret	tatic	on of co	onstants of
integ	gration, infin	ite	beam with c					
once	entrated load	, me	oment and UDL and pro	blems related to	o infinite beams. Sen	ni-ir	nfinite b	eams with
			noment and UDL, semi-					
	emi-infinite				U			, 1
				T – II				10Hrs
Rea	m-Column.	Go			nd lateral loads anal	veie	of beau	
			verning differential equa	ation for axial ar				n columns
subj	ected to ax			ation for axial ar				n columns
subj			verning differential equa and concentrated load	ation for axial ar ls, axial and U				n columns ferent end
subj conc	ected to ax litions.	ial	verning differential equa and concentrated load UNI	ation for axial ar ls, axial and U T – III	JDL, beam colum	n w	ith dif	n columns ferent enc 10Hrs
subje conc Buc	ected to ax ditions. kling of Co	ial D un	verning differential equa and concentrated load UNI ms: Assumptions, Eule	ation for axial and Is, axial and I Is, axial and I T – III er's theory of b	JDL, beam column	n w diff	ith diff	n columns ferent enc 10Hrs equation
subje conc Buc prisr	ected to ax ditions. kling of Co matic column	ial Jun ns v	verning differential equa and concentrated load UNI ms: Assumptions, Eul- with different end condition	ation for axial and U ls, axial and U T – III er's theory of b tions, obtaining	JDL, beam column	n w diff	ith diff	n columns ferent end 10Hrs equation
subje conc Buc prisr	ected to ax ditions. kling of Co matic column	ial Jun ns v	verning differential equa and concentrated load UNI ms: Assumptions, Eul- vith different end condi- ic columns, buckling of	ation for axial and U ls, axial and U T – III er's theory of t tions, obtaining frames.	JDL, beam column	n w diff	ith diff	n columns ferent end 10Hrs equation
subje conc Buc prisr	ected to ax ditions. kling of Co matic column	ial Jun ns v	verning differential equa and concentrated load UNI ms: Assumptions, Eul- vith different end condi- ic columns, buckling of	ation for axial and U ls, axial and U T – III er's theory of b tions, obtaining	JDL, beam column	n w diff	ith diff	n columns ferent end 10Hrs equation
subjector	ected to ax ditions. kling of Co matic column for non-pris	ial Jun ns v mat	verning differential equa and concentrated load UNI ms: Assumptions, Eul- vith different end condi- ic columns, buckling of	ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV	JDL, beam column buckling governing the characteristic eq	n w diff quati	ith diff	n columns ferent end 10Hrs equation the critica 10Hrs
subjection conce Buck prise load Uns	ected to ax ditions. kling of Co matic column for non-pris ymmetrical	ial olun ns v mat	verning differential equa and concentrated load UNI nns: Assumptions, Eul vith different end condit ic columns, buckling of UNI	ation for axial and U ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV uction, stresses	JDL, beam column buckling governing the characteristic eq in beams, deflectior	n w diff quati	ith diff	n columns ferent end 10Hrs equation the critica 10Hrs
subjection concentration Buck prise load Unstant	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrical	ial Dlun ns v mat ber l be	verning differential equa and concentrated load UNI nns: Assumptions, Eul- vith different end condi- tic columns, buckling of UNI nding of beams: Introd	ation for axial and U T - III er's theory of b tions, obtaining frames. T - IV uction, stresses to unsymmetric	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending.	n w diff quati	ith differential	n columns ferent end 10Hrs equation the critical 10Hrs subjected
subjection control con	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrical	ial Ilun ns v mat ber I be	verning differential equa and concentrated load UNI ms: Assumptions, Eul- vith different end condi- tic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center	ation for axial and U T - III er's theory of b tions, obtaining frames. T - IV uction, stresses to unsymmetric	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending.	n w diff quati	ith differential	n columns ferent end 10Hrs equation the critical 10Hrs subjected
subjection of the subjection o	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrica ar Centre:	ial Ilun ns v mat ber I be	verning differential equa and concentrated load UNI ms: Assumptions, Eul- vith different end condit ic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er.	ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV uction, stresses to unsymmetric for symmetrica	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending.	n w diff quati	ith differential	n columns ferent end 10Hrs equation the critical 10Hrs subjected problems
subjection control con	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrical ar Centre: ted to shear c	ial Ilun ns v mat ber I be intr ent	verning differential equa and concentrated load UNI ms: Assumptions, Eul- vith different end condi- tic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI	ation for axial and $\mathbf{T} - \mathbf{III}$ er's theory of the tions, obtaining frames. $\mathbf{T} - \mathbf{IV}$ uction, stresses to unsymmetrica for symmetrica	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. I and unsymmetrica	n w diff quati	ith diff erential ion for f beams ections,	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs
subjection control con	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrica ar Centre: ted to shear c stic Analysis	ial lun ns v mat ber l be intr cent	verning differential equa and concentrated load UNI ms: Assumptions, Eule with different end conditi ic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction	ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica T - V on, plastic mom	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. Il and unsymmetrics	n w diff quati	rith diff Ferential ion for f beams ections, c modu	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs llus, shape
subjection of the subjection o	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrical ar Centre: ted to shear co stic Analysis pors, moment	ial lun ns v mat l be intr cent	verning differential equa and concentrated load UNI ns: Assumptions, Eule with different end conditi ic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship,	ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica IT - V on, plastic moming plastic hinge ar	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. I and unsymmetrication nent of resistance, plan nd mechanism, anal	n w diff quati ns of al se lasti ysis	ith diff ferential ion for f beams ections, c modu of ind	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate
subjection of the subjection o	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrica ar Centre: ted to shear co stic Analysis ors, moment ms and frame	ial lun ns v mat ber l be intr cent s of es, v	verning differential equa and concentrated load UNI ms: Assumptions, Eule with different end conditi ic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship, apper and lower bound t	ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica T - V on, plastic momi- plastic hinge ar heorem, ultimati-	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. Il and unsymmetrication nent of resistance, pind mechanism, anal e strength of fixed a	n w diff juati ns of al so lasti ysis nd c	ith diff ferential ion for f beams ections, c modu of ind continue	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate
