				Semester: V									
			MATHEMA	FICS FOR MACHI	NE LEARNING								
				(Theory)									
(Group B: Global Elective)													
Cour	rse Code	:	18G5B17		CIE	:	100 Marks						
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Total Hours:39LSEE Duration:3.00 HoursCourse Learning Objectives: The students will be able to													
1	Understand the basic knowledge on the fundamental concepts of linear algebra that form the												
	foundation of machine intelligence.												
2	Acquire practical knowledge of vector calculus and optimization to understand the machine learning												
	algorithms or techniques.												
3	Use the con	cept	s of probability	and distributions to	analyze possible	appli	cations of machine						
	learning.												
4				d estimation to solve									
5	Analyze the	app	ropriate mathemat	tical techniques for	classification and	optim	ization of decision						
	problems.												
				Unit-I			07 Hrs						
	ar Algebra:												
				Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, Inner									
Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement,													
						Ortho							
			ons, Orthogonal Pr	ojections, Rotations,		Ortho	osition.						
Inner	Product of Fu	ncti	ons, Orthogonal Pr	ojections, Rotations, U nit – II		Ortho							
Inner	Product of Fu	ncti nd (ons, Orthogonal Pr Continuous Optim	ojections, Rotations, Unit – II lization:	Singular Value Dec	Ortho	07 Hrs						
Inner Vector Grad	Product of Fu or Calculus an ients of Vect	ncti nd (or-V	ons, Orthogonal Pr Continuous Optim Valued Functions,	ojections, Rotations, Unit – II ization: Gradients of Mati	Singular Value Dec	Ortho compo r Co	mputing Gradients,						
Inner Vecto Grad Back	Product of Fu or Calculus an ients of Vect propagation ar	ncti nd (or-V nd A	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization	Singular Value Dec rices, Identities for and Multivariate Ta	Ortho compo r Co ylor S	mputing Gradients, Series, Optimization						
Inner Vecto Grad Back	Product of Fu or Calculus an ients of Vect propagation ar	ncti nd (or-V nd A	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti	ojections, Rotations, Unit – II ization: Gradients of Mati- iation, Linearization imization and Lagran	Singular Value Dec rices, Identities for and Multivariate Ta	Ortho compo r Co ylor S	mputing Gradients, Series, Optimization ex Optimization.						
Inner Vecto Grad Back Using	Product of Fu or Calculus an ients of Vect propagation ar g Gradient Des	ncti nd C or-V nd A	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization	Singular Value Dec rices, Identities for and Multivariate Ta	Ortho compo r Co ylor S	mputing Gradients, Series, Optimization						
Inner Vecto Grad Back Using Prob	Product of Fu or Calculus an ients of Vect propagation ar g Gradient Des	ncti nd (or-V nd A scent	ons, Orthogonal Pr Continuous Optim /alued Functions, utomatic Different t, Constrained Opti U butions:	rojections, Rotations, Unit – II iization: Gradients of Matriciation, Linearization imization and Lagran Unit –III	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C	Ortho compo r Con conve	mputing Gradients, Series, Optimization 08 Hrs						
Inner Vecto Grad Back Using Prob Cons	er Product of Fu or Calculus and ients of Vect propagation ar g Gradient Des pability and Di struction of a H	ncti nd C or-V nd A scent scent stri	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti U butions: ability Space, Disc	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C	ortho compo r Cor cylor S Conve	mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and						
Inner Vecto Grad Back Using Cons Baye	or Calculus and ients of Vect propagation ar g Gradient Des oblity and Di struction of a H es' Theorem, C	ncti nd C or-V nd A scent scent stri	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti U butions: ability Space, Disc	rojections, Rotations, Unit – II iization: Gradients of Matriciation, Linearization imization and Lagran Unit –III	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C	ortho compo r Cor cylor S Conve	mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and						
