				Semester: V					
		CO	MPUTATIONAL		ERICAL METHO	DS			
	COMPUTATIONAL ADVANCED NUMERICAL METHODS (Theory)								
	(Group B: Global Elective)								
Course Code : 18G5B16 CIE : 100									
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks		
Total Hours		:	39L		SEE Duration	:	3.00 Hours		
Cou	Course Learning Objectives: The students will be able to								
1	Gain adequate exposure to learn alternative methods to solve algebraic and transcendental equations								
	using suitable numerical techniques.								
2				nniques arising in var					
3	Solve initial	val	ue and boundary v	value problems which	ch have great signi	fica	nce in engineering		
	practice.								
4	Apply the concepts of eigen value and eigen vector to obtain the critical values of various physical								
	phenomena.								
5				ning language, impl	lementation of algo	orith	ims and computer		
	programs to se	olve	e mathematical prob	lems.					
				· · · ·					
				Unit-I			07 Hrs		
Root	s of equations	in e		- Fixed point iterativ	ve method, Aitken p	roc	ess, Muller method,		
Chet	byshev method.	Sin	nulation using MAT	<u>LAB.</u> nit – II			07 11		
Trator			U	nit – 11			07 Hrs		
	rpolation:	to	difforoncos Finito	differences of a po	lynomial Divided	4;ff/	verances Newton's		
				differences of a po- lermite interpolation,					
			on. Simulation using		, spine interpolation	1 - 1	inear, quadratic and		
cuon	c spine interpol	and		nit –III			08 Hrs		
Diffe	erential Equati	ong					00 1115		
Runge-Kutta and Runge-Kutta-Felhberg methods to solve differential equations, Boundary value problems (BVPs) - Rayleigh-Ritz method, Shooting method, Differential transform method to solve differential equations. Simulation using MATLAB.									
	Unit –IV 08 Hr								
	erential Equati								
				ems - Runge-Kutta m					
Finite difference method for ordinary linear, Nonlinear differential equations, Simulation using MATLAB.									
				nit –V			09 Hrs		
Eige Gers		Eig	en vectors, Power	method, Inverse F d for symmetric ma					

Course Outcomes: After completing the course, the students will be able to										
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and									
	corresponding computational techniques.									
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application									
	problems.									
CO3:	Analyze the physical problem and use appropriate method to solve numerically using									
	computational techniques.									
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems									
	arising in engineering practice.									

Refere	Reference Books							
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R. K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.							
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9 th Edition, 2012, Cengage Learning, ISBN-13: 978-81-315-1654-6.							
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4 th Edition, 2011, PHI Learning Private Ltd., ISBN: 978-81-203-2761-0.							
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5 th Edition, 2011, Tata Mcgraw Hill, ISBN-10: 0-07-063416-5.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1