subjection of the second secon	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrical ar Centre: ted to shear co stic Analysis ors, moment ms and frame ications of s	ial lun ns v mat ber l be intr cent s of es, u tatic	verning differential equa and concentrated load UNI ms: Assumptions, Eule with different end condit ic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship, upper and lower bound the and kinematic theorem	ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica T - V on, plastic momi- plastic hinge ar heorem, ultimati-	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. Il and unsymmetrication nent of resistance, pind mechanism, anal e strength of fixed a	n w diff juati ns of al so lasti ysis nd c	ith diff ferential ion for f beams ections, c modu of ind continue	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate
subjection of the subjection o	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrical ar Centre: ted to shear co stic Analysis ors, moment ns and frame ications of si ected Cours	ial lun ns v mat ber l ber intr cent s of es, v tatic se O	verning differential equa and concentrated load UNI ms: Assumptions, Eulevith different end conditi ic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship, upper and lower bound to and kinematic theorem Putcomes:	ation for axial and U T - III er's theory of b tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica T - V on, plastic mom plastic hinge ar heorem, ultimate for plastic analy	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. I and unsymmetrica nent of resistance, pl nd mechanism, anal e strength of fixed a ysis of beams and fra	n w diff juati ns of al so lasti ysis nd c	ith diff ferential ion for f beams ections, c modu of ind continue	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate
subjection of the section of the sec	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrical ar Centre: ted to shear co stic Analysis ors, moment ms and frame ications of si ected Cours er successful	ial lun ns v mat ber l be intr cent s of es, t tatic se O con	verning differential equa and concentrated load UNI ms: Assumptions, Eule with different end condit ic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship, upper and lower bound the and kinematic theorem Putcomes: npletion of this course theorem	ation for axial and U T - III er's theory of b tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica T - V on, plastic mom plastic hinge ar heorem, ultimation for plastic analy me student will b	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. I and unsymmetrication nent of resistance, particular d mechanism, anal e strength of fixed a ysis of beams and fra-	n w diff quati ns of al se lasti ysis nd c ame	ith diff Ferential ion for f beams ections, c modu of ind continuo s.	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate
subjection of the second secon	ected to ax ditions. kling of Comatic column for non-prise ymmetrical nsymmetrical nsymmetrical ar Centre: ted to shear comment stic Analysis ors, moment ns and frame ications of sected Course er successful Explain	ial ial ilun ns v mat ber intr cent intr cent con con	verning differential equa and concentrated load UNI ms: Assumptions, Eul- with different end condi- tic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship, upper and lower bound to and kinematic theorem Putcomes: npletion of this course theorem	ation for axial and U T - III er's theory of b tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica IT - V on, plastic mom plastic hinge ar heorem, ultimate for plastic analy he student will b , deflection in be	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. I and unsymmetrica nent of resistance, pl nd mechanism, anal e strength of fixed a ysis of beams and fra- e able to: eams, columns and b	n w diff juati ns of al so lasti ysis nd c ame	ith diff ferential ion for f beams ections, c modu of ind continuo s.	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate ous beams
subjection of the subjection o	ected to ax ditions. kling of Co matic column for non-pris ymmetrical nsymmetrica ar Centre: ted to shear co stic Analysis ors, moment is and frame ications of s rected Cours or successful Explain 2 Examine	ial lun ns v mat ber l be intr cent s of es, u tatic con con con con	verning differential equa and concentrated load UNI Ins: Assumptions, Eul- with different end condit ic columns, buckling of UNI Inding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship, apper and lower bound to and kinematic theorem Putcomes: npletion of this course th cepts of stress, moment e influence of deflection	ation for axial and U T - III er's theory of b tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica T - V on, plastic mom plastic hinge ar heorem, ultimate for plastic analy he student will b , deflection in be a, moments and s	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. I and unsymmetrica nent of resistance, p nd mechanism, anal e strength of fixed a ysis of beams and fra- e able to: eams, columns and b	n w diff juati ns of al so lasti ysis nd c ame oean s and	ith diff ferential ion for f beams ections, c modu of ind continue s.	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate ous beams
subjection of the second secon	ected to ax ditions. kling of Comatic column for non-prise ymmetrical nsymmetrical nsymmetrical ar Centre: ted to shear comment stic Analysis ors, moment ns and frame ications of size ected Course er successful Explain 2 Examine 3 Analyze	ial ial ilun ns v mat ber l ber intr cent con con con bea	verning differential equa and concentrated load UNI ms: Assumptions, Eul- with different end condi- tic columns, buckling of UNI nding of beams: Introd nding, problems related oduction, shear center er. UNI Structures: Introduction curvature relationship, upper and lower bound to and kinematic theorem Putcomes: npletion of this course theorem	ation for axial and U T - III er's theory of the tions, obtaining frames. T - IV uction, stresses to unsymmetrica for symmetrica IT - V on, plastic momplastic hinge ar heorem, ultimate for plastic analy he student will b , deflection in bean n, beam column	JDL, beam column buckling governing the characteristic eq in beams, deflection cal bending. I and unsymmetrica nent of resistance, pind mechanism, anal e strength of fixed a ysis of beams and fra- e able to: eams, columns and beams and unsymmetrical	n w diff juati ns of al so lasti ysis nd c ame oean s and	ith diff ferential ion for f beams ections, c modu of ind continue s.	n columns ferent end 10Hrs equation the critica 10Hrs subjected problems 09Hrs ilus, shape eterminate ous beams