Inner Vecto Grad Back Using Prob Cons Baye	er Product of Fu or Calculus and ients of Vect propagation ar g Gradient Des pability and Di struction of a H	ncti nd C or-V nd A scent scent stri	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti U butions: ability Space, Disc sian Distribution,	rojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C	ortho compo r Cor cylor S Conve	mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables -						
Inner Vecto Grad Back Using Prob Cons Baye Inver	er Product of Fu or Calculus and ients of Vect propagation are g Gradient Des pability and Di atruction of a H es' Theorem, C rse Transform.	ncti nd (or-V nd A acen Prob	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti U butions: ability Space, Disc sian Distribution,	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C	ortho compo r Cor cylor S Conve	mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and						
Inner Vector Grad Back Using Prob Cons Baye Inver	e Product of Fu or Calculus and ients of Vect propagation ar g Gradient Des oblity and Di struction of a H es' Theorem, C rse Transform. ar Regression	ncti nd C or-V nd A scen Frob Saus	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution,	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family	ortho compo cylor S Conve a Rule 7, Cha	07 Hrs 07 Hrs mputing Gradients, Series, Optimization 08 Hrs e, Product Rule and ange of Variables - 08 Hrs						
Inner Vecto Grad Back Using Prob Cons Baye Inver Linea Probl	e Product of Fu or Calculus and ients of Vect propagation are g Gradient Des oblity and Di attruction of a H es' Theorem, C rse Transform. ar Regression lem Formulation	ncti or-V nd A ccent Saus Frob Gaus	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution,	rojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family	ortho compo cylor S Conve a Rule 7, Cha	07 Hrs 07 Hrs mputing Gradients, Series, Optimization 08 Hrs e, Product Rule and ange of Variables - 08 Hrs						
Inner Vecto Grad Back Using Prob Cons Baye Inver Linea Probl Ortho	r Product of Fu or Calculus and ients of Vect propagation and g Gradient Des pability and Di struction of a H truction of a H	ncti nd (or-V nd A ccent Prob Baus : ion, on.	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti U butions: ability Space, Disc sian Distribution, V Parameter Estim	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lin	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family	ortho compo cylor S Conve a Rule 7, Cha	07 Hrs 07 Hrs mputing Gradients, Series, Optimization 08 Hrs e, Product Rule and ange of Variables - 08 Hrs						
Inner Vecto Grad Back Using Prob Cons Baye Inver Linea Probl Ortho Dens	Product of Fu or Calculus and ients of Vect propagation are g Gradient Des ability and Di struction of a H es' Theorem, C rse Transform. ar Regression lem Formulatio ogonal Projecti sity Estimation	ncti nd C or-V nd A cent istri Prob Gaus : ion, on. n wi	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution, V Parameter Estim th Gaussian Mixt	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lir ure Models:	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M	r Conve conve cylor S Conve n Rule 7, Cha Maxin	osition. 07 Hrs mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables - 08 Hrs um Likelihood as						
Inner Vecto Grad Back Using Prob Cons Baye Inver Lines Probl Ortho Dens Gaus	Product of Fu or Calculus and ients of Vect propagation ar g Gradient Des obility and Di atruction of a H ess' Theorem, C rese Transform. ar Regression lem Formulation ogonal Projecti sity Estimation ssian Mixture I	ncti nd C or-V nd A cent istri Prob Gaus : ion, on. n wi	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution, V Parameter Estim th Gaussian Mixt	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lin	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M	r Conve conve cylor S Conve n Rule 7, Cha Maxin	osition. 07 Hrs mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables - 08 Hrs um Likelihood as						
Inner Vecto Grad Back Using Prob Cons Baye Inver Lines Probl Ortho Dens Gaus	Product of Fu or Calculus and ients of Vect propagation are g Gradient Des ability and Di struction of a H es' Theorem, C rse Transform. ar Regression lem Formulatio ogonal Projecti sity Estimation	ncti nd C or-V nd A cent istri Prob Gaus : ion, on. n wi	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti U butions: ability Space, Disc sian Distribution, V Parameter Estim th Gaussian Mixt el, Parameter Lea	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lir ure Models: rning via Maximum	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M	r Conve conve cylor S Conve n Rule 7, Cha Maxin	05 07 Hrs mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables - 08 Hrs hum Likelihood as						