Reference Books: 1 Boresi A.P., and Sidebottom O.M., (1985), Advanced Me

- 1Boresi A.P., and Sidebottom O.M., (1985), Advanced Mechanics of Materials, John Wiley and
sons in N.Y., ISBN 10: 0471843237 ISBN 13: 9780471843238
- 2 Den Hartog, (1952), Advanced Strength of Materials, McGraw Hill, N.Y., ISBN:9780486654072
- 3 N. Krishna Raju and D.R. Gururaja, (1997), Advanced Mechanics of solids and structures, Narosa Publishing House, New Delhi, ISBN, 8173190666, 9788173190667
- N.Subramanian, Design of steel structures, Oxford University Press, ISBN-13:978-0-19-567681 5,ISBN-10:0-19-567681-5.
- 5 William F. Riley, Leroy D. Sturges and Don H. Morris, (2001), Mechanics of Materials, John Wiley & Sons, New Delhi, ISBN: 978-0-471-43446-7

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with Pos

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
РО											
CO1	Н	Н	М	-	-	-	-	-	-	-	-
CO2	Н	Н	М	-	L	-	-	L	-	-	-
CO3	Н	Н	-	-	-	-	-	-	Н	-	-
CO4	Н	Н	М	Н	-	-	-	L	Н	-	Н