Inner Vecto Grad Back Using Prob Cons Baye Inver Linea Probl Ortho Dens Gaus Persp	reproduct of Fu- or Calculus and ients of Vect propagation and g Gradient Des pability and Di struction of a H truction of a H	ncti nd (or-V nd A scent Prob Baus ion, on. ion, on. i wi	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution, Parameter Estim th Gaussian Mixt el, Parameter Lea	ojections, Rotations, Unit – II ization: Gradients of Matri iation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lin ure Models: rning via Maximum Unit –V	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M Likelihood, EM Al	r Conve conve cylor S Conve n Rule 7, Cha Maxin	osition. 07 Hrs mputing Gradients, Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables - 08 Hrs um Likelihood as						
Inner Vecto Grad Back Using Prob Cons Baye Inver Lines Gaus Persp Dime	r Product of Fu or Calculus and ients of Vect propagation and g Gradient Des pability and Di struction of a H es' Theorem, C rse Transform. ar Regression lem Formulation ogonal Projection sity Estimation sian Mixture M pective.	ncti nd C or-V nd A scent Prob Faus ion, on. n wi Mod duc	ons, Orthogonal Pr Continuous Optim /alued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution, Parameter Estim th Gaussian Mixt el, Parameter Lea tion with Principa	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lir ure Models: rning via Maximum Unit –V al Component Analy	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M Likelihood, EM Al	r Conve a Rule 7, Charles Maxim	05 07 Hrs mputing Gradients, Series, Optimization 08 Hrs e, Product Rule and ange of Variables - 08 Hrs num Likelihood as num, Latent-Variable 09 Hrs						
Inner Vecto Grad Back Using Prob Cons Baye Inver Lines Ortho Dens Gaus Persp Dimo	Product of Fu or Calculus and ients of Vect propagation are g Gradient Des obility and Di atruction of a H ess' Theorem, C rese Transform. ar Regression lem Formulation ogonal Projection sity Estimation sian Mixture In pective.	ncti nd Cor-V nd A scent Saus Frob Gaus Saus Saus Non. n wi Mod	ons, Orthogonal Pr Continuous Optim /alued Functions, utomatic Different t, Constrained Opti butions: ability Space, Dis- sian Distribution, Parameter Estim th Gaussian Mixt el, Parameter Lea tion with Principa mum Variance Pe	ojections, Rotations, Unit – II ization: Gradients of Matriation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lir ure Models: rning via Maximum Unit –V al Component Analy prespective, Projection	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M Likelihood, EM Al	ortho compo- r Cor ylor S Conve a Rule 7, Cha daxin gorith	05 07 Hrs 07 Hrs 07 Hrs mputing Gradients, Series, Optimization 08 Hrs 08 Hrs 08 Hrs e, Product Rule and ange of Variables - 08 Hrs 08 Hrs 08 Hrs num Likelihood as 08 Hrs num Likelihood as 09 Hrs or Computation and 09 Hrs						
Inner Vecto Grad Back Usiną Prob Cons Baye Inver Linea Probl Ortho Dens Gaus Persp Probl Low-	e Product of Fu or Calculus and ients of Vect propagation are g Gradient Des oblity and Di atruction of a H es' Theorem, C rese Transform. ar Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	ncti nd Cor-V nd A scent Saus Frob Gaus Saus Saus Non. n wi Mod	ons, Orthogonal Pr Continuous Optim /alued Functions, utomatic Different t, Constrained Opti butions: ability Space, Dis- sian Distribution, Parameter Estim th Gaussian Mixt el, Parameter Lea tion with Principa mum Variance Pe	ojections, Rotations, Unit – II ization: Gradients of Matriciation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lir ure Models: rning via Maximum Unit –V al Component Analy	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M Likelihood, EM Al	ortho compo- r Cor ylor S Conve a Rule 7, Cha daxin gorith	05 07 Hrs 07 Hrs 07 Hrs mputing Gradients, Series, Optimization 08 Hrs 08 Hrs 08 Hrs e, Product Rule and ange of Variables - 08 Hrs 08 Hrs 08 Hrs num Likelihood as 08 Hrs num Likelihood as 09 Hrs or Computation and 09 Hrs						