	PSO1	PSO2
CO1	М	-
CO2	М	-
CO3	Н	-
CO4	Н	-

Cour	se Code:	16MST341/16MHT341	RS AND GRADE SEPARATORS (E	Marks: 100
	Week:	L:T:P:S		E Marks: 100
Cred		4		E : 3 Hrs
		This course will enable stu		· · · · · · · · · · · · · · · · · · ·
1	-		of a bridge with specifications for o	designing them for
T	highways.	e types and components	of a bridge with specifications for a	Jesigning them for
2		use of different types of h	oridge bearings, their installation and n	nointanonaa agnaata
4		tion of vehicular loads.	indge bearings, their instantation and i	namenance aspects
2			annochas for DCC, DCC and Staal brid	~~~
3			pproaches for RCC, PSC and Steel brid	÷
4	-	-	the bridges and design the elements	as per IRC load
_	specification			
5	•		during the execution of bridges both f	or substructure and
	super structu	are portions of the bridge.		
			UNIT – I	
		-	lection for Bridges, Classification of B	Bridges 09 Hours
forces	s on Bridges. E	Bridge substructures: Abutm		
_			UNIT – II	
		•	Class AA Tracked, Wheeled and Cl	
			of loading, Moment Distribution, Calcu	ulation
of BN	M & SF, Struct	ural Design of Slab Culvert	, with Reinforcement Details.	
			UNIT – III	1
	•	U 1 U	of Components Analysis of interior S	
		•	Wheeled Class A Loading, Structural I	e
			ridge Cross Girder Design: Analysis of	
		-	IRC Class AA Tracked, Wheeled C	lass A
Load	ing A Loads, S	tructural Design of beam w	vith Reinforcement Detail.	
			UNIT – IV	
Impo	rtance of Bear	ings – Types of bearings, B	Bearings for slab bridges – Bearings for	girder 10 Hours
bridg	ges – Design	of Elastomeric bearing	- Joints - Expansion joints, repair	ir and
rehab	vilitation of cor	crete bridges.		
			UNIT – V	
PSC	Bridges: Intro	oduction to Pre and Post	Tensioning, Proportioning of Compo	onents, 09 Hours
Analy	ysis and Struct	ural		
Desig	gn of Slab, A	nalysis of Main Girder u	sing	
COU	RBON's Meth	od for IRC Class AA tracke	ed vehicle,	
Calcu	ulation of pre-s	tressing force and eccentric	city, cable profile and calculation of st	resses,
Desig	gn of End blo	ck and		
detail	ling of main gi	rder		
	se outcomes:			I
		course, students will be able	e to:	
CO1			owing the specifications for highways.	
			rings, their installation and maintenanc	

CO3 Analyse the IRC loading conditions for the design of bridges.

CO4 Evaluate the design aspects of bridge approaches for RCC, PSC and Steel bridges.

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Reference Books:

1	D.Johnson Victor, "Essentials of bridge Engineering"- Oxford, IBH publishing company,
	ISBN, 8120417178, 9788120417175

- Ponnuswamy, "Bridge Engineering"-McGraw Hill Publication, 1989, ISBN-10: 0070656959
 Vazirani Ratwani & M.G.Aswani, "Design of Concrete Bridges"- Khanna Publishers, 2004 New Delhi, ISBN-13. 978-81-7409-117-3. ISBN-10
- 4 Design of Bridges"- Dr. Krishna Raju, Oxford & IBH Publishing company Limited, 2001, ISBN978-81-204-1741-0 788120 114 17410

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mappin	g of COs	s with Po)S								
CO/	PO1	PO2	PO3	PO4	PO5	5 PO6	PO7	PO8	PO9	PO10	PO11
PO											
CO1	Н	Н	-	-	-	-	-	L	-	-	-
CO2	Н	M	Н	-	-	-	-	-	-	Н	-
CO3	Н	Н	Н	-	-	-	-	-	-	Н	Н
CO4	Н	Н	Н	Н	-	-	-	-	-	-	Н
Mappin	g of Cou	rse Outo	comes (C	O) to Pr	ogran	n Specific	Outcome	s (PSO)			
						PSO1	PSO2				
				CO1		Н	-				
				CO2		Н	-				
				CO3		Н	-	1			
				CO4		Н	-	1			

		EARTH RETAINING STR	RUCTURES (Electiv	e 7)		
Co	urse Code:	16MST342/16MHT342		CIE Marks	: 100	
Hr	s/Week:	L:T:P :S	4:0:0:0	SEE Marks: 100 SEE : 3 Hrs		
Cr	edits:	04				
Co	urse Learning (Dbjectives:				
1	Understand the	significance of earth retaining str	uctures in Civil Engin	eering applications		
2	Evaluate the lat	eral earth pressures associated with	th different earth syste	ems		
3	Analyse the dif	ferent types of earth retention syst	em			
4	Design the eart	h retaining structures used for sup	port of fills and excav	rations		
		UNIT – I			10 Hrs	
Ea	rth Pressure T	Theories : Introduction – State of	of stress in retained	soil mass – Earth		
pre	ssure theories –	Classical and graphical technique	es – Active and pass	sive cases – Earth		
pre	ssure due to exte	rnal loads, empirical methods, Wa	all movement.			
		UNIT – II			09 Hrs	
Co	mpaction, Drai	nage and Stability of retaining S	tructures			
Ret	aining structure	- Selection of soil parameters, La	ateral pressure due to	compaction, strain		
sof	tening, wall flex	kibility, drainage arrangements a	nd its influence. Eart	h pressure due to		
ear	thquake forces,	Stability of retaining structure.				
		UNIT – III			09 Hrs	
Sh	eet Pile Walls					
Ret	aining structure	- Selection of soil parameters -	Analysis and design	of cantilever and		
anc	hored sheet pile	walls. Dead man and continuous	anchor. Diaphragm ar	nd bored pile walls		
– D	esign requireme	nts.				
		UNIT – IV			10Hrs	
Su	pported Excava	tions				
Lat	eral pressure on	sheeting in braced excavation, sta	bility against piping a	nd bottom		
hea	ving. Earth pres	sure around tunnel lining, shaft an	d silos ,Soil anchors,	Soil pinning , Soil		
nai	ling – Basic desi	gn concepts				
		$\mathbf{UNIT} - \mathbf{V}$			10Hrs	
De	sign Of Reinfor	ced Earth Retaining Wall				
Rei	nforced earth re	taining wall – principles, Concep	ts and mechanism of	reinforced Earth -		
De	sign consideration	on of reinforced earth – Materials	used in reinforced ea	arth - Geotextile –		
Ge	ogrids, Metal str	ips, facing elements.				
Co	urse outcomes:					
Aft	er going through	this course the student will be ab	le to:			
CO	1 Enumerate t	ne types of earth retention system				
CO	2 Predict the S	uitability of earth system for a pa	rticular project			
UU		······································				

CO4	Select the most technically appropriate and cost-effective type of retaining wall for the							
	application							
Refer	Reference Books							
1	R F Craig, "Soil Mechanics", Van Nostrand Reinhold International publication,							
	ISBN 10: 0278000193 ISBN 13: 9780278000193							
2	Chris R.I. Clayton, Rick I. Woods, Andrew J. Bond, Jarbas Milititsky "Earth pressure and							
	Earth retaining structures", Third edition, CRC Press, 2014 ISBN 9781466552111							
3	Koerner, R.M., "Design with Geosynthetics" Sixth Edition, Prentice Hall, 2012.							
	ISBN-13: 978-1462882892 ,10: 1462882897							
4	Das, B.M.," Principles of Geotechnical Engineering" Fourth Edition, The PWS series in Civil							
	Engineering, 1998 ISBN-10: 0534951791 ,ISBN-13: 978-0534951795							

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with Pos

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
РО											
CO1	Н	Μ	Н	-	-	-	-	L	-	-	-
CO2	Н	Μ	Н	-	-	-	-	-	-	Н	Н
CO3	Н	Н	Н	Н	-	-	-	-	-	Н	Н
CO4	Н	М	Н	Н	-	-	-	-	-	Н	Н

	PSO1	PSO2
CO1	Н	-
CO2	-	М
CO3	М	-
CO4	L	-

		INTERNSHIP	/ INDUSTRIAI	L TRAINING				
Course Code	Code : 16MST35			CIE Marks	:	100		
Hrs/Week	:	L:T:P:S	0:0:6:0	SEE Marks	:	100		
Credits	:	3		SEE Duration	:	30 min		
		GUIDELIN	IES FOR INTE	CRNSHIP				
Course Learni	ng	Objectives (CLO):						
The students sh	all	be able to:						
1 Understan	d t	he process of applying e	engineering kno	wledge to produce p	orodu	ct and provide		
services.								
2 Explain th	e i	mportance of management	nt and resource	utilization				
_	nd	the importance of tea	um work, prote	ection of environme	ent a	nd sustainabl		
solutions.								
4 Imbibe va	lue	s, professional ethics for	life long learnin	ng.				
		of the internship shall b exams and beginning of		f 8 weeks on full tir	ne ba	asis between I		
		nust submit letters from e internship on the comp	-			name and the		
3) Internship student has		ist be related to the field include.	l of specialization	on or the M.Tech pr	ograi	n in which th		
	Students undergoing internship training are advised to use ICT tools such as skype to report their progress and submission of periodic progress reports to the faculty members.							
5) Every stud	ent	has to write and submit	his/her own inte	ernship report to the c	lesig	nated faculty.		
committee and submi	an t th	to make a presentation d only upon approval of he hard copy of the inter s required by the indus	the presentationship final repo	n should the student ort. However interim	proc or p	ceed to prepar- periodic report		
_		the respective industry /c		on can be submitted	1 48	per uie totille		
7) The report	s sl	hall be printed on bond	paper – 80GSM	back to back print.	with	soft binding		

7) The reports shall be printed on bond paper – 80GSM, back to back print, with soft binding –

A4 size with 1.5 spacing and times new roman font size 12.

- 8) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department -
 - Chapter 3 Tasks Performed summaries the tasks performed during 8 week period
 - Chapter 4 Reflections Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

CO2Analyze real-time problems and suggest alternate solutionsCO3Communicate effectively and work in teams	CO1 Apply e	ngineering and management principles
CO3 Communicate effectively and work in teams	CO2 Analyze	real-time problems and suggest alternate solutions
	CO3 Commu	nicate effectively and work in teams
CO4 Imbibe the practice of professional ethics and need for lifelong learning	CO4 Imbibe	he practice of professional ethics and need for lifelong learning

Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of the Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries	35%
(2) Ability to comprehend the functioning of the organization/ departments	20%
(3) Importance of resource management, environment and sustainability	25%