Inner Vecto Grad Back Using Prob Cons Baye Inver Linea Probl Ortho Dens Gaus Persp Probl Low- Persp	reproduct of Fu- or Calculus and ients of Vect propagation and g Gradient Des pability and Di struction of a H ess' Theorem, C rese Transform. ar Regression lem Formulation ogonal Projection sity Estimation sian Mixture I poective. ensionality Re lem Setting, M -Rank Approx- poective.	ncti nd C or-V ad A cent Prob Baus Prob Baus Con, on. n wi Mod	ons, Orthogonal Pr Continuous Optim Valued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution, Parameter Estim th Gaussian Mixt el, Parameter Lea tion with Principa mum Variance Petions, PCA in Hig	ojections, Rotations, Unit – II ization: Gradients of Matri iation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lin ure Models: rning via Maximum Unit –V al Component Analy prespective, Projection gh Dimensions, Key	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M Likelihood, EM Al	ortho compo- r Cor ylor S Conve a Rule 7, Cha daxin gorith	05 07 Hrs 07 Hrs 07 Hrs mputing Gradients, Series, Optimization 08 Hrs 08 Hrs 08 Hrs e, Product Rule and ange of Variables - 08 Hrs 08 Hrs 08 Hrs num Likelihood as 08 Hrs num Likelihood as 09 Hrs or Computation and 09 Hrs						
Inner Vecto Grad Back Using Prob Cons Baye Inver Lines Ortho Dens Gaus Persp Dime Probl Low- Persp Class	r Product of Fu or Calculus and ients of Vect propagation and g Gradient Des pability and Di struction of a H es' Theorem, C rse Transform. ar Regression lem Formulation ogonal Projection sian Mixture H pective. ensionality Re lem Setting, N -Rank Approxi- pective.	ncti nd C or-V ad A scent Prob Gaus istri Prob Gaus istri On, on, on, on, on, Mod duc faxi imat	ons, Orthogonal Pr Continuous Optim /alued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution, Parameter Estim th Gaussian Mixt el, Parameter Lea tion with Principa mum Variance Pe ions, PCA in Hig pport Vector Mac	ojections, Rotations, Unit – II ization: Gradients of Matri iation, Linearization imization and Lagran Jnit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lir ure Models: rning via Maximum Unit –V al Component Analy prspective, Projection gh Dimensions, Key chines:	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M Likelihood, EM Al vsis (PCA): Perspective, Eigen Steps of PCA in I	ortho compo- r Con- ylor S Conve a Rule 7, Cha daxin gorith avecto Practi	osition. 07 Hrs mputing Gradients, series, Optimization osition. osi						
Inner Vecto Grad Back Using Prob Cons Baye Inver Vers Gaus Persp Class Sepan	r Product of Fu or Calculus and ients of Vect propagation and g Gradient Des pability and Di struction of a H es' Theorem, C rse Transform. ar Regression lem Formulation ogonal Projection sian Mixture H pective. ensionality Re lem Setting, N -Rank Approxi- pective.	ncti nd C or-V ad A scent Prob Gaus istri Prob Gaus istri inat Mod duc faxi imat	ons, Orthogonal Pr Continuous Optim /alued Functions, utomatic Different t, Constrained Opti butions: ability Space, Disc sian Distribution, Parameter Estim th Gaussian Mixt el, Parameter Lea tion with Principa mum Variance Pe ions, PCA in Hig pport Vector Mac	ojections, Rotations, Unit – II ization: Gradients of Matri iation, Linearization imization and Lagran Unit –III crete and Continuous Conjugacy and the Unit –IV ation, Bayesian Lin ure Models: rning via Maximum Unit –V al Component Analy prespective, Projection gh Dimensions, Key	Singular Value Dec rices, Identities for and Multivariate Ta ge Multipliers and C s Probabilities, Sum Exponential Family near Regression, M Likelihood, EM Al vsis (PCA): Perspective, Eigen Steps of PCA in I	ortho compo- r Con- ylor S Conve a Rule 7, Cha daxin gorith avecto Practi	osition. 07 Hrs mputing Gradients, series, Optimization osition. osi						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.						
CO2:	Orient the basic concepts of mathematics towards machine learning approach.						
CO3:	Apply the linear algebra and probability concepts to understand the development of different						
	machine learning techniques.						
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical						
	problems.						

Reference Books1Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition, 2020, Cambridge University Press.2Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge Press, ISBN: 0692196382, 9780692196380.3Introduction to Machine Learning, Ethem Alpaydin, 2nd Edition, 2010, PHI Publication, ISBN-978-81-203-4160-9.4The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2nd Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1