CO3

CO4

Η

(4) Presentation	Skills and Rep	ort
(I) I resentation	Skills und Kep	

20%

Μ

PO11 -

Η

Mapping of Course Outcomes (CO) to Program Outcomes (PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	-	М	Н	Μ		М	-	-	-	L	
CO2	-	-	-	Н	Μ	М	-	L	-	-	

L

L

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)

	PSO1	PSO2
CO1	Н	Н
CO2	Н	Н
CO3	-	М
CO4	Н	Н

Μ

Η

Η

GUIDELINES FOR INDUSTRIAL TRAINING

Course Learning Objectives (CLO):

The students shall be able to:

1	Understand the process of applying engineering knowledge to industrial products & processes
-	

- 2 Explain the importance of skilling, training and resource management.
- **3** Comprehend the importance of team work, communication and sustainable solutions.

4 Imbibe values, professional ethics for life long learning.

- 1) The duration of industrial training must be for a minimum of 1 week and maximum of 8 weeks on full time basis.
- 2) Industrial Training in which students pays a fee to the organization / industry will not be considered.
- 3) He/she can undergo training in one or more industry /organization.
- 4) The student must submit letters from the industry clearly specifying his / her name and the duration of the training provided by the company with authorized signatures.
- 5) Industrial training must be related to the field of specialization or the M.Tech program in which the student has enrolled.
- 6) Students undergoing industrial training are advised to use ICT tools such as Skype to report their progress and submission of periodic progress reports to the faculty members.

- 7) Every student has to write and submit his/her own industrial training report to the designated faculty.
- 8) Students have to make a presentation on their industrial training in front of the departmental committee and only upon approval of the presentation should the student proceed to prepare and submit the hard copy of the final report.
- 9) The reports shall be printed on bond paper 80GSM, back to back print, with soft binding A4 size with 1.5 spacing and times new roman font size 12.
- 10) The broad format of the industrial training report shall be as follows
 - Cover Page
 - Certificate from College
 - Training Certificate from Industry / Organization
 - Acknowledgement
 - Executive Summary
 - Table of Contents
 - Chapter 1 Profile of the Organization –Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices
 - Chapter 2 Details of the Training Modules
 - Chapter 3 Reflections Highlight specific technical and soft skills that you acquired References & Annexure

Course Outcomes:

After going through the industrial training the student will be able to:

CO1:	Understand the process of applying engineering knowledge to solve industrial problems
CO2:	Develop skills through training relevant to industrial requirement
CO3:	Communicate effectively and work in teams
CO4·	Imply ethical practices and develop it as life skill

Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation on the application of engineering knowledge	25%
(2) Ability to comprehend the importance of skilling and training	25%
(3) Importance of communication, professional ethics, sustainability	20%
(4) Oral Presentation and Report	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	Μ	Н	М		М	-	-	-	L	-
CO2	-	-	-	Н	Μ	М		L	-	-	-
CO3	-	-	-	-	L	-	Μ	Н	Н	-	-
CO4	-	-	-	-	L	-	Н	-	-	М	Н

	PSO1	PSO2
CO1	Н	-
CO2	Н	-
CO3	-	М
CO4	Н	Н

	GUIDELINES FOR INDUSTRIAL VISITS							
Сог	Course Learning Objectives (CLO):							
The	The students shall be able to:							
1	Understand the role of industries and service organization in meeting the demands of the society.							
2	Explain the working of different industries and organizations with an engineering perspective							
3	Comprehend the importance of team work, communication and sustainable solutions.							
4	Imbibe values, professional ethics for life long learning.							
1)	Student must visit a minimum of THREE organizations/industry. The duration of the visit per organization must be for ONE full day, during which he/she must comprehend the importance of organization structure, function of various departments, application of engineering knowledge, resource management, importance to environment and safety, professional ethics.							
2)	It is mandatory to visit ONE private multi-national company or public sector industry / organization, ONE medium-small enterprise and ONE rural based or NG organization.							
3)	The student must submit letter from the industry clearly specifying his / her name and the date of visit to the industry with authorized signatures.							
4)	Industrial visit must be related to the field of specialization or the M.Tech program in which the student has enrolled.							
5)	Every student has to write and submit his/her own report on each industrial visit and submit the report to the designated faculty advisor for evaluation.							
6)	A photograph outside the industry with the name and logo of the industry in the background along with the students and faculty members could be included in the report.							
7)	Students have to make a presentation on their industrial visit in front of the departmental committee and only upon approval of the presentation should the student proceed to prepare and submit the hard copy of the final report.							
8)	The reports shall be printed on bond paper – 80GSM, back to back print, with soft binding – A4 size with 1.5 spacing and times new roman font size 12.							

9) The broad format of the industrial visit report shall be as follows • Cover Page • Certificate from College • Acknowledgement Synopsis / Executive Summary • • Table of Contents Chapter 1 - Profile of the PSU or MNC - must include Organizational structure, Products, Services, Financials, Manpower, Societal Concerns, Professional Practices Chapter 2 – Profile of the SME – must include Organizational structure, Products, Services, Financials, Manpower, Societal Concerns, Professional Practices Chapter 3 - Profile of the NGO - must include Organizational structure, services, Manpower, Societal Concerns, Professional Practices Chapter 4 – Comparative Analysis of PSU/MNC – SME – NGO References & Annexure (Permission letters from the organizations for the visit & photographs) **Course Outcomes:** After going through this course the student will be able to: Classify the role of different industries and organization in addressing the needs of the CO1: society. CO2: Explain the process of applying engineering knowledge in industries and organizations. CO3: Describe the importance of communication and team work CO4: Recognize the importance of practicing professional ethics and need for life skills. Scheme of Continuous Internal Evaluation (CIE): A committee comprising of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below: Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries 25%

(2) Ability to comprehend the functioning of the organization/ departments 30%

25%

(3) Importance of resource management, environment and sustainability 20%

(4) Presentation Skills and Report

(Tuppin	-			[]		1	itcomes (1	1	
	PO1	PO2	PO3	PO4	PO5	PO	6 PO7	PO8	PO9	PO10	PO11
CO1	-	Μ	Н	М	-	M	-	-	-	L	-
CO2	-	-	-	Н	-	M	-	L	-	-	-
CO3	-	-	-	-	L	-	-	Н	Н	-	-
CO4	-	-	-	-	L	-	Н	-	-	-	Н
Mappin	g of Co	urse O	utcomes	(CO) to]	Progra	ım Sp	ecific Ou	tcomes	(PSO)		
								-			
					PS	01	PSO2				
				CO1	H	Η	-				
				CO2	H	Η	Н				
				CO3		-	М				

Η

Η

CO4

			TECH	NICAL SEMINA	R		
Course Code Hrs/Week		: 16MST36			CIE Marks	:	50
		:	L:T:P:S	0:0:4:0	SEE Marks	:	50
Cre	edits	:	2		SEE Duration	:	3 Hrs
	e students shal Understand	l be a	jectives (CLO): able to: echnological develop e of work and challe				
3	Analyze the concerns	ese ei	ngineering developm	ents in the context	of sustainability and	soci	etal
4	Improve his	/her	presentation skills ar	nd technical report w	vriting skills		
			(GUIDELINES			
1)	The presenta	tion	will have to be done	by individual studer	nts.		
2)	The topic of	the s	eminar must be in o	ne of the thrust area	as with in-depth revi	ew a	nd analysis

on a current topic that is relevant to industry or on-going research.

- 3) The topic could be an extension or complementary to the project
- 4) The student must be able to highlight or relate these technological developments with sustainability and societal relevance.
- 5) Each student must submit both hard and soft copies of the presentation.

Course Outcomes:

After going through this course the student will be able to:

CO1:	Identify topics that are relevant to the present context of the world
CO2:	Perform survey and review relevant information to the field of study.
CO3:	Enhance presentation skills and report writing skills.
CO4:	Develop alternative solutions which are sustainable

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

Rubrics for Evaluation:

1)	Topic – Technical Relevance, Sustainability and Societal Concerns	15%
2)	Review of literature	25%
3)	Presentation Skills	35%
4)	Report	25%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	Н	М	М	L	Н	Н	-	-	-	М
CO2	L	М	-	-	-	-	-	-	-	Н	-
CO3	-	-	-	-	-	-	L	Μ	Н	-	-
CO4	-	L	М	-	Н	Н	-	-	-	-	Н

	PSO1	PSO2
CO1	L	Н
CO2	-	М
CO3	М	М
CO4	-	Н

IV SEMESTER

		MA	IOR PROJECT	<u>ר</u>								
Course Code	:	I		CIE Marks	:	100						
Hrs/Week	:	L:T:P:S	0:0:52:0	SEE Marks	:	100						
Credits	lits : 26 SEE Duration :											
Course Learn	ing	Objectives:				I						
The students sl	nall	be able to										
1 Understar	Understand the method of applying engineering knowledge to solve specific problems.											
2 Apply eng	gine	ering and management p	rinciples while e	executing the project								
3 Demonstr	ate	good verbal presentation	and technical re	port writing skills.								
4 Identify a	nd s	solve complex engineerin	g problems usin	g professionally presc	ribe	ed standards.						
		G	UIDELINES									
1. Major pr	ojec	ct will have to be done by	only one studer	nt in his/her area of int	ere	st.						
		t has to select a contempo	prary topic that v	vill use the technical k	nov	wledge of their						
		specialization.										
		f the guides preferably in		-	acu	ılty.						
		of projects that a faculty	-									
		can be carried out on-ca	-	industry or an organi	zat	ion with prior						
		m the Head of the Depart		hamana if tha anida a								
		d duration of the project i										
		of the department, after the tended, then the student										
and the c			will have to con	tillue as per the direc	uoi	is of the guide						
		ory for the student to pres	ent his/her work	in one of the internat	ion	al conferences						
		e research finding in a re										
Course Outco			F J	r								
		this course the students	will be able to									
		alize, design and implement		specific problems.								
	-	cate the solutions through										
		ject and resource manage			etal	concerns						
11 5	-	e self-learning, sustainab										
-		uous Internal Examina			20	Ø						
Evaluation wil	11 b	e carried out in THREE faculty members, one ind	Phases. The e			1						
Phase			Activity			Weightage						
I	Sy	nopsis, Preliminary repo	v	roval of selected top	ic	0 0						
5 th week		ong with literature survey,				20%						
J WEEK	a10	mg with merature survey,	objectives and	memodology.								

II 10 th week	Mid-term progress review shall check the compliance with the objectives and methodology presented in Phase I, review the work performed.	40%
III 15 th week	Oral presentation, demonstration and submission of project report. After this presentation, the student will have one week time to correct / modify his report to address the issues raised by the committee members.	40%

CIE Evaluation shall be done with marks distribution as follows:

 Selection of the topic & formulation of objectives 	10%
• Design and simulation/ algorithm development/experimental setup	25%
 Conducting experiments / implementation / testing / analysis 	25%
Demonstration & Presentation	20%
• Report writing	20%
Scheme for Semester End Evaluation (SEE):	

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1. Brief write-up about the project	5%
2. Formulation of Project Objectives & Methodology	20%
3. Experiments / Analysis Performed; Results & Discussion	25%
4. Report	20%
5. Viva Voce	30%

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	Н	Н	Μ	L	Μ	L	-	-	-	-
CO2	-	-	-	L	-	-	-	М	Н	-	-
CO3	-	-	-	-	L	Μ	М	-	-	Н	-
CO4	-	-	-	-	L	Μ	Н	М	-	-	Н
ping of	Cours	e Outc	omes (CO) to	Progr	am Sp	ecific (Dutcom	nes (PS	0)	1
					DC	01	DCO1				

	PSO1	PSO2
CO1	Н	-
CO2	-	М
CO3	Н	Н
CO4	-	Н

			SEMINAR			
Course Code	:	16MST42		CIE Marks	:	50
Hrs/Week	:	L:T:P:S	0:0:4:0	SEE Marks	:	50
Credits	:	2		SEE Duration	:	3 Hrs
Course Learn	ing	Objectives (CLO)):			
The students sh	nall	be able to:				
1 Understand	l th	e technological dev	velopments in their cho	osen field of interest		
2 Explain the	e sc	ope of work and ch	allenges in the domai	n area		
3 Analyze th	ese	engineering develo	opments in the context	t of sustainability, so	cieta	l concerns an
project ma			1			
4 Improve hi	s/he	er verbal presentation	on and report writing	skills		
			GUIDELINES			
1) (1)				. 1 .		
1) The pre	sen	tation will have to I	be done by individual	students.		
-			ust be in one of the tis relevant to industr		-	th review an
					11.	
3) The top	ic c	ould be an extension	on or complementary t	to the project topic.		
4) Topics	cou	ld be in multidiscip	olinary areas and stron	gly address the techn	ical	design issues
<i>,</i>			highlight or relate t	these technological of	leve	lopments wit
sustaina	bili	ty and societal rele	vance.			
6) The stu	den	ts must mandatorily	y address legal, ethica	l issues as related to t	he to	opic of study.
			ttempt to perform fir o his/her topic of stud	-	s or	apply projec
8) Each stu	ıde	nt must submit both	h hard and soft copies	of the presentation.		
Course Outco	mes					

CO1:	Identify topics that are relevant in the present context of the world and relate it to
	sustainability and societal relevance
CO2:	Perform literature/market/product survey and analyse information to the field of study
CO3:	Enhance presentation and report writing skills.
CO4:	Develop creative thinking abilities

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of TWO senior faculty members. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

Rubrics for Evaluation:

•	Topic – Technical Relevance, Sustainability and Societal Concerns	15%
•	Literature Review	25%
•	Presentation Skills	35%
•	Report	25%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	Н	Μ	Μ	L	Н	Η	-	-	-	М
CO2	L	М	-	-	-	-	-	-	-	Н	-
CO3	-	-	-	-	-	-	L	М	Н	-	-
CO4	-	L	М	-	Н	Н	-	-	-	-	Н

	PSO1	PSO2
CO1	-	М
CO2	-	Н
CO3	-	М

Н	CO4	Η	Н
---	-----	---	---